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Abstract

Understanding the basic physiology of cerebellar nuclei 
(CN) is essential to the understanding of cerebellar func-
tion and disorders as they provide the only output from 
the cerebellum along with the vestibular nuclei. In addi-
tion to integrating the inhibitory input from cerebellar 
cortical Purkinje cells, CN neurons also receive direct 
excitation from mossy fibers and this direct excitatory 
input to the CN may in fact drive a number of behavior-
ally relevant activities. The complete picture is consider-
ably more complex than that of a simple relay of incoming 
excitation and inhibition, however. Specifically, the func-
tional significance of synaptic plasticity in the CN, high 
spontaneous spike rates, post-inhibitory rebound firing, 
and multiple output pathways including GABAergic inhi-
bition feeding back to the inferior olive remain to be 
elucidated.
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42.1	� Basic Physiology of CN Neurons

42.1.1	� Cellular Physiology

CN neurons recorded in brain slices from any of the four 
nuclei present in rodents (lateral, anterior interposed, poste-
rior interposed, and medial) are spontaneously regularly 
spiking (Jahnsen 1986), a property which is due to an intrin-

sic depolarizing plateau current (Raman et  al. 2000). A 
robust property of CN neurons is their ability to fire rebound 
spike bursts following strong hyperpolarization induced by 
current injection (Llinas and Muhlethaler 1988; Jahnsen 
1986; Aizenman and Linden 1999). The rebound activity has 
an initial fast burst component carried by T-type calcium cur-
rents (Molineux et  al. 2006) and a longer-lasting 2–5  s 
increase of spike rate associated with persistent sodium cur-
rents (Sangrey and Jaeger 2010). The functional implications 
of CN rebound properties are hotly debated (Alvina et  al. 
2008; Hoebeek et al. 2010). While these basic properties are 
present in excitatory and inhibitory CN neurons, GABAergic 
cells can be distinguished physiologically by a broader spike 
width, a slower spike-afterhyperpolarization, and higher 
spike rate accommodation, and further differences are pres-
ent between morphologically larger and smaller non-
GABAergic neurons (Uusisaari et al. 2007).

42.1.2	� Synaptic Physiology and Synaptic 
Plasticity

Early in vitro studies provided direct evidence that Purkinje 
cells’ spiking causes monosynaptic inhibitory postsynaptic 
potentials (IPSPs) in the CN (Ito et al. 1964). These IPSPs 
are characterized by a large amplitude, a fast decay, and pro-
nounced short-term depression (Person and Raman 2012). A 
single CN neuron receives large IPSPs from about 40 
Purkinje cells, while smaller IPSPs may derive from many 
more Purkinje cells with fewer and/or more distal synaptic 
terminals (Person and Raman 2012). Robust excitatory post-
synaptic potentials (EPSPs) can be elicited by stimulation of 
mossy fibers (Llinas and Muhlethaler 1988), which are col-
laterals of the same fibers projecting to cerebellar cortex 
(Shinoda et  al. 1992). Climbing fibers also collateralize in 
the CN (Sugihara et  al. 1999) and may induce a spike 
response in vivo (Blenkinsop and Lang 2011). Recent brain 
slice studies showed that excitatory responses to climbing 
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fiber activation seen with intracellular recordings in CN neu-
rons are small in adult mice, but more prominent in juveniles 
during development (Lu et al. 2016; Najac and Raman 2017).

Long-term plasticity has also been observed for synaptic 
inputs to the CN.  Excitatory mossy fiber undergoes long-
term potentiation as a result of a distinct combination of 
inhibitory and excitatory inputs “that resemble the activity of 
Purkinje and mossy fiber afferents that is predicted to occur 
during cerebellar associative learning tasks” (Pugh and 
Raman 2009). Inhibitory Purkinje cell input can undergo 
either long-term potentiation or long-term depression, which 
is dependent on the amount of rebound depolarization pro-
duced by a burst of Purkinje cell inputs (Aizenman et  al. 
1998). The plasticity-inducing protocols in the CN generally 
require complex temporal conditions of excitation and inhi-
bition, which may relate to the commonly hypothesized role 
of the cerebellum in motor timing. In addition, the effects of 
learning in the CN may also include changes in intrinsic 
excitability, as observed for the acquisition of eyeblink con-
ditioning (Wang et al. 2018).

42.2	� The Control of CN Spiking Output by 
Input Rates and Patterns

One might expect that CN neurons in vivo are silenced by 
strong inhibition from the inputs from 40 Purkinje cells with 
a strong conductance (Person and Raman 2012) and a fast 
spike rate that typically exceeds 50  Hz in awake animals. 
Contrary to this expectation, CN neurons in awake animals 
fire fast with a baseline rate between 10 and 100 Hz (Chabrol 
et al. 2019; Becker and Person 2019). While the spontaneous 
spiking activity of CN neurons likely contributes to their fir-
ing in  vivo (Yarden-Rabinowitz and Yarom 2017), the 
intrinsic depolarizing current underlying it is overcome eas-
ily by current injection of only about −30 pA in brain slices 
(Raman et al. 2000). In contrast, the total Purkinje cell input 
current easily exceeds −1  nA at a membrane potential at 
−57  mV (Person and Raman 2012). Thus, a considerable 
excitatory input conductance is also needed in order to drive 
CN neurons to spiking in vivo, which can be confirmed by 
detailed biophysical modeling (Abbasi et  al. 2017). Given 
the small relative size of climbing fiber inputs to CN neurons 
and their slow rate of firing, this task falls primarily to mossy 
fibers, and indeed a study in brain slices showed robust 
mossy fiber postsynaptic currents (Wu and Raman 2017). An 
intracellular study in  vivo also confirmed a strong mossy 
fiber contribution to spiking activity (Yarden-Rabinowitz 
and Yarom 2017).

A number of studies are addressing the question of 
whether the CN produce spike output based on integrating 
smooth rates of incoming excitatory and inhibitory inputs, or 
whether there is a specific decoding mechanism for precisely 

timed synchronous inputs (Brown and Raman 2018; Najac 
and Raman 2015; Sarnaik and Raman 2018; Wu and Raman 
2017; Abbasi et al. 2017; Sudhakar et al. 2015). In turn, the 
output of the CN may either convey an output rate code of 
input rates, or a precise spike time code where the millisec-
ond timing stamp of outgoing spikes conveys important 
information. Of course, the answer could also be a combina-
tion of these possibilities. Indeed evidence is recently accu-
mulating for both rate and temporal coding strategies (Brown 
and Raman 2018; Sarnaik and Raman 2018) at the level of 
the CN.  Interestingly, some evidence suggests that distinct 
cell types in the CN show different coding strategies, namely 
slow synaptic integration and rate coding in nucleo-olivary 
cells and faster synaptic integration in larger premotor neu-
rons resulting in a temporal code with precise spike timing 
following the offset of inhibition (Najac and Raman 2015).

Climbing fiber inputs to the cerebellum are well known 
for millisecond synchronization, and special coding of such 
synchronous events might be expected in the CN. Indeed, a 
recent study found that climbing fiber synchronicity is 
required for CN neurons to develop pronounced pauses of 
firing upon complex spike input from Purkinje cells (Tang 
et al. 2019). Notably, this study did not find any evidence for 
rebound bursts following such complex spike elicited pauses, 
which had been identified earlier with electrical Purkinje cell 
input stimulation in awake mice (Hoebeek et  al. 2010). 
Finally, a recent study shows that rate and temporal coding 
principles combine in a cerebellar loop where the firing rate 
of nucleo-olivary cells controls the synchronicity of olivary 
input to Purkinje cells during a trained reaching movement 
(Wagner et al. 2021).

42.3	� A View at CN Function

42.3.1	� Behavioral Correlates of CN Activity 
Changes

A substantial number of studies has been undertaken to study 
the spiking activity of CN neurons in behaving animals, 
often revealing complex relationships between CN spike rate 
increases or decreases and sensory stimuli as well as move-
ments. One of the most studied behaviors with respect to CN 
activity is the delayed eye blink reflex, where CN activity is 
clearly related to the learnt timing of the motor command 
(Thompson and Steinmetz 2009). In a more general sense, 
CN output activity is congruent with representing an internal 
or forward model of movement execution (Lisberger 2009; 
Miall and Reckess 2002) that is important in the predictive 
control of behavior. Recent experiments in which mice are 
trained in a reaching task show a close relation of anterior 
interposed nucleus activity with the deceleration of the reach 
to grasp movement (Becker and Person 2019). Supporting a 
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causal role of anterior interposed neuron firing in reach 
deceleration, these authors found that optogenetic activation 
of the anterior interposed nucleus led to a shortened reach, 
while optogenetic inhibition resulted in reaches overshoot 
their target. The activity of the lateral nucleus neurons was 
probed with similar methods in a locomotor task where 
head-fixed mice were trained to run through a virtual visual 
environment (Chabrol et al. 2019). A specific visual target 
pattern denoted the impending delivery of reward. Many lat-
eral nucleus neurons robustly increased firing in preparation 
of the reward delivery, closely resembling preparatory firing 
properties recorded in anterolateral motor cortex (ALM). 
Optogenetic silencing lateral nucleus neurons resulted in 
decreased preparatory activity in ALM, supporting a role of 
lateral nucleus neurons in cortical motor preparatory pro-
cessing. A similar preparatory activity was also observed in 
the medial nucleus in a cued licking task with a delay (Gao 
et  al. 2018). In this study, optogenetic stimulation experi-
ments also revealed that preparatory activity in ALM 
depended on medial nucleus neural activity. In addition, the 
authors show that this loop is closed and preparatory activity 
in the medial nucleus is also dependent on ALM preparatory 
activity, presumably via mossy fibers from the pontine nuclei 
relaying ALM activity (Gao et al. 2018).

42.3.2	� Multiple Functional Areas in the CN 
and Microzonal Organization

Each CN nucleus and to some degree different areas in each 
nucleus will be engaged in controlling behaviors related to 
the anatomical inputs of the respective nucleus, such as the 
vestibulo-ocular reflex and balance in the vestibular nuclei 
(Lisberger and Miles 1980), limb movements in the inter-
posed and dentate nuclei (Strick 1983; Becker and Person 
2019), and the control of timing in tasks such as finger tap-
ping in humans (Stefanescu et  al. 2013) in the dentate 
nucleus. The concept of time estimation as a cerebellar func-
tion was also confirmed in monkeys through observing a 
close relationship between single cell activity in the dentate 
nucleus and the interval duration in a self-timed saccade task 
(Ohmae et al. 2017). This activity may be specifically used 
for the fine adjustment of self-timed intervals (Kunimatsu 
et  al. 2018). Increasingly, we also understand that the CN 
output may be involved in multiple cognitive functions 
including working memory and language processing 
(Wagner and Luo 2020).

The microzonal organization of the cerebellar cortex is 
preserved in the CN (Apps and Garwicz 2000). This allows 
for functionally relevant climbing fiber synchrony evoking 
complex spikes in cerebellar cortical microzones to converge 
in the CN and elicit behaviorally relevant responses that may 

depend on this synchrony (De Gruijl et al. 2014; Person and 
Raman 2012; Wagner et al. 2021).

42.3.3	� Output of the CN Is Split into 
Distinctive Pathways

GABAergic neurons in CN are traditionally thought to solely 
project to the inferior olive where they often terminate near 
gap junctions in olivary glomeruli (De Zeeuw et al. 1998). 
This arrangement allows CN output to influence both the 
occurrence and the synchrony of olivary spikes (Lefler et al. 
2014; Wagner et al. 2021), which may be important in con-
trolling olivary motor error signals (Simpson et al. 1996).

Excitatory CN neurons project to a variety of targets, 
notably including the motor thalamus, red nucleus, and 
brainstem motor nuclei. The functional impact of CN activ-
ity on these targets is often not clearly understood, but given 
the high tonic rates of CN firing in  vivo and behaviorally 
related phasic and tonic changes in CN firing a temporally 
highly precise effect on motor performance is expected 
(Heck et al. 2013).

Our knowledge of cerebellar anatomy is still expanding, 
and recent genetic and intersectional labeling techniques 
allow the identification of new connections. Important recent 
additions to our anatomical CN connectivity diagram include 
a GABAergic output to the brain stem (Judd et  al. 2021), 
excitatory feedback to the cerebellar cortex (Houck and 
Person 2014), and output to the ventrolateral periaqueductal 
grey involved in the control of fear memories (Frontera et al. 
2020). Our understanding of cerebellar-thalamic pathways is 
also increasing, showing not only connections to the primary 
cerebellar motor thalamus, but also to ventromedial and cen-
trolateral thalamic areas (Gornati et al. 2018). The rapid pace 
of new findings suggests that we have yet to learn a lot about 
the detailed functional contribution of CN output to the pro-
cessing of sensory-motor tasks in cortical and brainstem 
areas.
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