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Abstract. Deep learning models are being increasingly used in precision
medicine thanks to their ability to provide accurate predictions of clinical
outcome from large-scale datasets of patient’s records. However, in many
cases data scarcity has forced the adoption of simpler (linear) feature
extraction methods, which are less prone to overfitting. In this work, we
exploit data augmentation and transfer learning techniques to show that
deep, non-linear autoencoders can in fact extract relevant features from
resting state functional connectivity matrices of stroke patients, even
when the available data is modest. The latent representations extracted
by the autoencoders can then be given as input to regularized regression
methods to predict neurophsychological scores, significantly outperform-
ing recently proposed methods based on linear feature extraction.

Keywords: Resting state networks · Functional connectivity · Deep
learning · Feature extraction · Predictive modeling

1 Introduction

Improvements in neuroimaging have provided physicians and radiologists with the
ability to study the brain with unprecedented precision. In particular, Resting
State functional Magnetic Resonance Imaging (RS-fMRI) measures spontaneous
fluctuations in blood oxygen-level dependent neural activity and allows estimating
the brain functional connectivity in the absence of any task-related activity [1].

Functional connectivity of resting state networks has shown to be a valuable
predictor of individual neuropsychological scores in stroke survivors, making it a
potentially useful tool in clinical practice [2–4]. However, building robust predic-
tive models from such high-dimensional measurements requires a large number of
training samples, which are not always available in clinical populations. Such lim-
itation can be partially addressed by exploiting linear dimensionality reduction
techniques such as Principal Component Analysis (PCA), Independent Compo-
nent Analysis (ICA), or sparse coding in combination with regularized regression
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methods [5,6]. Nevertheless, the choice of the dimensionality reduction technique
is non-trivial because it can affect performance of the predictive model [5,7].

Here we show that better performance can be achieved by exploiting the rep-
resentational power of non-linear dimensionality reduction techniques, namely,
deep autoencoders [8]. Autoencoders (AE) are becoming popular in functional
neuroimaging thanks to their ability to disentangle the underlying brain dynam-
ics in a completely unsupervised way [9,10] and have already been successfully
used to build predictive models of psychiatric disorders [11,12]. Nevertheless, the
application of such powerful deep learning models is often hindered by the limited
size of clinical datasets. In this work we propose to mitigate this issue using two
complementary approaches: data augmentation, which allows to expand the sam-
ple size by combining/distorting existing samples, and transfer learning, which
allows to exploit additional large-scale datasets (in our case, from the Human
Connectome Project [13]) containing functional connectivity data in order to
pre-train the autoencoder.

The proposed approach is validated on a reference dataset containing func-
tional connectivity matrices of stroke patients [3]. The features extracted by the
autoencoder are used as predictors of the corresponding neurophsychological
scores by means of regularized linear regression methods. The latter can limit
multicollinearity and overfitting, which makes them particularly suitable for the
analysis of neuroimaging data (for a recent review, see [14]). The performance
of our method is benchmarked against other popular dimensionality reduction
methods based on PCA and ICA, showing promising results.

2 Materials and Methods

2.1 Datasets

The main dataset used in our study consists of 100 resting state functional con-
nectivity (RSFC) matrices from symptomatic stroke patients, taken from pre-
vious studies [3,5]. The patients underwent a 30-minute-long RS-fMRI acquisi-
tion, 1–2 weeks after the stroke occurred. Several scores were taken during the
neuropsychological assessment: here we focus on language, verbal memory and
spatial memory indexes, which are available for a subset of subjects (language:
N = 94; memory: N = 77). In order to implement a transfer learning approach,
we also used a dataset from the Human Connectome Project [13], consisting of
RSFC matrices of 1050 healthy subjects. RSFC data represent the connectivity
between brain regions that share functional properties and can be expressed as
a symmetric matrix. In our case, the matrix of each subject is of size 324 × 324;
following common practice [5], the data was vectorized by only considering the
upper triangular matrix. Null values were converted to zero.

2.2 Dimensionality Reduction

Dimensionality reduction is the process of taking some input data in a high
dimensional space and mapping it into a new “feature” space whose dimen-
sionality is much smaller [15]. Our main focus was to test different variants of
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deep autoencoders in their ability to extract useful features from RSFC data,
and compare their performance with standard linear dimensionality reduction
methods [5]. The models were initially compared in terms of their reconstruc-
tion error, which corresponds to the mean squared error between the original
matrix and the reconstructed one. During the unsupervised feature extraction
process, the entire dataset (n = 100) was used regardless of the availability of
neuropsychological scores.

Linear dimensionality reduction techniques, such as PCA and ICA, apply a
linear transformation to the input data. That is, if the original data is in Rd

and we want to embed it into Rn (n < d) then we would like to find a matrix
W ∈ Rn,d that induces the mapping x → Wx. A natural criterion for choosing
W is in a way that will enable a reasonable recovery of the original input x [15].
Compared to deep autoencoders, the main drawback of PCA and ICA is that
they cannot extract nonlinear structures modeled by higher than second-order
statistics [16]. In the following, we will briefly review the main techniques used
in the present study and their implementation.

Principal Component Analysis. Before performing PCA the data was stan-
dardized to obtain a distribution with zero mean and unit variance. This step
was implemented using the predefined function StandardScaler from sklearn.
PCA was then performed by using the function PCA from the same library, which
performs linear dimensionality reduction using Singular Value Decomposition of
the data to project it to a lower dimensional space.

Independent Component Analysis. ICA performs the decomposition step
by imposing the constraint that the resulting components must be independent.
In this work we used the FastICA algorithm from sklearn, which is a block
fixed-point iteration algorithm based on negative entropy as a non-gaussianity
measure, which converges faster than adaptive algorithms [9]. As in the case of
PCA, data was first standardized.

Autoencoders. An autoencoder is an unsupervised neural-network based app-
roach for learning latent representations of high-dimensional data that can be
used to reconstruct the original input, while compressing it into a latent space
that usually has much lower dimensionality [17]. Learning such “undercomplete”
representations forces the autoencoder to capture the most salient features of the
training data by discovering its latent factors of variation [18].

Let’s consider a basic auto-encoder with a single hidden layer, n neurons in
the input/output layers and m neurons in the hidden layer. The model takes an
input x ∈ Rn and first maps it into the latent representation h ∈ Rm by using
an encoding function h = gφ(x) = σ(Wx+b) with parameters φ = {W, b}, where
σ(·) denotes the activation function of the neurons, W denotes the connection
weights and b denotes the neurons’ biases. Afterwards, a reconstruction of the
input x′ is obtained through the decoder function x′ = fθ(h) = σ(W ′h + b′)
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with θ = {W ′, b′}. The two parameter sets (θ, φ) are usually constrained to be
of the form W ∈ Rn,m = W ′T ∈ Rm,n, using the same weights for encoding the
input and decoding the latent representation [19]. The parameters are learned
by minimizing an appropriate cost function over the training set, which usually
corresponds to the Mean Squared Error between the original input and the
reconstructed output:

LAE(θ, φ) =
1
n

n∑

i=1

(x(i) − fθ(gφ(x(i))))2 (1)

Fully connected AE do not have any spatial bias over the image structure.
Convolutional autoencoders are an AE variant that exploits convolution filters
to more efficiently capture local spatial structure. For a mono-channel input x
the latent representation of the k−th feature map is given by:

hk = σ(x ∗ W k + bk) (2)

where the bias is broadcasted to the whole feature map, σ is an activation func-
tion, and ∗ denotes a convolution. The reconstruction is obtained using:

y = σ(
∑

k∈H

hk ∗ Ŵ k + c) (3)

where c represents the bias of the input channel, H identifies the group of latent
feature maps and Ŵ identifies the flip operation over both dimensions of the
weights [19].

In this work we considered both fully-connected and Convolutional Autoen-
coder (CAE) architectures. As baselines, we implemented two simple, 1-layer
AE with linear and non-linear activation functions. We then implemented a
more sophisticated CAE architecture, as shown in Fig. 1. In the latter case, the
encoder consisted of 3 convolutional layers followed by 2 fully connected layers,
and the same structure was mirrored in the decoder. In order to overcome van-
ishing gradient the Leaky Rectified Linear activation function was used. Mean
Square Error was used as loss function, which was minimized using the Adam
optimizer with a learning rate of 1e−3. Dropout was used as a further regularizer.
Hyperparameters were automatically optimized using Optuna [20].

Fig. 1. Workflow and architecture of the deep convolutional autoencoder.
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2.3 Data Augmentation and Transfer Learning

Deep networks perform remarkably well in many domains, but they are heavily
reliant on big data to avoid overfitting. Given the limited size of our clinical
dataset, we thus devised two approaches in order to promote a better general-
ization of the CAE during the feature extraction process.

The first method was based on Data Augmentation, which consists in combin-
ing and distorting each training sample in order to provide a more representative
distribution as input to the autoencoder [21]. In particular, we designed a mix-
up augmentation method that consists of a random convex combination of two
input samples leading to a total of 7421 synthetic samples:

x̂ = λxi + (1 − λ)xj

where xi and xj are raw input vectors and λ are values sampled from the Beta
distribution1. Following previous work [22], the choice of the parameters λ ∈ [0, 1]
was distributed accordingly to λ ∈ Beta(α, α) for α ∈ (0, inf). In the mix-up,
the samples to be combined were chosen randomly from all available images.
Isaksson et al. [23] tested the utility of the mix-up data augmentation technique
for a medical image segmentation task using 100 MRI scans and observed an
improvement when α = 0.5. Although our dataset could be slightly different, we
decided to use the same α value for consistency.

The second method was based on Transfer Learning (TL), which consists in
first training the autoencoder on a larger-scale dataset and subsequently tune it
on the smaller dataset. In our case, we took advantage of the Human Connectome
Project database for the pretraining phase. Afterwards, the model was fine-tuned
using the stroke dataset freezing the weights of the convolutional layers.

2.4 Regularized Regression

The feature sets extracted by each method were used as regressors for the pre-
diction of the neuropsychological scores.

Ridge regression [24] is a regularized regression method that controls the
regression coefficients by adding the L2 penalty term λ

∑p
j=1 β2

j to the objective
function. The least absolute shrinkage and selection operator (LASSO) model
[25] is an alternative method that adds the L1 penalty term λ

∑p
j=1|βj |. To

implement regularized regression we exploited a flexible approach based on elas-
tic net [26], which combines the penalties of Ridge and LASSO regression:

min
(β0,β)

(
y − β0 − XT β

)2

+ λ

(
1
2

(1 − α) β2 + α |β|
)

, (4)

The elastic-net loss function requires two free parameters to be set, namely
λ and α. The penalty parameter λ controls the amount of shrinkage, while the
parameter α controls the type of shrinkage. Following previous work [5], these

1 Note that although the extracted features were obtained using the synthetic data,
the model performance was always measured on the final stroke dataset.
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parameters were tuned using Leave-One-Out Cross validation (LOOCV). To
evaluate the regression model we used R-squared (R2), Mean Squared Error
(MSE) and Bayesian information criterion (BIC).

3 Results

3.1 Dimensionality Reduction

Figure 2 shows the reconstruction error against the number of components/latent
units for each method. The trend is similar across models: the larger the number
of components, the better the reconstruction. The CAE trained directly on the
stroke dataset obtained the worst reconstruction error, while the CAE trained
on the augmented dataset achieved the best performance. This result highlights
the importance of increasing the variability of the training distribution in order
to improve the quality of the features extracted by complex convolutional archi-
tectures. The simple 1-layer AEs achieved an intermediate reconstruction error,
comparable to those of PCA and ICA, which is no surprise given the intrinsic
similarity between these techniques [27].

3.2 Regularized Regression

Table 1 presents the metrics obtained in the neuropsychological scores prediction
task. As it can be observed, the λ parameter is usually small. On the other hand,
it can be seen that the α value mainly takes the two extremes: α ∼ 1, which
corresponds to a ridge regression; and α ∼ 0, which corresponds to a LASSO
penalization; an intermediate α ∼ 0.75 only happens in few cases. In order to
have a better visualization, Fig. 3 presents the methods sorted by lowest MSE
error and highest R2.

Fig. 2. Reconstruction error achieved by different feature extraction methods.
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Concerning the metrics obtained for the language score, it can be observed
that PCA slightly outperforms the other models in terms of R2 and MSE,
though the margin is fairly small. However, the CAE trained with Data Aug-
mentation achieves the best performance in both spatial and memory scores, with
a considerable margin over the other methods. Such remarkable performance is
approached also by the CAE trained using Transfer Learning. Interestingly, the
autoencoder with a single linear layer is often the one achieving the lowest BIC
value, suggesting that such architecture is particularly useful to select a few
representative components from the data distribution.

3.3 Getting Deeper on Augmentation and Transfer Techniques

Given the remarkable performance of the CAE trained using data augmentation
and transfer learning, in a series of additional simulations we explored how the
size of the augmented dataset could impact model performance, and whether a
combination of data augmentation and transfer learning might further improve
the predictive accuracy2. We thus designed four additional training regimens:

Table 1. Regression metrics and parameters obtained for the different feature extrac-
tion methods.

Language score (n = 94) Spatial score (n = 77) Memory score (n = 77)

R2 MSE BIC α λ R2 MSE BIC α λ R2 MSE BIC α λ

PCA 0.52 0.48 493 0.00 0.22 0.21 0.79 300 1 0.09 0.32 0.68 363 1 0.03

ICA 0.51 0.49 351 0.25 0.09 0.24 0.75 396 0.00 0.56 0.27 0.73 381 1 0.04

Lin AE 0.43 0.57 323 0.25 0.06 0.27 0.73 412 0.00 0.56 0.25 0.75 297 0.5 0.15

NonLin AE 0.50 0.50 357 0.75 0.00 0.26 0.74 456 0.00 0.22 0.26 0.74 369 0.75 0.01

CAE 0.42 0.57 624 0.25 0.01 0.27 0.73 390 0.5 0.01 0.27 0.73 759 0.00 0.7

CAE-AUG 0.50 0.50 421 0.50 0.06 0.33 0.65 315 0.5 0.09 0.40 0.61 316 1 0.04

CAE-TL 0.44 0.56 454 0.00 0.03 0.31 0.69 407 0.75 0.00 0.39 0.61 302 0.75 0.01

Fig. 3. MSE (orange) and R2 (violet) metrics obtained by different methods sorted
by accuracy. (Color figure online)

2 It should be pointed out that for these simulations we did not implement an exhaus-
tive hyper-parameter optimization, as in the previous cases.
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1. Aug(15000): Similarly as before, the CAE is trained with synthetic images
obtained via the mix-up strategy; however this time the size of the aug-
mented stroke dataset is increased to ∼15000 samples (i.e., twice the size used
previously);

2. TL-Aug: The CAE is first trained over the HCP dataset, as done before for
the Transfer Learning scenario. The model is then also trained on the initial
augmented stroke dataset (∼7500 samples);

3. AugTL-Aug: The CAE is first trained over synthetic HCP data obtained by
applying the same mix-up augmentation strategy (∼6000 samples). The model
is then also trained on the initial augmented stroke data (∼7500 samples);

4. AugTL-Stroke: The CAE is first trained over synthetic HCP data obtained
by applying the same mix-up augmentation strategy (∼6000 samples). The
model is then also trained on the original stroke dataset.

Figure 4 shows the reconstruction error obtained by the four different reg-
imens. The errors are comparable to that achieved previously by the simpler
Data Augmentation technique, suggesting that also in these cases we achieve
very good reconstructions.

At the same time, regression results reported in Table 2 and Fig. 5 clearly
show that these improved data augmentation and transfer learning regimens
further boosted the model’s performance, both in terms of R2 and MSE. All reg-
imens generally enhance the CAE accuracy, however the most striking improve-
ment is given by the TL-Aug regimen, which reaches significantly better per-
formance compared to all methods previously investigated, establishing a new
state-of-the-art for the stroke-prediction task. Interestingly, this improved model
achieves such accurate predictions by relying, on average, on fewer components
compared to other methods, which might be particularly relevant to improve
interpretability of the resulting model.

Fig. 4. Reconstruction error achieved by the four new augmentation/transfer regimens.
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Table 2. Regression metrics and parameters obtained by the four augmentation/
transfer regimens.

Language score (n = 94) Spatial score (n = 77) Memory score (n = 77)

R2 MSE BIC α λ R2 MSE BIC α λ R2 MSE BIC α λ

Aug (15000) 0.51 0.49 421 0.5 0.06 0.36 0.58 570 0.00 0.05 0.41 0.59 570 0.00 0.05

TL-Aug 0.56 0.45 284 0.00 0.03 0.40 0.56 367 0.5 0.09 0.47 0.54 357 0.75 0.08

AugTL-Aug 0.53 0.46 421 0.5 0.06 0.23 0.77 247 1 0.16 0.43 0.57 239 1 0.08

AugTL-Stroke 0.47 0.53 433 1 0.02 0.28 0.72 380 0.00 0.81 0.42 0.58 242 1 0.16

Fig. 5. MSE and R2 metrics obtained by augmentation/transfer regimens sorted by
accuracy.

4 Conclusion

In this work we investigated whether deep autoencoders could extract relevant
features from resting state functional connectivity data of stroke patients, which
can successively be used to build predictive models of neuropsychological scores.
We implemented a variety of autoencoder architectures, ranging from simple,
one-layer linear networks to more sophisticated convolutional versions exploit-
ing several layers of non-linear processing. In order to deal with the issue of data
scarcity, which is known to affect the performance of deep learning models, we
also explored data augmentation and transfer learning techniques. The autoen-
coder’s performance was benchmarked against other conventional approaches,
such as Principal Component Analysis (PCA) and Independent Component
Analysis (ICA).

The different methods were first evaluated in terms of their reconstruction
error. In general, all methods achieved similar reconstruction error, though the
autoencoders trained using data augmentation obtained slightly better accuracy.
The quality of the features extracted by different methods was then assessed
based on their capacity to serve as predictors for neuropsychological scores of the
patients in three cognitive domains (i.e., language, spatial memory, and verbal
memory). To this aim, the extracted features were given as input to regularized
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regression models, and performance was evaluated in terms of coefficient of deter-
mination, mean squared error and Bayesian information criterion. Results showed
that the performance of the basic autoencoders was overall comparable to that of
traditional methods (ICA and PCA). However, more sophisticated convolutional
architectures trained using data augmentation and transfer learning achieved a
much higher performance, with considerable gains of 7% (language), 66% (spa-
tial memory) and 47% (verbal memory) with respect to the previously reported
state-of-the-art methods [5]. The larger accuracy gains for memory scores can
be explained by the fact that prediction of language scores is likely close to ceil-
ing. Memory has a more distributed neural basis and the prediction of deficits
from structural lesions is relatively poor compared to other behavioral domains
[4,6]. Therefore, predicting memory scores represents an important benchmark
for RSFC-based machine learning methods.

In conclusion, our results demonstrate the great potential of deep learning
models for the analysis of multi-dimensional neuroimaging data even in cases
with limited data availability, which is often considered a critical limitation in
clinical studies. Future work should aim at further consolidating our findings, for
example by systematically evaluating the performance of deep learning models on
the prediction of other neuropsychological and behavioral scores, or by increasing
the sample size in order to allow testing model generalization on fully held-out
data. The latter task calls for multi-centric, coordinated efforts for collection,
harmonization and sharing of patients’ functional imaging data. Moreover, a
key research frontier would be to design and implement advanced techniques in
order to interpret the features extracted by non-linear “black-box” models, such
as deep networks. Although standard back-projection techniques [5] only work
with linear dimensionality reduction, there is a growing interest in designing
explainability techniques that can visualize the features that mostly influence
the decision of deep networks (for a recent review, see [28]). Such techniques
would be particularly relevant in the case of medical applications, since they
could provide valuable insights to the clinicians for the design of more effective
rehabilitation protocols.
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