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8Vestibular Nuclei and Their Cerebellar 
Connections

Neal H. Barmack

Abstract

The vestibular nuclei and the vestibulocerebellum com-
prise the anatomical crossroads where primary vestibular 
information is collected, stored, and modified by other 
sensory inputs (visual, proprioceptive, autonomic) and 
central cortical commands. Secondary vestibular neurons 
are clustered into five nuclei in which different subsets of 
vestibular primary afferents terminate. This distributed 
organization may be based on the targeted outputs of the 
clustered secondary neurons rather than on selective 
afferent targeting. Vestibular primary and secondary affer-
ent mossy fibers activate a large mediolateral extent of 
granule cells in multiple folia of vermal lobules 
IX–X.  However, the vermal and hemispheric lobules 
IX–X are organized in three dimensions by vestibular and 
visual climbing fiber inputs that are arrayed in narrow 
sagittal strips. In vermal lobules IX–X, these climbing 
fiber strips encode linear acceleration imposed by changes 
in head movement with respect to gravity using the 
utricular otoliths and angular acceleration of the head 
about the anatomical axes of the two vertical semicircular 
canals. Hemispheric lobule X encodes self-motion using 
climbing fiber structured optokinetic feedback imposed 
by the three axes of the semicircular canals. Vestibular 
and visual adaptation of this circuitry is needed to main-
tain balance during postural perturbations. Secondary 
neurons in the vestibular nuclei and cerebellar neurons 
may contribute to storage and modification of postural 
reflexes. Compensation of postural reflexes following 
unilateral damage to the vestibular nerve provokes 
changes in cellular expression of protein kinase C-δ with-
out causing a change in transcription of PKC-δ mRNA.
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8.1	� Introduction

The cerebellum and vestibular nuclei are two major compo-
nents of a larger neural system that controls how vestibular 
information is received, how it is stored, and how it is modi-
fied. This review describes connections between the cerebel-
lum and vestibular nuclei that are multiple and complex.

8.2	� Vestibular Nuclei

Five vestibular nuclei are located just below the dorsal surface 
of the medullary brainstem (Fig.  8.1A1). They include 
descending, lateral, medial, and superior nuclei (DVN, LVN, 
MVN, and SVN) as well as the parasolitary nucleus (Psol). 
All five vestibular nuclei receive a mixture of ipsilateral ves-
tibular primary afferents. Each vestibular nucleus is differen-
tiated by a combination of cytological features, axonal 
boundaries, cell sizes, and immunohistological characteris-
tics. The DVN, LVN, MVN, and SVN contain a variety of 
cell types. The LVN contains the largest neurons in the brain, 
Dieter’s neurons, whose soma are ~50 μm in diameter. The 
LVN also contains many smaller cell types (Brodal and 
Pompeiano 1957; Brodal 1974; Barmack et al. 1998a). This 
variability in cell size within a nucleus is regional, suggesting 
that these nuclei may have multiple circuits and functions. At 
the other extreme, neurons in the Psol are uniformly small, 
5–7 μm in diameter, and are immunolabeled by an antiserum 
to glutamic decarboxylase, the synthetic enzyme for the neu-
rotransmitter gamma amino butyric acid (GABA) (Barmack 
et al. 1998b). The distributed organization of the vestibular 
nuclei may be based on common targeted outputs rather than 
on selected afferent targeting of homogeneous circuitry.
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Fig. 8.1  Projections of vestibular primary and secondary mossy and 
climbing fiber afferents to the vestibular nuclei and lobules IX–X and 
how these projections are embedded in cerebellar circuitry. (A1) Viewed 
dorsally, five horizontal semicircular canal afferents, intra-axonally 
labeled with HRP project to all vestibular nuclei except the LVN. 
Modified from (Sato and Sasaki 1993). (A2) Mossy fiber terminals from 
a BDA-labeled lateral reticular nucleus neuron project bilaterally as 
they reach the anterior cerebellar vermis. (A3) Sagittal view of several 
BDA-labeled climbing fibers that project in narrow sagittal bands to the 
contralateral lobules IX–X.  Modified from (Wu et  al. 1999). (B1) 
Vestibular primary afferents are labeled with the C fragment of tetanus 
toxin (TTC) injected into the left labyrinth of rabbit. TTC is transported 
orthogradely and trans-synaptically and labels MFTs and granule cells 
in lobules IX–X. Arrows bracket the regions of profuse labeling. Note 
absence of labeling in other folia. (B2) A horizontal section through 
lobules IX–X shows that the projection of TTC-labeled vestibular pri-
mary afferents is unilateral. Modified from (Barmack et al. 1993b). (B3) 

Vestibular secondary afferents, labeled with an injection of WGA–HRP 
into the caudal medial and descending vestibular nuclei, reveals label-
ing of mossy fiber terminals in lobules IX–X. (c) Schematic illustrates 
the vestibular mossy (green) and climbing fiber (blue) projections to the 
brainstem and posterior cerebellar cortex. Vestibular primary afferent 
mossy fibers (mf) (green) project to the ipsilateral parasolitary, medial, 
descending, superior vestibular nuclei (Psol, MVN, DVN and SVN). 
GABAergic Psol neurons (dashed red lines) project to the ipsilateral 
β-nucleus (β) and dorsomedial cell column (DMCC) in the inferior 
olive (yellow). Y-group neurons (Y) (purple) project to contralateral 
DC, β and DMCC (purple lines). Neurons in β and DMCC project as 
climbing fibers (blue) (cf) to contralateral lobules VIII–X.  Modified 
from (Barmack and Yakhnitsa 2000). cf climbing fiber, DC dorsal cap, 
LVN lateral vestibular nuclei, Gc granule cell, LCN, IntP and MCN lat-
eral, interpositus and medial cerebellar nuclei, Pc Purkinje cell, mf 
mossy fiber, Nsol nucleus solitarius

8.3	� Cerebellum

Lobules IX (uvula) and X (nodulus), including the hemi-
spheric X (flocculus), are the principal, but not exclusive 
cerebellar focus for interactions with vestibular nuclei. The 
circuitry embedded within these lobules is engaged by 
three distinct vestibular inputs. (1) Granule cells within 
vermal lobules IX and X receive a vestibular primary affer-
ent collateral mossy fiber projection from every ipsilateral 

vestibular primary afferent. (2) A vestibular mossy fiber 
projection to granule cells in both vermal and hemispheric 
lobules IX–X is bilateral and originates from vestibular 
secondary mossy fiber afferents from the vestibular nuclei. 
(3) A third pathway to vermal lobule X is conveyed by ves-
tibular climbing fibers (Fig.  8.1A3). Vestibular climbing 
fibers originate from two subnuclei of the contralateral 
inferior olive, β-nucleus, and dorsomedial cell column. The 
dendritic tree of each Purkinje cell receives ~500 synaptic 
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contacts from a single climbing fiber. However, a single 
climbing fiber may synaptically contact the dendritic trees 
of as many as 15 Purkinje cells.

The vestibular climbing fiber projections to vermal lob-
ules IX–X (uvula, nodulus) are arrayed in two narrow sagit-
tal strips that encode vestibular space in two rotational axes 
encoded by the anterior and posterior semicircular canal 
ampullae and utricular otoliths (Fig. 8.1A3, c). The width of 
these climbing fiber strips is ~0.4  mm in the mouse and 
~1.0 mm in the rabbit. A third axis, rotation encoded by the 
horizontal semicircular canal ampullae is absent (Fushiki 
and Barmack 1997; Barmack and Yakhnitsa 2003).

A similar array of sagittal climbing fiber strips, encoding 
a three-dimensional optokinetic space, originates from the 
dorsal cap (DC) of the inferior olive and projects onto hemi-
spheric lobule X (flocculus). The coordinates of these spaces 
correspond physically to the planar orientation of the three 
semicircular canals (Simpson et al. 1981; Van der Steen et al. 
1994; Billig and Balaban 2004; Foster et al. 2007; Yakusheva 
et al. 2010).

8.4	� Vestibular End Organs

The peripheral vestibular apparatus consists of three semicir-
cular canals and two otoliths. The semicircular canals are 
oriented orthogonally and sense angular acceleration about 
horizontal, vertical, and oblique axes. Otoliths (saccule and 
utricle) sense linear acceleration imposed by movement of 
the head with respect to the gravitational vector during 
roll-tilt of the head about the longitudinal axis (utricle) and 
during pitch about the intra-aural axis (saccule).

8.5	� Vestibular Primary Afferent 
Cerebellar Projections

Each vestibular endorgan contributes primary vestibular 
afferents to the vestibular nerve that branches into two fiber 
bundles of unequal thickness as they enter the brain stem. 
The thicker fiber bundle enters the medulla between the ven-
tral aspect of the inferior cerebellar peduncle and the dorsal 
aspect of the spinal tract of the trigeminal nucleus. It turns 
caudally and passes into the vestibular complex to terminate 
on secondary vestibular neurons. The thinner fiber bundles 
branch as the primary afferent passes through the inferior 
cerebellar peduncle and then though superior and lateral 
vestibular nuclei. The thinner branch ascends to the cerebel-
lum where it terminates as mossy fiber terminals on granule 
cells in ipsilateral vermal lobules IXd–X (Cajal 1911) 
(Fig. 8.1A1, B1, 2). The unilateral projection of vestibular pri-
mary afferent mossy fibers is shown best using the trans-
synaptic orthograde tracer, Tetanus toxin C fragment (TTC), 

injected into a labyrinth. TTC is orthogradely transported to 
the cerebellum where it labels only ipsilateral mossy fiber 
terminals and granule cells (Fig.  8.1B1, 2) (Barmack et  al. 
1993b).

8.6	� Vestibular Primary Afferents’ 
Projections to Vestibular Nuclei

Primary afferents of the main branch terminate in each of 
the five vestibular nuclei (Brodal and Pompeiano 1957; 
Brodal 1972, 1974; Barmack et  al. 1998a; Barmack and 
Yakhnitsa 2000) (Fig. 8.1A1). Within the cerebellum, ves-
tibular primary afferents branch again and distribute mossy 
fiber terminals (MFTs) both sagittally and medio-laterally 
within vermal lobules IXd–X.  The mossy fiber branching 
pattern is illustrated best by the spatial patterning of MFTs 
that originate from the lateral reticular nucleus (LRN) 
labeled with biotin dextran amine (BDA) (Wu et al. 1999) 
(Fig.  8.1A2). A single mossy fiber branch develops ~40 
MFTs that contact dendrites of ~15 granule cells. In total, a 
single mossy fiber makes synaptic contact with ~600 gran-
ule cells (Palkovits et al. 1972). Primary and secondary ves-
tibular afferents account for ~90% of the total mossy fiber 
projection to vermal lobules IXd–X (Korte and Mugnaini 
1979; Kevetter and Perachio 1986; Gerrits et al. 1989; Sato 
et al. 1989; Barmack et al. 1993b; Akaogi et al. 1994; Purcell 
and Perachio 2001; Newlands et al. 2002, 2003; Maklad and 
Fritzsch 2003).

The projection of primary afferent MFTs to vermal lob-
ules IX–X is not restricted to a single folium. Vestibular pri-
mary afferent MFTs from, say, the left posterior semicircular 
canal (LPC), project primarily not only to left vermal lobule 
X, but also, more sparsely to left vermal lobule IXd. The left 
saccule projects to the left vermal lobule IX, but more 
sparsely to the left vermal lobule X (Maklad and Fritzsch 
2003). This widely distributed pattern of projections of ves-
tibular primary afferent MFTs creates regions within lob-
ules IX–X where MFTs from a particular endorgan may be 
concentrated, but not exclusively represented. For example, 
neurons that respond to stimulation of the ipsilateral ante-
rior semicircular canal are found in the SVN more laterally 
than are neurons in the SVN that respond to stimulation of 
the ipsilateral posterior semicircular canal (Abend 1977). 
Horizontal semicircular canal primary afferents project to 
the DVN, MVN, and SVN, but not the LVN and Psol. The 
activity of Psol neurons is driven by stimulation of ipsilat-
eral anterior and posterior semicircular canals, as well as the 
ipsilateral utricle. However, Psol activity is not driven by 
stimulation of the horizontal semicircular canals. Secondary 
neurons within the LVN receive a primary vestibular projec-
tion from the ipsilateral saccule, but not from the utricle 
(Sato and Sasaki 1993).

8  Vestibular Nuclei and Their Cerebellar Connections
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8.7	� Visual Projections to Vestibular Nuclei

Vestibular primary afferents comprise only one of the sen-
sory inputs to the vestibular complex. Most secondary ves-
tibular neurons are also driven by visual (optokinetic) 
stimulation (Henn et al. 1974). Although visual signals to the 
vestibular nuclei originate from a variety of brainstem and 
cortical sources, the best understood pathways by which 
optokinetic signals reach the vestibular nuclei originate from 
the accessory optic system (AOS) (Simpson et  al. 1988). 
Direction selective retinal ganglion cells project to the 
AOS. AOS neurons, in turn, project to vestibular nuclei, the 
cerebellum, and the inferior olive. The AOS also receives a 
descending projection from the visual cortex. In primates, 
this projection originates from the pre-striate cortex (areas 
OAa and PGa) (Ilg and Hoffmann 1996). Selective stimula-
tion or inactivation of this region modifies the directional 
selectivity of neurons in the AOS.

8.8	� Neck-Proprioceptive Afferents 
to Vestibular Nuclei

Signals from proprioceptors embedded in the intertrans-
verse muscles at the base of the cervical vertebrae activate 
secondary vestibular neurons (McCouch et  al. 1951; 
Hikosaka and Maeda 1973). Injection of HRP into the cau-
dal MVN and DVN retrogradely labels neurons in ipsilat-
eral C2–C3 spinal ganglia and in the contralateral central 
cervical nucleus and bilaterally in C1–C6 dorsal horn cells 
(Bankoul and Neuhuber 1990; Sato et al. 1997). Neurons in 
the vestibular complex also receive secondary cervical 
afferents relayed through the external cuneate nucleus (Ecu) 
(Prihoda et al. 1991). Movement of the head with respect to 
the body stimulates neck proprioceptors and evokes reflex-
ive eye movements as well as postural adjustments of the 
limbs (McCouch et  al. 1951; Hikosaka and Maeda 1973; 
Barmack et al. 1981).

8.9	� Autonomic Influences 
of the Vestibular Nuclei

The vestibular nuclei not only participate in reflexes medi-
ated by skeletal muscles, but also are part of the circuitry 
through which autonomic reflexes (blood flow, respiration 
rate, and heart rate) are regulated (Rossiter et  al. 1996; 
Kerman et al. 2000; Kaufmann et al. 2002). Specifically, this 
circuitry includes projections from the caudal vestibular 
nuclei (DVN, MVN and Psol) to the solitary nucleus (Nsol). 
The Nsol receives autonomic afferents, from the heart, 
esophagus and stomach, carried chiefly by branches of the 
IX and X cranial nerves.

8.10	� Internal Connections Within 
the Vestibular Nuclei

The pattern of interconnections within the vestibular complex 
has been mapped with microinjections of HRP into the ves-
tibular complex of the rabbit. Interconnections between the 
SVN–DVN and SVN–MVN are reciprocal (Epema et  al. 
1988). A group of larger neurons in the rostro-ventral MVN, 
SVN, and LVN receives inputs from smaller cell regions of 
MVN, SVN, and DVN, but do not reciprocate (Ito et  al. 
1985). The MVN has a non-reciprocal projection to the DVN.

8.11	� Bilateral Connections Between 
Vestibular Nuclei

The vestibular nuclei, with the exceptions of the LVN and 
Psol, are interconnected through a commissural system. The 
commissural projections are multiple. First, a primary affer-
ent that projects to one nucleus may also project to the same 
or different contralateral nucleus. Second, the commissural 
projections of secondary vestibular afferents are not restricted 
to homotypic nuclei. Rather, cells within a nucleus on one 
side of the brainstem, say the left MVN, project to the con-
tralateral SVN and DVN as well as the contralateral MVN 
(Epema et  al. 1988; Newlands et  al. 1989; Wayman et  al. 
2008). Electrical stimulation of the utricular macula evokes 
excitation in ipsilateral secondary vestibular neurons and 
inhibition in more than 50% of the contralateral secondary 
vestibular neurons. Only 10% of secondary neurons respon-
sive to ipsilateral stimulation of the saccule are inhibited by 
contralateral saccular stimulation. These data support the 
idea that the utricles are wired reciprocally, while the saccu-
lae are not.

8.12	� Ascending Projections of Vestibular 
Nuclei

Targets of secondary vestibular afferents are diverse. 
Secondary afferents from the DVN and MVN project to both 
vermal and hemispheric lobules VIII–X, the anterior vermis, 
and paraflocculus (Thunnissen et  al. 1989; Epema et  al. 
1990). Most of these ascending projections are cholinergic 
(Tago et al. 1989; Barmack et al. 1992a, b, c).

Neurons in rostral DVN, MVN, and SVN provide an 
ascending input to cranial motor nuclei III, IV, and VI, con-
trolling the reciprocal contractions of extraocular muscles 
(Deecke et al. 1977; Büttner and Lang 1979; Graf et al. 1983; 
Büttner-Ennever 1992). Other brainstem nuclei that receive 
ascending projections from secondary vestibular neurons 
include nucleus Darkschewitsch, sensory trigeminal nucleus, 
interstitial nucleus of Cajal, and the sub-parafascicular com-
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plex (Barmack et al. 1979). The sub-parafascicular complex 
also projects reciprocally to the ipsilateral MVN.

Several ascending projections to the thalamus originate 
from the rostral part of the vestibular complex to the ventral-
basal thalamus (VPL, VPM and VPI). Neurons in the ven-
tral-basal complex are driven by stimulation of deep 
proprioceptors and joint receptors as well as vestibular inputs 
(Deecke et al. 1977; Lang et al. 1979; Shiroyama et al. 1999; 
Bacskai et al. 2002). These thalamic nuclei, in turn, project 
to Areas 3aV and parietotemporal association cortices 
(Fukushima 1997). These cortical areas receive optokinetic 
and somatosensory inputs as well. The importance of this 
projection is illustrated by the observation that humans with 
damage to parietal cortex, and without visual cues, do not 
recognize true vertical (Leigh 1994). Vestibular cortices 
project reciprocally to vestibular nuclei, suggesting that 
these cortical regions may supersede reflexes evoked by pri-
mary vestibular afferents (Akbarian et  al. 1993, 1994; 
Nishiike et al. 2000).

8.13	� Cholinergic and GABAergic 
Secondary Vestibular Projections

A subset of vestibular secondary neurons is cholinergic and 
projects bilaterally to both vermal and hemispheric lobules 
IX–X as well as the nucleus prepositus hypoglossi (NPH) 
(Epema et al. 1990; Barmack 2003). NPH neurons, in turn, 
project bilaterally to the caudal vestibular nuclei as well as 
the inferior olive (McCrea and Baker 1985). The projection 
from NPH to the dorsal cap is both cholinergic and 
GABAergic (Barmack et al. 1993a; De Zeeuw et al. 1993).

Neurons in the Y-group, a group of cells distributed 
between the inferior cerebellar peduncle and the lateral ves-
tibular nucleus, also receive bilateral projections from the 
SVN. The ventral division of the Y-group projects to the ipsi-
lateral flocculus, nodulus, and contralateral oculomotor com-
plex. The dorsal division projects contralaterally to the dorsal 
cap and beta nucleus of the inferior olive. This projection is 
excitatory (Kumoi et  al. 1987). Y-group and NPH neurons 
project directly to the cerebellum as mossy fibers. Y-group 
and NPH neurons also influence the activity of neurons in the 
inferior olive that make overlapping projections to the cere-
bellum as climbing fibers.

8.14	� Descending Projections of Vestibular 
Nuclei

Descending lateral and medial vestibulospinal tracts origi-
nate from the LVN and MVN and DVN (Brodal 1981). The 
lateral vestibulospinal tract is organized within the LVN 
topographically. Fibers to the lumbosacral spinal cord origi-

nate from the dorsal-caudal LVN. Fibers to the cervical cord 
originate from the rostro-ventral LVN. Axons in the lateral 
vestibulospinal tract terminate in the ipsilateral lumbosacral 
region where they make monosynaptic and polysynaptic 
connections with motoneurons (Rose et al. 1992). Axons in 
the medial vestibulospinal tract terminate bilaterally in the 
medial part of the cervical ventral horn. The bilateral repre-
sentation of vestibulospinal axons is most dense in the cervi-
cal enlargements from which motoneurons supplying the 
suboccipital muscles originate. These motoneurons partici-
pate in vestibulocollic reflexes.

Psol neurons differ from the other vestibular nuclear neu-
rons in that they make no secondary mossy fiber projections 
to the cerebellum. The output of Psol is GABAergic. It 
descends to the ipsilateral inferior olive where it modulates 
the activity of cells in the β-nucleus and dorsomedial cell 
column (DMCC) (Fig. 8.1c) (Barmack et al. 1993c, 1998a). 
These olivary neurons terminate as climbing fibers in the 
contralateral vermal lobule X. As they descend to the inferior 
olive, Psol axons distribute collaterals to nuclei in the reticu-
lar formation, particularly in the nucleus reticularis giganto-
cellularis (Fagerson and Barmack 1995).

8.15	� Cerebellar Projections to Vestibular 
Nuclei

Cerebellar projections to the vestibular nuclei include, but 
are not restricted to lobule X (Walberg and Dietrichs 
1988). While Purkinje cells project onto the same vestibu-
lar nuclei from which secondary vestibular mossy fiber 
projections originate, the reciprocal overlap is incomplete. 
This projection can be examined by labeling Purkinje cell 
axon terminals with a marker that is uniquely expressed by 
them and then mapping the regions of the vestibular com-
plex where the marker is expressed. Protein Kinase C is a 
family of isoforms implicated in subcellular signal trans-
duction. Several PKC isoforms (PKC-α, β, γ, δ, and ε) are 
expressed within major cerebellar cell types. Some are 
expressed in cerebellar projection target neurons, cerebel-
lar nuclear neurons, and secondary vestibular neurons. Of 
all these isoforms, only two, PKC-γ and PKC-δ, are highly 
expressed in Purkinje cells and are not expressed in sec-
ondary vestibular neurons or cerebellar nuclear neurons 
(Barmack et al. 2000). PKC-γ is expressed in all Purkinje 
cells, whereas the expression of PKC-δ is restricted to lob-
ules VI–X (Fig.  8.2a–c). Within the cerebellar nuclei, 
PKC-δ-immunolabeled Purkinje cell axon terminals are 
found within the medial aspect of the caudal half of the 
ipsilateral interpositus nucleus. Both PKC-δ and PKC-γ-
immunolabeled axon terminals are found within the caudal 
MVN and DVN, Psol, and NPH. The projection patterns of 
PKC-immunolabeled Purkinje cells are confirmed by abla-
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tion experiments in which unilateral ablations of lobules 
VII–X deplete PKC-immunolabeled terminals in the ves-
tibular complex ipsilateral to the ablation, but leave the 
terminals intact in the contralateral vestibular complex 
(Fig. 8.2d, e). LVN and SVN neurons also receive a uni-
formly dense projection of PKC-δ- and PKC-γ-

immunolabeled axon terminals. This projection originates 
mostly from the “b zone” of the vermis (Andersson and 
Oscarsson 1978a, b). The “b-zone” receives climbing fiber 
projections conveying cutaneous information from the 
forelimbs and hind limbs (Bernard 1987; Shojaku et  al. 
1987; Walberg and Dietrichs 1988; Tabuchi et al. 1989).
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Fig. 8.2  Identification of Purkinje cell axon terminal projections to 
vestibular nuclei. (a, b) Sagittal sections through rat cerebellum are 
hybridized with an oligonucleotide probe for of PKC-γ (a) and PKC-δ 
mRNA (b). The PKC-γ probe hybridized with all Purkinje cells in lob-
ules IX–X. The PKC-δ probe hybridized strongly with Purkinje cells in 
lobules VI–X. (c) A PKC-δ antiserum immunolabels Purkinje cells in 
lobules IX-X. (d, e) A unilateral ablation of left lobules VII–X, illus-
trated in (d) reduces PKC-γ immunolabeled Purkinje cell terminals pro-
jecting to the caudal left MVN (e). The Purkinje cell terminals in the 
right MVN, although sparse, remain intact. (f) Horizontal sections 
through the brainstem illustrate the anterior–posterior extent of the ves-
tibular complex. Three transverse sections through the brainstem illus-

trate the presence of PKC-γ immunolabeled terminals in each division 
of the vestibular complex. The antero-posterior location of each section 
is indicated by the dashed lines (1–3). The density of immunolabeled 
Purkinje cell terminals is illustrated by brown overlays. DVN, LVN, 
MVN SVN descending, lateral, medial and superior vestibular nuclei, 
Ecu external cuneate nucleus, NPH nucleus prepositus hypoglossi, Nsol 
solitary tract nucleus, Psol parasolitary nucleus, SpV spinal trigeminal 
nucleus, PO posterior thalamic nuclear group, VL ventrolateral nucleus, 
VM ventromedial division of LVN, VPL ventral posterior lateral 
nucleus, Y Y-group. [Modified from (Deecke et al. 1977; Büttner and 
Lang 1979; Graf et  al. 1983; Büttner-Ennever 1992; Barmack et  al. 
2000)]
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Purkinje cell projections to MVN, NPH, SVN, DVN, and 
Psol are less complete, suggesting that many secondary ves-
tibular neurons, particularly in the posterior half of the ves-
tibular complex, operate independently of direct cerebellar 
feedback (Fig.  8.2f). The dorsal-caudal MVN and DVN 
receive dense projections from Purkinje cells in lobules 
IX–X. However, the descending cerebellar projection to the 
ventral divisions of the MVN, DVN, and Psol is sparse 
(Fig. 8.2f). Cells in this region of the MVN, DVN, and LVN 
give rise to the medial vestibulo-spinal tract.

8.16	� Cerebellar and Vestibular 
Compensation

One of the classic attempts to understand interactions between 
the cerebellum and vestibular nuclei focuses on the change in 
postural stability following a unilateral labyrinthectomy (UL). 
The recovery following such damage is termed “compensa-
tion.” Others have speculated that the vestibulo-cerebellum 
could ameliorate the consequences of the unilateral loss of 
vestibular primary afferents by reducing the discharge of ipsi-
lateral Purkinje cell “simple spikes” (SSs) and thereby 
decrease the GABAergic inhibition of ipsilateral secondary 
vestibular neurons (McCabe and Ryu 1969). However, follow-
ing a UL in the mouse, the discharge of Purkinje cell SSs 
decreases in contralateral (not ipsilateral) lobules IX–X 
(Barmack and Yakhnitsa 2013). This contralateral reduction of 
SSs can be attributed to a loss of spontaneous primary vestibu-
lar afferent activation of Psol neurons (Fig. 8.1c). This reduces 
inhibitory (GABAergic) signaling to inferior olivary neurons 
in the ipsilateral β-nucleus and DMMC, increasing the climb-
ing fiber-evoked discharge of “complex spikes” (CSs) in con-
tralateral Purkinje cells. The increased discharge of CSs in 
contralateral Purkinje cells decreases SSs, probably through 
climbing fiber-evoked stellate cell inhibition, thereby increas-
ing the Purkinje cell-evoked GABAergic inhibition (Montarolo 
et al. 1982; Barmack and Yakhnitsa 2003, 2008, 2013). So, the 
immediate consequence of a UL is a reduction of activity of 
secondary vestibular neurons in the contralateral vestibular 
complex. The UL also causes a loss of vestibularly-evoked 
modulation of the discharge of CSs and SSs in Purkinje cells 
in contralateral lobules IX–X normally evoked by roll-tilt. 
This modulation is only slightly impaired in Purkinje cells 
ipsilateral to the UL. Chronically, the modulation of both CSs 
and SSs partially recovers.

8.17	� Subcellular Evidence of Cerebellar 
Plasticity

When PKC expression is reduced in L7-PKC-mutant trans-
genic mice, long-term depression (LTD) is reduced in cere-

bellar Purkinje cells (Ito and Karachot 1992). Adaptation of 
the vestibuloocular reflex to altered conditions of optokinetic 
stimulation is also impaired (De Zeeuw et al. 1998).

Following a UL in rats, the immunolabeling of PKC-δ, of 
Purkinje cell axon terminals in the caudal ipsilateral vestibu-
lar complex decreases (Qian and Barmack 1996). After a 
UL, Western blots prepared from the ipsilateral uvula-
nodulus show that cytosolic PKC-δ increases and membrane-
associated PKC-δ decreases (Barmack et  al. 2001). 
Hybridization histochemistry and semi-quantitative reverse 
transcription polymerase chain reaction (RT-PCR) demon-
strate no change in transcription of PKC-δ and PKC-γ 
mRNA in the lobules IX–X after a UL. These data indicate 
that PKC-δ and PKC-γ are constitutively expressed, but that 
their distribution within Purkinje cells depends upon cellular 
activity.

Since PKC-δ is independent of calcium concentration, it 
could provide a regulatory signal for synaptic release that is 
independent of the calcium influx associated with excita-
tion–secretion at synaptic terminals (Azzi et  al. 1992; 
Sossin and Schwartz 1993). Alternatively, PKC has been 
linked to the regulation of the GABA transporter through a 
plasma membrane protein, Syntaxin 1A (Beckman et  al. 
1968). By modulating the GABA transporter, the interac-
tion of PKC and Syntaxin 1A could influence the net release 
of GABA. Following a UL, compensation could occur if 
decreased Purkinje cell activity contributed to a decreased 
release of GABA, homeostatically compensating for the 
loss in primary afferent excitation of secondary vestibular 
neurons. Reduced expression of 14-3-3-θ and PKC-γ in 
Purkinje cells reduces the serine phosphorylation of 
GABAAγ2, critical for its insertion into the post-synaptic 
membrane (Qian et al. 2012).
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