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Abstract

Neuroactive steroids regulate neuronal and glial function 
via non-genomic mechanisms by interacting with ion 
channels and neurotransmitter receptors. The adrenal 
glands and gonads are important sources of neuroactive 
steroids. In addition, neuroactive steroids can be produced 
locally within the central nervous system and these agents 
are denoted as neurosteroids. Enzymes involved in 
neurosteroid biosynthesis are expressed in the cerebel-
lum, where these agents modulate the development of 
cerebellar neurons as well as glial cells. Neurosteroids 
also exert neuroprotective actions and modulate synaptic 
transmission and plasticity in mature neurons. Deficits in 
cerebellar neuroactive steroid signaling may play a role in 
the pathophysiology of several conditions involving the 
cerebellum, including Niemann–Pick type C disease, ges-
tational dietary deficiency of methyl donors (folate and 
vitamin B12), prenatal stress, brain tumors, schizophre-
nia, autism, mood disorders, and alcohol use disorder. In 
addition, neuroactive steroids are emerging as potential 
therapeutic agents for a number of diseases that impair 
cerebellar function.
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37.1	� Introduction

Steroid hormones are derived from cholesterol and bind to 
ligand-dependent nuclear receptors that act as transcription 
factors, controlling the expression of a wide range of genes 
involved in numerous physiological and pathophysiological 
processes in many brain regions, including the cerebellum 
(Mahfouz et  al. 2016; Pillerová et  al. 2021; Zsarnovszky 
et al. 2018). Steroids also regulate neuronal function via non-
genomic mechanisms by interacting with ion channels and 
metabotropic receptors; these agents are known as neuroac-
tive steroids. Major sources of neuroactive steroids (or their 
precursors) are the adrenal glands and gonads; because ste-
roids are lipophilic, they can efficiently cross the blood–
brain barrier (Gatta et  al. 2021; Guennoun 2020; Kudova 
2021; Lloyd-Evans and Waller-Evans 2020). In addition, 
neuroactive steroids are produced locally in glial and neuro-
nal cells of the central nervous system—independently of 
peripheral organs—and these compounds are known as 
neurosteroids (Kudova 2021; Schverer et  al. 2018). 
Neuroactive steroids regulate many neuronal functions 
including neurotransmitter release, neuronal plasticity, and 
neuronal excitability (Kudova 2021; Lloyd-Evans and 
Waller-Evans 2020; Schverer et al. 2018). These agents have 
important roles in a variety of neuropsychiatric disorders, 
including epilepsy, substance abuse, multiple sclerosis, 
depression, and Alzheimer’s disease (Lloyd-Evans and 
Waller-Evans 2020; Gatta et al. 2021). In the next sections, 
we will discuss the specific roles of neuroactive steroids on 
cerebellar physiology and pathophysiology.

37.2	� Physiological Effects

37.2.1	� Developing Cerebellum

Several of the enzymes involved in neurosteroid biosynthesis 
are expressed in the cerebellum (Fig.  37.1) (Ukena et  al. 
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Fig. 37.1  Neurosteroid Biosynthetic Pathway. Enzymes shown in bold 
and italics have been identified in the cerebellum. Steroid 17 alpha-
hydroxylase/17,20 lyase (P450C17); pregnenolone sulfate (PREGS); 

dehydroepiandrosterone (DHEA); DHEA sulfate (DHEAS). For other 
enzyme abbreviations, see text

1998, 1999; Agís-Balboa et al. 2006; Kiyokage et al. 2014; 
Sakamoto et al. 2003; Kríz et al. 2008; Yarim and Kabakci 
2004). Purkinje cells (PCs) express cholesterol side chain 
cleavage enzyme (P450scc) during neonatal life and adult-
hood (Ukena et al. 1998). Pregnenolone sulfate, a neuroac-
tive steroid formed through the P450scc pathway, potentiates 
glutamatergic transmission at climbing fiber-PC synapses in 
neonatal rats, an effect mediated by an increase in presynap-
tic Ca2+ levels acting on steroid-sensitive transient receptor 
potential melastatin 3 receptors (Zamudio-Bulcock et  al. 
2011; Zamudio-Bulcock and Valenzuela 2011). During neo-
natal life, rat PCs and external granule cells (GrCs) express 
3β-hydroxysteroid dehydrogenase (3β-HSD) and generate 
progesterone (Fig.  37.1)(Ukena et  al. 1999). Progesterone 
promotes dendritic outgrowth and increases spine density in 
PCs via intracrine and/or paracrine activation of nuclear 
receptors (Sakamoto et  al. 2003). Progesterone and its 
metabolites also promote cerebellar myelination (Ghoumari 
et al. 2003). Allopregnanolone has also been detected in the 
neonatal cerebellum where it promotes the survival of PCs 
and GrCs (Sakamoto et al. 2003; Tsutsui et al. 2011; Yawno 
et al. 2009). In samples from adolescent rats, immunohisto-
chemical studies showed that 5α-reductase type I protein is 
expressed in glial cells, indicating that these cells can synthe-
size 5α-dihydroprogesterone and possibly allopregnanolone 
(Fig. 37.1) (Kiyokage et al. 2014). In juvenile quails, allo-
pregnanolone generated in the pineal gland promotes PC sur-
vival (Haraguchi et al. 2012).

In PCs and external GrCs from neonatal rats, high levels 
of both aromatase (P450aromatase) and estrogen can be detected 
(Fig.  37.1)(Sakamoto et  al. 2003). Estradiol injection near 
the vermis of postnatal day 6–9 rats increased dendritic 

growth and spine density in PCs, perhaps via nuclear estro-
gen receptor-driven production of brain-derived neurotrophic 
factor (Sakamoto et  al. 2003; Sasahara et  al. 2007). In 
10–12-day-old rats, intracerebral injection of prostaglandin 
E2 stimulated P450aromatase activity and estradiol synthesis; 
this was associated with a decrease in dendritic length, 
reduced spinophilin content, and altered excitability of PCs 
(Dean et  al. 2012). Estrogen administration was found to 
affect levels of presynaptic (SNAP25, VAMP1, VAMP2) and 
postsynaptic (PSD95) proteins in developing deep cerebellar 
nuclei neurons (Manca et al. 2014).

37.2.2	� Mature Cerebellum

Adult mice express 5α-reductase type I and 3α-HOR-II mRNA 
in PCs and to a lesser extent in GrCs (Agís-Balboa et al. 2006). 
The cerebellum of mature rodents can produce allopregnano-
lone (Griffin et al. 2004; Caruso et al. 2013). Allopregnanolone 
and allotetrahydrodeoxycorticosterone potentiate synaptic 
GABAA receptor function in PCs and GrCs (Cooper et  al. 
1999; Kelley et al. 2011). In GrCs and stellate cells, the effect 
of allotetrahydrodeoxycorticosterone on synaptic GABAA 
receptors depends on the presence of δ subunits (Vicini et al. 
2002). Allotetrahydrodeoxycorticosterone potentiates tonic 
currents mediated by δ subunit-containing extrasynaptic 
GABAA receptors in rat cerebellar GrCs (Hamann et al. 2002).

Mature cerebellar PCs and GrCs express estrogen recep-
tors (Hedges et al. 2012). Estrogen exerts rapid modulatory 
effects on locomotor activity-induced PC firing in female 
rats (Smith 1989). Gonadal estradiol facilitates the induction 
of long-term potentiation and increases synaptic density at 
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parallel fiber-to-PC synapses; activation of β-estrogen recep-
tors in PCs enhances gain-decrease vestibulo-ocular reflex 
learning in mice (Andreescu et al. 2007). Subsequent optical 
imaging studies demonstrated that endogenous estrogen 
facilitates glutamatergic transmission at parallel fiber-to-PC 
synapses (Hedges et  al. 2012). More recently, Dieni et  al. 
(2018a, b) found that blockade of 17β-estradiol synthesis 
with a P450aromatase inhibitor (letrozole, administered orally) 
in adult (150–170  days old) male rats abolished gain 
increases and decreases in vestibulo-ocular reflex adaptation 
(similar effect was observed in 30–34  days old rats). 
Letrozole prevented long-term potentiation but not long-
term depression at parallel fiber-to-PC synapses (Dieni et al. 
2018a). Interestingly, P450aromatase is expressed at low levels 
in adult PCs, suggesting that localized synthesis of 
17β-estradiol mediates its effects on PC synaptic plasticity, 
contributing to the regulation of vestibulo-ocular reflex adap-
tation (Dieni et al. 2020, b; Tozzi et al. 2020).

37.3	� Roles in Cerebellar Diseases

37.3.1	� Developing Cerebellum

In a mouse model of Niemann–Pick type C disease, a lyso-
somal lipid storage disorder, expression of 3α-hydroxysteroid 
oxidoreductase II (3α-HOR-II) activity was found to be 
reduced in the cerebellum and neonatal administration of 
allopregnanolone increased survival of both PCs and GrCs 
by a mechanism involving nuclear pregnane X receptors 
(Griffin et al. 2004; Langmade et al. 2006).

Using a rat model of gestational dietary deficiency of 
methyl donors (folate and vitamin B12), El Hajj Chehadeh 
et al. (2014) detected a reduction in the levels of the steroido-
genic acute regulatory protein (involved in the transfer of 
cholesterol from the outer to the inner mitochondrial mem-
brane), P450aromatase, estrogen receptors α and β, and lutein-
izing hormone receptors in PCs of postnatal day 21 female 
offspring. Progesterone and estradiol levels were also found 
to be decreased in the cerebellum of these female rats. These 
findings indicate that methyl donor deficiency during gesta-
tion induces persistent deficits in neuroactive steroids syn-
thesis and function in PCs.

Mice pups deficient in reelin, which have been used to 
model some aspects of schizophrenia and autism, display 
alterations in cerebellar neuroactive steroid levels at postna-
tal day 5 (increased testosterone and 17β-estradiol levels and 
decreased dihydrotestosterone levels) as well as PC degen-
eration at postnatal day 15 that could be corrected by 
17β-estradiol administration at postnatal day 5 (Biamonte 
et al. 2009).

The effect of prenatal stress on the actions of neuros-
teroids in the cerebellum was studied in guinea pigs (Bennett 
et al. 2017). The investigators hypothesized that the develop-
ing cerebellum could be vulnerable to prenatal stress because 
of its relatively high levels of glucocorticoid receptor expres-
sion. Guinea pigs were exposed to strobe light for 2 hr. on 
gestational days 50, 55, 60, and 65 (average guinea pig preg-
nancy duration is 67 days). Advantages of using guinea pigs 
include that the placental structure and function is more 
similar to that of humans, gestation duration is more pro-
longed than in rodents, and newborns are more mature 
(Morrison et al. 2018). It was found that prenatal stress pro-
duced age-dependent reductions in mature oligodendrocyte 
numbers and reactive astrocytes in cerebellar lobule VIII of 
term female offspring, but this effect disappeared by postna-
tal day 21. Levels of neurosteroid-sensitive GABAA recep-
tors expressed in the extra-synaptic compartment of GrCs 
(i.e., containing α6 and δ subunits) were reduced in a sex- and 
age-dependent manner, whereas cerebellar 5α-reductase lev-
els (Fig. 37.1) were increased, which may represent a com-
pensatory mechanism to maintain tonic GABAergic 
inhibition (Bennett et al. 2017). These findings indicate that 
prenatal stress disrupts the actions of neurosteroids in the 
developing cerebellum.

Studies suggest that neuroactive steroids play an impor-
tant role in the pathophysiology of childhood tumors. One of 
the most common malignant pediatric tumors is medullo-
blastoma, which originates in GrC-like precursors that 
express elevated estrogen receptor levels (Belcher 2008). 
Activation of these receptors with low physiologically rele-
vant concentrations of estradiol rapidly activates extracellu-
lar signal-regulated kinase (ERK)1/2 via a G 
protein-dependent mechanism and stimulates migration in a 
cell line of cerebrocortical origin (Belcher 2008). More 
recently, it was shown that estrogen stimulates growth of 
medulloblastomas via estrogen receptor β-induced insulin-
like growth factor-1 receptor signaling that increases sur-
vival of tumor cells (Cookman and Belcher 2015). Estrogen 
and soy isoflavonoids reduce medulloblastoma cell sensitiv-
ity to chemotherapy (Belcher et  al. 2017). Antagonism of 
estrogen receptors blocked the tumor-promoting effects of 
estrogen in cultured cells and medulloblastoma human xeno-
graft models (Belcher et al. 2009). These studies suggest that 
estrogen receptor β signaling contributes to medulloblas-
toma tumorigenesis and that adjuvant antiestrogen therapy 
could be beneficial in the management of these tumors. It is 
important to determine if neuroactive steroids play a role in 
the biology of other cerebellar pediatric tumors (e.g., juve-
nile pilocytic astrocytomas and ependymomas). A recent 
review indicates that astrocytomas are also hormone-
sensitive tumors (Hirtz et al. 2020).
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37.3.2	� Mature Cerebellum

Cerebellar neurosteroid levels were measured during normal 
aging in wild-type mice and heterozygous staggerer mice, 
which display precocious aging (Janmaat et al. 2011). Aging-
related decreases in 17β-estradiol, progesterone, and testos-
terone levels were correlated with Purkinje cell loss in these 
mice; these effects occurred earlier in the staggerer mice. 
Interestingly, locally produced cerebellar neurosteroids 
(pregnenolone, 5α-dihydroprogesterone, and allopregnano-
lone) did not decline with age in either wild-type or staggerer 
mice.

The cerebellum is also an important target of many abused 
substances and plays an important role in the pathophysiol-
ogy of substance use disorders (Moulton et  al. 2014). A 
recent study characterized neurosteroid pathways in human 
male postmortem brains from alcohol-use disorder patients 
and matching controls (Gatta et al. 2021). In samples from 
patients with alcohol use disorder, cerebellar mRNA levels 
for the 18-kDa translocator protein (involved in outer to 
inner mitochondrial membrane transport of cholesterol), 
3α-hydroxysteroid dehydrogenase (Fig.  37.1), and the 
steroid-sensitive GABAA receptor δ subunit were signifi-
cantly reduced. The cerebellar 3α-hydroxysteroid dehydro-
genase promoter exhibited elevated DNA methylation levels. 
Cerebellar allopregnanolone and pregnanolone levels were 
decreased. These findings suggest that chronic alcohol expo-
sure disrupts neurosteroid signaling in the cerebellum. It is 
important to determine if other abused substances produce 
similar effects.

37.4	� Conclusions and Future Directions

The cerebellum is an important target of neuroactive steroids 
produced in peripheral glands, other brain regions (i.e., the 
pineal gland), and the cerebellum itself. Developing PCs are 
a major source of locally produced neurosteroids (i.e., pro-
gesterone and allopregnanolone), which contribute to the 
maturation of dendrites, spines, and synapses in these neu-
rons (Tsutsui and Haraguchi 2020). GABAA receptor-
modulating neurosteroids (e.g., allopregnanolone) are 
produced in the mature cerebellum and regulate synaptic 
transmission and excitability of PCs and GrCs. The function 
of mature PCs and GrCs is modulated by estrogen receptors 
that regulate synaptic transmission and plasticity, as well as 
vestibulo-ocular reflex adaptation that is mediated, in part, 
by modulation of vestibulo-cerebellar function by estrogen.

Studies suggest that neuroactive steroids contribute to the 
pathophysiology of several diseases that involve the cerebel-
lum, including Niemann–Pick type C disease, gestational 
dietary deficiency of methyl donors (folate and vitamin 
B12), prenatal stress, brain tumors, schizophrenia, autism, 

mood disorders, and alcohol use disorder. Future studies 
should examine if disruptions in cerebellar neuroactive ste-
roid signaling are related to other conditions such as pre-
term birth, attention deficit hyperactivity disorder, fetal 
alcohol spectrum disorder, traumatic brain injury, stroke, 
substance use disorders, sleep disorders, and multiple sclero-
sis (Dean and McCarthy 2008; Valenzuela et  al. 2008; 
Caldeira et  al. 2004; Fanelli et  al. 2013; Potts et  al. 2009; 
Mirzatoni et  al. 2010; Caruso et  al. 2014; Tsutsui and 
Haraguchi 2020). It is also important to investigate the 
potential utility of neuroactive steroids in the treatment of 
diseases that affect the cerebellum (Ardeshiri et  al. 2006; 
Kelley et al. 2011; Jung et al. 2002; Murugan et al. 2019; Xu 
et al. 2022; Yan et al. 2015). Another exciting area of research 
is the regulation of the cerebellar actions of neuroactive ste-
roids by the gut microbiota (Diviccaro et al. 2021).
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