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Abstract. How to capture the temporal evolution of synaptic weights
from measures of dynamic functional connectivity (DFC) between the
activity of different simultaneously recorded neurons is an important and
open problem in systems neuroscience. To address this issue, we first sim-
ulated models of recurrent neural networks of spiking neurons that had
a spike-timing-dependent plasticity mechanism generating time-varying
synaptic and functional coupling. We then used these simulations to
test analytical approaches that relate dynamic functional connectivity
to time-varying synaptic connectivity. We investigated how to use dif-
ferent measures of directed DFC, such as cross-covariance and transfer
entropy, to build algorithms that infer how synaptic weights evolve over
time. We found that, while both cross-covariance and transfer entropy
provide robust estimates of structural connectivity and communication
delays, cross-covariance better captures the evolution of synaptic weights
over time. We also established how leveraging estimates of connectivity
derived from entire simulated recordings could further boost the estima-
tion of time-varying synaptic weights from the DFC. These results pro-
vide useful information to estimate accurately time variations of synaptic
strength from spiking activity measures.

Keywords: Dynamic functional connectivity · Spiking neural
network · Communication delay · Transfer entropy · Cross-covariance

1 Introduction

Neurons in biological networks are connected by directed, plastic synapses.
Neurons are sparsely connected and the identity, the strength, and the
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communication delay of the connections between cells-pairs determine the net-
work dynamics [6,15,16]. Importantly, the strength of each synapse can change
over different time scales - ranging from tenths of milliseconds to days - due
to processes including synaptic potentiation and depression [2]. Such changes in
synaptic weights are thought to be neural-activity dependent and driven by Heb-
bian mechanisms of plasticity such as spike-timing dependent-plasticity (STDP).

Many electrophysiological in vivo experiments record simultaneously the
spiking activity of several neurons within a network, but without the ability to
measure directly synaptic activity. Robust methods to estimate synaptic weights
and how they evolve over time from functional measurements of neural activ-
ity are thus critical to investigate several neuroscientific questions. For example,
sleep is thought to play an essential role in synaptic homeostasis and memory
formation. Several theories and experimental findings support the idea that spe-
cific features of non-REM sleep might contribute to the up- and down-scaling
of synaptic weights [23]. Experimentally, it has been shown that the nesting
between spindles and slow oscillations can increase the dynamic functional con-
nectivity (DFC), measured as peaks of cross-correlation between pairs of puta-
tively connected cells, over the temporal range of minutes [14]. However, the
corresponding synaptic changes over the same time span are difficult to charac-
terize. In general, it remains unclear how changes in DFC measures relate to the
temporal dynamics of synaptic weights in spiking neural networks.

Previous works investigating the relationship between functional connectivity
measures and ground truth synaptic connectivity have often utilized the Izhike-
vich network [11] as a reasonably realistic model of a cortical spiking neural
network [9,18]. These studies highlighted that bivariate connectivity measures,
such as cross-covariance and transfer entropy, can provide robust estimates of the
underlying directed connectivity in simulated networks. However, they did not
examine the temporal evolution of functional and structural connectivity within
spiking networks incorporating STDP. Here, we examined the performance of
several different DFC methods in estimating the temporal dynamics of synaptic
weights (termed dynamic structural connectivity or DSC) from up to 90 min
of spiking activity in simulated spiking networks with STDP. We first deter-
mined the performance of DFC measures in inferring static properties of the
simulated networks (such as pairwise synaptic connectivity and the associated
communication delays). We then applied these measures with a sliding window
approach to compute DFC and quantify its relationship with DSC. We found,
that, among all tested DFC measures, the cross-covariance better captured the
evolution of synaptic weights over time. Importantly, we also established how
to use the information obtained from the static, time-averaged analysis of the
network, to enhance the estimate of DSC from DFC.

2 Simulated Spiking Network and Inference Pipeline

To investigate the relationship between DSC and DFC, we simulated a spik-
ing neural network in which the strength of synaptic weights changed over time
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according to an STDP rule. We then compared the performance of different
functional connectivity measures in estimating both the ground truth structure
of the network (i.e. which pairs of neurons were connected, their communication
lag, and the type of synapse), and how the strengths of the synaptic weights
changed over time (Fig. 1). We simulated a spiking network of N = 100 neurons
in which the dynamics of each neuron was described using the Izhikevich neuron
model [10]. This model has a good tradeoff between biological plausibility and
computational efficiency. The structure of the network was set by Izhikevich [11]
to mimic the connectivity of a real population of cortical neurons (Fig. 1A). 80%
of neurons in the network were excitatory and 20% were inhibitory. Excitatory
neurons were randomly connected to 10 postsynaptic neurons which could be
either excitatory or inhibitory (800 excitatory synapses in total). Each excita-
tory synapse had a random communication delay (δ) whose value was uniformly
distributed between 1 and 20 ms and was constant over time. Inhibitory neurons
were randomly connected to 10 postsynaptic excitatory neurons (200 inhibitory
synapses), therefore no inhibitory-to-inhibitory (I-I) connections were present in
the network. The lack of I-I synapses caused the average firing rate of excita-
tory neurons (5.11 ± 0.03 Hz) to be lower than the one of inhibitory neurons
(8.23±0.04 Hz). Inhibitory connections had a communication delay of 1 ms. The
simulation ran with 1 ms temporal precision for a duration decided by the user.
During the simulation, the strength of excitatory synapses - which were all ini-
tialized to the same, positive, value - changed dynamically due to an STDP rule:
when a presynaptic neuron i fired before a postsynaptic neuron j the strength
of the synapse from i to j (wij) was strengthened, on the other hand when j
fired before i wij got weaker (Fig. 1B). The decay time of the STDP rule was
τ = 20 ms and synaptic weights were updated every 1 s with a memory fac-
tor which made the weights change, on average, over the timescale of 1–2 min
(obtained measuring the synaptic weights autocorrelation, not shown).

We used different measures to compute the static and dynamic functional
connectivity of the network from the spiking activity (Fig. 1C). Such measures
were all directed (meaning that, for each pair of neurons, they could take different
values in the two directions) and allowed computing the strength of communi-
cation for different delays (δ). When computing static functional connectivity,
we used data from the whole simulated recording to compute a single connec-
tivity value for each pair of neurons (i, j). We computed all connectivity mea-
sures with δ ranging from 1 to 50 ms then, for each pair, we determined the
static functional connectivity (wij) as the maximum connectivity value across
delays. We selected the communication delay (δij) as the lag that maximized
the functional connectivity. Calling fij(δ) the generic measure of functional con-
nectivity, then: wij = maxδ(fij(δ)) and δij = argmaxδ(fij(δ)). By taking the
top percentile of connectivity values for each measure we obtained sparse static
networks (Fig. 1D). If the measure f was signed we could also infer whether a
synapse was excitatory or inhibitory. Then, we used a sliding window approach
to compute, for each measure, the DFC of all the synapses that were inferred
as present (Fig. 1E). We exploited the static measures of communication delay
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between pairs to compute delay-consistent DFC and then evaluated the per-
formance of the different measures in recovering the ground-truth dynamics of
synaptic weights.
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Fig. 1. Graphical depiction of the method. A) Structural connectivity of the simulated
network for N = 10 neurons. Synaptic weights could be either excitatory (green) or
inhibitory (purple). Excitatory connections had randomly distributed communication
delays. B) The strength of the synaptic weights changed over time due to STDP. C)
Structural and biophysical properties of the network determined the spiking activity
of the neural population. D) Static functional connectivity was measured from spiking
activity. E) Dynamic functional connectivity was measured from activity, also leverag-
ing on the inferred static connectivity of the network. (Color figure online)

3 Inferring the Presence of Synapses

We tested the performance of different measures of functional connectivity in
estimating the presence of synapses from spiking activity. Two of these measures
were based on Pearson correlation, which is commonly used to estimate the
connectivity between pairs of neurons [3,9,14]. The first method was normalized
cross-correlation (XCorr):

XCorrij(δ) =
E[it−δjt]

σiσj
(1)

where it and jt′ are the binary values of the spike trains from neurons i and j
at times t and t′, and the expected value was computed across time. σi and σj

are standard deviations of the spike trains of neurons i and j, respectively.
The second method was the normalized cross-covariance (XCov), which is

insensitive to correlations in the average firing rate due to subtraction of the
average activity value from the spike trains before computing the correlation:

XCovij(δ) =
E[(it−δ − i)(jt − j)]

σiσj
(2)



Estimating the Temporal Evolution of Synaptic Weights from DFC 7

Here i and j are the average firing rates of neurons i and j, respectively.
Additionally, we computed the functional connectivity using two variants

of the information-theoretic measure of information transfer known as transfer
entropy [8,21], a measure that has been successfully used to characterize time-
dependent changes in recurrent connectivity between mass signals [1]. Transfer
entropy has the theoretical advantage - with respect to correlation measures -
of being assumption-free in terms of the joint probability distribution of the
lagged activity of neuron i and j. This also means that transfer entropy does
not assume that the interactions between neurons are linear. Additionally, this
measure respects the Wiener-Granger causality principle of causal communica-
tion by conditioning the information between the past of the emitter and the
present of the receiver neuron on the past activity of the receiver neuron. Our
first implementation of transfer entropy uses single time-points statistics to build
the probability distribution of lagged neural activity. We refer to this implemen-
tation as TE :

TEij(δ) = I(it−δ; jt|jt−1) =
∑

p(it−δ, jt, jt−1) log2
p(jt|it−δ, jt−1)

p(jt|jt−1)
(3)

where p(it−δ, jt, jt−1) is the joint probability distribution of the present state of
the receiver neuron jt, its past lagged by one time step jt−1 and the past state
of the emitter neuron lagged by δ time steps it−δ. The sum occurs over all the
(it−δ, jt, jt−1) triplets of events in the probability space. The probability distri-
bution is sampled across time. The lag of the receiver past is set to −1 since it
has been proven to be theoretically optimal for determining real communication
delays [24].

The second implementation of transfer entropy uses multidimensional pasts
of the emitter and the receiver neuron to consider the possible relevance of time
windows longer than 1 ms when transmitting information. Using the terminology
of [9] we refer to this measure as Higher Order Transfer Entropy (HOTE ):

HOTEij(δ) = I(i(k)t−δ; jt|j(l)t−1) =
∑

p(i(k)t−δ, jt, j
(l)
t−1) log2

p(jt|i(k)t−δ, j
(l)
t−1)

p(jt|j(l)t−1)
(4)

where k and l are the dimensions of the past activity of the emitter and the
receiver neuron i and j, respectively. For the analysis reported in this paper we
set k = l = 5 ms.

We computed these four functional connectivity measures between all pairs
of neurons in the network and estimated the communication strength and delay
for each pair as described in the previous section. We then evaluated the per-
formance of the different metrics in determining the presence or absence of
synapses between pairs of neurons, varying the threshold probability of connec-
tivity strength incrementally from 0 to 1 in steps of 0.01. Since the two classes
of present and absent synapses were unbalanced (only 10% of all the possible
synapses were present in the network) we used precision-recall (PR) curves to
study the performance in this classification task [4] (Fig. 2A). Calling TP , FP
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and FN the number of true positive, false positive and false negative inferred
synapses, respectively, we have that precision = TP

TP+FP and recall = TP
TP+FN .

Therefore, if for a given measure the two distributions of present and absent links
were perfectly separable, we would get that for recall = 1 also precision = 1.
On the other hand, a random classifier would always have a precision equal to
the ratio of synapses present in the model (10%, dashed line in Fig. 2A) for each
recall value.

20 40 60 80
simulation length [min]

0

1
AU

PR

TE
HOTE
XCov
XCorr

0 0.5 1
recall

0

0.5

1

pr
ec

is
io

n

TE
HOTE
XCov
XCorr
null 

E-E E-I I-E I-I Avg. err
0

0.2

0.4

0.6

Fr
ac

ti
o

n
 o

f s
yn

ap
se

s

GT
HOTE
TE
XCov
XCorr

0.5

20 40 60 80
simulation length [min]

0

0.5

1

pr
ec

is
io

n

20 40 60 80
simulation length [min]

0

0.5

1

pr
ec

is
io

n

TE
HOTE
XCov
XCorr

PR curves for 90 min. AUPR with simulation length

Fraction of synapses in each connectivity group

Top 10% (1000 synapses)

Top 5% (500 synapses)

A B C

D

Fig. 2. Performance of functional connectivity measures in estimating structural con-
nectivity. A) Precision-recall (PR) curves computed from 90 min of simulated activity
for TE, HOTE, XCov and XCorr. Each point is one percentile of the distribution of
functional connectivity values across pairs. B) AUPR trend with simulation length
(length ranges from 5 to 90 min). C) Comparison of precision in identifying connected
pairs with simulation lengths, for top 10th (1000 pairs) and top 5th (500 pairs) per-
centiles of each measure’s distribution. D) Fraction of pairs belonging to each group of
synapses, from 90 min simulation and using the top 10th percentile of connections. GT
= ground truth. (Color figure online)

After 90 min of simulation, XCov, TE and HOTE all performed well in the
classification task, having a PR curve whose shape approached the optimal one.
Among these three measures, XCov showed the best PR curve and TE the
worst one. XCorr, on the other hand, performed poorly, with a PR curve far
from optimal. The area under the precision-recall curve (AUPR) is a useful met-
ric to summarize the goodness of a PR curve; a perfect classifier has an AUPR
equal to one. We computed how AUPR scales with simulation length for different
measures. This analysis confirmed that XCov and HOTE were the best metrics
in evaluating which links were present for long recordings, while HOTE worked
better than XCov and TE for recording shorter than 10 min (Fig. 2B). We mea-
sured how the precision of the different measures scaled with the simulation time
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for the top 10th and top 5th percentile of inferred synapses. For the top 10th
percentile (i.e. 1000 inferred synapses, which equals the ground truth number
of connections) we found that the maximum precision in the classification was
obtained with XCov, which topped at 92% for 90 min of simulated recording
(Fig. 2C top). With a more conservative threshold of the top 5th percentile of
connections (i.e. half of the true total number), we captured the top 500 real con-
nections after 30 min of simulation (Fig. 2C bottom) for all measures but XCorr.
To investigate why XCorr performance was so poor when compared to the other
measures, we computed the fraction of links inferred by each measure as the top
10th percentile of synapses in the four subgroups of excitatory-to-excitatory (E-
E), excitatory-to-inhibitory (E-I), inhibitory-to-excitatory (I-E) and inhibitory-
to-inhibitory (I-I) synapses (Fig. 2D). XCov performed best in determining the
correct fraction of synapses belonging to each group, while XCorr overestimated
the number of I-I connections and underestimated the number of E-E connec-
tions. This behavior of XCorr is due to the aforementioned differences in average
firing rate between inhibitory and excitatory neurons, with a higher firing rate
for inhibitory neurons, as XCorr is sensitive to the correlation between average
firing rates. Given the poor performance of XCorr in estimating the presence of
synapses, we discarded it in the following analyses.

4 Inferring Synapse Type and Communication Delay

We studied how, for each ground truth synapse, different functional connec-
tivity measures performed in inferring whether the synapse was excitatory or
inhibitory, and the value of the communication delay of that pair of neurons.

We could not use information-theoretic measures to infer whether
synapses were excitatory or inhibitory as these measures are only positively
defined. Therefore, we only examined the XCov performance on this excita-
tory/inhibitory classification task. We classified a connection as excitatory and
inhibitory based on XCov value, with positive correlation values assigned as
excitatory connections and negative correlation values as inhibitory connections.
After 90 min of recording XCov could reliably separate excitatory and inhibitory
synapses (Fig. 3A). We found that the performance of the classifier increased with
recording time for both the excitatory and the inhibitory class (Fig. 3B).

We also compared how functional connectivity measures performed in infer-
ring ground truth communication delays. After 90 min of simulation, all mea-
sures estimated delays with a correlation across synapses that was above 0.85
(see Fig. 3C for the relationship between the ground truth delays and those esti-
mated using XCov - on the top - and using HOTE - on the bottom). The trend
of the correlation between ground truth and estimated delays with simulation
lengths was approximately linear in the explored range (Fig. 3D). Nonetheless,
HOTE estimated the delays more precisely than XCov and TE. After 90 min of
simulation, HOTE had an average delay error, measured as the absolute value
of the difference between ground truth and inferred delay, below 1 ms. On the
other hand, XCov and TE showed a systematic error in the delay estimation of
approximately 2 ms (see Fig. 3C and Fig. 3E).
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Fig. 3. Performance of the measures in estimating connection type and delays. A) Dis-
tributions of functional connectivity values measured using XCov for excitatory (green)
and inhibitory (purple) cells. B) Performance of a classifier in identifying excitatory
and inhibitory synapses with simulation length. The decision boundary of the classifier
was set to XCov = 0. C) Scatter plots of real and estimated delays across cell pairs
using XCov (top) and HOTE (bottom). The size of the markers is proportional to the
number of pairs having that specific combination of ground truth and estimated delay.
The dashed line is the identity line x = y. Black dots far from the identity line cor-
respond to pairs of measured and real delays that occurred only once. D) Correlation
between ground truth and estimated delays with simulation length. E) Average error
in delay estimation with simulation length. (Color figure online)

5 Relationship Between Dynamic Functional
Connectivity and the Temporal Evolution
of Synaptic Weights

Finally, we investigated how the ground truth evolution of the synaptic weights,
that is the DSC, related to the measured DFC. We computed DFC using a sliding
window approach. We first selected a size for the sliding window T and then
shifted it through the simulated recording in steps of length T . We computed
DFC only for pairs of neurons that were putatively connected, which we selected
as the top 5th percentile of links for each measure after 90 min of simulation
(Fig. 1C), and only at the communication delay that we measured for each pair
(Fig. 3C). Moreover, we computed DFC only for excitatory synapses since the
inhibitory ones had a constant synaptic weight in the simulated network. We
calculated the across-time correlation between DFC and DSC for all synapses to
quantify the performance of each functional connectivity measure in estimating
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the DSC. To do this, we averaged the DSC over windows of width T , so that
the number of DSC and DFC samples over time were matched.

In Fig. 4A we show the DSC (top left), the DFC computed using TE (top
right), HOTE (bottom left) and XCov (bottom right) for three example synapses
and T = 10 min. It is visible that, while all measures work reasonably well
in tracking how the strength of the gray and the green synapses change over
time, TE and HOTE fail in quantifying the temporal evolution of the brown
synapse. We found that, on average, DFC computed via XCov correlates with
DSC better than the DFC computed via TE or HOTE (Fig. 4B). In particular,
while DFC computed via TE and HOTE had a high temporal correlation with
DSC (above 0.7) for the majority of synapses, their distributions showed a large
tail of synapses whose correlation between DSC and DFC was distributed around
zero (such as the brown one in Fig. 4A). For XCov, the number of synapses whose
DSC was poorly estimated decreased rapidly with the correlation strength, and
the average correlation was 0.82 (Fig. 4B, right). Therefore, the DFC computed
using XCov outperformed the one obtained from TE and HOTE in inferring the
simulated changes of the synaptic weights over time.

We then studied how the across-time correlation between DSC and DFC
depends on the width of the sliding window T . The correlation between DFC
and DSC increased with the window size, reaching a plateau around T = 5 min
(Fig. 4C, left). Below T = 5 min the correlation dropped due to the limited
sample size used to compute DFC, manifesting a tradeoff between the temporal
precision of the DFC measures (T ) and their performance in estimating DSC. We
repeated the same analysis without keeping the delay consistent when computing
DFC but simply taking the maximum connectivity value across delays (between
1 and 50 ms) for each window (Fig. 4C, middle). When not keeping the delay
consistent with the previously measured one, the correlation between DSC and
DFC dropped substantially. For sizes of the sliding window lower than T = 5 min,
the advantage of keeping a consistent delay was particularly evident, with a boost
in the correlation between DSC and DFC larger than 0.2 (Fig. 4C, right). This
result showed a clear benefit in leveraging estimates of delay derived from entire
simulated recordings when inferring DSC from DFC.

6 Discussion

We studied how different measures of functional connectivity can be used to
infer the static and dynamic properties of synapses from spiking activity in
a simulated neural network. This problem is of relevance because in many in
vivo experiments only spiking activity is measured, but it is important to also
infer the changes in synaptic connectivity to understand the evolution of the
neural network under study. We addressed the problem at the level of simulated
recordings with single-neuron cellular resolution. As such, our approach differs
from and complements other studies of DFC at the level of mass neural activity
[7], which lack the ability to resolve interactions between pairs of individual
neurons.
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Fig. 4. Relationship between dynamic structural and functional connectivity. A)
Dynamic connectivity for 3 example synapses, T = 10 min. Top left: ground truth
dynamics of synaptic weights (DSC). Top right: Transfer entropy DFC. Bottom left:
HOTE DFC. Bottom right: Cross-covariance DFC. B) Distribution of the across-time
correlation coefficients between DSC and DFC, T = 10 min. Left: Transfer entropy.
Middle: HOTE. Right: Cross-covariance. Colored dots show where the synapses in
panel A are in the correlation distributions. C) Average correlation between DSC and
DFC over time for different sizes of the moving window. Shaded areas are SEM across
synapses. Left: DFC keeping delay consistency (i.e. measures computed only at previ-
ously estimated delay); Middle: DFC without delay consistency; Right: Boost in corre-
lation between DFC and DSC when keeping delay consistency (difference between left
and middle panels). (Color figure online)

Consistent with previous studies, we found that among the considered func-
tional connectivity measures, XCov and HOTE performed best in identifying
which pairs of neurons were connected [9]. Cross-covariance could also reliably
classify excitatory and inhibitory synapses, while HOTE was the best measure
in recovering the ground-truth communication delay between neurons. Cross-
covariance performed best in inferring DSC, with an across-time correlation
above 0.8 between DFC and DSC for sliding window sizes larger than 5 min.
We also found that, when computing DFC, keeping the communication delay
consistent with the one obtained from the static network analysis boosted the
relationship between DFC and DSC, especially for moving windows shorter than
5 min. It is possible that this correlation boost by keeping the delay constant is
because considering delays that differ from the ground truth one enhances the
detection of spurious correlations. This specifically holds under the assumption
that communication delays are constant in the recording period as is the case
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of our spiking network. Such spurious correlations might possibly be induced
by other neurons in the population connected with a lag to both neurons in a
putatively connected pair.

The present study has limitations that we plan to address in future works.
First of all, it will be important to validate the DFC measures on more biologi-
cally realistic simulated neural networks presenting global oscillations, correlated
inputs to neurons (mimicking sensory perception and motion), and more hetero-
geneity in the firing rates and in the average synaptic weights over time. Indeed,
such effects could act as confounders of the relationship between DFC and DSC
[19] or could require refined null hypotheses based on permutation tests to assess
the presence of links. In the model we also assumed that (i) the communication
delays are constant and (ii) no synapses are formed or eliminated over time.
(i) assumes that the main parameters determining the conductance velocity of
action potentials (e.g. axons diameters and myelin levels) are approximately con-
stant over time scales of tens of minutes. Experimental finding suggest that this
assumption is reasonable, especially in adult mice where the formation of new
myelin occurs in the range of weeks [17]. Assumption (ii) is more delicate since
in mice it has been shown that, especially during sleep, dendritic spines can be
formed and eliminated within hours [25]. It will be important to investigate how
much we can relax these hypotheses while still exploiting the knowledge obtained
from the static network inference. Moreover, we plan to test the performance of
other bivariate (e.g. Granger causality) and, especially, other multivariate mea-
sures for estimating DSC. These measures might include using Granger Causality
estimates based on Generalized Linear Models (GLMs) [5,13,22] and maximum
entropy models [12,20]. Such multivariate measures could be useful e.g. to alle-
viate the effect of confounders such as common inputs.

To conclude, here we lay down foundations for relating dynamic functional
connectivity to the temporal evolution of synaptic weights in spiking neural
networks. The results obtained here provide a benchmark for further improving
methodologies that infer DSC from DFC.
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