

Lead and Excitotoxicity

Abdur Rahman **a** and Gilles J. Guillemin

Contents

A. Rahman (\boxtimes)

Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Kuwait City, Kuwait

e-mail: abdurrahman.ahmad@ku.edu.kw

G. J. Guillemin

Neuropharmacology Group, MND and Neurodegenerative Diseases Research Centre, Macquarie University, Sydney, NSW, Australia

Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Macquarie Park, NSW, Australia

School of Medical Sciences, Department of Pharmacology, Faculty of Medicine, University of NSW, Sydney, NSW, Australia

St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW, Australia e-mail: gilles.guillemin@mq.edu.au

© Springer Nature Switzerland AG 2022 R. M. Kostrzewa (ed.), Handbook of Neurotoxicity, [https://doi.org/10.1007/978-3-031-15080-7_142](https://doi.org/10.1007/978-3-031-15080-7_142#DOI)

Abstract

Lead (Pb^{2+}) is a known neurotoxicant that impairs learning and memory. However, the mechanism through which it impairs learning and memory is not clearly understood, despite being thoroughly investigated. Of many pathways that are targeted by Pb^{2+} , the most mechanistically relevant is the excitotoxicity caused by modulation of the N-methyl-D-aspartate-type glutamate receptors (NMDAR) in glutamatergic synapses. Pb^{2+} affects not only the expression of different subunits of the NMDARs but also the ontogenic developmental switch of these NMDAR subunits, which is essential for learning and memory. Overactivation of serine/ threonine protein phosphatases (PPs) appears to be involved in these synaptic changes. PPs may affect the functions of NMDAR directly, by modulating the phosphorylation state of its subunits, and indirectly by modulating the phosphorylation state of its downstream effectors like the cyclic AMP response elementbinding protein (CREB) and other proteins involved in this process. Overexpression of the neuron-specific metallothionein-3 and the subsequent dysregulation of zinc (Zn^{2+}) homeostasis in the synapse is another proposed mechanism of Pb^{2+} -induced excitotoxicity. Upregulation of the kynurenine pathway of tryptophan metabolism and overproduction of quinolinic acid in the brain by Pb2+ may also result in excitotoxicity. The excitotoxic effects of Pb^{2+} thus appear to be multifaceted, and Pb^{2+} is likely to act in coordination with other modulator of excitotoxicity like glutamate, metallothionein-3, quinolinic acid, protein phosphatases, and Zn^{2+} . There is a great need to put these isolated pieces of information together and workout the pathway(s) that are disturbed in Pb^{2+} induced impairment of learning and memory.

Keywords

Lead · Excitotoxicity · NMDA receptor · Protein phosphatases · Metallothionein-3 · Quinolinic acid

Abbreviations

1 Introduction

Lead (Pb^{2+}) is a toxic heavy metal with no known physiological functions in the body. Because of its excessive use in industry, humans have been, and are constantly being, exposed to Pb^{2+} (ATSDR [2017](#page-22-0); Caito and Aschner [2017;](#page-23-0) Ettinger et al. [2020\)](#page-25-0). In the body, Pb^{2+} is distributed in blood, soft tissues (liver, kidney, brain, etc.), and bones. With time, and continuous exposure, it accumulates in bones and becomes a source of internal exposure during bone remodeling (Al-Saleh et al. [2008;](#page-22-1) El-Sawi and El-Saied [2013](#page-24-0)). Although Pb^{2+} poisoning in both its acute and chronic forms has gradually declined over the last four decades through several public health regulations and activities controlling the use and emission of Pb^{2+} in the environment (Dignam et al. [2019\)](#page-24-1), it still remains a problem of public health importance (O'Connor et al. [2018](#page-32-0)). Pb²⁺ gets into the body through food and water, environmental pollution, agricultural technology, and food processing. Absorption and retention in the body depend on age, chemical environment of the gastrointestinal tract, and nutritional status of the individual. Generally, conditions that favor calcium absorption also favor Pb^{2+} absorption and retention. The total body amount does not affect absorption, as there is no feedback mechanism for its absorption (ATSDR [2017](#page-22-0)).

Due to increased awareness of the toxic effects of Pb^{2+} in children, particularly the neurological toxicities, the acceptable blood Pb^{2+} level (safety limit) has been progressively decreased from 60 μ g/dL in 1960s to 10 μ g/dL in 1991 (Dignam et al. [2019\)](#page-24-1). Based on the reports of adverse health outcomes at levels below this safety limit, particularly in children, in 2012 the CDC established a new cutoff of 5 μg/dL at which intervention needs to be initiated and stated that no level of Pb^{2+} exposure in children is safe (CDC [2016\)](#page-23-1). In adults, the cutoff of $\langle 5 \mu g/dL \rangle$, as safety limit, was established in 2015 by the National Institute for Occupational Safety and Health (NIOSH [2015](#page-31-0)). In children, lowering the reference level to $\langle 3.5 \mu g/dL$ is currently being considered (Paulson and Brown [2019\)](#page-33-0).

 Pb^{2+} is considered as a multisystem toxicant associated with neurological, nephrological, cardiac, gastrointestinal, and hematological manifestations (WHO [2010\)](#page-37-0). The severity of these toxic effects depends on the duration of exposure, dose, and the developmental stage of the subjects. Children are particularly at increased risk of toxicity because of their frequent exposure and increased absorption and retention capacity. The hemopoietic, renal, and reproductive systems are affected at relatively high doses, whereas the central nervous system (CNS) is affected by low doses (ATSDR [2017\)](#page-22-0).

2 Neurotoxicity of Lead

 Pb^{2+} neurotoxicity is known since the late nineteenth century (reviewed by Toscano and Guilarte [2005](#page-36-0)). While high blood Pb²⁺ levels (>70 μ g/dL) are known to cause overt encephalopathy (Chisolm [2001\)](#page-24-2), low levels \langle <10 μ g/dL) in children are associated with neurobehavioral and endocrine alterations such as an increase in hyperactivity and distractibility, delayed puberty, and cognitive deficits in the form of IQ changes (Mason et al. [2014](#page-30-0); Vorvolakos et al. [2016;](#page-36-1) Santa Maria et al. [2019\)](#page-34-0). Studies have demonstrated a cognitive deficit of 5.0–7.4 points on the IQ scale in children who had blood lead levels in the range of $5 - \langle 10 \mu g/d$ (reviewed by Santa Maria et al. [2019\)](#page-34-0). The economic impact of this reduced IQ has been estimated to be around US\$ 977 billion, which is equivalent to about 1.2% of global GDP (Attina and Trasande [2013\)](#page-22-2).

In experimental animal models, Pb^{2+} exposure causes deficits in spatial learning and long-term potentiation (LTP) (Altmann et al. [1991;](#page-22-3) Kuhlmann et al. [1997;](#page-28-0) Gilbert and Mack [1998](#page-25-1); Nihei et al. [2000\)](#page-32-1). It has been suggested that there is a "developmental window" that spans from gestation through lactation, in which exposure to low levels of Pb^{2+} is able to cause long-lasting cognitive deficits (Kuhlmann et al. [1997](#page-28-0)). This concept of developmental window has been demonstrated by the reports that children that were previously, but not currently, exposed to Pb^{2+} exhibited lasting neurobehavioral and cognitive deficits (reviewed by Sanders et al. [2009](#page-34-1); Caito and Aschner [2017\)](#page-23-0).

The hippocampus plays a pivotal role in learning and memory processes, and it has been suggested that this structure is particularly affected by Pb^{2+} (Bielarczyk et al. [1996;](#page-22-4) Sharifi et al. [2002\)](#page-34-2). The most troubling aspect of Pb^{2+} toxicity in children is that neurotoxicity caused by Pb^{2+} exposure is irreversible. Chelation therapy, which is the primary means of treating children with blood Pb^{2+} levels of $>45 \mu g/dL$, can reduce the body burden of Pb^{2+} but does not reverse the cognitive or behavioral deficits associated with Pb^{2+} exposure (Rogan et al. [2001;](#page-34-3) Dietrich et al. [2004\)](#page-24-3). This highlights the possibility that Pb^{2+} exposure induces long-lasting (or permanent) changes in the brain during a critical period of development in childhood (Neal and Guilarte [2010\)](#page-31-1).

The underlying biochemical mechanism of the neurotoxic effects of Pb^{2+} is not well understood at present despite the large body of research done on this topic (Toscano and Guilarte [2005;](#page-36-0) White et al. [2007](#page-37-1); Neal and Guilarte [2010\)](#page-31-1). Many biochemical changes have been reported in the brain that may explain the mechanism of Pb^{2+} neurotoxicity. Some of the reported biochemical alterations caused by Pb^{2+} exposure in the brain include altered adenylyl cyclase activity, reduction in the heme-containing enzymes, and lower energy metabolism in the developing brain (Clarkson [1987](#page-24-4)); interference with cell adhesion molecules (Silbergeld [1992\)](#page-35-0); reduced activity of alkaline phosphatase (Antonio and Lert [2000](#page-22-5)); decreased expression (Nihei et al. [2001](#page-32-2)) and activity (Xu et al. [2005\)](#page-37-2) of protein kinase C; decreased production of transthyretin and low availability of thyroid hormone to the developing CNS (Zhang et al. [1996\)](#page-38-0); decreased levels of nitric oxide in the hippocampus (Sun et al. [2005\)](#page-35-1); altered neurotransmitter activity in the hippocampus (Reddy et al. [2007;](#page-34-4) Wang et al. [2007](#page-37-3)); and altered protein phosphorylation and impairment of the glutamatergic synapse transmission (Neal and Guilarte [2010](#page-31-1)). More recently, dopaminergic dysfunction by Pb^{2+} toxicity has been reported in C. elegans (Akinyemi et al. [2019](#page-21-0)). None of these biochemical changes alone explains the learning and memory deficits caused by the low-dose Pb^{2+} exposure. There is a need to put these pieces together and work out the pathway(s) involved in learning and memory that are affected by Pb^{2+} exposure. The understanding of such pathway(s) is essential to devising any therapeutic/intervention strategies to combat Pb^{2+} -induced neurotoxicity. Of the many biochemical changes studied, the most relevant and best studied area is the excitatory effect of Pb^{2+} at the glutamatergic synapses. This chapter is aimed to focus on the excitotoxic effects of Pb^{2+} and to summarize recent advances in this field of research.

3 Hippocampal Plasticity, NMDA Receptor, and Learning

Hippocampus is the main brain region involved in the acquisition and consolidation of higher brain function, particularly spatial learning and memory. The disruption of hippocampal function by a variety of methods produces deficits in such brain functions (Izquierdo [1993](#page-27-0); McNamara and Skelton [1993\)](#page-30-1). The major cellular mechanism within the hippocampus believed to be responsible for acquisition of new memories is the long-term potentiation (LTP), which is a long-lasting increase in synaptic efficacy following brief periods of stimulation of specific synapses (Malenka and Nicoll [1999](#page-29-0); Hashemzadeh-Gargari and Guilarte [1999;](#page-27-1) Nihei et al. [2000,](#page-32-1) [2001](#page-32-2); Shimizu et al. [2000](#page-35-2)).

Some forms of LTP in the hippocampus, specifically those induced in the Schaffer collateral-CA1 and perforant path-dentate gyrus synapses, are dependent upon N-methyl-D-aspartate-type glutamate receptor (NMDAR) activation (Madison et al. [1991](#page-29-1); Malenka and Nicoll [1993,](#page-29-2) [1999;](#page-29-0) Teyler and DiScenna [1987](#page-35-3); Zalutsky and Nicoll [1990\)](#page-38-1). LTP requires presynaptic glutamate release and subsequent activation of the postsynaptic NMDAR (Collingridge and Bliss [1987;](#page-24-5) Massicotte and Baudry [1991;](#page-30-2) McNaughton [1993\)](#page-30-3). Disruption of NMDAR function pharmacologically or by

deletion of specific NMDAR subunits, using gene knockout techniques, is associated with disruption of hippocampal LTP and learning and memory (Gilbert and Mack [1990](#page-25-2); Robinson and Reed [1992](#page-34-5); Morris et al. [1986;](#page-31-2) Neal and Guilarte [2010\)](#page-31-1).

4 Overview of Glutamate Receptors

Glutamate receptors are classified into metabotropic and ionotropic subtypes according to whether they exist as G-protein-coupled receptor or as an ion channel. Both these receptor types mediate the actions of glutamate. Metabotropic glutamate receptors (mGluRs) have been extensively studied in hippocampal physiology (reviewed by Niswender and Conn [2010](#page-32-3)). mGluRs are composed of eight isoforms (mGluR1–8), which are classified into three groups (I–III). Of these, mGluR5 which belongs to group I is primarily postsynaptic and is coupled preferentially to Gq/11 and its downstream effectors. Recent studies have demonstrated that mGluR5 is involved in learning and memory. mGluR5 has been shown to be critically important for both hippocampal synaptic plasticity and hippocampus-based learning and memory (reviewed by Xu et al. [2009a](#page-37-4), [b](#page-37-5)). Inhibition of mGluR5 with specific antagonist MPEF impaired the acquisition and consolidation of hippocampus-dependent memory, whereas its activation by specific agonist showed the opposite results (Gasparini et al. [1999](#page-25-3)).

Ionotropic receptors are further classified based on their selective agonists as NMDA, AMPA, and kainate receptors (Hassel and Dingledine [2006](#page-27-2)). These receptors bind with glutamate with different affinities. Of these, NMDARs are the most tightly regulated and the most extensively studied. Activation of the NMDAR plays a central role in brain development, learning, and memory as well as in neurodegenerative diseases (Collingridge and Lester [1989;](#page-24-6) Ozawa et al. [1998](#page-32-4); Scheetz and Constantine-Paton [1994\)](#page-34-6). These receptors are located primarily not only in the hippocampus but also in the cerebral cortex (Monaghan et al. [1983](#page-31-3); Monyer et al. [1994;](#page-31-4) Moriyoshi et al. [1991](#page-31-5)) and play an essential role in hippocampus-mediated learning and memory (Morris et al. [1982,](#page-31-6) [1986](#page-31-2)).

NMDAR is a tetrameric complex assembled from two obligatory NR1 subunits in combination with two NR2 or NR3 subunits (reviewed by Vyklicky et al. [2014\)](#page-36-2). NR1 subunit is a constitutional component of NMDA receptors and is widely expressed throughout the CNS at all ages, whereas NR2A and NR2B are functional components whose expression varies with the developmental stage and region of the brain (Xu and Rajanna [2006\)](#page-37-6). A single gene encodes NR1, but at least eight splice variants of NR1 subunits (NR1A to NR1H) have been found (Laurie and Seeburg [1994;](#page-28-1) Zukin and Bennett [1995\)](#page-38-2). These splice variants of NR1 impart different pharmacological characteristics to the NMDAR (Durand et al. [1992](#page-24-7)). Alternatively, spliced exon 5 at the N terminus (N-cassette) encodes for a 21 amino acid sequence. Splicing of exon 5 results in transcripts designated as lacking (NR1-a) or containing (NR1-b) the N-cassette (Zukin and Bennett [1995](#page-38-2)). Exons 21 and 22 encode for two C-terminus cassettes, C1 and C2, which code for 37 and 38 amino acid sequences, respectively. The individual splicing of the C1 or C2 cassette results in transcripts designated as NR1–2 and NR1–3. The presence or absence of both C-terminus cassettes results in NR1–1 and NR1–4 variants. Deletion of the C2 cassette alters the

reading frame and results in the creation of an additional coding region of 22 amino acids, the C2` cassette (Toscano and Guilarte [2005](#page-36-0)).

Compared to NR1, NR2 and NR3 are more complex and mostly determine the function of NMDAR channel. NR2 subunits are encoded by four distinct genes (NR2A– NR2D), while NR3 subunits are encoded by two distinct genes (NR3A and NR3B). NR2 subunits play positive roles in gating the NMDAR channel, while NR3 subunits play negative roles by forming an unconventional channel (Perez-Otano and Ehlers [2004](#page-33-1)). The molecular biology of these subunits, their deferential developmental and regional expression, and their distinct intracellular protein associations and functions are thoroughly reviewed by Neal and Guilarte (2010) (2010) . Together, the associations between NR1 splice variants with other subunits exhibit an exquisite degree of heterogeneity and specialization and play essential roles in synaptic activity (Neal et al. [2011\)](#page-31-7).

NMDAR subunits play critical roles in hippocampal synaptic plasticity. Blockades of NMDAR containing either NR2A or NR2B subunits lead to a selective defect in either LTP or long-term depression (LTD), respectively (Liu et al. [2004\)](#page-29-3). The differential expression of various NMDAR subunits across the developmental time span of peak LTP and hippocampus-mediated learning, together with the impairment of learning due to targeted knockout of NMDAR subunits, strongly supports the essential role of NMDAR in synaptic plasticity and learning and memory (Neal and Guilarte [2010](#page-31-1)).

5 Activity-Dependent Expression of NMDA Receptor Subunit

The expression of synaptic NMDAR subunit is controlled not only by a genetically programmed development of excitatory circuitry but also by the level of activity present at the synapse. Both in vivo and in vitro studies from neuronal cultures have provided evidence for the activity-dependent modifications in NMDAR subunit expression (Toscano and Guilarte [2005\)](#page-36-0). The expression of NR2A subunit, but not NR2B, has been shown to be dependent upon calcium influx mediated by NMDAR and L-type calcium channels since pharmacological blockade of NMDAR and L-type calcium channels decreased NR2A subunit expression but had no effect on NR2B expression. This resulted in the expression of NMDAR complexes with higher proportion of NR2B subunits with the corresponding functional implications (Hoffmann et al. [2000\)](#page-27-3). A reduction in presynaptic exocytosis produced similar results (Lindlbauer et al. [1998](#page-29-4)). In addition, activity-dependent changes of NMDAR subunits also occur at the postsynaptic density (PSD). Pharmacologically blocking of the sodium channels resulted in decreased PSD levels of NR2A but increased levels of NR1 and NR2B subunits, whereas activating these channels had the opposite effects (Ehlers [2003](#page-24-8)).

6 Lead and Synaptic Transmission

It has been suggested that a number of neurotoxic effects of Pb^{2+} may be due to its interference with neurotransmitter systems, particularly those which involve cellular calcium homeostasis and calcium-dependent enzymes (Guilarte [1997](#page-26-0); Finkelstein et al. [1998;](#page-25-4) Savolainen et al. [1998a,](#page-34-7) [b](#page-34-8); Bressler et al. [1999](#page-23-2); Goyer and Clarkson [2001;](#page-26-1) Nihei and Guilarte [2001](#page-32-5); Gilbert and Lasley [2002](#page-25-5)). Establishment of neuronal circuitries in the developing central nervous system depends on the pattern of electrical activity going through the synapses. At early stages of brain development, most neurons fire spontaneously, and this spontaneous electrical activity is believed to be required for axonal outgrowth, pruning of synaptic connections, and maturation of neuronal signalling properties (Moody [1998](#page-31-8)). Therefore, it can be inferred that Pb^{2+} -induced impairment of learning and memory in children is a result of altered synaptic activity in the brain, particularly in hippocampus which is involved in cognitive processing (Swanson et al. [1997](#page-35-4)).

The mechanism by which Pb^{2+} alters synaptic activity remains unknown. It has been proposed that Pb^{2+} affect synaptic activity by mimicking the activity of calcium (Ca^{2+}) . The ability of Pb²⁺ to substitute for Ca^{2+} is one of the primary mechanisms proposed for Pb²⁺ toxicity in the brain. This Ca^{2+} -mimetic ability of Pb²⁺ has been reported to not only enhance spontaneous neurotransmitter release but also inhibit evoked neurotransmitter release due to impeding Ca^{2+} influx through voltagesensitive Ca^{2+} channels (Minnema et al. [1988;](#page-30-4) Kober and Cooper [1976;](#page-28-2) Atchison and Narahashi [1984](#page-22-6); Braga et al. [1999a](#page-23-3); Peng et al. [2002;](#page-33-2) Xiao et al. [2006\)](#page-37-7). Pb²⁺ is also known to bind with intracellular Ca^{2+} -binding proteins and may prevent the detection of Ca^{2+} signalling essential to neurotransmission (Bouton et al. [2001;](#page-23-4) Marchetti [2003\)](#page-30-5). Some of the neuronal Ca^{2+} -binding protein (CaBP) that are targets for Pb²⁺ are calmodulin (CaM), synaptotagmin, neuronal calcium sensor-1 (NCS-1), NMDAR, and family C of G-protein-coupled receptors (cGPCRs) (reviewed by Gorkhali et al. [2016](#page-26-2)). The effect of Pb^{2+} could be stimulatory or inhibitory of the function of these proteins depending on the concentration and the binding kinetics of Pb^{2+} to these proteins. Three potential modes of Pb^{2+} activity have been described. These include (1) binding of Pb^{2+} at the Ca²⁺-binding sites with the subsequent inhibition of its function due to structural modulation, (2) binding of Pb^{2+} at the $Ca²⁺$ -binding sites with the subsequent activation by mimicking the function of Ca^{2+} , and (3) allosteric modulation of the function of the CaBP due to binding of Pb^{2+} outside the Ca²⁺-binding sites (Gorkhali et al. [2016](#page-26-2)).

 Pb^{2+} is also known to affect the neurotransmission of glutamate, which is the most abundant excitatory neurotransmitter in the brain. Glutamate and its receptors have an important role in LTP and synaptic plasticity, which are fundamental processes involved in learning and memory (Malenka and Nicoll [1999\)](#page-29-0). Chronic developmental Pb^{2+} exposure of rats as well as in vitro acute Pb^{2+} exposure of hippocampal cultures and slices has been reported to decrease the release of glutamate and γ-aminobutyric acid (GABA) (Lasley and Gilbert [2002](#page-28-3); Braga et al. [1999b;](#page-23-5) Xiao et al. [2006](#page-37-7)).

7 Lead and LTP

The effects of Pb^{2+} on hippocampal LTP have been demonstrated since the early 1990s. Developmental Pb^{2+} exposure increases the threshold for hippocampal LTP induction, reduces the magnitude of potentiation, and accelerates its decay (reviewed by Toscano and Guilarte [2005;](#page-36-0) Altmann et al. [1994;](#page-22-7) Gilbert and Mack [1998;](#page-25-1) Gilbert et al. [1999a](#page-25-6), [b](#page-25-7)). Animals exposed to Pb^{2+} from early life showed deficient excitatory postsynaptic potential (EPSP) as well as cellular (population spike) components of this field response, and these effects persisted to adulthood despite termination of Pb^{2+} exposure at weaning (Gilbert et al. [1996](#page-25-8), [a\)](#page-25-6). Similar effects of Pb^{2+} exposure on LTP were also reported in hippocampal slices from exposed animals (Altmann et al. [1993;](#page-22-8) Sui et al. [2000\)](#page-35-5). These data indicate that Pb^{2+} exposure reduced LTP magnitude and thus impaired the efficacy of the cellular mechanisms that support learning in the hippocampus (White et al. [2007](#page-37-1)). These Pb^{2+} -induced deficits in hippocampal LTP have been suggested to be associated with a reduction in Ca^{2+} -dependent glutamate release (Lasley and Gilbert [1996](#page-28-4); Lasley et al. [2001\)](#page-28-5). However, the induction of LTP in mossy fiber-CA3, which is dependent upon an increase in glutamate release, is not affected by Pb^{2+} exposure (Kawamura et al. [2004\)](#page-28-6), while the induction of LTP at excitatory synapses that are not dependent on increased glutamate release but are NMDAR dependent (i.e., Schaffer collateral-CA1 LTP or perforant path-dentate gyrus LTP) is impaired in the Pb^{2+} -exposed brain. These results clearly indicate that Pb^{2+} -induced deficits in LTP are NMDAR-specific (Toscano and Guilarte [2005\)](#page-36-0).

8 Lead, Calcium, and Glutamate Release

 Pb^{2+} mimics Ca^{2+} and disrupts cellular calcium homeostasis as well as the role of Ca^{2+} as an important intracellular second messenger (Gorkhali et al. [2016](#page-26-2)). Voltagesensitive calcium channels (VSCCs), which regulate Ca^{2+} influx, are essential for many neuronal processes such as neurotransmitter release (Kobayashi and Mori [1998\)](#page-28-7). Pb²⁺ may affect neuronal functions in two ways, first by inhibiting the entry of Ca^{2+} into the cell, as Pb^{2+} is a very potent inhibitor of VSCCs (Audesirk [1993;](#page-22-9) Busselberg et al. [1993](#page-23-6); Evans et al. [1991;](#page-25-9) Minnema et al. [1988](#page-30-4)). Second, Pb^{2+} itself may enter cells through Ca^{2+} channels and by mimicking Ca^{2+} may affect its functions (Reviewed by Loikkanen et al. [2003](#page-29-5)).

A dose-dependent reduction in glutamate release in animals developmentally exposed to Pb²⁺ has been reported (Gilbert and Lasley [2007](#page-25-10)). Chronic Pb²⁺ exposure beginning in utero or in the early post-weaning period and continuing throughout life alters presynaptic release of glutamate in the rat hippocampus. However, this Pb^{2+} induced glutamate release appears to be dose-dependent. At lower Pb^{2+} levels, synaptic release of glutamate was diminished, and this effect was reversed at higher level of Pb^{2+} exposure (Lasley and Gilbert [2002\)](#page-28-3). This biphasic dose response indicates the presence of more than one mechanism of Pb^{2+} action. Similar findings were reported from acute exposure of cultured hippocampal neurons to Pb^{2+} (Braga et al. [1999a,](#page-23-3) [b\)](#page-23-5). The diminished glutamate release at lower Pb^{2+} levels appears to be due to the blocking of VSCC by Pb^{2+} . The increased glutamate release at higher level of Pb^{2+} exposure suggests the diminution of the K⁺-stimulated transmitter response (White et al. [2007](#page-37-1)), or through increased production of quinolinic acid (QA) (Rahman et al. [2018b\)](#page-33-3). The loss of proteins involved in vesicular release, namely, synaptophysin and synaptobrevin, is also involved in Pb^{2+} -induced modulation of transmitter release (Neal et al. [2010](#page-31-9)).

In addition, nicotinic modulation of synaptic transmission has also been implicated in Pb^{2+} -induced transmitter release (Nihei et al. [2000](#page-32-1)). Hippocampal neurons exposed to various concentrations of Pb^{2+} inhibited somatodendritic α 4 β 2 nAChRs and α7 nAChRs and caused substantial inhibition of transmitter release. This effect was found to be due the direct interaction of Pb^{2+} with these receptors (Ishihara et al. [1995;](#page-27-4) Mike et al. [2000](#page-30-6)). It has also been hypothesized that Pb^{2+} -induced inhibition of nicotinic cholinergic modulation of action potential-dependent transmitter release is mediated by a PKC-dependent mechanism (Braga et al. [2004](#page-23-7)). It has been suggested that Pb^{2+} activates PKC which in turn phosphorylates nAChRs, proteins associated with the receptors, and/or proteins linking the receptors to the action potential-dependent transmitter release process. Direct phosphorylation of nAChRs by PKC has been shown to reduce receptor activity in sympathetic neurons (Downing and Role [1987\)](#page-24-9). However, this hypothesis has been disputed by other investigators (Seguela et al. [1993](#page-34-9); Moss et al. [1996](#page-31-10); Fenster et al. [1999\)](#page-25-11).

9 Lead and NMDA Receptor

NMDARs are one of the most important targets of Pb^{2+} (reviewed by Xu and Rajanna [2006\)](#page-37-6). The observation that Pb^{2+} exposure during development affects NMDAR-dependent LTP (LTP dependent on increased glutamate release) but not NMDAR-independent LTP in hippocampus provided the first experimental evidence that Pb^{2+} targets NMDARs (Gutowski et al. [1998](#page-26-3); Kawamura et al. [2004](#page-28-6)). Since then, several studies demonstrated that Pb^{2+} is a selective and potent non-competitive inhibitor of the NMDAR (Toscano and Guilarte [2005;](#page-36-0) White et al. [2007](#page-37-1); Neal and Guilarte [2010;](#page-31-1) Neal et al. [2011\)](#page-31-7). Pb^{2+} in micromolar concentration causes a reversible inhibition of the current activated by glutamate through the NMDAR channel in cultured and acutely dissociated neurons and reduces access to the NMDA receptor channel in brain tissue homogenates (Marchetti [2003](#page-30-5); Lasley and Gilbert [1999](#page-28-8)). Decreased NMDA-specific glutamate receptor binding has also been reported in the brain of Pb^{2+} -exposed rats (Rajanna et al. [1997](#page-34-10)). A possible mechanism for this Pb²⁺-induced inhibition of the NMDAR is the binding of Pb²⁺ at the zinc (Zn^{2+}) regulatory (inhibitory) site of the NMDAR in a voltage-independent manner (Lasley and Gilbert [1999](#page-28-8)).

The effect of Pb^{2+} on NMDA-activated current is dependent on developmental stages and NR subunit types (Ishihara et al. [1995;](#page-27-4) Omelchenko et al. [1997;](#page-32-6) Ujihara and Albuquerque [1992](#page-36-3)). In addition to acting as an NMDAR antagonist, Pb^{2+} exposure also disrupts normal NMDAR ontogeny. Pb^{2+} -induced changes in NMDAR subunits during development may form the basis for the effects of Pb^{2+} on synaptic plasticity and cognitive function (Reviewed by Lau et al. [2002\)](#page-28-9). Developmental Pb^{2+} exposure has been shown to cause alterations in NR1 splice variant expression, NR2 subunit ontogeny, and NMDAR-dependent signalling (Neal et al. [2011\)](#page-31-7). Adult rats exposed to Pb^{2+} during development and post-weaning into

adolescence suffered marked reductions in gene expression of the NR1 subunit of the NMDAR in the hippocampus (Monyer, et al. [1992](#page-31-11)). Chronic developmental Pb^{2+} exposure in animals is known to alter expression of NR1 splice variants (Guilarte and McGlothan [2003](#page-26-4); Xy et al. [2002;](#page-37-8) Guilarte et al. [2000](#page-26-5)). The mechanism of these Pb^{2+} -induced deficits in NR1 is proposed to be the altered targeting and cell surface expression of NMDAR subunits to the synapse due to changes in NR1 splice variant expression. The lower levels of NR1 subunit mRNA expressed in the Pb^{2+} -exposed hippocampus are principally due to decreased levels of the NR1-4 and NR1-2 splice variants. A unique characteristic of these splice variants is that they lack the C1 cassette and impart the highest cell surface expression, PKC potentiation, and calcium kinetics to NMDAR complexes (Neal et al. [2011](#page-31-7)).

NR2A and NR2B are abundantly expressed in the hippocampus and may be involved in mediating Pb^{2+} toxicity (Guilarte and McGlothan [2003;](#page-26-4) Lau et al. [2002;](#page-28-9) Marchetti [2003;](#page-30-5) Nihei and Guilarte [1999,](#page-32-7) [2001;](#page-32-5) Nihei et al. [2000;](#page-32-1) Perez-Otano and Ehlers [2004](#page-33-1); Toscano et al. [2002](#page-36-4); Waters and Machaalani [2004\)](#page-37-9). Chronic Pb^{2+} exposure alters the composition of the NR2 subunits of the NMDR in the rat brain (Nihei and Guilarte [1999](#page-32-7)). Specifically, developmental Pb^{2+} exposure in animals decreased expression of the NR2A subunit with no change or a small increase in NR2B subunit expression (Nihei et al. [2000;](#page-32-1) Nihei and Guilarte [1999](#page-32-7); Zhang et al. [2002;](#page-38-3) Guilarte and McGlothan [1998](#page-26-6); Toscano et al. [2002;](#page-36-4) Neal et al. [2011\)](#page-31-7). Chronic Pb^{2+} exposure not only reduces NMDAR level but also prevents or delays the developmental switch of NR1/NR2B complex to NR1/NR2A complex with reduction of activity-dependent synaptic plasticity in the mature brain. During early development, NR2B-containing NMDARs predominate until a developmental switch occurs, resulting in the incorporation of the NR2A subunit (Monyer et al. [1994\)](#page-31-4). It is suggested that this developmental switch from predominately NR2Bcontaining NMDARs to NR2A-containing NMDARs is delayed or impaired during Pb^{2+} exposure (Toscano et al. [2002;](#page-36-4) Toscano and Guilarte [2005](#page-36-0)).

These NR2 subunit specific effects of Pb^{2+} could be explained by the differential sensitivities of different subunits to Pb^{2+} . Gavazzo et al. [\(2008](#page-25-12)) have shown that Pb^{2+} interacts at the Zn^{2+} regulatory site of NMDAR complexes containing the NR2A but not the NR2B subunit. The NR2 subunits have different Zn^{2+} binding sites. NR2A-NMDAR binds Zn^{2+} at a high affinity (in nM range), while the NR2B-NMDAR binds Zn^{2+} with lower affinity (in μ M range) (Paoletti et al. [2000;](#page-32-8) Rachline et al. [2005\)](#page-33-4). These findings have been corroborated by the observations that recombinant NR1/NR2A complexes are more sensitive to Pb^{2+} inhibition than NR1/NR2B complexes (Omelchenko et al. [1996\)](#page-32-9). Since Pb^{2+} and Zn^{2+} have similar potencies in inhibiting the NMDAR (Guilarte et al. [1995,](#page-26-7) [1994\)](#page-26-8), it is likely that changes observed with NR2A-NMDARs but not NR2B-NMDARs may be a result of preferential inhibition of Pb^{2+} for NR2A-NMDARs (Guilarte et al. [1995](#page-26-7); Gavazzo et al. [2008](#page-25-12)).

Furthermore, different concentrations of Pb^{2+} have differential influence on NMDAR subunits, and different subunits of NMDAR display different sensitivities to Pb^{2+} . A dose-dependent reduction by Pb^{2+} in NMDAR-NR1, NR2A, and NR2B protein levels has been reported (Lau et al. [2002](#page-28-9)). The rank order of sensitivity of different subunits to Pb^{2+} inhibition has been reported as NR1A-NR2B > NR1A- $NR2A > NR1A-NR2C$ (Gavazzo et al. [2001](#page-25-13)) and $NR1B-NR2A > NR1B-NR2C >$ NR1B-NR2D > NR1B-NR2AC (Omelchenko et al. [1997\)](#page-32-6).

Region-specific effects of Pb^{2+} on the expression of NR1 and NR2B subunits have also been reported. In cortical neurons, expression of NR1 was unchanged, but that of NR2B was significantly increased by Pb^{2+} . In contrast, expression of both NR1 and NR2B was significantly decreased in hippocampal neurons. Thus, it is likely that the toxic effects of Pb^{2+} may cause differential damage to different types of memory that are mediated by cortical and hippocampal neurons, respectively (Lau et al. [2002\)](#page-28-9). Furthermore, both regional and developmental differences in the hippocampal neurons have been reported in Pb^{2+} -exposed rats. For example, the expression of NR1-2a mRNA in Pb^{2+} -exposed rats was significantly increased in areas CA1, CA4, and dentate gyrus (DG) at postnatal day (PND) 14–15 but in areas CA4 and DG at PND20–21 (Zhang et al. [2002;](#page-38-3) Guilarte and McGlothan [1998;](#page-26-6) Guilarte et al. 2000). On the other hand, Pb^{2+} -induced decreased expression of NR2A was observed in areas CA1, CA2, CA3, and DG at PND15 and areas CA1, CA3, and DG at PND20. Similarly, NR3A mRNA levels were also significantly decreased in CA1, CA4, and DG subfields at PND15 and CA1 and DG subfields at PND20 in Pb^{2+} -exposed rats (Zhang et al. [2002\)](#page-38-3). These regional and developmental regulations of NMDAR mRNA splicing may lead to abnormality of natural NMDAR stoichiometry, control sensitivities to phosphorylation, and therefore kinetic properties of the NMDA channels and their involvement in LTP and synaptic plasticity (Zhang et al. [2002\)](#page-38-3). Thus, this disruption of the ontogenetically defined pattern of NMDAR subunit expression and NMDAR-mediated calcium signalling in glutamatergic synapses appears to be the mechanism of Pb^{2+} -induced neurotoxicity and deficits in learning and memory. These changes are associated with deficits in LTP in the hippocampus and impairment of spatial learning (Nihei and Guilarte [2001;](#page-32-5) Toscano and Guilarte [2005](#page-36-0); Zhang et al. [2002;](#page-38-3) Gilbert et al. [1996;](#page-25-8) Neal and Guilarte [2010\)](#page-31-1).

10 Lead and NMDA Signalling

It has been reported that synaptic NMDARs mediate cAMP response elementbinding protein (CREB) and extracellular signal-regulated kinases (ERK) activation, synaptic plasticity, and survival pathways. On the other hand, extra-synaptic receptors are associated with a CREB shut-off pathway, ERK inactivation, and induction of cellular death pathways (Hardingham et al. [2002](#page-26-9); Vanhoutte and Bading [2003;](#page-36-5) Ivanov et al. [2006\)](#page-27-5). Changes in NMDAR subunit composition can result in altered NMDAR-dependent signalling. Many signalling pathways are dependent on NMDAR subunit composition and/or localization. Pb^{2+} -induced alterations in NMDAR subunit composition could interfere with the downstream signalling pathways including MAPK signalling (Cordova et al. [2004](#page-24-10)), calcium/calmodulin kinase II (CaMKII) activity (Toscano et al. [2005\)](#page-36-6), protein kinase C (PKC) activity (Bressler et al. [1999](#page-23-2)), and CREB phosphorylation status and binding affinity (Toscano et al.

[2002,](#page-36-4) [2003](#page-36-7)). CREB is a transcription factor for many NMDAR activity-dependent immediate early genes (IEGs), which play an essential role in memory consolidation (Athos et al. [2002](#page-22-10); Bourtchuladze et al. [1994](#page-23-8)). Thus, CREB plays an important role in signal propagation from synapses to the nucleus by linking NMDAR activation and calcium-dependent signalling to the expression of genes necessary for synaptic plasticity (Bredt et al. [1992\)](#page-23-9). Altered IEG expression in animals exposed to Pb^{2+} has been observed (Kim et al. [2002\)](#page-28-10), indicating that altered CREB activity due to Pb^{2+} mediated disruption of NMDAR signalling may result in impaired learning and memory processes.

CREB phosphorylation is an important element of LTP. Induction of LTP (and learning) increases CREB phosphorylation (Mizuno et al. [2002;](#page-31-12) Schultz et al. [1999;](#page-34-11) Viola et al. [2000\)](#page-36-8), whereas pharmacological inhibition of NMDAR-mediated signalling decreases CREB phosphorylation (Athos et al. [2002](#page-22-10)). CREB phosphorylation at serine-133 facilitates the recruitment of CREB-binding proteins and the assembly of transcriptionally active complex at the start site of CRE-containing genes (Chirivia et al. [1993\)](#page-24-11). Pb²⁺ exposure decreases CREB phosphorylation without affecting the total CREB levels and alters the ability of CREB family proteins to bind with CRE (Toscano et al. [2003\)](#page-36-7), suggesting that the phosphorylation of CREB at serine-133 and the binding ability of CREB family proteins may be altered by Pb^{2+} exposure. This may affect the transcription of genes associated with learning, memory, and synaptic plasticity.

11 Lead and BDNF Signalling

Another potential signalling pathway that may be involved in Pb^{2+} -induced neurotoxicity is impaired NMDAR-dependent retrograde signalling of neurotrophic factors, particularly of brain-derived neurotrophic factor (BDNF). Pb^{2+} -exposed hippocampal neurons exhibit reduced proBDNF expression and BDNF release. Furthermore, complete recovery of Pb^{2+} -induced changes in presynaptic protein levels and vesicular neurotransmitter release has been reported in hippocampal neurons incubated with exogenous BDNF (Neal et al. [2010](#page-31-9)). Retrograde BDNF signal from the postsynaptic side has been implicated in axon morphology, synaptic connectivity, and synaptic ultrastructure (Neal and Guilarte [2010](#page-31-1); Neal et al. [2010\)](#page-31-9). NMDAR activation results in the generation and release of BDNF (Hartmann et al. [2001;](#page-26-10) Jiang et al. [2005](#page-27-6); Walz et al. [2006](#page-37-10)), which may be essential to the generation or un-masking of presynaptic neurotransmitter release sites (Walz et al. [2006](#page-37-10)). BDNF signalling is known to modulate the expression of several pre- and postsynaptic proteins (Pozzo-Miller et al. [1999;](#page-33-5) Tartaglia et al. [2001\)](#page-35-6). Of particular interest is the enhancement of NR2A expression but not the expression of NR2B in hippocampal slices exposed to exogenous BDNF (Small et al. [1998;](#page-35-7) Caldeira et al. [2007](#page-23-10)). These results are further supported by the reduced expression of NR2A but not the NR2B subunit and reduced vesicular release in BDNF knockout mice (Margottil and Domenici [2003\)](#page-30-7). These observations suggest that NR2A-NMDARs may be preferentially linked to BDNF signalling. The altered expression NR2A subunit by both Pb^{2+} exposure and impaired BDNF signalling strongly supports the hypothesis that the disruption of NMDAR activity-dependent BDNF signalling is involved in Pb^{2+} induced toxicity in synapses (Neal et al. [2010](#page-31-9)).

12 Lead and Other Brain Cells

Most of the work on Pb^{2+} -induced neurotoxicity has focused on neuronal cells. Other support cells, which are several folds greater in number than neurons and regulate/modulate the function of neurons, may also be affected by Pb^{2+} and thus may be involved in Pb-induced neurotoxicity. Of the support cells, astroglia are capable of uptaking 14-fold more Pb²⁺ than neurons. The uptake of Pb²⁺ by astroglia is suggested to be through voltage-dependent Ca^{2+} channels (Simons and Pocock [1987\)](#page-35-8). This Ca^{2+} -dependent uptake of Pb²⁺ by astroglia may be induced by their interaction with neurons (Tiffany-Castiglioni [1993;](#page-36-9) Lindhal et al. [1999\)](#page-29-6) and may involve glutamate-dependent increase in intracellular Ca^{2+} (Cornell-Bell et al. [1990\)](#page-24-12). The accumulation and storage of Pb^{2+} in astroglia may be a mechanism of protection for neurons which are more sensitive than astroglia to the toxic effects of Pb^{2+} (Holtzman et al. [1987](#page-27-7); Tiffany-Castiglioni et al. [1986;](#page-36-10) Tiffany-Castiglioni [1993\)](#page-36-9). On the other hand, such storage of Pb^{2+} in astroglia may provide a reservoir for its continuous release and thereby may contribute to the toxicity of adjacent neurons or astroglia themselves (Struzynska [2009](#page-35-9)).

13 Lead and Metabotropic Glutamate Receptors

Of the metabotropic glutamate receptor, mGluR5 has also been linked to Pb^{2+} -induced deficits in learning and memory. The impact of developmental Pb^{2+} exposure on hippocampal mGluR5 expression and its potential role in Pb^{2+} -induced neurotoxicity has been investigated both in vitro and in vivo (Xu et al. [2009a](#page-37-4), [b](#page-37-5)). Decreased expression of mGluR5 mRNA and protein by Pb^{2+} dose-dependently suggests that mGluR5 might be involved in Pb^{2+} -induced neurotoxicity. Impairment of mGluR5-dependent LTD (Huang and Hsu [2006](#page-27-8)) and decreasing NMDAR-dependent or protein synthesis-dependent long-term potentiation have been hypothesized as potential mechanisms of Pb^{2+} -induced neurotoxicity (Toscano and Guilarte [2005;](#page-36-0) Topolnik et al. [2006;](#page-36-11) Manahan-Vaughan et al. [2003](#page-30-8); Manahan-Vaughan and Braunewell [2005](#page-29-7); Naie and Manahan-Vaughan [2004](#page-31-13); Neyman and Manahan-Vaughan [2008](#page-31-14)).

14 Protein Phosphatases and Lead-Induced NMDAR-Dependent Neurotoxicity

The major serine/threonine (Ser/Thr) protein phosphatases (PPs) in mammalian brain are PP1, PP2A, and PP2B (Liu et al. [2005\)](#page-29-8). Overactivation/overexpression of these Ser/Thr PPs has been implicated in impairment of learning and memory.

PPs are strong molecular constraints on learning and memory (Lee and Silva [2009\)](#page-28-11). PPs are also involved in cognitive decline in aging (Mansuy and Shenolikar [2006;](#page-30-9) Knobloch et al. [2007](#page-28-12)) and in favoring forgetting (Genoux et al. [2002](#page-25-14)). Overactivation of PP1 is associated with learning and memory impairment (Genoux et al. [2002;](#page-25-14) Koshibu et al. [2009;](#page-28-13) Graff et al. [2010;](#page-26-11) Haege et al. [2010](#page-26-12); Genoux et al. [2011](#page-25-15); Koshibu et al. [2011](#page-28-14)). PP2A and PP2B also adversely affect learning and memory (Bennett et al. [2003;](#page-22-11) Havekes et al. [2006;](#page-27-9) Yamashita et al. [2006;](#page-38-4) Mauna et al. [2010;](#page-30-10) Oberbeck et al. [2010](#page-32-10)). Overactivation of PP2A induces LTD in vivo (Thiels et al. [1998\)](#page-35-10), and inhibition of PP2A abrogates LTD induction (Mauna et al. [2010\)](#page-30-10).

Whether the overactivation/overexpression of these PPs is involved in Pb^{2+} induced impairment of learning and memory has not been thoroughly investigated, but the few studies available on this topic suggests a role of PPs in Pb-induced neurotoxicity. In the cultured human fetal neurons exposed to physiologically relevant concentration of Pb^{2+} , a significant increase in total PPs and PP2A activities was observed. Pb²⁺ exposure significantly increased the expression of PP1 and PP2B but significantly decreased the expression of PP2A and PP5 in cultured human fetal neurons (Rahman et al. [2011\)](#page-33-6). In rats exposed to Pb^{2+} during early development, learning, short-term memory (STM), and long-term memory (LTM) were significantly impaired at PND 21, and this impairment of learning and LTM was associated with decreased synaptogenesis and increased expression and activities of PP1 and PP2A in the hippocampus. On the other hand, at PND 30, learning and short-term memory (STM), but not the LTM, were impaired by Pb^{2+} . At this developmental stage, expression and activity of hippocampal PP1 were increased, but that of PP2A was decreased. These results suggest that increased PP1 activity in hippocampus is involved in the impairment of learning and LTM, whereas increased PP2A activity is involved in the impairment of STM (Rahman et al. [2012a,](#page-33-7) [b](#page-33-8)).

LTM involves protein synthesis, growth, and formation of new synapses (Martin et al. [1997;](#page-30-11) Ma et al. [1999](#page-29-9); Toni et al. [1999](#page-36-12); Bozdagi et al. [2000;](#page-23-11) De Roo et al. [2008\)](#page-24-13). By contrast, STM involves covalent modification of proteins in the presynaptic or postsynaptic structures (Kandel [2001;](#page-27-10) Malinow and Malenka [2002](#page-29-10)). The major covalent modification underlying these long-lasting changes in synaptic communication is protein phosphorylation, which is regulated by a balance between protein kinases (PKs) and PPs. Increased activity of PKs results in increased protein phosphorylation which has been implicated in LTP. On the other hand, increased activity of PPs results in decreased protein phosphorylation, which has been implicated in LTD (Roberson et al. [1996;](#page-34-12) Winder and Sweatt [2001;](#page-37-11) Blitzer et al. [2005\)](#page-23-12). Reversible protein phosphorylation regulates presynaptic and postsynaptic events in excitatory and inhibitory neurons. The major substrates for PPs at these synaptic sites include ligand-gated ion channels and G-protein-coupled receptors, whose functional properties, trafficking, and synaptic organization are controlled by reversible phosphorylation (Swope et al. [1999\)](#page-35-11).

Several mechanisms have been proposed to explain the role of PPs in learning and memory. These include dephosphorylation and the subsequent deacetylation of histone proteins and chromatin remodeling and altered expression of CREB and NF-κB (Kandel [2001;](#page-27-10) Fischer et al. [2007;](#page-25-16) Miller et al. [2008](#page-30-12); Koshibu et al. [2009](#page-28-13), [2011;](#page-28-14) Oberbeck et al. [2010](#page-32-10)). Both PP1 and PP2A dephosphorylate CREB (Mauna et al. [2010\)](#page-30-10) and thereby reduce CREB-mediated gene expression (Wadzinski et al. [1993;](#page-37-12) Alberts et al. [1994;](#page-22-12) Genoux et al. [2002;](#page-25-14) Oberbeck et al. [2010](#page-32-10)). Other mechanisms include dephosphorylation by PP1 and PP2A of NMDAR and MAPK (Chan and Sucher [2001;](#page-23-13) Oberbeck et al. [2010\)](#page-32-10), calcium-/calmodulin-dependent protein kinase IV (CaMKIV) (Westphal et al. [1998;](#page-37-13) Anderson et al. [2004](#page-22-13)), ERK (Davis et al. [2000](#page-24-14); Norman et al. [2000;](#page-32-11) Silverstein et al. [2002](#page-35-12); Ho et al. [2007\)](#page-27-11), and the AMPA receptor (Thiels et al. [2002](#page-36-13)).

Of particular significance in the Pb^{2+} -induced excitotoxicity is the dephosphorylation and subsequent inhibition of the NMDAR-associated signalling pathways. Protein phosphorylation has been established as an important mechanism for the regulation of NMDAR function. LTP is accompanied by increased glutamate receptor phosphorylation through various protein kinases and a concomitant decrease in protein phosphatase activity (Bliss and Collingridge [1993](#page-23-14); Mulkey et al. [1993;](#page-31-15) Soderling and Derkach [2000](#page-35-13)). In contrast, LTD has been shown to be dependent on glutamate receptor dephosphorylation mediated by an increase in the activity of protein phosphatases, possibly PP1 and PP2A (Lee et al. [1998,](#page-28-15) [2000;](#page-28-16) Thiels et al. [1998](#page-35-10)). Thus, coordination of kinase and phosphatase activities is crucial for the modulation of synaptic plasticity. Both kinases (PKA) and phosphatases (PP1 and PP2A) are located in physical proximity to NMDAR (Chan and Sucher [2001\)](#page-23-13). Synaptic NMDARs are phosphorylated or dephosphorylated depending on synaptic stimulation. Phosphorylated NMDARs have enhanced channel openings and a consequent increase in Ca^{2+} influx, and this influx is necessary for inducing long-term neuronal changes (Levitan [1999;](#page-29-11) Prybylowski and Wenthold [2004;](#page-33-9) Raymond et al. [1994](#page-34-13); Roche et al. [1994](#page-34-14)). Following excitatory neurotransmission and Ca^{2+} influx, NMDARs are phosphorylated by PKA and then rapidly dephosphorylated by PP1, PP2A, or PP2B. This reversible phosphorylation controls synaptic strength, memory formation, and storage by the induction of LTP or LTD (Blitzer et al. [2005\)](#page-23-12). Several PKs, including CaMKII, PKC, PKA, and ERKs, have been implicated in LTP induction and maintenance, whereas PPs are implicated in the induction of LTD. Previous studies have shown that LTD is dependent on the change of the phosphorylation state of glutamate receptors in general (Lee et al. [1998,](#page-28-15) [2000\)](#page-28-16) and the activity of PPs, particularly PP1 and PP2A (Mulkey et al. [1993](#page-31-15), [1994;](#page-31-16) Thiels et al. [1998\)](#page-35-10). Stimulation of NMDAR activates PP1, PP2A, and PP2B whose substrate specificity is primarily determined through interaction with regulatory and targeting proteins (Mansuy and Shenolikar [2006](#page-30-9)).

NMDAR activity is attenuated by PP1, PP2A (Wang et al. [1994\)](#page-37-14), and PP2B (Mulkey et al. [1994;](#page-31-16) Wang and Kelly [1997](#page-37-15)). PP1 diminishes NMDAR-mediated synaptic currents in an activity-dependent manner in the hippocampus (Wang et al. [1994;](#page-37-14) Westphal et al. [1999\)](#page-37-16). PP1 and PP2A appear to decrease the single channel open time in cultured rat hippocampal neurons and thus reduce NMDAR activity (Wang et al. [1994\)](#page-37-14), with PP1 having a more prominent role than PP2A in dephosphorylating the NMDAR.

Both positive and negative effects of PP2B on glutamate receptor functions have been reported. PP2B reduces NMDAR-mediated currents by dephosphorylating the NR2A subunit of the NMDAR and reduction of the open time of individual channels (Lieberman and Mody [1994\)](#page-29-12) and desensitization of the receptor (Krupp et al. [2002;](#page-28-17) Tong et al. [1995\)](#page-36-14). On the other hand, PP2B has been reported to potentiate NMDARinduced metabotropic mGluR5 receptor activity by dephosphorylating PKC-dependent sites on the mGluR5 C terminus and attenuating mGluR5 desensitization (Alagarsamy et al. [2005\)](#page-22-14). PP2B-mediated dephosphorylation also contributes to the developmental switch of NMDAR subunits and thus modulates NMDAR subunit composition. In the developing cerebellum, it counteracts the TrkB- and ERK1/2-dependent upregulation of the NR2C subunit, which then exchanges with NR2B to promote synaptic transmission from mature mossy fibers onto granule cells (Suzuki et al. [2005\)](#page-35-14).

The role of PP2A in NMDAR regulation and functioning has been well studied and best understood. There are intriguing functional similarities between PP2A and NMDAR. Both contribute to the regulation of neural functions such as synaptic transmission and plasticity. Immunoprecipitation studies indicated that the carboxyl domain of NR3A subunit of NMDAR forms a stable complex with the catalytic subunit of PP2A in the rat brain in vivo (Chan and Sucher [2001\)](#page-23-13). Further studies demonstrated that NR3A constitutively associates with the PP2A holoenzyme, but not the core enzyme in rat brain synaptic plasma membranes. A sequence of six amino acids between leucine 958 and histidine 974 of the NR3A is critical for binding to PP2A, as deletion or mutation of this sequence disrupted the NR3A-PP2A interaction (Ma and Sucher [2004](#page-29-13)). Association of PP2A with NMDAR leads to an increase in the activity of PP2A and the dephosphorylation of serine 897 of the NMDAR subunit NR1. Stimulation of NMDAR leads to the dissociation of PP2A from the complex and the reduction of PP2A activity (Chan and Sucher [2001](#page-23-13)).

The NR1 subunit is phosphorylated by both PKA and PKC (Tingley et al. [1997\)](#page-36-15). PKA is associated with NMDAR through the scaffold protein yotiao (Westphal et al. [1999\)](#page-37-16), and this NMDAR-associated PKA has been shown to phosphorylate the Ser-897 of NR1 (Chan and Sucher [2001\)](#page-23-13). PP2A associated with NR3A dephosphorylates this serine residue of NR1. PP1 has also been shown to be associated with NMDAR through the same scaffold protein. These PP2A- (and possibly, PP1-) induced changes in phosphorylation of NR1 decrease NMDA currents through the attenuated opening of the NMDAR-gated channels (Wang et al. [1994](#page-37-14)). PP2A may also indirectly modulate the phosphorylation of NR1 subunits by modulating the function of PKC. It has been reported that PP2A dephosphorylates and inactivates PKC in vitro and inhibition of PP2A by okadaic acid prevents dephosphorylation of PKC and enhances the function of PKC (Hansra et al. [1996;](#page-26-13) Millward et al. [1999;](#page-30-13) Ricciarelli and Azzi [1998](#page-34-15)).

In addition to NR1, PP2A is also known to dephosphorylate NR2B subunit. It is known that CaMKII binds to the C-terminal region of the NR2B subunit of NMDAR and phosphorylates it at Ser-1303 (Mayadevi et al. [2002\)](#page-30-14). PP2A may regulate the phosphorylation of this site of NR2B subunits by modulating the function of CaMKII. CaMKII autophosphorylated at Thr-286 is active, whereas the activity is

decreased by dephosphorylation of this site (Colbran [2004](#page-24-15); Otmakhov et al. [2004\)](#page-32-12). CaMKII autophosphorylated at Thr-286 was first reported to be exclusively dephosphorylated by PP1 in isolated synaptosomes (Shields et al. [1985](#page-35-15)).

15 Metallothionein and Lead-Induced Excitotoxicity

Metalloproteinsplay critical roles in the normal physiology of the cell. Toxic heavy metals, including Pb^{2+} , can displace essential metals from the metal-binding sites of various critical metalloproteins and enzymes in the cell (Pérez-Zúñiga et al. [2018;](#page-33-10) Basha et al. [2003\)](#page-22-15) and may result in either the loss or gain of function of essential metal-binding protein/enzyme (Gorkhali et al. [2016;](#page-26-2) Mattiasson et al. [1978](#page-30-15); Goering [1993;](#page-26-14) Sharma et al. [2008\)](#page-34-16). One of the protective mechanisms adopted by living organisms against these toxic metals is to sequester heavy metals through thiol-rich proteins or peptides such as metallothionein (MT) (Sharma et al. [2008;](#page-34-16) Stillman [1995;](#page-35-16) Hirata et al. [2005\)](#page-27-12). Mammalian MTs are cysteine-rich peptides (approximately 60 amino acids with one-third of amino acids as cysteine). The sulfhydryl (thiol) groups in the cysteine side chain sequester metal ions (Asano et al. [2010](#page-22-16)). MT gene expression is upregulated in response to a variety of physical (cold exposure, strenuous exercise) and chemical (heavy metals, certain hormones, free radicals, and irradiation) insults (Aschner [1996](#page-22-17); Miles et al. [2000\)](#page-30-16). Four isoforms of MT have been identified (MT-1 to MT-4). Of these, MT-3 is CNS specific, MT-1 and MT-2 have a wider tissue expression pattern, and MT-4 is mainly expressed in the skin epithelial cells (Pérez-Zúñiga et al. [2018;](#page-33-10) Erickson et al. [1997](#page-25-17)). In the CNS, MT-1 and MT-2 are mainly expressed by astrocytes and spinal glia and are almost absent from neurons (Hidalgo et al. [2001](#page-27-13); Tokuda et al. [2007\)](#page-36-16). MT-3, on the other hand, is abundantly expressed in neurons and astrocytes (Hozumi et al. [2008](#page-27-14)) and plays a significant role in Zn homeostasis (Frazzini et al. [2006\)](#page-25-18).

In addition to the sequestration of toxic heavy metal, mammalian MTs have several physiological functions. These include homeostasis of essential metal ions like copper (Cu^{2+}) and Zn^{2+} (Erickson et al. [1997;](#page-25-17) Vasak and Meloni [2017\)](#page-36-17) and the modulation of glutamate and GABA signalling in neurons and astrocytes (Aschner [1996\)](#page-22-17). MT-3 also has growth inhibitory effects and is reported to inhibit neurite outgrowth (Palmiter [1994;](#page-32-13) Palmiter et al. [1992](#page-32-14); Palmiter and Erickson [1996;](#page-32-15) Uchida et al. [1991\)](#page-36-18). As such it has been implicated in the neuropathology of neurodegenerative diseases.

High levels of MT-3 can affect brain function in three ways. First, MT-3 can affect neuronal function through modulating Zn^{2+} homeostasis. Zn^{2+} plays a crucial role in modulating glutamatergic and GABAergic signalling in neurons (Cuajungco and Lees [1997\)](#page-24-16). MT-3 is abundantly expressed by the Zn^{2+} -containing neurons in the hippocampus, the piriform cortex, and the amygdala. The mossy fiber projections of the dentate granule cells contain the highest concentration of Zn^{2+} in the brain. MT-3, in Zn^{2+} -containing neurons or neurons exposed to high concentrations of Zn^{2+} , is proposed to play an essential role in the distribution, recycling, or buffering of Zn^{2+} in these neurons (Palmiter et al. [1992;](#page-32-14) Masters et al. [1994;](#page-30-17) Ashner [1996;](#page-22-17)

Palmiter and Erickson [1996](#page-32-15)). Some of the MT-3 expressing neurons are glutamatergic (pyramidal cells of the hippocampus and the granule cells of the dentate gyrus), whereas others are GABAergic (Purkinje cells of the cerebellar cortex). It is believed that the concomitant release of Zn^{2+} along with glutamate or GABA at neuronal synapses modulates the activity of these neurotransmitters (Fredrickson and Moncrief [1994\)](#page-25-19). MT-3 may also function to sequester Zn^{2+} from the synapse, maintaining homeostatic control over neurotransmitter levels within the synaptic cleft. Second, overexpression of MT-3 may result in decreased number of neurites and subsequently reduced number of synapses, as MT-3 has been shown to inhibit neurite outgrowth (Palmiter [1994](#page-32-13), [1995;](#page-32-16) Palmiter et al. [1992;](#page-32-14) Palmiter and Erickson [1996](#page-32-15); Uchida et al. [1991](#page-36-18)). Third, by sequestering essential metal ions $(Cu^{2+}, Mn^{2+}, and Zn^{2+})$, high levels of MT-3 can result in lower activities of several metal-dependent enzymes in the brain.

 Zn^{2+} is released at glutamatergic synapses in response to depolarization and acts through the ionotropic glutamate receptors (Palmiter [1994](#page-32-13)). Neuronal response to Zn^{2+} depends on its concentration and the receptor subtype. At lower concentration, it potentiates the activities of AMPA and KA receptors, whereas at higher concentrations $(>100 \mu M)$, it inhibits the activities of both receptors (Fredrickson and Moncrief [1994](#page-25-19)). On the other hand, Zn^{2+} inhibits the activities of NMDA and GABA receptors (Fredrickson and Moncrief [1994\)](#page-25-19). It has been suggested that MT-3 serves as a neuromodulator through regulating Zn^{2+} homeostasis in neurons (Palmiter et al. [1992](#page-32-14); Fredrickson and Moncrief [1994](#page-25-19)).

The effect of Pb^{2+} exposure on the expression of MTs (MT-1/MT-2) in other tissues, particularly the liver and kidney, has been well documented (Ikebuchi et al. [1986;](#page-27-15) Tokuda et al. [2007;](#page-36-16) Wang et al. [2009;](#page-37-17) Nakao et al. [2010;](#page-31-17) Gillis et al. [2012;](#page-26-15) Peterson et al. [2011](#page-33-11); Dai et al. [2013](#page-24-17); Nascimento et al. [2016](#page-31-18)). A more than threefold increase in the expression of MT genes was observed in cultured human peripheral blood mononuclear cells in response to Pb^{2+} exposure (Gillis et al. [2012](#page-26-15)). Intracerebral administration of Pb^{2+} resulted in significantly increased expression of MTs (Nakao et al. [2010\)](#page-31-17). However, the effect of Pb^{2+} expossure on the expression of MT-3 in the brain is not well studied. A recent study reported the overexpression of MT-3 in the hippocampus, thalamus, and cerebral cortex of Wistar rats exposed to Pb^{2+} during the pre-weaning period (Rahman et al. [2018a\)](#page-33-12). Whether MT-3 overexpression has any direct role in Pb^{2+} -induced impairment of learning and memory remains to be investigated. The reduced number of synapses in a similar model of Pb^{2+} -exposed rats supports a role of MT-3 overexpression in Pb^{2+} -induced neurotoxicity (Rahman et al. $2012b$). In the brain, Pb^{2+} binds with MT-3 with higher affinity than Zn^{2+} (Pérez-Zúñiga et al. [2018;](#page-33-10) Carpenter et al. [2016](#page-23-15); Wong et al. [2017\)](#page-37-18). During Pb²⁺ toxicity, Pb²⁺ may replace Zn^2 ⁺ from MT-3 and as such may affect brain function by interfering with normal glutamate and GABA signalling. The displacement of Zn^{2+} by Pb²⁺ has been recently confirmed (Pérez-Zúñiga et al. [2018\)](#page-33-10). Pb²⁺ is also known to displace Zn^{2+} in several Zn^{2+} -finger proteins. These include DNA methyltransferase 1, presenilin 1 and 2, dopamine receptor, NMDA receptor, zinc finger protein 804A, and disrupted-in-schizophrenia 1-binding zinc finger. Such modulation of these zinc finger proteins by Pb^{2+} has been implicated in Alzheimer's disease, Parkinson's disease, and schizophrenia (Ordemann and Austin [2016\)](#page-32-17). Therefore, overexpression of MT-3 in the brain may be one of the potential mechanisms of Pb^{2+} -induced neurotoxicity and impairment of learning and memory.

16 Quinolinic Acid in Lead-Induced Excitotoxicity

Under physiological conditions, brain's tryptophan is metabolized by the serotonin/ melatonin pathway and to a lesser extent by the kynurenine pathway (KP) converting it into nicotinamide adenine dinucleotide $(NAD⁺)$ (Lovelace et al. [2017\)](#page-29-14). However, during neuroinflammation, approximately 95% of the brain's tryptophan is catabolized through the KP to produce several other metabolites with neuroactive properties (Guillemin [2012\)](#page-26-16). Of these, quinolinic acid (QA) is an NMDAR agonist and a known neuro- and gliotoxin (Guillemin [2012\)](#page-26-16). Increased levels of QA are implicated in several neurodegenerative diseases such as Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, AIDS dementia, depression, and schizophrenia (Guillemin [2012](#page-26-16); Guillemin et al. [2005a,](#page-26-17) [b](#page-26-18); Lim et al. [2017a](#page-29-15), [b;](#page-29-16) Chen et al. [2010;](#page-23-16) Steiner et al. [2011](#page-35-17); Rahman et al. [2009;](#page-33-13) Colín-González et al. [2015\)](#page-24-18).

QA is toxic to astrocytes (Lee et al. [2010](#page-29-17)), oligodendrocytes (Sundaram et al. [2014\)](#page-35-18), and neurons (Kerr et al. [1998;](#page-28-18) Chen et al. [2011\)](#page-23-17), particularly in the hippocampus, striatum, and neocortex (Guillemin [2012\)](#page-26-16). QA-induced apoptosis has also been reported in these cells (Cammer [2002](#page-23-18); Guillemin et al. [2005a](#page-26-17), [b](#page-26-18); Kelly and Burke [1996](#page-28-19)). The mechanisms of QA-induced neurotoxicity include direct activation of the NMDAR and the subsequent excitotoxicity, increasing the levels of extracellular glutamate and its related excitotoxicity, increased oxidative stress and lipid peroxidation, stimulation of protease activity and apoptosis, destabilization of the cytoskeleton, and energy depletion (Guillemin [2012](#page-26-16); Colín-González et al. [2015;](#page-24-18) Rahman et al. [2009](#page-33-13); Muller et al. [2007;](#page-31-19) Santamaría et al. [2001](#page-34-17); Pierozan et al. [2010\)](#page-33-14). QA can increase glutamate release by neurons, inhibit its uptake by astrocytes, and inhibit astroglial glutamine synthetase, leading to excessive microenvironment glutamate concentrations and neurotoxicity. It was also recently demonstrated that QA is transported by the excitatory amino acid transporter 3 (EAAT3) and then accumulates in neurons (Braidy et al. [2020](#page-23-19)). The major and rate-limiting enzyme of the KP, indoleamine-2,3-dioxygenase-I (IDO-I), is expressed in astrocytes, microglia, and neurons. The expression of IDO-I is increased by inflammatory mediators and cytokines such as amyloid peptides, lipopolysaccharides (LPS), interlukin-1β (IL-1β), interlukin-6 (IL-6), tumor necrosis factor- α (TNF- α), and interferon gamma (IFN-γ) (Lovelace et al. [2017;](#page-29-14) Guillemin et al. [2003a](#page-26-19), [b\)](#page-26-20). The other major enzyme of the KP that converts kynurenine (the first stable metabolite of KP) into QA is kynurenine 3-monooxygenase, which is also abundantly expressed in microglia, macrophages, and monocytes. The expression of this enzyme is also upregulated by pro-inflammatory mediators (Jones et al. [2015](#page-27-16)). Thus, a pro-inflammatory environment highly favors the generation of QA in the brain. In addition to the local activation of the KP and synthesis of QA in the CNS,

kynurenine produced systemically can cross the blood-brain barrier and can be converted into QA within the CNS (Vécsei et al. [2013](#page-36-19)).

Both Pb²⁺ and QA share several features of neurotoxicity. For example, both Pb²⁺ and QA impair learning and memory (Rahman et al. [2012b;](#page-33-8) Misztal et al. [1996a](#page-30-18), [b;](#page-30-19) Furtado and Mazurek [1996](#page-25-20)), destabilize the cytoskeleton (Rahman et al. [2009,](#page-33-13) [2012a\)](#page-33-7), trigger oxidative stress (Lovelace et al. [2017;](#page-29-14) Jones et al. [2015](#page-27-16); Pierozan et al. [2012\)](#page-33-15), and increase synaptic glutamate levels (Guillemin [2012](#page-26-16); Braga et al. [1999b](#page-23-5)). Pb^{2+} , a pro-oxidant metal, may increase QA levels by microglial and astroglial activation and may increase the expression of pro-inflammatory cytokines (IL-1β, IL-6, TNF- α , and IFN-γ) (Liu et al. [2012,](#page-29-18) [2015;](#page-29-19) Sobin et al. [2013](#page-35-19); Kumawat et al. [2014](#page-28-20)). These cytokines are known to activate the KP and increase production of QA (Lovelace et al. 2017 ; Jones et al. 2015 ; Guillemin et al. $2003a$, [b](#page-26-20)). Pb^{2+} is thus expected to increase the brain levels of QA, which subsequently may cause excitotoxicity. This hypothesis was recently tested in a rat model in which exposure of rat pups to Pb^{2+} during early postnatal period increased the levels of QA in the blood (by \sim 58%) and increased the number of QA-immunoreactive cells in the cortex and CA1, CA3, and dentate gyrus regions of the hippocampus (Rahman et al. [2018b\)](#page-33-3). In further studies, it was shown that infusion of QA into the brain produced behavioral and biochemical abnormalities similar to Pb^{2+} exposure. These results support the hypothesis that increased QA production in response to Pb^{2+} exposure is involved in learning and memory impairment. These studies were further supported by the observations that the toxic effects of both Pb^{2+} and QA in cultured hippocampal neurons could be mitigated by treatment with memantine, an NMDAR antagonist (Rahman et al. [2019\)](#page-34-18). Neuroprotection with memantine from both Pb^{2+} and OA suggests a common mechanism of excitotoxicity through NMDAR activation. Alternatively, it is possible that Pb^{2+} exerts its neurotoxic effects through QA. The reported finding that Pb^{2+} exposure increases the levels of QA in rats supports the notion that Pb^{2+} exerts its neurotoxic effects, at least in part, through increased QA production. This hypothesis appears to contradict the earlier reported findings in which Pb^{2+} exposure was shown to lower the NMDAR function and LTP (Neal and Guilarte [2010;](#page-31-1) Neal et al. [2011](#page-31-7)). This apparent contradiction, however, can be explained by the differential effects of Pb^{2+} at different concentrations and different NMDAR subtypes. It has been reported that the effect of Pb^{2+} on NMDAR is dose- and NMDAR-type dependent. At lower concentrations ($\lt 1 \mu M$), Pb²⁺ acts as an agonist of NR1-2AB and NR1-2AC receptors, whereas at higher concentrations, it inhibits NR1-2AB and NR1-2AC receptors, but with less potency compared to NR1-2A or NR1-2B (Omelchenko et al. [1996,](#page-32-9) [1997](#page-32-6)).

Increased production of QA by Pb^{2+} , mechanistically, seems logical. Pb^{2+} , a prooxidant metal, may increase QA production by microglial activation. Microglial activation in the brain, particularly in the hippocampus, has been reported in Pb-exposed rats and mice. This microglial activation was associated with increased expression of pro-inflammatory cytokines like IL-1β, IL-6, and TNF-α (Liu et al. [2015](#page-29-19); [2012;](#page-29-18) Sobin et al. [2013](#page-35-19); Kasten-Jolly et al. [2011;](#page-27-17) Struzynska et al. [2007](#page-35-20); Baranowska-Bosiacka et al. [2012](#page-22-18); Sansar et al. [2011](#page-34-19)). Similarly, in vitro exposure to Pb^{2+} of BV-2 mouse microglia resulted in increased expression of pro-inflammatory cytokines and chemokines (TNF- α , IL-6, MCP-1) and the pro-inflammatory enzyme COX-2 (Kumawat et al.

[2014](#page-28-20)). Activation of TLR4-MyD88-NFkB signalling cascades has been suggested as the mechanism of increased expression of pro-inflammatory cytokines (Kumawat et al. [2014](#page-28-20); Pomilio et al. [2016\)](#page-33-16). Furthermore, QA, a pro-oxidant, may further increase microglial activation and increased QA production through a positive feedback loop. Furthermore, Pb^{2+} is reported to increase the spontaneous release of glutamate from the presynaptic terminals of rat hippocampal neurons in a concentration-dependent manner (Braga et al. [1999b\)](#page-23-5). This increased glutamate release is likely to be caused by increased QA production/synthesis induced by Pb^{2+} exposure. A non-receptor-mediated mechanism of QA-induced cytotoxicity has also been suggested in which QA is reported to form a complex with Fe^{2+} , and this QA-Fe²⁺ complex enhances hydroxyl radical production (Pláteník et al. [2001\)](#page-33-17). A similar QA-Pb²⁺ complex may be more cytotoxic than either of these alone by enhancing free radical generation by the $OA-Pb^{2+}$ complex. The synergistic toxic effects of both QA and Pb^{2+} in cultured hippocampal neurons (Rahman et al. [2019](#page-34-18)) support this hypothesis.

17 Conclusion

The literature reviewed above clearly indicates that our knowledge about the mechanism of Pb^{2+} -induced neurotoxicity is still patchy and there is a need to put these isolated pieces of information together to understand how the pathway(s) involved in learning and memory are affected by Pb^{2+} . The excitotoxic effects of Pb^{2+} appear to be multifaceted, and Pb^{2+} is likely to act in coordination with other modulator of excitotoxicity like glutamate, MT-3, QA, protein phosphatases, and Zn^{2+} . The in vitro protective effect of memantine against Pb^{2+} toxicity in cultured neurons is an interesting observation which needs to be tested in animal models.

18 Cross-References

- ▶ [Ionotropic Receptors in the Central Nervous System and Neurodegenerative](https://doi.org/10.1007/978-3-031-15080-7_126) [Disease](https://doi.org/10.1007/978-3-031-15080-7_126)
- ▶ [Manganese Neurotoxicity](https://doi.org/10.1007/978-3-031-15080-7_3)
- ▶ [Pathogenesis of Alzheimer](https://doi.org/10.1007/978-3-031-15080-7_162)'s Disease
- ▶ [Quinolinic Acid and Related Excitotoxins: Mechanisms of Neurotoxicity and](https://doi.org/10.1007/978-3-031-15080-7_127) [Disease Relevance](https://doi.org/10.1007/978-3-031-15080-7_127)
- **[The NMDA Receptor System and Developmental Neurotoxicity](https://doi.org/10.1007/978-3-031-15080-7_194)**

References

Akinyemi, A. J., Miah, M. R., Ijomone, O. M., Tsatsakis, A., Soares, F. A. A., Tinkov, A. A., Skalny, A. V., Venkataramani, V., & Aschner, M. (2019, August 11). Lead (Pb) exposure induces dopaminergic neurotoxicity in Caenorhabditis elegans: Involvement of the dopamine transporter. Toxicology Reports, 6, 833–840. <https://doi.org/10.1016/j.toxrep.2019.08.001>

- Alagarsamy, S., Saugstad, J., Warren, L., Mansuy, I. M., Gereau, R. W., 4th, & Conn, P. J. (2005). NMDA-induced potentiation of mGluR5 is mediated by activation of protein phosphatase 2B/calcineurin. Neuropharmacology, 49(Suppl 1), 135–145.
- Alberts, A. S., Montminy, M., Shenolikar, S., & Feramisco, J. R. (1994, July). Expression of a peptide inhibitor of protein phosphatase 1 increases phosphorylation and activity of CREB in NIH 3T3 fibroblasts. Molecular and Cellular Biology, 14(7), 4398–4407. [https://doi.org/10.](https://doi.org/10.1128/mcb.14.7.4398) [1128/mcb.14.7.4398](https://doi.org/10.1128/mcb.14.7.4398)
- Al-Saleh, I., Shinwari, N., Nester, M., Mashhour, A., Moncari, L., El Din, M. G., et al. (2008). Longitudinal study of prenatal and postnatal lead exposure and early cognitive development in Al-Khari, Saudi Arabia: A preliminary results of cord blood lead levels. *Journal of Tropical* Pediatrics, 54, 300–307.
- Altmann, L., Sveinsson, K., & Wiegand, H. (1991). Long-term potentiation in rat hippocampal slices is impaired following acute lead perfusion. Neuroscience Letters, 128, 109-112.
- Altmann, L., Weinsberg, F., Sveinsson, K., Lilienthal, H., Wiegand, H., & Winneke, G. (1993). Impairment of long-term potentiation and learning following chronic lead exposure. Toxicology Letters, 66, 105–112.
- Altmann, L., Gutowski, M., & Wiegand, H. (1994). Effects of maternal lead exposure on functional plasticity in the visual cortex and hippocampus of immature rats. Brain Research. Developmental Brain Research, 81(1), 50–56.
- Anderson, K. A., Noeldner, P. K., Reece, K., Wadzinski, B. E., & Means, A. R. (2004). Regulation and function of the calcium/calmodulin-dependent protein kinase IV/protein serine/threonine phosphatase 2A signalling complex. The Journal of Biological Chemistry, 279(30), 31708–31716.
- Antonio, M. T., & Lert, M. L. (2000). Study of the neurochemical alterations produced in discrete brain areas by perinatal low-level lead exposure. Life Sciences, 67(6), 635–642.
- Asano, T., Wang, P. C., & Iwasaki, A. (2010, June). Spectrophotometric detection of labile zinc (II) released from metallothionein: A simple method to evaluate heavy metal toxicity. Journal of Bioscience and Bioengineering, 109(6), 638–644.
- Aschner, M. (1996). The functional significance of brain metallothioneins. The FASEB Journal, 10, 1129–1136.
- Atchison, W. D., & Narahashi, T. (1984). Mechanism of action of lead on neuromuscular junction. Neurotoxicology, 5, 267–282.
- Athos, J., Impey, S., Pineda, V. V., Chen, X., & Storm, D. R. (2002). Hippocampal CRE-mediated gene expression is required for contextual memory formation. Nature Neuroscience, 5, 1119–1120.
- ATSDR. (2017). Agency for toxic substances and disease registry: Case studies in environmental medicine-lead toxicity, course: Wb2832. Available: [http://www.atsdr.cdc.gov/csem/csem.html.](http://www.atsdr.cdc.gov/csem/csem.html)
- Attina, T. M., & Trasande, L. (2013, September). Economic costs of childhood lead exposure in low- and middle-income countries. *Environmental Health Perspectives*, 121(9), 1097–1102.
- Audesirk, G. (1993). Electrophysiology of lead intoxication: Effects on voltage-sensitive ion channels. Neurotoxicology, 14, 137–147.
- Baranowska-Bosiacka, I., Gutowska, I., Marchlewicz, M., Marchetti, C., Kurzawski, M., Dziedziejko, V., Kolasa, A., Olszewska, M., Rybicka, M., Safranow, K., Nowacki, P., Wiszniewska, B., & Chlubek, D. (2012). Disrupted pro- and antioxidative balance as a mechanism of neurotoxicity induced by perinatal exposure to lead. *Brain Research*, 1435, 56–71.
- Basha, M. R., Wei, W., Brydie, M., Razmiafshari, M., & Zawia, N. H. (2003, February). Leadinduced developmental perturbations in hippocampal Sp1 DNA-binding are prevented by zinc supplementation: In vivo evidence for Pb and Zn competition. International Journal of Developmental Neuroscience, 21(1), 1–12.
- Bennett, P. C., Moutsoulas, P., Lawen, A., Perini, E., & Ng, K. T. (2003). Novel effects on memory observed following unilateral intracranial administration of okadaic acid, cyclosporine A, FK506 and [MeVal4]CyA. Brain Research, 988(1–2), 56–68.
- Bielarczyk, H., Tian, X., & Suszkiw, J. B. (1996). Cholinergic denervation-like changes in rat hippocampus following developmental lead exposure. Brain Research, 708, 108-115.
- Bliss, T. V., & Collingridge, G. L. (1993). A synaptic model of memory: Long term potentiation in the hippocampus. Nature, 361, 31–39.
- Blitzer, R. D., Iyengar, R., & Landau, E. M. (2005). Postsynaptic signalling networks: Cellular cogwheels underlying long-term plasticity. Biological Psychiatry, 57(2), 113–119.
- Bourtchuladze, R., Frenguelli, B., Blendy, J., Cioffi, D., Schultz, G., & Silva, A. J. (1994). Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell, 79, 59–68.
- Bouton, C. M. L. S., Frelin, L. P., Forde, C. E., Godwin, H. A., & Pevsner, J. (2001). Synaptotagmin I is a molecular target for lead. Journal of Neurochemistry, 76, 1724-1735.
- Bozdagi, O., Shan, W., Tanaka, H., Benson, D. L., & Huntley, G. W. (2000). Increasing numbers of synaptic puncta during late-phase LTP: N-cadherin is synthesized, recruited to synaptic sites, and required for potentiation. Neuron, 28, 245–259.
- Braga, M. F. M., Pereira, E. F. R., & Albuquerque, E. X. (1999a). Nanomolar concentrations of lead inhibit glutamatergic and GABAergic transmission in hippocampal neurons. *Brain Research*, 826, 22–34.
- Braga, M. F. M., Pereira, E. F. R., Marchioro, M., & Albuquerque, E. X. (1999b). Lead increases tetrodotoxin-insensitive spontaneous release of glutamate and GABA from hippocampal neurons. Brain Research, 826, 10–21.
- Braga, M. F., Pereira, E. F., Mike, A., & Albuquerque, E. X. (2004). Pb2+ via Protein Kinase C Inhibits Nicotinic Cholinergic Modulation of Synaptic Transmission in the Hippocampus. The Journal of Pharmacology and Experimental Therapeutics, 311(2), 700–710.
- Braidy, N., Alicajic, H., Pow, D., Smith, J., Jugder, B. E., Brew, B. J., Nicolazzo, J. A., & Guillemin, G. J. (2020, September 6). Potential mechanism of cellular uptake of the excitotoxin quinolinic acid in primary human neurons. Molecular Neurobiology. <https://doi.org/10.1007/s12035-020-02046-6>
- Bredt, D. S., Ferris, C. D., & Snyder, S. H. (1992). Nitric oxide synthase regulatory sites. Phosphorylation by cyclic AMP-dependent protein kinase, protein kinase C, and calcium/ calmodulin protein kinase; identification of flavin and calmodulin binding sites. The Journal of Biological Chemistry, 267, 10976–10981.
- Bressler, J., Kim, K. A., Chakraborti, T., & Goldstein, G. (1999). Molecular mechanisms of lead neurotoxicity. Neurochemical Research, 24, 595–600.
- Busselberg, D., Evans, M. L., Haas, H. L., & Carpenter, D. O. (1993). Blockade of mammalian and invertebrate calcium channels by lead. Neurotoxicology, 14, 249–258.
- Caito, S., & Aschner, M. (2017). Developmental neurotoxicity of lead. Advances in Neurobiology, 18, 3–12. https://doi.org/10.1007/978-3-319-60189-2_1
- Caldeira, M. V., Melo, C. V., Pereira, D. B., Carvalho, R. F., Carvalho, A. L., & Duarte, C. B. (2007). BDNF regulates the expression and traffic of NMDA receptors in cultured hippocampal neurons. Molecular and Cellular Neurosciences, 35, 208–219.
- Cammer, W. (2002). Apoptosis of oligodendrocytes in secondary cultures from neonatal rat brains. Neuroscience Letters, 327, 123–127.
- Carpenter, M. C., Shami, S. A., DeSilva, S., Gleaton, A., Goundie, B., Croteau, M. L., et al. (2016). Thermodynamics of Pb(ii) and Zn(ii) binding to MT-3, a neurologically important metallothionein. Metallomics, 8, 605–617.
- Centers for Disease Control and Prevention. (2016). Lead (Pb) toxicity: What are the U.S. standards for lead levels? [Atsdr.cdc.gov.](https://Atsdr.cdc.gov) Retrieved from [https://www.atsdr.cdc.gov/csem/csem.asp?csem](https://www.atsdr.cdc.gov/csem/csem.asp?csem=7&po=8)=[7&](https://www.atsdr.cdc.gov/csem/csem.asp?csem=7&po=8) $po = 8.$ $po = 8.$ $po = 8.$
- Chan, S. F., & Sucher, N. J. (2001). An NMDA receptor signalling complex with protein phosphatase 2A. The Journal of Neuroscience, 21(20), 7985–7992.
- Chen, Y., Stankovic, R., Cullen, K., Meininger, V., Garner, B., Coggan, S., Grant, R., Brew, B., & Guillemin, G. (2010). The kynurenine pathway and inflammation in amyotrophic lateral sclerosis. Neurotoxicology Research, 18, 132-142.
- Chen, Y., Brew, B., & Guillemin, G. (2011). Characterization of the kynurenine pathway in NSC-34 cell line: Implications for amyotrophic lateral sclerosis. Journal of Neurochemistry, 118, 816-825.
- Chirivia, J., Kwok, R., Lamb, N., Hagiwara, M., Montminy, M., & Goodman, R. (1993). Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature, 365, 855–859.
- Chisolm, J. J., Jr. (2001). Evolution of the management and prevention of childhood lead poisoning: Dependence of advances in public health on technological advances in the determination of lead and related biochemical indicators of its toxicity. Environmental Research, 86, 111–121.
- Clarkson, T. W. (1987). Metal toxicity in the central nervous system. Environmental Health Perspectives, 75, 59–64.
- Colbran, R. J. (2004). Targeting of calcium/calmodulin-dependent protein kinase II. Biochemical Journal, 378, 1–16.
- Colín-González, A., Paz-Loyola, A., Serratos, I., Seminotti, B., Ribeiro, C., Leipnitz, G., Souza, D., Wajner, M., & Santamaría, A. (2015). Toxic synergism between quinolinic acid and organic acids accumulating in glutaric acidemia type I and in disorders of propionate metabolism in rat brain synaptosomes: Relevance for metabolic acidemias. Neuroscience, 308, 64-74.
- Collingridge, G. L., & Bliss, T. V. P. (1987). NMDA receptors – their role in long term potentiation. Trends in Neuropharmacology, 10, 288–293.
- Collingridge, G. L., & Lester, R. A. (1989). Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacological Reviews, 41, 143–210.
- Cordova, F. M., Rodrigues, L. S., Giocomelli, M. B. O., Oliveira, C. S., Posser, T., Dunkley, P. R., & Leal, R. B. (2004). Lead stimulates ERK1/2 and p38MAPK phosphorylation in the hippocampus of immature rats. Brain Research, 998, 65–72.
- Cornell-Bell, A. H., Finkbeiner, S. M., Cooper, M. S., & Smith, S. J. (1990). Glutamate induces calcium waves in cultured astrocytes: Long-range glial signalling. Science, 247, 470–473.
- Cuajungco, M. P., & Lees, G. J. (1997). Zinc metabolism in the brain: Relevance to human neurodegenerative disorders. Neurobiology of Disease, 4, 137–169.
- Dai, S., Yin, Z., Yuan, G., Lu, H., Jia, R., Xu, J., et al. (2013). Quantification of metallothionein on the liver and kidney of rats by subchronic lead and cadmium in combination. *Environmental* Toxicology and Pharmacology, 36, 1207–1216.
- Davis, S., Vanhoutte, P., Pages, C., Caboche, J., & Laroche, S. (2000). The MAPK/ERK cascade targets both Elk-1 and cAMP response element-binding protein to control long-term potentiation-dependent gene expression in the dentate gyrus in vivo. The Journal of Neuroscience, 20 (12), 4563–4572.
- De Roo, M., Klauser, P., & Muller, D. (2008). LTP promotes a selective long-term stabilization and clustering of dendritic spines. PLoS Biology, 6, 1850–1860.
- Dietrich, K. N., Ware, J. H., Salganik, M., Radcliffe, J., Rogan, W. J., Rhoads, G. G., Fay, M. E., Davoli, C. T., Denckla, M. B., Bornschein, R. L., Schwarz, D., Dockery, D. W., Adubato, S., & Jones, R. L. (2004). Effect of chelation therapy on the neuropsychological and behavioral development of lead-exposed children after school entry. Pediatrics, 114, 19–26.
- Dignam, T., Kaufmann, R. B., LeStourgeon, L., & Brown, M. J. (2019). Control of lead sources in the united states, 1970-2017: Public health progress and current challenges to eliminating lead exposure. Journal of Public Health Management and Practice, 25(Suppl 1) Lead Poisoning Prevention, S13–S22.
- Downing, J. E., & Role, L. W. (1987). Activators of protein kinase C enhance acetylcholine receptor desensitization in sympathetic ganglion neurons. Proceedings of the National Academy of Sciences of the United States of America, 84, 7739–7743.
- Durand, G. M., Gregor, P., Zheng, Z., Bennett, M. V. L., Uhl, G. R., & Zukin, R. S. (1992). Cloning of an apparent splice variant of the rat N-methyl-d-aspartate receptor NMDAR1 with altered sensitivity to polyamines and activators of protein kinase C. Proceedings of the National Academy of Sciences of the United States of America, 89, 9359–9363.
- Ehlers, M. D. (2003). Activity level controls postsynaptic composition and signalling via the ubiquitin-proteasome system. Nature Neuroscience, 6, 231-242.
- El-Sawi, I., & El-Saied, M. (2013). Umbilical cord-blood lead levels and pregnancy outcome. Journal of Pharmacology and Toxicology, 8, 7.
- Erickson, J. C., Hollopeter, G., Thomas, S. A., Froelick, G. J., & Palmiter, R. D. (1997). Disruption of the metallothionein-III gene in mice: Analysis of brain zinc, behavior, and neuron vulnerability to metals, aging, and seizures. The Journal of Neuroscience, 17(4), 1271–1281.
- Ettinger, A. S., Egan, K. B., Homa, D. M., & Brown, M. J. (2020, January). Blood lead levels in U.S. women of childbearing age, 1976–2016. Environmental Health Perspectives, 128(1), 17012. <https://doi.org/10.1289/EHP5925>
- Evans, M. L., Busselberg, D., & Carpenter, D. O. (1991). Pb2+ blocks calcium currents of cultured dorsal root ganglion cells. Neuroscience Letters, 129, 103–106.
- Fenster, C. P., Beckman, M. L., Parker, J. C., Sheffield, E. B., Whitworth, T. L., Quick, M. W., & Lester, R. A. (1999). Regulation of alpha4beta2 nicotinic receptor desensitization by calcium and protein kinase C. Molecular Pharmacology, 55, 432–443.
- Finkelstein, Y., Markowitz, M. E., & Rosen, J. F. (1998). Low-level lead induced neurotoxicity in children: An update on central nervous system effects. Brain Research Reviews, 27, 168-176.
- Fischer, A., Sananbenesi, F., Wang, X., Dobbin, M., & Tsai, L. H. (2007). Recovery of learning and memory is associated with chromatin remodelling. Nature, 447(7141), 178-182.
- Frazzini, V., Rockabrand, E., Mocchegiani, E., & Sensiet, S. L. (2006). Oxidative stress and brain aging: Is zinc the link? Biogerontology, 7, 307–314.
- Fredrickson, C. J., & Moncrief, D. W. (1994). Zinc-containing neurons. Biological Signals, 3, 127–139.
- Furtado, J., & Mazurek, M. (1996). Behavioral characterization of quinolinate-induced lesions of the medial striatum: Relevance for Huntington's disease. Experimental Neurology, 138, 158–168.
- Gasparini, F., Lingenhöhl, K., Stoehr, N., Flor, P. J., Heinrich, M., Vranesic, I., Biollaz, M., Allgeier, H., Heckendorn, R., Urwyler, S., Varney, M. A., Johnson, E. C., Hess, S. D., Rao, S. P., Sacaan, A. I., Santori, E. M., Velicelebi, G., & Kuhn, R. (1999). 2-Methyl-6-(phenylethyl)-pyridine (MPEP), a potent, selective and systematically active mGluR5 receptor antagonist. Neuropharmacology, 38, 1493–1503.
- Gavazzo, P., Gazzoli, A., Mazzolini, M., & Marchetti, C. (2001). Lead inhibition of NMDA channels in native and recombinant receptors. Neuroreport, 12(14), 3121–3125.
- Gavazzo, P., Zanardi, I., Baranowska-Bosiacka, I., & Marchetti, C. (2008). Molecular determinants of Pb2+ interaction with NMDA receptor channels. Neurochemistry International, 52, 329–337.
- Genoux, D., Haditsch, U., Knobloch, M., Michalon, A., Storm, D., & Mansuy, I. M. (2002). Protein phosphatase 1 is a molecular constraint on learning and memory. Nature, 418(6901), 970–975.
- Genoux, D., Bezerra, P., & Montgomery, J. M. (2011). Intra-spaced stimulation and protein phosphatase 1 dictate the direction of synaptic plasticity. The European Journal of Neuroscience, 33(10), 1761–1770.
- Gilbert, M. E., & Lasley, S. M. (2002). Long-term consequences of developmental exposure to lead or polychlorinated biphenyls: Synaptic transmission and plasticity in the rodent CNS. *Environ*mental Toxicology and Pharmacology, 12, 105–117.
- Gilbert, M. E., & Lasley, S. M. (2007). Developmental lead (Pb) exposure reduces the ability of the NMDA antagonist MK-801 to suppress long-term potentiation (LTP) in the rat dentate gyrus, in vivo. Neurotoxicology and Teratology, 29(2007), 385–393.
- Gilbert, M. E., & Mack, C. M. (1990). The NMDA antagonist, MK-801, suppresses long-term potentiation, kindling, and kindling-induced potentiation in the perforant path of the unanesthetized rat. Brain Research, 519, 89–96.
- Gilbert, M., & Mack, C. (1998). Chronic lead exposure accelerates decay of long-term potentiation in rat dentate gyrus in vivo. Brain Research, 789, 139–149.
- Gilbert, M. E., Mack, C. M., & Lasley, S. M. (1996). Chronic developmental lead exposure increases the threshold for long-term potentiation in rat dentate gyrus in vivo. *Brain Research*, 736, 118–124.
- Gilbert, M. E., Mack, C. M., & Lasley, S. M. (1999a). The influence of developmental period of lead exposure on long-term potentiation in the rat dentate gyrus in vivo. Neurotoxicology, 20, 57–70.
- Gilbert, M. E., Mack, M. E., & Lasley, S. M. (1999b). Developmental lead exposure reduces the magnitude of long-term potentiation: A dose–response analysis. Neurotoxicology, 20, 71–82.
- Gillis, B. S., Arbieva, Z., & Gavin, I. M. (2012). Analysis of lead toxicity in human cells. BMC Genomics, 13, 344. <https://doi.org/10.1186/1471-2164-13-344>
- Goering, P. L. (1993). Lead–protein interactions as a basis for lead toxicity. Neurotoxicology, 14, 45–60.
- Gorkhali, R., Huang, K., Kirberger, M., & Yang, J. J. (2016, June 1). Defining potential roles of Pb $(2+)$ in neurotoxicity from a calciomics approach. *Metallomics*, $8(6)$, 563–578. [https://doi.org/](https://doi.org/10.1039/c6mt00038j) [10.1039/c6mt00038j](https://doi.org/10.1039/c6mt00038j)
- Goyer, R. A., & Clarkson, T. W. (2001). Toxic effects of metals. In C. D. Klaassen (Ed.), Casarett and Doull's toxicology: The basic science of poisons (6th ed., pp. 811–867). McGraw-Hill.
- Gräff, J., Koshibu, K., Jouvenceau, A., Dutar, P., & Mansuy, I. M. (2010). Protein phosphatase 1-dependent transcriptional programs for long-term memory and plasticity. Learning & Memory, 17(7), 355–363.
- Guilarte, T. R. (1997). Glutamatergic system and developmental lead neurotoxicity. Neurotoxicology, 18, 665–672.
- Guilarte, T. R., & McGlothan, J. L. (1998). Hippocampal NMDA receptor mRNA undergoes subunit specific changes during developmental lead exposure. Brain Research, 790, 98–107.
- Guilarte, T. R., & McGlothan, J. L. (2003). Selective decrease in NR1 subunit splice variant mRNA in the hippocampus of Pb2+-exposed rats: Implications for synaptic targeting and cell surface expression of NMDAR complexes. Brain Research. Molecular Brain Research, 113(1–2), 37–43.
- Guilarte, T. R., Miceli, R. C., & Jett, D. A. (1994, Fall). Neurochemical aspects of hippocampal and cortical Pb2+ neurotoxicity. Neurotoxicology, 15(3), 459–466.
- Guilarte, T. R., Miceli, R. C., & Jett, D. A. (1995). Biochemical evidence of an interaction of lead at the zinc allosteric sites of the NMDA receptor complex: Effects of neuronal development. Neurotoxicology, 16, 63–71.
- Guilarte, T. R., McGlothan, J. L., & Nihei, M. K. (2000). Hippocampal expression of N-methyl-daspartate receptor (NMDAR1) subunit splice variant mRNA is altered by developmental exposure to Pb2+. Molecular Brain Research, 76, 299–305.
- Guillemin, G. (2012). Quinolinic acid, the inescapable neurotoxin. FEBS Journal, 279, 1356–1365.
- Guillemin, G., Croitoru-Lamoury, J., Dormont, D., Armati, P., & Brew, B. (2003a). Quinolinic acid upregulates chemokine production and chemokine receptor expression in astrocytes. Glia, 41, 371–381.
- Guillemin, G., Smythe, G., Veas, L., Takikawa, O., & Brew, B. (2003b). A beta 1-42 induces production of quinolinic acid by human macrophages and microglia. Neuroreport, 14, 2311–2315.
- Guillemin, G., Kerr, S., & Brew, B. (2005a). Involvement of quinolinic acid in AIDS dementia complex. Neurotoxicology Research, 7, 103–123.
- Guillemin, G., Wang, L., & Brew, B. (2005b). Quinolinic acid selectively induces apoptosis of human astrocytes: Potential role in AIDS dementia complex. Journal of Neuroinflammation, 2, 16.
- Gutowski, M., Altmann, L., Sveinsson, K., & Wiegand, H. (1998). Synaptic plasticity in the CA1 and CA3 hippocampal region of pre- and postnatally lead-exposed rats. Toxicology Letters, 95, 195–203.
- Haege, S., Galetzka, D., Zechner, U., Haaf, T., Gamerdinger, M., Behl, C., Hiemke, C., & Schmitt, U. (2010). Spatial learning and expression patterns of PP1 mRNA in mouse hippocampus. Neuropsychobiology, 61(4), 188–196.
- Hansra, G., Bornancin, F., Whelan, R., Hemmings, B. A., & Parker, P. J. (1996). 12- O-Tetradecanoylphorbol-13-acetate-induced dephosphorylation of protein kinase Calpha correlates with the presence of a membrane associated protein phosphatase 2A heterotrimer. The Journal of Biological Chemistry, 271, 32785–32788.
- Hardingham, G. E., Fukunaga, Y., & Bading, H. (2002). Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nature Neuroscience, 5(5), 405–414.
- Hartmann, M., Heumann, R., & Lessmann, V. (2001). Synaptic secretion of BDNF after highfrequency stimulation of glutamatergic synapses. The EMBO Journal, 20, 5887–5897.
- Hashemzadeh-Gargari, H., & Guilarte, T. R. (1999). Divalent cations modulate N-Methyl-D-aspartate receptor function at the glycine site. The Journal of Pharmacology and Experimental Therapeutics, 290, 1356–1362.
- Hassel, B., & Dingledine, R. (2006). Glutamate. In G. J. Siegel, R. W. Albers, S. T. Brady, & D. L. Price (Eds.), Basic neurochemistry: Molecular, cellular and medical aspects (7th ed., pp. 267–290). Elsevier Academic Press.
- Havekes, R., Nijholt, I. M., Luiten, P. G., & Van der Zee, E. A. (2006). Differential involvement of hippocampal calcineurin during learning and reversal learning in a Y-maze task. Learning $\&$ Memory, 13(6), 753–759.
- Hidalgo, J., Aschner, M., Zatta, M., & Vašák, M. (2001). Roles of the metallothionein family of proteins in the central nervous system. Brain Research Bulletin, 5, 133-145.
- Hirata, K., Tsuji, N., & Miyamoto, K. (2005). Biosynthetic regulation of phytochelatins, heavy metal-binding peptides. Journal of Bioscience and Bioengineering, 100, 593–599.
- Ho, Y., Logue, E., Callaway, C. W., & DeFranco, D. B. (2007). Different mechanisms account for extracellular-signal regulated kinase activation in distinct brain regions following global ischemia and reperfusion. Neuroscience, 145(1), 248–255.
- Hoffmann, H., Gremme, T., Hatt, H., & Gottmann, K. (2000). Synaptic activity dependent developmental regulation of NMDA receptor subunit expression in cultured neocortical neurons. Journal of Neurochemistry, 75, 1590–1599.
- Holtzman, D., Olson, J. E., DeVries, C., & Bensch, K. (1987). Lead toxicity in primary cultured cerebral astrocytes and cerebellar granular neurones. Toxicology and Applied Pharmacology, 89, 211–225.
- Hozumi, I., Suzuki, J. S., Kanazawa, H., Hara, A., Saio, M., Inuzuka, T., et al. (2008). Metallothionein-3 is expressed in the brain and various peripheral organs of the rat. Neuroscience Letters, 438, 54–58.
- Huang, C. C., & Hsu, K. S. (2006). Sustained activation of metabotropic glutamate receptor 5 and protein tyrosine phosphatases mediate the expression of (S)- 3,5-dihydroxyphenylglycineinduced long-term depression in the hippocampal CA1 region. Journal of Neurochemistry, 96, 179–194.
- Ikebuchi, H., Teshima, R., Suzuki, K., Terao, T., & Yamane, Y. (1986, January 15). Simultaneous induction of Pb-metallothionein-like protein and Zn-thionein in the liver of rats given lead acetate. Biochemical Journal, 233(2), 541–546.
- Ishihara, K., Alkondon, M., Montes, J. G., & Albuquerque, E. X. (1995). Ontogenically related properties of N-methyl- D-aspartate receptors in rat hippocampal neurons and the age-specific sensitivity of developing neurons to lead. The Journal of Pharmacology and Experimental Therapeutics, 279, 1459–1470.
- Ivanov, A., Pellegrino, C., Rama, S., Dumalska, I., Salyha, Y., Ben-Ari, Y., & Medina, I. (2006). Opposing role of synaptic and extrasynaptic NMDA receptors in regulation of the extracellular signal-regulated kinases (ERK) activity in cultured rat hippocampal neurons. The Journal of Physiology, 572(Pt 3), 789–798.
- Izquierdo, I. (1993). Long-term potentiation and the mechanism of memory. Drug Development Research, 30, 1–17.
- Jiang, X., Tian, F., Mearow, K., Okagaki, P., Lipsky, R. H., & Marini, A. M. (2005). The excitoprotective effect of *Nmethyl*-d-aspartate receptors is mediated by a brain-derived neurotrophic factor autocrine loop in cultured hippocampal neurons. Journal of Neurochemistry, 94, 713–722.
- Jones, S., Franco, N., Varney, B., Sundaram, G., Brown, D., de Bie, J., Lim, C., Guillemin, G., & Brew, B. (2015). Expression of the kynurenine pathway in human peripheral blood mononuclear cells: Implications for inflammatory and neurodegenerative disease. PLoS One, 10, e0131389.
- Kandel, E. R. (2001). The molecular biology of memory storage: A dialogue between genes and synapses. Science, 294, 1030–1038.
- Kasten-Jolly, J., Heo, Y., & Lawrence, D. (2011). Central nervous system cytokine gene expression: Modulation by lead. Journal of Biochemical and Molecular Toxicology, 25, 41–54.
- Kawamura, Y., Manita, S., Nakamura, T., Inoue, M., Kudo, Y., & Miyakawa, H. (2004). Glutamate release increases during mossy-CA3 LTP but not during Schaffer-CA1 LTP. The European Journal of Neuroscience, 19, 1591–1600.
- Kelly, W., & Burke, R. (1996). Apoptotic neuron death in rat substantia nigra induced by striatal excitotoxic injury is developmentally dependent. Neuroscience Letters, 220, 85–88.
- Kerr, S., Armati, P., Guillemin, G., & Brew, B. (1998). Chronic exposure of human neurons to quinolinic acid results in neuronal changes consistent with AIDS dementia complex. AIDS, 12, 355–363.
- Kim, K. A., Chakraborti, T., Golstein, G., Johnston, M., & Bressler, J. (2002). Exposure to lead elevates induction of zif268 and ARC mRNA in rats after electroconvulsive shock: The involvement of protein kinase C. Journal of Neuroscience Research, 69, 268–277.
- Knobloch, M., Farinelli, M., Konietzko, U., Nitsch, R. M., & Mansuy, I. M. (2007). Aβ oligomermediated long-term potentiation impairment involves protein phosphatase 1-dependent mechanisms. The Journal of Neuroscience, 27, 7648–7653.
- Kobayashi, T., & Mori, Y. (1998). Ca2+ channel antagonists and neuroprotection from cerebral ischemia. European Journal of Pharmacology, 363, 1–15.
- Kober, T. E., & Cooper, G. P. (1976). Lead competitively inhibits calcium-dependent synaptic transmission in the bullfrog sympathetic ganglion. Nature, 262, 704–705.
- Koshibu, K., Graff, J., Beullens, M., Heitz, F. D., Berchtold, D., Russig, H., ... Mansuy, I. M. (2009). Protein phosphatase 1 regulates the histone code for long-term memory. *Journal of* Neuroscience, 29(41), 13079–13089. <https://doi.org/10.1523/jneurosci.3610-09.2009>
- Koshibu, K., Gräff, J., & Mansuy, I. M. (2011). Nuclear protein phosphatase-1: An epigenetic regulator of fear memory and amygdala long-term potentiation. Neuroscience, 173, 30–36.
- Krupp, J. J., Vissel, B., Thomas, C. G., Heinemann, S. F., & Westbrook, G. L. (2002). Calcineurin acts via the C-terminus of NR2A to modulate desensitization of NMDA receptors. Neuropharmacology, 42(5), 593–602.
- Kuhlmann, A. C., McGlothan, J. L., & Guilarte, T. R. (1997). Developmental lead exposure causes spatial learning deficits in adult rats. Neuroscience Letters, 233, 101–104.
- Kumawat, K., Kaushik, D., Goswami, P., & Basu, A. (2014). Acute exposure to lead acetate activates microglia and induces subsequent bystander neuronal death via caspase-3 activation. Neurotoxicology, 41, 143–153.
- Lasley, S. M., & Gilbert, M. E. (1996). Presynaptic glutamatergic function in dentate gyrus in vivo is diminished by chronic exposure to inorganic lead. Brain Research, 736, 125–134.
- Lasley, S. M., & Gilbert, M. E. (1999). Lead inhibits the rat N-methyl-d-aspartate receptor channel by binding to a site distinct from the zinc allosteric site. Toxicology and Applied Pharmacology, 159(3), 224–233.
- Lasley, S. M., & Gilbert, M. E. (2002). Rat hippocampal glutamate and GABA release exhibit biphasic effects as a function of chronic lead exposure level. Toxicological Sciences, 66(1), 139–147.
- Lasley, S. M., Green, M. C., & Gilbert, M. E. (2001). Rat hippocampal NMDA receptor binding as a function of chronic lead exposure level. Neurotoxicology and Teratology, 23, 185–189.
- Lau, W. K., Yeung, C. W., Lui, P. W., Cheung, L. H., Poon, N. T., & Yung, K. K. (2002). Different trends in modulation of NMDAR1 and NMDAR2B gene expression in cultured cortical and hippocampal neurons after lead exposure. Brain Research, 932(1-2), 10–24.
- Laurie, D. J., & Seeburg, P. H. (1994). Regional and developmental heterogeneity in splicing of the rat brain NMDAR1 mRNA. The Journal of Neuroscience, 14, 3180–3194.
- Lee, Y. S., & Silva, A. J. (2009). The molecular and cellular biology of enhanced cognition. Nature Reviews. Neuroscience, 10, 126–140.
- Lee, H. K., Kameyama, K., Huganir, R. L., & Bear, M. F. (1998). NMDA induces long-term synaptic depression and dephosphorylation of the GluR1 subunit of AMPA receptors in hippocampus. Neuron, 21, 1067–1078.
- Lee, H. K., Barbarosie, M., Kameyama, K., Bear, M. F., & Huganir, R. L. (2000). Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature, 405, 955–959.
- Lee, M., Ting, K., Adams, S., Brew, B., Chung, R., & Guillemin, G. (2010). Characterisation of the expression of NMDA receptors in human astrocytes. *PLoS One*, 30(5), e14123.
- Levitan, I. B. (1999). Modulation of ion channels by protein phosphorylation. How the brain works. Advances in Second Messenger and Phosphoprotein Research, 33, 3–22.
- Lieberman, D. N., & Mody, I. (1994). Regulation of NMDA channel function by endogenous Ca2+-dependent phosphatase. Nature, 369, 235–239.
- Lim, C., Bilgin, A., Lovejoy, D., Tan, V., Bustamante, S., Taylor, B., Bessede, A., Brew, B., & Guillemin, G. (2017a). Kynurenine pathway metabolomics predicts and provides mechanistic insight into multiple sclerosis progression. Scientific Reports, 7, 41473.
- Lim, C., Fernández-Gomez, F., Braidy, N., Estrada, C., Costa, C., Costa, S., Bessede, A., Fernandez-Villalba, E., Zinger, A., Herrero, M., & Guillemin, G. (2017b). Involvement of the kynurenine pathway in the pathogenesis of Parkinson's disease. Progress in Neurobiology, 155, 76–95.
- Lindhal, L. S., Bird, L., Legare, M. E., Mikeska, G., Bratton, G. R., & Tiffany-Castiglioni, E. (1999). differential ability of astroglia and neuronal cells to accumulate lead: Dependence on cell type and on degree of differentiation. Toxicological Sciences, 50, 236–243.
- Lindlbauer, R., Mohrmann, R., Hatt, H., & Gottmann, K. (1998). Regulation of kinetic and pharmacological properties of synaptic NMDA receptors depends on presynaptic exocytosis in rat hippocampal neurones. The Journal of Physiology, 508(Pt. 2), 495–502.
- Liu, L., Wong, T. P., Pozza, M. F., Lingenhoehl, K., Wang, Y., Sheng, M., Auberson, Y. P., & Wang, Y. T. (2004). Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science, 304(5673), 1021-1024.
- Liu, F., Grundke-Iqbal, I., Iqbal, K., & Gong, C. X. (2005). Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. The European Journal of Neuroscience, 22(8), 1942–1950.
- Liu, M., Liu, X., Wang, W., Shen, X., Che, H., Guo, Y., Zhao, M., Chen, J., & Luo, W. (2012). Involvement of microglia activation in the lead induced long term potentiation impairment. PLoS One, 7, e43924.
- Liu, J., Chen, B., Zhang, J., Kuang, F., & Chen, L. (2015). Lead exposure induced microgliosis and astrogliosis in hippocampus of young mice potentially by triggering TLR4-MyD88-NFκB signalling cascades. Toxicology Letters, 239, 97-107.
- Loikkanen, J., Naarala, J., Vahakangas, K. H., & Savolainen, K. H. (2003). Glutamate increases toxicity of inorganic lead in GT1-7 neurons: Partial protection induced by flunarizine. Archives of Toxicology, 77, 663–671.
- Lovelace, M., Varney, B., Sundaram, G., Lennon, M., Lim, C., Jacobs, K., Guillemin, G., & Brew, B. (2017). Recent evidence for an expanded role of the kynurenine pathway of tryptophan metabolism in neurological diseases. Neuropharmacology, 112, 373–388.
- Ma, O. K., & Sucher, N. J. (2004). Molecular interaction of NMDA receptor subunit NR3A with protein phosphatase 2A. Neuroreport, 15(9), 1447–1450.
- Ma, L., Zablow, L., Kandel, E. R., & Siegelbaum, S. A. (1999). Cyclic AMP induces functional presynaptic boutons in hippocampal CA3-CA1 neuronal cultures. Nature Neuroscience, 2, 24–30.
- Madison, D. V., Malenka, R. C., & Nicoll, R. A. (1991). Mechanisms underlying long-term potentiation of synaptic transmission. Annual Review of Neuroscience, 14, 379–397.
- Malenka, R. C., & Nicoll, R. A. (1993). NMDA-receptor-dependent synaptic plasticity: Multiple forms and mechanisms. Trends in Neurosciences, 16, 521–527.
- Malenka, R. C., & Nicoll, R. A. (1999). Long-term potentiation – a decade of progress? Science, 285, 1870–1874.
- Malinow, R., & Malenka, R. C. (2002). AMPA receptor trafficking and synaptic plasticity. Annual Review of Neuroscience, 25, 103–126.
- Manahan-Vaughan, D., & Braunewell, K. H. (2005). The metabotropic glutamate receptor, mGluR5, is a key determinant of good and bad spatial learning performance and hippocampal synaptic plasticity. Cerebral Cortex, 15, 1703-1713.
- Manahan-Vaughan, D., Ngomba, R. T., Storto, M., Kulla, A., Catania, M. V., Chiechio, S., Rampello, L., Passarelli, F., Capece, A., Reymann, K. G., & Nicoletti, F. (2003). An increased expression of the mGlu5 receptor protein following LTP induction at the perforant path-dentate gyrus synapse in freely moving rats. Neuropharmacology, 44, 17–25.
- Mansuy, I. M., & Shenolikar, S. (2006). Protein serine/threonine phosphatases in neuronal plasticity and disorders of learning and memory. Trends in Neurosciences, 29(12), 679–686.
- Marchetti, C. (2003). Molecular targets of lead in brain neurotoxicity. Neurotoxicity Research, 5(3), 221–236.
- Margottil, E., & Domenici, L. (2003). NR2A but not NR2B n-methyl-d-aspartate receptor subunit is altered in the visual cortex of BDNF-knock-out mice. Cellular and Molecular Neurobiology, 23, 165–174.
- Martin, K. C., Casadio, A., Zhu, H., Yaping, E., Rose, J. C., Chen, M., Bailey, C. H., & Kandel, E. R. (1997). Synapse-specific, long-term facilitation of Aplysia sensory to motor synapses: A function for local protein synthesis in memory storage. Cell, 91, 927–938.
- Mason, L. H., Harp, J. P., & Han, D. Y. (2014). Pb neurotoxicity: Neuropsychological effects of lead toxicity. BioMed Research International, 2014, 840547. <https://doi.org/10.1155/2014/840547>
- Massicotte, G., & Baudry, M. (1991). Triggers and substrates of hippocampal synaptic plasticity. Neuroscience and Biobehavioral Reviews, 15, 415–423.
- Masters, B. A., Quaife, C. J., Erickson, J. C., Kelly, E. J., Froelick, G. J., Zambrowicz, B. P., Brinster, R. L., & Palmiter, R. D. (1994). Metallothionein-III is expressed in neurons that sequester zinc in synaptic vesicles. The Journal of Neuroscience, 14, 5844-5857.
- Mattiasson, B., Danielsson, B., Hermansson, C., & Mosbach, K. (1978). Enzyme thermistor analysis of heavy metal ions with use of immobilized urease. FEBS Letters, 85, 203–206.
- Mauna, J. C., Miyamae, T., Pulli, B., & Thiels, E. (2010). Protein phosphatases 1 and 2A are both required for long-term depression and associated dephosphorylation of cAMP response element binding protein in hippocampal area CA1 in vivo. Hippocampus, 21(10), 1093-1104.
- Mayadevi, M., Praseeda, M., Kumar, K. S., & Omkumar, R. V. (2002). Sequence determinants on the NR2A and NR2B subunits of NMDA receptor responsible for specificity of phosphorylation by CaMKII. Biochimica et Biophysica Acta, 1598, 40–45.
- McNamara, R. K., & Skelton, R. W. (1993). The neuropharmacological and neurochemical basis of place learning in the Morris water maze. Brain Research. Brain Research Reviews, 18, 33–49.
- McNaughton, B. L. (1993). The mechanism of expression of long-term enhancement of hippocampal synapses: Current issues and theoretical implications. Annual Review of Physiology, 55, 375–396.
- Mike, A., Pereira, E. F., & Albuquerque, E. X. (2000). Ca(2+)-sensitive inhibition by Pb(2+) of alpha7-containing nicotinic acetylcholine receptors in hippocampal neurons. Brain Research, 873(1), 112–123.
- Miles, A. T., Hawksworth, G. M., Beattie, J. H., & Rodilla, V. (2000). Induction, regulation, degradation, and biological significance of mammalian metallothioneins. Critical Reviews in Biochemistry and Molecular Biology, 35, 35–70.
- Miller, C. A., Campbell, S. L., & Sweatt, J. D. (2008). DNA methylation and histone acetylation work in concert to regulate memory formation and synaptic plasticity. Neurobiology of Learning and Memory, 89(4), 599–603.
- Millward, T. A., Zolnierowicz, S., & Hemmings, B. A. (1999). Regulation of protein kinase cascades by protein phosphatase 2A. Trends in Biochemical Sciences, 24, 186–191.
- Minnema, D. J., Michaelson, I. A., & Cooper, G. P. (1988). Calcium efflux and neurotransmitter release from rat hippocampal synaptosomes exposed to lead. Toxicology and Applied Pharmacology, 92, 351–357.
- Misztal, M., Frankiewicz, T., Parsons, G., & Danysz, W. (1996a). Learning deficits induced by chronic intraventricular infusion of quinolinic acid–protection by MK-801 and memantine. European Journal of Pharmacology, 296, 1–8.
- Misztal, M., Skangiel-Kramska, J., Niewiadomska, G., & Danysz, W. (1996b). Subchronic intraventricular infusion of quinolinic acid produces working memory impairment – A model of progressive excitotoxicity. Neuropharmacology, 35, 449–458.
- Mizuno, M., Yamada, K., Maekawa, N., Saito, K., Seishima, M., & Nabeshima, T. (2002). CREB phosphorylation as a molecular marker of memory processing in the hippocampus for spatial learning. Behavioural Brain Research, 133, 135–141.
- Monaghan, D. T., Holets, V. R., Toy, D. W., & Cotman, C. W. (1983). Anatomical distributions of four pharmacologically distinct 3H-l-glutamate binding sites. Nature, 306, 176–179.
- Monyer, H., Sprengel, R., Schoepfer, R., Herb, A., Higuchi, M., Lomeli, H., Burnashev, N., Sakmann, B., & Seeburg, P. H. (1992). Heteromeric NMDA receptors: Molecular and functional distinction of subtypes. Science, 256, 1217–1221.
- Monyer, H., Burnashev, N., Laurie, D. J., Sakmann, B., & Seeburg, P. H. (1994). Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron, 12, 529–540.
- Moody, W. J. (1998). Control of spontaneous activity during development. Journal of Neurobiology, 37, 97–109.
- Moriyoshi, K., Masu, M., Ishii, T., Shigemoto, R., Mizuno, N., & Nakanishi, S. (1991). Molecular cloning and characterization of the rat NMDA receptor. Nature, 354, 31–37.
- Morris, R. G., Garrud, P., Rawlins, J. N., & O'Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297, 681-683.
- Morris, R. G., Anderson, E., Lynch, G. S., & Baudry, M. (1986). Selective impairment of learning and blockade of long-term potentiation by an N-methyl-Daspartate receptor antagonist, AP5. Nature, 319, 774–776.
- Moss, S. J., McDonald, B. J., Rudhard, Y., & Schoepfer, R. (1996). Phosphorylation of the predicted major intracellular domains of the rat and the chick neuronal nicotinic acetylcholine receptor 7 subunit by cAMP-dependent protein kinase. Neuropharmacology, 35, 1023–1028.
- Mulkey, R. M., Herron, C. E., & Malenka, R. C. (1993). An essential role for protein phosphatases in hippocampal long-term depression. Science, 261, 1051–1055.
- Mulkey, R. M., Endo, S., Shenolikar, S., & Malenka, R. C. (1994). Involvement of a calcineurin/ inhibitor-1 phosphatase cascade in hippocampal long term depression. Nature, 369, 486–488.
- Muller, F., Song, W., Jang, Y., Liu, Y., Sabia, M., Richardson, A., & Van Remmen, H. (2007). Denervation-induced skeletal muscle atrophy is associated with increased mitochondrial ROS production. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 293, R1159–R1168.
- Naie, K., & Manahan-Vaughan, D. (2004). Regulation by metabotropic glutamate receptor 5 of LTP in the dentate gyrus of freely moving rats: Relevance for learning and memory formation. Cerebral Cortex, 14, 189–198.
- Nakao, K., Kibayashi, K., Taki, T., & Koyama, H. (2010). Changes in the brain after intracerebral implantation of a lead pellet in the rat. Journal of Neurotrauma, 27, 1925-1934. [https://doi.org/](https://doi.org/10.1089/neu.2010.1379) [10.1089/neu.2010.1379](https://doi.org/10.1089/neu.2010.1379)
- Nascimento, C. R. B., Risso, W. E., & Bueno dos Reis Martinez, C. (2016). Lead accumulation and metallothionein content in female rats of different ages and generations after daily intake of Pb-contaminated food. Environmental Toxicology and Pharmacology, 48, 272–277.
- National Institute for Occupational Safety and Health. (2015). Adult blood lead epidemiology and surveillance. Reference blood lead level for adults. [https://www.cdc.gov/niosh/topics/ables/](https://www.cdc.gov/niosh/topics/ables/description.html) [description.html.](https://www.cdc.gov/niosh/topics/ables/description.html) Accessed 1 Nov 2020.
- Neal, A. P., & Guilarte, T. R. (2010). Molecular neurobiology of lead (Pb2+): Effects on synaptic function. Molecular Neurobiology, 42(3), 151–160.
- Neal, A. P., Stansfield, K. H., Worley, P. F., Thompson, R. E., & Guilarte, T. R. (2010). Lead exposure during synaptogenesis alters vesicular proteins and impairs vesicular release: Potential role of NMDA receptor-dependent BDNF signalling. Toxicological Sciences, 116(1), 249–263.
- Neal, A. P., Worley, P. F., & Guilarte, T. R. (2011). Lead exposure during synaptogenesis alters NMDA receptor targeting via NMDA receptor inhibition. Neurotoxicology, 32, 281–289.
- Neyman, S., & Manahan-Vaughan, D. (2008). Metabotropic glutamate receptor 1 (mGluR1) and 5 (mGluR5) regulate late phases of LTP and LTD in the hippocampal CA1 region in vitro. The European Journal of Neuroscience, 27, 1345–1352.
- Nihei, M. K., & Guilarte, T. R. (1999). NMDAR-2A subunit protein expression is reduced in the hippocampus of rats exposed to Pb2+ during development. *Molecular Brain Research*, 66, 42–49.
- Nihei, M. K., & Guilarte, T. R. (2001). Molecular changes in glutamatergic synapses induced by Pb2+: Association with deficits of LTP and spatial learning. Neurotoxicology, 22, 635–643.
- Nihei, M. K., Desmond, N. L., McGlothan, J. L., Kuhlmann, A. C., & Guilarte, R. T. (2000). N-methyl-D-aspartate receptor subunit changes are associated with lead-induced deficits of long-term potentiation and spatial learning. Neuroscience, 99, 233–242.
- Nihei, M. K., McGlothan, J. L., Toscano, C. D., & Guilarte, T. R. (2001). Low level Pb2 + exposure affects hippocampal protein kinase C gamma gene and protein expression in rats. Neuroscience Letters, 298, 212–216.
- Niswender, C. M., & Conn, P. J. (2010). Metabotropic glutamate receptors: Physiology, pharmacology, and disease. Annual Review of Pharmacology and Toxicology, 50, 295–322. [https://doi.](https://doi.org/10.1146/annurev.pharmtox.011008.145533) [org/10.1146/annurev.pharmtox.011008.145533](https://doi.org/10.1146/annurev.pharmtox.011008.145533)
- Norman, E. D., Thiels, E., Barrionuevo, G., & Klann, E. (2000). Long-term depression in the hippocampus in vivo is associated with protein phosphatase-dependent alterations in extracellular signal-regulated kinase. Journal of Neurochemistry, 74(1), 192–198.
- Oberbeck, D. L., McCormack, S., & Houpt, T. A. (2010). Intra-amygdalar okadaic acid enhances conditioned taste aversion learning and CREB phosphorylation in rats. Brain Research, 1348, 84–94.
- O'Connor, D., Hou, D., Ye, J., Zhang, Y., Ok, Y. S., Song, Y., Coulon, F., Peng, T., & Tian, L. (2018, December). Lead-based paint remains a major public health concern: A critical review of global production, trade, use, exposure, health risk, and implications. Environment International, 121(Pt 1), 85–101. <https://doi.org/10.1016/j.envint.2018.08.052>
- Omelchenko, I. A., Nelson, C. S., Marino, J. L., & Allen, C. N. (1996). The sensitivity of N-methyl-D-aspartate receptors to lead inhibition is dependent on the receptor subunit composition. The Journal of Pharmacology and Experimental Therapeutics, 278(1), 15–20.
- Omelchenko, I., Nelson, C., & Allen, C. (1997). Lead inhibition of N-methyl-D-aspartate receptors containing NR2A, NR2C and NR2D subunits. The Journal of Pharmacology and Experimental Therapeutics, 282, 1458–1464.
- Ordemann, J. M., & Austin, R. N. (2016, June 1). Lead neurotoxicity: Exploring the potential impact of lead substitution in zinc-finger proteins on mental health. Metallomics, 8(6), 579–588. <https://doi.org/10.1039/c5mt00300h>
- Otmakhov, N., Tao-Cheng, J. H., Carpenter, S., Asrican, B., Dosemeci, A., Reese, T. S., & Lisman, J. (2004). Persistent accumulation of calcium/calmodulin-dependent protein kinase II in dendritic spines after induction of NMDA receptor-dependent chemical long-term potentiation. The Journal of Neuroscience, 24(42), 9324–9331.
- Ozawa, S., Kamiya, H., & Tsuzuki, K. (1998). Glutamate receptors in the mammalian central nervous system. Progress in Neurobiology, 54, 581–618.
- Palmiter, R. D. (1994). Regulation of metallothionein genes by heavy metals appears to be mediated by a zinc-sensitive inhibitor that interacts with a constitutively active transcription factor. MTF-1. Proceedings of the National Academy of Sciences of the United States of America, 91, 1219–1223.
- Palmiter, R. D. (1995). Constitutive expression of metallothionein-lIl (MT-III), but not MT-I, inhibits growth when cells become zinc deficient. Toxicology and Applied Pharmacology, 135, 139–146.
- Palmiter, R. D., & Erickson, J. C. (1996). Properties olmetallothionein-IlI (MT-Ill). Toxicologist, 30, 43. (abstr.).
- Palmiter, R. D., Findley, S. D., Whitmore, T. E., & Durnam, D. M. (1992). MT-Ill, a brain-specific member of the metallothionein family. Proceedings of the National Academy of Sciences of the United States of America, 89, 6333–6337.
- Paoletti, P., Perin-Dureau, F., Fayyazuddin, A., Le Goff, A., Callebaut, I., & Neyton, J. (2000). Molecular organization of a zinc binding n-terminal modulatory domain in a NMDA receptor subunit. Neuron, 28(3), 911–925.
- Paulson, J. A., & Brown, M. J. (2019, February 28). The CDC blood lead reference value for children: Time for a change. *Environmental Health*, 18(1), 16. [https://doi.org/10.1186/s12940-](https://doi.org/10.1186/s12940-019-0457-7) [019-0457-7](https://doi.org/10.1186/s12940-019-0457-7)
- Peng, S., Hajela, R. K., & Atchison, W. D. (2002). Characteristics of block by Pb2+ of function of human neuronal L-, N-, and R-type Ca2+ channels transiently expressed in human embryonic kidney 293 cells. Molecular Pharmacology, 62, 1418–1430.
- Perez-Otano, I., & Ehlers, M. (2004). Learning from NMDA receptor trafficking: Clues to the development and maturation of glutamatergic synapses. Neurosignals, 13, 175–189.
- Pérez-Zúñiga, C., Leiva-Presa, À., Austin, R. N., Capdevila, M., & Palacios, Ò. (2018, December 5). Pb(ii) binding to the brain specific mammalian metallothionein isoform MT3 and its isolated αMT3 and βMT3 domains. Metallomics. <https://doi.org/10.1039/c8mt00294k>
- Peterson, S. M., Zhang, J., Weber, G., & Freeman, J. L. (2011). Global gene expression analysis reveals dynamic and developmental stage-dependent enrichment of lead-induced neurological gene alterations. Environmental Health Perspectives, 119(5), 615–621. [https://doi.org/10.1289/](https://doi.org/10.1289/ehp.1002590) [ehp.1002590](https://doi.org/10.1289/ehp.1002590)
- Pierozan, P., Zamoner, A., Krombauer Soska, Â., Bristot Silvestrin, R., Oliveira Loureiro, S., Heimfarth, L., Mello e Souza, T., Wajner, M., & Pessoa-Pureur, R. (2010). Acute intrastriatal administration of quinolinic acid provokes hyperphosphorylation of cytoskeletal intermediate filament proteins in astrocytes and neurons of rats. Experimental Neurology, 224, 188–196.
- Pierozan, P., Zamoner, A., Soska, Â., de Lima, B., Reis, K., Zamboni, F., Wajner, M., & Pessoa-Pureur, R. (2012). Signalling mechanisms downstream of quinolinic acid targeting the cytoskeleton of rat striatal neurons and astrocytes. *Experimental Neurology*, 233, 391–399.
- Pláteník, J., Stopka, P., Vejrazka, M., & Stípek, S. (2001). Quinolinic acid-iron(ii) complexes: Slow autoxidation, but enhanced hydroxyl radical production in the Fenton reaction. Free Radical Research, 34, 445–459.
- Pomilio, C., Pavia, P., Gorojod, R. M., Vinuesa, A., Alaimo, A., Galvan, V., Kotler, M., Beauquis, J., & Saravia, F. (2016). Glial alterations from early to late stages in a model of Alzheimer's disease: Evidence of autophagy involvement in Aβ internalization. Hippocampus, 26, 194–210.
- Pozzo-Miller, L. D., Gottschalk, W., Zhang, L., McDermott, K., Du, J., Gopalakrishnan, R., Oho, C., Sheng, Z. H., & Lu, B. (1999). Impairments in high-frequency transmission, synaptic vesicle docking, and synaptic protein distribution in the hippocampus of BDNF knockout mice. The Journal of Neuroscience, 19, 4972–4983.
- Prybylowski, K., & Wenthold, R. J. (2004). N-methyl-d-aspartate receptors: Subunit assembly and trafficking to the synapse. The Journal of Biological Chemistry, 279, 9673–9676.
- Rachline, J., Perin-Dureau, F., Le Goff, A., Neyton, J., & Paoletti, P. (2005). The micromolar zincbinding domain on the NMDA receptor subunit NR2B. The Journal of Neuroscience, 25(2), 308–317.
- Rahman, A., Ting, K., Cullen, K., Braidy, N., Brew, B., & Guillemin, G. (2009). The excitotoxin quinolinic acid induces tau phosphorylation in human neurons. PLoS One, 4, e6344.
- Rahman, A., Brew, B. J., & Guillemin, G. J. (2011, February). Lead dysregulates serine/threonine protein phosphatases in human neurons. Neurochemical Research, 36(2), 195–204. [https://doi.](https://doi.org/10.1007/s11064-010-0300-6) [org/10.1007/s11064-010-0300-6](https://doi.org/10.1007/s11064-010-0300-6)
- Rahman, A., Khan, K., Al-Khaledi, G., Khan, I., & Attur, S. (2012a). Early postnatal lead exposure induces tau phosphorylation in the brain of young rats. Acta Biologica Hungarica, 63, 411–425.
- Rahman, A., Khan, K. M., Al-Khaledi, G., Khan, I., & Al-Shemary, T. (2012b). Over activation of hippocampal serine/threonine protein phosphatases PP1 and PP2A is involved in lead-induced deficits in learning and memory in young rats. Neurotoxicology, 33, 370–383.
- Rahman, A., Khan, K. M., & Rao, M. S. (2018a). Exposure to low level of lead during preweaning period increases metallothionein-3 expression and dysregulates divalent cation levels in the brain of young rats. Neurotoxicology, 65, 135-143.
- Rahman, A., Rao, M. S., & Khan, K. M. (2018b, September 14). Intraventricular infusion of quinolinic acid impairs spatial learning and memory in young rats: A novel mechanism of leadinduced neurotoxicity. Journal of Neuroinflammation, 15(1), 263. [https://doi.org/10.1186/](https://doi.org/10.1186/s12974-018-1306-2) [s12974-018-1306-2](https://doi.org/10.1186/s12974-018-1306-2)
- Rahman, A., Al-Qenaie, S., Rao, M. S., Khan, K. M., & Guillemin, G. J. (2019, June 17). Memantine is protective against cytotoxicity caused by lead and quinolinic acid in cultured rat embryonic hippocampal cells. Chemical Research in Toxicology, 32(6), 1134–1143. [https://](https://doi.org/10.1021/acs.chemrestox.8b00421) doi.org/10.1021/acs.chemrestox.8b00421
- Rajanna, B., Rajanna, S., Hall, E., & Yallapragada, P. R. (1997). In vitro metal inhibition of N-methyl-D-aspartate specific glutamate receptor binding in neonatal and adult rat brain. Drug and Chemical Toxicology, 20(1–2), 21–29.
- Raymond, L. A., Tingley, W. G., Blackstone, C. D., Roche, K. W., & Huganir, R. L. (1994). Glutamate receptor modulation by protein phosphorylation. The Journal of Physiology, 88, 181-192.
- Reddy, G. R., Devi, B. C., & Chetty, C. S. (2007). Developmental lead neurotoxicity: Alterations in brain cholinergic system. Neurotoxicology, 28(2), 402–407.
- Ricciarelli, R., & Azzi, A. (1998). Regulation of recombinant PKC alpha activity by protein phosphatase 1 and protein phosphatase 2A. Archives of Biochemistry and Biophysics, 355, 197–200.
- Roberson, E. D., English, J. D., & Sweatt, J. D. (1996). A biochemist's view of long-term potentiation. Learning & Memory, 3(1), 1-24.
- Robinson, G. B., & Reed, G. D. (1992). Effect of MK-801 on the induction and subsequent decay of long-term potentiation in the unanesthetized rabbit hippocampal dentate gyrus. Brain Research, 569, 78–85.
- Roche, K. W., Tingley, W. G., & Huganir, R. L. (1994). Glutamate receptor phosphorylation and synaptic plasticity. Current Opinion in Neurobiology, 4, 383-388.
- Rogan, W. J., Dietrich, K. N., Ware, J. H., Dockery, D. W., Salganik, M., Radcliffe, J., Jones, R. L., Ragan, N. B., Chisolm, J. J., & Rhoads, G. G. (2001). The effect of chelation therapy with succimer on neuropsychological development in children exposed to lead. The New England Journal of Medicine, 344, 1421–1426.
- Sanders, T., Liu, Y., Buchner, V., & Tchounwou, P. B. (2009). Neurotoxic effects and biomarkers of lead exposure: A review. Reviews on Environmental Health, 24(1), 15-45. [https://doi.org/10.](https://doi.org/10.1515/reveh.2009.24.1.15) [1515/reveh.2009.24.1.15](https://doi.org/10.1515/reveh.2009.24.1.15)
- Sansar, W., Ahboucha, S., & Gamrani, H. (2011). Chronic lead intoxication affects glial and neural systems and induces hypoactivity in adult rat. Acta Histochemica, 113, 601–607.
- Santa Maria, M. P., Hill, B. D., & Kline, J. (2019, July–September). Lead (Pb) neurotoxicology and cognition. Applied Neuropsychology: Child, 8(3), 272–293. [https://doi.org/10.1080/21622965.](https://doi.org/10.1080/21622965.2018.1428803) [2018.1428803](https://doi.org/10.1080/21622965.2018.1428803)
- Santamaría, A., Galván-Arzate, S., Lisý, V., Ali, S., Duhart, H., Osorio-Rico, L., Ríos, C., & Sut'astný, F. (2001). Quinolinic acid induces oxidative stress in rat brain synaptosomes. Neuroreport, 12, 871–874.
- Savolainen, K. M., Loikkanen, J., Eerikainen, S., & Naarala, J. (1998a). Glutamate-stimulated ROS production in neuronal cultures: Interactions with lead and the cholinergic system. Neurotoxicology, 19, 669–674.
- Savolainen, K. M., Loikkanen, J., Eerikainen, S., & Naarala, J. (1998b). Interactions of excitatory neurotransmitters and xenobiotics inexcitotoxicity and oxidative stress: Glutamate and lead. Toxicology Letters, 102–103, 363–367.
- Scheetz, A. J., & Constantine-Paton, M. (1994). Modulation of NMDA receptor function: Implications for vertebrate neural development. The FASEB Journal, 8, 745–752.
- Schultz, S., Siemer, H., Krug, M., & Hollt, V. (1999). Direct evidence for biphasic cAMP responsive element-binding protein phosphorylation during long-term potentiation in the rat dentate gyrus in vivo. The Journal of Neuroscience, 19, 5683-5692.
- Seguela, P., Wadiche, J., Dineley-Miller, K., Dani, J. A., & Patrick, J. W. (1993). Molecular cloning, functional properties and distribution of rat brain alpha 7: A nicotinic cation channel highly permeable to calcium. The Journal of Neuroscience, 13, 596–604.
- Sharifi, A. M., Baniasadi, S., Jorjani, M., Rahimi, F., & Bakhshayesh, M. (2002). Investigation of acute lead poisoning on apoptosis in rat hippocampus in vivo. Neuroscience Letters, 329, 45–48.
- Sharma, S. K., Goloubinoff, P., & Christen, P. (2008). Heavy metal ions are potent inhibitors of protein folding. Biochemical and Biophysical Research Communications, 372, 341–345.
- Shields, S. M., Ingebritsen, T. S., & Kelly, P. T. (1985). Identification of protein phosphatase 1 in synaptic junctions: Dephosphorylation of endogenous calmodulin-dependent kinase II and synapse-enriched phosphoproteins. The Journal of Neuroscience, 5(12), 3414–3422.
- Shimizu, E., Tang, Y. P., Rampon, C., & Tsien, J. Z. (2000). NMDA receptor-dependent synaptic reinforcement as a process for memory consolidation. Science, 290, 1170–1174.
- Silbergeld, E. K. (1992). Mechanisms of lead neurotoxicity, or looking beyond the lamppost. The FASEB Journal, 6(13), 3201–3206.
- Silverstein, A. M., Barrow, C. A., Davis, A. J., & Mumby, M. C. (2002). Actions of PP2A on the MAP kinase pathway and apoptosis are mediated by distinct regulatory subunits. Proceedings of the National Academy of Sciences of the United States of America, 99(7), 4221–4226.
- Simons, T. J. B., & Pocock, G. (1987). Lead enters bovine adrenal medullary cells through calcium channels. Journal of Neurochemistry, 48, 383–389.
- Small, D. L., Murray, C. L., Mealing, G. A., Poulter, M. O., Buchan, A. M., & Morley, P. (1998). Brain derived neurotrophic factor induction of N-methyl-d-aspartate receptor subunit NR2A expression in cultured rat cortical neurons. Neuroscience Letters, 252, 211-214.
- Sobin, C., Montoya, M., Parisi, N., Schaub, T., Cervantes, M., & Armijos, R. (2013). Microglial disruption in young mice with early chronic lead exposure. Toxicology Letters, 220, 44–52.
- Soderling, T. R., & Derkach, V. A. (2000). Postsynaptic protein phosphorylation and LTP. Trends in Neurosciences, 23, 75–80.
- Steiner, J., Walter, M., Gos, T., Guillemin, G., Bernstein, H., Sarnyai, Z., Mawrin, C., Brisch, R., Bielau, H., Meyer zu Schwabedissen, L., Bogerts, B., & Myint, A. (2011). Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: Evidence for an immune-modulated glutamatergic neurotransmission? Journal of Neuroinflammation, 8, 94.
- Stillman, M. J. (1995). Metallothioneins. Coordination Chemistry Reviews, 144, 461–511.
- Struzynska, L. (2009). A glutamatergic component of lead toxicity in adult brain: The role of astrocytic glutamate transporters. Neurochemistry International, 55, 151–156.
- Struzynska, L., Dabrowska-Bouta, B., Koza, K., & Sulkowski, G. (2007). Inflammation-like glial response in lead-exposed immature rat brain. Toxicological Sciences, 95, 156–162.
- Sui, L., Ge, S. Y., Ruan, D. Y., Chen, J. T., Xu, Y. Z., & Wang, M. (2000). Age-related impairment of long-term depression in area CA1 and dentate gyrus of rat hippocampus following developmental lead exposure in vitro. Neurotoxicology and Teratology, 22, 381–387.
- Sun, L., Zhao, Z. Y., Hu, J., & Zhou, X. L. (2005). Potential association of lead exposure during early development of mice with alteration of hippocampus nitric oxide levels and learning memory. Biomedical and Environmental Sciences, 18, 375–378.
- Sundaram, G., Brew, B., Jones, S., Adams, S., Lim, C., & Guillemin, G. (2014). Quinolinic acid toxicity on oligodendroglial cells: Relevance for multiple sclerosis and therapeutic strategies. Journal of Neuroinflammation, 11, 204.
- Suzuki, K., Sato, M., Morishima, Y., & Nakanishi, S. (2005). Neuronal depolarization controls brain-derived neurotrophic factor-induced upregulation of NR2C NMDA receptor via calcineurin signalling. The Journal of Neuroscience, 25(41), 9535–9543.
- Swanson, K. L., Marchioro, M., Ishihara, K., Alkondon, M., Pereira, E. F. R., & Albuquerque, E. X. (1997). Neuronal targets of lead in the hippocampus: Relationship to low-level lead intoxication. Comprehensive Toxicology, 11, 470–491.
- Swope, S. L., Moss, S. J., Raymond, L. A., & Huganir, R. L. (1999). Regulation of ligand-gated ion channels by protein phosphorylation. Advances in Second Messenger and Phosphoprotein Research, 33, 49–78.
- Tartaglia, N., Du, J., Tyler, W. J., Neale, E., Pozzo-Miller, L., & Lu, B. (2001). Protein synthesisdependent and – Independent regulation of hippocampal synapses by brain-derived neurotrophic factor. The Journal of Biological Chemistry, 276, 37585-37593.
- Teyler, T. J., & DiScenna, P. (1987). Long-term potentiation. Annual Review of Neuroscience, 10, 131–161.
- Thiels, E., Norman, E. D., Barrionuevo, G., & Klann, E. (1998). Transient and persistent increases in protein phosphatase activity during long-term depression in the adult hippocampus in vivo. Neuroscience, 86(4), 1023–1029.
- Thiels, E., Kanterewicz, B. I., Norman, E. D., Trzaskos, J. M., & Klann, E. (2002). Long-term depression in the adult hippocampus in vivo involves activation of extracellular signal-regulated kinase and phosphorylation of Elk-1. The Journal of Neuroscience, 22(6), 2054–2062.
- Tiffany-Castiglioni, E. (1993). Cell culture models for lead toxicity in neuronal and glial cells. Neurotoxicology, 14, 513–536.
- Tiffany-Castiglioni, E., Zmudzki, J., & Bratton, G. R. (1986). Cellular targets of lead toxicity: In vitro models. Toxicology, 42, 305-315.
- Tingley, W. G., Ehlers, M. D., Kameyama, K., Doherty, C., Ptak, J. B., Riley, C. T., & Huganir, R. L. (1997). Characterization of protein kinase A and protein kinase C phosphorylation of the N-methyl-D-aspartate receptor NR1 subunit using phosphorylation site-specific antibodies. The Journal of Biological Chemistry, 272, 5157–5166.
- Tokuda, E., Ono, S., Ishige, K., Naganuma, A., Ito, Y., & Suzuki, T. (2007). Metallothionein proteins expression, copper and zinc concentrations, and lipid peroxidation level in a rodent model for amyotrophic lateral sclerosis. Toxicology, 29, 33–41.
- Tong, G., Shepherd, D., & Jahr, C. E. (1995). Synaptic desensitization of NMDA receptors by calcineurin. Science, 267(5203), 1510–1512.
- Toni, N., Buchs, P. A., Nikonenko, I., Bron, C. R., & Muller, D. (1999). LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. *Nature*, 402, 421–425.
- Topolnik, L., Azzi, M., Morin, F., Kougioumoutzakis, A., & Lacaille, J. C. (2006). MGluR1/5 subtype-specific calcium signalling and induction of long-term potentiation in rat hippocampal oriens/alveus interneurones. The Journal of Physiology, 575, 115-131.
- Toscano, C. D., & Guilarte, T. R. (2005). Lead neurotoxicity: From exposure to molecular effects. Brain Research Reviews, 49, 529–555.
- Toscano, C. D., Hashemzadeh-Gargari, H., McGlothan, J. L., & Guilarte, T. R. (2002). Developmental Pb2+ exposure alters NMDAR subtypes and reduces CREB phosphorylation in the rat brain. Developmental Brain Research, 139, 217–226.
- Toscano, C. D., McGlothan, J. L., & Guilarte, T. R. (2003). Lead exposure alters cyclic-AMP response element binding protein phosphorylation and binding activity in the developing rat brain. Developmental Brain Research, 145, 219–228.
- Toscano, C. D., O'Callaghan, J. P., & Guilarte, T. R. (2005). Calcium/calmodulin-dependent protein kinase II activity and expression are altered in the hippocampus of Pb2+-exposed rats. Brain Research, 1044, 51–58.
- Uchida, Y., Takio, K., Titani, K., Ihara, Y., & Tomonaga, M. (1991). The growth inhibitory factor that is deficient in Alzheimer's disease is a 68 amino acid metallothionein-like protein. Neuron, 7, 337–347.
- Ujihara, H., & Albuquerque, E. X. (1992). Developmental change of the inhibition by lead of NMDA activated currents in cultured hippocampal neurons. The Journal of Pharmacology and Experimental Therapeutics, 263, 868–875.
- Vanhoutte, P., & Bading, H. (2003). Opposing roles of synaptic and extrasynaptic NMDA receptors in neuronal calcium signalling and BDNF gene regulation. Current Opinion in Neurobiology, 13(3), 366–371.
- Vasak, M., & Meloni, G. (2017). Mammalian metallothionein-3: New functional and structural insights. International Journal of Molecular Sciences, 18(6), E1117. [https://doi.org/10.3390/](https://doi.org/10.3390/ijms18061117S) [ijms18061117S](https://doi.org/10.3390/ijms18061117S)
- Vécsei, L., Szalárdy, L., Fülöp, F., & Toldi, J. (2013). Kynurenines in the CNS: Recent advances and new questions. Nature Reviews Drug Discovery, 12, 64–82.
- Viola, H., Furman, M., Izquierdo, L. A., Alonso, M., Barros, D. M., de Souza, M. M., Izquierdo, I., & Medina, J. H. (2000). Phosphorylated cAMP response element-binding protein as a molecular marker of memory processing in rat hippocampus: Effect of novelty. The Journal of Neuroscience, 20(23), RC112.
- Vorvolakos, T., Arseniou, S., & Samakouri, M. (2016, July–September). There is no safe threshold for lead exposure: Α literature review. Psychiatriki, 27(3), 204–214. [https://doi.org/10.22365/](https://doi.org/10.22365/jpsych.2016.273.204) [jpsych.2016.273.204](https://doi.org/10.22365/jpsych.2016.273.204)
- Vyklicky, V., Korinek, M., Smejkalova, T., Balik, A., Krausova, B., Kaniakova, M., Lichnerova, K., Cerny, J., Krusek, J., Dittert, I., Horak, M., & Vyklicky, L. (2014). Structure, function, and

pharmacology of NMDA receptor channels. *Physiological Research*, 63(Suppl 1), S191–S203. <https://doi.org/10.33549/physiolres.932678>

- Wadzinski, B. E., Wheat, W. H., Jaspers, S., Peruski, L. F., Jr., Lickteig, R. L., Johnson, G. L., & Klemm, D. J. (1993). Nuclear protein phosphatase 2A dephosphorylates protein kinase A-phosphorylated CREB and regulates CREB transcriptional stimulation. Molecular and Cellular Biology, 13(5), 2822–2834.
- Walz, C., Jungling, K. L., & Gottmann, K. (2006). Presynaptic plasticity in an immature neocortical network requires NMDA receptor activation and BDNF release. Journal of Neurophysiology, 96, 3512–3516.
- Wang, J. H., & Kelly, P. T. (1997). Postsynaptic calcineurin activity downregulates synaptic transmission by weakening intracellular Ca2+ signalling mechanisms in hippoccampal CA1 neurons. The Journal of Neuroscience, 17, 4600–4611.
- Wang, L. Y., Orser, B. A., Brautigan, D. L., & MacDonald, J. F. (1994). Regulation of NMDA receptors in cultured hippocampal neurons by protein phosphatases 1 and 2A. Nature, 369, 230–232.
- Wang, L., Luo, L., Luo, Y. Y., Gu, Y., & Ruan, D. Y. (2007). Effects of Pb2+ on muscarinic modulation of glutamatergic synaptic transmission in rat hippocampal CA1 area. Neurotoxicology, 28(3), 499–507.
- Wang, L., Chen, D., Wang, H., & Liu, Z. (2009). Effects of lead and/or cadmium on the expression of metallothionein in the kidney of rats. Biological Trace Element Research, 129, 190–199.
- Waters, K. A., & Machaalani, R. (2004, July–August). NMDA receptors in the developing brain and effects of noxious insults. Neurosignals, 13(4), 162-174. [https://doi.org/10.1159/](https://doi.org/10.1159/000077523) [000077523](https://doi.org/10.1159/000077523)
- Westphal, R. S., Anderson, K. A., Means, A. R., & Wadzinski, B. E. (1998). A signalling complex of Ca2+-calmodulin-dependent protein kinase IV and protein phosphatase 2A. Science, 280 (5367), 1258–1261.
- Westphal, R. S., Tavalin, S. J., Lin, J. W., Alto, N. M., Fraser, I. D., Langeberg, L. K., Sheng, M., & Scott, J. D. (1999). Regulation of NMDA receptors by an associated phosphatase-kinase signalling complex. Science, 285(5424), 93–96.
- White, L. D., Cory-Slechta, D. A., Gilbert, M. E., Tiffany-Castiglioni, E., Zawia, N. H., Virgolini, M., Rossi-George, A., Lasley, S. M., Qian, Y. C., & Basha, M. R. (2007). New and evolving concepts in the neurotoxicology of lead. Toxicology and Applied Pharmacology, 225(1), 1–27.
- WHO. (2010). Childhood Lead Poisoning World Health Organization. [Available from: [https://](https://www.who.int/ceh/publications/leadguidance.pdf?ua=1) [www.who.int/ceh/publications/leadguidance.pdf?ua](https://www.who.int/ceh/publications/leadguidance.pdf?ua=1)=[1](https://www.who.int/ceh/publications/leadguidance.pdf?ua=1)
- Winder, D. G., & Sweatt, J. D. (2001). Roles of serine/threonine phosphatases in hippocampal synaptic plasticity. Nature Reviews. Neuroscience, 2(7), 461–474.
- Wong, D. L., Merrifield-MacRae, M. E., & Stillman, M. J. (2017). Lead(II) binding in metallothioneins. Life Sciences, 2017. <https://doi.org/10.1515/9783110434330-009>
- Xiao, C., Gu, Y., Zhou, C. Y., Wang, L., Zhang, M. M., & Ruan, D. Y. (2006). Pb2+ impairs GABAergic synaptic transmission in rat hippocampal slices: A possible involvement of presynaptic calcium channels. Brain Research, 1088, 93–100.
- Xu, S., & Rajanna, B. (2006). Glutamic acid reverses Pb2+-induced reductions of NMDA receptor subunits in vitro. Neurobehavioral Toxicology, 27, 169–175.
- Xu, S. Z., Bullock, L., Shan, C. J., Cornelius, K., & Rajanna, B. (2005). PKC isoforms were reduced by lead in the developing rat brain. *International Journal of Developmental Neurosci*ence, 23(1), 53–64.
- Xu, J., Yan, C. H., Yang, B., Xie, H. F., Zou, X. Y., Zhong, L., Gao, Y., Tian, Y., & Shen, X. M. (2009a). The role of metabotropic glutamate receptor 5 in developmental lead neurotoxicity. Toxicology Letters, 191(2–3), 223–230.
- Xu, J., Zhu, Y., Contractor, A., & Heinemann, S. F. (2009b). mGluR5 has a critical role in inhibitory learning. The Journal of Neuroscience, 29, 3676–3684.
- Xy, Z., Liu, A. P., Ruan, D. Y., & Liu, J. (2002). Effect of developmental lead exposure on the expression of specific NMDA receptor subunit mRNAs in the hippocampus of neonatal rats by

digoxigenin labeled in situ hybridization histochemistry. Neurotoxicology and Teratology, 24, 149–160.

- Yamashita, T., Inui, S., Maeda, K., Hua, D. R., Takagi, K., Fukunaga, K., & Sskaguchi, N. (2006). Regulation of CamKII by alpha4/PP2Ac contributes to learning and memory. Brain Research, 1082(1), 1–10.
- Zalutsky, R. A., & Nicoll, R. A. (1990). Comparison of two forms of long-term potentiation in single hippocampal neurons. Science, 248, 1619–1624.
- Zhang, W., Shen, H., Blaner, W. S., Zhao, Q., Ren, X., & Graziano, J. H. (1996). Chronic lead exposure alters transthyretin concentration in rat cerebrospinal fluid: The role of choroid plexus. Toxicology and Applied Pharmacology, 139(2), 445–450.
- Zhang, X. Y., Liu, A. P., Ruan, D. Y., & Liu, J. (2002). Effect of developmental lead exposure on the expression of specific NMDA receptor subunit mRNAs in the hippocampus of neonatal rats by digoxigenin-labeled in situ hybridization histochemistry. Neurotoxicology and Teratology, 24 (2), 149–160.
- Zukin, R. S., & Bennett, M. V. (1995). Alternatively spliced isoforms of the NMDARI receptor subunit. Trends in Neurosciences, 18, 306–313.