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Abstract. As brain investigation progresses, the need has become urgent from
acquiring the higher resolution neuroimaging data to give amore detailed interpre-
tation. In particular, the technological development and innovation of theMagnetic
Resonance Imaging (MRI) machine, through increasing the magnetic field from
low (such as 3T) to high (such as 7T), has revealed significant advantages regarding
the image quality enhancement, etc. Currently, due to the limitations of hardware,
physics and physiology, the large-scale acquisition of the high-resolution MRI
neuroimages is still running on the road. Hence, enhancing the quality of the low-
fieldMRI data is critical by using the advanced artificial intelligence technology. In
this study, we propose a novel image enhancement framework, namely SR-MRI,
trying to improve the quality of the low-resolution neuroimage: (1) combining
with the Real-ESRGAN deep learning model; (2) bridging the 3T-MRI and the
7T-MRI within the same analysis scale; and (3) systematically comparing mul-
tiple evaluation indicators, including Brenner, SMD, SMD2, Variance, Vollath,
Entropy, and NIQE. The experimental results suggest that the edge, fineness and
texture features of the low-resolution neuroimages are restored to a great extent
from the SR-MRI framework. In addition, the evaluation results of multiple indi-
cators show that the processed 3T-MRI can achieve the similar effect from the
7T-MRI machine.

Keywords: Magnetic Resonance Imaging (MRI) · Super-resolution · Brain
informatics · Deep learning · Real-ESRGAN model

1 Introduction

As the most important information processing and control center in the human body, the
brain is closely related to cognitive, emotional, psychological and behavioral functions
[1]. With the rapid development of medical informatization and the popularization of
medical neuroimages in this digital age, Magnetic Resonance Imaging (MRI) plays
an increasingly significant role in the detection and diagnosis of various diseases for
smart health [2]. The quality of MR neuroimages, as the carrier of patients’ pathological
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information, can influence doctors’ perception, reception, comprehension and diagnosis
of patients’ pathological information.

Themagnetic resonance phenomenon is produced by using a highmagnetic field and
a radio signal to excite hydrogen protons in the human body. By changing the intensity
of external gradient magnetic field “T”, different tissues of the body can resonate at
different frequencies and draw structural images in human body [3]. The letter “T”
indicates Tesla in the magnetic resonance, which is the magnitude of the field strength.
Theoretically, the stronger the field intensity is used, the higher the signal to noise ratio
(SNR) is given, implying that more image resolution can be offered. From the hardware
perspective, the 7T-MRI machine, even the machine with the higher Tesla, is developed
to obtain the higher-resolution MRI data. However, due to the limitations of hardware
and physics, the acquisition system cost of the high-resolution (HR) 7T MRI is high
[4]. Therefore, the current mainstream still depends on the 3T-MRI technology, which
has generated massive amounts of data. Furthermore, from the method perspective,
the super-resolution (SR) reconstruction of low-resolution (LR) MR neuroimages is
attracting greater attention, which can reduce the requirements of hardware equipment
without increasing the cost of imaging technology. The reconstructed high-resolution
MR neuroimages can help doctors make accurate diagnosis of patients’ condition.

So far, the natural images have been the focus of academic super-resolution net-
work processing. However, as the super-resolution advances and the medical indus-
try’s demand of high-resolution images grow, more network structures and associated
approaches for medical images are being presented [5]. For instance, Liu [6] proposed
a multi-scale fusion convolution network to conduct super-resolution for MRI recon-
struction in order to investigate the various edge responses utilizing various convolu-
tion kernel sizes. Shi [7] put forward a new residual learning-based SR technique for
MRI by combining local residual block with global residual network. Furthermore,
numerous researchers have focused on different improved methods, such as the modi-
fied SRCNN (Super-Resolution Convolutional Neural Network) based global residual
learning strategy [8] and the GAN based common algorithms [9]. As a result, in this
paper, we introduce a novel super-resolution reconstruction framework for enhancing
the MR neuroimaging quality from 3T to 7T, combining with different deep learning
algorithms. Different from the common pipeline of the super-resolution reconstruction,
the current work builds flexible components to process different scale neuroimaging data
within a unified framework towards the goal of greater practice. In addition, considering
the necessity of the systematic analysis from the Brain Informatics methodology [10],
multiple evaluation indicators are calculated to verify the effectiveness of the enhanced
3T-MRI.

2 Method

In this section, we introduce a novel super-resolution framework, namely SR-MRI, for
enhancing MR neuroimaging from 3T to 7T. Figure 1 depicts the image enhancement
framework, which is made up of three components: the preprocessing component, the
super-resolution component and the evaluation component.
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Fig. 1. The detailed components and their workflows in the SR-MRI framework. (S is the mag-
nification of neuroimaging reconstruction. FR: Full Reference; RR: Reduced Reference; NR: No
Reference.)

2.1 The Preprocessing Component

In the preprocessing component, through the operation of spatial alignment, the images
have been aligned into the template derived from 555 healthy subjects of the IXI database
(http://www.brain-development.org) [11]. To execute the nonlinear registration properly,
we also need to initialize it by a linear registration to acquire the image’s orientation and
size close enough for the nonlinear registration. The significance of spatial alignment
is to align images to the same template space for comparison, as well as to eliminate
noise that may arise during PNG conversion. Subsequently, we slice both 3T and 7TMR
neuroimages along the Z axis, and convert them from 3D NIfTI format to PNG format.

2.2 The Super-Resolution Component

In the component of super-resolution, three super-resolution methods are integrated
into this framework, including the bicubic interpolation algorithm, and the SRCNN

http://www.brain-development.org
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and Real-ESRGAN models based on deep learning. These methods are performed to
reconstruct low-resolution images, respectively. Meanwhile, images can be magnified
with different scales in these three various methods. Obviously, more effective super-
resolution algorithms can be added to the framework to improve the image quality.

SRCNN technology is the first time to apply the deep learningmodel of convolutional
neural network in the field of super-resolution reconstruction [12]. Its network structure
is shown in Fig. 2. The supplied low-resolution image is first enlarged to the intended
size using bicubic interpolation. Secondly, to match the non-linear mapping between
LR and HR images, a three-layer convolutional neural network is utilized. Finally, the
output of the network is the reconstructed HR image.

Fig. 2. The network structure of SRCNN.

Real-ESRGAN (Real-Enhanced Super-Resolution Generative Adversarial Net-
works) is one of the top SR technologies in recent years including the Generative Net-
work and the Discriminator Network [13]. The model manages to achieve a decent
mix between image improvement and artifact reduction. The study proposes a high-
order degradation procedure, and uses the ‘sinc’ filters to the mimic typical ringing and
overshoot problems in order to synthesize more realistic degradations. The Generative
Network (as shown in Fig. 3) is a deep network constructed by several residual-in-
residual dense blocks (RRDB) without batch normalization, making it easier to train
deeper and more complicated network architectures. Meanwhile, to improve discrimi-
nator capabilities and stabilize training dynamics, the researchers used a U-Net discrim-
inator with spectral normalization regularizations. For most real-world images, Real-
ESRGAN trained on synthetic data is able to increase details while reducing annoying
artifacts.

2.3 The Evaluation Component

There exist two types of image quality evaluation methods: subjective and objective
[14]. The former relies on the subjective perception of the experimenter, while the latter
measures the image quality according to the quantitative index. The use of one or more
image indicators creates a mathematical model, ensuring that the outcomes of objective
evaluations are congruent with people’s subjective sentiments. According to whether the
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Fig. 3. The structure of Generative Network of Real-ESRGAN.

original image is referenced and the degree of reference, the objective quality evaluation
can be divided into the following three types: (a) Full Reference (FR), (b) Reduced
Reference (RR), (c) No Reference (NR) [15]. Since both FR method and RR method
require the information from the original images as the reference for assessment, and the
data used in this article is not HRMR neuroimages. Consequently, this research opts for
the NR method [16], which does away with the need for reference images and relies on
some information from the image to be reviewed for quality evaluation. Following that,
in the evaluation component, numerous distinct NR indicators are integrated, including
Brenner, SMD, SMD2, Vollath, Entropy, NIQE and so on

1. Brenner. The Brenner gradient function is the simplest gradient evaluation function.
It simply calculates the square of the gray difference between two adjacent pixels,
which is given by:

D
(
f Brenner

)
=

∑
y

∑
x
|f (x + 2, y) − f (x, y)|2 (1)

where D
(
f Brenner

)
is the index calculated by the Brenner gradient function, and

f (x, y) represents the gray value of the pixel (x, y) corresponding to image f .
2. SMD. The SumofModulus of grayDifference (SMD) function takes the gray change

as the basis for focus evaluation. SMD extracts the change size of the gray value of
point (x, y) and its adjacent points by performing a differential operation on the gray
level of the point (x, y) and its neighboring points, which is given by:

D
(
f SMD

)
=

∑
y

∑
x
(|f (x, y) − f (x, y − 1)| + |f (x, y) − f (x + 1, y)|) (2)

where D
(
f SMD

)
is the index calculated by the Sum of Modulus of gray Difference

function.
3. SMD2. The SMD2 function is the product of modulus of gray difference. That is, the

two gray differences in each pixel field are multiplied and then accumulated pixel
by pixel, which is given by:

D
(
f SMD2

)
=

∑
y

∑
x
|f (x, y) − f (x + 1, y)| ∗ |f (x, y) − f (x, y + 1)| (3)

where D
(
f SMD2

)
is the index calculated by the SMD2 function.
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4. Variance. The Variance function may be utilized as the evaluation function since
the sharply focused image has a bigger gray difference than the unfocused image,
which is given by:

D
(
f Variance

)
=

∑
y

∑
x
|f (x, y) − μ|2 (4)

where D
(
f Variance

)
is the index calculated by the Variance function.

5. Vollath. TheVollath function is based on the image cross-correlation function, which
efficiently suppresses noise and reduces interference from impurities. The function
is defined as follows:

D
(
f Vollath

)
=

∑
y

∑
x
f (x, y) ∗ f (x + 1, y) − M ∗ N ∗ μ (5)

where D
(
f Vollath

)
is the index calculated by the Vollath function, and μ indicates

the average gray value of the whole image, andM and N are the image’s width and
height, respectively.

6. Entropy. The Entropy function, which is based on statistical characteristics, is a
useful metric for assessing the richness of visual data. According to information
theory, the information quantity of an image is measured by the information entropy
of the image, which is given by:

D
(
f Entropy

)
= −

L−1∑
I=0

Pi ln(Pi) (6)

where D
(
f Entropy

)
is the index calculated by the Entropy function, and Pi is the

probability of pixels with gray value I in the image, and L is the total number of gray
levels (usually 256).

7. NIQE. The Natural Image Quality Evaluator (NIQE) [17] is the evaluation index of
ECCV’s PIRM competition in 2018. The NIQE first extracts the region of interest
from the image when extracting the statistical features of the image. It stems from
the fact that the human eye prefers to judge the image quality by the clearer part of
the image. When using the collected 36 features for image quality evaluation, the
Multivariate Gaussian Model (MVG) is used to fit, which is given by:

fX (x1, ..., xk) = 1

(2π)k/2|�|1/2 exp

(
−1

2
(x − v)T�−1(x − v)

)
(7)

where (x1, ..., xk) are the 36 features collected, v and� are the mean and covariance
matrix of MVG, which can be obtained by maximum likelihood estimation.

The value of NIQE is obtained by calculating the distance of the MVG parameters
between the natural image and the distorted image:

D
(
f NIQE

)
= D(v1, v2, �1, �2) =

√
(v1 − v2)T

(
�1 + �2

2

)−1

(v1 − v2) (8)

where D
(
f NIQE

)
is the index calculated by the NIQE.



190 Y. Cao et al.

3 Results and Discussions

3.1 MR Neuroimage Acquisition and Preprocessing

In this work, two datasets with the accession numbers of ds001553 and ds001555 are
obtained from the OpenNeuro platform (https://openneuro.org). Each study was per-
formed by three people with no known history of neurological diseases (5 females; age
= 25 ± 5 years). All participants gave informed consent in compliance with a protocol
approved by the Institutional Review Board of the National Institute of Mental Health
in Bethesda, MD, USA. For 3T images, its accession number is ds001553. 372 coronal
slices were obtained in a General Electric 3T MRI scanner using image parameters: TR
= 7240 ms, TE = 2.7 ms, TI = 725 ms, Flip angle = 12°, and resolution = 1 × 1
× 1 mm3. For 7T images, its accession number is ds001555. 354 coronal slices were
obtained in a Siemens 7T MRI scanner equipped with a 32-element receive coil using
image parameters: TR = 3000 ms, TE = 3.88 ms, TI = 1500 ms, Flip angle = 6°, and
resolution = 1 × 1 × 1 mm3. As for spatial alignment, we registered the correspond-
ing 3T and 7T images using Matlab SPM12 toolbox, to minimize the possible global
distortions. To do so, all the images were linearly aligned to the MNI space by using
an individual template [18]. After one subject’s MRI data is aligned to the MNI stan-
dard space, the NIfTI file is converted to 78 images of PNG format by slicing. Finally,
we obtained 234 normalized images from three subjects, with respect to the 3T scale,
and the same number of normalized images at the 7T scale. As individual differences
are not concerned about the core point in this paper, the average effectiveness of all
super-resolution images corresponding to different scale is evaluated respectively in the
following evaluation phase.

3.2 The Super-Resolution Results of the MR Neuroimaging

From Fig. 4, it can be seen that the resolution of MR neuroimages has been greatly
increased by using the proposed SR-MRI framework.

In this framework, the super-resolution images using the bicubic interpolation algo-
rithm have relatively higher ambiguity compared with the results from the SRCNN and
Real-ESRGAN methods, not only on the edge, but also in the region. The image rebuilt
using the SRCNN model has somewhat enhanced intra-regional resolution, however
it still falls short of the image recovered by the Real-ESRGAN model. By using the
Real-ESRGAN reconstruction, the images are clearest at the junction of white matter
and gray matter, and the edge, fineness and texture characteristics are recovered to a
large extent. Therefore, the Real-ESRGANmethod is embedded into the current frame-
work with stronger recommendation. In the next section, we compare the performance
of super-resolution results from both 3T and 7T MRI using quality evaluation of no
reference.

3.3 Quantitative Analysis Based on No-Reference Indicators

As shown in Table 1, the evaluation value of each index is given by averaging all values
from a group of images (234 slices). Apart from the NIQE index of the seven indexes
in this article, the greater an index value is, the higher an image quality has.

https://openneuro.org
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Fig. 4. The reconstructed MRI results based on the proposed SR-MRI framework. (a) shows the
reconstructed results based on the normalized-3T MR neuroimages; (b) shows the reconstructed
results based on the normalized-7T MR neuroimages. (×2 is the two times magnification for
super-resolution reconstructed images, and ×4 is the four times magnification.)

In Table 1, it is found that all indicators of 7T MRI are superior than those of 3T
MRI. When comparing the image quality of three alternative processing algorithms
in this SR-MRI framework, the Real-ESRGAN method outperforms the SRCNN and
bicubic interpolation methods. Meanwhile, the four times magnification produces a
superior visual quality than the two times magnification. In addition, to evaluate the
enhanced scale before and after running this SR-MRI framework, the difference of
indictors is calculated between both 3T and 7T normalized MR neuroimaging and the
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Table 1. Comparison of super-resolution results between 3T and 7T MRI based on quality eval-

uation of no reference. (∗ in D
(
f ∗)

is Brenner, SMD, SMD2, Variance, Vollath, Entropy, and
NIQE, respectively. I: Normalized 3T; II: Normalized 7T; III: 3T-Bic ×2; IV: 7T-Bicx2; V: 3T-
SRCNN×2; VI: 7T-SRCNNx2; VII: 3T-Real-ESRGAN×2; VIII: 7T-Real-ESRGANx2; IX: 3T-
Bic×4; X: 7T-Bicx4; XI: 3T-SRCNN×4; XII: 7T-SRCNNx4; XIII: 3T-Real-ESRGAN ×4; XIV:
7T-Real-ESRGANx4.)

super-resolution reconstructed images, respectively. On the one hand, by comparingwith
the NIQE difference of |D

(
f ∗,II

)−D
(
f ∗,I

)
| = 4.57 calculated by the normalized 3T and

7T images, the NIQE difference after the super-resolution reconstruction processes is
reduced obviously.On the other hand, the difference calculated by the other six indicators
is increased after running this framework. It is found that the SR-MRI framework can
enhance the performance of images, and even the enhanced 3T-MRI could achieve the
similar effect from the 7T-MRI machine.

4 Conclusion

In this paper, by developing a novel super-resolution framework, namely SR-MRI, com-
bined with the pre-trained SRCNN and Real-ESRGAN models, we apply the image
super-resolution reconstruction technology based on deep neural network to enhance the
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MR neuroimages. The effectiveness of the deep super-resolution model is verified by
comparing multi-scale MRI data from 3T to 7T. It has been shown that when the 3TMR
neuroimages are processed using the current framework, the image quality is increased
considerably, and the effect from a 7T MRI machine could be achieved similarly. In the
future, the further research is needed to integrate more super-resolution techniques into
this framework and apply it to more potential scenarios towards accelerating the clinical
practice.
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