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2A Brief History of the Cerebellum

Jeremy D. Schmahmann

Abstract

Cerebellar structure and function have intrigued investi-
gators and clinicians for millennia. Major anatomic fea-
tures were recognized early, and the role of the cerebellum 
in coordinating movements was established two centuries 
ago. Cerebellar involvement in nonmotor functions was 
described in clinical and experimental observations start-
ing around the same time, but attention to their impor-
tance rose to the fore only recently. Functional localization 
was first derived from comparative morphology. Ablation 
degeneration and physiological studies in animals and 
neurological observations in patients with focal injury led 
to the lobular theory of organization. This was refined by 
delineation of the mediolateral parasagittal zonal organi-
zation of cerebellar connections. Histological studies date 
back to Cajal, with descriptions of additional neuronal 
elements and circuitry evolving over the years. 
Recognition of the cerebellar cognitive affective syn-
drome and the neuropsychiatry of the cerebellum, obser-
vations from connectional neuroanatomy, and advances in 
anatomic, task-based, and functional connectivity mag-
netic resonance neuroimaging provide contemporary sup-
port for the earliest notions that the cerebellum is engaged 
in a wide range of neurological functions. Together with 
new theories of cerebellar function, and elucidation of the 
genetic basis of inherited or sporadic ataxias and neurobe-
havioral disorders, the cerebellum has become increas-
ingly relevant to contemporary clinical neurology and 
neuropsychiatry.
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The cerebellum has been recognized since antiquity. Notions 
regarding its functions included the belief that it imparted 
strength to the motor nerves (Galen A.D. 129/130–200/201), 
was a center for memory (Nemesius, c.A.D. 390, and Albert 
von Bollstädt/Albertus Magnus 1193–1280), controlled sen-
sory functions including unconscious sensibility (Co(n)
stanzo Varolio/Variolus 1543–1575), was involved with 
involuntary activity including the functions of the heart and 
respiration (Thomas Willis 1621–1675), and was the seat of 
amative love (Franz Joseph Gall 1758–1828) (Neuburger 
1897/1981; Clarke and O’Malley 1996; Schmahmann and 
Pandya 2006). As is apparent from the historical account 
below, the conclusions of these pioneers, although based on 
flimsy or fanciful evidence, were rather prescient.

2.1	� Early and Evolving Views of Cerebellar 
Organization and Function

Rolando (1809) first demonstrated that ablation of the cerebel-
lum results in disturbances of posture and voluntary move-
ment. Fodéra (1823) showed the release of postural mechanisms, 
and extensor hypotonia following acute cerebellar injury in 
pigeons, guinea pigs, and rabbits. Flourens (1824) showed in 
pigeons that the cerebellum is responsible for the coordination, 
rather than generation, of voluntary movement and gait, a con-
cept that has remained the guiding principle of cerebellar func-
tion. François Magendie’s (1824) lesion studies led to the 
understanding that the cerebellum is essential for equilibrium. 
Disturbances of motor control following focal cerebellar 
lesions in monkeys were demonstrated by Luciani (1891), 
Ferrier and Turner (1893), and Russell (1894).
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Comparative anatomists such as Lodewijk “Louis” Bolk 
(Bolk 1902; Glickstein and Voogd 1995) derived structure–
function correlations by comparing the size of a cerebellar 
region with the characteristics of the species to which it 
belonged. They concluded that the vermis coordinates bilat-
eral symmetrical movements, the cerebellar hemispheres 
coordinate unilateral movements of the limbs, and the devel-
opment of manual dexterity corresponded with the expan-
sion of the lateral cerebellar hemispheres. The lobular theory 
(Fulton and Dow 1937; Larsell 1970; Brodal 1967; see 
Angevine et al. 1961) held that the cerebellum is functionally 
organized into lobes. The flocculonodular lobe, archicerebel-
lum, and vestibulocerebellum became synonymous. The 
anterior lobe, pyramis, and uvula in the vermis of the poste-
rior lobe, and the paraflocculus were termed the paleocere-
bellum or spinocerebellum. The lateral parts of the cerebellar 
hemispheres and the middle portion of the vermis were 
termed the neocerebellum or pontocerebellum.

Ablation-degeneration studies in animals (Jansen and 
Brodal 1940; Chambers and Sprague 1955a, b) introduced 
the concept of the organization of the cerebellum into three 
bilaterally symmetrical longitudinal corticonuclear zones. 
These studies (see Dow and Moruzzi 1958 for review) 
showed that the medial zone (vermis and fastigial nucleus) 
regulates vestibular function and the tone, posture, locomo-
tion, and equilibrium of the body, with somatotopic localiza-
tion in the vermal cortex – the head, neck, and eyes at the 
posterior vermis, the tail and lower limbs at the rostral aspect 
of the anterior vermis, and the upper limbs situated in 
between. The intermediate zone (paravermal cortex and 
nucleus interpositus) regulates spatially organized and 
skilled movements and the tone and posture associated with 
these movements of the ipsilateral limb, and lesions in the 
intermediate zone produced motor deficits including tremor, 
ataxia, and postural instability. The lateral zone (hemispheral 
cortex and dentate nucleus) was thought to be involved in 
skilled and spatially organized movements of the ipsilateral 
limbs, although lateral hemispheres or dentate nucleus 
lesions produced only minor impairments of the distal 
extremities, without clear somatotopic organization. Dow 
(1942, 1974) identified the dentate nucleus in man and 
anthropoid apes as consisting of two parts, a dorsomedial 
microgyric, magnocellular older part homologous to the den-
tate nucleus of lower forms, and an expanded new part com-
prising the bulk of the dentate nucleus, the ventrolateral 
macrogyric parvicellular part. He postulated that the newer 
“neodentate” expanded in concert with, and was connected 
to, the frontal, temporal, and parietal association areas of 

higher primates and man, an idea he later expanded upon 
with Leiner et al. (1986).

The study of the cerebellar role in nonmotor functions has 
a rich history (see Schmahmann 1991, 1997a, b, 2010 for 
review and citations). Physiological and ablation studies 
demonstrated cerebellum to be engaged in autonomic func-
tions such as pupil diameter, blood pressure, and sleep wake 
cycle. Cerebellar stimulation influenced the size of stroke 
following middle cerebral artery ligation in rats, produced 
generalized arousal of the electroencephalogram, evoked 
hyperactivity in monkeys and cats, and produced complex 
behaviors including grooming, predatory attack, aggression, 
and sham rage. Studies also showed the cerebellum to be 
essential for conditional associative learning including fear-
conditioned bradycardia in the rat and the nictitating mem-
brane response in rabbits, in addition to its role in spatial 
navigation and visual-spatial learning.

2.2	� Cerebellar Cortex

Jan Evangelista Purkynĕ (1787–1869) described the cell 
that would come to bear his name (Purkinyě 1837), and 
Ramón y Cajal (1909) provided the first detailed descrip-
tion of the neuronal architecture of the cerebellar cortex, 
including mossy fibers, granule cell glomeruli, and parallel 
and climbing fibers (Eccles et  al. 1967; Palay and Chan-
Palay 1974; Brodal et al. 1975) (Fig. 2.1). Later investiga-
tors described Lugaro cells (Fox 1959; Palay and 
Chan-Palay 1974) and unipolar brush cells in the vestibulo-
cerebellum (Mugnaini and Floris 1994). Using acetylcho-
linesterase, Voogd and colleagues (Voogd 1967, 1969; 
Marani and Voogd 1977) demonstrated parasagittal zonal 
organization in cerebellar white matter: zones A and B at 
the vermis, paravermal zones C1, 2, and 3, and zones D1 
and 2 in the hemispheres. Hawkes and colleagues (Gravel 
and Hawkes 1990) demonstrated this zonal pattern in the 
cortex using monoclonal antibodies. Histochemical mark-
ers confirmed these parasagittal zones, each with topo-
graphically arranged connections with the deep cerebellar 
nuclei (Haines 1981) and inferior olive (Groenewegen and 
Voogd 1977; Hoddevik and Brodal 1977; Groenewegen 
et al. 1979). The demonstration of fractured somatotopy in 
sensory projections to cerebellum (Shambes et  al. 1978; 
Bower and Kassel 1990) is consistent with the observation 
that Purkinje cells (PCs) can be activated by the ascending 
axons of granule cells (Llinas 1984; Cohen and Yarom 
1998) as well as by beams of parallel fibers.

J. D. Schmahmann



7

2.3	� Connectional Anatomy

Myelin and degeneration studies in the nineteenth and early 
twentieth centuries revealed that cerebellar connections with 
spinal cord, vestibular system, brainstem, and cerebral cor-
tex are topographically arranged. Bechterew (1888) showed 
that the caudal pons is linked with the cerebellar anterior 
lobe, but rostral pons is linked with the cerebellar posterior 
lobe. Sherrington’s (1906) physiological studies showed cer-
ebellar afferents from the proprioceptive system (he viewed 
cerebellum as the “head ganglion of the proprioceptive sys-
tem”), and others showed topographically arranged inputs to 
cerebellum following proprioceptive, cutaneous (Dow and 
Anderson 1942; Snider and Stowell 1942; Hampson et  al. 
1952) vagal, visual, and auditory stimulation (Snider and 
Stowell 1942; Dow and Moruzzi 1958).

Cerebellar somatotopy was subsequently confirmed in 
anatomical and physiological investigations of afferents to 
the cerebellum from the spinal cord (Chambers and Sprague 
1955a, b; Grant 1962a, b; Oscarsson 1965), with spinocere-
bellar tracts terminating exclusively in the anterior lobe and 
lobule VIII (sensorimotor areas of cerebellum). Spinal-
recipient olivary nuclei project to sensorimotor cerebellum 
(anterior lobe and lobule VIII), whereas most of the principal 
olive (devoid of spinal afferents) projects to the cerebellar 
posterior lobe (Oscarsson 1980; Ruigrok et  al. 1992; 
Groenewegen et al. 1979).

Anatomical studies of the feedforward loop of the cerebro-
cerebellar system (Brodal 1978; Glickstein et  al. 1985; see 
Schmahmann 2004), and electrophysiological experiments of 
the cerebrocerebellar system (Henneman et al. 1952; Sasaki 
et  al. 1975; Allen and Tsukuhara 1974) demonstrated pre-
dominantly motor connections of cerebellum in a topographi-
cally precise manner. Studies also linked cerebellum with 
limbic structures  – hippocampus, septum, and amygdala 
(Maiti and Snider 1975; Heath and Harper 1974), the hypo-
thalamus (Haines et al. 1997), and the ventral tegmental area 
(Snider and Maiti 1976) that gives rise to the mesolimbic 
dopaminergic system critical for behavioral modulation 
(Carta et  al. 2019). Anterograde isotope studies of cortico-
pontine pathways demonstrated precisely arranged inputs 
from motor and supplementary motor areas (Schmahmann 
et al. 2004), and also from associative and paralimbic regions 
of the prefrontal, posterior parietal, superior temporal, and 
parastriate cortices concerned with higher order functions 
(Schmahmann and Pandya 1997a, 1997b; see Schmahmann 

a

b

Fig. 2.1  General organization of the cerebellar cortex. (a) Santiago 
Ramón y Cajal (1911/1995) diagram of the neurons in the cerebellar 
cortex-oriented perpendicular to the long axis of the folium, as well as 
fibers and glial cells. A molecular layer, a Purkinje cell, B granular 
layer, b basket cell, C white matter of the folium, d pericellular baskets 
around the PC soma formed by the basket cell axon, e superficial stel-
late cell, f Golgi cell, g granule cell, h mossy fiber, i ascending axon of 
granule cell, j Bergmann glial cell, m astroglial cell, n climbing fiber, o 
recurrent collateral branches of a PC. (b) Diagram redrawn from Eccles 
et al. (1967) in Gray’s Anatomy (1995). A single cerebellar folium is 
shown sectioned in its longitudinal axis (diagram right) and trans-
versely (left). Purkinje cells are red; superficial and deep stellate, basket 
and Golgi cells are black; granule cells and ascending axons and paral-
lel fibers are yellow; mossy and climbing fibers are blue. Also shown 
are the glomeruli with mossy fiber rosettes, claw-like dendrites of gran-
ule cells, and Golgi axons. Lugaro and unipolar brush cells are not 
shown (Figures reproduced with permission)
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2010). Trans-synaptic viral tracing studies revealed that cer-
ebellar linkage with association areas is reciprocal – cerebral 
areas that project via pons to cerebellum in turn receive pro-
jections back via thalamus from the cerebellum (Middleton 
and Strick 1994). They also showed that cerebellar anterior 
lobe and dorsal dentate nucleus are linked with motor corti-
ces, whereas cerebellar posterior lobe and ventral dentate 
nucleus are linked with prefrontal and posterior parietal 
regions (Clower et al. 2001; Dum and Strick 2003).

2.4	� The Cerebellar Motor Syndrome

Early studies in patients with Friedreich’s ataxia, cerebellar 
cortical atrophy, and penetrating gunshot injuries of the cer-
ebellum (Brown 1892; Marie 1893; Babinski 1899; Holmes 
1907) established the critical role of cerebellum in coordina-
tion of extremity movement, gait, posture, equilibrium, and 
speech. Holmes (1939) later analyzed the motor and speech 
deficits resulting from focal cerebellar injury. Much of 
Holmes’ terminology and neurologic examination remain in 
contemporary use (see Chap. 3). These clinical studies con-
firmed in human that the vestibular cerebellum was impor-
tant for posture and equilibrium, the spinocerebellum for 
locomotion and extremity movement, and they suggested 
that the neocerebellum was important for manual dexterity. 
The anterior superior cerebellar vermis was particularly 
important for gait. Hypotonicity was a frequent accompani-
ment of bilateral cerebellar lesions. Lesions involving both 
cerebellar hemispheres produced characteristic cerebellar 
dysarthria. More than a century of clinical neurology has fur-
ther refined the understanding of the cerebellar motor syn-
drome, and now clinical rating scales are helpful in defining 
the nature and severity of the motor incapacity.

2.5	� The Cerebellar Cognitive Affective 
Syndrome

From the earliest days of clinical case reporting, at least 
since 1831 (Combette 1831), instances of mental and intel-
lectual dysfunction were described in the setting of cerebel-
lar pathology (Schmahmann 1991). Sizable posterior lobe 
strokes may produce only nausea and vertigo at the onset, 
and gait impairment subsides once the vestibular syndrome 
improves (Duncan et  al. 1975; Schmahmann et  al. 2009). 
Surgically induced dentate nucleus lesions in humans do not 
produce motor disability (Zervas et  al. 1967). Cerebellar 
abnormalities have been identified in autism (Bauman and 
Kemper 1985), schizophrenia (Moriguchi 1981; Snider 
1982), and attention-deficit disorder (Berquin et  al. 1998). 
Cognitive impairments were noted in patients with cerebellar 
stroke (Botez-Marquard et  al. 1994; Silveri et  al. 1994), 

cerebellar cortical atrophy (Grafman et  al. 1992), and in 
those with cerebellar developmental disorders (Joubert et al. 
1969; see Schmahmann 1991, 1997a). The spinocerebellar 
ataxias have changes in cognition to varying degrees through-
out the course of the illness (Manto 2014); and in children, 
mutism and subsequent dysarthria occur following excision 
of cerebellar tumors (Wisoff and Epstein 1984), often accom-
panied by regressive personality changes, emotional lability, 
and poor initiation of voluntary movement (Pollack et  al. 
1995; Levisohn et al. 2000; Gudrunardottir et al. 2016).

Schmahmann and Sherman (1998) described the cerebel-
lar cognitive affective syndrome (CCAS) in patients with 
acquired cerebellar lesions characterized by impairment of 
executive functions such as planning, set-shifting, verbal flu-
ency, abstract reasoning, and working memory; difficulties 
with spatial cognition including visual-spatial organization 
and memory; personality change with blunting of affect or 
disinhibited and inappropriate behavior; and language defi-
cits including agrammatism and dysprosodia. The CCAS 
occurred following lesions of the cerebellar posterior lobe, 
and the vermis was usually involved when there was a prom-
inent affective component. The CCAS was then described in 
children (Levisohn et al. 2000) with a similar pattern of cog-
nitive deficits, the affective changes reflecting damage to the 
vermis, and it has been replicated widely (e.g., Neau et al. 
2000; Riva and Giorgi 2000; Tedesco et  al. 2011). 
Metalinguistic deficits (Guell et  al. 2015) are related to 
impaired social cognition (Hoche et al. 2015), and neuropsy-
chiatric symptoms occur in the domains of attention, mood, 
social cognition, autism, and psychosis spectrum behaviors 
(Schmahmann et al. 2007). It is now apparent that there is a 
double dissociation in the motor vs cognitive dichotomy of 
cerebellar clinical neurology. Holmes’ (1917) cerebellar 
motor syndrome of ataxia, dysmetria, and dysarthria arises 
following lesions of the sensorimotor anterior lobe but not 
the posterior lobe; the CCAS/Schmahmann syndrome 
(Manto and Mariën 2015) arises from the cognitive – affec-
tive posterior lobe, but not the anterior lobe (Schmahmann 
and Sherman 1998; Levisohn et al. 2000; Schmahmann et al. 
2009). The cognitive and limbic consequences of cerebellar 
injury and the underlying neurobiology and theory of the 
putative cerebellar role in cognition were crystallized in the 
1997 monograph on this topic (Schmahmann 1997b).

2.6	� Atlases and Functional Neuroimaging

Vincenzo Malacarne provided the first detailed description 
of the cerebellum (Malacarne 1776), naming the vermis, lin-
gula, and tonsil. The atlas of Vicq-d’Azyr (1786) showed the 
structure of the cerebellum. Depictions of cerebellum and 
brainstem were included in drawings by Franz Joseph Gall 
(Gall and Spurzheim 1810) and Herbert Mayo (1827), and in 
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Fig. 2.2  Depictions of the cerebellum by early anatomists. (a) Image 
from the atlas of Vicq-d’Azyr (1786). His Plate IV includes the cerebel-
lum. The image is flipped vertically, as in the atlas the cerebellum is 
shown at the top. (b) Images from the atlas of Gall and Spurzheim (Gall 
and Spurzheim 1810). i Gall and Spurzheim’s Plate IV, shows the base 
of the brain with cerebral hemispheres, cerebellum and brainstem. ii 
Plate XIII, shows dissections of the cerebral hemisphere and cerebel-

lum. iii Plate X shows cerebral and cerebellar hemispheres partially 
dissected in the sagittal plane. (c) Depictions of white matter dissec-
tions of the cerebral hemisphere, cerebellum, and brainstem by Mayo 
(1827). i Plate III shows dissection of the middle cerebellar peduncle. In 
ii Plate IV, brainstem and cerebellar dissection with removal of the 
MCP reveals the inferior and superior cerebellar peduncles

numerous volumes on cerebellum (Bolk 1906; Edinger 1909; 
Ingvar 1918; Riley 1929; Ziehen 1934; Larsell and Jansen 
1972) (Fig.  2.2). The most detailed human atlas available 
was that of Angevine et al. (1961), until the introduction of 
the three-dimensional MRI Atlas of the Human Cerebellum 
(Schmahmann et al. 2000) for use with anatomic and func-
tional neuroimaging. It depicted cerebellum in the three car-
dinal planes in Montreal Neurologic Institute stereotaxic 
space, included histological specimens with cerebellar 
nuclei, and revised Larsell’s nomenclature. This atlas facili-
tated the development of the on-line SUIT atlas (Diedrichsen 
2006) for functional neuroimaging.

Magnetic resonance imaging (MRI) revolutionized the 
ability to visualize posterior fossa structures and lesions. 
Task-based functional MRI reliably shows cerebellar activa-
tion by motor (Fox et al. 1985) and nonmotor tasks (Petersen 
et al. 1989; Gao et al. 1996). The topography of functions in 

cerebellum is exemplified in fMRI meta-analyses and pro-
spective studies showing areas of cerebellum dedicated to 
motor control, cognition, and emotion (Stoodley and 
Schmahmann 2009; Stoodley et al. 2012; Guell et al. 2018; 
King et al. 2019). Resting state functional connectivity MRI 
has added physiological connectivity evidence to the con-
nectional data from non-human primates, showing function-
ally and anatomically distinct cerebrocerebellar circuits 
(Buckner et al. 2011; Habas et al. 2009; O’Reilly et al. 2010).

2.7	� Theories

Snider (1952) proposed that cerebellum is the great modula-
tor of neurologic function, and Heath (1977) regarded it as 
an emotional pacemaker for the brain. Gilbert and Thach 
(1977) confirmed the hypothesis of Marr (1969) and Albus 
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(1971) that cerebellar climbing fibers and mossy fibers work 
in collaboration to facilitate a cerebellar role in motor learn-
ing. Ito used the model of the vestibular ocular reflex 
(Lisberger and Fuchs 1978) to suggest that the cerebellum 
engages in error correction in the realms both of movement 
(Ito 1984) and of thought (Ito 1993). Leiner et al. (1986) and 
Leiner and Leiner (1997) drew on evolutionary consider-
ations of the dentate nucleus expanding in concert with cere-
bral association areas to propose that cerebellum serves as a 
multipurpose computer designed to smooth out performance 
of mental operations. Thach (1996) suggested that the cere-
bellum uses the mechanism of context-response linkage for 
motor adaptation, motor learning, and higher function. 
Llinas and Welsh (1993) highlighted the role of the olivocer-
ebellar system in entraining cerebellar neuronal firing, focus-
ing on the cerebellar role in movement. Other ideas include 
the view that the cerebellum is critical for timing (Ivry and 
Keele 1989), sensory perception (Bower 1995), anticipation 
and prediction (Courchesne and Allen 1997), and sequence 
learning (Molinari et al. 1997). Schmahmann’s dysmetria of 
thought theory (Schmahmann 1991, 2000, 2010) holds that 
there is a universal cerebellar transform that maintains func-
tion around a homeostatic baseline according to context; 
information being modulated is determined by topographi-
cally arranged anatomical circuits; the universal cerebellar 
impairment is dysmetria – resulting in the motor ataxia syn-
drome when the motor cerebellum is damaged, the CCAS 
when the cognitive-limbic cerebellum is damaged.

2.8	� Evolving Techniques and Therapies

Walker (1938) showed that stimulation of the cerebellum 
alters electrical activity of the motor cortex. Cerebellar stim-
ulation in patients produced amelioration of aggression 
(Heath 1977) and reduced the frequency of seizures (Riklan 
et al. 1974). The recognition of the cerebellar incorporation 
into the distributed neural circuits subserving cognition and 
emotion as well as motor control has opened the way to brain 
modulation using transcranial magnetic stimulation and tran-
scranial direct current stimulation of the cerebellum. These 
approaches have been used to study cerebrocerebellar inter-
actions in health (Hashimoto and Ohtsuka 1995; Schutter 
and van Honk 2006; Halko et  al. 2014) and disease (e.g., 
Wessel et al. 1996; Brady Jr et al. 2019). They have also been 
used to treat motor and cognitive/emotional manifestations 
in individuals with cerebellar disorders, and to improve 
motor learning, stroke recovery, speech and language func-
tions, and non-ataxic neuropsychiatric and movement disor-
ders (Demirtas-Tatlidede et al. 2010; Grimaldi et al. 2014; 

Cattaneo et  al. 2021; Manto et  al. 2021). 
Magnetoencephalography (MEG) can record activity in the 
human cerebellum (Tesche and Karhu 1997) and provides a 
temporal dimension to the study of cerebellar circuitry and 
function.

Magnetic resonance spectroscopy (MRS) is sensitive to 
metabolic changes (Ross and Michaelis 1996), is abnormal 
in patients with cerebellar degeneration (Tedeschi et  al. 
1996), and together with morphometric studies of volumetric 
change may be useful as a biomarker of cerebellar dysfunc-
tion in the spinocerebellar and other ataxias (Őz et al. 2011, 
2020). Diffusion tensor MRI (Takahashi et  al. 2014) and 
optical coherence tomography (Liu et  al. 2021) also now 
enable novel insights into cerebellar anatomy, connections, 
and disease.

Physical, occupational, and speech rehabilitation strate-
gies have long been the mainstay of therapy for ataxia. 
Therapeutic nihilism has given way to the appreciation that 
many symptoms experienced by ataxia patients can be 
treated successfully with medications. Rest tremor, spastic-
ity, camps, dystonia, neuropathic pain, dysphagia, urogenital 
symptoms, orthostasis, fatigue, mood and attention, among 
others symptoms, can all be effectively managed by repur-
posing medications from other neurological disorders, man-
dating that ataxia clinicians be more proactive in the care of 
these patients (Stephen et  al. 2019; Perlman 2020). 
Medications are also being repurposed or newly developed 
for the treatment of kinetic ataxia that address the underlying 
molecular and physiological defects that produce cerebellar 
motor, cognitive, and other syndromes.

Since the discovery of the genetic basis of Friedreich’s 
ataxia (Campuzano et al. 1996), the understanding of autoso-
mal dominant spinocerebellar ataxias and recessive ataxias 
has produced a paradigm shift in the care of patients and 
families with heritable cerebellar disorders. Exome sequenc-
ing and genome analysis have catapulted this further for-
ward. Advances in understanding the genetics of the ataxias 
and the development of novel approaches to gene-related 
therapies such as the introduction of antisense oligonucle-
otides, modulation of downstream common pathway mecha-
nisms, and direct implantation of genes using viral vectors 
(Ashizawa et al. 2018) hold out real promise for ameliora-
tion, cessation, and perhaps even prevention of the pheno-
typic manifestations of the genetic ataxias.
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