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Abstract. Virtual-reality exposure therapy (VRET) is a novel inter-
vention technique that allows individuals to experience anxiety evoking
stimuli in a safe environment, to recognise specific triggers and gradu-
ally increase their exposure to perceived threats. Public-speaking anxiety
(PSA) is very common form of social anxiety, characterised by stressful
arousal and anxiety generated when presenting to an audience. In self-
guided VRET participants can gradually increase their tolerance to expo-
sure and reduce anxiety induced arousal and PSA over time. However,
creating such a VR environment and determining physiological indices
of anxiety induced arousal or distress is an open challenge. Environ-
ment modelling, character creation and animation, psychological state
determination and the use of machine learning models for anxiety or
stress detection are equally important, and multi-disciplinary expertise
is required. In this work, we have explored a series of machine learning
models with publicly available data sets (using electroencephalogram and
heart rate variability) to predict arousal states. If we can detect anxiety-
induced arousal, we can trigger calming activities to allow individuals
to cope with and overcome the distress. Here, we discuss the means of
effective selection of machine learning models and parameters in arousal
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detection. We propose a pipeline to overcome the model selection prob-
lem with different parameter settings in the context of Virtual Reality
Exposure Therapy. This pipeline can be extended to many other domains
of interest, where arousal detection is crucial.

Keywords: Arousal · EEG · HRV · Random forest · Glossophobia ·
Stress · VRET

1 Introduction

Anxiety is an emotional state characterised by negative affect and worry,
heightened arousal, careful environmental monitoring, rumination and avoidance
behaviour, ranging from mild to severe. Intense states of anxiety, or even fear -
a more rudimentary physiological response to a perceived threat that can lead
to fight/flight/freeze reactions and panic behaviour - can be symptoms of differ-
ent psychological disorders. For example, phobias are defined by an exaggerated
fear or unrealistic sense of threat to a situation or object, which appear in many
forms. In the Diagnostic and Statistical Manual of Mental Disorders (DSM-5,
2013) [18,23], the American Psychiatric Association defines five types of phobia,
related to natural environments (e.g., heights), animals (e.g., spiders), specific
situations (e.g., public spaces), blood/injury or medical issues, and other types
(e.g. loud noise, vomiting, choking). These debilitating disorders affect about
13% of the world’s total population. Research is ongoing for contributing fac-
tors to the onset, development, and maintenance of phobias and anxiety-related
disorders, their underlying cognitive and behavioural processes, physical man-
ifestation, and treatment methods [4,5,26,31]. Traditional treatments of such
disorders include in-vivo exposure, interoceptive exposure, cognitive behavioural
therapy (CBT), applied muscle tension, supportive psychotherapy, hypnother-
apy, and medications such as beta-blockers or sedatives [9].

Virtual reality exposure therapy (VRET) is one of the most promising novel
treatments, enabled by its superior immersive capabilities that generate a greater
sense of presence and enhance user effects, especially for negatively valenced,
high arousal stimuli [37]. Over the last two decades VRET, encompassing psy-
chological treatment principles and enabled by advancing display and computing
technology developments, has become a popular digital intervention for various
psychological disorders [6,38], being as effective as in-vivo (i.e., face-to-face)
exposure therapy post-intervention [20]. For example, a meta-analysis showed
VRET for Social Anxiety Disorder (encompassing an exaggerated fear of being
rejected, negatively evaluated or humiliated during social interactions, obser-
vations and/or in performance situations) to be more effective than wait-list
controls (with large effect sizes), and even therapist-led in-vivo exposure ther-
apy (though only small effect size) [6]. It shows good acceptability in users due
to its safe, controlled and empowering means of exposure. A vital part of the
development of VRET is the integration of bio-signals, such as heart rate vari-
ability or cortical arousal, to assess and ameliorate physiological distress states
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(e.g., fear or anxiety induced arousal) during exposure. Here, correct detection of
physiological states through robust models for effective management of anxiety-
induced arousal or stress is pivotal to facilitating intervention and enhancing
psychological health and well-being.

2 Related Work

Arousal detection, a noninvasive intervention, requires a multi-disciplinary app-
roach, where psychological state determination, machine learning models for
arousal or stress detection, and exploration of the related domains for model
implementation are equally important. In this paper, we narrow down the areas
and present an overview of the state of the art scenarios.

Emotion/Stress Detection: Koelstra et al. (2012) presented a multimodal dataset
for the analysis of human affective states [21]. They collected physiological signals,
including electroencephalographic (EEG) data from participants watching music
videos and rated each video in terms of excitement, stress, arousal, flaws, valence,
like, dislike. The data has been widely used for developing various machine learn-
ing models for arousal, anxiety and stress detection. Ahuja and Banga (2019) cre-
ated another dataset from the Jaypee Institute of Information Technology where
they classified mental stress in 206 students [2]. They used Linear Regression (LR),
Support Vector Machine (SVM), Näıve Bayes (NB) and Random Forest (RF)
machine learning classification algorithms [10,11,15,25,28,32–34] to determine
mental stress. Using SVM and 10-Fold cross-validation, they claimed an 85.71%
accuracy. Ghaderi et al. (2015) used respiration, galvanic skin response (GSR)
from hand and foot, heart rate (HR) and electromyography (EMG) at different
time intervals to examine different stress levels. Then they used k-nearest neigh-
bour (k-NN) and the SVM machine learning model for stress detection [16].

Emotion/Stress Detection using EEG: EEG is a non-invasive way to mea-
sure electrical responses generated by the outer layers of the cortex, primarily
pyramidal cells. It has been used to investigate neural activity during arousal,
stress, depression, anxiety or various other emotions. Several studies have applied
machine learning methods to classify and/or predict emotional brain states based
on EEG activity [12,13]. For example, Chen et al. (2020) designed a neural feed-
back system to predict and classify anxiety states using EEG signals during the
resting state from 34 subjects [8]. Anxiety was calculated using power spectral
density (PSD), and then SVM was used to classify anxious and non-anxious
states. Shon et al. (2018) integrated genetic algorithm (GA)-based features in
the machine learning pipeline along with a k-NN classifier to detect stress in EEG
signals [36]. The model was evaluated using DEAP data set [21] for the iden-
tification of emotional stress state. Other work also used the publicly available
DEAP data set for emotion recognition in virtual environments [27]. Based on
Russell’s circumplex model, statistical features, high order crossing (HOC) fea-
tures and powerbands were extracted from the EEG signals, and affective state
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classification was performed using SVM and RF. In major depressive disorder
(MDD, n = 32), Duan et al. (2020) [14] extracted interhemispheric asymme-
try and cross-correlation features from EEG signals and combined these in a
classification using k-NN, SVM and convolutional neural networks (CNN). Sim-
ilarly, in other research by Omar [3] frontal lobe EEG data was used to identify
stressed patients. Fast Fourier Transformation (FFT) was applied to extract
features from the signal, which were then passed to machine learning models,
such as SVM and NB for subject-wise classification of control and stress groups.
Table 1 shows a summary of ML models used for arousal detection and their
performance.

Machine Learning and VRET: Balan et al. (2020) used the publicly available
DEAP [21] database and applied various machine learning algorithms for clas-
sifying the six basic emotions joy, anger, sadness, disgust, surprise and fear,
based on the physiological data [5]. They presented the stages of model devel-
opment and its evaluation in a virtual environment with gradual stimulus expo-
sure for acrophobia treatment, accompanied by physiological signals monitoring.
In [39], authors used a hybrid machine learning technique using k-Means++
clustering algorithm and principal component analysis (PCA) to cluster drug
addicts to find out the relationship between cardiac physiological characteristic
data and treatment effect. The author showed the relationship between cardiac

Table 1. Machine learning models of arousal detection.

Ref. Domain Data type Model Performance Modality

[5] Acrophobia GSR, HR,

BVR

SVM, RF,

kNN

SVM-42.6% kNN-

89.5%, RF-99%

Unimodal

[39] Drug addiction HRV PCA,

k-Means++

... Unimodal

[24] Spider phobia Clinical

characteristics

RF,

Permutation

Test

∗p < 0.05;

∗ ∗ p < 0.01;

∗ ∗ ∗p < 0.001

Unimodal

[35] Spider phobia fMRI, Genetic

Data

SVM, GPC ... Unimodal

[31] PSA ... ... ... Unimodal

[7] Anxiety disorder EEG SVM Healthy subjects-

97.70 ± 3.32%,

Anxious subjects-

92.29 ± 4.44%

Unimodal

[36] Stress EEG k-NN with GA

Based Feature

Selection

k-NN 71.76% Unimodal

[27] Emotion

Recognition

EEG SVM,RF RF-74.0%,

SVM-57.2%

Unimodal

[14] Major depressive

disorder

EEG KNN, SVM,

CNN

CNN-94.13%,

SVM-88.22%,

KNN-83.15%

Unimodal

[3] Stress EEG SVM, NB SVM-90%, NB-81.7% Unimodal

[21] Human affective

state

EEG LR, SVM, NB Multimodal

[2] Metal stress EEG LR, SVM, NB 85.71% Unimodal
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Fig. 1. Proposed Machine Learning Pipeline: We collect EEG and multimodal physiolog-
ical data from suitable sensors. To clean the data for further processing we used individ-
ual phases of feature selection, feature prepossessing and feature constructions for model
selection which was used for parameter optimisation. This process was repeated using
automated machine learning for the best possible outcome from the collected data set.
After model validation, we use our trained model for meltdown moment detection, work-
place stress detection, VRET and/or other domains where arousal detection is crucial.

physiological characteristics and treatment effects using virtual reality. Other
research [35] used a single session VRET for patients with spider phobia, includ-
ing clinical, neuroimaging (functional magnetic resonance imaging, fMRI), and
genetic data for baseline and post-treatment (after six months) analysis. They
claimed a 30% reduction in spider phobia, assessed psychometrically, and a 50%
reduction in individual distance avoidance tests using behavioural patterns.

3 ML Model Pipeline and Data Set

First, we collected EEG and multimodal physiological data from suitable sensors.
Then we cleaned the data for further processing. Here we used individual phases
of feature selection, feature prepossessing and feature constructions for model
selection used for parameter optimisation. This process was repeated using auto-
mated machine learning for the best possible outcome from the collected data
set. After the model validation, we apply our trained model to VRET and/or
other domains where arousal detection is crucial. Figure 1 shows the proposed
machine learning pipeline.

Data Set: For this research, we explored three publicly available data sets. The
first one is the SWELL data set of [22]. The authors calculated the inter-beat inter-
val (IBI) between peaks in electrocardiographic (ECG) signals. Then, the heart
rate variability (HRV) index was computed on a five minutes IBI array by append-
ing the new IBI sample to the array in a repeated manner. The data set was manu-
ally annotated with the conditions under which the data was collected. This data
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set has 204885 samples with 75 features and 3 labelled classes. Here, 25 people
performed regular cognitive activities, including reading e-mails, writing reports,
searching, and making presentations under manipulated working conditions. We
used a second publicly available data set of [30], which was initially inspired from
[19], with HRV data to train our proposed machine learning model and determine
arousal levels. We also used a third publicly available data set titled ‘EEG during
Mental Arithmetic Task Performance’ [40] to explore EEG recordings of 36 par-
ticipants during resting state and while doing an arithmetic task. This data set
has been commonly used to identify anxiety in individuals triggered while per-
forming arithmetic tasks. It has been collected using a Neurocom monopolar EEG
23-channel system device. Electrodes (Fp1, Fp2, F3, F4, Fz, F7, F8, C3, C4, Cz,
P3, P4, Pz, O1, O2, T3, T4, T5, T6) were placed on the scalp using international
10/20 standard. The sampling rate for each channel 500 Hz with a high-pass filter
of 0.5 Hz and a low-pass filter 45 Hz cut-off frequency. In the experimental manip-
ulation, participants were asked to solve mental arithmetic questions to increase
cognitive load and induce stress, thus, evoking higher arousal states.

Fig. 2. The time domain representation of EEG data of [40]. The top Figures show the
combined representations. Figures on the left show the initial condition and figures on
the right show the stressed condition in channels F3, F4, Fz, Cz. We can clearly see
the increase of oscillatory patterns of the signal from initial to stressful condition.



Self-guided VRET on Arousal Detection Using Multimodal Data 201

4 Result Analysis

In this study, we took the data set of EEG signals during mental arithmetic
tasks1 [40]. Decomposed EEG signals for a duration of 5 s before and during
an arithmetic task are shown in Fig. 2. The signals were in edf format, which
were converted to epochs and their statistical features (mean, std, ptp, var,

Fig. 3. Average frequency content of signal before and during the arithmetic task
using [40] data set. We can clearly see changes in excitation levels. The figure on
the left shows the initial level, whereas the right figure shows the stressed condition
during mathematical problem solving. The figures were generated using the open source
python package MNE-Python [17].

1 https://physionet.org/content/eegmat/1.0.0/.

https://physionet.org/content/eegmat/1.0.0/
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minim, maxim, argminim, argmaxim, skewness and kurtosis) were calculated.
These were then used for the classification of the signals. RF model was used
for this purpose which gave an accuracy of 87.5%. Figure 2 shows the time-
domain representation of EEG signal of [40]. In this figure, plots on the left
show recordings during the initial condition and plots on the right during stressed
condition in channels F3, F4, Fz, Cz. We can clearly see the increase of oscillatory
patterns of the signal from initial to stressful condition (Fig. 4).

Figure 3 shows average frequency content of signal epochs before and during
solving arithmetic tasks using [40] data set. We can see some changes in exci-
tation levels. The figures on the left show the signal in a relaxed state, whereas
figures on the right depict the signals under stress while performing mental
arithmetic task. Similarly, subsequent images in Fig. 3 show the time-frequency
analysis of individual channels (F3, Cz, P4) generated using power plots and
topographic maps. Significant difference can be seen between plots before and

Fig. 4. Images above show the time frequency representations plotted using power
plot topographic maps. Changes in Power Spectral Density can be seen for individual
channels before and during the stressed conditions. The figures were generated using
the open source python package MNE-Python [17].
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during evoked stress states. The Fig. 5 shows the pair plot of few notable fea-
tures MEAN-RR, MEDIAN-RR, SDRR-RMSSD, MEDIAN-REL-RR, SDRR-
RMSSD-REL-RR, VLF, VLF-PCT from SWELL dataset [22]. These statistical
features have been used to classify the signals aiming for arousal detection. This
publicly available HRV dataset has been used to train our machine learning mod-
els. The Fig. 6 shows the prediction of stressful moments from the HRV data set
generated by [30] inspired from [19]. We used the publicly available data set
of [30] to train our proposed machine learning model and determine momen-
tary stressful states. Figure 7 shows the performance (accuracy, precision, recall

Fig. 5. The figure shows the pairplot of a few notable features MEAN-RR, MEDIAN-
RR, SDRR-RMSSD, MEDIAN-REL-RR, SDRR-RMSSD-REL-RR, VLF, VLF-PCT
from SWELL dataset [22]. These statistical features have been used for the classification
of the signals aiming at arousal detection. This publicly available HRV dataset has been
used to train our machine learning models.
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Fig. 6. The figure shows the prediction of stressful moments from the HRV data set
generated by [30] inspired from [19]. We used the publicly available data set of [30]
to train our proposed machine learning model for VRET and determine momentary
stress states.

Fig. 7. Figures show the performance (accuracy, precision, recall and F1 -Score) of the
publicly available data set that we used to train our model. Here we consider QDA,
GNB, SVM, MLP, ADB, KNN, DT and RF machine learning models. KNN, DT and
RF has been used with multiple parameter settings. The figure on the top shows the
performance on SWELL [22] data set and figure on the bottom shows the performance
on EEG data set of [40].
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and F1 -Score) of the publicly available data set that we have used to train our
model. Here we consider Gaussian Näıve Bayes (GNB), Quadratic Discriminant
Analysis (QDA), Support Vector Machine (SVM), Multilayer Perceptron (MLP),
AdaBoost (ADB), k-nearhood neighbour (KNN), Decision Tree(DT) and ran-
dom Forest (RF) machine learning models. KNN, DT and RF have been used
with multiple parameter settings. The figure on the top shows the performance
of the SWELL [22] data set and figure on the bottom shows the performance on
the EEG data set of [40]. If we use a different set of data then they results may
vary slightly as showed by [1].

5 Challenges and Future Research Directions

As we mentioned in the Related Work section (Sect. 2) this work is derived
through multidisciplinary research. So, diverse open domain challenges have been
identified. Some of the key issues are-

– The real-time analysis of the machine learning data. Stream processing will
be one of the next challenges that we want to overcome for the same problem.

– The placement of the BCI electrodes is an important consideration, and inter-
esting to investigate further to determine the most relevant regions of the
brain to monitor arousal.

– In future, additional sensor/polar devices, chest-straps and/or wrist bands
could be used to collect further types of signals. Moreover, additional data
should be collected from different experimental conditions to further improve
efficacy.

6 Conclusion

In self-guided VRET, participants can gradually increase their own exposure to
anxiety evoking stimuli (like audience size, audience reaction, salience of self etc.)
to desensitise and reduce momentary anxiety and arousal states, facilitating ame-
lioration of PSA over time. However, creating this VR environment and deter-
mining anxiety induced arousal or momentary stress states is an open challenge.
In this work, we showed which selection of parameters and machine learning
models can facilitate arousal detection. As such, we propose a machine learning
pipeline for effective arousal detection. We trained our model with three pub-
licly available data sets where we particularly focused on EEG and HRV data.
Considering the scenarios, our proposed automated machine learning pipeline
will overcome the model selection problem for arousal detection. Our trained
machine learning model can be used for further development in VRET to over-
come psychological distress in anxiety and fear related disorders. Further useful
applications of the model can be seen in meltdown moment detection in Autism
Spectrum Disorder (ASD) and other scenarios where stress and arousal play a
significant role and early intervention will be helpful for physiological amelio-
ration. For example, early identification and signalling of a meltdown moment,
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can facilitate initiation of targeted interventions preventing meltdowns, which
will help parents, carers and supporting staff deal with such occurrences and
reduce distress and harm in individuals with ASD. Finally, arousal and increas-
ing stress have become buzzwords of recent times, adversely affecting a vast range
of populations across the globe regardless of age group, ethnicity, gender, or work
profile. Due to the long ongoing COVID-19 pandemic, changing scenarios, work
patterns and lifestyles, increasing pressures, and technological advancements are
a few possible reasons for this trend [16,21,29,30]. Thus, accurate detection of
distress related arousal levels across the general population (e.g., in educational
settings or the workplace) may help to avoid associated adverse impacts through
effective interventions, prevent long-term mental health issues and improve over-
all well-being.
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