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Abstract. A coordination game is one in which two players are rewarded for
making the same choice from the same set of alternatives. The ability of humans to
tacitly coordinate effectively is based on the identification of pronounced solutions
associated with salient features attracting the player’s attention. These prominent
solutions are referred to as focal points. Game theory fails to account for how
people make decisions in tacit coordination games, and human behavior in these
games cannot be explained by a single theory. One of the accepted theories for
explaining human behavior is level-k theory. This theory assumes that each player
has a different level of reasoning by which she assesses the behavior of other
players in the game and makes strategic decisions based on that assessment. In
Previous studies, we have found an association between the players’ cognitive
load as reflected by EEG power and the level-k during the coordination game. The
goal of the current study was to examine the relationship between alpha frequency
and its sub-bands and level-k during a tacit coordination game in the context of
semantic processing.
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1 Introduction

Acoordinationgame is one inwhich twoplayers are rewarded formaking the samechoice
from the same set of alternatives [1]. Research has shown that humans have the ability to
successfully play coordination games evenwhen communication is not possible (e.g. [1–
4]). The ability of humans to tacitly coordinate effectively is based on the identification
of pronounced solutions associated with salient features attracting the player’s attention
[1]. At present, no single consensus exists about how humans converge on the same focal
point solution [5].One of the accepted theories of human behavior is level-k theory. This
theory [6–8] assumes that humans make predictions about other players’ actions based
on their level k value, which reflects their depth of reasoning ability. That is, the level-k
theory implies that each player believes that she is the most sophisticated person in the
game and bases her actions on the assumption that everyone else is at one level below
her. Previous studies that have examined the relationship between electrophysiological
metrics in the framework of level-k theory have found that a linear relationship exists
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between the player’s coordination ability and game difficulty with the that-beta ration
(TBR)which reflects the cognitive load of the player [9, 10]. In addition the researches in
[11] showed that the level-k of the player can be predicted based on the EEG signal using
deep learning methods. In the current study we aimed to examine the power distribution
of alpha frequency and its various components when performing tasks at different levels
of reasoning based on level-k theory. To that end, an electrophysiological-behavioral
experimental design was constructed. In this experiment, players were presented twice
with the same set of 12 tasks. In the first presentation, the players performed a picking
task inwhich each player had to freely select aword from a string of fourwords displayed
on the screen. In the second presentation, the same 12 tasks were displayed again, but
this time each player had to coordinate the choice of the specific word with an unknown
player. According to level-k theory, it could be assumed that the picking task is level-k
= 0 whereas the coordination task is level-k > 0. EEG was recorded from the scalp of
each of the players while performing each of the tasks. Based on the electrophysiological
results we examined the individual alpha frequency power distribution as a function of
the level-k.

2 Materials and Methods

2.1 Measures

Level-K Theory. One main cognitive theory that tries to analyze and explain human
behaviors in case of tacit coordination scenarios is the level-k theory which is derived
from the cognitive hierarchy theory [13, 16, 17]. The level-k theory holds that players’
reasoning depth relies on their subjective level of reasoning k. For example, players
in which k = 0 (sometimes referred to as L0 players) will act and choose randomly
in their given space of solutions, while L1 players assume that all other players are L0
reasoners and will act according to this assumption, i.e., their strategy will assume all
other players select a random solution. That is, L0 players might utilize rules but will
apply them randomly (picking), whereas Lk≥1 players will apply their strategy based on
their beliefs regarding the actions the other players (coordination).

2.2 Experimental Design

Procedure. The study comprised the following stages. First, participants received an
explanation regarding the overarching aim of the study and were given instructions
about the experimental procedure and the interface of the application. Participants were
offered a reward based on the total number of points they earned in both tasks (picking
and coordination). The experiment consisted of two sets of 12 different trials each with
a different set of words. For example, game board #1 displays a trial containing the set
{“Water”, “Beer”, “Wine”, “Whisky”} appearing in Hebrew, respectively. Each set of
words was displayed between two short vertical lines following a slide containing only
the lines without the word set so that participants will focus their gaze at the center of
the screen (Fig. 1, A and B).
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In thefirst experimental condition, the taskpresented to theplayerswas apicking task,
i.e., participants were only required to freely pick a word out of each set of four words
presented to them in each of the 12 trials. Subsequently, participants were presented with
the coordination task, comprising the same set of 12 different trials. However, in the
coordination condition participants were instructed to coordinate their choice of a word
with an unknown partner so that they would end up choosing the sameword from the set.
Each participant sat alone in front of the computer screen during the entire experimental
session. It is important to note that no feedback was given between the games. That is,
the participants were not informed whether they have coordinated successfully or not
with their unknown co-player.

Fig. 1. (A) Stand by screen (B) Game #1 {“Water”, “Beer”, “Wine”, “Whisky”}

Figure 2 portrays the outline of the experiment. Each slide containing the set of
words (task trials) was preceded by a slide containing only the vertical lines without the
word set (stand-by slides) to keep the gaze of participants in the middle of the screen
throughout the experiment. Each of the stand-by slides was presented for U(2,2.5) sec.,
while each slide containing the set of words was presented for a maximal duration of 8
s. Following a task trial, participants could move to the next slide with a button press.
The sequence of the task trials was randomized in each session.

Fig. 2. Experimental paradigm with timeline
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Participants. The experiment involved 10 university students that were enrolled in one
of the courses on campus (right-handed, mean age = ~26 [years], SD = 4). The study
was approved by the IRB committee of the University. All participants provided written
informed consent for the experiment.

EEGRecordings. EEGwas recorded from participants while they were performing the
tasks. The EEG was recorded by a 16-channel g.USBAMP biosignal amplifier (g.tec,
Austria) at a sampling frequency of 512 Hz. 16 active electrodes were used for collecting
EEG signals from the scalp based on the international 10–20 system. The recording was
done by the OpenVibe [12] recording software. The impedance of all electrodes was
kept below the threshold of 5K [ohm] during all recording sessions. Before performing
the actual experiment, participants underwent a training session while wearing the EEG
cap, to get them familiar with the application and task.

3 Results and Discussion

3.1 EEG Preprocessing Scheme

Based on the literature (e.g. [13–17]), we have focused on the following cluster of
frontal and prefrontal electrodes (Fp1, F7, Fp2, F8, F3, and F4). The preprocessing
pipeline consisted of finite impulse response (FIR) band-pass filtering (BPF) [1, 32] Hz
and artifact removal following ICA. The data was re-referenced to the average reference
and down sampled from 512 Hz to 64 Hz following baseline correction (see Fig. 3).
Data was analyzed on 1-s epoch windows from game onset which resulted in a total of
12 decision points (i.e., EEG epochs) per participant.

Fig. 3. Preprocess pipeline

3.2 Alpha Band Decomposing Analysis in Coordination Process

The oscillations in the alpha band can be divided into two main sub-bands, lower-alpha
(8–10 [Hz]) and upper-alpha (10–13 [Hz]) [18–20]. Previous research has already shown
that coordination necessitates the exertion of additional resources compared to picking
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as reflected by the modulation of the alpha frequency band (see for example [9–11,
17]). Here, based on previous findings, we assumed that as the complexity of the task
increases, i.e., the progression form picking (level-k = 0) to coordination (level-k >

0), alpha frequency should decrease more in the upper-alpha than in the lower-alpha,
especially in the context of semantic processing [18–22].

The statistical comparisonwas performed as follows. For eachEEGepochwhichwas
recorded during the picking and coordination tasks we calculated the relative energy of
the lower-alpha and upper-alpha frequency bands (see Fig.A.1 inAppendixA). Then,we
divided the relative energy values between the corresponding picking and coordination
games in order to estimate the change in energy that occurred in the different alpha bands.
That is, for each two corresponding epochs we estimated the energy changes within the

alpha band according to the ratio
Elower−Alpha|coordination

Elower−Alpha|picking and
Eupper−Alpha|coordination

Eupper−Alpha|picking , for the
lower- and upper-alpha band, respectively.

Analysis of the results of all 12 games showed that the decrease in upper-alpha
between coordination and picking was significantly more pronounced compared to the
decrease in lower-alpha (t(1438)= 3.9937, p< 0.001). In order to estimate the dynamic
changes in the power distribution of the alpha frequency band throughout the course of
the experiment, we split the set of 12 games into thirds. The first third included games
1 through 4, the middle third, games 5 through 8, and the final third, games 9 through
12. Table 1 displays the average values of the relative changes in upper- and lower-alpha
together with the p-value associated with each of the paired t-tests.

It is evident form Table 1 that the same trend appeared at the first (games 1–4) and
middle (games 5–8) thirds of the experiment (t (478) = 5.7788, p < 0.001; t(478) =
3.5248, p < 0.001, respectively). Regarding the final third (games 91–2), it can be seen
that the average change in upper-alpha was lower than in lower-alpha, but the difference
was not significant. Figure 4 resents graphically the distribution of the data by box plots.
The three upper panels present the boxplots for upper- and lower-alpha according to the
split of the data by thirds. The lower panel displays the boxplot corresponding to each
sub-band for the entire dataset of 12 games.

Table 1. Relative power change between coordination and picking in alpha sub-band (lower and
upper) – t-test results.

All games Games 
1- 4

Games 
5- 8

Games 
9- 12

Mean ( ) 0.9084 0.8812 0.9052 0.9389

Mean ( ) 0.8740 0.8284 0.8550 0.9385

t-test p-value p < 0.001 p < 0.001 p < 0.001 p > 0.05
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Fig. 4. Relative power change between coordination and picking in alpha sub-band (lower and
upper) – boxplot scheme

4 Conclusions and Future Work

The alpha frequency band has been previously shown to be modulated by mental work-
load [23, 24], and alertness [25]. The overarching goal of the current study was to
examine the susceptibility of the lower- and higher-alpha frequency bands to varying
levels of mental effort corresponding to different level-k. In this study we employed two
cognitive tasks, i.e., picking and coordination, each associated with a different level-k
(level-k = 0 and level-k > 0, respectively).

Our results indicate that the differential effect of level-k on the alpha sub-bands was
modulated as a function of task progression. Specifically, in the first and middle thirds
of the dataset (games 1–4 and games 5–8, respectively) the difference in relative energy
in the alpha band was significant, whereas, in the case of the last third of the dataset
(games 9–12) there was no difference in the relative energy in the alpha band indicating
that the alpha sub-bands were less sensitive to the differential effect of level-k in the
final section of the experiment. The decrease in the upper alpha frequency band in the
coordination task (level-k> 0) was more pronounced compared to the lower-alpha sub-
band (see Table 1). Themore pronounced decrease in upper alpha is further confirmation
of the effect of performing the semantic task which known as alpha desynchronization
[26]. These results are consistent with previous studies [26–28] that showed that there is
connection between intensity and fluctuations in alpha frequency band to abilities such
as language, imagination, perception, and planning abilities that can be termed brain
cognition.

There are a number of possible directions for future research. Behavioral experiments
have shown that players in coordination games are influenced by a variety of factors such
as loss-aversion [29], social value orientation [30–32] revenue distribution [30] and
culture [31, 33]. The effect of these factors and the possible interaction effects should be
examined in the context of level-k and since they may contribute to the variability in the
individual coordination ability of players [34, 35] and therefore modulate the associated
electrophysiological patterns. Moreover, extracting the brain sources associated with
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different level-k may improve models that aim to simulate the behavior of autonomous
agents [36–39] as well as brain-computer interfaces.

Appendix A: Alpha Band Decomposition and Relative Power
Estimation

Following the pre-processing step, we have estimated the relative power in the alpha
sub-bands (lower and upper alpha) for each picking and coordination epoch. The full
process of alpha band power estimation is presented in Fig. A.1. we have used the
Discrete Wavelet Transform (DWT) [40, 41] (black rectangles). The DWT is based on a
multiscale feature representation. Every scale represents a unique thickness of the EEG
signal [42]. Each filtering step contains two digital filters, a high pass filter, g(n), and a
low pass filter h(n). After applying each filter, a down sampler with factor 2 is used in
order to adjust time resolution. In our case, we used a 3-level DWT, with the input signal
having a sampling rate of 64 Hz (left red rectangle). As can be seen in Fig. A.1, this
specific DWT scheme resulted in the coefficients of the four EEGmain frequency bands
(green rectangles). Next, we use two band pass filters to split the alpha band into the
upper-alpha ([8–10] Hz) and lower-alpha (10–13 [Hz]) sub bands. Finally, to calculate
the relative energy (right red rectangle), we divided the energy of each band by the sum
of all the different bands (delta, theta, alpha, beta).

Figure A.1. EEGAlpha band power estimation and decomposition to lower and upper sub bands
using 3 level DWT scheme
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