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Abstract

Tardive dyskinesia (TD), frequently expressed as excessive perioral activity,
represents an adverse outcome of prolonged antipsychotic treatments, occurring
in 5% of patients per treatment year. Although neuronal mechanisms underlying
TD are largely unknown, recent experiments in animal models of TD provide
insight into neuronal mechanisms associated with TD and implicate newer
treatment approaches. It is evident that a predominance in the ratio of dopamine
(DA) D1:D2 receptor (R) activation accounts for induction of perioral movements
in rodent models of TD, also in nonhuman primate models of TD, and in humans
with TD. Experimentally, TD is produced in animal models in a manner analo-
gous to that by which TD is produced in humans – by continuous prolonged DA
D2 R antagonist treatment (i.e., an antipsychotic drug). Also, in rodent models of
TD, lesioning of dopaminergic – mainly nigroneostriatal – neurons hastens the
time to onset of TD, while increasing its severity and resultant permanence, even
after discontinuing D2 R antagonist treatment. Induction of perioral activity is
related to DAR supersensitivity but unrelated to numbers of D1 R and D2 R in the
neostriatum, a brain region associated with perioral activity. More apropos,
serotoninergic systems apparently have a greater role in effecting perioral activity,
as a 5-HT2C R antagonist most effectively abates perioral activity in the rodent
TD model. These analyses guide towards a newer understanding of mechanisms
underlying TD and provide insight into novel approaches towards treatment of
human TD. It is proposed that there be refocus towards 5-HT2C-R antagonists as
effective antidyskinetic agents.
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[1,2-alquinoxaline]
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MDL 72222 3-Tropanyl-3,4-dichlorobenzoate
NINDS National Institute of Neurological Disorders and Stroke
R Receptor
TD Tardive dyskinesia
VCMs Vacuous chewing movements

2152 R. M. Kostrzewa et al.



1 Introduction

On the website of the National Institute of Neurological Disorders and Stroke (NINDS)
(https://www.ninds.nih.gov/Disorders/All-Disorders/Tardive-Dyskinesia-Information-
Page), tardive dyskinesia (TD) is classified as an extrapyramidal syndrome arising from
long-term use of neuroleptic agents (i.e., antipsychotics). TD is characterized by
repetitive involuntary purposeless movements of specific muscle groups, which may
include fingers, arms, legs, and trunk but generally presents as oral dyskinesia (typi-
cally, vacuous chewing movements, VCMs) which may include lip smacking and
tongue protrusion. A person with TD may appear to be chewing gum.

TD arises in humans, nonhuman primates (Blanchet et al., 2012), and rodents by
chronic (exclusive) treatment with a dopamine (DA) D2 receptor (R) antagonist
(Saifee & Edwards, 2011) – the class of agents oft used for treating schizophrenia.
The incidence rate of TD is approximately 5% per treatment year with a “classical”
(first-generation) antipsychotic drug (e.g., haloperidol) (Kane et al., 1985) and two to
threefold less so when atypical antipsychotic agents (e.g., clozapine or quetiapine)
are used (Tarsy et al., 2011). TD tends to be long lived, sometimes lifelong, and is
usually refractory to treatment. TD remains a serious problem today. First-line
“treatment” of TD is withdrawal of the antipsychotic, if possible. Vesicular mono-
amine transport inhibitors such as deutetrabenazine and valbenazine are viable
treatment options (Bhidayasiri et al., 2018; Keepers et al., 2020; Ricciardi et al.,
2019), although a variety of other drugs is often attempted.

2 Multineuronal Associations with Tardive Dyskinesia

Although TD arises from prolonged administration of a DA D2 R antagonist, it is
recognized that many different neuronal phenotypes may have a role in the devel-
opment or persistence of TD (Casey, 1987; Egan et al., 1995; Gong et al., 1992;
Gunne & Häggström, 1983; Jeste & Caligiuri, 1993; Knable et al., 1994; Kostrzewa,
1995; Waddington, 1990). Cholinergic (Kostrzewa & Neely, 1993; Rupniak et al.,
1983, 1985; Salamone et al., 1990), GABA-ergic [GABA, gamma-aminobutyric
acid] (Gunne et al., 1982; Lloyd et al., 1985; Mithani et al., 1987; Tamminga et al.,
1979), and serotoninergic (Gong et al., 1992; Gong & Kostrzewa, 1992) involve-
ments have been implicated in TD. Nevertheless, the focus of this chapter will
remain on dopaminergic systems and the uncovered important role of serotoninergic
systems in TD.

3 Oral Dyskinesia Arising in Rodents from Acute Dopamine
Receptor Agonist or Antagonist Treatments

Acute administration of a DA D2 R antagonist to rats or mice results in the onset of
oral dyskinesias, which are prominent over the following hour or more. The short-
lived effect of the D2 R antagonist is dose-related. Similarly, acute administration of
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a DA D1 R agonist is associated with a short-lived and dose-related induction of oral
dyskinesia. These correlated findings give credence to the possibility that oral
dyskinesia may be related to an imbalance in D1 R/D2 R activation by the endog-
enous neurotransmitter, DA (Rosengarten et al., 1983). Moreover, when a D2 R
antagonist is administered chronically, as per animal modeling of TD, or when
psychiatric patients are treated long term with an antipsychotic drug, one must
consider the long-term effect of such treatment on the overall balance of D1 R/D2

R activation – and the effect this might have on the origin of TD.

3.1 Experimental Induction of Oral Dyskinesia in Rodents by
Acute Dopamine D1 R Agonist Treatment or D2 R Antagonist
Treatment

Antipsychotics and D2 R antagonists in general induce the occurrence of spontane-
ous oral activity – the so-called oral dyskinesias in humans and the so-called VCMs
in rodents (Clow et al., 1979; Iversen et al., 1980; Waddington & Gamble, 1980).
Similarly, DA D1 R agonists induce oral activity (Arnt et al., 1987; Koshikawa et al.,
1987; Levin et al., 1989; Molloy & Waddington, 1988; Murray & Waddington,
1989; Rosengarten et al., 1983; Rosengarten, Schweitzer, Egawa, & Friedhoff,
1986a; Rosengarten, Schweitzer, & Friedhoff, 1986b; Rupniak et al., 1985), and it
is the presumed balance in D1R/D2R activation that is considered to be important for
this behavioral response (Rosengarten et al., 1983). For example, in rodents, there is
an increase in oral activity when there is an increase in D1R/D2R activation, as
occurs with D2R antagonists, also after D1R agonist treatment (Johansson et al.,
1987; Molloy & Waddington, 1987, 1988; Rosengarten et al., 1983), and in rat
strains with reduced numbers of D2R (Rosengarten et al. 1986a, b).

3.2 Effect of Neonatal Dopaminergic Denervation on Induction
of Oral Dyskinesia in Rodents by Dopamine D1R Agonists or
D2R Antagonists

When rats are lesioned perinatally with the neurotoxin 6-hydroxydopamine
(6-OHDA; desipramine pretreatment), repeated D1 R agonist treatments “prime”
DA D1 R. Initial D1 R agonist treatments have no marked effect, but repeated D1 R
agonist treatments permanently sensitize D1 R, so that exaggerated behavioral
responses are observed following acute D1 R agonist treatment. This process is
known as homologous priming of D1 R, and the resulting D1 R supersensitization is
lifelong (Breese et al. (1985, 1987). Also, repeated D2 R agonist treatments of
6-OHDA-lesioned rats can induce the D1 R supersensitization, a process known as
heterologous priming of D1 R (Criswell et al., 1989).

When rats so-lesioned perinatally with 6-OHDA were challenged with a single
dose of a D2 R antagonist, there was an increase in perioral movements when
compared to the effect in nonlesioned control rats (Kostrzewa & Hamdi, 1991).
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In an analogous manner for rats that were perinatally 6-OHDA lesioned, the first
adulthood challenge dose of a D1 R agonist surprisingly produced an increased
number of perioral movements in comparison to nonlesioned control rats (Kostrzewa
& Gong, 1991). Thus, in contrast to the latent D1 R supersensitivity for locomotory
and stereotyped activities that required unmasking by repeated D1 R agonist treat-
ments (Breese et al., 1985, 1987), there was overt supersensitization of D1 R for D1 R
agonist induction of perioral activity. Moreover, in rats that were perinatally
6-OHDA-lesioned, perioral activity was induced in adulthood by a D1 R agonist
dose that was 100–1,000 times lower than was needed for induction of perioral
activity in intact control rats (Kostrzewa & Gong, 1991). The D1 R supersensitivity
for this effect developed if the nigroneostriatal dopaminergic fiber lesioning by
6-OHDA occurred within the first week postbirth (Kostrzewa et al., 1993) and if
neostriatal DA depletion was 98.5 % or more (Gong et al., 1993). This D1 R
supersensitization was also lifelong. Moreover, the effect was unaccompanied by
an increase in the Bmax for D1 R (i.e., relative number of D1 R) or change in the Kd

(i.e., relative affinity of the receptor for an agonist) (Gong et al., 1994).
Perinatal 6-OHDA treatment which produces near total destruction of

nigroneostriatal dopaminergic neurons (Doucet et al., 1986) leaves the ventral
tegmental nucleus largely intact and able to provide dopaminergic innervation to
limbic regions (Fernandes Xavier et al., 1994; Snyder et al., 1986). Thus, the
important element of the above studies is that a lesion of dopaminergic innervation
to the neostriatum resulted in overt D1 R supersensitization for the induction of oral
activity (Kostrzewa, 1995; Kostrzewa et al., 1998, 2003, 2008).

4 Oral Dyskinesia Arising in Rodents from Acute Serotonin
Agonist Treatment

When perinatally 6-OHDA-lesioned rats were challenged in adulthood with the
serotonin (5-hydroxytryptamine, 5-HT) 5-HT2 R agonist m-chlorophenylpiperazine
(mCPP), the initial mCPP dose produced an enhanced increase in the number of
perioral movements in comparison to that of intact control rats (Gong & Kostrzewa,
1992). This finding and others indicate that 5-HT2 R is supersensitized by 6-OHDA
lesioning (El Mansari et al., 1994). The effect was not replicated by 5-HT1A R
agonist 8-OH-DPAT [(�)8-hydroxydipropylaminotetralin] or 5-HT1B R agonist
CGS-12066B (7-trifluoromethyl-4(4-methyl-1-piperazinyl)-pyrrolo[1,2-alquinoxa-
line]); nor was the effect attenuated by 5-HT1A/1B R antagonist pindolol, nor by
the predominate 5-HT2A R antagonist ketanserin, nor by 5-HT3 R antagonist MDL
72222 (3-tropanyl-3,4-dichlorobenzoate) (Gong et al., 1993). However, the selective
5-HT2 R antagonist mianserin blocked the effect of mCPP, indicating that 5-HT2 R,
perhaps 5-HT2C R specifically, represents the subtype that is overtly supersensitized
by perinatal 6-OHDA lesioning. It is thus considered that supersensitized 5-HT2C R
accounts for enhanced perioral movements following an adulthood 5-HT-agonist
challenge dose in the group of rats perinatally 6-OHDA-lesioned rats (Gong et al.,
1993).
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In fact, the number of perioral movements after mCPP treatment was greater than
that following D1 R agonist treatment (Gong et al., 1992). Mianserin pretreatment, in
addition to blocking the effect of the 5-HT2 R agonist mCPP, blocked the effect of a
D1 R agonist on perioral activity (Gong et al., 1992), and the dorsal striatum was one
site for this interaction (Plech et al., 1995; Salamone et al., 1990). By contrast, a D1 R
antagonist did not block the effect of mCPP (Gong et al., 1992). These findings
indicate that DAR supersensitivity for perioral activity is mediated via a serotonin-
ergic system and notably at the 5-HT2 R (Gong et al., 1993).

5-HT fiber hyperinnervation of neostriatum and the forebrain is prominent in rats
lesioned perinatally with 6-OHDA (Berger et al., 1985; Snyder et al., 1986; Mrini
et al., 1995; see Kostrzewa et al., 1998), and this is accompanied by an approximate
30–60% increase in the number of 5-HT1A R, 5-HT1B R, 5-HT1nonAB R, 5-HT2A R,
and 5-HT2C R (Radja et al., 1993). Therefore, to further explore the effect of 5-HT
innervation on perioral activity, the neurotoxin 5,7-dihydroxytryptamine (5,7-DHT)
was co-administered with 6-OHDA to perinatal rats which were then studied as
adults. In rats co-lesioned with 6-OHDA and 5,7-DHT, the supersensitized perioral
response to a D1 R agonist was eliminated, indicating that 5-HT fibers indeed
mediate the D1 R agonist effect on perioral movements (Brus et al., 1994).

5 Abatement of Oral Dyskinesia in a Rodent Model
of Tardive Dyskinesia

Although acute effects of D1 R agonists on perioral activity are attenuated by acute
D1 R antagonist treatment, a 5-HT2 R antagonist is equally effective (Gong et al.,
1994). In the rodent model of TD, produced by chronic administration (approximat-
ing one year) of a D2 R antagonist, acute treatment during the haloperidol-
withdrawal phase with a D1 R antagonist does not reduce the incidence of perioral
movements (Kostrzewa et al., 2007); nor does a D2 R antagonist (spiperone),
muscarinic receptor antagonist (scopolamine), histamine H1 R antagonist (cypro-
heptadine), opioid mu receptor agonist (morphine) or mu receptor antagonist (nal-
oxone), adenosine A2A R antagonist (theophylline), alpha-adrenoceptor antagonist
(phentolamine, phenoxybenzamine), beta-adrenoceptor antagonist (propranolol);
neither a 5-HT1A R agonist (pindolol) nor 5-HT2A R antagonist (ketanserin). How-
ever, agents with 5-HT2C R antagonist activity were all effective in acutely reducing
the number of perioral movements in the rodent haloperidol-withdrawn model of
TD. Thus, mianserin, mesulergine, ritanserin, and clozapine each acutely reduced
spontaneous oral activity during 8 months of the haloperidol-withdrawn phase in the
rodent model of TD (Kostrzewa et al., 2007).

Despite the neural reorganization that occurs consequent to months-long contin-
uous administration of a D2 R antagonist, it appears that it is an action mediated by
serotoninergic 5-HT2 R that is most consequential in reducing spontaneous perioral
movements (Gong et al., 1992). This is somewhat surprising, because 5-HT inner-
vation in the brain is considered to be an afferent input, not an efferent output system.
5-HT innervation in the brain arises from the brainstem in the dorsal and medial
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raphe nuclei (see Kostrzewa et al., 1998). Also, from studies in rodents, it is
recognized that perinatal 6-OHDA destruction of dopaminergic nerves results in
supersensitization of DA D1 R as well as 5-HT2 R (Brus et al., 1994; Gong et al.,
1992). Therefore, in TD it may be that supersensitized 5-HT2 R has the major
influence on the induction of spontaneous perioral movements.

6 Tardive Dyskinesia Arising in Rodents from Chronic
Dopamine Receptor Antagonist Treatment

Waddington and colleagues (Waddington et al., 1983; Waddington & Gamble, 1980)
produced the first rodent model of TD by administering haloperidol in drinking
water to rats for 6 consecutive months. An increase in spontaneous perioral move-
ments developed only at 4 months, thus fulfilling the characteristic “tardive” element
of TD (i.e., tardive signifies an onset of symptoms after chronic drug treatment). The
increase in spontaneous oral activity persisted for as long as haloperidol continued to
be administered. When haloperidol was withdrawn, spontaneous perioral move-
ments waned and reverted to normal over a period of a month (see also Waddington,
1990). Ultimately, Ellison and See (1989) showed that the form and periodicity of
oral dyskinesias in haloperidol-treated rats was similar in form to those of humans
with TD. A disadvantage to this model of TD was that the high level of oral activity
in rats dissipated over a period of 1 month, back to control level, after haloperidol
was withdrawn. This was unlike the persistence of perioral activity in people
with TD.

Gunne et al. (1982) and Glassman and Glassman (1980) had observed that there
is an increase in neuroleptic-evoked perioral activity in rats following damage to
the brain. In the interest of developing a somewhat more novel model and possibly
permanent model of TD, it occurred that DA denervation, as occurs with 6-OHDA
lesioning, may be an important element in both the prominence and persistence of
oral dyskinesia in rodents. Accordingly, rats with 6-OHDA were perinatally
lesioned, then haloperidol was added to the drinking water when these rats were
2 months of age. In these largely DA-denervated rats, an increase in spontaneous
oral activity occurred at 3 months, one full month earlier than in intact rats
receiving haloperidol via drinking water. Also, the number of perioral movements
induced in 6-OHDA-lesioned rats by chronic haloperidol was twice the level for
chronic haloperidol-exposed intact rats. At 1 year the neostriatal Bmax for the D2 R
antagonist [3H]raclopride was increased�25 % in 6-OHDA-lesioned rats and�65
% in haloperidol-treated rats were either nonlesioned or additionally 6-OHDA-
lesioned. Notably, when 6-OHDA-lesioned rats were withdrawn from haloperidol
at 1 year, increased perioral activity did not revert to control levels. The high level
of perioral activity observed during the haloperidol phase continued to persist in
the group during the withdrawal phase until the study was terminated 8 months
later. Further, it is notable that there was no increase in the neostriatal D2 R
(i.e., Bmax for [3H]raclopride binding to striatal homogenates) during the
haloperidol-withdrawal phase in which there was a persistent high level of perioral
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activity (Huang et al., 1997). Andersson et al. (1990) have shown that humans with
TD do not have an increase in D2 R in the brain.

7 Neural Mechanisms Attending Animal Modeling of Tardive
Dyskinesia: Relevance to Human Tardive Dyskinesia

The multiple animal modeling studies relating to TD indicate the following neural
mechanism relating to TD. The balance of DA D1 R/D2 R activation appears to be of
critical importance. Both D1 R agonists and D2 R antagonists promote oral activity.
However, acute effects do not represent a modeling of TD.

TD is, by definition, a “tardive” effect, one that develops over a period of months
during prolonged or chronic treatments, specifically with a D2 R antagonist. TD
appears to be induced by prolonged imbalance of D1 R/D2 R activation, consequent
to a tip in the balance towards D1 R overactivation, and possibly in neostriatum or
other regions of the forebrain. The nigroneostriatal dopaminergic tract appears to
relate most closely to TD. A remodeling of neural circuitry in the brain, over a period
of months, represents an adaptive mechanism to the imbalance of D1 R/D2 R
activation, which ultimately results in induction of spontaneous perioral movements.
The neural adjustments and reorganization involved in the process are still a mystery.

Nevertheless, prolonged overactivation of DA D1 R appears to be the genesis for
TD. Furthermore, it is apparent that damage to brain circuitry can accelerate the
appearance of TD and impact on its permanence. From the most recent experimental
studies, it is obvious that damage to dopaminergic innervation to neostriatum pro-
motes earlier onset of TD and a fostering of permanence. From studies by Gunne
et al. (1988), it is possible that damage to other neural circuits in the brain can have
similar influence on TD.

8 Conclusion

Because chronic D2 R antagonist treatment of both humans and rodents produces
TD, it is reasonable to assume that similar neural adaptive mechanisms occur in the
brain of both rats and humans. Also, because nonspecific injury in the brain (see
Gunne & Häggström, 1983) as well as nigroneostriatal dopaminergic damage confer
permanence to the TD produced by prolonged DA D2 R antagonist treatment, it is
possible that in those patients who develop lifelong TD, there is residual brain
damage or dopaminergic fiber degeneration that impacts of the D2 R antagonist
treatment. It is speculated that even a mild brain injury could have occurred earlier in
life (i.e., head trauma) or perhaps dopaminergic innervation of the brain declines
with aging. The latter event is thought to occur and thereby account for the origin of
Parkinson’s disease in aged humans (Kish et al., 1992).

Moreover, an increase in the number of nigroneostriatal DA D2 R is not correlated
with high levels of perioral movements, as demonstrated by Huang et al. (1997).
Studies by Breese et al. (1985) and Gong et al. (1994) established that DA D1 R
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supersensitivity is not necessarily accompanied by an increase in the number of D1 R.
Also, DA D2 R supersensitivity is not correlated with an increase in nigroneostriatal
DA D2 R number in rodents (Kostrzewa & Brus, 1991) nor in humans with TD
(Andersson et al., 1990). Therefore, the process of receptor supersensitization is not
reliant on changes in DA receptor number or affinity. Regardless of underlying factors
for development of TD, the animal experimental findings implicate 5-HT2 R antago-
nists as reasonable agents for the treatment of TD (Kostrzewa et al., 2007). It is
proposed that the development of new agents for TD should re-focus on the seroto-
ninergic 5-HT2C receptor.

9 Cross-References

▶ 6-Hydroxydopamine Lesioning of Dopamine Neurons in Neonatal and Adult Rats
Induces Age-Dependent Consequences
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