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Preface

The International Conference on Brain Informatics (BI) series has established itself as
the world’s premier research conference on brain informatics, which is an emerging
interdisciplinary and multidisciplinary research field that combines the efforts of
cognitive science, neuroscience, medical science, data science, machine learning,
artificial intelligence (AI), and information and communication technology (ICT) to
explore the main problems that lie in the interplay between human brain studies and
informatics research. The 15th International Conference on Brain Informatics (BI 2022)
provided an international forum to bring together researchers and practitioners from
diverse fields for the presentation of original research results, as well as the exchange and
dissemination of innovative and practical development experiences on brain informatics.
The main theme of BI 2022 was “Brain Science Meets Artificial Intelligence” with
respect to the five tracks: Cognitive and Computational Foundations of Brain Science;
Human Information Processing Systems; Brain Big Data Analytics, Curation and
Management; Informatics Paradigms for Brain and Mental Health Research; and
Brain-Machine Intelligence and Brain Inspired Computing.

The WICI International Workshop on Web Intelligence Meets Brain Informatics, held
in Beijing, China, in 2006, kicked off the Brain Informatics conference series. It was
one of the first conferences to focus on the application of informatics to brain sciences.
The 2nd, 3rd, 4th, and 5th BI conferences were held in Beijing, China (2009), Toronto,
Canada (2010), Lanzhou, China (2011), and Macau, China (2012), respectively. In 2013,
health was added to the conference title, with Brain Informatics and Health (BIH)
events placing an emphasis on real-world applications of brain research in human
health and well-being. BIH 2013, BIH 2014, BIH 2015, and BIH 2016 were held
in Maebashi, Japan, Warsaw, Poland, London, UK, and Omaha, USA, respectively.
In 2017, the conference returned to its original design and vision to investigate
the brain from an informatics perspective and to promote a brain-inspired informa-
tion technology revolution. Thus, the conference name was changed back to Brain
Informatics at Beijing, China, in 2017. The editions in 2018 and 2019 were held in
Arlington, Texas, USA, and Haikou, China, respectively.

The COVID-19 pandemic had the most significant impact on BI 2020, with the
conference originally scheduled for Padua, Italy, being hosted virtually and shortened to
one day. In 2021, the conference was still held online due to the impact of the pandemic;
however, to increase participation, we decided to go back to the usual three-day event,
with one day dedicated to workshops and special sessions, one day to the excellent
keynote sessions, and one day to the technical sessions.

Drawing from our years of offline and two years of online experience designing
and facilitating the BI conference, we organized a three-day hybrid conference in 2022.
The hybrid format of this conference was unique in that it was co-hosted in Padua,
Italy (in person) and Queensland, Australia (online). The most exciting thing is that the
University of Padua celebrated its 800th anniversary in 2022, and we took the opportunity
to celebrate by hosting the 15th International Conference on Brain Informatics in Padua.
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During the conference, we took measures to safeguard the health of all attendees and
employees due to the ongoing pandemic.

The BI 2022 hybrid conference was supported by the Web Intelligence Consortium
(WIC), the University of Padua, the Padova Neuroscience Centre, the University of
Oxford, the University of Queensland, the Chinese Association for Artificial Intelligence,
Peking Union Medical College, the IEEE Computational Intelligence Society, the
International Neural Network Society, and Springer.

BI 2022 solicited high-quality papers and featured keynote talks from world-class
speakers, panel discussions, workshops, and special sessions. The conference involved
several world leaders in brain research and informatic technologies, including Silvestro
Micera, Robert Legenstein, Gustavo Deco, Themis Prodromakis, and Christian Georg
Mayr. This proceedings contains 30 high-quality papers accepted and presented at BI
2022, which provide a good sample of state-of-the-art research advances on BI from
methodologies, frameworks, and techniques to case studies and applications.

We would like to express our gratitude to all BI 2022 committee members for their
instrumental and unwavering support. BI 2022 had a very exciting program which would
not have been possible without the dedication of the Program Committee members in
reviewing the conference papers and abstracts. BI 2022 could not have taken place
without the great team effort and the generous support from our sponsors. Our gratitude
goes to Springer for sponsoring student first-author registrations, which were selected
based on the quality of the submitted papers and their need for financial support. We are
grateful to the LNCS/LNAI team at Springer for their continuous support in coordinating
the publication of this volume. Also, special thanks to Yang Yang, Hongzhi Kuai, Yu Cao
and for their great assistance and support. Last but not least, we thank all our contributors
and volunteers for their support during this challenging time to make BI 2022 a success.

July 2022 Mufti Mahmud
Jing He

Stefano Vassanelli

André van Zundert

Ning Zhong
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Estimating the Temporal Evolution
of Synaptic Weights from Dynamic
Functional Connectivity

Marco Celotto!23®) @ Stefan Lemke'*®, and Stefano Panzeril-?

! Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems,
Istituto Italiano di Tecnologia, Rovereto, Italy
marco.celotto@iit.it
2 Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
3 Department of Excellence for Neural Information Processing, Center for Molecular
Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE),
Hamburg, Germany
s.panzeriQuke.de
4 Department of Cell Biology and Physiology, University of North Carolina,
Chapel Hill, USA
stefan.lemke@unc.edu

Abstract. How to capture the temporal evolution of synaptic weights
from measures of dynamic functional connectivity (DFC) between the
activity of different simultaneously recorded neurons is an important and
open problem in systems neuroscience. To address this issue, we first sim-
ulated models of recurrent neural networks of spiking neurons that had
a spike-timing-dependent plasticity mechanism generating time-varying
synaptic and functional coupling. We then used these simulations to
test analytical approaches that relate dynamic functional connectivity
to time-varying synaptic connectivity. We investigated how to use dif-
ferent measures of directed DFC, such as cross-covariance and transfer
entropy, to build algorithms that infer how synaptic weights evolve over
time. We found that, while both cross-covariance and transfer entropy
provide robust estimates of structural connectivity and communication
delays, cross-covariance better captures the evolution of synaptic weights
over time. We also established how leveraging estimates of connectivity
derived from entire simulated recordings could further boost the estima-
tion of time-varying synaptic weights from the DFC. These results pro-
vide useful information to estimate accurately time variations of synaptic
strength from spiking activity measures.

Keywords: Dynamic functional connectivity - Spiking neural
network -+ Communication delay - Transfer entropy - Cross-covariance

1 Introduction

Neurons in biological networks are connected by directed, plastic synapses.
Neurons are sparsely connected and the identity, the strength, and the
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communication delay of the connections between cells-pairs determine the net-
work dynamics [6,15,16]. Importantly, the strength of each synapse can change
over different time scales - ranging from tenths of milliseconds to days - due
to processes including synaptic potentiation and depression [2]. Such changes in
synaptic weights are thought to be neural-activity dependent and driven by Heb-
bian mechanisms of plasticity such as spike-timing dependent-plasticity (STDP).

Many electrophysiological in wivo experiments record simultaneously the
spiking activity of several neurons within a network, but without the ability to
measure directly synaptic activity. Robust methods to estimate synaptic weights
and how they evolve over time from functional measurements of neural activ-
ity are thus critical to investigate several neuroscientific questions. For example,
sleep is thought to play an essential role in synaptic homeostasis and memory
formation. Several theories and experimental findings support the idea that spe-
cific features of non-REM sleep might contribute to the up- and down-scaling
of synaptic weights [23]. Experimentally, it has been shown that the nesting
between spindles and slow oscillations can increase the dynamic functional con-
nectivity (DFC), measured as peaks of cross-correlation between pairs of puta-
tively connected cells, over the temporal range of minutes [14]. However, the
corresponding synaptic changes over the same time span are difficult to charac-
terize. In general, it remains unclear how changes in DFC measures relate to the
temporal dynamics of synaptic weights in spiking neural networks.

Previous works investigating the relationship between functional connectivity
measures and ground truth synaptic connectivity have often utilized the Izhike-
vich network [11] as a reasonably realistic model of a cortical spiking neural
network [9,18]. These studies highlighted that bivariate connectivity measures,
such as cross-covariance and transfer entropy, can provide robust estimates of the
underlying directed connectivity in simulated networks. However, they did not
examine the temporal evolution of functional and structural connectivity within
spiking networks incorporating STDP. Here, we examined the performance of
several different DFC methods in estimating the temporal dynamics of synaptic
weights (termed dynamic structural connectivity or DSC) from up to 90 min
of spiking activity in simulated spiking networks with STDP. We first deter-
mined the performance of DFC measures in inferring static properties of the
simulated networks (such as pairwise synaptic connectivity and the associated
communication delays). We then applied these measures with a sliding window
approach to compute DFC and quantify its relationship with DSC. We found,
that, among all tested DFC measures, the cross-covariance better captured the
evolution of synaptic weights over time. Importantly, we also established how
to use the information obtained from the static, time-averaged analysis of the
network, to enhance the estimate of DSC from DFC.

2 Simulated Spiking Network and Inference Pipeline

To investigate the relationship between DSC and DFC, we simulated a spik-
ing neural network in which the strength of synaptic weights changed over time
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according to an STDP rule. We then compared the performance of different
functional connectivity measures in estimating both the ground truth structure
of the network (i.e. which pairs of neurons were connected, their communication
lag, and the type of synapse), and how the strengths of the synaptic weights
changed over time (Fig. 1). We simulated a spiking network of N = 100 neurons
in which the dynamics of each neuron was described using the Izhikevich neuron
model [10]. This model has a good tradeoff between biological plausibility and
computational efficiency. The structure of the network was set by Izhikevich [11]
to mimic the connectivity of a real population of cortical neurons (Fig. 1A). 80%
of neurons in the network were excitatory and 20% were inhibitory. Excitatory
neurons were randomly connected to 10 postsynaptic neurons which could be
either excitatory or inhibitory (800 excitatory synapses in total). Each excita-
tory synapse had a random communication delay (§) whose value was uniformly
distributed between 1 and 20 ms and was constant over time. Inhibitory neurons
were randomly connected to 10 postsynaptic excitatory neurons (200 inhibitory
synapses), therefore no inhibitory-to-inhibitory (I-I) connections were present in
the network. The lack of I-I synapses caused the average firing rate of excita-
tory neurons (5.11 &+ 0.03Hz) to be lower than the one of inhibitory neurons
(8.234+0.04 Hz). Inhibitory connections had a communication delay of 1 ms. The
simulation ran with 1ms temporal precision for a duration decided by the user.
During the simulation, the strength of excitatory synapses - which were all ini-
tialized to the same, positive, value - changed dynamically due to an STDP rule:
when a presynaptic neuron i fired before a postsynaptic neuron j the strength
of the synapse from ¢ to j (w;;) was strengthened, on the other hand when j
fired before ¢ w;; got weaker (Fig.1B). The decay time of the STDP rule was
7 = 20ms and synaptic weights were updated every 1 s with a memory fac-
tor which made the weights change, on average, over the timescale of 1-2 min
(obtained measuring the synaptic weights autocorrelation, not shown).

We used different measures to compute the static and dynamic functional
connectivity of the network from the spiking activity (Fig. 1C). Such measures
were all directed (meaning that, for each pair of neurons, they could take different
values in the two directions) and allowed computing the strength of communi-
cation for different delays (§). When computing static functional connectivity,
we used data from the whole simulated recording to compute a single connec-
tivity value for each pair of neurons (7, j). We computed all connectivity mea-
sures with ¢ ranging from 1 to 50ms then, for each pair, we determined the
static functional connectivity (w;;) as the maximum connectivity value across
delays. We selected the communication delay (d;;) as the lag that maximized
the functional connectivity. Calling f;;(4) the generic measure of functional con-
nectivity, then: w;; = maxs(fi;(0)) and §;; = argmazs(fi;(9)). By taking the
top percentile of connectivity values for each measure we obtained sparse static
networks (Fig. 1D). If the measure f was signed we could also infer whether a
synapse was excitatory or inhibitory. Then, we used a sliding window approach
to compute, for each measure, the DFC of all the synapses that were inferred
as present (Fig. 1E). We exploited the static measures of communication delay
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between pairs to compute delay-consistent DFC and then evaluated the per-
formance of the different measures in recovering the ground-truth dynamics of
synaptic weights.

A
Ground truth network E - Ground truth
i oS 30
nh.—> o . g
Spiking activity Static functional conn. <
n
time
® ~ 4 e b + Compute
(@) AT O , similarity
— Measured
B S
- STDP Putative O
<
> synapses ;
20 S / Measured & time
S
< 0 Sliding window
t post -t pre

Fig. 1. Graphical depiction of the method. A) Structural connectivity of the simulated
network for N = 10 neurons. Synaptic weights could be either excitatory (green) or
inhibitory (purple). Excitatory connections had randomly distributed communication
delays. B) The strength of the synaptic weights changed over time due to STDP. C)
Structural and biophysical properties of the network determined the spiking activity
of the neural population. D) Static functional connectivity was measured from spiking
activity. E) Dynamic functional connectivity was measured from activity, also leverag-
ing on the inferred static connectivity of the network. (Color figure online)

3 Inferring the Presence of Synapses

We tested the performance of different measures of functional connectivity in
estimating the presence of synapses from spiking activity. Two of these measures
were based on Pearson correlation, which is commonly used to estimate the
connectivity between pairs of neurons [3,9,14]. The first method was normalized
cross-correlation (XCorr):

Elis_sji]
003

XCorr;j(0) = (1)
where i; and jp are the binary values of the spike trains from neurons ¢ and j
at times ¢t and ¢/, and the expected value was computed across time. o; and o;
are standard deviations of the spike trains of neurons ¢ and j, respectively.
The second method was the normalized cross-covariance (XCov), which is
insensitive to correlations in the average firing rate due to subtraction of the
average activity value from the spike trains before computing the correlation:

El(it—5 — 1) (jt — J)]

0;0;

XCOUZ']'((S) = (2)
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Here i and j are the average firing rates of neurons i and j, respectively.

Additionally, we computed the functional connectivity using two variants
of the information-theoretic measure of information transfer known as transfer
entropy [8,21], a measure that has been successfully used to characterize time-
dependent changes in recurrent connectivity between mass signals [1]. Transfer
entropy has the theoretical advantage - with respect to correlation measures -
of being assumption-free in terms of the joint probability distribution of the
lagged activity of neuron ¢ and j. This also means that transfer entropy does
not assume that the interactions between neurons are linear. Additionally, this
measure respects the Wiener-Granger causality principle of causal communica-
tion by conditioning the information between the past of the emitter and the
present of the receiver neuron on the past activity of the receiver neuron. Our
first implementation of transfer entropy uses single time-points statistics to build
the probability distribution of lagged neural activity. We refer to this implemen-
tation as TFE:

) . . . p(Jelit—s, jr—1)
TE;j(8) = I(ir—5 jelji-1) = > li—s, jer je—1) logy o1l (3
5 (8) = I(it—s; je|je—1) Pit—s, Jts ji—1) logy 2Gijes) (3)

where p(i:—s, jt, ji—1) is the joint probability distribution of the present state of
the receiver neuron j;, its past lagged by one time step j;—1 and the past state
of the emitter neuron lagged by § time steps i;_s. The sum occurs over all the
(i¢—s, Jt, jr—1) triplets of events in the probability space. The probability distri-
bution is sampled across time. The lag of the receiver past is set to —1 since it
has been proven to be theoretically optimal for determining real communication
delays [24].

The second implementation of transfer entropy uses multidimensional pasts
of the emitter and the receiver neuron to consider the possible relevance of time
windows longer than 1 ms when transmitting information. Using the terminology
of [9] we refer to this measure as Higher Order Transfer Entropy (HOTE):

(k) () )

(Jt|Z 7]
HOTE;;(8) = 165 tli") = 3 p(ils. 1. 301 logy P01 (g
p(ieli"))

where k and [ are the dimensions of the past activity of the emitter and the
receiver neuron ¢ and j, respectively. For the analysis reported in this paper we
set k=1 = 5ms.

We computed these four functional connectivity measures between all pairs
of neurons in the network and estimated the communication strength and delay
for each pair as described in the previous section. We then evaluated the per-
formance of the different metrics in determining the presence or absence of
synapses between pairs of neurons, varying the threshold probability of connec-
tivity strength incrementally from 0 to 1 in steps of 0.01. Since the two classes
of present and absent synapses were unbalanced (only 10% of all the possible
synapses were present in the network) we used precision-recall (PR) curves to
study the performance in this classification task [4] (Fig.2A). Calling TP, FP
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and F'N the number of true positive, false positive and false negative inferred
synapses, respectively, we have that precision = zp-p and recall = 7t
Therefore, if for a given measure the two distributions of present and absent links
were perfectly separable, we would get that for recall = 1 also precision = 1.
On the other hand, a random classifier would always have a precision equal to
the ratio of synapses present in the model (10%, dashed line in Fig. 2A) for each

recall value.

A PR curves for 90 min. B 1AUPR with simulation length C Top 10% (1000 synapses)
s
kS ’J Zosl A
2 1 0.5 N iad 74
2 7
a — TE
— HOTE
XCov 0
0 0 — XCorr 20 40 60 80
0 0.5 1 20 40 60 80 simulation length [min]
b recall simulation length [min] Top 5% (500 synapses)
Fraction of synapses in each connectivity group 1 f—/ " "
w
v I GT
806 m HOTE c
g mmTE g
204 [ XCov 50.5 /:E_
b _
5 . XCorr s ——HOTE
502 XCov
s 0 — XCorr]
£o 20 40 60 80
- E-E E-l I-E -l Avg. err

simulation length [min]

Fig. 2. Performance of functional connectivity measures in estimating structural con-
nectivity. A) Precision-recall (PR) curves computed from 90 min of simulated activity
for TE, HOTE, XCov and XCorr. Each point is one percentile of the distribution of
functional connectivity values across pairs. B) AUPR trend with simulation length
(length ranges from 5 to 90 min). C) Comparison of precision in identifying connected
pairs with simulation lengths, for top 10th (1000 pairs) and top 5th (500 pairs) per-
centiles of each measure’s distribution. D) Fraction of pairs belonging to each group of
synapses, from 90 min simulation and using the top 10th percentile of connections. GT
= ground truth. (Color figure online)

After 90 min of simulation, XCov, TE and HOTE all performed well in the
classification task, having a PR curve whose shape approached the optimal one.
Among these three measures, XCov showed the best PR curve and TE the
worst one. XCorr, on the other hand, performed poorly, with a PR curve far
from optimal. The area under the precision-recall curve (AUPR) is a useful met-
ric to summarize the goodness of a PR curve; a perfect classifier has an AUPR
equal to one. We computed how AUPR scales with simulation length for different
measures. This analysis confirmed that XCov and HOTE were the best metrics
in evaluating which links were present for long recordings, while HOTE worked
better than XCov and TE for recording shorter than 10 min (Fig. 2B). We mea-~
sured how the precision of the different measures scaled with the simulation time
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for the top 10th and top 5th percentile of inferred synapses. For the top 10th
percentile (i.e. 1000 inferred synapses, which equals the ground truth number
of connections) we found that the maximum precision in the classification was
obtained with XCov, which topped at 92% for 90 min of simulated recording
(Fig. 2C top). With a more conservative threshold of the top 5th percentile of
connections (i.e. half of the true total number), we captured the top 500 real con-
nections after 30 min of simulation (Fig. 2C bottom) for all measures but XCorr.
To investigate why XCorr performance was so poor when compared to the other
measures, we computed the fraction of links inferred by each measure as the top
10th percentile of synapses in the four subgroups of excitatory-to-excitatory (E-
E), excitatory-to-inhibitory (E-I), inhibitory-to-excitatory (I-E) and inhibitory-
to-inhibitory (I-I) synapses (Fig.2D). XCov performed best in determining the
correct fraction of synapses belonging to each group, while XCorr overestimated
the number of I-I connections and underestimated the number of E-E connec-
tions. This behavior of XCorr is due to the aforementioned differences in average
firing rate between inhibitory and excitatory neurons, with a higher firing rate
for inhibitory neurons, as XCorr is sensitive to the correlation between average
firing rates. Given the poor performance of XCorr in estimating the presence of
synapses, we discarded it in the following analyses.

4 Inferring Synapse Type and Communication Delay

We studied how, for each ground truth synapse, different functional connec-
tivity measures performed in inferring whether the synapse was excitatory or
inhibitory, and the value of the communication delay of that pair of neurons.

We could not use information-theoretic measures to infer whether
synapses were excitatory or inhibitory as these measures are only positively
defined. Therefore, we only examined the XCov performance on this excita-
tory/inhibitory classification task. We classified a connection as excitatory and
inhibitory based on XCov value, with positive correlation values assigned as
excitatory connections and negative correlation values as inhibitory connections.
After 90 min of recording XCov could reliably separate excitatory and inhibitory
synapses (Fig. 3A). We found that the performance of the classifier increased with
recording time for both the excitatory and the inhibitory class (Fig. 3B).

We also compared how functional connectivity measures performed in infer-
ring ground truth communication delays. After 90 min of simulation, all mea-
sures estimated delays with a correlation across synapses that was above 0.85
(see Fig. 3C for the relationship between the ground truth delays and those esti-
mated using XCov - on the top - and using HOTE - on the bottom). The trend
of the correlation between ground truth and estimated delays with simulation
lengths was approximately linear in the explored range (Fig.3D). Nonetheless,
HOTE estimated the delays more precisely than XCov and TE. After 90 min of
simulation, HOTE had an average delay error, measured as the absolute value
of the difference between ground truth and inferred delay, below 1ms. On the
other hand, XCov and TE showed a systematic error in the delay estimation of
approximately 2ms (see Fig. 3C and Fig. 3E).
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Fig. 3. Performance of the measures in estimating connection type and delays. A) Dis-
tributions of functional connectivity values measured using XCov for excitatory (green)
and inhibitory (purple) cells. B) Performance of a classifier in identifying excitatory
and inhibitory synapses with simulation length. The decision boundary of the classifier
was set to XCov = 0. C) Scatter plots of real and estimated delays across cell pairs
using XCov (top) and HOTE (bottom). The size of the markers is proportional to the
number of pairs having that specific combination of ground truth and estimated delay.
The dashed line is the identity line x = y. Black dots far from the identity line cor-
respond to pairs of measured and real delays that occurred only once. D) Correlation
between ground truth and estimated delays with simulation length. E) Average error
in delay estimation with simulation length. (Color figure online)

5 Relationship Between Dynamic Functional
Connectivity and the Temporal Evolution
of Synaptic Weights

Finally, we investigated how the ground truth evolution of the synaptic weights,
that is the DSC, related to the measured DFC. We computed DFC using a sliding
window approach. We first selected a size for the sliding window T and then
shifted it through the simulated recording in steps of length T. We computed
DFC only for pairs of neurons that were putatively connected, which we selected
as the top 5th percentile of links for each measure after 90 min of simulation
(Fig. 1C), and only at the communication delay that we measured for each pair
(Fig. 3C). Moreover, we computed DFC only for excitatory synapses since the
inhibitory ones had a constant synaptic weight in the simulated network. We
calculated the across-time correlation between DFC and DSC for all synapses to
quantify the performance of each functional connectivity measure in estimating
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the DSC. To do this, we averaged the DSC over windows of width T, so that
the number of DSC and DFC samples over time were matched.

In Fig.4A we show the DSC (top left), the DFC computed using TE (top
right), HOTE (bottom left) and XCov (bottom right) for three example synapses
and T" = 10min. It is visible that, while all measures work reasonably well
in tracking how the strength of the gray and the green synapses change over
time, TE and HOTE fail in quantifying the temporal evolution of the brown
synapse. We found that, on average, DFC computed via XCov correlates with
DSC better than the DFC computed via TE or HOTE (Fig.4B). In particular,
while DFC computed via TE and HOTE had a high temporal correlation with
DSC (above 0.7) for the majority of synapses, their distributions showed a large
tail of synapses whose correlation between DSC and DFC was distributed around
zero (such as the brown one in Fig. 4A). For XCov, the number of synapses whose
DSC was poorly estimated decreased rapidly with the correlation strength, and
the average correlation was 0.82 (Fig. 4B, right). Therefore, the DFC computed
using XCov outperformed the one obtained from TE and HOTE in inferring the
simulated changes of the synaptic weights over time.

We then studied how the across-time correlation between DSC and DFC
depends on the width of the sliding window T'. The correlation between DFC
and DSC increased with the window size, reaching a plateau around 7" = 5 min
(Fig.4C, left). Below T' = 5min the correlation dropped due to the limited
sample size used to compute DFC, manifesting a tradeoff between the temporal
precision of the DFC measures (T') and their performance in estimating DSC. We
repeated the same analysis without keeping the delay consistent when computing
DFC but simply taking the maximum connectivity value across delays (between
1 and 50 ms) for each window (Fig.4C, middle). When not keeping the delay
consistent with the previously measured one, the correlation between DSC and
DFC dropped substantially. For sizes of the sliding window lower than 7" = 5 min,
the advantage of keeping a consistent delay was particularly evident, with a boost
in the correlation between DSC and DFC larger than 0.2 (Fig. 4C, right). This
result showed a clear benefit in leveraging estimates of delay derived from entire
simulated recordings when inferring DSC from DFC.

6 Discussion

We studied how different measures of functional connectivity can be used to
infer the static and dynamic properties of synapses from spiking activity in
a simulated neural network. This problem is of relevance because in many in
vivo experiments only spiking activity is measured, but it is important to also
infer the changes in synaptic connectivity to understand the evolution of the
neural network under study. We addressed the problem at the level of simulated
recordings with single-neuron cellular resolution. As such, our approach differs
from and complements other studies of DFC at the level of mass neural activity
[7], which lack the ability to resolve interactions between pairs of individual
neurons.
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Fig. 4. Relationship between dynamic structural and functional connectivity. A)
Dynamic connectivity for 3 example synapses, 7' = 10min. Top left: ground truth
dynamics of synaptic weights (DSC). Top right: Transfer entropy DFC. Bottom left:
HOTE DFC. Bottom right: Cross-covariance DFC. B) Distribution of the across-time
correlation coefficients between DSC and DFC, T = 10 min. Left: Transfer entropy.
Middle: HOTE. Right: Cross-covariance. Colored dots show where the synapses in
panel A are in the correlation distributions. C) Average correlation between DSC and
DFC over time for different sizes of the moving window. Shaded areas are SEM across
synapses. Left: DFC keeping delay consistency (i.e. measures computed only at previ-
ously estimated delay); Middle: DFC without delay consistency; Right: Boost in corre-
lation between DFC and DSC when keeping delay consistency (difference between left
and middle panels). (Color figure online)

Consistent with previous studies, we found that among the considered func-
tional connectivity measures, XCov and HOTE performed best in identifying
which pairs of neurons were connected [9]. Cross-covariance could also reliably
classify excitatory and inhibitory synapses, while HOTE was the best measure
in recovering the ground-truth communication delay between neurons. Cross-
covariance performed best in inferring DSC, with an across-time correlation
above 0.8 between DFC and DSC for sliding window sizes larger than 5 min.
We also found that, when computing DFC, keeping the communication delay
consistent with the one obtained from the static network analysis boosted the
relationship between DFC and DSC, especially for moving windows shorter than
5min. It is possible that this correlation boost by keeping the delay constant is
because considering delays that differ from the ground truth one enhances the
detection of spurious correlations. This specifically holds under the assumption
that communication delays are constant in the recording period as is the case
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of our spiking network. Such spurious correlations might possibly be induced
by other neurons in the population connected with a lag to both neurons in a
putatively connected pair.

The present study has limitations that we plan to address in future works.
First of all, it will be important to validate the DFC measures on more biologi-
cally realistic simulated neural networks presenting global oscillations, correlated
inputs to neurons (mimicking sensory perception and motion), and more hetero-
geneity in the firing rates and in the average synaptic weights over time. Indeed,
such effects could act as confounders of the relationship between DFC and DSC
[19] or could require refined null hypotheses based on permutation tests to assess
the presence of links. In the model we also assumed that (i) the communication
delays are constant and (ii) no synapses are formed or eliminated over time.
(i) assumes that the main parameters determining the conductance velocity of
action potentials (e.g. axons diameters and myelin levels) are approximately con-
stant over time scales of tens of minutes. Experimental finding suggest that this
assumption is reasonable, especially in adult mice where the formation of new
myelin occurs in the range of weeks [17]. Assumption (ii) is more delicate since
in mice it has been shown that, especially during sleep, dendritic spines can be
formed and eliminated within hours [25]. It will be important to investigate how
much we can relax these hypotheses while still exploiting the knowledge obtained
from the static network inference. Moreover, we plan to test the performance of
other bivariate (e.g. Granger causality) and, especially, other multivariate mea-
sures for estimating DSC. These measures might include using Granger Causality
estimates based on Generalized Linear Models (GLMs) [5,13,22] and maximum
entropy models [12,20]. Such multivariate measures could be useful e.g. to alle-
viate the effect of confounders such as common inputs.

To conclude, here we lay down foundations for relating dynamic functional
connectivity to the temporal evolution of synaptic weights in spiking neural
networks. The results obtained here provide a benchmark for further improving
methodologies that infer DSC from DFC.
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Abstract. A multi-dimensional stimulus can elicit a range of responses
depending on which dimension or combination of dimensions is consid-
ered. Such selection can be implicit, providing a fast and automatic selec-
tion, or explicit, providing a slower but contextualized selection. Both
forms are important but do not derive from the same processes. Implicit
selection results generally from a slow and progressive learning that leads
to a simple response (concrete/first-order) while explicit selection derives
from a deliberative process that allows to have more complex and struc-
tured response (abstract/second-order). The prefrontal cortex (PFC) is
believed to provide the ability to contextualize concrete rules that leads
to the acquisition of abstract rules even though the exact mechanisms
are still largely unknown. The question we address in this paper is pre-
cisely about the acquisition, the representation and the selection of such
abstract rules. Using two models from the literature (PBWM and HER),
we explain that they both provide a partial but differentiated answer such
that their unification offers a complete picture.

Keywords: Cognitive control - Prefrontal cortex - Computational
model + Abstract rules

1 Introduction

Two main strategies are generally reported for the selection of behavior [5,6].
On the one hand, implicit memory elaborated by slow learning processes can
generate a rigid behavior (also called default behavior), robust in stable worlds,
easy to generate but difficult to quickly adapt to changes. On the other hand,
explicit memory manipulating models of the world can be used for the prospec-
tive and explicit exploration of possible behaviors, yielding a flexible and rapidly
changing strategy, where behavioral rules can be associated to contexts and
selected quickly as the environment changes. In the simplest case, this means
learning rules defined as associations between an object’s properties and a direct
response. Such rules can be called concrete, while more complex or abstract rules
may involve the learning of second order relations on top of the first-order rules.
The prefrontal cortex (PFC) is believed to provide the ability to contextualize
concrete rules that leads to the acquisition of abstract rules [6]. Considering the
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number of contexts we encounter every day and the ease with which we select
appropriate strategies for each, some relevant questions arise: How do we repre-
sent these strategies or rules and how do we determine which one is appropriate?
An important way of understanding how the PFC supports contextual learning
and implements cognitive control is thus to understand how its representations
are organized and manipulated.

There is sufficient evidence to suggest that the PFC is organized hierar-
chically [3] with more caudal areas learning first-order associations and more
rostral areas putting them in context to facilitate learning of abstract rules.
This can be done by top-down modulation in the PFC, which underlies the abil-
ity to focus attention on task-relevant stimuli and ignore irrelevant distractors,
in two ways: either as a result of weight changes in modulated pathways and
predictions, or through activation-based biasing provided by a working mem-
ory system. These mechanisms have been explored in two prominent models
of the PFC. One well established model for cognitive control function through
the working memory system is the Prefrontal cortex and Basal ganglia Working
Memory model (PBWM) [10] in which a flexible working memory system with
an adaptive gating mechanism is implemented. At the biological level, the model
proposes that the PFC facilitates active maintenance for sustaining task-relevant
information, while the Basal Ganglia (BG) provides the selective gating mecha-
nism. A hierarchical extension of this model [7] proposes that hierarchical control
can arise from multiple such nested frontostriatal loops (loops between the PFC
and the BG). The system adaptively learns to represent and maintain higher
order information in rostral regions which conditionalize attentional selection in
more caudal regions.

A second hierarchical model, Hierarchical Error Representation (HER) [1],
explains cognitive control in terms of the interaction between the dIPFC (dorso-
lateral prefrontal cortex) and the mPFC (medial part of the PFC). The dIPFC
learns to maintain representations of stimuli that reliably co-occur with out-
come prediction error and these error representations are used by the mPFC to
refine predictions about the likely outcomes of actions. The error is broadcasted
through the PFC in a bottom-up manner, and modulated predictions from top-
down facilitate selection of an appropriate response. Thanks to its recursive
architecture, this model, presented in more details below, can elaborate hierar-
chical rules on the basis of learning by weight updating, both to select pertinent
stimuli and to map a representation inspired with principles of predictive coding
[2]. In addition to its elegant recursive mechanism, proposing an original com-
putational mechanism to account for the hierarchical structure of the PFC, the
HER model is also very interesting because its proposes to decompose the func-
tioning of the PFC between, on the one hand, the prediction of the outcome and
the monitoring of the error of prediction and, on the other hand, the elaboration
of contextual (and possibly hierarchical) rules to compensate errors. This distri-
bution of functions has also been reported between respectively the medial and
lateral parts of the PFC [6], yielding more importance to the biological plausi-
bility of the HER model. For these reasons, the HER model could be presented
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as a more elaborated and accurate model of the PFC, except for one point of
discussion that we put forward here. All the adaptations of the HER model are
made through learning by weight modifications, whereas the property of work-
ing memory of the PFC, as it is for example exploited in the PBWM model, is
often presented as a key mechanisms for its adaptive capabilities. An important
question is consequently to determine up to which point working memory and
attentional modulations are necessary for the learning of hierarchical rules in
cognitive control.

In the work presented here, we seek to answer specific questions about the
nature of top-down modulation and selective attention, through the lens of hier-
archical learning and representations. We start from the implementation of the
hierarchical HER model and its study for a task in which individual first-order
rules can be learned alone or associated within specific contexts to form second-
order rules. We can evaluate the performances of the HER model in these differ-
ent cases and compare them with a case where an attentional mechanism should
be deployed to facilitate and orient its learning. As discussed in the concluding
part, we observe that the attentional mechanism should be considered not only
for the processing of information but also for the learning of rules, particularly
in the hierarchical and contextual case.

2 Methods

This section first summarizes the HER model algorithm and equations, as
described in the original paper [1] and subsequently presents the task that we
have chosen for our study.

2.1 Model Details: HER

Working Memory Gating. At each level of the hierarchy, external stimuli
presented to the model may be stored in WM based on the learned value of
storing that stimulus versus maintaining currently active WM representations.

External stimuli are represented as a vector s, while internal representations
of stimuli are denoted by r. The value of storing the stimulus represented by s
in WM versus maintaining current WM representation r is determined as:

v=XTs (1)

where X is a matrix of weights associating the external stimuli (s) with corre-
sponding WM representations (r).

The value of storing stimulus s;(v;) is compared to the value of maintaining
the current contents r; of WM (v;) using a softmax function:

(exp”Vi + bias)
(expBvi + bias) + expPvi

(2)

probability of storings; =



18 S. Dagar et al.

Outcome Prediction. Following the update of WM, predictions regarding
possible responses and outcomes are computed at each hierarchical layer, using

a simple feedforward network:
p=WTr (3)

where p is a vector of predictions of outcomes and W is a weight matrix asso-
ciating r and p.

Top-Down Modulation. Beginning at the top of the hierarchy, predictions
are used to modulate weights at inferior layers and modulated predictions are
computed, as shown with the red arrows in Fig. 1.

For a given layer, the prediction signal p’ additively modulates stimulus-
specific predictions p generated by the lower layer. In order to modulate pre-
dictive activity, p’ is reshaped into a matrix P’ and added to W in order to
generate a modulated prediction of outcomes:

m=(W+P)"r (4)

These modulated predictions are then used to modulate predictions of additional
inferior layers (if any exist)

m= (W + MI)TI' (5)

Response Selection. Actions are learned as response-outcome conjunctions at
the lowest layer of the hierarchy. To select a response, the model compares the
modulated prediction of correct feedback to the prediction of error feedback, for
each candidate response:

Uresponse — mresponse/correct - mresponse/error (6)
This is then used in a softmax function to determine a response:

eXp’Y Ui

Prob(u;) = T exprn

(7)

Bottom-Up Process. Following the model’s response, it is given feedback
regarding its performance and two error signals are computed at the bottom most
hierarchical layer, one comparing the unmodulated predictions to the outcome:

e=a(o—p) (8)
and another comparing the modulated predictions to the outcome:
e=a(o—m) (9)

where o is the vector of observed outcomes and a is a filter that is 0 for outcomes
corresponding to unselected actions and 1 everywhere else.
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The outer product of the first error signal and the current contents of the WM
at the bottom level is used as the feedback signal for the immediately superior
layer where this process is repeated (Fig.1).

O =reT (10)

Effectively, at the second layer, the outcome matrix is a conjunction of stim-
uli, actions and outcomes. This matrix is reshaped into a vector o’ and used to
compute the prediction error at the superior layers:

e = a'(o’ _ p/) (11)

Weights Updating. The second error signal is used to update weights within
the bottom-most hierarchical layer, it updates the weights connecting the WM
representation to prediction units (W), as well as weights in the WM gating
mechanism (X):

Xt+1 = Xt + (etTWt . I't)dtT (12)

An eligibility vector d is used instead of the stimulus vector s. When a
stimulus 7 is presented, the value of d; is set to 1, indicating a currently observed
stimulus and at each iteration of the model, d is multiplied by a constant decay
parameter indicating gradually decaying eligibility traces.

Wt+1 = Wt + a(etr;r) (13)
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T1 : Vowel / Consonant discrimination
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Fig. 1. (a) Model schematics: Figure adapted from [1] (b) Task schematics: Figure
adapted from [8] (Color figure online)

2.2 Task

To design our task, we consider the framework introduced by [8] which is com-
posed of three subtasks where the stimuli are letters having three dimensions:
color (red, green or black), case (upper or lower) and sound (vowel or consonant).
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In the first subtask (Block 1 in Fig. 1(b)), black color indicates to ignore the stim-
ulus and green color indicates to discriminate the case (rule T1: left button for
upper, right button for lower). In the second one (Block 2 in Fig. 1(b)), black
color indicates to ignore the stimulus and red color indicates to discriminate the
sound (rule T2: left button for vowel, right button for consonant). The third
one (Block 3 in Fig.1(b)) is a random mix of trials from the other two blocks.
This framework is interesting because, whereas rules T1 and T2 in blocks 1 and
2 require the subject to attend to a single dimension of the stimulus, block 3
requires to pay attention to both and to decide which rule to apply based on the
third (contextual) dimension. Let us also mention here that, while there is no
apparent difficulty with such tasks, it is actually harder than it appears depend-
ing on the way a task is learnt. During block 1, one can either learn the rule:
“green means case and black ignore” or the rule: “black ignore, else case”. The
same is true for block 2 with sound. If we now consider block 3 and depending
on how a subject learnt the first two blocks, she may succeed or fail immediately.
In this latter case, this means block 3 cannot exploit previous learning and has
to be (re)learnt.

The original task was cued by instruction and corresponding performances
were reported in the paper [8]. Here, we wish to explore the inherent capability
of a model to learn an abstract and hierarchical rule task without instructional
cues, as in the paradigm reported by [4] and also to consider how the hierarchy
can be learnt, depending on how information is represented in the model. We
used two types of learning paradigms for the simulations: the first paradigm in
which rules T1 and T2 were learned one after the other, and the performance
of the model was then tested on random trials interleaved from rule T1 and
T2 (to say it differently, we apply successively block 1, 2 and 3). In the second
paradigm, an entire abstract rule that we call T3, corresponding to the selection
on rules T1 and T2 depending on the contextual cue ‘color’ was directly learned
(block 3 applied first) and performance of the model was subsequently tested on
rule T1 and T2 (blocks 1 and 2). In the next section, we report performances
observed with the HER model and with an adapted version that we propose
subsequently.

3 Results

We have first studied how the HER model, as it has been designed (cf Sect. 2.1),
can address the tasks defined above, under the two mentioned paradigms (cf
Sect. 2.2). Due to the design of the HER model, each layer can only map or
process one stimulus value, thus requiring as many layers as there are stimulus
dimensions. The mapping in the model is also highly sensitive to the stimu-
lus dimensions relative to one another, particularly higher-dimensional stimulus
are preferentially mapped onto the lowest hierarchical layer. This rests on the
assumption that stimulus dimensions better able to predict and reduce uncer-
tainty about the response are mapped to lower layers.

This may not always be the case in real life situations though. We often have
to adapt and generalize the same rules over several different contexts. In the



From Concrete to Abstract Rules: A Computational Sketch 21

task we consider as well, the context is determined by the color, which has 3
possible values - one of which always maps to the same response (to ignore) and
the other 2 determine the response based on other stimulus dimensions.

3.1 Learning Curves

Performance observed for the first and second learning paradigms are reported in
Figs. 2(a) and (b) respectively. We see in the Fig. 2(b) that due to its hierarchical
structure, when there is an underlying abstract rule to learn (rule T3), the model
is able to use the hierarchical information to acquire the rule while retaining
performance in each of the sub-rules (Rule T1 and T2). It does so by monitoring
an “error of errors” at each hierarchical layer, broadcasting this error to superior
layers (bottom-up processing) that put it in context with the stimulus feature
being attended to and finally sends this prediction information to the lower layers
(top-down modulation) which are able to then select the appropriate response. In
the Fig. 2(a), we show that when the composite rules are first learnt sequentially,
the model is not able to compose them into a single rule, but instead has to
relearn its representations to reach optimal performance.

Next we show that due to the design of the model, a task which has only
one level of hierarchy, such as the one considered here, can not be learnt with
a model with 2 layers. In Fig.2(c) we see that with 2 layers, the model is able
to learn the subparts of the rule (rules T1 and T2), but performance on the
composite rule T3 saturates at 80%. By exploiting the gating mechanism, each
sub-rule can be learnt individually by gating the 2 relevant feature dimensions
at the 2 layers (color, vowel/consonant for rule T1 and color, lower/upper case
for rule T2). However, in the third rule T3 when the 2 relevant features change
from trial to trial to determine the correct response, the model fails to learn,
since the contextual stimulus features don’t provide top-down information about
“which” other stimulus feature to attend to at the lower layer.

3.2 Gating Weights

In the model, the gating weights determine both, when to update or maintain
a stimulus feature, and also which of the stimulus features is to be gated. We
observed the adjusted weights after each rule that is learned. In the first block,
vowel, consonant and black have high values of getting updated at the lowest
layer, while in rule T3 all the “lower level” cues have high values of getting
updated. In such a case, there is again competition between which one of them to
gate, and both can win with close probabilities, in the absence of any information
from the superior layers. Depending on what is gated into the top two layers,
any of those mappings could emerge.

3.3 Prediction Weights

The prediction weights at layer 0 are Stimulus-Action-Outcome conjugations
and the gating mechanism determines which stimulus and in turn which
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Fig. 2. Performance of the model with 3 layers for the two paradigms (a, b), plotted
as an average over 100 runs, only for the runs that reached convergence criteria. The
convergence criteria was defined as having a performance greater than 85% in the last
200 trials. (c¢) Performance for the model with 2 layers on the first learning paradigm.

action-outcome association is to be selected. The selected associations are then
modulated by superior layers and used the determine the response. At layer 1,
the prediction errors of layer 0 are contextualized to make SxSxAxO conjugations
and so on.

In the task considered for all our simulations, there are 5 concrete rules or
S-A-O predictions to learn: Black - Action3, Vowel, Lower case - Actionl and
Consonant, Upper case - Action2 (Fig. 1(b)). In Fig. 3, we present examples of
how a model with 3 layers selects a response by additive prediction modulation.
We observed that elaborating a mapping between the stimulus and what is gated
into the internal representation (r) at different layers could be done in differ-
ent ways, including randomly, as long as these mappings led to orthogonal and
mutually exclusive activations of predictions (in W). For example, in Fig. 3(e),
in Block 2, the color red was not gated into the internal representation, but the
random gating of the other 2 dimensions still led to an appropriate modulated
prediction that could initiate the correct response.

3.4 New Model

To explain the deficit of attentional mechanism in the HER model, and illustrate
the advantage of our proposal, we performed some simple simulations. The model
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Fig. 3. Examples of how the model solves different cases of stimuli. The matrix shows
the prediction values at different layers (first 3 rows), given the internal representation
of the stimulus, and how they are modulated additively (row 4) to give the final Action-
Outcome predictions that are used for response selection. a, b show the case when the
stimulus is black, in rules 1 and 2 respectively. d, e show the case when the stimulus is
Green, Vowel (rule T1) and Red, Upper case (rule T2). ¢, f show the case for Green,
Vowel and Red, Upper case in rule T3 (Color figure online)

was trained individually on the two discrimination tasks ie, on the two concrete
rules (T1 - vowel/consonant and T2 - lower/upper case), to obtain prediction
weights or Stimulus-Action-Outcome associations as in Fig. 4(b). We tested the
ability of the HER model with 2 layers, to use this information and contextualize
it to learn the abstract rule. The bottom layer of the model was initialized to
the predictions previously learned and moreover, it was “frozen” such that no
learning happened at this level, implying that these behaviors were rigid. At the
upper layer, the gating weights were biased to update the internal representation
with the context, which was the color in this case, implying saliency to previously
unattended cues. As expected, the model failed to learn the abstract rule with
these modifications. With the modified model, we used the same protocol i.e. the
bottom layer was kept frozen, and there was a bias added to the upper layer to
encourage gating of the color. However, instead of an independent gating at the
bottom layer, we included an output gating from the upper layer, which used the
prediction errors at the upper layer to select which stimulus dimension was going
to be gated into the bottom layer (Fig. 4(a)). To put it more generally, the bottom
layer was responsible for response selection while the upper layer was responsible
for action-set selection through targeted attention (cf [6] for more details about
the structuring concept of action-set and its role in PFC information processing).
Our modified model achieved optimal performance fairly quickly, as shown in
Fig. 4(c).
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4 Discussion

The PFC plays a major role in cognitive control and particularly for learn-
ing, selecting and monitoring hierarchical rules. For example, in experimental
paradigms, discrimination or categorization tasks can be considered as first-order
rules which could be learned individually. However, when conflicting stimuli are
presented simultaneously, a contextual cue is needed to identify which of the
first order rules is to be applied, thus forming second-order rules.

The inner mechanisms of the PFC have been studied in computational models
and among them, the property of working memory used for biasing by selective
attention in the PBWM model and, more recently in the HER model, the separa-
tion between outcome prediction error monitoring, and hierarchical rule learning.
Considering the indisputable progress brought by the design of the HER model,
we questioned whether it was now a standalone model of the PFC to be used
in any circumstances or if the contribution of certain mechanisms like selective
attention was still to be considered in some cases and possibly added to the
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Fig. 4. (a) The modified model with output gating from layer 1. The gating weights in
layer 1 (X1) learn over time to gate the context into r1. The selected prediction units
from layer 1 (p1) are then used to make a decision on which value of the stimulus s
is gated into ro (the output gate). (b) Prediction weights (Wy) for the concrete rules
at layer 0. These weights are pre-learned by training the model with rules T1 and T2,
independently. (c¢) Performance of the original model compared to the modified model
over a 100 runs, when layer 0 is fixed to the weights in figure (b) and only layer 1
prediction weights (W1) and gating weights (X) are learned.
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general framework of PFC modeling. More specifically, considering the deploy-
ment of cognitive control in realistic behavioral tasks and considering that most
hierarchical representations arise from the intersection between agents and the
problems they face, and are created over time in a learning process, in a rapid
and flexible way, our question was to know if the HER model could account for
this kind of process.

Using a task elaborated along two paradigms, we show that, when concrete
rules are already learnt and need to be contextualized, the use of a biasing selec-
tive attention mechanism is more effective than modulated weights changes in
displaying effective cognitive control. When concrete rules are acquired first,
superior layers must learn to select the appropriate concrete rule by targeted
attention, rather than by relearning representations. We observe that a subject
can perform optimally on a given task even though she uses a different rule
representation compared to the official one. On a single task, this has no conse-
quence and there is actually no way to know which exact rule is used internally.
However, when this rule needs to be composed with another rule such as to form
a new rule, this may pose problem and lead to bad performance. This has been
illustrated on the task: if a subject uses any of the alternative rules for tasks T1
or T2, she’ll be unable to solve task T3 even though this task is merely made
of a mix of T1 or T2 trials. The reason for the failure of the HER model in this
case is to be found in the failure to attend the relevant dimension of the task,
here, color, thus claiming for considering and incorporating this mechanism to
a versatile PFC model. Analyzing these results in a more general view, we can
remark that most experimental paradigms that study hierarchy break down the
complexity of a task by providing instructional cues to the participant. Even
in studies with rodents and non-human primates, shaping is used in learning
paradigms to enable the learning of complex or abstract rules. In developmental
learning, this kind of shaping is called curriculum learning. It is evident that such
breaking down of complexity must facilitate the acquisition of abstract rules, and
hence modeling approaches must demonstrate these behavioral results.

From a more conceptual point of view, the term hierarchy can be used in
many different ways, two common ones being processing hierarchies and repre-
sentational hierarchies. In the first, higher levels exert control over lower levels,
for example by controlling the flow of information or by setting the agenda for
lower levels [9]. In the second one, higher levels form abstractions over lower
levels, such that lower levels contain concrete, sensory and fine-grained infor-
mation, whereas higher levels contain general, conceptual and integrated infor-
mation [3,11]. It is thus important that a model of the PFC to exploit both
views, suggesting to incorporate an attentional mechanism for the flexible and
controlled design of hierarchical rules from previously learned concrete rules, as
we proposed in the new model sketched here.
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Abstract. Neural signals are the recordings of the electrical activity
individual or groups of neurons, and they are used for disease stag-
ing, brain-computer interface control and understanding the neural pro-
cesses. When carrying out a functional connectivity study in rodents,
processing must be done to eliminate disturbance in the data in order
to have the most faithful representation of the neural activity. This step
mainly includes filtering and artefact removal, where the latter can be
approached by diverse methods. Furthermore, it is important to identify
when the rodent is stressed, as the local field potentials can be coupled to
theta oscillations. To this end, we set out to develop a machine learning-
based model for the detection of stress in rodents with multi-modal
recordings, namely local field potentials, respiration and electrocardiog-
raphy. We explore subject-specific and cross-subject models, as well as
employing an artefact detection model as a generic anomaly detector.
Results show that subject-specific models can achieve a good perfor-
mance, but the variability is significant across all three signals among
rodents of the same age, gender and species.

Keywords: Computational neuroscience - Machine learning -
Physiological signals

1 Introduction

Neural signals are used in many applications, such as the detection of Alzheimer’s
disease, attention deficit hyperactivity disorder, Parkinson’s disease, seizures,
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etc. [1,2]. When studying specific structures within the brain, animal models
allow the recording of neural activity via invasive methods carried out without
the limitations of human experimentation, both technical and ethical. Benefits
of the invasive signals include less susceptibility to noise and a higher spatial
resolution, allowing specific structures within the brain to be studied.

To achieve a successful analysis of neuronal signals, they must have a min-
imal amount of disturbance. To this end, processing is applied to the signals
to standardise the data by removing phenomenons that may interfere with the
study [3]. This includes filtering, baseline drift removal, artefact removal and
stress removal. The first one is used to capture the band-with of interest, e.g.
less than 300 Hz for LFP, and to remove power-line noise, as it has a specific band
of 50 or 60 Hz. Baseline drift can be generated from a diverse range of sources,
including perspiration, respiration, body movements, and poor electrode con-
tact, and is detrimental to power spectral analysis. Similarly, artefacts detection
and removal techniques have been developed to counter the diverse range of
disturbances, from stimulation to spike bleeding [4,5]. However, no research has
been done which focuses on automatic systems which detect anaesthesia-related
stress in a rodent, as mostly it is done by a manual review of the data, via sup-
porting channels of other modalities, or video recordings [6]. The detection and
removal of these segments are crucial, as they can distort the neural recordings,
biasing results. We define stress as a period where alterations in the respiration
frequency or heart rate are measured compared to the baseline.

The process of manual review of neural recording requires a significant
amount of time, which could be used instead for posterior analysis. In this sce-
nario, developing automatic techniques to identify stress can be of great benefit
to researchers. Machine Learning (ML) techniques are algorithms that learn
from patterns in data and are able to make predictions of new data based on it.
Within neuroscience, the application of these models to process large datasets
to diagnose, classify patterns, control brain-machine interfaces and gain insight
into the brain has risen [7].

In this article, we present our research into ML-based stress detection in LFP
obtained from rodents. The remainder of the paper is organised as follows: in
Sect. 2 we explain the methodology, including data acquisition, processing and
the employed ML models. Afterwards Sect. 3 we show the results, followed by a
discussion in Sect. 4 and lastly Sect. 5 finished with the conclusion.

2 Methodology

The methodology is composed of three sections, where we describe first the data
acquisition, second the signal processing and lastly the ML models used.

2.1 Data Acquisition

For the analysis, five three-month-old female C57BL/6J (WT) mice were used.
The mice were anaesthetised for the recording process with a initial dose of ure-
thane followed by a mixture of xylazine/tiletamine-zolazepam after 30 min. A
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32-electrode-silicon probe (ATLAS Neuro Probe: E32-100-S1-L6-NT; pointy tip
feature; 100 um spaced electrodes; mean impedance 0.28 M{? in Krebs’ solu-
tion) was utilised to record the LFP from the dentate gyrus up to the cortical
layers. The LFP, along with the supporting electrocardiogram (ECG) and res-
piration signals were recorded at 10kHz for further processing. All of the ani-
mals were kept in an SPF animal facility with a 12-hour duration of light and
dark cycles and unrestricted access to food and water. The experimental proce-
dures were performed according to the European Committee guidelines (decree
2010/63/CEE) and the Animal Welfare Act (7 USC 2131), in compliance with
the ARRIVE guidelines. They were approved by the Animal Care Committee
of the University of Padua and the Italian Ministry of Health (authorisation
decree 522/2018-PR). For more details, we refer the reader to the published
experimental analysis [1,8].

2.2 Signal Processing

Offline data processing of electrophysiological signals was carried out in Matlab
utilising custom-written scripts. To begin, the Open-Ephys format files with
the recorded signals from the different channels were converted to Matlab file
format. Subsequently, the raw signals had the 50 Hz noise and its harmonics
removed via the application of a gaussian filter. The first 24 channels’ signals were
filtered using the built-in non-causal zero-phase distortion filtering algorithm,
which in order to avoid phase distortion, the data is processed in both forward
and reverse directions using coefficients from the built-in Butterworth transfer
function. Using a median estimation approach, baseline drift was eliminated
from the ECG and respiration signals. Afterwards, the recordings were low-pass
filtered (filter order: 5; cut-off frequency: 190 Hz for LFP, 25 Hz for ECG, and
10 Hz for respiration) and down-sampled to 500 Hz, 50 Hz and 20 Hz, respectively.

A three-step method was used to automatically identify stable LFP win-
dows using respiratory and ECG data. In the first step, a script calculates
the respiration and heartbeat rates and using specific upper and lower bounds,
anomalous patterns were identified. By taking the median of the individual rates
and adding/subtracting a tolerance margin of 20%, the boundary values were
obtained. As a result, we have a labelled LFP as normal where both signals
were steady and stressed when either one was not stable. Figure 1 showcases the
behaviour of the three signals under normal (A) and stress (B) cases, where in
the latter, there are some fast oscillations in the LFP, irregular heartbeats in the
electrocardiogram, and abnormal cycles in the respiration recording.

The LFP of the five rodents were labelled with —1 for stress and 1 for normal.
The statistical model of the duration of stress segments was 10 s, the shortest
lasting 4 s and the longest 48 s. Out of each stress segment, non-overlapping
windows of 1 s were extracted to create the examples which would be shown to
the model, and the same amount was randomly sampled from normal segments.
A total of 47808 stress examples and 47808 normal examples constituted the
final dataset.
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Fig. 1. One second segments of local field potential, electrocardiogram and respiration
signals in (A) normal state (B) stressed state.

We then created models trained with different characteristics or features of
the examples, including the following set of features:

— The raw signal.
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— From the Pawfe Toolbox [9]: integrated absolute value, mean absolute value,
slope sign change, zero crossing, mean absolute value slope, root mean
square, RMS, waveform length, time domain, histogram, the marginal dis-
crete wavelet transform.

— From the EEG-FET Toolbox [10]: ratio of band power alpha to beta, band
power gamma, band power beta, band power alpha, band power theta, band
power delta, hjorth activity, hjorth mobility, hjorth complexity, skewness, kur-
tosis, first difference, normalised first difference, second difference, normalised
second difference, mean curve length, mean energy, mean teager energy, log
root sum of sequential variation, tsallis entropy, shannon entropy, log energy
entropy, renyi entropy, arithmetic mean, standard deviation, variance, median
value, auto-regressive model, maximum value, minimum value.

— The Fourier transform of the signal.

— Spectral features: power per band, ratios among bands and relative power,
where the bands are defined as: 0.1-1.7 Hz slow oscillations, 1.7-4.7 Hz delta,
4.7-10 Hz theta, 10-25 Hz beta, 25-45 Hz low gamma, 45-90 Hz high gamma
and 90-125 Hz fast oscillations.

For the subject-specific models, data from each rodent was split into train-
ing (80%) and validation (20%), and tested with the full data of the other
rodents. Similarly, for the cross-subject models, we combined the samples of
all the rodents and split them into training (80%) and testing (20%). In both
cases, no normalisation of features was used.

2.3 Machine Learning Classification Models

ML techniques are a series of algorithms that can learn patterns in data in order
to make accurate predictions in unseen examples. While there are a substantial
amount of techniques and models, including the sub-topic of deep learning, we
explored five different models which can be used to deal with non-linear data
such as neural signals. These techniques are the following;:

Decision Trees: Decision Tree (DT) algorithms can be used to build both classi-
fications and regression trees, where each internal node has exactly two outgoing
edges, namely binary trees. The splits are selected using Gini index as a splitting
criterion and the obtained tree is pruned by cost-complexity pruning.

Ensemble of Decision Trees: Ensemble Techniques (ET) combines many decision
tree classifiers to create more accurate predictions than a single decision tree
classifier. The basic idea underlying the ensemble model is that a number of
weak learners cooperate to produce a strong learner, enhancing the model’s
accuracy.

Multi Layered Perceptron: A Multi-Layered Perceptron (MLP) is an ML algo-
rithm for the analysis of patterns and classification. It consists of no less than
three parts: an input layer, a hidden layer and an output layer. When it con-
tains multiple numbers of hidden layers, it helps in modelling complex non-linear
relations better than the shallow architecture.
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Support Vector Machines: Support vector machines (SVM) are learning
machines premised on the statistical learning theory, where the model optimally
separates the classes by determining the maximal margin hyperplane. This opti-
mal hyperplane should maximise the margin between the data from the positive
class and the negative class.

k-Nearest Neighbours: The k-Nearest Neighbours (kNN) classifier employs met-
rics of distance to labeled examples as to categorise new ones. The parameter k
indicates the number of neighbours that will be chosen to compare, which has a
major influence on the accuracy of kNN algorithm.

Having described the different classification models used, we proceed to
report on the results obtained by the various approaches to the stress detec-
tion task.

3 Results

In this section, we will first report the results obtained by the subject-specific
model with ECG and respiration, followed by the cross-subject model with LFP
and lastly, a generic LFP anomaly detector.

3.1 Subject-Specific Model with ECG and Respiration

In Fig. 2, the box plot of the heartbeat per second and respiration rate are shown,
for both normal and stress states of each rodent. Each rodent behaves differently,
more so than the difference among the states. This means that a cross-subject
model is unlikely to achieve good results. In order to test this, we build first
several classifiers with the heartbeat per second and respiration rate of a single
rodent, where the best performance was obtained by the kNN. Afterwards, we
built a model for each rodent and classified the recording of the other rodents,
where the results are compiled in Table 1. The row in the table indicates the
rodent used to train the model, and the column the rodent whose data is being
predicted. The inability of a model trained with the data of a single rodent
to have a stress detection accuracy perform well with another rodent confirms
that there is a bigger difference between the animal’s respiration and ECG than
between the individual “stress” and “normal” states. With the results of these
modalities in mind, we proceed to train the models with LFPs in cross-subject
and inter-subject manners in order to evaluate their feasibility.

3.2 Cross Subject Model with LFP

We trained several classifiers for a cross-subject model, that are compiled in
Table 2. The features with the best performances are achieved by the raw sig-
nal followed by the Fourier transform of the signal. In regards to the methods,
DT achieves the lowest accuracies, with the best performing features being the
Fourier transform. The use of ET boost the performance significantly, however



Detection of Healthy and Unhealthy Brain States from LFP Using ML 33

M k15_stress B k15 _norm M k16_stress [ kl16_norm M k37_stress
M k37_norm M k38 stress M k38 _norm M k39_stress M k39 _norm

4.5

3.5

RESPIRATION FREQUENCY

25

12

10

BEATS PER SECOND
IS o

N

S

Fig. 2. Respiration frequency and beats per second of normal and stress segments per
rodent.

the best model is the one trained with the raw signal. Both SVM and MLP
perform similarly, where the best models are those trained with the raw signal.

Lastly, the model with the best performance is the kNN with raw signal,
where the model has been able to accurately classify 95.2% of the stress seg-
ments and 84.2% of the normal segments. This means that the euclidean dis-
tance among stress segments is smaller than in the normal segments. As it has
yielded the best results, for the remainder of the article, we will be using the
combination of KNN with the raw signal.
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Table 1. Accuracy of the subject-specific kNN models for ECG and respiration (chance
level accuracy 50%).

Rodent | k15 |k16 |k37 k38 |k39
k15 97.6 149.9 |49.7/49.8 | 50.1
k16 54.6 | 98.7|54.1|53.6 |50.1
k37 58.7 |63.7 |98 |98.9 |53.2
k38 59 |64.2 | 51.3/99.2|51.5
k39 42.3 |50 |50.1/50 |99.9

Table 2. Accuracy of the cross-subject models for LFP (chance level accuracy 50%).

Method | Raw sig. | Pawfe Thx. | EEGTbx. | Fou.Tran. | Spec. Fea.
DT 53.7 51.7 54.1 55.3 54.5

ET 72.7 53.3 56.9 60.3 57.6

kNN 89.7 53.5 55.2 69.5 57.5

SVM 76.7 53.5 56.6 65.2 56

MLP 74.3 52.3 57.3 63.7 57.2

The under-performing results across the other features indicate that the vari-
ance among subjects might be present in the LFP too. In order to understand
the issue more, we created models trained with only the examples of one rodent
and then asked the model to predict stress or normal in the examples of other
rodents (not seen by the model). The kNN-based subject specific models com-
piled in Table 3, where the row in the table indicates the rodent used to train
the model and the column the rodent whose data is being predicted.

Table 3. Accuracy of the subject-specific kNN models for LFP (chance level accuracy
50%).

Rodent | k15 |k16 k37 |k38 |k39

k15 96.6 | 53.4 |49.1 1484 |49.9
k16 47.0 1 99.846.8 |51.0 |49.7
k37 45.1 | 49.7 1 94.349.6 | 49.3
k38 49.6 | 53.2 [47.1 |99.1|50.6
k39 49.3 | 54.7 1474 |52.6 | 85.0

Overall there is a poor cross-subject generalisation; therefore, instead of iden-
tifying the stress in a signal, we changed the example’s labels instead to which
animal they had come from (regardless of stressed or normal). This was done in
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order to evaluate that if the computational methods are able to correctly iden-
tify from which animal the example came from, the differences among animals is
significant and bigger than the difference among stress and normal states. The
results are compiled in Table 4, where several methods achieve good performance.
The best results across all models are obtained with the Fourier transform of the
signal, indicating that the differences among rodents are strongly represented in
the spectral properties of the signals. This is why the extracted spectral fea-
tures and the features from the EEG toolbox perform noticeably better than
the Pawfe toolbox and the raw signal. It is worth noting that even those sets of
features that were poorly discriminant for stress and normal classes produce a
great result for identifying the animal.

Table 4. Accuracy of the subject identifier models of LFP (chance level accuracy 50%).

Method | Raw Sig. | Pawfe Tbx. | EEGTbx. | Fou.Tran. | Spec. Fea.
DT 67.9 7.4 90.2 95.2 90.9
ET 87.2 81.1 91.9 96.5 93.0
kNN 96.3 78.4 89.1 95.6 91.3
SVM 87.4 80.3 91.5 97.3 93.0
MLP 97.3 83.5 92.4 97.5 93.4

3.3 LFP Anomality Detector

Alternatively, we also explored the possibility of using a classifier trained for
artefact detection as a generic anomaly detector. We propose three approaches:
(1) using the trained classifier in this new task, (2) applying transfer learning and
lastly (3) using it for feature extraction in conjunction with a classifier. We used
a private dataset of LFP acquired in freely moving rodents, where specialists
have labelled segments of the signal as artefactual or not based on the power of
an artefact-free portion [11]. In order to not introduce a new bias of the model,
signal processing was done to match the characteristics between the datasets,
including down-sampling from 1 kHz to 500 Hz and up-scaling from microvolts
to millivolts.

Afterwards, we extracted 1-second non-overlapping normal and artefacts and
used it to train a 1D-CNN, a model which has achieved the best performance for
the task [12]. The network is an adaptation of AlexNet [13], which was done by
flattening one dimension of the filters and pooling layers, and the components of
the 12-layer architecture are listed in Table 5. The convolutional layer filter sizes
are expressed inside brackets, multiplied by the quantity and succeeded by the
stride (s) and the same notation is used for the pooling window’s sizes and stride.
The input size, number rectified linear unit in the fully connected layers and soft
max units in the classification layer are within brackets as well. The number of
filters was decreased to multiples of 16 due to the lower dimensionality of the
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input. The optimisation algorithm used to train it was Adam, with an initial
learning rate of 0.001, the momentum of 0.9 and a batch size of 256. A balanced
dataset of 43840 examples was split into training (70%), validation (15%) and
testing (15%), where the performance accuracy on the different sets was 98.44%

M. 1. Fabietti et al.

for training, 98.21% for validation and 96.8% for testing.

The results of the three approaches are compiled in Table 6. Employing
the classifier directly shows poorer results, as most of the stress segments are
classified as normal. This can be attributed to the fact that artefacts have a
higher amplitude and the waveform has no resemblance to physiological activity.
Fine-tuning leads to slightly better results, but the model struggles with this new
task. Lastly, feature extraction and a KNN classifier yield worse results than the
previous subject-specific models in Table 3 as the waveform information is lost,

Table 5. Architecture of the 1D-CNN model.

Architecture | Component

Layer 1 Input [500]

Layer 2 Convolution 1 [1,11] x 32, s =1
Layer 3 Max Pooling 1 [1,3], s = 2
Layer 4 Convolution 2 [1,5] x 64,s =1
Layer 5 Max Pooling2 [1,3], s = 2
Layer 6 Convolution 3 [1,3] x 128, s =1
Layer 7 Convolution 4 [1,3] x 128, s=1
Layer 8 Convolution 5 [1,3] x 128, s =1
Layer 9 Max Pooling 3 [1,3], s =2
Layer 10 Fully Connected [1024]

Layer 11 Fully Connected [512]

Layer 12 Classification [2]

in addition to the same lack of generalisation when used in other rodents.

Table 6. Results of the generic anomaly detector (chance level accuracy 50%).

Method Metric k15 k16 k37 k38 k39
Classification Accuracy 43.6% | 50.9% | 49.8% | 49.7% | 50.0%
Specificity 78.0% | 87.8% | 92.0% | 94.0% | 95.5%
Sensitivity 18.3% [12.5% | 7.9% | 6.0% | 4.5%
Fine-tuning Val. Accuracy | 55.9% | 55.9% | 53.7% | 52.6% | 52.7%
Feature extraction + kNN | Acc 89.5% | 88.0% | 75.3% | 70.7% | 65.9%
Specificity 84.7% | 85.5% | 75.2% | 69.6% | 65.0%
Sensitivity 96.2% | 90.4% | 75.5% | 71.9% | 66.8%
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Fig. 3. From left to wright, box-plots of the power of normal and artefact examples
from external dataset and power of normal and stress segments per rodent.
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In order to understand the difference among the tasks and transfer-learning
limitations, boxplots of the power of each segment for normal and artefact exam-
ples from external dataset and power of normal and stress segments per rodent is
presented in Fig. 3. The power of a signal is the main characteristic used to label
artefacts, and as it is shown in the figure it is significantly bigger compared to nor-
mal signals. While stressed states have slightly higher power than normal ones, the
difference is smaller, explaining why the network struggles in this new task.

4 Discussion

Researchers in the field of neuroscience are familiar with the struggles of variabil-
ity. Comparing the brain and neural activity, the most complex organ, among
subjects is no simple task. The variability can be inter-subject (when comparing
different subjects), intra-subject (the same subject, over time) and inter trials
(the same subject across trials). The impact of this uncontrollable variable limits
the performance of ML classifiers, and is one of the main challenges of several
applications. For example, in emotion recognition with EEG, we find reported
cross-subject accuracies from 38.7% to 53.8% [14]. The impact of variability have
also been explored for brain computer interface decoding [15], inhibition brain
function [16], drowsiness detection [17] and others.

For newcomers to the field or those from other areas such as computer science,
a cross-subject performance nearing 50% is arguably a positive result, especially
when compared to other fields such as image recognition. In such fields, the
models are expected to out-perform the chance level accuracy, that is referred to
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as the performance achieved by a classifier that would randomly label the data
(i.e. 50% in the balanced binary classification scenario). However, we have been
able to achieve subject-specific models with excellent performance through the
use of KNN and the raw LFP signal. This means that a portable online model
could be developed for stress detection in cases where these supporting signals
are not available due to the presence of an artefact or have gotten disconnected.
To our best knowledge, no other studies have been conducted on automatic stress
detection on animal models, which can be attributed to the fact that researchers
still rely on manual review of the data. We hope this research can aid those
looking to reduce the review time.

Future work includes the use of transfer learning to show that a model trained
with the data of a group of rodents can be successfully adapted to detect stress
in a new subject with little training data sample size requirements.

5 Conclusion

We set out to build a model to identify stressed segments in LFP obtained from
rodents. First, we developed models with features of the supplementary signals,
respiratory frequency and beats per second. Wewe found that while a subject-
specific model could be achieved (>98% accuracy on average), these models
couldn’t be used to predict stress in other rodents with good results. Thus,
we focused on analysing the LFP signal in itself, where we extracted different
features for a cross-subject model and achieved good performance with a kNN
and the raw signal. Commonly extracted features of local field potential such
as power bands, relative power and ratios to the theta band were not class-
discriminative, suggesting that the LFP activity during stress presents subtle
differences compared to normal activity.

When looking at subject-specific models, we found the same lack of gener-
alisation present in the models built with the supporting signals. This means
that the difference among subjects is bigger than the states of “normal” and
“stressed” across all the modalities. While this may be attributed to biolog-
ical differences, the effect of anaesthesia may also have a role in it. To sum
up, achieving good generalisation is not possible due to these differences; how-
ever, the results are acceptable compared to other brain signal cross-subject ML
applications.
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Abstract. In the recent years, one of the leading technology which is
earning greater mode of interest in the growing various fields of artifi-
cial intelligence is Brain computer interfaces (BCI). Recognizing emo-
tions based on physiological signals specifically, Electroencephalography
(EEG) signals with advancement of BCI applications, has turn into a
very popular research topic. In this paper for effective representation
of features the proposed model adopts COSLETS transformation app-
roach, a combination DCT (Discrete Cosine Transform) and wavelets
Transform. The obtained set of features is mapped on to the low dimen-
sional subspace to employ principal components using PCA and finally
GRNN (General Regression Neural Network) is presented for effective
classification of four different emotional states from publicly available
EEG based GAMEEMO dataset. The experimental results are promis-
ing and performed well, compared to other state of methods.

Keywords: BCI-Brain computer interfaces - EEG signals -+ Emotion
recognition + COSLETS - GRNN

1 Introduction

Interaction of every individual along various external environment in their day-
to-day activities relies on emotions. Emotion plays a essential role in the life
of human beings as they produce different aspects, which is indicial of human
behaviour and described in assorted ways depending upon the particular situa-
tions, perceiving and understanding emotional states is part of human interac-
tion. It is defined as the mental condition of a person which includes thoughts,
feelings, behaviour, and psycho-physiological responses to external or internal
stimuli. Reciprocal action between humans and machines exists in many envi-
rons, by the means of BCI technology [9]. More and more researchers across
the globe have evaluated the nature of emotions significantly by the means of
facial expressions, speech, body gesture in various areas such as e-learning, rec-
ommend system, smart home, smart city and intelligent conversational systems.
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According to the experience of researchers from previous studies, resolving with
lack of compatibility in traditional emotion recognition based on facial expres-
sion, speech, and other characteristics was not more accurate with recogniz-
ing emotions based on physiological electrical signals, which is more arduous
to be counterfeit thereby reflecting the individual’s true emotions. With the
advancement of cost-effective sensor technologies, an investigation into emotion
recognition has grown progressively popular among EEG [7,8] signals which are
depicted by the fact that EEG signals are tough to cover up and have a real-
time discrepancy. It is leading non-invasive type of BCI involved in measuring
brain’s electrical activity. Established the antecedent methods of EEG-based
emotions recognition from it’s enlighten characteristics are reported in brief. In
the past, recent for intently recognizing emotions of different classes upon dif-
ferent applications, researchers focused on the following benchmark data sets:
SEED [1], DEAP [3], MANHOBHCI [2], DREAMER [9], ASCERTAIN [4], AMI-
GOS [6] and GAMEEMO [5] and in-depth knowledge and extensive works on
these familiar datasets can found in [10-13]. Recognition of emotions based on
EEG signals are split into the sequence of steps: (1) inducing emotions, (2)
recording EEG signals, (3) prepossessing of signals, (4) feature extraction, (5)
EEG feature dimensional reduction from feature selection or feature transforma-
tion techniques, (6) Study of emotional patterns and classifications. In above all
mentioned phases, each one is bottom-line factors in analysing emotional states.
Good deal of efforts from researchers for all phases have been accomplished in
adaptive EEG based BCI systems. In this paper proposed study targeted interest
on mapping Large/High dimension data into new decreased low dimension one
for making classification stage easier in predicting different emotional states.

2 Related Work

In the area of machine learning there are often many factors arise resulting in dif-
ferent problems on the basis of which final classification is done, one of the most
essential factor is number of input features. When there is a higher number of input
feature, it gets tough to visualize the training set and then working on it, generally
most of these features are correlated, and leads to redundancy. At this situation,
dimension reduction (DR) algorithms come into play [14]. It is the processes of
reducing enormous amount of random variables under consideration, by gather-
ing a set of principal variables. It is increasingly becoming very popular in grow-
ing research fields of various applications such as Signal processing [17], Speech
processing, Neuroinformatic [15], Bioinformatic [16]. Necessary benefits can be
obtained by processing dimension reduction techniques some of them are: data
storage reduction, minimum computation time, redundant data can be eliminated,
minimization of noise can be achieved to have good quality of data. It simplifies
classification process, resulting best accuracy rates and visualization of data can be
boosted. Basically DR can be divided into feature selection and feature extraction.
In the past, recent literature, researchers focused on various DR algorithms such as
PCA (Principal Component Analysis), ICA (Independent Component Analysis),
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GA (Genetic Algorithm), LDA (Linear Discriminant Analysis) etc., for different
applications of EEG signals. In the year 2020 Gao et al. [18], PCA algorithm was
applied on EEG signal for classifying emotion along with fusion of power Spectrum
and wavelet energy entropy features resulting in good classification accuracy. In
the study of Granados et al. [19] used EEG signals, electrocardiogram and galvanic
skin response for developing emotion classification model based on advanced clas-
sical machine learning approaches. According to the 2-dimensional emotion model
(valence/arousal). Li et al. [24] proposed emotion recognition model from extrac-
tion of frequency related features using RASM (rational asymmetry) and LSTM
(Long-short-term-memory network) for temporal related EEG signals. Alhagry
et al. [20] presented a model for classifying emotions into low /high arousal valence
and liking states from raw EEG signals of DEAP dataset by applying LSTM to
extract relevant features. In this study productive emotion classification method
for EEG signals from various types of video games is presented using GAMEEMO
database. This particular dataset was focused by researchers in emotion recog-
nition using different methods in recent years some of them are Turcer et al.
[21], developed LEDPatNet19 model by achieving 92% of classification accuracy.
GoogleNet model based deep learning approach was proposed by Muzaffer Aslan
[22] by converting EEG signals into EEG images using continuous wavelet trans-
form with classification accuracy of 98.53 for SVM and 98.78 for K-NN. Sengul
Dogan [23] achieved 99% of results in developing accurate emotion classification
system in bringing about novel feature generation tetromino pattern.

Being motivated from the above mentioned literature, any machine learn-
ing algorithm primary desire is to have small number of features as input
for appropriately producing outstanding results for all type of data domains.
In this backdrop we begin our proposed study in conducting experiments for
enhanced classification rates in recognizing emotions from EEG signals fol-
lowed by designing feature generation algorithm using transformation technique
called COSLETS. The proposed algorithm has been tested on GAMEEMO EEG
dataset. The presented work performed well in achieving promising results when
compared to other state of art techniques. This paper has followed by differ-
ent sections. Section 3 explains proposed methodology and related theory to the
proposed work. Section 4 explains about the classifications. Section 5 tells about
the dataset, experimental results, discussion and conclusion of proposed study.

3 Proposed Method

The proposed research study is carried out for developing the classification model
in recognizing four different emotional states. The proposed method adopts
Coslets transformation technique which is inspired by the work [25]. Coslet trans-
formation technique is a combination of two different approaches, DCT and
Wavelet Transform. The main objective of this research work is to design feature
generation algorithm in reducing dimension of data for recognizing emotions. In
accomplishing this task we concentrated on DCT approach which is very popu-
lar on compressing the data size. In this work it has been examined to represent
EEG data by preserving information with low frequency. Wavelet transforms [33] is
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used for measuring signal properties which is changing overtime. In this study pro-
posed model extracts features by implementing coslets transformation approach
on pre-processed EEG signals, the obtained features vector after transformation
are projected onto the lower dimensional feature space employing PCA and finally
the data will be given to GRNN for classifying four different emotions classes such
as happy, funny, boring and clam.

3.1 Discrete Cosine Transform (DCT)

It is one of the popular and suitable transformation technique which plays
prominent role in compression schemes [26] and its enlightened properties helps
in converting signals which is time series into fundamental frequency compo-
nents, considerably co-efficients with low frequency are fixed initially and high
frequency are followed in the next. DCT is linear Invertible function, defined

f: RN — R" where R is set of Real Numbers and N is the length of the
sequence.

Let f(z),z=0,1,2,3... N—1 be a sequence of length N. Then the Notation
for 1D DCT consisting N real number is expressed by the following equation

F(u) = (;) L sz Az) [cos W‘} (@) (1)

where Vu = 1,2.....m are scaling factors

For highly correlated signals DCT is capable of exploring good energy com-
paction [26]. Employing DCT for EEG Signals let on compressing the useful
data to the few primary co-efficient as a consequence only these co-efficient can
be used in machine learning algorithm at the stage of classification.

3.2 Wavelets

The majority of existent signals are non-stationary in nature, which means sig-
nal properties may change over time. To meet the interest of events in this
area, analysis of time-frequency approaches are widely used. Short-Time Fourier
Transform (STFT) is convention way of Time-frequency analysis, which results
in Spectrogram plot. In STF'T, Fourier transform of the signal is considered over
Short-time-window, although STFT is mostly used time frequency approach it
also has limitation, on improvement in time resolution impacting poor frequency
resolution (due to Heisenberg’s uncertainty principle) to overcome this issue, the
substitute to STFT is wavelet transform. Its properties accomplish the task of
signals with low frequency being spread over time and high frequency burst
appearing on Short intervals. Wavelet transform use wavelet function along with
variable size of windows [28]. From the previous sections the obtained DCT co-
efficient are analysed using wavelets and proved that it is very effective way for
describing information content of signals. Most importantly selection as wavelets
bases are highly subjective in nature since it depends on the data being used.
We choose ‘Haar’ as the wavelet basis for representation of data. The difference
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in information between approximation of signals at 277! and 2/ can be gathered
by decomposing the signal on orthogonal basis. In the case where ¢(t) is orthog-
onal wavelet, an orthogonal basis of Hy; is calculated by scaling the wavelet with
co-efficient 2j and transforming it on a lattice with an interval 277,

The Haar wavelet’s mother wavelet function ¢(t) can be described as

1, &0<t<1/2
1
0, & otherwise

Its scaling function ¢(t) can be described as

() = 1, &0<t<1,
wi = 0, & otherwise

It is perceived that selection of basis, scaling function and wavelets, which
leads to achieve good localization in each spatial and Fourier domains. Assum-
ing ‘x’ as given 1D signal, wavelet composed of stages at the most. Initially
we attained two set of co-efficient namely: Approximation co-efficient CA1 and
detailed co-efficient CD1. These co-efficient are acquired through convolving sig-
nal ‘x’ with low pass filter for approximation and detail with high pass filter:
observed by dyadic decimation.

3.3 Principal Component Analysis (PCA)

It is most powerful and premise approach of dimension reduction and it plays vital
role for extracting features based on Statistical Analysis [31]. The feature obtained
after COSLETS transformation end up with high dimension which result in com-
plex computation and time consuming. PCA discover principal patterns of data
with high dimension displaying their similarity and differences. In order to find the
dominant correlations in the data, large dimension data point are mapped onto the
smaller dimensional feature space verifying orthogonality with maximum Covari-
ance of the data which is aligned in the direction of principal axis. The most rele-
vant features attained after applying PCA is ten EEG features, which will be given
as input to GRNN (General Regression Neural Network) classifier. The proposed
model architecture is represented in the below Fig. 1.

i

1 I} ’h”y"m““‘h“wwg .............

Preprocessed EEG signals DCT Signal Wavelets

Input Hidden  output

Fig. 1. Architecture of proposed coslets transformation for emotion recognition.
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4 Classification

Due to the major advantage of considering first few transform co-efficients as
discriminating features for exhibiting the actual information in a signal by nearly
neglecting other co-efficient information. We gained large number of observed
EEG data to be processed at the phase of classification of EEG signals. In
this regard, PCA (Principal component Analysis) is applied to observed data
and transformed on to the reduced orthogonal feature space [27]. The EEG
features obtained after PCA is 10 in number which will be given as input to
GRNN which is supervised learning model associated with inherent abilities also
good at time series classification and prediction tasks when compared with other
classifiers [32]. It is variants of radial basis function, where systematically the
weights of these network are evaluated and in the hidden layers it uses Gaussian
activation function. Some of the prime advantage of GRNN: It is a single pass
and fast learning network as there is no requirement for iterative training as
other Neural Network follow, even it performs well for data contaminated with
noisy environment. The Topology of GRNN consists of three layers namely:
Input layer, Hidden layer and Output layer. The general Notation for calculating
weights vector of this network is given below.

_ 21;1 TiWi
Zi:l Wi

where the outputF (I) is weighted average of the target values Ti of training
cases [i close to a given input case L.

11— L|]?

F(I) W; = 6[27,12] (2)

5 Experiments and Results

This section describes the experimental design, results and about the dataset we
have chosen for evaluation of the proposed work.

5.1 Dataset

GAMEEMO [5] is challenging benchmark dataset for EEG based emotion recog-
nition application. The dataset consists of EEG signals recorded using 14 (AF4,
AF3,F7,F8, P7, P8, T7, T8, FC5, FC6, O1, 02, F4, F3) channel Emotiv Epoc+
EEG sensor, sampling rate of EEG device is 2048 Hz, from 28 participants aged
between 20-27 while they were playing four different types of computer games
for 20 min duration (5 min for each game). After playing each game, participant
exhibited four different types of emotions such as Horror, Funny, Calm and Bor-
ing. The dataset contains both raw EEG signals and pre-processed EEG signals,
specifically all the subjects contain 38252 samples for each class of emotion. We
have opted pre-processed EEG signals for implementation, the recorded signals
were down sampled at 128 hz, and are prepossessed using 5th order sinc filter
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(built in filter of EEG device) which eliminates movements of hands, head and
arms which are considered as artifacts.

5.2 Experimental Results and Performance Analysis

This section presents the results based on bench-mark publicly available video
game based EEG dataset. As we mentioned in the earlier section the dataset
consists of 14 channel EEG signals recorded from 28 healthy subjects while they
were playing four different video games. Previous sections detailed about how
DCT is used for data compression resulting from higher dimension to lower
dimension. To start with the implementation phase, the pre-processed EEG fea-
tures which is in time domain of all subjects in each class of emotion with the
length of 38000 were divided into training and testing phase in the ratio of 80:20
for classification purpose, the same procedure was followed for all 14 channels
EEG signals collected from 28 subjects in all four class of emotion. Initially all
the prepossessed EEG features were used for DCT transformation (compressing
higher dimension data to lower dimension), this approach convert time domain
EEG features into fundamental frequency components, EEG feature with low fre-
quency co-efficients are mainly concentrated for further process and co-efficient
with high frequency are neglected, because most of the transformed co-efficient
produced by DCT consists of zero or small in number and only few of them are
with large in numbers, after applying DCT to prepossessed EEG features (38000
for each person from each emotion), the dimension of the features were reduced
from 38000 to 9000 features and to obtain highly discriminating features, 1D
wavelet is applied to DCT transformed features space. In order to reduce the
orthogonal feature space of EEG data PCA is applied to reduce the dimension
of the data which finally gave us 10 most relevant features for further classifica-
tion of different emotions. GRNN was preferred due to its good performance in
wide range of applications and it also good at prediction task. In the proposed
method the results obtained for all channel of EEG signal is given below the
Table1 (Comparison Table of Different Dimensional Reduction Methods) and
Table 2 (Comparison Table of Different Classifiers for GAMEEMO Dataset). It
is observed that tabulated results comparing existing methods with our proposed
study outperforms well with combination of DR and GRNN as classifiers.

Table 1. Comparison table of different dimensional reduction methods.

Study Methods Dataset Accuracy
Yu Chen [30] LDA + Ada-boost | DEAP 88.70
Qiang GAO [18] PCA + SVM Own data-set |89.17
DongKoo [29] Genetic algorithm | DEAP 71.76
Proposed method | Coslets approach | GAMEEMO | 100
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Table 2. Comparison table of different classifiers for GAMEEMO dataset.

Method AF3| AF4 | F3 F4 F7 F8 FC5 | FC6 | O1 | O2 | P7 | P8 T7 | T8
Alakus et al. 61 75 59 67 67 75 64 68 65 65 61 73 61 64
method+KNN

Alakus et al. 81 88 63 72 84 80 66 68 57 70 59 81 65 81
method+SVM

Alakus et al. 86 87 79 83 84 84 79 85 79 83 79 s 75 79
method+MLPN

Tuncer et al. 98.75/98.57 {99.11/98.39|98.21|98.75|98.57 |99.29 |99.1198.39|98.57|98.57|98.04|98.57
method+SVM

Our Proposed 100 |{100 (100 [100 (100 |[100 (100 |100 (100 (100 |100 |100 |100 (100
method4+GRNN

5.3 Discussion and Conclusion

Analysis of this research work is to present a new emotion classification model
based on EEG Signals. The main purpose in this study was to reduce the higher
dimensional data into smaller one without information loss for better classifi-
cation. The presented model is defined as COSLETS transformation. Which is
combination of DCT and Wavelet transform. Our main concern with data in
hand was to reduce the size/dimension, where DCT is widely used for data com-
pression. Importantly its properties is capable of working with correlated input
data and examine energy of first few transform co-efficients, the other followed
co-efficients are simply neglected. Wavelet transforms was primarily designed
for extracting features with non-stationary signals we applied 1D wavelet trans-
form for DCT co-efficients and to enhance the numerical strength of the model
PCA is used for better representation of data. Conventional networks such as
GRNN have generalization and convergence properties, in this direction we used
GRNN as for classifying four different emotions. Experimental results revealed
that COSLET transformation is the first of this kind in the literature for EEG
based emotion recognition and it has superiorly performed well for all 14 channel
of EEG Signals in the particular dataset. In future we wish to work with several
new dimension reduction approaches which is necessary for recognizing more
classes of emotions with different applications in the field of machine learning.
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Abstract. The present paper proposes a computational approach to
explore the influences of social learning on social cognition among indi-
viduals with Autism Spectrum Disorder (ASD) compared to the Typi-
cally Developing (TD) group. An experimental paradigm is designed to
perceive and differentiate social cues related to real-time road and traffic
light situations. The computational metrics such as sensitivity index (d’),
response bias (c¢) and detection accuracy (DA) are recorded and analysed
using machine learning classifiers. The results revealed that cognitive
level is attenuated in ASD (d’ = 0.427, ¢ = —0.0076 and DA = 51.67%)
compared to TD (d' = 1.42, ¢ = —0.0027 and DA = 80.33%) with an
improvement considering social influence as key factor (Sy) with best-
fit quantitative value for ASD (Sy = 0.3197) when compared to TD
(S5 = 0.3937). The automated classification with an accuracy of 96.2%
supported the significance of the metrics in distinguishing ASD from
TDs. The present findings revealed that social conformity and social
influence imparted growth in ASD cognition.

Keywords: Support Vector Machine (SVM) - Machine learning -
Correlation coefficient - Social learning

1 Introduction

Autism Spectrum Disorder (ASD) refers to a group of neurodevelopmental con-
ditions that involve social atypicality and repetitive/stereotyped behaviour [26].
These conditions cannot be cured through conventional medication and often
lead to reduced quality of life [7]. Therefore, ASD should be identified as early
© Springer Nature Switzerland AG 2022
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as possible to allow the selection and administration of therapies to mitigate this
reduction and support these people effectively [5,22]. However, the spectrum of
impairments in the behavioural and neural domain increases disorder hetero-
geneity making the identification and diagnosis of ASD extremely difficult [16].
ASD normally can be detected at an early age (about two years ) but may also
be detected later, depending on the severity of symptoms [4]. Although several
tools have been developed to detect and identify subtypes of ASD, the proce-
dures are onerous and normally are not used unless there is a strong doubt or a
high risk of ASD [1,2].

Several studies theoretically reported the ability to visually search and per-
ceive information that is intact in ASD. In a theoretical framework, a study
demonstrated cognition using different vital parameters such as visual infer-
ence drawn from present information, reliable prior experiences, and statistical
learning [13]. The social learning parameter significantly aids in evoking cogni-
tion, working memory and prediction ability among individuals [8,20,24]. Social
learning is a process where one learns by observing, following, and reproducing
other person’s experiences [19]. For example, when Typically Developing (TD)
children were provided with others’ responses related to systematic risks (play-
ing with fire), they changed their perspective and conformity style very quickly
[10,17]. Quantitatively, on average, the influence factor in a social learning pro-
cess lies in the range between 0.3 and 0.5 for healthy individuals [18,23]. The
models which make use of others’ experiences such as observational (Haaker
et al., 2017), instruction-based learning [17], and social learning and influence
[11,21], suggesting that perception can also be learned without directly expe-
riencing the stimulus. Their simplicity allows individuals to take advantage of
others’ experiences and enhance their social interaction. With this fact in mind,
the present paper has utilised social learning as one of the factors in building
cognition in neuro-affected individuals. However, to our information, there is no
study examining the social influence and its impact with a motive to provide
objective markers for ASD diagnosis.

The present paper has mathematically modelled independent response-
making and social learning-based responses to provide cognition levels in ASD.
The paper has evaluated cognition level and influential level by answering the
hypothesis of whether social influence can alter cognition level.

The rest of the paper is organised as follows: Sect. 2 introduces the cognitive
model, Sect. 3 discusses the methodology of this work, Sect. 4 contains the results
and discussion, and Sect. 5 concludes the paper with future recommendations.

2 Cognitive Model

A Two-Alternative Forced-Choice (TAFC) task is designed to practically acquire
and assess the independent social response and social-influence impact on
response patterns. An experimental paradigm is designed in which the partic-
ipants perceive, discriminate, and decide independently which stimuli are risk-
involving and which one is safe [25]. The non-trivial behavioural task involves two
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stimuli - risky and safe condition images (related to road incidences), randomly
presented to participants in N = 120 trials. They were instructed to perceive and
distinguish the stimuli into their correct category and respond accordingly. The
computational parameter is modelled mathematically as the sum of independent
learning (P!%) and social learning (P57), which is given as in Eq. 1:

P, =PIl 4 pPl.0< P, <1 (1)

The term P!’ is determined by computing whether the provided risk/safe

stimuli are correctly identified and responded to by participants for any trial. It
is given by Eq. 2:

(2)

pIL _ {1, if response is correct, and
b=

0, if response is incorrect

for n varying from 1 to N, where n is current trial number, and N represents the
total number of trials. The value {P! = 1} indicates that the individual has
categorised the trial correctly, whereas {P/X = 0} suggests that the individual
has not perceived stimuli. The term P2 represents social learning with a value =
1 to indicate improvement in response with the observation of others’ responses.
It is given by the Eq. 3:

P;?L:Sf(ﬁn_Pr{L)v (3)

where S¢ is the influential factor, which quantitatively represents the influence
of others on an individual. Its value lies between 0 (no influence) and 1 (full
influence). In the present work, numerous computer simulations are performed
on the experimental data acquired from all the participants to investigate Sy
in ASD and TD. The constant (8,) represents the standard responses shown
to the individuals. The term (3, — P!X) measures the difference in response
provided for observation (f3,) and the individual’s own response (P1L). In case
the response of individual and standard responses match (i.e., 3, = P/L), then
P, = PIL which reflects that the individual need not rethink their decision.

3 Methodology

3.1 Participant’s Demographic Data

A total of Fifty children with ASD (621 years) were selected from local Non-
Governmental Organisations (NGOs) after assuring those who already followed
the conventional Diagnostic and Statistical Manual of Mental Disorders, Fifth
Edition [3] diagnostic criteria to maintain homogeneity among ASD participants.
The TD individuals (5-20 years) were recruited via word-of-mouth, consider-
ing their medical and neurological (ASD, epilepsy) status. The parents of both
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groups were also interviewed to follow the further exclusion criteria: any psy-
chiatric problem such as anxiety or any other disorder (dyslexia, cerebral palsy,
schizophrenia) or impairment (specific language impairment) (Table 1).

Table 1. Summary of demographic statistics and psychological evaluations

Participants/ ASD TD
Characteristics Data Normality Data Normality
p ‘k ‘S p k s

Number 50 - 50 -

Male: Female ratio 9:1 - 3:2 -

Age years 13.94+3.1 0.30/—1.22/0.38 |11.84+2.9 0.15|—1.14|0.64
(8-21) (8-18)

Non-verbal 1Q 112.8+11.2 |0.57|—-1.0 |—-0.29|/111.1+10.4 |0.23|—0.20|-1.38
(90-130) (88-128)

ADOS CSS 8.52+£4.73 0.54/0.008 |0.29 |- - - -
Verbal 1Q MISIC|109.1 +£11.12 |0.23| —1.51 1.3 113.1+12.3 |0.09|—0.01|—1.49
(79-120) (85-128)

Performance 1Q 110.3+12.8 0.34|—1.51|—-0.33|111.2+11.8 |0.21|—0.73|—0.48
(84-128) (85-132)

Full-scale 1Q 107.5+11.09 | 0.48/ —1.0 |0.89 |112.6+£11.5 |0.15|—-1.12/0.93
(80-126) (87-130)

BRP 297+0.12 [0.23|-0.12/-0.29/3.944+0.15 |0.70| —0.13/0.34
(2.72-3.24) (3.67-4.36)

(k: Kurtosis; p: Significance probability; s: Standard deviation)

3.2 Experimental Paradigm

The stimuli were in the animated images (1396 x 561), representing risk involv-
ing and safe situations, as shown in Fig.1. The stimuli were designed in the
PsychToolbox software [6] of the MATLAB toolbox and presented on a Dell
Inspiron laptop (1366 x 768 pixels, 40 pHz refresh rate). The experiment is a
visual-perception based TAFC task in which the participants have to choose one
of the choices to proceed further. The inter-stimulus interval was of 800 ms dura-
tion and distance between the participants, and the laptop screen was kept at
51 cm. It was made sure that selected images provided sufficient information to
participants without any requirement for contextual details. The response levels
were binary, either yes or no and without any intermediate level. Participants
were instructed to respond only after the stimulus was shown by pressing the
corresponding key (‘R’ for risky and ‘S’ for safe). The experimental design was
such that pressing any other key would not affect the experiment or response.
Each participant was instructed to complete 120 trials (N = 120) without any
time restriction.
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Fig. 1. (i) Stimulus provided to participants (ii) Layout of experimental task.

3.3 Theoretical Foundations and Experimental Phases

Theoretically cognitive metrics such as independent and social learning are found
implicitly contributing to perception and decision-making. Following which,
in the present paper, the experiment was conducted in two phases with a
motive to evaluate the cognitive performances of the ASD and TD participants
computationally. In the first phase, the independent learning (i.e., PS5 = 0,
P, = PIL) responses are acquired from the participants. In the second phase,
the impact of social learning is considered along with independent knowledge
(P, = P 4 P5L) in evaluating the response of the participants. The standard
responses and peer responses were provided to ASD and TD individuals for social
learning. After observing provided responses, the ASD and TD participants were
asked to re-evaluate their responses, and their experimental data were recorded
again. The main goal is to quantitatively compute S.

3.4 Data Analysis

Statistical Analysis of Experimental Data. The behavioural (signal detec-
tion) statistics are evaluated to ensure the unbiased task performance of par-
ticipants. The two behavioural parameters-sensitivity index (d’) and response
bias (c) have been assessed by computing the participant’s Hit Rate (HR) and
False Alarm Rate (F AR) using Egs. 4 and 5, respectively, adopted from [12]. The
HR gives the probability of correctly discriminated responses for change in the
trials while F AR providing the likelihood of incorrectly discriminated response
(mistake) corresponding to no-change in trials.

X
HR = X1V oX) (4)
FAR — (X forY) 5)

(XforY)+Y
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The equation used to compute d’ is given in Eq. 6 as adopted from [15]:
d = 2(HR) — z(FAR) (6)

in which z represents the z-transform of the (HR) and (FAR). The values can
measure how discriminable participants’ intentions are within the experimental
task. The higher values indicate that participants have learned to perform better
on the given task. It lies in the range of 0 to 4.0, and relatively, the proportion
of correct responses (A) (Macmillan & Creelman, 2004) lies within a range of
0.5 to 0.98 [14]. The parameter (A) can be computed using Eq. 7.

HR+ FAR
A=05+ (J;) (7)
The parameter ¢ measures the bias and reflects observers’ valuation, i.e., care
about correct responses (HR, and correctrejections(l — FAR)) and mistakes

(misses(l — HR), and FAR). It can be computed using Eq. 8 adopted from [9].
c=0.5(2(HR)+ z(FAR)) (8)

The value of ¢ can be positive, negative, or equal to zero [15]. The case
indicates a neutral/unbiased decision such that both stimuli (risky & safe) are
of equal importance to participants. The best-fit value of factor S is deduced
by comparing the performance of ASD participants with standard responses and
peer-group responses.

Machine Learning Based Analysis of Experimental Data. Two state-of-
the-art models, namely Support Vector Machine (SVM) and K-Nearest Neigh-
bour (KNN) classifiers, are utilised to classify ASD and TDs. 10-fold cross-
validation is utilised in dividing data into training and testing sets prior to
providing to SVM and KNN classifiers. The training dataset is further divided
into 80% for training and 20% for validation purposes. The efficacy of the SVM
classifier is validated using different performance metrics such as sensitivity,
specificity, and area under the curve (AUC).

4 Results and Discussion

4.1 Statistical Results from First and Second Phase

The range of d’ indexes and ¢ values for both the groups in both phases has
been reflected through a histogram (Fig. 2 (i, ii)). The distribution obtained for d’
values shows diversity in participants’ policies to increase classification accuracy.
On average, the c values reflect that participants have followed a neutral decision
criterion (approximately) while interpreting the given risk-involving stimulus
category (risky or safe). The scatter plot (Fig.2(iii)) shows that d’ and ¢ are
negatively correlated for both the groups (r(ASD) = —0.112;r(TD) = —0.167),
suggesting more discriminable and less biased decision criteria in both groups.
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Fig. 2. Histograms of (i) Sensitivity indexes (d’), (ii) Response biases (c), and (iii)
Scatter plot of d’ versus ¢ in ASD and TD participants.

A paired samples t-test on values revealed that TDs’ performance is signif-
icantly higher than ASD (Mean + o = 0.99 +0.72, t(49) =8.625, p=0.001) in
first and second phase (Mean + o = 0.87 £0.53, t(49) =6.302, p=0.01). The
results from the two-sampled t-test on (c) values yielded an insignificant differ-
ence in the performance of TD and ASD participants (First Phase: Mean + o=
0.0058 + 0.005, t(49) =0.413, p=0.68) and (Second Phase: Mean £+ o = 0.0032
+ 0.002, t(49) =0.355, p=0.45). It reflects the tendency of participants of both
groups to provide a neutral decision.

The bar graphs plotted in Fig.3 (i, ii) show d’ and ¢ mean values (with
a 95% confidence interval) of ASD and TD participants for the experimental
task. In ASD, the d’ mean is 0.427, indicating their moderate performance with
classification accuracy (computed using equation (14)) of about 51.67%. And
comparatively, the d’ index is higher for TD participants with a mean value
of 1.42 and classification accuracy of 80.33%. The ¢ value (Fig.3 (ii)) in ASD
(Mean = —0.0076) and in TD (Mean = —0.0027) is approximately equal to zero
reflecting no biasing in their approach.
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Fig. 3. Mean values of (i) Sensitivity index (d') and, (ii) Response bias (c) in ASD
and TD participants for first and second phase with standard error (95% confidence
interval).

To reflect the impact of social learning, the relationship between A p(ﬁn -P,)
and (3, — PIL) (i.e., deviation in the provided and initial response) has been
computed. In case, the participants’ initial response is already similar to the
response of an influential person (3, = P!L) then (Ap = 0), otherwise Ap
will change corresponding to (8, — PIZ). After analysing the responses (P, and
P,), it is observed that ASDs have changed their response on an average by
(Ap = P, — P, = 0.13) and TDs by (Ap = P, — P, = 0.09, where P, is
the response of participant after social learning and P, is the initial response
of the same participant before social learning (independent learning) and Ap is
the change in final and initial response. The scatter plots, as shown in Fig.4 (i,
i), represent the variation in Ap concerning (3, — PIL) for participants with
ASD and TD. The equation of the fit line has been used to attain the value of
the influence factor Sy in ASD. The participants with ASD get more influenced
(S =0.3937) than TDs (Sy = 0.3197).

Machine Learning Based Classification. The d’, ¢, and detection accuracy
(DA) values of ASD and TD individuals are fed to the SVM and KNN classifier
for classifying ASD and TD individuals. A 10-fold cross-validation methodology
is trailed in structuring balanced training and testing sets beforehand provide for
SVM and KNN classifiers. The dataset comprises of 80% training data includ-
ing 20% data for validation purposes and rest 20% was testing data. We have
checked for any incomplete data information, or outliers and noise in the data.
The not available values and near zero variance values were removed from the
dataset at priority basis. The effectiveness of classifiers is computed via sensitiv-
ity, specificity, accuracy and area under the curve (AUC).

The performance of the classifiers is summarised in a tabular form in Table 2.
The tabular comparison shows that SVM classifier performs better in classifying
ASD and TD individuals in comparison to KNN classifier. Among different com-
bination of the features, the SVM classifier has shown high sensitivity, specificity,
accuracy and AUC for combined set of all the four features.
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Fig. 4. Scatter plots representing social influence in (i) ASD, and (ii) TD participants.
The equation of Fit line is (i) y = 0.3937z + 0.1001 and (ii) y = 0.3197z + 0.0099.

4.2 Discussion

The main objective of the paper is to quantitatively address cognition in ASD
which involves individual knowledge (based on independent learning) and social
influence. The individuals with ASD were given a risk-based decision-making task
in two phases. In the first phase, the individuals have to complete the task on
their intellect (without social influence). In the second phase, the social learning is
included and the participants have to re-evaluate their prior decision after observ-
ing standard responses. On analysing the performance of individuals with ASD in
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Table 2. Summary of SVM performance metrics in ASD and TD classification

Feature input | Sensitivity (%) | Specificity (%) | Accuracy (%) | AUC
SVM | KNN SVM | KNN SVM | KNN |SVM | KNN

d+c 80.2 | 77.5 75.5 | 71.2 78.1 | 74.6 0.801|0.788
d + DA 87.3 | 84.7 84.4 |79.9 85.2 1824 0.862 | 0.834
¢+ DA 80.3 | 76.5 74.6 73.4 76.3 | 75.4 0.786 | 0.784

d +c+ DA |97.8 |93.2 95.3 |88.9 96.2 1 89.4 0.988|0.903

the first phase, it has been found that cognition is intact but attenuated in compar-
ison to TD. The second phase results depicted that social learning has an amplified
the cognition level in ASD. Thus, suggesting that cognition can be induced in ASD,
through repetitive observational learning. Finally, the computational parameters
were fed to SVM and KNN classifiers to find the performance of the proposed
parameters in classifying ASD and TD groups. The SVM classifier outperforms
KNN classifier and provides an accuracy of 95.3% for a combined set of all the input
features (d’, ¢, DA) while classifying ASD and TD groups. The present study is sig-
nificantly important as through quantitative values the cognitive deficits and other
behavioural signs can be targeted mathematically and objectively, which will pace
the ASD diagnostic procedure.

The statistical analysis suggested that participants with ASD have a specific
ability to distinguish between risky and safe stimuli with d’ = 0.42 (mean value)
though poor in comparison to TD (d' = 1.42). The finding 'no bias’ (neutral
decision criterion; ¢ = —0.0076) means that individuals with ASD did not tend
to prefer safe stimuli more than risky or vice versa. The negative correlation
between d’ and ¢ for both ASD and TD group showed that their decision criteria
became more discriminable and less biased with the practice. The comparison of
the performance of ASD individuals with standard results revealed the best-fit
value for social influence factor as Sy = 0.3937 in ASD and Sy = 0.3197 with
TD individuals. In this manner, the present work has experimentally analysed
impact of social learning on ASD individuals at the individual and group levels.
Thus, it can be said that individuals with ASD have influential factor value
(0.3937 average) which is consistent with the previous studies suggesting that, on
average, the influence factor lies in the range between 0.3 and 0.5 (Soll & Larrick,
2009). The positive impact of social learning in individuals with ASD also reflects
that their working-memory is adaptive enough to revise the opinion by observing
others’ responses. Thus, the positive impact of social learning has generated a
possibility of enhancing the cognition of ASD through social interaction.

5 Conclusion

The present work provides quantitative insights into the contribution of social
learning as a knowledge amplifying process for building perception and enhancing
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independent knowledge in ASD individuals. Social learning positively contributes
to enhancing cognition and decision-making and amplifying independent learning
in individuals with ASD. It can shape the knowledge and develop a predictive and a
judging eye in ASD individuals. The SVM classifier provides an accuracy of 96.2%
for a combination of features (d’, ¢, DA) in classifying ASD and TD groups. Thus,
it can be said that ASD individuals may have risk knowledge, but atypical visual
judgement and prediction might be responsible for not utilising or regulating this
knowledge properly. In future, it is important to investigate the extent to which
ASD individuals show long-lasting effects in their performance under the influence
of untrained peers. The direction of influence and impact of gender and age on risk-
perception and risk-taking behaviour is an important factor that needs to be stud-
ied. Further research coupling individual decision-making with low-probability or
high-impact risk could provide precise levels of risk perception in ASD. For that
purpose, the present study, which considers the basic perceptual features, can pro-
vide significant pieces of evidence.
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Abstract. A coordination game is one in which two players are rewarded for
making the same choice from the same set of alternatives. The ability of humans to
tacitly coordinate effectively is based on the identification of pronounced solutions
associated with salient features attracting the player’s attention. These prominent
solutions are referred to as focal points. Game theory fails to account for how
people make decisions in tacit coordination games, and human behavior in these
games cannot be explained by a single theory. One of the accepted theories for
explaining human behavior is level-k theory. This theory assumes that each player
has a different level of reasoning by which she assesses the behavior of other
players in the game and makes strategic decisions based on that assessment. In
Previous studies, we have found an association between the players’ cognitive
load as reflected by EEG power and the level-k during the coordination game. The
goal of the current study was to examine the relationship between alpha frequency
and its sub-bands and level-k during a tacit coordination game in the context of
semantic processing.

Keywords: EEG - Tacit coordination games - Focal points - Alpha band

1 Introduction

A coordination game is one in which two players are rewarded for making the same choice
from the same set of alternatives [1]. Research has shown that humans have the ability to
successfully play coordination games even when communication is not possible (e.g. [1—
4]). The ability of humans to tacitly coordinate effectively is based on the identification
of pronounced solutions associated with salient features attracting the player’s attention
[1]. At present, no single consensus exists about how humans converge on the same focal
point solution [5].One of the accepted theories of human behavior is level-k theory. This
theory [6—8] assumes that humans make predictions about other players’ actions based
on their level k value, which reflects their depth of reasoning ability. That is, the level-k
theory implies that each player believes that she is the most sophisticated person in the
game and bases her actions on the assumption that everyone else is at one level below
her. Previous studies that have examined the relationship between electrophysiological
metrics in the framework of level-k theory have found that a linear relationship exists
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between the player’s coordination ability and game difficulty with the that-beta ration
(TBR) which reflects the cognitive load of the player [9, 10]. In addition the researches in
[11] showed that the level-k of the player can be predicted based on the EEG signal using
deep learning methods. In the current study we aimed to examine the power distribution
of alpha frequency and its various components when performing tasks at different levels
of reasoning based on level-k theory. To that end, an electrophysiological-behavioral
experimental design was constructed. In this experiment, players were presented twice
with the same set of 12 tasks. In the first presentation, the players performed a picking
task in which each player had to freely select a word from a string of four words displayed
on the screen. In the second presentation, the same 12 tasks were displayed again, but
this time each player had to coordinate the choice of the specific word with an unknown
player. According to level-k theory, it could be assumed that the picking task is level-k
= 0 whereas the coordination task is level-k > 0. EEG was recorded from the scalp of
each of the players while performing each of the tasks. Based on the electrophysiological
results we examined the individual alpha frequency power distribution as a function of
the level-k.

2 Materials and Methods

2.1 Measures

Level-K Theory. One main cognitive theory that tries to analyze and explain human
behaviors in case of tacit coordination scenarios is the level-k theory which is derived
from the cognitive hierarchy theory [13, 16, 17]. The level-k theory holds that players’
reasoning depth relies on their subjective level of reasoning k. For example, players
in which k = 0 (sometimes referred to as Ly players) will act and choose randomly
in their given space of solutions, while L players assume that all other players are Lg
reasoners and will act according to this assumption, i.e., their strategy will assume all
other players select a random solution. That is, Ly players might utilize rules but will
apply them randomly (picking), whereas Ly players will apply their strategy based on
their beliefs regarding the actions the other players (coordination).

2.2 Experimental Design

Procedure. The study comprised the following stages. First, participants received an
explanation regarding the overarching aim of the study and were given instructions
about the experimental procedure and the interface of the application. Participants were
offered a reward based on the total number of points they earned in both tasks (picking
and coordination). The experiment consisted of two sets of 12 different trials each with
a different set of words. For example, game board #1 displays a trial containing the set
{“Water”, “Beer”, “Wine”, “Whisky”} appearing in Hebrew, respectively. Each set of
words was displayed between two short vertical lines following a slide containing only
the lines without the word set so that participants will focus their gaze at the center of
the screen (Fig. 1, A and B).
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In the first experimental condition, the task presented to the players was a picking task,
i.e., participants were only required to freely pick a word out of each set of four words
presented to them in each of the 12 trials. Subsequently, participants were presented with
the coordination task, comprising the same set of 12 different trials. However, in the
coordination condition participants were instructed to coordinate their choice of a word
with an unknown partner so that they would end up choosing the same word from the set.
Each participant sat alone in front of the computer screen during the entire experimental
session. It is important to note that no feedback was given between the games. That is,
the participants were not informed whether they have coordinated successfully or not
with their unknown co-player.

{A} {B}
Fig. 1. (A) Stand by screen (B) Game #1 {“Water”, “Beer”, “Wine”, “Whisky”}

Figure 2 portrays the outline of the experiment. Each slide containing the set of
words (task trials) was preceded by a slide containing only the vertical lines without the
word set (stand-by slides) to keep the gaze of participants in the middle of the screen
throughout the experiment. Each of the stand-by slides was presented for U(2,2.5) sec.,
while each slide containing the set of words was presented for a maximal duration of 8
s. Following a task trial, participants could move to the next slide with a button press.
The sequence of the task trials was randomized in each session.

Welcome || Stand by || Game Standby || Game . Game End
message || screen #1 screen #2 #12 message

>

u Game &1 playingtime i Game #2 playingtime Game #12 playingtime
Uniform(2,2.5) [Sec] maximumof8[sec]  Uniform(2,2.5)[Sec] maximum of 8 [sec] maximum of 8 [sec]

Fig. 2. Experimental paradigm with timeline
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Participants. The experiment involved 10 university students that were enrolled in one
of the courses on campus (right-handed, mean age = ~26 [years], SD = 4). The study
was approved by the IRB committee of the University. All participants provided written
informed consent for the experiment.

EEG Recordings. EEG was recorded from participants while they were performing the
tasks. The EEG was recorded by a 16-channel g. USBAMP biosignal amplifier (g.tec,
Austria) at a sampling frequency of 512 Hz. 16 active electrodes were used for collecting
EEG signals from the scalp based on the international 10-20 system. The recording was
done by the OpenVibe [12] recording software. The impedance of all electrodes was
kept below the threshold of 5K [ohm] during all recording sessions. Before performing
the actual experiment, participants underwent a training session while wearing the EEG
cap, to get them familiar with the application and task.

3 Results and Discussion

3.1 EEG Preprocessing Scheme

Based on the literature (e.g. [13—17]), we have focused on the following cluster of
frontal and prefrontal electrodes (Fpl, F7, Fp2, F8, F3, and F4). The preprocessing
pipeline consisted of finite impulse response (FIR) band-pass filtering (BPF) [1, 32] Hz
and artifact removal following ICA. The data was re-referenced to the average reference
and down sampled from 512 Hz to 64 Hz following baseline correction (see Fig. 3).
Data was analyzed on 1-s epoch windows from game onset which resulted in a total of
12 decision points (i.e., EEG epochs) per participant.

. Downsampling
Raw EEG signal Average _ Art':asic: reI(r:nonaI (N=8)
Fs = 512 [Hz] Re-reference i decomgosition
P Fs = 64 [Hz]
A 7y
A4 A 4
BPF FIR Filter NOTCH FIR Filter Epochin »! Baseli ti
[1,32] Hz > 50 Hz p g » Baseline correction

Fig. 3. Preprocess pipeline

3.2 Alpha Band Decomposing Analysis in Coordination Process

The oscillations in the alpha band can be divided into two main sub-bands, lower-alpha
(8-10 [Hz]) and upper-alpha (10-13 [Hz]) [18-20]. Previous research has already shown
that coordination necessitates the exertion of additional resources compared to picking
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as reflected by the modulation of the alpha frequency band (see for example [9-11,
17]). Here, based on previous findings, we assumed that as the complexity of the task
increases, i.e., the progression form picking (level-k = 0) to coordination (level-k >
0), alpha frequency should decrease more in the upper-alpha than in the lower-alpha,
especially in the context of semantic processing [18-22].

The statistical comparison was performed as follows. For each EEG epoch which was
recorded during the picking and coordination tasks we calculated the relative energy of
the lower-alpha and upper-alpha frequency bands (see Fig. A.1 in Appendix A). Then, we
divided the relative energy values between the corresponding picking and coordination
games in order to estimate the change in energy that occurred in the different alpha bands.

That is, for each two corresponding epochs we estimated the energy changes within the
Ejower—Alphalcoordination d Eupper—Aiphalcoordination f
— — or the
Elf)werfAlpha |picking Eup]mrfAlpha |picking >
lower- and upper-alpha band, respectively.

Analysis of the results of all 12 games showed that the decrease in upper-alpha
between coordination and picking was significantly more pronounced compared to the
decrease in lower-alpha (t(1438) = 3.9937, p < 0.001). In order to estimate the dynamic
changes in the power distribution of the alpha frequency band throughout the course of
the experiment, we split the set of 12 games into thirds. The first third included games
1 through 4, the middle third, games 5 through 8, and the final third, games 9 through
12. Table 1 displays the average values of the relative changes in upper- and lower-alpha
together with the p-value associated with each of the paired t-tests.

It is evident form Table 1 that the same trend appeared at the first (games 1-4) and
middle (games 5-8) thirds of the experiment (t (478) = 5.7788, p < 0.001; t(478) =
3.5248, p < 0.001, respectively). Regarding the final third (games 91-2), it can be seen
that the average change in upper-alpha was lower than in lower-alpha, but the difference
was not significant. Figure 4 resents graphically the distribution of the data by box plots.
The three upper panels present the boxplots for upper- and lower-alpha according to the
split of the data by thirds. The lower panel displays the boxplot corresponding to each
sub-band for the entire dataset of 12 games.

alpha band according to the ratio

Table 1. Relative power change between coordination and picking in alpha sub-band (lower and
upper) — t-test results.

All games Games Games Games
1-4 5-8 9-12
Mean (ElowerfAlpha|C""T‘d”?a”"" 0.9084 0.8812 0.9052 0.9389
Elower—Alphalpwkmg
Mean (EupperfAlpha|C""r‘d"’f‘“"°n 0.8740 0.8284 0.8550 0.9385
Eupper—Alphalplemg
t-test p-value p <0.001 p <0.001 p <0.001 p>0.05
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Fig. 4. Relative power change between coordination and picking in alpha sub-band (lower and
upper) — boxplot scheme

4 Conclusions and Future Work

The alpha frequency band has been previously shown to be modulated by mental work-
load [23, 24], and alertness [25]. The overarching goal of the current study was to
examine the susceptibility of the lower- and higher-alpha frequency bands to varying
levels of mental effort corresponding to different level-k. In this study we employed two
cognitive tasks, i.e., picking and coordination, each associated with a different level-k
(level-k = 0 and level-k > 0, respectively).

Our results indicate that the differential effect of level-k on the alpha sub-bands was
modulated as a function of task progression. Specifically, in the first and middle thirds
of the dataset (games 1-4 and games 5-8, respectively) the difference in relative energy
in the alpha band was significant, whereas, in the case of the last third of the dataset
(games 9—12) there was no difference in the relative energy in the alpha band indicating
that the alpha sub-bands were less sensitive to the differential effect of level-k in the
final section of the experiment. The decrease in the upper alpha frequency band in the
coordination task (level-k > 0) was more pronounced compared to the lower-alpha sub-
band (see Table 1). The more pronounced decrease in upper alpha is further confirmation
of the effect of performing the semantic task which known as alpha desynchronization
[26]. These results are consistent with previous studies [26—28] that showed that there is
connection between intensity and fluctuations in alpha frequency band to abilities such
as language, imagination, perception, and planning abilities that can be termed brain
cognition.

There are a number of possible directions for future research. Behavioral experiments
have shown that players in coordination games are influenced by a variety of factors such
as loss-aversion [29], social value orientation [30-32] revenue distribution [30] and
culture [31, 33]. The effect of these factors and the possible interaction effects should be
examined in the context of level-k and since they may contribute to the variability in the
individual coordination ability of players [34, 35] and therefore modulate the associated
electrophysiological patterns. Moreover, extracting the brain sources associated with
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different level-k may improve models that aim to simulate the behavior of autonomous
agents [36-39] as well as brain-computer interfaces.

Appendix A: Alpha Band Decomposition and Relative Power
Estimation

Following the pre-processing step, we have estimated the relative power in the alpha
sub-bands (lower and upper alpha) for each picking and coordination epoch. The full
process of alpha band power estimation is presented in Fig. A.1. we have used the
Discrete Wavelet Transform (DWT) [40, 41] (black rectangles). The DWT is based on a
multiscale feature representation. Every scale represents a unique thickness of the EEG
signal [42]. Each filtering step contains two digital filters, a high pass filter, g(n), and a
low pass filter h(n). After applying each filter, a down sampler with factor 2 is used in
order to adjust time resolution. In our case, we used a 3-level DWT, with the input signal
having a sampling rate of 64 Hz (left red rectangle). As can be seen in Fig. A.1, this
specific DWT scheme resulted in the coefficients of the four EEG main frequency bands
(green rectangles). Next, we use two band pass filters to split the alpha band into the
upper-alpha ([8—-10] Hz) and lower-alpha (10-13 [Hz]) sub bands. Finally, to calculate
the relative energy (right red rectangle), we divided the energy of each band by the sum
of all the different bands (delta, theta, alpha, beta).

|

Down-sampling Delta band
=2) 14k
wl Down-sampling - Down.sampling Theta band 1
i ) # 1w N kak
Band pass filter
Normalization - I
Low Alpha £-10] Hz Calculaton of
1 relatve energy
Xin] Down-sampling Down-sampling | Alpha band
s =64 H2) | 1 o =) H ol |—'| =) | 614

in each band
Band pass fiter 1
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" B .
----------------------------------
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Figure A.1. EEG Alpha band power estimation and decomposition to lower and upper sub bands
using 3 level DWT scheme
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Abstract. Identifying the neural basis of dyslexia is a fundamental goal of devel-
opmental neuroscience. Final-phoneme elision (PE) test is a paradigm used for
assessing phonological deficit (PD), which is widely considered a causal risk fac-
tor for dyslexia. However, the causal relationship between PD to dyslexia has
been examined primarily based on behavioral observations. Towards facilitating
the exploration of the neurophysiological origins of the theorized link between PD
and dyslexia, we set out to isolate differential neural activation patterns in children
with dyslexia during PE. Accordingly, we present a machine-learning-based app-
roach to identifying differential brain activity in children with dyslexia and controls
during the PE. Our method formulates an optimization problem to extract infor-
mative EEG components based on the ‘Neural-congruency hypothesis’, termed
Phoneme-related Neural-congruency components. It then uses a machine-learning
algorithm to optimally combine the resulting components to differentiate between
the neural activity of children with dyslexia and controls. We apply our approach
to a real EEG dataset involving children with dyslexia and controls. Our findings
demonstrate that our method generates novel insights into the neural underpinnings
of dyslexia and the potential neural origins of phonological deficits as a causal
factor of dyslexia. Notably, our approach overcomes several methodological chal-
lenges in conventional EEG analysis methods; therefore, it could be utilized in
studying the neural origins of other behaviorally defined developmental disorders
previously overlooked because of such methodological constraints.

Keywords: Electroencephalography - EEG - Neural-congruency - Dyslexia -
Final-phoneme Elision - Neural-based models

1 Introduction

Developmental dyslexia is a neuro-developmental disorder characterized by the dif-
ficulty of children learning to read, affecting 5%—-20% of children [15, 15]. Current
research suggests that dyslexia originates from a weakness in phonological awareness -
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one’s ability to make judgments of and perform conscious manipulations on the sound
structure of spoken words [13]. Indeed, the Phonological Deficits Hypothesis (PDH) pos-
tulates that Phonological Deficits (PD) are causally linked to dyslexia [16]. However,
the relationship between PD to dyslexia has been primarily considered for behavioral
observations [12]. Hence, studies need to explore the neurophysiological origins of the
link between PD and dyslexia.

One paradigm for capturing behavioral measures of PD is the Final-phoneme Eli-
sion Test (PE) which is used as part of dyslexia screening protocols for children. PE
measures phonological awareness at the phonemic sensitivity level [14]. As part of the
PE test, participants are asked to identify which word is produced after eliminating the
final phoneme from a given target word. Behavioral measures of accuracy (i.e., num-
ber of correct responses) and response time quantify performance. These measures are
robust, concurrent and longitudinal predictors of children’s reading ability [13] across
languages (e.g., [2]). However, to our knowledge, few studies explore the neurophysi-
ological basis of these differences observed during PE [11]. We argue that this lack of
studies is due to methodological challenges in isolating informative neural components
in neurophysiological measures during PE.

Electroencephalography (EEG) signals are often used as a neuro-imaging modality to
study the underlying neural basis of neurocognitive processes and explore their connec-
tion to behavioral observations of cognitive deficits. Such studies typically involve par-
ticipants performing an experimental paradigm pertinent to the neurocognitive function
being researched while their EEG signals are recorded. Typically, such experiments elicit
time-locked Event-related Potentials (ERP) - stereotypical neural waveforms evoked in
the brain in response to an event, such as the presentation of the brief stimulus or event.
ERPs are known to be modulated by the underlying cognitive processes involved in the
experimental task performance. EEG analysis methods can then be employed to extract
informative components from the ERP waveforms and gain insights into the underlying
neural basis of the cognitive process. However, isolating such information from the EEG
responses can be a challenging methodological task in general because of the feeble sig-
nal strength of ERP and the low signal-to-noise ratio (often less than —20 dB) in the
EEG data. Therefore, analysis methods need to consider prior domain knowledge about
the nature of the ERP waveforms (i.e., spatial distribution) that can be experimental
paradigm specific.

Traditional ERP analysis methods attempt to extract ERP components from the EEG
signals by averaging participants’ neural responses across multiple trials and obtaining a
grant-average ERP waveform for each participant or group. The resulting grant-average
ERP waveform exhibit visually recognizable features (i.e., peaks or valleys in the wave-
form at specific timestamps after the event’s onset) referred to as ERP components.
The latency and amplitude of these ERP components are used as dependent variables to
establish differences between groups and conditions and to gain insights into the neural
underpinning of the cognitive process [1]. However, a limitation of ERP analysis is that
it only explores neural-activity time-locked to the event’s onset and only for a short
time window after the onset (typically < 500 ms). Thus, it cannot efficiently capture
differential neural activity occurring beyond this time window. Moreover, EPR analysis
only explores neural activity differences at predefined timestamps where the peaks and
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valleys of the ERP waveform appear, ignoring the rest of the signal. As we argue below,
these assumptions do not hold during the PE task, which limits the applicability of ERP
analysis in our study.

Despite its limitations, ERP analysis has been successfully employed in studying
the neural basis of several psychological processes, including attention, memory and
conditions, decision making, personality traits, perception, and intelligence [3]. In addi-
tion, ERP analysis has been used for studying auditory speech-processing deficits and
their relation to dyslexia (see [9, 10, 18] and references therein). However, this was
done through surrogate experimental paradigms, such as the oddball experiment and the
mismatch negativity, and not directly on the phoneme elision task.

Machine Learning (ML) methods have also been employed to analyze EEG signals
for studying neurocognitive processes. Typically, these ML methods attempt to extract
neural components by identifying spatial projections (i.e., a weighted average across
channels) of the single-trial ERP components that are informative of differences across
conditions and groups. For example, Single-trial Discimiminant Analysis [17] was pro-
posed to characterize the neural correlates of perceptual decision-making by employing
a moving-window classifier trained locally over the time of the ERP. In the context of
spatial cognition, a Commons Spatial Pattern (CSP)-based single-trial analysis [6] was
proposed for the neural basis disambiguation of the spatial-cognition processes- namely,
Perspective Taking and Mental Rotation. Single-trial Correlation Analysis [3] was pro-
posed for studying the neural underpinnings for the Stimulus Presentation Modality
Effects in Traumatic-Brain-Injury treatment protocols. In general, ML methods isolate
more informative neural components when compared to traditional ERP analysis meth-
ods by increasing the signal-to-noise ratio. However, they still rely on local features that
are time-locked to the event onset and are typically limited to within-participant com-
parisons because of the large inter-subject variability in the EEG signals [5]. Therefore,
current ML approaches do not consider differences in neural activity beyond the limited
time window of the ERP waveform and are often localized at predefined timestamps.

Some characteristics of the PE paradigm are incongruous with the methodological
assumptions of current EEG analysis approaches (both ML-based and traditional ERP
analysis), making their direct application to the paradigm ineffective. First, PE gener-
ates varying-duration neural responses beyond traditional ERP time windows. Specif-
ically, the stimuli employed in the paradigms are auditory and vary in duration from
500 ms-1500 ms across trials. As such, information of recognizing the phoneme eli-
sion span beyond the time window of traditional ERP components (typically less than
600 ms, i.e., N100, N200, P300, N400 component sets), which traditional approaches
primarily exploit. Moreover, the variability in the stimulus duration suggests that neural
differences likely spread throughout the signal and are not localized in a narrow time
window following the stimulus onset as assumed by many ML-based methods. These
PE paradigm characteristics limit the application of traditional EEG analysis methods
that expect fixed-duration neural responses and localized and time-locked activations
and focus primarily on exploiting differences in traditional ERP components.

This paper presents a novel machine-learning-based approach to identifying differ-
ential brain activity in children with dyslexia during the PE test. This approach over-
comes many of the methodological limits of existing methods. Our method formulates
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an optimization problem to extract informative EEG components based on the “Neural-
congruency hypothesis”. This relates to the premise that neural activity elicited during
a cognitive task is similar (i.e., congruent) among participants that have mastered the
task but less congruent otherwise [7, 8]. In doing so, our approach overcomes the need
for having fixed-duration stimuli and localized time-locked activations. It can exploit
neural activations beyond the traditional ERP components and spread throughout the
stimulus-response. It then uses a machine-learning algorithm to optimally combine the
resulting components to differentiate between children with dyslexia and controls. We
evaluate the utility of our approach to identify novel neural components informative of
the neural underpinnings of dyslexia for PD using a real EEG dataset involving children
with dyslexia and controls.

2 Materials and Methods

2.1 Experimental Paradigm and Data Collection

The data for this study were collected as part of a broader project aiming to study
the neural underpinnings of dyslexia in children [4] and its relation to core cognitive
deficits. This section introduces a specific task’s design and data collection apparatus:
final phoneme elision.

Final Phoneme Elision Paradigm. The Final-phoneme Elision test comprises a set of
100 trials where in each trial, participants listen to a target word followed by a 1500 ms
pause and then listen to a second word. In 50% of the items, the second word is formed
by removing the final phoneme from the target word. A participant’s task was then to
respond (by pressing an appropriate key on the keyboard after each trial) to whether the
second word was formed by the omission of the final phoneme from the target word or
not. The participants had up to 2500 ms to respond. A training session demonstrated the
task to the participants before completing the main trial sequence.

Participants and EEG Data Collection. Participants for the experiment were recruited
from inner-city public elementary schools in Cyprus. A total of 90 children were
recruited, half of which (i.e., 45 children) were identified as children with Dyslexia
(DYS) and the other half as a group of chronological-age control (CAC). All partic-
ipants were native Greek speakers in Grades 3 and 6 (refer to [4] for details on the
recruiting and screening procedures). As part of the study, participants had to complete
the Final-phoneme Elision test while EEG signals were measured. As part of the exper-
iment session, participants were fitted with a standard 64-channel EEG cap. Electrodes
were placed following the 10/20 layout. DC offsets of all sensors were kept below 20 mV
using electro-gel. A trigger channel was used to record time markers denoting the onset
of all events in interest (i.e., presentation of the first and second word and participants’
response). A Biosemi Active-two system (BioSemi, Amsterdam, Netherlands) was used
to collect the EEG data. The study was carried out per the Cyprus National Bioethics
Committee recommendations and received approval from the Ministry of Education and
Culture, Cyprus (#7.15.01.27/17).
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EEG Pre-processing. All EEG data preprocessing was implemented using custom
python code and the MNE library. Preprocessing was done separately on the recordings
of each individual. First, all EEG channels were re-referenced to the average channel.
Then, a 0.5 Hz high pass filter was applied to the continuous EEG data to remove DC
drifts, followed by the application of notch filters at 50 Hz and 100 Hz to reduce the
power-line noise interference. As the study focused on exploring neural activity rele-
vant to PD and the recognition of the final-phoneme elision, continuous EEG data were
epoched based on the onset of the second word (i.e., the elision word). Specifically,
continuous EEG was epoched starting —200 ms before the second word’s onset until the
second word’s articulation. Each epoch was then normalized by dividing each channel
by the standard deviation across time.

After all preprocessing steps, the observations of each participant i, comprise a set
of EEG trials {X!, X?,... X"}, where each, X} € RP*Tk corresponds to the neural
activity following the onset of the elision word of the k-th trial; T} is the trial duration;
D = 64 denotes the number of channels, and N = 100 is the number of trials.

2.2 Phoneme-Related Neural-Congruency Components

Our goal in this analysis was to isolate those components in the EEG signal modu-
lated by the final phoneme-elision processing and are predictive of differences between
DYS and CAC groups. Our approach is motivated by the hypothesis that a group of
individuals with developed phonological skills (i.e., the CAC group) would exhibit con-
gruent neural activation patterns when engaged in phoneme-elision. On the contrary,
the corresponding neural activation patterns of individuals with phonological deficits
(i.e., DYS) will deviate from such consonance. Grounded on this hypothesis, we for-
mulated an optimization procedure to isolate neural components congruent among par-
ticipants in the CAC group and explore those components as potential differentiating
metrics between CAC and DY S. This section introduces our approach for isolating such
phoneme-related neural-congruency components. The following section discusses how
we employ machine learning to differentiate between DY'S and CAC using the extracted
neural components.

Consider the group of participants in the CAC group as S = {sy, s2, .., S5} where
s; € Z* denotes the participants” index. We define the between-subject, R, € RP*P
and within-subject R,, € RP*P cross-covariance matrix as follows:

1 .
Ry = mZZ(l _5U)R,~j

ieS jeS
1
R, = 3 ZRii
ieS
where
1 T
R; = —X,-Xj

K
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K is a normalizing constant, and X; € RP*T is the matrix comprised of all single-trial
EEG of participant i, concatenated across columns, defined as:

X, =[x x? .. .xN
For a given projection vector w € R, the average Pearson Product Moment Correlation

Coefficient between the concatenated single-trial responses, projected onto vector w,
across every pair of participants in group S is defined as:

w! Ryw

pP= "
W R,w)

The correlation coefficient p can be considered as a measure of the degree of congruency
in neural activity of the component w, among participants with intact phonological
awareness. Therefore, we aim to identify those components w that maximize p. That is

wlRyw

N
W = arg, max ————
Y wTR,w)

(D
The solution of the optimization in (1) are the eigenvectors of the generalized eigenvalue
problem:

(RS DRy = Apwi

where wy is the k-th eigenvector of the matrix (R;le) and corresponds to the com-
ponents that capture the k-th most considerable correlation in neural activity, while A
is the corresponding eigenvalue that captures the strength of the correlation. We note
that Eq. (1) has D solutions (i.e., {W , W2, ..., Wp,}) corresponding to the D eigenvec-
tors of the matrix(R;,'R), and the solutions are ordered from the highest to the lowest
eigenvalue.

Given the set of solution vectors (W, , Wa, ..., Wp,}, we define the phoneme-related
neural congruency (PRNC) of an individual s ¢ S with respect to the k-th component
Wy, as:
~T pbos
PRNC, ; = ‘A”Z}R—Z':k
W, R Wy

where

1 1
R?:gZRsi_'_R[syR;V:EZRSS"i_Rii»
icS ieS

In our analysis, we calculated the Phoneme-related neural congruency scores (i.e.
PRNC) separately for each participant. The participants’ data for which the PRNC score
was to be calculated was excluded from the component extraction step to avoid training
bias during the optimal component extraction. The PRNC measures the strength of the
congruency of the neural activity between a given individual and the CAC group for each
component. Therefore, the congruent activity of each participant for the first D = 10



80 C. Christoforou et al.

components (i.e., those with the highest eigenvalues) is captured by a vector u(s) defined
as:

u(s) = [PRNCy,1, PRNC; 2, ... PRNC; p, ]T

The vector u(s) is a feature vector that captures the strength of congruency in neural
activity of participant s in the CAC group for the first D components.

2.3 Classification of Phoneme-Related Neural-Congruency Components

Our goal was to explore the use of the feature vector of neural-congruency components
u(s) as a predictor of a participant’s group assignment (i.e., DYS or CAC). Moreover, we
aimed to investigate which neural-congruency components carry predictive information.
Towards this goal, we formulated a classification model. Specifically, we considered the
dataset.

{u(s) eRD,y, e (DYS, CAC}}
VseS

and employed a sparse logistic regression classifier using the vector u(s) as indepen-
dent variables, and an individual’s group y; as the dependent variable. The classifier
is trained using a leave-one-participant-out cross-validation procedure to avoid training
bias. The generalization performance of the classifier was calculated as the area under
the Receivers Operator Characteristic curve (AUC). The statistical significance of AUC
scores was established using a permutation test (10,000 repetitions). Finally, the coef-
ficients of the lasso classifier were inspected to identify components that likely carry
predictive information between the groups.

2.4 Spatiotemporal Profiles of Phoneme-Related Neural-Congruency
Components

Given the solutions to the generalized eigenvalue problem, the temporal profile of each
component was calculated as the product of each component Wy, with each of the single-
trial responses and taking the grant-average response of the projected components. More-
over, the topographical profile (i.e. the forward model) of each component was calculated
as:
wak
U= 7~

Wi Ryywi

The forward model captures the covariance between each component’s activity as
measured by each electrode.

3 Results

We aimed to explore whether neural activity measured by the extracted phoneme-related
neural congruency components is informative in differentiating between children with
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dyslexia and CAC; therefore, to gain insights into the neural basis of the causal link
between PD, as captured in the PE task, and dyslexia. To assess this, we trained a
sparse lasso classifier using the PRNC scores as features and evaluated the ability of the
classifier to differentiate between groups. A leave-one-participant-out cross-validation
assessment indicates that the classifiers achieved an area-under-the-curve (AUC) score
of 0.79. The Receiver Operating Characteristic (ROC) curve that illustrates the classi-
fier’s performance is shown in Fig. 1. The permutation test confirms that the classifier’s
AUC score is statistically significantly higher than random performance p < .001, thus
rejecting the null hypothesis. The strong classifier performance indicates that the neural
activity carried within the phoneme-related neural congruency components encapsulates
the neural underpinnings of PD and dyslexia.
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Fig. 1. Receiver Operating Characteristic (ROC) curve showing the cross-validation classification
performance. Light-gray indicates the expected performance under the null-hypothesis

Further, a two-way ANOVA comparing the effect of participants’ grade (i.e., Grade
3 vs Grade 6) and Group (DYS vs CAC) showed a significant main effect (F(2,86) =
12.15, p < .0001), and also significant group differences (7'(2,86) = 4.94, p < .0001),
and intercept (7'(2,96) = 12.16, p < .0001) were revealed. The ANOVA model did not
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yield significant age group differences (7°(2,86) = 0.24, ns). The box plots for the two-
way ANOVA (Fig. 2) show that the lasso-weighted PRNC scores are higher in the CAC
group than in the DYS group.
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Fig. 2. Box-plot of the average neural-congruency scores for each group.

The forward model topographies of each of the ten Phoneme-related neural-
congruency components are illustrated in Fig. 3. Each topography captures the covari-
ance in neural activity as measured by each electrode. It also alludes to the source location
of the underlying activity eliciting the component. By visual inspection, the topographic
patterns are consistent with those observed in single-dipole modeling, indicating that
the extracted components originated from separate localized sources in the brain.

4 Discussion and Conclusion

In this study, we explore whether neural activity captured by the proposed phoneme-
related neural-congruency components was informative of differences between children
with dyslexia (DYS) and without (i.e., CAC) to facilitate the exploration of the neu-
rophysiological origins of the theorized link between PD and dyslexia. Towards this
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investigation, we propose a novel machine-learning-based approach to identify differ-
ential neural activity between children with dyslexia and a chronological-age control
group during the final-phoneme elision test. Our method overcomes several method-
ological challenges in existing EEG analysis methods that have hindered exploring such
neural components during PE. Specifically, our approach overcomes traditional meth-
ods requiring experiments with fixed-duration neural responses that assume localized
time-locked activations. Therefore, our approach can isolate neural components dur-
ing PE characterized by varying stimulus-response durations and whose activations are
not localized in a narrow time window. Moreover, our method does not explicitly tar-
get traditional ERP components. Instead, it captures regularities spread throughout the
stimulus-response and beyond the conventional ERP components window, which allows
it to capture the differences in PE responses traditional methods cannot. The utility of
our approach is demonstrated on a real-life EEG dataset.

PRNC Component #1 PRNC Component #2 PRNC Component #3 PRNC Component #4 PRNC Component #5

PRNC Component #6 PRNC Component #7 PRNC Component #8 PRNC Component #9 PRNC Component #10

Fig. 3. Forward model of the 10 PRNC components, ordered by their corresponding eigenvalue

The primary result of this study is evidence suggesting that congruency among
neural activations captures information about the underlying neural basis of the causal
link between phonological deficits and dyslexia in children. Particularly, the proposed
phoneme-related neural-congruency components carry information that differentiates
between DYS and CAC (AUC 0.79, p < .0001), suggesting that the neural activation
patterns of the two groups differ. Specifically, results show that children without phono-
logical deficits (i.e., CAC) exhibit similar neural activation patterns with respect to
the phoneme-related neural congruency components, which suggest a set of common
underlying neural basis that are activated synchronously to identify and recognize phone
elision. In contrast, the neural activation patterns in children with dyslexia deviate from
this congruency pattern, which points to the potential underlying neural causes of phono-
logical deficits. We interpret these findings as indicating that children with phonological
deficits have not yet optimized the neural pathways for recognizing phoneme elision.

Further examination of the results provides additional insights into interpreting the
neural-congruency components. In particular, the two-way ANOVA revealed a main
effect on the group (DYS vs CAC) factor but no effect on the participant’s age fac-
tor, suggesting that neural-congruency components capture neural activity relevant to
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a core phonological deficit independent of age. Moreover, an inspection of the neural-
congruency components’ forward model exhibit topographies consistent with the single-
dipole model, suggesting that the source of their neural activity in the brain is localized.
Moreover, differences between DYS and CAC groups are observed in the combined
neural activity of a small set of neural-congruency components. Hence, we infer the dif-
ferences in the final-phoneme elision occur by contributions from multiple brain regions
and spread over the entire time window processing the elision stimulus.

In conclusion, we proposed a novel approach to extracting informative components
from EEG activity during the final-phoneme elision test. Our findings demonstrate that
our method generates novel insights into the neural underpinnings of dyslexia and the
potential neural origins of phonological deficits as a causal factor of dyslexia. In future
studies, we plan to explore the spatial sources of the identified neural-congruency com-
ponents by using source localization techniques to identify the corresponding brain areas
eliciting the differential activity. Moreover, we plan to explore EEG activity during the
‘encoding’ step (i.e., presentation of the target word) of the final-phoneme elision test.
Notably, as our approach overcomes methodological challenges of conventional EEG
analysis methods; therefore, it opens up the possibility of studying the neural origins of
other behaviorally defined developmental disorders previously overlooked because of
such methodological constraints.
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Abstract. Diffusion MRI imaging and tractography algorithms have
enabled the mapping of the macro-scale connectome of the entire brain.
At the functional level, probably the simplest way to study the dynam-
ics of macro-scale brain activity is to compute the “activation cascade”
that follows the artificial stimulation of a source region. Such cascades
can be computed using the Linear Threshold model on a weighted graph
representation of the connectome. The question we focus on is: if we
are given such activation cascades for two groups, say A and B (e.g.,
controls versus a mental disorder), what is the smallest set of brain con-
nectivity (graph edge weight) changes that are sufficient to explain the
observed differences in the activation cascades between the two groups?
We have developed and computationally validated an efficient algorithm,
TRACED, to solve the previous problem. We argue that this approach to
compare the connectomes of two groups, based on activation cascades,
is more insightful than simply identifying “static” network differences
(such as edges with large weight or centrality differences). We have also
applied the proposed method in the comparison between a Major Depres-
sive Disorder (MDD) group versus healthy controls and briefly report
the resulting set of connections that cause most of the observed cascade
differences.

Keywords: Connectome + Structural brain networks - Activation
cascade *+ Root-cause analysis

1 Introduction

Diffusion MRI imaging and tractography algorithms have enabled the mapping
of the macro-scale connectome of the entire brain [23]. This network represen-
tation enables the application of powerful tools from graph theory and graph
algorithms in the study of the brain’s structure and function. Earlier work has
focused on various important network properties of the brain such as small world-
ness [1], presence of hubs [12], modularity [22], etc. These studies have revealed
that seemingly local pathologies in specific regions can have far-reaching global

effects on other parts of the brain [19,24].
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Probably the simplest way to study the dynamics of brain activity at the
macro-scale is to compute the “activation cascade” that is generated by the
artificial stimulation of a source region. Activation cascades, represented in the
form of directed acyclic graphs (DAGs), describe how an activation starting
from one region (i.e., source node) propagates to the rest of the brain, activating
other brain regions along the way. Previous work has applied the Asynchronous
Linear Threshold (ALT) model on the mouse meso-scale connectome to simu-
late the propagation and integration of sensory signals through activation cas-
cades [21]. Those modeling results were validated with functional data from cor-
tical voltage-sensitive dye imaging, showing that the order of node activations
in the model matches quite well with the empirical activation order observed
experimentally [21].

The question that we focus on in this study is: suppose we are given two
groups with significant differences in the activation cascades generated in their
brain networks, what is the smallest set of brain connectivity (i.e., graph edge
weight) changes that are sufficient to explain the observed differences in the
activation cascades between the two groups? Answering this question can be
valuable in many studies when two groups should be compared, not only in terms
of structural connectome differences, but also in terms of functional dynamics.
For example, we can identify a (generally small) set of brain connectivity changes
that appear to cause the functional activation differences in a given disorder, by
comparing the corresponding activation cascades with healthy controls. Further,
the corresponding connections can be used as possible targets in interventions
and treatments such as deep brain stimulation [20,26].

We have developed an algorithm named TRACED (The Root-cause of Acti-
vation Cascade Differences) to solve the previous problem, as illustrated in Fig. 2.
TRACED starts by identifying node membership differences between the two
groups (say A and B) within the activation cascade of each source. Then, for
each source, we identify the smallest set of edges that, if their weights in group A
are modified to be equal to the weights in group B, the corresponding activation
cascades will be the same in both groups. We have computationally validated
TRACED across many test cases. Additionally, we have applied TRACED in the
comparison between a group of patients with major depressive disorder (MDD)
and a group of controls. This paper focuses on the proposed computational
method — a more comprehensive MDD-focused study of the two groups will be
presented in a different article.

Previous work detected significant topological differences in terms of network
metrics such as edge weights and centrality measures for various neurological
disorders, including multiple sclerosis [7,15], Alzheimer’s disease [6], Parkinson’s
disease [27], and schizophrenia [8]. We argue that the activation cascade app-
roach to comparing the connectomes of two groups is more insightful than sim-
ply identifying such “static” network differences. The former makes some clear
and simple assumptions about the processing and propagation of information
in the brain, and it creates a causal connection between structural changes and
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functional effects. Therefore, the identified abnormalities are more interpretable
and robust to subject variability.

2 Linear Threshold Model and Activation Cascades

Our starting point is a structural macro-scale brain network. In this network
representation, the graph is denoted by G = (V, E), each node in V' corresponds
to a brain region, and E contains edges that correspond to connectivity between
brain regions. For structural networks constructed with diffusion tensor imaging
(DTI), the edges are undirected. Each edge (z,y) in E is associated with a weight
w(x,y) that represents the strength of the corresponding connection.

In the linear threshold model, each node can be either active or inactive.
Initially, all nodes are inactive, except a single source node. If a neighbor y of a
node z is active, then we say that x “receives an activation” from y with strength
w(y, z). Node = becomes active if it receives a cumulative activation from all its
active neighbors that is more than a threshold 6.

More formally, a node x at time ¢ is associated with a binary state variable
A(z,t) indicating whether z is active (1) or not (0). For the source node s, we
have that A(s,t =0) =1 and for all other nodes:

Az t+1)=1if > w(y.z)A(y,t) >0 (1)

yl(y,x)€E

for t > 0. If 2 becomes active in the cascade of source s, ts(x) is the time of its
activation. By convention, ts(x) = oo if node x never gets active.

An activation cascade, in the form of a directed acyclic graph (DAG), shows
whether as well as how each node becomes active. The nodes in the activation
cascade of source s form the following set:

U(s) ={zx € V| ts(x) < o0} (2)

The edges in the activation cascade include (z,y) € E if node = becomes active
before y. So, the presence of this edge in the cascade DAG means that = partic-
ipates in the activation of y. Mathematically,

F(s) ={(z,y) € E [ ts(y) <ts(z)} 3)

We denote the activation cascade as H(s) = {U(s), F(s)}. In Fig.1 we show
a simple example illustrating an activation cascade generated in a toy network
using the linear threshold model.

For a given 6, different source nodes may give different cascade sizes. Some
source nodes do not activate any other node giving rise to empty cascades, while
other source nodes may activate every node in the network causing a full cascade.
The third case is that of a partial cascade, which is more likely in practice. It
would be unrealistic to set the threshold 6 so high that we get many empty
cascades — that would correspond to a comatose brain! However, it would also
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time=0 time=1 time =2 time=3

O Source Node ‘ Active Node O Inactive Node

—— Edge weight=1 —— Edge weight =2 Threshold =2

Fig.1. An illustrative example of an activation cascade obtained using the linear
threshold model. Node B is the source of the cascade. The threshold § = 2. Node
A gets active through the edge (A, B), and node C becomes active after both A and
B are active. The rest of the nodes stay inactive in this cascade.

be unrealistic to set 6 so low that we get many full cascades. The previous
observations guide us to choose a range of 6 values that result in more partial
cascades, across different source nodes.

When comparing the structural brain networks of two subjects, or two
groups, we rely on the membership of each source’s cascade: If a node x is active
in the cascade of source s in one network, is = also active in the corresponding
cascade of the other network? The similarity between the node membership of
two cascades is quantified using the Jaccard similarity metric, applied on the
set of active nodes in the two cascades. A small Jaccard similarity represents a
large difference between the two cascades. If U(s) and U’(s) denote the set of
nodes activated from source s in networks G and G, respectively, the difference
between the two cascades is quantified by:

[U(s) NU'(s)|

HU (), U ()} = 1= U060} =1 = 5

(4)

where J{U(s),U’(s)} is the Jaccard similarity of the two cascades.

3 TRACED Algorithm

We expect that a mental disorder (or any other genuine distinction in the struc-
tural brain networks of a group) would cause cascade membership differences
for several different sources [25,28]. Additionally, it is reasonable to expect that
these cascade membership differences will be caused by a rather small set of
brain connectivity abnormalities (a larger set of abnormalities would probably
be lethal). Under these assumptions, we aim to detect the smallest set of edge
weight changes that can explain the observed cascade membership differences
between the two groups.

The Case of a Single Source Node: The problem of finding the root-cause
for the activation cascade differences of a single source s can be formulated as
follows: We are given the cascade of s in the control and the abnormal networks.
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Fig. 2. Method overview: the abnormal and control networks may have several edges
with different weights. We generate the activation cascade for each source using the
linear threshold model, and identify the cascade membership differences across the two
networks. We identify a subset of edges (containing only edge BD in this example)
whose weight change can explain the majority of the observed cascade differences. In
other words, if we restore the weights of this subset of edges in the abnormal network
to be equal to the corresponding weights in the control network, the majority of the
cascade differences between two networks no longer exist.

Compute the minimum set of edges C' in the abnormal network so that, if we
restore the weights of those edges to be equal to the corresponding weights in the
control network, the activation cascade of s will be identical in the two networks.
We create C-restored network by replacing the weight of edge e (e € C), in the
abnormal network with the weight of e in the control network.
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The mathematical formulation of the previous problem is:

C = argmin |C| s.t. Us(s) = U(s) (5)
Ce{EUE'}

where the set of active nodes in the control cascade of s is denoted by U(s), the
set of active nodes in the abnormal cascade of s is U’(s), and the set of active
nodes in the C-restored network of s is U(.(s). By convention, we take the weight
of any edges that are not present as 0.

A naive algorithm would be to search among all 2™ solutions (m = |[EU E’|)
but that would be computationally infeasible for the scale of structural brain
networks.

Instead, the TRACED algorithm starts from an empty set C' and gradually
“srows” the solution by adding one edge at a time. The original empty set C
can grow into m different sets, each with a distinct edge. In the next step, each
of these m sets can include one of the remaining m — 1 edges, creating a total
of m(m — 1) sets with two edges each. This way, when Cis found, the number
of candidate solutions is m*, where k = \C’ |. Since we are adding edges step
by step following an approach similar to breadth-first-search, the solution is
guaranteed to be optimal. Note that even though the run-time of this approach
grows exponentially with the solution size k, we expect (as previously mentioned)
that k£ will be small in practice.

The run-time of the algorithm can be improved however based on the follow-
ing observation. Let us define as “candidate edges” the edges that point from
U(s) NUL(s) (nodes active in both cascades) to U(s)AU/(s) (nodes active in
one cascade but not the other). We know that at each “growth” step at least one
of the candidate edges should be added to the solution. Otherwise, it is impos-
sible to change the activation status of the nodes in U(s)AU{(s). Therefore, in
each step we only consider candidate edges, and thus limit the number of new
possible solutions created. If b is an upper bound on the number of candidate
edges, the number of total solutions generated during the search is at most b*.

Figure 3 illustrates the execution of the TRACED algorithm with a small
example. We start with an empty solution C' and with the two activation cascades
(control and abnormal) for a single source s. Then, we identify the candidate
edges between the two cascades. For each candidate edge we “grow” a new branch
of the solution tree. We repeat these steps until U(s) = Uj(s).

TRACED has a time complexity of O(b*(|V| + |E’|)) because it iterates
through b* candidate solutions and executes the linear threshold model once for
each possible solution.

In Sect. A.1 we introduce an improvement that further reduces the average
run-time and allows multiple optimal solutions to be found, by adding more
than one edge into a candidate solution at each step. That improvement does
not change the algorithm’s main idea or its worst-case run time.

To computationally validate the correctness of the algorithm, we created
pairs of small-scale graphs for which we know the edges that cause activation
cascade differences between the two networks. These examples are designed so
that they vary in several factors: they can have one or multiple optimal solutions,
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Fig. 3. Illustration of TRACED: the tree structure shows how the solution is gradually
computed one edge at a time — different branches of the tree can lead to different
solutions. The final solutions are marked in red. Along with each candidate solution
C, we present the corresponding cascade H{(s). In this example, two solutions can
explain equally well the observed differences between the two cascades that originate
from source C'. (Color figure online)

only one edge or multiple edges in one solution, and edges in a solution that are
dependent on each other (i.e., an edge included in the cascades only when the
weight of another edge is restored). TRACED results in the correct results in all
cases, identifying one or multiple optimal solutions correctly.

Aggregation Across Different Source Nodes: The previous algorithm may
produce different sets of edges for different source nodes. Some of these edges
may be the result of noise in the data or other artifacts. We select a subset of
these edges based on the following argument: if TRACED identifies a certain
edge as causal, not only for one source but for multiple, it is likely that edge
represents a genuine and important difference between the control and abnormal
networks.

We use the coverage metric to measure the number of sources for which
an edge e has been identified as causal for the cascade membership differences.
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Edges with higher coverage play a more central role in the observed differences
between the two networks.
To test if the coverage of an edge is significant or not, we construct a null

hypothesis that all edges in the network have the same probability (IC‘E” , Where

C’(s) refers to the set of edges identified to be causal to cascade membership
differences with source node s) to be reported as causal for source s. Under that
assumption, the coverage metric follows a binomial distribution:

, oL
coverage'(e) ~ B (25: |C(s)], |E|> (6)

So, the final output of TRACED is the set of edges for which the coverage
value is much higher than expected based on chance (p < 0.05 in the binomial
distribution).

This final step makes the TRACED algorithm heuristic - the set of edges that
we finally report is no longer guaranteed to explain all differences in the acti-
vation cascades of all sources. Nevertheless, the result captures edges that have
influenced the activation cascades across many source nodes, and is therefore
more reliable.

4 A Case Study on Major Depressive Disorder

The focus of this paper is on the analysis method presented in the previous
section, rather than a specific application. To illustrate one potential applica-
tion of this method, however, we summarize here the results of a comparison
between a group of severe MDD patients and a group of healthy controls. The
DTTI data for this comparison was provided to us by Dr. Helen Mayberg’s group
and they were originally used in the PReDICT study [3,4]. The PReDICT study
was approved by Emory’s Institutional Review Board and the Grady Hospital
Research Oversight Committee. We constructed structural brain networks apply-
ing probabilistic tractography on diffusion MRI scans of 90 MDD patients and
18 control subjects. The brain was parcellated into 396 regions (198 regions for
each hemisphere) using the multi-modal cortical parcellation of Glasser et al.
[9], and the Brainnetome Atlas [5] for sub-cortical regions. We applied the lin-
ear threshold model and generated an activation cascade for each source node,
and measured the cascade membership differences between the two groups. The
threshold that we used ranges from 0.1 to 0.3 among different source nodes,
and is determined for each source node as the one associated with most signifi-
cant cascade membership differences. We then applied TRACED to identify the
minimal set of connections that can explain the observed cascade differences.
Table1 lists the connections that we identified as causal for the cascade
membership differences between the two groups. These connections have a sig-
nificant overlap with findings of earlier studies reporting MDD-related struc-
tural/functional changes. The connections identified as causal are adjacent to
parts of Brodmann area 24 [14], area 32 [10], area 9 [13], area 10 [16], and the



94 Q. Yao et al.

orbitofrontal region [18]. All of these regions have been reported to be patholog-
ically relevant for MDD in earlier studies. Some of the reported connections are
also in the default mode network (DMN), which has been shown to be heavily
affected by MDD [14], with increased functional connectivity [11]. We are going
to further analyze this dataset and also compare our findings with those of other
network analysis methods in a follow-up MDD-specific article.

Table 1. The connections that can explain the cascade differences between a group
of MDD patients and a group of controls. The name of each node is based on the
parcellation of Glasser et al. [9], followed with a brief description of the location of
that region (L: left hemisphere, R: right hemisphere).

Node 1 Description —| Node 2 Description

p24 (L) area-24 posterior —|a24 (L) area-24 anterior

10v (L) area-10 ventral —|10pp (L) |medial polar area-10
a24 (L) |area-24 anterior —|9m (L) area-9 medial

Pir (L) piriform olfactory cortex | — | pPOFC (L) | posterior OFC

131 (L) area-13 lateral —|OFC (L) | orbital frontal complex
p32 (L) area-32 posterior —|10d (L) area-10 dorsal

p32 (L) area-32 posterior —|9m (L) area-9 medial

10v (R) | area-10 ventral —|10pp (R) |polar 10p

pOFC (L) | posterior OFC —1131 (L) area-13 lateral

10pp (L) | medial polar area-10 —|OFC (L) | orbital frontal complex
p32 (L) |area-32 posterior —|10pp (L) | medial polar area-10

5 Discussion

Various network analysis metrics and methods have been proposed in the past
to compare structural brain networks. For instance, earlier work has investi-
gated the differences between brain networks in terms of small-worldness [1], effi-
ciency [2], and modularity [22]. At the node level, the clustering coefficient, par-
ticipant coefficient, and different node centrality metrics (especially the between-
ness centrality) have been widely adopted [17,29]. At the edge level, researchers
have investigated the edges with significant weight differences and the subnet-
work they form [14].

TRACED falls in the spectrum of the edge-level analysis, and the resulting
set of connections is a subset of edges that have significant weight differences
between the two groups. Additionally however TRACED also incorporates the
information flow across the entire network in varied paths (because of all the
source nodes considered). We aggregate this topological information across the
entire network to describe the role that a specific network element (node or edge)
plays in the network, and how that role is different between the two groups.



Root-Cause Analysis of Activation Cascade Differences in Brain Networks 95

Previous work

Connectivity Change Nodal Centrality Change
© o
© © ® ©

Control

Increased Connectivity . Increased Nodal Strength

Decreased Connectivity @ Decreased Nodal Strength
Our Method
©) ©

Linear threshold Activation cascade Root-cause

Abnormal use XN TN
model z) ‘Q z ® % ‘GD Q@ analysis | ! ‘\‘ ‘/ ® |
= Strong Connection |:> l‘ N )

Weak Connection S @Qg ® @‘g \\/, \~_/

O Source @ Active o Inactive

(:\, Segregated Components
Key connectivity Change

Fig. 4. Earlier work has mostly focused on brain connectivity differences using graph-
theoretic metrics (e.g., node centrality metrics). TRACED associates connectivity
changes with their impact on information transfer in the brain. It measures the impact
of such changes on activation cascade differences, and identifies the specific connections
that cause these differences through root-cause analysis.

Figure 4 illustrates typical node-level and edge-level network analysis metrics
and compares them with TRACED. Compared to identifying solely edges with
significant weight changes, TRACED associates a structural change (i.e., restor-
ing the weight of a connection to its value in the other group) with functional
changes (the node membership of the corresponding activation cascades). This
is favorable for two reasons: it makes the results more interpretable, and less
sensitive to variability across subjects. A significant difference in the weight of a
connection between two networks may be simply due to subject variability. With
TRACED, a connection is identified as causal not only based on its weight but
also based on the topological role of that edge in the propagation of information
(activation cascades) from different source nodes.

Compared to node-level analysis metrics, TRACED can provide higher spa-
tial resolution because it identifies specific connections instead of entire brain
regions. Additionally, some network analysis metrics often make implicit assump-
tions about information transfer in the brain (e.g., the betweenness centrality met-
ric assumes that information travels through shortest paths, while the communi-
cability metric assumes that information follows random-walks). These assump-
tions may not be realistic (e.g., shortest path routing requires information about
the complete network stored in every node). It is also harder to interpret these
metrics in terms of their associated localities in the brain (e.g., a node may have
much lower communicability in one group but what is the corresponding set of
affected information pathways?). TRACED makes an explicit assumption about
information transfer, namely activation cascades based on the linear threshold
model, and it associates structural connectivity changes with corresponding func-
tional changes, making the results more transparent and informative.
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A Appendix

A.1 Optimization of TRACED

A key observation is that if adding a single edge (z,y) into a solution set does not
change the activation status of node y, we will inevitably need to add additional
edges pointing to y to build a final solution. Otherwise, for a solution C' with (z, y),
we can always find a better solution C’ = C — {(z, y)} with U, (s) = U (s).

Therefore, we can improve the original TRACED algorithm, by adding a
collection of edges in each iteration, so that U (s) changes when we create a
new partial solution. This way we can reduce the number of partial solutions
that we create during the search for the optimal solution. How do we find the
collection of edges that can cause the change in Uc(s)? We know that we focus
on change of activation status of nodes in U/ (s)AU(s), and so we can discuss
the case of nodes U(s) \ Ul (s) and U/ (s) \ U(s) separately.

1. For each node v in U(s)\ U/ (s), we can check if there is an ensemble of edges
from U(s) N U{(s) pointing to this node, so that if we include the ensemble
into the solution, v would be active in the updated U (s). It is guaranteed
that we can find at least one such collection of edges. Otherwise, we cannot
explain why this v could be active in U(s).

2. For nodes in U/ (s)\U(s), we can further find its subset T=(s) so that for each
node v € T (s), ZueU(s)mU/C(s) w(u,v) > 6. We can prove that US(s) \ U(s)
will no longer be in U/ (s) if and only if we add an ensemble of edges for
each node in T¢(s) into C. If for a node v in Te(s) we do not add edges
connecting to v into C, v will remain active and present in U (s). If we
add edges connecting to v for every node v in T¢(s), none of the nodes in
UL (s) \ U(s) receive an activation more than 6, so that they will no longer
be active.

With this modification, each partial solution C' corresponds to a state U (s),
and it is guaranteed that there are no edges that can be removed from C without
changing that state. Therefore, all partial solutions corresponding to one state
are equivalent, in terms of the edges that need to be added to the solution to
reach another state. Therefore, we can construct a graph of solutions, where
each node z corresponds to a state, and each edge (z,y,{ei1,...}) corresponds
to an ensemble of edges {ey, ...} needed to be added into the partial solutions
corresponding to state x so that the new solution leads to state y. Such an
edge is also weighted, with a weight that is equal to the number of edges in
the collection. Notice that there can be multiple edges between two nodes, each
corresponding to one collection of edges and may have a different weight different
than other edges.

With such a graph of solutions, our goal is equivalent to finding the weighted
shortest path between the initial state U’(s) and the final state U = U/, (s) in
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the graph. This is because the sum of the weights of edges along a path in the
graph of solutions would be the number of actual edges we include in the final
solution. We can find the shortest path using Dijkstra’s algorithm since we have
only positive weights. The major benefit of having this graph of solutions is that
we can deal with the case of multiple optimal solutions more explicitly. They
will be represented as multiple shortest paths from the initial state to the final
state.
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Abstract. Contradictory data exist whether the category number affects the learn-
ing performance in rule-based and integration-information classification tasks.
When an effect is observed, the performance is better for a lower number of
categories. We aimed to investigate the effect of the category number on the per-
formance in the unstructured category learning tasks with probabilistic feedback.
We conducted four experiments. The stimuli consisted of dot motion sequences.
We presented eight motion directions (0°-315° through 45°) with motion direction
coherence of 75% (Experiments 1, 3, and 4) and 20% (Experiment 2). We used
the probabilistic rule of 79% (Experiments 1-3) or 75% (Experiment 4) correct
answers. Eight observers classified the eight stimuli into 8 categories (Experiments
1-2); 2 categories (Experiment 3); 4 categories (Experiment 4). The results show:
1.) awide variety of strategies adopted by the observers; 2.) Accuracy and response
time changed at a different rate during learning; 3.) The rate of improvement dif-
fered between the experiments; 4.) The response time is a better characteristic
of incremental category learning. The findings imply that the learning perfor-
mance depends predominantly on the complexity of the rule of stimulus—response
associations and to a lesser extent task’s difficulty.

Keywords: Accuracy - Learning - Probabilistic feedback - Response time -
Unstructured category learning

1 Introduction

Categorization is the process of sorting things into groups. In the categorization learning
paradigm, the observer gives the same answer to all members of one category and
different answers to members of other categories [1]. Categorization has an essential
role for the individual to survive and succeed in unknown circumstances and in everyday
life.

In an attempt to explain how unknown stimuli are classified and stored in memory
and how the observer learns a new category, numerous categorization models were cre-
ated [2]. The early theories proposed a single category-learning system for all types of
categories [2, 3]. Later theories assume multiple category learning systems [2, 4-6]. It
is usually assumed that two independent systems participate in category learning. One
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system, explicit (also named declarative, verbal, rule-based), relies on the medial tempo-
ral lobe (MTL) and uses working memory, executive control, attention, and hypothesis
testing by application of simple rules [2, 7]. The other system, implicit (also procedural,
nonverbal, or similarity-based), relies on the dorsal striatum and does not involve work-
ing memory or attention but learns associations between motor responses and category
labels [2]. The learning from the implicit system is often assumed to be unavailable to
awareness and/or impossible to verbalize [4, 8].

One approach to test whether single or multiple systems are involved in the classi-
fication process is to manipulate different characteristics of the classification task and
evaluate whether these manipulations have a different effect depending on the category
structures. Such approach is used in behavioral [9], neuropsychological [6], and neu-
roimaging investigations. Ashby and O’Brien [11] distinguished four different category
structures: rule-based (RB), information-integration (II), prototype, and unstructured
category. In rule-based category structures, the category can be learned via some logical
reasoning process. The rule that maximizes accuracy is easy to describe verbally [3]. In
information-integration category structures, the optimal strategy is difficult or impossi-
ble to describe verbally. Accuracy is maximized only if information from two or more
stimulus dimensions is integrated at some pre-decisional stage [4]. In prototype type
of structures, the exemplars of a category are created by randomly distorting a proto-
type [12, 13]; thus, the category members have high similarity. In unstructured category
classification, the exemplars in a category are arbitrarily selected; they are not based
on similarity as in prototype classification, on some abstract logical relationship as in
rule-based classification, or the covariance of features as in information-integration.

Most studies show that certain manipulations affect either the outcome of the RB or
the II classification studies but not both types, as predicted by multiple-system theories.
One such manipulation is to change the number of categories in the classification task.
The categories’ learning accuracy deteriorates for RB classification when four instead
of two categories are used. In contrast, II category learning is unaffected by category-
number manipulations [9]. These results were taken as evidence for multiple-systems
involved in category learning. However, Stanton and Nosofsky [14] conducted an II
category learning similar to the work of Madox and colleagues and obtained significant
deterioration in 4-category compared to 2-category classification for two different II
category structures. Stanton and Nosofsky [14] see evidence in favor of single-system
models in these contradictory results. Thus and so far, the case of single or multiple
systems mediating category learning is still, to a great extent, open to debate.

Most of the existing studies used either RB or II structures, whereas the unstruc-
tured categories are extremely rarely studied and are among the most difficult cate-
gories to learn [15, 16]. Neuroimaging studies of unstructured-category learning have
reported task-related activation in the striatum (in the body and tail of the caudate nucleus
and the putamen), but typically not in the medial temporal lobe structures [17-19].
Together with a neuropsychological study of [20], these findings imply that unstructured-
category learning is mediated by procedural memory, not by declarative one. Indeed,
in a behavioral study of unstructured-category learning [21], the authors demonstrated
that by switching the response keys’ locations, unstructured-category learning recruits
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procedural memory. II tasks are also supposed to be mediated by procedural memory
[4].

Except for the structure of the categories, the classification studies differ by the
provided feedback. It could be incomplete, indicating only whether a response is correct
or wrong, or it could provide full information showing the proper stimulus category.
It could also be probabilistic, being inaccurate in a particular proportion of cases. The
most used probabilistic classification task is the Weather Prediction task [8], in which,
based on a combination of one to four cards (cues), the observers have to select one
of two categories: “sun” or “rain.” The classification outcome depends differently on
the cards — two cards are highly predictive for the classification, while the other two
are much less predictive. Hence, the classification is based on a combination of cues
from the different cards, though the task could be performed with high accuracy using
only the most predictive cards. Probabilistic category learning was developed to study
procedural memory [10]. Still, some researchers suppose that a declarative component
is also involved in the task [22] or that the task is entirely declarative [23].

The present study aims to investigate the effect of the number of categories on the
performance of unstructured category tasks with probabilistic feedback. Contrary to the
Weather prediction task, in our study, the classification is based on a single stimulus
dimension — the direction of motion of dot patterns. A single stimulus was presented in
each trial; thus, all stimuli were equally predictive for the outcome as they are associated
with the same probability to their category. Also, in one of the experiments, we reduced
the directions’ coherence in the stimuli, making the categories less distinct. In this way,
we expect to obtain new knowledge about the least studied type of category learning — the
unstructured one, and a better understanding of the involvement of different processes
and brain structures depending on the classification tasks.

The present research studies the learning processes in one of the least investigated
classification tasks. It explores the effect of category number and distinctiveness in
unstructured probabilistic classification using two different performance measures —
response time and accuracy and their interrelation that allows evaluating better the con-
tribution of the experimental manipulations revealing a potential competition between
the explicit and implicit memory systems. Both the individual and the averaged learning
curves were explored.

2 Materials and Methods

2.1 Stimuli

The stimuli consisted of 85-frame motion sequences of dots (diameter 0.16° and density
0.85 dots/deg?) moving with constant speed at 5 deg/s in a circular aperture with a diam-
eter of 15° positioned in the middle of a computer screen. Eight motion directions were
presented: 0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°. Motion direction coherence
was 20% in Experiment 2 and 75% in Experiments 1, 3, and 4. We varied stimulus—
response association and randomly assigned one label (color) to each category by a
probabilistic rule of 79% correct answers in Experiments 1, 2, and 3 and of 75% correct
answers in Experiment 4. Each experiment was run on a separate day and consisted of
two sessions, separated by a 2-min break.
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The stimuli were binocularly viewed from 57 cm and presented on the computer
screen (21" Dell Trinitron refresh rate 85 Hz; resolution 1280 x 1024 pixels). A custom
program developed under Matlab PsychToolbox [24] generated stimuli and controlled
the experiments.

2.2 Procedure

After a warning signal, a fixation point appeared in the center of the screen. A motion
direction stimulus was presented for 1 s, followed by two circles of a diameter of 3° and
different colors shown to the left and the right of the fixation point. The observer had to
decide which of the colored circles corresponded to the correct answer and respond by
clicking the mouse button. All combinations of different colors were presented an equal
number of times. The colored circle corresponding to the correct response appeared as
feedback on the screen center for 1 s. As not all colors are equally detectable in the
retinal periphery [25], the colored circles were positioned at 10° from the screen center.

In Experiments 1 and 2, the observers had to classify the eight motion directions into
eight categories with one exemplar in each. In Experiment 3, they had to classify the
eight motion directions into two categories, each with four exemplars, and in Experiment
4 —into four categories, each with two exemplars. Before each experiment, the observers
were informed of the number of categories.

Full feedback was provided after every response, and thus observers learned to
associate each of the motion directions with the appropriate response through trial and
error. The observers were told that at the beginning of each task, they could not know
which stimulus belonged to which category, but by following the feedback, they could
learn to categorize the stimuli and that in approximately 20% of the trials, the feedback
would be false.

All observers were presented with the same random order of stimuli in each experi-
ment. Several restrictions were used to generate the stimulus sequences: they consist of
blocks with a random permutation of all possible stimulus—response combinations. An
additional requirement is that the last stimulus—response combination differs from the
starting one of the next block. This way of generating the sequences allows controlling
to a certain degree, the effect of the memory processes by having an approximately equal
separation between the presentations of each stimulus—response combination.

2.3 Observers

Eight healthy observers (mean age 30 years, range 22-39 years, 4 males, 4 females)
participated in the study. The Ethics Board of the Institute of Neurobiology approved
this study. All participants provided informed written consent to the approved protocol
before the start of the investigation, according to the Declaration of Helsinki.
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2.4 Statistical Analyses

All analyses were performed in the software R environment [26]. The package Ime4 [27]
was used to fit generalized linear mixed models to the observers’ binary responses in the
classification tasks. The package glmmTMB [28] was used for modeling the dependence
of the response time on the experiment and the trial number. Model assumptions were ver-
ified by using the DHARMa package [29] to test for overdispersion, heteroscedasticity,
and temporal dependency.

The mixed models consider the individual differences among the observers with the
assumption that a common function relates the dependent variable and the experimental
factors, the difference among the participants being in the value of the parameters.

3 Results

Large individual differences in the performance of the subjects both in the learning rate
and the effect of the experimental conditions were observed. For 5 out of the 8 subjects,
the highest proportion of correct responses is obtained in Experiment 1, but the worse
performance varied greatly between them, with a slight prevalence for Experiment 2.
The mean proportion of correct responses ranged from 0.48 to 0.98.

The large individual differences make the use of average learning curves and the
assumptions of the generalized linear mixed models questionable. As shown in [30],
averaging will lead to a misleading interpretation of the results if the learning is not
gradual. To give credit to our analyses and conclusions, we applied the change-point
algorithm of [30] to the individual learning curves. This algorithm uses the cumulative
record to test whether the distribution of the different learning measures changes in
the learning process. It is based on the insight that when the performance is stable,
the cumulative record will approximate a straight line. In contrast, a change in the
distribution will be apparent as a change in the cumulative record slope. The point of
maximal deviation from a straight line is most likely a change point. The changes in
performance reflected in a slope change of the cumulative records are evaluated on
statistical grounds. A logarithm of the odds (logit) against the null hypothesis of no
change is used as evidence that a particular putative point is a change point.

We applied the algorithm of [30] to each observer’s responses in each condition using
a logit of 2, corresponding approximately to a significance level of 0.01. The observers’
binary responses were regarded as generated from a random rate process with a fixed
probability. The cumulative records are presented in Fig. 1. The algorithm shows one
or more change points from all 32 cumulative records, only in 6 cases (marked with
black dots). No cumulative record indicates sharp changes in the learning curve. These
results imply that while the individual data look quite diverse, the process of learning
has similar characteristics.

Figure 2A presents the average learning curves obtained by calculating the number of
correct responses in blocks of 28 presentations for Experiments 1-3 and in blocks of 32
presentations — for Experiment 4. The data imply performance improvement depending
on the experiment; thus, the learning rates varied with the number of the categories and
the induced noise.
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Fig. 1. The cumulative records of the observers’ responses in the four experiments. The black
dots show the presence of a change in the learning performance.

To evaluate the learning rate differences between the four experiments, we performed
a generalized linear mixed model regression on the binary responses obtained in each
experiment and each condition. A binomial distribution with a logit link was used (i.e., a
mixed logistic regression). In this way, the learning curves are described by the following
formula:

_ _&xpXip + Ziui)
1+ exp(XiB + Ziu;)

i ey
In (1) 7; is the probability of success on trial i (the number of successes at trial i follows
a binomial distribution), X; is n; x p model matrix of the fixed effects, Z; is n; x ¢ model
matrix for the random effects for trial i. The coefficient p represents the p — 1 vector
of the fixed-effect regression coefficients, u; is the g — 1 vector of the random-effects
coefficients for trial i distributed according to a normal probability distribution with
mean zero and q X ¢ covariance matrix D.

As fixed factors, we considered the experiment, the trial number treated as a continu-
ous predictor, and their interaction. The trial number was scaled. We tested models with
random slopes and intercepts and selected the model that best describes the experimen-
tal data based on the likelihood ratio test. The chosen model has a random slope and a
random intercept that varies with the condition. Model validation indicated no problems.
In the analysis, we used as a reference value the accuracy data from Experiment 3 in
which the classification was with the least number (2) of categories.
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The results of the analysis show that the trial number significantly affected the number
of correct responses (Wald’s x2(1) = 21.15; p < 0.001). While the effect of the exper-
iment was not significant at p = 0.05 (Wald’s x2(1) = 3.12; p = 0.37), the interaction
between the trial number and the experiment is significant (Wald’s x2(1) = 30.70). This
result implies differences in the learning rate depending on the number of categories or
the presence of noise. However, the significant interaction is due only to the lower learn-
ing rate in Experiment 2 compared to the reference — the classification in 2 categories.
This result implies no effect of category number but suggests that the increased noise in
motion direction makes the difference between the categories less distinct. In this case,
either the task requires more attention, or the classification performance becomes more
similar to prototype categorization. Due to the random generation of the motion patterns
and the reduced coherence of the motion directions, the performance might be based
on the patterns’ similarity. Most similar should be the patterns with the same motion
direction, but some confusion between the neighboring categories could be expected.
The fitted dependencies of the correct responses on the trial number are presented in
Fig. 2B.
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Fig. 2. A - The averaged learning curves for Experiments 1-4. B — The fitted dependence of the
correct responses on the trial number

We next evaluated whether the reaction time also changes with the trial number
and, if yes, whether this change is the same for all experimental tasks. One hypothesis
is that when the observers learn the associations between the stimulus attributes and
their corresponding category, the reaction time will decrease. To test this hypothesis,
we performed a generalized linear mixed model with the response time as a dependent
variable and the experiment, the trial number, and their interaction as predictors. In
the model, the trial number was scaled and considered as a continuous predictor. We
tested several distributions for the reaction time, as suggested by [31]. The model with
Gamma distribution and identity link showed a lower Akaike information criterion and
was applied to the data. The random effects included by-subject random intercept that
varied with the classification task. Also, we included a dispersion model that varied with
the subject, the classification task, and the trial number. Its inclusion specifies that the
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covariates’ variance is not the same and changes with their value allowing to model
heteroskedasticity.

The results of the analysis show a significant effect of the trial number (Wald’s
x2(1) = 192.972; p < 0.001). The estimated effect of the trial number on the reaction
time is illustrated in Fig. 3A. It demonstrates the significant effect of the experiment
(Wald’s x2(3) = 11.828; p < 0.05) and the significant interaction between the experiment
and the trial number (Wald’s x2(3) = 53.648; p < 0.001). The figure clearly shows
that the reaction time is longer in Experiment 2 and is almost independent of the trial
number. In contrast, in the rest of the classification tasks, the reaction time decreases
with the trial number. It is apparent that the reaction time increases with the number
of categories for classification. Whereas the main effect of the experiment is due to the
longer reaction times in Experiment 2, the interaction term significance is due to the
different slopes in Experiment 4 (classification in 4 categories) and in Experiment 2.
The reaction time decreases more sharply with the trial number for classification in 4
categories as compared to classification in 2 categories.

We also tried to evaluate the relationship between the accuracy and response time
using a methodology proposed by [32]. Their approach estimates whether the observers
are trying to keep similar accuracy at the expense of a change in reaction time, whether
the accuracy and the reaction time are independent, and whether the two performance
measures co-vary. To distinguish between these potential outcomes, a generalized linear
mixed model is applied with the binary responses of the classification tasks used as
a dependent variable and the experiment, the trial number, and the logarithm of the
response time and their interactions - as predictors. Hence, two continuous predictors —
the response time and the trial number were included, and the experiment was considered
a categorical factor. In this way, it is possible to capture the correlation between accuracy
and the response time within a given subject. We tested different random effects structures
and compared their outcomes by the likelihood-ratio method. In the final model, a by-
subject random intercept and by-subject random slope varying with the classification
task were included.

The results of the analysis show that the inclusion of the reaction time as a predictor
eliminated to a great extent the effect of the classification task. The main effect of the
experiment (Wald’s % 2(3) = 5.299; p = 0.15); the interaction between the experiment
and the trial number (Wald’s x2(3) = 4.902; p = 0.18); the triple interaction between
the trial number, the reaction time and the experiment (Wald’s x2(3) = 4.222; p = 0.24)
are insignificant at p = 0.05. The interaction between the trial number and the reaction
time also turned insignificant (Wald’s x2(1) = 3.058; p = 0.08). The only significant
effects in the model remained the trial number (Wald’s x2(1) = 16.914; p < 0.001), the
effect of the logarithm of the reaction time (Wald’s x2(1) = 44.955; p < 0.001), and
the interaction between the experiment and the logarithm of the reaction time (Wald’s
x2(3) = 11.936; p < 0.001).
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Fig. 3. A — The fitted dependence of the response times on the trial number; B — The fitted
dependence of the correct responses on the response time

Figure 3B represents the accuracy changes depending on the reaction time’s loga-
rithm and the experiment. The figure shows that the accuracy declines with the increase
in reaction time, opposite to the speed-accuracy trade-off that would imply a higher
number of errors for shorter response times. The reduction in accuracy with reaction
time seems most extreme for the classification tasks with 8 and 4 categories (Experi-
ments 1 and 4) and least affected for the case when, due to the induction of noise in
the stimulus motion, the discrimination of the stimuli deteriorates (Experiment 2). How-
ever, the estimated regression coefficients show a significant difference in the interaction
term between the experiment and response time only for Experiment 4 compared to the
reference (Experiment 3). Thus, the accuracy of the classification and the time needed
for the task performance are related to each other. Significant differences are observed
in the time needed to classify the stimuli in 4 and 2 categories.

4 Discussion

In the present study, we explored the effects of category number and their distinctiveness
on the learning performance in unstructured classification tasks with probabilistic feed-
back. The manipulation of the category number is assumed to be a proper test, whether
single or multiple systems are involved in the classification [9, 14]. In all experiments,
we used the same 8 stimuli that differ in motion direction. The only difference is the
number of categories they were randomly assigned to and the noise level induced in
motion direction.

The use of probabilistic rule hampers the learning of the stimulus-response asso-
ciations, allowing greater exploration of the learning processes and more observations
before the learning maximum is reached. Our data show that learning the association
between the stimuli and the response categories is very difficult, and not all subjects
succeeded in achieving high performance. There are significant differences in learning
ease, depending on the category number and the induced noise. While the average learn-
ing curves for the different experiments show improvement with the trial number, this
is not the case for all participants and conditions.
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Intuitively, we would assume that explicit memorization is involved in unstructured
category learning [11]. However, there are fundamental differences between explicit
memorization and unstructured-category learning. In a typical memorization task, the
observers are presented with a list of things to remember, and they repeat them until they
learn them. In unstructured-category learning, however, the stimulus—category label
pairs are not explicitly presented and are learned from the accumulation of trial-by-
trial feedback. Moreover, suppose all the classification tasks in our study are performed
based on explicit memorization. In that case, no differences should be observed between
the experimental conditions as the same stimuli are used in all of them, while our data
indicate significant differences in the timing of the responses between the categorization
in two and four categories.

As each stimulus in Experiments 1 and 2 is assigned to a separate category, this task
could be considered an identification. It is logical to assume that there might be a dif-
ference between identification and categorization tasks. On the one hand, categorization
might be expected to be easier than identification since the stimuli in a common cate-
gory need not be discriminated from each other; thus, less information about a stimulus
is required to classify it than to identify it. In this regard, it is worth mentioning the
mapping hypothesis [15, 33] that considers the one-to-one mapping in the identification
and many-to-one mapping of stimuli onto responses in categorization. According to it,
all inter-stimulus confusions in the identification task that are within-class confusions
would result in correct categorization responses. Only between-class confusions would
result in categorization errors.

On the other hand, when using randomly grouped distinct stimuli (except for Exper-
iment 2) in different categories, the categorization may be more difficult than identifi-
cation since the observers must remember which stimuli are in a category; hence they
have an additional task. This assumption would explain the deterioration of performance
with the increase in category members as observed, for example, in RB classifications
(e.g. [15]).

A winning strategy in unstructured category learning will be not to focus attention
on remembering the members of a common category but to consider the task as identi-
fication with more identical answers, which would be an example of fast learning [34].
Indeed, based on the learning curves obtained in our study, it seems that the observers
perform similarly both in the identification and the categorization tasks as if only an
association between a single stimulus and its category is learned independently from the
number of the rest members of this category. Whereas the average performance suggests
significant differences between the experimental conditions with the best performance in
Experiment 1 (the highest proportion of correct responses and steepest learning curves),
this observation was not confirmed by the data’s statistical analysis. Only in Experiment
2 (classification into 8§ categories and lower coherence of motion direction), the learning
rate turned to be significantly lower than in the rest of the classification tasks. The higher
noise level in the stimuli could smear the motion directions’ differences, making the
task more similar to prototype learning. The unclear boundaries between the motion
directions may prevent the generalization from previous experience with the stimuli.

The lack of differences in the learning curves depending on the number of categories
in the unstructured categorization is similar to the II tasks that rely on procedural memory.
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Most studies show that the increase in the number of categories does not affect the II
classification performance (e.g. [9] but see [14]), though it affects the RB classification.
Both unstructured and 1II tasks are based on gradual learning of the stimulus—response
associations over many trials. It is generally assumed that the basal ganglia are involved
in this type of learning (e.g. [10, 35]). Neurophysiological studies on the effects of basal
ganglia damage on learning in tasks that involve incremental learning supposed to rely
on procedural memory also support this hypothesis (e.g. [36, 37]).

The basal ganglia are also supposed to be involved in tasks with probabilistic feed-
back [38]. However, in probabilistic learning, the role of the basal ganglia seems to
depend on task complexity. For multi-cue tasks like the Weather Prediction task, the
basal ganglia are not involved in the initial stages of learning, but in its later stages,
the learning switches to more subtle integrative rules of stimulus—response associations.
Conversely, in single-cue probabilistic categorization, activity in the basal ganglia is
observed in the initial phases of the learning process up to the moment when the asso-
ciation between the stimulus and the response is learned, and later on, their activity
decreases [18, 39] replaced by activity in MTL [40], or prefrontal cortex (PFC) [39] that
govern declarative strategies.

Hence, in an unstructured classification, it seems natural to expect no effect of the
category number due to the similarity between this type of categorization and the II
tasks. Due to the probabilistic feedback and the single-cue classification, it is possible
to expect a switch from implicit learning supposed to be involved in this type of task
to a more declarative explicit one. Do our data support such expectations? To answer
this question we consider the differences in the response timing observed between the
different classification tasks.

It is thought that the procedural system can learn almost any type of category struc-
ture. For example, pigeons, which are supposed to lack an explicit reasoning system,
learn RB and II categories equally well using identical to human procedural strategies
[41]. Some evidence suggests that in purely procedural tasks, people perform declara-
tively. The declarative strategy is included when the task is complex. We have an arbitrary
structure of stimulus—response associations, so our task is complex, Experiment 1 being
the most complex. Procedural memory will solve it, but slowly, by trial-by-trial infor-
mation accumulation. When the declarative memory intervenes (this is an example of an
optimization process), it inhibits the procedural system’s ability to access motor output
systems, though it does not exclude procedural learning [42]. This interference may
explain the extension of the response time in Experiment 1.

Experiment 2 has similar complexity as Experiment 1, but in addition to it, the
reduced coherence of motion direction makes the distinctiveness of the categories less
clear. It is the only experiment in which the learning does not reduce the response time.
This finding may imply that when the stimulus noise is high, and the difference between
the categories is less clear, more time is needed for stimulus encoding, and this prolonged
processing deteriorates previously learned associations.

Our data show a significant difference in response time for categorization in two
and four categories, implying more effective learning for the case of four categories.
Also, using the response time as a predictor of classification accuracy, we obtained
differences for categorization in two and four categories. Usually, the response time
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analysis is taken as a complementary tool to confirm the results from the accuracy-based
analysis of the experimental factors’ effect. To our knowledge, only one study [43] ana-
lyzes the binary measurements that correspond to the sequences of correct and incorrect
responses together with the continuous measurements representing the time needed to
respond in a learning task. Its approach is quite different from ours, but it shows that
the combined analysis provides evidence for more accurate and reliable estimates of the
learning process and its dynamics than the separate analyses of the accuracy measure-
ments and response time. It should be stressed that the response time for classification
in two categories is shorter than that for classification in four categories, but it changes
less in the process of learning. This finding would imply that the task of stimulus classi-
fication in two categories is not more difficult than the classification in four categories.
One potential explanation of the less effective learning for the case of two categories
may be that motion direction stimuli have natural categorization in different groupings
like oblique and cardinal directions, or leftwards and rightward motions, upward and
downward. In complex tasks like in the Weather Prediction tasks, the observers often
use single-cue rules in the learning process that reflect memory operations dependent on
interactions between the MTL and the PFC [38] before gradually shifting to a more opti-
mal strategy that better reflects the relationship between the stimuli and their association
with the responses. In classification in two categories, it might be easier to formulate
simple rules between the stimuli in a category as rules-with-exceptions, thus delaying
the involvement of the more optimal rules of categorization. Also, the rules’ exceptions
need memorization that might also affect the learning dynamics due to the additional
cognitive load.

Future research is needed to understand the dissociation between the effect of cate-
gory number on the response time and the accuracy of the classification, and the role of
stimulus similarity on unstructured classification. Here, we used stimuli that have some
inherent classification. It may have interfered with the random separation of the stimuli
in groups and the different learning dynamics depending on category number.

Considerations of the results allude that in unstructured category learning with prob-
abilistic feedback, the performance reflects the competition between the explicit and
implicit memory systems. Unfortunately, there are not enough arguments in favor of
this idea at this stage of the research. However, the study results provide new data about
unstructured categories that are very rarely studied.

5 Conclusions

The results of the present study imply that in the unstructured category learning with
probabilistic feedback the number of categories has diverse effects on the two charac-
teristics used to represent the learning process. The classification accuracy is greatly
unaffected by the category number, similar to the information-integration tasks. At the
same time, the learning performance represented by the response time shows faster per-
formance improvement for categorization in four than in two categories. Hence, the
learning curves are less sensitive to the differences in the learning process. The response
time is a better characteristic of incremental learning in these categorization tasks. When
the boundaries between the classification categories are less distinct, the ability to gen-
eralize from the previous experience severely deteriorates. This result implies a role of
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similarity-based processes in unstructured classification tasks. The classification tasks
with arbitrary stimulus—response associations and probabilistic feedback are challeng-
ing, showing great differences in learning rate when classification is based on a single
cue. Future studies are needed to describe better the similarities and the differences in
the performance and the processes involved in unstructured classification tasks.
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Abstract. While most models of brain information encoding focus on
neurons, recent studies have shown that calcium dynamics of astrocytes,
the major class of non-neural cells in the brain, can add information
about key cognitive variables that is not found in the activity of nearby
neurons. This raises the question of what could be the contribution of
astrocytes in information processing, and calls for analysis tools to char-
acterize this contribution. Here we construct simulations with realistic
dependencies of astrocytic activity on external variables and we use these
simulations to understand how to optimally set parameters of informa-
tion theoretic analysis of astrocytic activities. Applications of our tech-
niques to simulated and real astrocytic data show how to set parameters
of information analyses that provide conservative, yet reliable, estimates
of astrocytic calcium dynamics contribution to circuit-level brain infor-
mation processing.

Keywords: Mutual information - Astrocytes - Significance testing -
Information estimation

1 Introduction

Established models of how populations of brain cells encode information consider
exclusively the encoding at the level of population of neurons [1,6,12,13]. How-
ever, this view has been recently challenged by studies of the activity of astrocytes
[3]. Astrocytes, the most abundant glial cell type in the mammalian brain, are
not electrically excitable but display excitability based on complex dynamics of
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intracellular calcium (Ca?") concentration. Astrocytic Ca?™ dynamics can
be recorded in wvivo with high spatial resolution using functional two-photon
microscopy [28]. Recordings of astrocytes in sensory areas have shown that these
cells can encode sensory stimuli [10,21,24,25,27]. Recently, several laboratories
[3,5,11] begun to investigate how astrocytes encode information about external
variables. As an example, our work [3] has shown that astrocytes in hippocam-
pal CA1 recorded during spatial navigation in a virtual environment encode spa-
tial information that is complementary and synergistic to that carried by nearby
“place cell” neurons. This additional non-neural reservoir of information suggests
the possible presence of novel cellular mechanisms underlying how brain circuits
encode information, and invites the inclusion of astrocytes in the models of brain
information processing.

To improve our understanding of how astrocytes participate in information
encoding it is important to have statistical tools that can be used to clarify
whether astrocytes genuinely carry information about specific cognitive vari-
ables. Because little is known about how astrocytes encode information, non-
parametric analyses that make little assumptions (e.g. linearity) about how infor-
mation is encoded are particularly desirable at this stage. It has been recently
proposed [3] that information theory [20,22] may be an ideal candidate to this
aim. However, the use of information theory with limited size datasets and noisy
biological cells is made difficult by statistical issues [9,18]. The neural literature
has studied, using computer simulations, how to set optimally procedures and
parameters of the analysis given the levels of information encoded by neurons
and the size of the dataset available [9]. However, such studies have not been
performed for astrocytes.

Here, we performed simulations of astrocytic Ca?T dynamics matching the
statistical properties of signals recorded from real subcellular regions of interest
(ROIs) of hippocampal astrocytes during virtual spatial navigation. We used
these simulations to investigate how to optimally apply information theoretic
methods to determine the presence and amounts of genuine information encod-
ing by astrocytes. Last, we validated results and predictions of simulations by
applying this methodology to in vivo recordings of hippocampal astrocytic sub-
cellular Ca®* signals during spatial navigation.

2 Computing Amount and Significance of Information
in Astrocytic Calcium Activity

Here we introduce the measures of information about external variables carried
by astrocytic activity, and we define the parameters of its computation from real
data. Suppose we have a two-photon microscopy calcium imaging experiment
where a mouse is performing a task or is shown a certain set of sensory stimuli. In
this scenario we can record C'a?t signals from astrocytic cellular compartments
(for example, a soma or a process) defined as ROIs in a given field of view
(FOV). We are interested in quantifying whether the Ca®* response r of the
astrocytic ROI, measured at given imaging time frame, encodes information
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about an external variable s that varies during the task or a stimulus variable
that is varied across the experiment. In the experimental dataset that we will
use [3], the Ca®* dynamics of hippocampal CA1 astrocytes were recorded while
a mouse was navigating in a linear track in a virtual reality environment. With
this dataset we were interested in determining whether the astrocytic Ca?*t
response encoded the position of the mouse along the linear track, similarly
to how neurons called place cells do in hippocampus [16]. How selective is an
astrocytic ROI with respect to an external variables s can be computed by using
the mutual information I(R;S) between the set of astrocytic responses R and
the set of external variables S, defined as follows [22]:

= ZP ZP s) log,y P(gj) (1)

where P(s) is the probability of the external variable taking the value s, P(r) is
the probability of measuring an astrocytic response r across all data points, and
P(r|s) is the probability of observing a responses r given a value s observed for
the external variable. We assume that both astrocytic activity and the external
variable take continuous values, and that we have discretized them into a num-
ber of bins R and S, respectively. These probabilities can be estimated as nor-
malized histograms of occurrences of discretized stimulus-response values. Such
probabilities are computed from the finite number N of experimentally avail-
able datapoints (denoted “trials” hereafter) measuring simultaneously s and r.
I(R;S) measures, in units of bits, how well we can infer the value of s from a
single trial observation of the astrocytic response r. Zero bits indicate that no
information can be gained from observing r, whereas positive values of informa-
tion indicate that it is possible to reconstruct with some precision the value of s
from the value of 7. One bit means a reduction of uncertainty about s of a factor
of 2 from a single-trial observation of r.

A first important question that can be addressed with mutual information
analysis of astrocytes regards individuating how many and which ROIs carry
information about external variables. An information value can be greater than
zero even when the considered ROI actually has no information. This can hap-
pen because of random fluctuations in probability values generated by the lim-
ited number of trials that were sampled [18]. The statistical significance of each
mutual information value can be determined by creating a null-hypothesis dis-
tribution obtained from surrogate datasets in which the relationship between
s and r is destroyed by randomly shuffling the values of s and r across trials.
A second important question regards quantifying precisely how much informa-
tion each ROI carries. This is made difficult by the fact that, because of the
limited number of trials available, the “plugin” information measure obtained
simply by plugging the experimental probabilities into Eq.1 is affected by a
systematic upward bias [19]. Several bias correction procedures can be used to
obtain an unbiased estimate mutual information [14,15,17,18,26]. Two widely
used methods are Panzeri-Treves bias correction (PT) method [19], which ana-
lytically estimates the bias, and the quadratic extrapolation (QE) method [26],



120 J. Bonato et al.

which estimates bias through extrapolating the information values obtained with
data subsampling.

Thus, free parameters and algorithmic choices of the information analysis
include the number of bins S and R, used to discretize the external variable s and
the astrocytic Ca®T activity, and the bias correction method used to compute
information. Studies considering other types of brain signals have shown that
computer simulations, characterized by realistic levels of information content
and numerosity of trials, can be used to optimally set the information analysis
parameters [9,18]. However, no such work has been performed for astrocytes.
Here, we implemented data-driven simulations to identify optimal parameters to
perform mutual information analysis of astrocytic data. To understand how to
optimally set information estimation parameters, we simulated set of astrocytic
Ca?* responses (n = 20) that realistically captured the dependency of astrocytic
activity on the position of mouse during spatial navigation in virtual reality.
(Astrocytic Ca?* signals simulation software and mutual information software
can be found at github.com/jbonatol/AstroSimulation). Ca?* responses were
modeled matching statistical parameters (mean and standard deviation) of C'a?*
responses of real astrocytic ROIs recorded in vivo from the hippocampal CA1l
area of mice navigating in a virtual environment [3]. Responses for each spatial
position were drawn from a Gaussian distribution with the parameters found in
the data. We evaluated the effects of trial numerosity, number of bins used to
discretized the data, and information levels, by systematically modulating these
parameters across simulations. The information level in the simulated responses
was controlled by a parameter « [9] linearly rescaling the modulation of r by s.
a =1 (no rescaling) yields simulated responses with the same response properties
and thus information levels as real data, whereas 0 < « < 1 corresponds to
modeling responses with reduced information content, and o = 0 (modulation
of r by s completely rescaled away) corresponds to no information. We report
results of simulations for o = 1 (full-information, Fig. 1A), « = 0.5 (Fig. 1B) and
a = 0 (no-information, Fig. 1C).

We first evaluated the performance of the non-parametric shuffling in classify-
ing simulated responses as carrying significant information. We performed these
numerical experiments as function of the number of trial per stimulus numerosity
(Ns), and information content (Fig. 1D-F). For this first study, simulated astro-
cytic responses were discretized into R = 4 equally spaced bins and space in the
linear track was discretized into S = 12 spatial bins. For each simulated response
we computed a null-hypothesis distribution generating 100 shuffles and we set a
significance level of p < 0.05. When using the plugin estimate of mutual informa-
tion, we found that for the full-information model (« = 1) the shuffling procedure
classified correctly significance down to Ny = 64 (loga(Ns/R) = 4). When reduc-
ing the information content (o = 0.5) the shuffling test required more samples
to perform correct detection. Finally when the model had no-information we
found that false positive rate was stable at the level of 5% set by our statistical
threshold. The use of PT bias correction procedure did not affect the statistical
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power of the non-parametric shuffling test, while QE method resulted in reduced
statistical power.
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Fig. 1. Sensitivity of information content measures for realistic simulations of position
encoding astrocytic Ca** signals. (A-C) Mean C'a®" responses across trials as a func-
tion of position for simulated astrocytic ROIs (n = 20 ROIs) for a = (1,0.5,1) models,
respectively. The number of trials per spatial positions (Sect.2, here 64) was varied
across simulations. (D—F) Percentage of significant realizations detected using different
methods (plugin, PT, and QE) as a function of N,/R ratio for « = 1,0.5,1 models. For
each bias correction method, PT (red lines) and QE (green lines) information value
was compared to the shuffled distribution of the corresponding values. 20 iterations of
the simulation were generated for each number of trials used. (Color figure online)

Astrocytic Ca®t signals and position recorded during spatial navigation are
continuous variables, and the number of bins into which they are discretized
is one of the most delicate parameters of the analysis. A too coarse discretiza-
tion may wash out all information, and a too fine discretization may make the
measures too noisy especially when data are scarce. Thus, S must be chosen to
obtain to optimally trade off these two competing effects.
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Fig. 2. Characterization of information theoretic methods applied on simulations of
astrocytic Ca?* responses. (A) Average information estimate over 20 simulations as a
function of the number of position bins. Simulations were repeated with fixed response
discretization (R = 4), number of trials resembled experimental data sampling condi-
tions. (B) Percentage of realizations classified as significant as a function of the number
of position bins. (C) Average information estimate over 20 simulations as a function
of the number of response bins. Simulations were repeated with fixed stimulus dis-
cretization (S = 12) and constant number of trials per stimulus Ny, = 68. In (A-C)
information computations were performed without bias correction (plugin, black line),
PT (red line) or QE (green line) bias corrections. (D) Percentage of significant real-
izations as a function of N, for different values of number of response bins (no bias
correction). The corresponding values of information for each R value are indicated
by corresponding colored marks in panel (C). Data is shown as (mean =+ std). (Color
figure online)

We performed simulations using the full-information model (o = 1) to gen-
erate data with a number of trials per stimulus resembling in vivo experimental
data [3]. In these simulations we investigated the effect of position discretization
while we kept the discretization of the response fixed at (R = 4). We found
that (Fig.2A) bias-corrected information measures (both PT and QE meth-
ods) plateaued for values of S in the range (4-16). Conversely, plugin estimates
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monotonically increased with S, as their value contained an uncorrected upward
bias component. For plugin estimates, we found that the fraction of realizations
correctly detected as significantly informative (100 random shuffles, p <0.05)
decreased for S values greater than 16 (Fig.2B), thus indicating insufficient
sampling. The PT bias correction procedure did not affect the statistical power
of the non-parametric shuffling test, while the QE method resulted in reduced
statistical power. Thus, for further statistical tests we used uncorrected plugin
estimators.

We characterized the effect of response discretization performing numeri-
cal experiments in which we simulated a realistic number of trials per stimulus
(N5 = 68, equal to the average number of trials per stimulus in real data, see
Sect.4), while the position discretization was set within the information esti-
mate plateau identified before (S = 12). We found that (Fig. 2C) bias-corrected
information measures (both PT and QE methods) plateaued over a large range
of R, whereas plugin estimates were strongly affected by bias. Statistical power
was strongly dependent on the selection of discretization parameters (Fig. 2D)
showing, in these sampling conditions, adequate power up to R = 8. Further
increasing R would be possible only with much larger number of trials to avoid
underestimation of significant astrocytes ROlIs.

3 Measuring Conditional Mutual Information to Evaluate
Genuine Information Encoding

In many cases, cognitive tasks rely on several correlated external variables. An
important question is how to determine whether astrocytic activity is genuinely
informative about each such correlated variable. For example, in the mentioned
spatial navigation experiments different parts of the track have different visual
cues to aid navigation [3,4,7], thus there is a correlation between position s
and visual cue identity v (Fig.3A). How do we determine for example if the
astrocyte encodes genuinely spatial information above and beyond what can be
explained by its possible tuning to the visual cue v? One way to address this
issue it to compute the conditional mutual information (CMI) [9] of an astrocytic
response r about a stimulus s conditioned on the value of a visual stimulus v. This
quantifies the amount of information encoded in responses R about positions S
that cannot be explained by the tuning to a set of visual stimuli V and it is
defined as:

_ P(rsp)

I(R;S|V) = ZP ZP r, s|v) logy ————t— B0 PG (2)

where P(r, s|v) is the joint probability of observing response r and stimulus s at
fixed visual stimulus v. A non-zero value of CMI denotes genuine tuning of the
astrocyte to s. The statistical significance of a CMI value can be assessed against
a null-hypothesis distribution obtained shuffling the relationship between r and s
within each specific v. We evaluated the performances of CMI statistical testing
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Fig. 3. Determining the significance of conditional mutual information. (A) Schematic

of a virtual track containing three distinct visual patterns [3,4,7]. (B-C) Percentage

of significant realizations classified with the shuffling test and without bias correction

(plugin) for models with genuine spatial information (B) and without spatial informa-
tion (C). Data is shown as (mean =+ std).

in classifying simulated responses as bearing genuine spatial information. We
used numerical experiments leveraging on the full information model (o = 1),
simulating astrocytic Ca?* signals bearing spatial information. We found that, to
achieve robust CMI significance detection, it is required to sample approximately
256 trials per stimulus (Fig. 3B). Then, we quantified the extent of false positives
reported by the CMI statistical testing. We performed numerical experiments
generating astrocytic C'a®* signals devoid of spatial information (o = 0). We
found that the false positive rate was stable at 5% set by our statistical threshold
(Fig. 3C).

4 Spatial Information in CA1 Astrocytes During Spatial
Navigation

Here we apply the information theoretical formalism presented in Sects. 2 and 3
to investigate information encoding in astrocytic Ca?* dynamics using real two-
photon functional imaging data. We used the dataset of [3], in which subcellular
Ca?* dynamics of hippocampal CA1 astrocytes (specifically labeled with the
genetically encoded Ca®* indicator GCaMP6f [2,8,23]) were recorded from head-
fixed mice navigating in a monodirectional virtual corridor (Fig.4A-B).

First, we investigated the influence of stimulus-response discretization on
mutual information estimation and statistical significance detection on real data.
We estimated the underlying probabilities for a grid of discretization parameters
S (8,12, 16, 20, 40, 60, 80) and R (2, 4, 6, 8, 10). We used a uniform-count binning
procedure for positions and an equally-spaced binning procedure for responses.
We found that correcting the information measures for the limited sampling bias
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with PT method yield stable results over a wide range of discretization param-
eter S (4-16) (Fig. 4C), confirming the efficacy of the PT method in accurately
estimating the information value.
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Fig. 4. Spatial information encoding in CA1 astrocytes during virtual navigation. (A)
2-photon Ca®" imaging was performed in head-fixed mice running along a 180cm
virtual track [3]. (B) Normalized astrocytic Ca®' responses as a function of position
for ROIs with significant spatial information computed with R = 4 and S = 12 (n =
311 ROIs out of 356 total ROIs, 7 imaging sessions from 3 animals). Responses are
ordered according to the position of the maximum of the Ca®" responses. Vertical
scale: 50 ROIs. (C) Mutual information values with PT bias correction as a function of
the number of position bins. (D) Percentage of ROIs classified significant as a function
of the number of bins for the stimulus. (E) Fraction of astrocytic ROIs showing a
significant decrease in their information content when position is shuffled within the
same visual cue (Binomial test with 0.05 probability of success; *, p < 0.05; ** p <0.01;
*** p<0.001). Data are mean £ s.e.m. from 7 imaging sessions in 3 animals. (Color
figure online)
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Significant realizations were affected by both S and R parameters. We found
consistent results for R > 2 (~90% of significant realizations) over the range of S
(4-16) (Fig.4D). This suggests that trial numerosity in this dataset limited the
statistical power at more granular discretization conditions. These results are
stable in the range (4-16) for S and in (4-10) for R confirming that performing
mutual information measures within these parameters represents an optimal
choice.

The virtual corridor used in the generation of this dataset [3] had three
distinct visual cues extending 60 cm each (Fig.4A). Thus, to test for genuine
spatial information encoding, we applied the formalism described in Sect. 3. We
performed the CMI significance test, for a set of position discretization conditions
(S = (9,12, 15, 18, 30, 60)) while responses were discretized with R = 4. For both
discretization procedures we used equally spaced bins. We found that a large
fraction (~40 to 55%) of astrocytic ROIs carried significantly genuine spatial
information over a range (9-18) of position discretization conditions (Fig. 4E).

5 Conclusions

We created simulations of astrocytic responses with realistic dependencies of
activity on external variables to investigate how to optimally set parameters
and analyses procedures for a given experiment. While we do not wish to claim
that such parameters will be always optimal, our results and simulation software
provides a mean to set such parameters given certain easily measurable primary
features of astrocytic data. Our results show that simple discretization and use
of direct estimates, obtained from plugging in the empirical probabilities into the
information equations, work well with reasonably high statistical power and with
a rate of false positives that never exceeds the set p-value selection threshold.

Applications of these procedures to in vivo astrocytic functional imaging data
demonstrated that a large fraction of astrocytic subcellular compartments in the
CA1 region of the hippocampus carries genuine information about the spatial
position, giving support to the emerging concept of astrocytic place cells as a
part of the network computations performed in the hippocampus.

Future technical work includes investigating how to combine our informa-
tion computations and selection criteria with other conservative criteria used for
ruling out effects of data non-stationarities, such as reliability of Ca?* activity
across trial blocks [3].
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Abstract. Feature importance is one of the most common explanations provided
by Machine Learning (ML). However, different classification algorithms or dif-
ferent training sets could produce different rankings of predictive features. Thus,
the quantification of differences between feature importance is crucial for assess-
ing model trustworthiness. Rank-biased Overlap (RBO) is a similarity measure
between incomplete, top-weighted and indefinite rankings, which are all charac-
teristics of feature importance. In RBO, tuning persistence p allows to truncate
rankings at any arbitrary depth, so to evaluate their overlapping size at increasing
number of features. Classification of Parkinson’s disease (PD) with Explainable
Boosting Machine (EBM) was chosen here as case study for introducing RBO
in ML. An imbalanced dataset, 168 healthy controls (HC) and 396 PD patients,
with 178 among clinical and imaging features was obtained from PPMI. Imbal-
anced, undersampled (K-Medoids) and oversampled (SMOTE) datasets were used
for training EBMs, obtaining their respective feature importance. RBO score was
calculated between ranking pairs incrementally increasing the depth by five fea-
tures, from 1 to 178. All classifiers reached excellent AUC-ROC (~1) on test set,
demonstrating the EBM prediction stability when trained on imbalanced datasets.
RBO revealed that the maximum size of overlapping (80%) among rankings was
obtained truncating at top 40 features, while their similarity decreased asymptot-
ically to 50% when more than 45 features were considered. Thanks to RBO it
was possible to demonstrate that, for the same accuracy, the more similar are the
feature importance, the more stable is the model and the more reliable is the ML
interpretability.
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1 Introduction

Explainable Artificial Intelligence (XAI) and interpretable Machine Learning (ML) is a
recently born field, which aim is to maximize the explainability and interpretability of
ML findings [1]. One of the most common explanations provided by ML algorithms is
the feature importance [2], that is the contribution of each feature in the classification.
The ordered list of features by their individual contribution is a top-weighted ranking
where the variables on the top are more predictive than the variables in the tail [2, 3].
In the medical and clinical field, the feature importance provides to the researcher an
immediate overview of the biological measures involved in a specific disease [4].

The predictive contribution of each feature depends on the ML algorithm used for
the classification. Indeed, different models produce different rankings of importance and
one highly predictive feature in a classifier could be unimportant in another classifier
[2]. Moreover, the same ML classifier could show different feature importance rankings
when trained on different folds/subsets of the same dataset [1]. Another example is
the prediction of a rare disease with an imbalanced dataset [5] and there is the need
to balance the classes through undersampling or oversampling. The balance of classes
could improve the ML performance but could also provide a different feature importance
than the one obtained with an imbalanced training set, thus preventing an exhaustive
interpretation of the findings. For these reasons, the comparison of feature importance
rankings is fundamental for understanding how different ML approaches or different
training sets influence the reliability and trustworthiness of the findings. In other words,
the main questions are: how similar are the feature importance lists produced by different
ML methods or by the same classifier trained on different datasets? What statistics,
measure or metric should be used?

The quantification of the dissimilarity or similarity of two rankings is usually per-
formed with correlation coefficients calculated with the Kendall’s t [6], Spearman’s p
[3] or their variants [7-9]. However, T, p and their variants are unweighted measures
and thus they are not able to emphasize the features on the top of the ranking [3]. Fur-
thermore, these statistics are not applicable on indefinite and non-conjoint rankings,
thus resulting not suitable for assessing the similarity of ML feature importance. On the
contrary, the rank-biased overlap (RBO) [3] is a similarity measure that estimates the
size of overlapping between indefinite ranked lists, representing a good candidate for
comparing the classification feature importance. RBO score varies in a range from 0
to 1, where 1 indicates that the two rankings are identical, and zero indicates absence
of similarity [3]. The weight given to the first d (depth) features in a ranking can be
modified by tuning the persistence (p), a probability parameter in the range [0,1]. A
lower value of p gives more importance to the top features, while a high value explores
the ranking at a deeper depth [3].

The first aim of the present work is to introduce the RBO as a similarity measure
for quantifying the differences between feature importance produced by explainable
classification models. The Explainable Boosting Machine (EBM) [10] is a glass-box
algorithm that showed high interpretability of ML findings, reaching excellent accuracies
for example for the prediction of Alzheimer’s disease [11] or for distinguishing between
Parkinson’s disease and SWEDD [12]. However, it has never been assessed whether and
how EBM is able to deal with imbalanced datasets of neurodegenerative diseases. Thus,
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the second aim of the present study is to compare the performance of EBM models trained
on imbalanced data and on balanced datasets obtained through undersampling with
K-Medoids [13] and oversampling with Synthetic Minority Over-sampling Technique
(SMOTE) [14]. The prediction of the Parkinson’s disease (PD) was chosen here as case
study, and for this purpose an imbalanced dataset with clinical and imaging features was
obtained from the Parkinson’s Progression Markers Initiative (PPMI). The third and last
aim of this work is to use the RBO similarity measure for quantifying the differences
among the three feature importance rankings produced by the EBM algorithm trained
on the imbalanced, undersampled and oversampled dataset.

In summary, the three main contributions of the present study are: (i) introducing the
RBO as measure for quantifying the similarity between feature importance rankings;
(ii) building EBM classifiers on three different training sets - imbalanced, undersampled
and oversampled datasets — and comparing their performance in predicting PD; (iii)
assessing the similarity between feature importance rankings produced by the three
EBM classifiers through the RBO score.

2 Materials and Methods

2.1 Participants

Data used in the preparation of this article were obtained from the Parkinson’s Pro-
gression Markers Initiative (PPMI) database (www.ppmi-info.org/data). For up-to-date
information on the study, visit www.ppmi-info.org. Table 1 reports the demographic,
the clinical and imaging characteristics of the cohort, which consisted of 168 healthy
controls (HC) and 396 PD. Only subjects without missing clinical and imaging features
were considered and all data used for the analysis are acquired at the baseline visit.

2.2 Clinical and Imaging Features

The number of items per clinical assessment and the total number of features (178)
used for training the ML models are reported in Table 1, and consisted in: Movement
Disorder Society Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) [15], part
I, IT and III, Montreal Cognitive Assessment (MoCA), State-Trait Anxiety Inventory
(STAI), Geriatric Depression Scale (GDS), Scales for Outcomes in Parkinson’s Disease
- Autonomic Dysfunction (SCOPA-AUT), Judgment of Line Orientation (JLO), the
University of Pennsylvania Smell Identification Test (UPSIT), Epworth Sleepiness Scale
(ESS), Hoen and Yahr (H&Y) scale for assessing the stage of PD (not included in the
training features since it is not for diagnosis). The neuroimaging technique commonly
used for the diagnosis PD is the dopamine transporter single-photon emission computed
tomography (DaT-SPECT) of the striatum, the region comprising caudate and putamen.
The specific binding ratio (SBR) of these two regions of interest (ROI) is calculated for
each hemisphere from the count densities and normalized by the occipital cortex uptake.
More details of the imaging protocol can be found on www.ppmi-info.org.
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Table 1. Demographic, clinical and imaging data of the imbalanced PPMI dataset.

HC PD #

(168) (396)
Age 61.1£11.3 61.7 £ 9.65 -
Gender (M/F) 109/59 260/136 -
H&Y 0.005 + 0.07 1.57 £ 0.51 -
MDS-UPDRS-1 2.89 £2.76 5.61 £4.12 13
MDS-UPDRS-11 0.35+0.95 539+ 4.14 13
MDS-UPDRS-III 1.19 +£2.06 20.9 £+ 8.84 33
MoCA 28.1 £ 1.09 26.9 +£2.38 26
STAI 47.7+4.97 473 +£532 40
GDS 5.17 £ 1.39 5.26 £ 1.45 15
SCOPA-AUT 5.11 £3.38 8.58 £6.51 21
JLO 13.1 £1.95 12.8 £2.1 1
UPSIT 34 +£475 22.3 +£8.34 4
ESS 5.66 £+ 3.38 581 +£3.42 8
Left Caudate SBR 3.0 £ 0.63 1.99 £ 0.59 1
Right Caudate SBR 2.9 +£0.61 1.98 + 0.59 1
Left Putamen SBR 2.14 £ 0.56 0.812 £ 0.35 1
Right Putamen SBR 2.16 £ 0.58 0.843 £ 0.36 1

Tot: 178

4 Number of items per test, i.e. number of features used for training EBM models. Age, gender,
and H&Y not included in the features space.

2.3 Sampling of the Dataset

The aim of sampling is to balance the dataset, thus, to obtain an equal sample size
of the two classes. The original imbalanced dataset HC-PDjyp (168-396) was randomly
sampled by applying two different approaches, the first was an undersampling technique
applied on the majority class (PD), the second one was an oversampling method applied
on the minority class (HC), as described as follows.

Undersampling. The undersampling of the imbalanced dataset was done with the K-
Medoids approach [13], which is an unsupervised method of clustering applied on the
majority class (PD), where the number of clusters is equals the number of minority
examples (HC = 168). The final dataset HC-PD g (168-168) is a combination of all data
from the minority set and the cluster centers from the majority set. The undersampling
was conducted with the Python package sklearn_extra.cluster. KMedoids of scikit-learn
(v. 0.23) (metric “euclidean” and method “pam”).
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Oversampling. SMOTE [14] was applied on the minority class (HC), for generat-
ing new synthetic data by randomly interpolating pairs of nearest neighbors. The final
dataset HC-PDgyer (396-396) is a combination of all data from the majority (PD)
and minority set (HC) and, additionally, the new synthetic minority data such that
final dataset is balanced. The oversampling was conducted with the Python package
imblearn.over_sampling. SMOTE (v. 0.9.0).

The original imbalanced dataset and the two sampled datasets — HC-PDjp,,, HC-
PDyng and HC-PDg,er — were then randomly split with a static seed into training and test
sets with a percentage respectively of 80% and 20% by maintaining proportions between
class distributions.

2.4 Machine Learning Analysis

The EBM algorithm [10] is based on standard Generalized Additive Models (GAMs)
[16], which accuracy is improved by adding pairwise interactions [17], taking the name
of GA?Ms with the form:

g(E[Y]) = Bo+ Y _fi(5) + D_filxi. x), M

where E is the estimate of the additive model, x; = (x;1, ..., Xjp) is the feature vector
with p features, y; the response, x; denotes the jth variable in the feature space, g is
the link function that adapts the GAMs to regression (g = identity) or classification (g
= logistic), Bo is the intercept that adjusts the prediction from the model, and f; is the
feature function, which could be plot for visualizing the contribution of each feature to the
final prediction [17]. The feature importance is calculated after learning the best feature
function f; by training the model on one feature at a time, so to obtain its contribution
to the prediction [17].

In this work, three EBM models were built on the three training sets — imbalanced,
undersampled and oversampled - and the performance was evaluated on the test set
with the Area under the Curve of the Receiver Operating Characteristic (AUC-ROC).
Moreover, the AUC-ROC (mean =+ standard deviation) was calculated on the whole
dataset with a 5-fold cross-validation (cv, sklearn.model_selection.cross_val_score of
scikit-learn v. 0.23) for assessing overfitting. The pairwise interactions between fea-
tures were not here considered to avoid complexity in the interpretation of the findings.
The feature importance ranking of the three classifiers (FI[HC-PDjpyp ], FITHC-PDyng],
FI[HC-PD,yer]) was obtained by ordering the features by their mean absolute contribu-
tion in the prediction of the training data, calculated as logit of the probability (logarithm
of the odds) from the logistic link function g (Eq. 1) [17]. Machine Learning analysis was
conducted with the Python package InterpretML (v 0.2.7) [18] (implementation of EBM
provided by Microsoft) on a MacOS 10.14.6 (2.9 GHz, 32 GB of RAM). The Python
package seaborn (v. 0.11.2) was used for plotting the feature importance rankings.

2.5 Rank-Biased Overlap (RBO)

The feature importance produced by explainable ML algorithms is a fop-weighted rank-
ing, that is an ordered list of items where the variables on the top are more important
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than the variables in the tail [2, 3]. Other two characteristics of a feature importance
ranking is that it could be incomplete, that is it could not cover all variables in the
domain, and it could be indefinite, since the user’s decision to stop the ranking at a
particular depth is arbitrary [3]. One of the most used measure of rank similarity is the
correlation that quantifies the direction (positive or negative) and the magnitude of the
association between a pair of lists. The Kendall’s t [6] and Spearman’s p are two of the
most widely used measures of correlation [3]. However, both t and p require that the
two rankings are conjoint and since they are unweighted measures, they are not able
to place more emphasis on the items on the top of the rank [3]. Several variants of the
correlation measures were proposed for considering the weight of items in a list and for
comparing non-conjoint ranks, for example the top-weighted variant of the Kendall’s T,
the tap [7], the adaptations of Spearman’s p [9] and Spearman’s footrules [8], or the
Kolmogorov-Smirnov’s D [19]. However, all these variants do not fully satisfy the need
to compare indefinite rankings, that is the need to truncate the feature importance at
any particular and arbitrary depth [3]. To overcome this issue, a similarity measure was
introduced, the rank-biased overlap (RBO), which is calculated as the expected aver-
age overlap between two indefinite rankings at incrementally increasing depths [3]. The
depth of interest could be varied by tuning an input parameter of the RBO, called user’s
persistence (p). The persistence p is a probability (in the range [0,1]) of continuing to
the next rank in the list, while on the contrary, 1 — p is the probability that the user
stops at a given depth d of the ranking [3]. A lower value of p gives more importance
to top results, and when p = 0 only the first feature in the ranking is considered. Given
two infinite rankings S and 7 to depth d and the persistence p, the RBO is calculated as
follows [3]:

RBOGS,T,p)=(1—-p) ) p'~" - Au, )

where, d = 1tooco is the depth of the ranking to be examined, Ay = X;/d is the
agreement between S and 7, i.e. the proportion of S and T that is overlapped, and
Xq = |S.qg N T.4| is the size of overlap (intersection) between S and 7. The RBO varies
in the range [0,1], where 0 means disjoint rankings and 1 means identical rankings [3].

In this work, the RBO was used for assessing the similarity between pairs of feature
importance rankings (RBOimp_unds RBOimb_over, RBOund_over) that were obtained by
training the EBM algorithm on the different datasets: imbalanced, undersampled and
oversampled. Here, to investigate the similarity between feature importance rankings
at different depths, the values of stopping depth d, i.e. the number of the top features
in the ranking, were increased with a fixed step of 5 features in the range [1, 178].
Consequently, the value of persistence p was automatically increased and calculated as
p= dd;l, assuming the values in the range [0, 0.9944]. The Python package rbo (v.0.1.2)
was used as implementation of the RBO by Webber et al. [3].

3 Results

3.1 Machine Learning Analysis

The EBM models HC-PDj;,, and HC-PDgye; reached both an AUC-ROC of 1 (1 4= 0 with
5-fold cv), while the classifier HC-PD,q had an AUC-ROC of 0.99 (0.998 + 0.004 with
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5-fold cv). The rankings of the first twenty most important features in the models HC-
PDimb, HC-PDyng and HC-PDg,e; are reported in Fig. 1A, B and C. Figure 1D reports the
first fifty most important features ordered by their average importance across the three
EBM models, where the first ten important features were NP2ZTRMR (MDS-UPRDS
II item 2.10 Tremor), PUTAMEN_L (SBR of the left putamen), NP3FACXP (MDS-
UPRDS IIlitem 3.2 Facial expression), NP3BRADY (MDS-UPRDS Il item 3.14 Global
Spontaneity of movement) and NP3RTCON (MDS-UPRDS III item 3.18 Constancy of
rest), PUTAMEN_R (SBR of the right putamen), NP2ZHWRT (MDS-UPRDS Il item 2.7
Handwriting), NP3PRSPR (MDS-UPRDS III item 3.6a Pronation-Supination - Right
Hand), NP3HMOVL (MDS-UPRDS III item 3.5b Hand movements - Left Hand) and
NP3RIGRU (MDS-UPRDS III item 3.3b Rigidity - RUE).

3.2 RBO Scores

The RBO scores calculated by tuning the value of depth d and consequently the per-
sistence p in each pair of comparisons (RBOimp_und> RBOimb_over, RBOund_over) are
reported in Table 2. The maximum similarity (~1) was obtained when only the first
item (NP2TRMR, MDS-UPRDS II item 2.10 Tremor) in the ranking was compared
between FI[HC-PDjy,] and FI[HC-PD,p4]. The maximum values RBOjpyp_over = 0.802
and RBOypg_over = 0.74 were reached both when the first 40 features in the rankings
were compared (p = 0.975, Table 2).

Table 2. RBO of the pairwise comparisons of the feature importance rankings obtained by training
the EBM models on the imbalanced, undersampled and oversampled datasets. Raising p increases
the depth d of comparisons (number of features considered). In bold the maximum value.

14 d RB Oimb_und RB Oimb_over RBound_over
0 1 ~1 ~0 ~0
0.800 5 0.755 0.548 0.423
0.900 10 0.780 0.695 0.603
0.950 20 0.803 0.778 0.705
0.967 30 0.806 0.799 0.733
0.975 40 0.800 0.802 0.740
0.980 50 0.788 0.795 0.735
0.990 100 0.679 0.692 0.646
0.993 150 0.571 0.583 0.546
0.994 178 0.520 0.531 0.499

Abbreviations: d = depth; p = persistence; imb = imbalanced dataset (HC-PDjyp); und =
undersampled dataset (HC-PDyq); over = oversampled dataset (HC-PDgyer).
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Fig. 1. Ranking of the first twenty most important features obtained by the EBM model trained
(A) on the imbalanced dataset; (B) on the undersampled dataset; (C) on the oversampled dataset.
(D) Feature importance (first fifty features) ordered by their average importance across the three
classifiers trained on the imbalanced dataset (in green), on the undersampled dataset (in blue) and
on the oversampled dataset (in red). (Color figure online)

Figure 2 depicts the RBO curves of the three ranking comparisons by raising the
depth d, thatis by considering a higher number of features as important. The RBOimb_over
and RBOypq_over curves show a similar increasing trend, moreover the three curves reach
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a plateau between d = 20 and d = 40, revealing that the maximum similarity among
the three RBOs is obtained when the first 40 features are considered. For values d > 45
there is a decrease in the similarity among the three feature importance until the RBO

curves asymptote to the final value of ~0.5.
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Fig. 2. RBO curves of the pairwise comparisons of feature importance rankings obtained by the
EBM models HC-PDjyp,, HC-PDyq and HC-PDgyer for increasing values of depth d, that is for
increasing number of important features considered.

4 Discussion and Conclusions

The purpose of this work was to introduce the RBO [3] score as similarity measure for
comparing feature importance rankings produced by explainable ML. The classification
of Parkinson’s disease from clinical and imaging features was chosen as case study
and conducted with the Explainable Boosting Machine [10, 17, 20] algorithm on three
datasets, imbalanced, undersampled and oversampled. EBM models reached excellent
accuracies (~1), thus demonstrating the robustness of EBM in dealing with imbalanced
datasets. Interestingly, RBO allowed to reveal that the three feature importance rankings
had the highest size of overlapping (~80%) when the depth was truncated at 40 features.
The classification task has two main goals: to obtain good accuracy in distinguishing
classes and to provide the feature contribution in the prediction [1, 2, 21]. The classifier
performance could be evaluated through several metrics (e.g. accuracy, precision recall)
that are easy to compare both quantitatively and statistically (e.g. McNemar’s test) [22].
However, when a multiplicity of models reach excellent accuracies, it is difficult to
decide which one is better and what Breiman calls the Rashomon Effect takes place
[21]. Indeed, for the same performance, a classifier can consider a feature more or less
important than the importance given by another classifier. For this reason, it is crucial
to quantify the differences between ML rankings, because if different models produce
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similar feature importance, “it is more likely that these reflect genuine aspect of the data”
as stated by Saarela and Jauhiainen [2]. The present study faces the Rashomon Effect
[21], given that all the three EBM models trained on the imbalanced, undersampled
and oversampled datasets reach the highest accuracy (AUC-ROC ~1). The stability of
the EBM performance in presence of imbalanced data is an important finding for the
automatic prediction of neurodegenerative diseases from clinical and imaging features.
The rarity of some pathologies prevents having large enough samples as well as balance
between classes [5], thus the ML struggles to provide reliable findings. On the contrary,
EBM seems to be unaffected by the perturbations due to the imbalance between classes,
probably thanks to the use of bagging, gradient boosting and additive modularity [10,
17, 20], which are all methods strongly suggested by the previous literature [21]. As
further evidence of the stability of EBM algorithm, the RBO score found high similarity
(80%) among the three feature importance at a depth of 40 features.

Another interesting finding is that the feature importance obtained with the over-
sampled dataset was slightly less similar than the other two rankings produced by the
imbalanced and undersampled datasets. This is probably due to the nature of the SMOTE
algorithm itself that could have altered the feature correlation of the original dataset by
generating new synthetic minority data [23]. Indeed, it should be reported as limitation
that EBM algorithm may consider important features that are on the contrary not pre-
dictive when correlation among features, heavy multicollinearity and/or non-linearity
around a prediction exist [10]. Another limitation of the present study is related to the
percent split of training and test sets (80-20); future works might assess whether the
use of different proportion could produce different accuracies and feature importance.
Further research might explore the application of RBO to compare the explanations
produced by different ML algorithms, such as Random Forest [24]. It would be also
interesting to investigate how the tuning of EBM hyperparameters, such as the outer
bags or the learning rate, could affect the feature importance and the accuracy in this
specific case study.

In conclusion, the present work demonstrated that RBO is a suitable similarity mea-
sure, allowing to state that, for the same classification accuracy, the more similar are the
feature importance produced with different training sets, the more stable is the model
and the more reliable is the interpretability and explainability of the ML findings.
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Abstract. Deep learning models are being increasingly used in precision
medicine thanks to their ability to provide accurate predictions of clinical
outcome from large-scale datasets of patient’s records. However, in many
cases data scarcity has forced the adoption of simpler (linear) feature
extraction methods, which are less prone to overfitting. In this work, we
exploit data augmentation and transfer learning techniques to show that
deep, non-linear autoencoders can in fact extract relevant features from
resting state functional connectivity matrices of stroke patients, even
when the available data is modest. The latent representations extracted
by the autoencoders can then be given as input to regularized regression
methods to predict neurophsychological scores, significantly outperform-
ing recently proposed methods based on linear feature extraction.

Keywords: Resting state networks - Functional connectivity + Deep
learning - Feature extraction - Predictive modeling

1 Introduction

Improvements in neuroimaging have provided physicians and radiologists with the
ability to study the brain with unprecedented precision. In particular, Resting
State functional Magnetic Resonance Imaging (RS-fMRI) measures spontaneous
fluctuations in blood oxygen-level dependent neural activity and allows estimating
the brain functional connectivity in the absence of any task-related activity [1].
Functional connectivity of resting state networks has shown to be a valuable
predictor of individual neuropsychological scores in stroke survivors, making it a
potentially useful tool in clinical practice [2-4]. However, building robust predic-
tive models from such high-dimensional measurements requires a large number of
training samples, which are not always available in clinical populations. Such lim-
itation can be partially addressed by exploiting linear dimensionality reduction
techniques such as Principal Component Analysis (PCA), Independent Compo-
nent Analysis (ICA), or sparse coding in combination with regularized regression
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methods [5,6]. Nevertheless, the choice of the dimensionality reduction technique
is non-trivial because it can affect performance of the predictive model [5,7].

Here we show that better performance can be achieved by exploiting the rep-
resentational power of non-linear dimensionality reduction techniques, namely,
deep autoencoders [8]. Autoencoders (AE) are becoming popular in functional
neuroimaging thanks to their ability to disentangle the underlying brain dynam-
ics in a completely unsupervised way [9,10] and have already been successfully
used to build predictive models of psychiatric disorders [11,12]. Nevertheless, the
application of such powerful deep learning models is often hindered by the limited
size of clinical datasets. In this work we propose to mitigate this issue using two
complementary approaches: data augmentation, which allows to expand the sam-
ple size by combining/distorting existing samples, and transfer learning, which
allows to exploit additional large-scale datasets (in our case, from the Human
Connectome Project [13]) containing functional connectivity data in order to
pre-train the autoencoder.

The proposed approach is validated on a reference dataset containing func-
tional connectivity matrices of stroke patients [3]. The features extracted by the
autoencoder are used as predictors of the corresponding neurophsychological
scores by means of regularized linear regression methods. The latter can limit
multicollinearity and overfitting, which makes them particularly suitable for the
analysis of neuroimaging data (for a recent review, see [14]). The performance
of our method is benchmarked against other popular dimensionality reduction
methods based on PCA and ICA, showing promising results.

2 Materials and Methods

2.1 Datasets

The main dataset used in our study consists of 100 resting state functional con-
nectivity (RSFC) matrices from symptomatic stroke patients, taken from pre-
vious studies [3,5]. The patients underwent a 30-minute-long RS-fMRI acquisi-
tion, 1-2 weeks after the stroke occurred. Several scores were taken during the
neuropsychological assessment: here we focus on language, verbal memory and
spatial memory indexes, which are available for a subset of subjects (language:
N =94; memory: N=77). In order to implement a transfer learning approach,
we also used a dataset from the Human Connectome Project [13], consisting of
RSFC matrices of 1050 healthy subjects. RSFC data represent the connectivity
between brain regions that share functional properties and can be expressed as
a symmetric matrix. In our case, the matrix of each subject is of size 324 x 324;
following common practice [5], the data was vectorized by only considering the
upper triangular matrix. Null values were converted to zero.

2.2 Dimensionality Reduction

Dimensionality reduction is the process of taking some input data in a high
dimensional space and mapping it into a new “feature” space whose dimen-
sionality is much smaller [15]. Our main focus was to test different variants of
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deep autoencoders in their ability to extract useful features from RSFC data,
and compare their performance with standard linear dimensionality reduction
methods [5]. The models were initially compared in terms of their reconstruc-
tion error, which corresponds to the mean squared error between the original
matrix and the reconstructed one. During the unsupervised feature extraction
process, the entire dataset (n = 100) was used regardless of the availability of
neuropsychological scores.

Linear dimensionality reduction techniques, such as PCA and ICA, apply a
linear transformation to the input data. That is, if the original data is in R?
and we want to embed it into R™ (n < d) then we would like to find a matrix
W € R™¢ that induces the mapping © — Wz. A natural criterion for choosing
W is in a way that will enable a reasonable recovery of the original input x [15].
Compared to deep autoencoders, the main drawback of PCA and ICA is that
they cannot extract nonlinear structures modeled by higher than second-order
statistics [16]. In the following, we will briefly review the main techniques used
in the present study and their implementation.

Principal Component Analysis. Before performing PCA the data was stan-
dardized to obtain a distribution with zero mean and unit variance. This step
was implemented using the predefined function StandardScaler from SKLEARN.
PCA was then performed by using the function PCA from the same library, which
performs linear dimensionality reduction using Singular Value Decomposition of
the data to project it to a lower dimensional space.

Independent Component Analysis. ICA performs the decomposition step
by imposing the constraint that the resulting components must be independent.
In this work we used the FastICA algorithm from SKLEARN, which is a block
fixed-point iteration algorithm based on negative entropy as a non-gaussianity
measure, which converges faster than adaptive algorithms [9]. As in the case of
PCA, data was first standardized.

Autoencoders. An autoencoder is an unsupervised neural-network based app-
roach for learning latent representations of high-dimensional data that can be
used to reconstruct the original input, while compressing it into a latent space
that usually has much lower dimensionality [17]. Learning such “undercomplete”
representations forces the autoencoder to capture the most salient features of the
training data by discovering its latent factors of variation [18].

Let’s consider a basic auto-encoder with a single hidden layer, n neurons in
the input/output layers and m neurons in the hidden layer. The model takes an
input x € R™ and first maps it into the latent representation h € R™ by using
an encoding function h = g4(x) = o(Wx+0b) with parameters ¢ = {W, b}, where
o () denotes the activation function of the neurons, W denotes the connection
weights and b denotes the neurons’ biases. Afterwards, a reconstruction of the
input x’ is obtained through the decoder function x’ = fy(h) = c(W'h + V')
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with § = {W’,b'}. The two parameter sets (6, ¢) are usually constrained to be
of the form W € R™™ = W'T € R™", using the same weights for encoding the
input and decoding the latent representation [19]. The parameters are learned
by minimizing an appropriate cost function over the training set, which usually
corresponds to the Mean Squared Error between the original input and the
reconstructed output:
1 & ) )
Lap(0,0) = = > (x% = fa(gs(x)))? (1)
i
Fully connected AE do not have any spatial bias over the image structure.
Convolutional autoencoders are an AE variant that exploits convolution filters
to more efficiently capture local spatial structure. For a mono-channel input x
the latent representation of the k—th feature map is given by:

h* = o (z « Wk 4+ b*) (2)

where the bias is broadcasted to the whole feature map, o is an activation func-
tion, and * denotes a convolution. The reconstruction is obtained using:

y:a(th*Wk—l-c) (3)
keH

where c represents the bias of the input channel, H identifies the group of latent
feature maps and W identifies the flip operation over both dimensions of the
weights [19].

In this work we considered both fully-connected and Convolutional Autoen-
coder (CAE) architectures. As baselines, we implemented two simple, 1-layer
AE with linear and non-linear activation functions. We then implemented a
more sophisticated CAE architecture, as shown in Fig. 1. In the latter case, the
encoder consisted of 3 convolutional layers followed by 2 fully connected layers,
and the same structure was mirrored in the decoder. In order to overcome van-
ishing gradient the Leaky Rectified Linear activation function was used. Mean
Square Error was used as loss function, which was minimized using the Adam
optimizer with a learning rate of le—3. Dropout was used as a further regularizer.
Hyperparameters were automatically optimized using OPTUNA [20].

ENCODER DECODER
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Fig. 1. Workflow and architecture of the deep convolutional autoencoder.
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2.3 Data Augmentation and Transfer Learning

Deep networks perform remarkably well in many domains, but they are heavily
reliant on big data to avoid overfitting. Given the limited size of our clinical
dataset, we thus devised two approaches in order to promote a better general-
ization of the CAE during the feature extraction process.

The first method was based on Data Augmentation, which consists in combin-
ing and distorting each training sample in order to provide a more representative
distribution as input to the autoencoder [21]. In particular, we designed a mix-
up augmentation method that consists of a random convex combination of two
input samples leading to a total of 7421 synthetic samples:

T =Ar; + (1= Nz

where z; and x; are raw input vectors and A are values sampled from the Beta
distribution®. Following previous work [22], the choice of the parameters A € [0, 1]
was distributed accordingly to A € Beta(a,«) for a € (0,inf). In the mix-up,
the samples to be combined were chosen randomly from all available images.
Isaksson et al. [23] tested the utility of the mix-up data augmentation technique
for a medical image segmentation task using 100 MRI scans and observed an
improvement when o = 0.5. Although our dataset could be slightly different, we
decided to use the same «a value for consistency.

The second method was based on Transfer Learning (TL), which consists in
first training the autoencoder on a larger-scale dataset and subsequently tune it
on the smaller dataset. In our case, we took advantage of the Human Connectome
Project database for the pretraining phase. Afterwards, the model was fine-tuned
using the stroke dataset freezing the weights of the convolutional layers.

2.4 Regularized Regression

The feature sets extracted by each method were used as regressors for the pre-
diction of the neuropsychological scores.

Ridge regression [24] is a regularized regression method that controls the
regression coefficients by adding the Lo penalty term A Z§:1 ﬁf to the objective
function. The least absolute shrinkage and selection operator (LASSO) model
[25] is an alternative method that adds the L; penalty term /\Z§:1|,6’j|. To
implement regularized regression we exploited a flexible approach based on elas-
tic net [26], which combines the penalties of Ridge and LASSO regression:

. 2 1
win (v 0 - X78) "+ (- )8 +alal). 0
(Bo,B) 2

The elastic-net loss function requires two free parameters to be set, namely
A and a. The penalty parameter A\ controls the amount of shrinkage, while the
parameter « controls the type of shrinkage. Following previous work [5], these

! Note that although the extracted features were obtained using the synthetic data,
the model performance was always measured on the final stroke dataset.
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parameters were tuned using Leave-One-Out Cross validation (LOOCV). To
evaluate the regression model we used R-squared (R?), Mean Squared Error
(MSE) and Bayesian information criterion (BIC).

3 Results

3.1 Dimensionality Reduction

Figure 2 shows the reconstruction error against the number of components/latent
units for each method. The trend is similar across models: the larger the number
of components, the better the reconstruction. The CAE trained directly on the
stroke dataset obtained the worst reconstruction error, while the CAE trained
on the augmented dataset achieved the best performance. This result highlights
the importance of increasing the variability of the training distribution in order
to improve the quality of the features extracted by complex convolutional archi-
tectures. The simple 1-layer AEs achieved an intermediate reconstruction error,
comparable to those of PCA and ICA, which is no surprise given the intrinsic
similarity between these techniques [27].

3.2 Regularized Regression

Table 1 presents the metrics obtained in the neuropsychological scores prediction
task. As it can be observed, the A parameter is usually small. On the other hand,
it can be seen that the a value mainly takes the two extremes: a ~ 1, which
corresponds to a ridge regression; and o ~ 0, which corresponds to a LASSO
penalization; an intermediate a ~ 0.75 only happens in few cases. In order to
have a better visualization, Fig. 3 presents the methods sorted by lowest M SFE
error and highest R2.
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Fig. 2. Reconstruction error achieved by different feature extraction methods.



146 D. Irarte et al.

Concerning the metrics obtained for the language score, it can be observed
that PCA slightly outperforms the other models in terms of R? and MSE,
though the margin is fairly small. However, the CAE trained with Data Aug-
mentation achieves the best performance in both spatial and memory scores, with
a considerable margin over the other methods. Such remarkable performance is
approached also by the CAE trained using Transfer Learning. Interestingly, the
autoencoder with a single linear layer is often the one achieving the lowest BIC
value, suggesting that such architecture is particularly useful to select a few
representative components from the data distribution.

3.3 Getting Deeper on Augmentation and Transfer Techniques

Given the remarkable performance of the CAE trained using data augmentation
and transfer learning, in a series of additional simulations we explored how the
size of the augmented dataset could impact model performance, and whether a
combination of data augmentation and transfer learning might further improve
the predictive accuracy?. We thus designed four additional training regimens:

Table 1. Regression metrics and parameters obtained for the different feature extrac-
tion methods.

Language score (n = 94) Spatial score (n = 77) Memory score (n = 77)

R®> |MSE|BIC|a |A |R® |MSE|BIC|a |Xx |R> |MSE|BIC|la |X
PCA 0.52/0.48 493 |0.00/0.22|0.21 |0.79 |300 |1 0.09/0.32 |0.68 |363 |1 0.03
ICA 0.51 |0.49 |351 |0.25/0.09|/0.24 |0.75 |396 |0.00|/0.56|0.27 |0.73 |381 |1 0.04

Lin AE 0.43 |0.57 |323 |0.25/0.06/0.27 |0.73 412 |0.00/0.56|0.25 0.75 |297 0.5 |0.15
NonLin AE|0.50 |0.50 |357 |0.75/0.00/0.26 |0.74 [456 |0.00/0.22/0.26 [0.74 |369 |0.75/0.01
CAE 0.42 |0.57 |624 |0.25/0.01|0.27 |0.73 |390 0.5 |0.01/0.27 |0.73 |759 |0.00/0.7
CAE-AUG |0.50 |0.50 |421 |0.50|0.06|/0.33|0.65 |315 |0.5 |0.09/0.40|0.61 [316 |1 0.04
CAE-TL 0.44 |0.56 |454 |0.00/0.03|/0.31 |0.69 407 |0.75/0.00/0.39 0.61 |302 |0.75/0.01

language memory_s memory_v
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CAE-TL!
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Non linear AE
Linear AE
CAE-AUG
Linear AE
Non linear AE
CAE-AUG
CAE-TL

Non linear AE
Linear AE

Fig. 3. MSE (orange) and R? (violet) metrics obtained by different methods sorted
by accuracy. (Color figure online)

2 It should be pointed out that for these simulations we did not implement an exhaus-
tive hyper-parameter optimization, as in the previous cases.
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1. Aug(15000): Similarly as before, the CAE is trained with synthetic images
obtained via the mix-up strategy; however this time the size of the aug-
mented stroke dataset is increased to ~15000 samples (i.e., twice the size used
previously);

2. TL-Aug: The CAE is first trained over the HCP dataset, as done before for
the Transfer Learning scenario. The model is then also trained on the initial
augmented stroke dataset (~7500 samples);

3. AugTL-Aug: The CAE is first trained over synthetic HCP data obtained by
applying the same mix-up augmentation strategy (~6000 samples). The model
is then also trained on the initial augmented stroke data (~7500 samples);

4. AugTL-Stroke: The CAE is first trained over synthetic HCP data obtained
by applying the same mix-up augmentation strategy (~6000 samples). The
model is then also trained on the original stroke dataset.

Figure4 shows the reconstruction error obtained by the four different reg-
imens. The errors are comparable to that achieved previously by the simpler
Data Augmentation technique, suggesting that also in these cases we achieve
very good reconstructions.

At the same time, regression results reported in Table2 and Fig.5 clearly
show that these improved data augmentation and transfer learning regimens
further boosted the model’s performance, both in terms of R? and MSE. All reg-
imens generally enhance the CAE accuracy, however the most striking improve-
ment is given by the TL-Aug regimen, which reaches significantly better per-
formance compared to all methods previously investigated, establishing a new
state-of-the-art for the stroke-prediction task. Interestingly, this improved model
achieves such accurate predictions by relying, on average, on fewer components
compared to other methods, which might be particularly relevant to improve
interpretability of the resulting model.

0.025 T , —— Aug(15000)

f-- TL-Aug
AugTL-Aug
AugTL-Stroke
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0.015 -
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10 20 30 40 50 60 70 80 90
Components/Latent Space

Fig. 4. Reconstruction error achieved by the four new augmentation/transfer regimens.
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Table 2. Regression metrics and parameters obtained by the four augmentation/
transfer regimens.

Language score (n = 94) |Spatial score (n = 77) Memory score (n = 77)
R?®> |MSE|BIC|a |\ |R® |MSE|BIC|a |A |R® |MSE|BIC|a |
Aug (15000) |0.51 [0.49 [421 |0.5 |0.06|0.36 {0.58 |570 |0.00|0.05/0.41 |0.59 |570 [0.00/0.05
TL-Aug 0.56/0.45 (284 |0.00/0.03/0.40/0.56 |367 |0.5 |0.09/0.47|0.54 |357 |0.75/0.08
AugTL-Aug |0.53 |0.46 |421 |0.5 |0.06/0.23 |0.77 |247 |1 0.16/0.43 |0.57 239 |1 0.08
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4 Conclusion

In this work we investigated whether deep autoencoders could extract relevant
features from resting state functional connectivity data of stroke patients, which
can successively be used to build predictive models of neuropsychological scores.
We implemented a variety of autoencoder architectures, ranging from simple,
one-layer linear networks to more sophisticated convolutional versions exploit-
ing several layers of non-linear processing. In order to deal with the issue of data
scarcity, which is known to affect the performance of deep learning models, we
also explored data augmentation and transfer learning techniques. The autoen-
coder’s performance was benchmarked against other conventional approaches,
such as Principal Component Analysis (PCA) and Independent Component
Analysis (ICA).

The different methods were first evaluated in terms of their reconstruction
error. In general, all methods achieved similar reconstruction error, though the
autoencoders trained using data augmentation obtained slightly better accuracy.
The quality of the features extracted by different methods was then assessed
based on their capacity to serve as predictors for neuropsychological scores of the
patients in three cognitive domains (i.e., language, spatial memory, and verbal
memory). To this aim, the extracted features were given as input to regularized
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regression models, and performance was evaluated in terms of coefficient of deter-
mination, mean squared error and Bayesian information criterion. Results showed
that the performance of the basic autoencoders was overall comparable to that of
traditional methods (ICA and PCA). However, more sophisticated convolutional
architectures trained using data augmentation and transfer learning achieved a
much higher performance, with considerable gains of 7% (language), 66% (spa-
tial memory) and 47% (verbal memory) with respect to the previously reported
state-of-the-art methods [5]. The larger accuracy gains for memory scores can
be explained by the fact that prediction of language scores is likely close to ceil-
ing. Memory has a more distributed neural basis and the prediction of deficits
from structural lesions is relatively poor compared to other behavioral domains
[4,6]. Therefore, predicting memory scores represents an important benchmark
for RSFC-based machine learning methods.

In conclusion, our results demonstrate the great potential of deep learning
models for the analysis of multi-dimensional neuroimaging data even in cases
with limited data availability, which is often considered a critical limitation in
clinical studies. Future work should aim at further consolidating our findings, for
example by systematically evaluating the performance of deep learning models on
the prediction of other neuropsychological and behavioral scores, or by increasing
the sample size in order to allow testing model generalization on fully held-out
data. The latter task calls for multi-centric, coordinated efforts for collection,
harmonization and sharing of patients’ functional imaging data. Moreover, a
key research frontier would be to design and implement advanced techniques in
order to interpret the features extracted by non-linear “black-box” models, such
as deep networks. Although standard back-projection techniques [5] only work
with linear dimensionality reduction, there is a growing interest in designing
explainability techniques that can visualize the features that mostly influence
the decision of deep networks (for a recent review, see [28]). Such techniques
would be particularly relevant in the case of medical applications, since they
could provide valuable insights to the clinicians for the design of more effective
rehabilitation protocols.
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Abstract. In the modern world, it is easy to get lost in thought, partly
because of the vast knowledge available at our fingertips via smartphones
that divide our cognitive resources and partly because of our intrinsic
thoughts. In this work, we aim to find the differences in the neural sig-
natures of mind-wandering and meditation that are common across dif-
ferent meditative styles. We use EEG recording done during meditation
sessions by experts of different meditative styles, namely shamatha, zazen,
dzogchen, and visualization. We evaluate the models using the leave-one-
out validation technique to train on three meditative styles and test the
fourth left-out style. With this method, we achieve an average classifica-
tion accuracy of above 70%, suggesting that EEG signals of meditation
techniques have a unique neural signature across meditative styles and
can be differentiated from mind-wandering states. In addition, we gen-
erate lower-dimensional embeddings from higher-dimensional ones using
t-SNE, PCA, and LLE algorithms and observe visual differences in embed-
dings between meditation and mind-wandering. We also discuss the gen-
eral flow of the proposed design and contributions to the field of neuro-
feedback-enabled mind-wandering detection and correction devices.

Keywords: Meditation - Mind-wandering - Classification - Machine
learning - Deep learning -+ Cognition - Neuro-feedback - EEG

1 Introduction

Mind-wandering, also known as task-unrelated thought, daydreaming, fanta-
sizing, zoning-out, unconscious thought, and undirected thought, is a com-
mon phenomenon, that most of us experience for approximately 50% of our
daily waking time [11]. There are two types of mind-wandering, intentional or
stimulus-independent or self-generated and unintentional or stimulus-driven [11].
Sometimes, these thoughts could be productive, i.e., used for creative thinking,
future planning, and problem-solving, and sometimes could be detrimental to
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our mental health, leading to depression (2], anziety, schizophrenia and negative
mood [23].

In contemporary times, our mind wanders in anticipation of a text message,
email, or social media notification, or thinking about how we can level up in the
game in which we are stuck. Mind-wandering takes our attention away from the
present, which we regret later, leading to an unending spiral of despair. However,
all hope is not lost. Meditation is one of the many ways to control our thoughts.
Meditation is a set of exercises that helps in the regulation of emotion, and
attention [24]. It is also known as an exercise in which the person orients their
attention to dwell upon a single sound, concept, or experience [22]. Meditation
has positive effects on our mood and mental health by reducing unnecessary
mind-wandering and enhancing our cognitive performance [15] (Fig. 1).

Although meditation has many benefits, it is hard to accomplish and sustain
a state of mind where we must not get overwhelmed by our thoughts [8]. In
some cases, meditators encountered troubling thoughts and, and in other cases,
it aggravated mental health issues such as anxiety and depression [8].

Intake of excessive
information
What to What not to
attend? attend?
Being
Mindful
Training
Attention

Fig. 1. Sustaining mind-full moments

The human brain generates movement by taking input from relevant sen-
sory receptors, computing the desired inputs to stimulate motor neurons, which
move the limbs. Brain-Computer Interface aims to capture the signals produced
during these computations and process them to decode human intention to con-
trol external devices, say a joystick [4]. The decoding of human intentions is a
difficult problem. The challenge here is to take a pattern of EEG signals and
ascertain which brain regions contribute how much to the signal. In simpler
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terms, it is difficult to find out the representation of each brain region in the sig-
nal component, and an even more challenging task to model those contributions.
Many recent papers aim to model this representation. In a recent paper, wavelet
transformation-based feature extraction techniques were applied to capture the
difference between expert and non-expert meditators. They used Bior3.5, Coifb
and db8 wavelets for this feature extraction [13]. Another approach to finding
the representation of human intentions in EEG signals was to take topological
maps generated from the EEG signals and feed them through a convolutional
neural network [14]. Advancement in deep learning in the past two decades has
ushered in an era of creating ever-larger networks to represent complex relation-
ships. However, the problem arises when one questions on what basis the model
is making these predictions. This is a problem highlighted by Riberio et al.,
wherein they discuss a model that performs well but has learned the wrong rep-
resentation [17]. Recent work [12] uses the functional connectivity between brain
regions as features to understand the significance and contribution of each region
to the generated EEG signal. Previously, feature engineering-based methods were
used to feed input to machine learning classifiers with varying degrees of success.
[21] used the gamma-band entropy-based features and fed them through a Ran-
dom Forest classifier to differentiate between meditators vs. non-meditators. [19]
and [7] used numerous machine learning classifiers to discriminate between men-
tal states. They concluded that machine learning classifiers used hand-crafted
features did not capture the most optimum representation to decode EEG sig-
nals. Deep learning-based algorithms have an advantage over traditional machine
learning-based classifiers because they do not need hand-crafted features. These
algorithms are designed to extract features from the raw data presented.

Previous works have distinguished between mind-wandering and attentive
states and achieved a per subject mean accuracy of 65% using SVM and logistic
regression and a mean AUC score of 0.715 using SVM and 0.635 using logistic
regression. On the leave-one-out participant comparison, they achieved a mean
accuracy of 59% using SVM and 58% using logistic regression [3].

This work attempts to detect whether the meditator is in a meditative or a
mind-wandering state and generalize across meditative styles. We also lay the
foundation for future work, where we aim to develop a real-time brain-computer
interfacing technology to determine whether the user is in a meditative state or
not. The system under consideration alerts the user when their mind beings to
wander through a neuro-feedback mechanism and help them orient back to a
calm meditative state.

2 DMotivation

2.1 Impact on Cognition

The rapid pace of software and hardware innovations [10] enables us to perform
multiple tasks simultaneously. This ability granted to us by contemporary tech-
nological advancements has positive effects, such as communicating with distant
people, getting news about what is going on halfway around the world, and
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much more. However, at the same time, it has detrimental effects, which include
sensory overloading or simply taking in more information than we can process,
leading to accidents due to the usage of mobile phones while walking and driv-
ing. Hence, we need to evolve with technology, the ability to focus our attention
on the things that we can control and on the things that matter. Hence, we need
to learn to focus our attention and not let our minds wander.

Mind-wandering, sometimes also referred to as daydreaming, fantasiz-
ing, zoning-out, unconscious thought, undirected thought, is defined as task-
unrelated thought that occupies nearly 50% of our awake time daily. The benefits
of focused attention or meditation has been highlighted by researchers through-
out history [15]. Research on meditation has revealed that it is highly effective in
regulating pain, insomnia, increasing calmness, bringing psychological balance,
and improvement of general well-being and physical and mental health [1].

2.2 Technological Considerations

The work resulting from this paper can help create a device that helps the
user improve their focused attention through a neuro-feedback mechanism. For
a certain period, the user wears an EEG headband capable of producing high-
quality data once a day. A mobile app reading and processing the data cap-
tured by the headband determines whether the user is in a meditative state
or a mind-wandering state. While meditating, the user will get an audio-visual
neuro-feedback from their mobile phone if their mind begins to wander (Fig. 2).
Few neural markers for neuro-feedback have been discussed by Gupta et al. [16].
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Fig. 2. A user is wearing a portable EEG headset while meditating. The real-time EEG
signals are captured, processed, and meditative states sent to the user’s mobile phone.
When the user’s mind begins to wander, an audio neuro-feedback is given to them,
enabling them to reorient their focus away from task-irrelevant thoughts.
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3 Dataset Description

We have used the publicly available EEG dataset [24]. Electroencephalographic
(EEG) recordings were conducted on participants from meditative communi-
ties in India, Nepal, and the United States. Their respective instructors selected
highly experienced and skilled meditators from each community. Each commu-
nity provided space for recording the meditation sessions. Participants studied
at least one of the different meditation practices - Zazen, Dzogchen, Shamatha,
and Visualization. Some participants recorded sessions for a single meditative
style and, in some cases, multiple meditative styles. EEG activity was recorded
when the participants were sitting in their usual posture for meditation, and
mind-wandering [24]. We used a pre-processed version of the dataset acquired
from the author. The pre-processed data is sampled 128 Hz.

4 Methods

4.1 Feature Extraction

Sliding Window. We used the Yasa Sliding Window [20] library in python to
create windows of 5s for meditation recordings of 600s each and a window of
5s with a step size of 0.5 for the mind-wandering recordings of 60s each. We
obtained 1431 epochs of meditation and 1665 epochs of mind-wandering.

Multitaper Bandpower. The Multitaper method is an approach to deter-
mine the power of a signal at different frequencies [24]. We extracted the five
frequency bands from each channel of the EEG signals, namely: delta (0.5
4 Hz), theta (4-7Hz), alpha (8-13 Hz), beta (14-30 Hz) and gamma (31-50 Hz).
We calculated the power of each frequency band by integrating the power
spectral density (PSD) of that particular frequency band [25]. We used the
mne.time_frequency.psd-multitaper() in the MNE-Python package to calculate
multi taper power spectral density (PSD) [5].

After pre-processing, the EEG recording of each participant had a different
number of channels. Hence, to give the model a uniform input, we averaged the
channel data across different frequency bands (delta, theta, alpha, beta, gamma),
giving us five features as model inputs.

4.2 Validation

Leave One Out Meditation Style. Out of the four meditation styles (Zazen,
Dzogchen, Shamatha, and Visualization), we picked one style as a test set and
trained on the remaining three styles.

4.3 Classifiers

K Nearest Neighbors (KNN). K nearest neighbors is a non-parametric clas-
sifier. They work by determining the K (specified by the user) number of training
samples closest in the distance to the new point and predict the labels from these
k training samples.
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Support Vector Machine (SVC): A maximal margin classifier that attempts
to maximize the distance between the closest training patterns known as support
vectors. Maximal margin regularization parameter C', which denotes the trade-off
between margin width and the number of misclassifications for linear SVM can
be optimized from [1073, 10%] using grid search-based hyperparameter tuning on
the validation set extracted from the training set.

Decision Tree Classifier: A Decision Tree Classifier is a predictive model
used in statistics and machine learning. It creates a decision tree to iteratively
go from the observations about an item to classify it into either of the given
target labels.

Random Forest Classifier: It is an ensemble method that consists of a set of
mutually independent and random trees. Each tree is populated using a random
subset of features. Selection is based upon the majority voting over all the tree
outputs.

Multi Layered Perceptron (MLP): The objective function (Cross-Entropy
loss function) for this non-linear function approximator was optimized on our
dataset, using first-order gradient-based optimization called Adam [6]. The
binary prediction was performed using sigmoid as the output function.

Ada Boost Classifier: Ada Boost classifier is a meta estimator that initially
fits a classifier to the dataset. In subsequent training, it makes copies of the
model and puts more weight on instances that are hard to classify.

Gaussian Naive Bayes: It is a generative model that learns the actual data
distribution by assuming that likelihood probabilities come from a multidimen-
sional Gaussian distribution, and that all features are class-wise independent.

Quadratic Discriminant Analysis (QDA): QDA is a generative model,
which assumes that each class follows a Gaussian distribution. These are used
in cases where a non-linear decision boundary works best.

4.4 Visualization

t-Distributed Stochastic Neighbor Embedding (t-SNE): t-SNE is a sta-
tistical dimensionality reduction algorithm that reduces high dimensional data
into dimensions, which aids in the visualization of the data [9]. We have employed
the use of t-SNE to reduce five dimensional (five bands) data points into two-
dimensional to visualize the difference between meditative and mind-wandering
stages.
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Principal Components Analysis (PCA): PCA is an unsupervised
dimensionality-reduction machine learning algorithm. This algorithm generates
new uncorrelated variables that successively maximize variance in the data. The
algorithm helps reduce the dimensions of the data to visualize the data with the
least information loss.

Locally Linear Embedding (LLE): LLE is an unsupervised method for
dimensionality reduction. It does so by projecting the data to a lower dimension
while preserving distance in the local neighborhoods [18].

5 Results

5.1 Classification Insights

We used the leave-one-out method to iteratively train on three meditative prac-
tices and test on the left-out practice. With this as our train and test sets, we
applied various machine learning and neural network classifiers to separate med-
itation and mind-wandering states. The classification accuracies in Fig.3 and
Fig. 4 represent the testing accuracy on the left-out meditation style.

Machine Learning Classifiers: We achieved the best test accuracy on dif-
ferent machine learning models for meditation styles. For Shamatha meditation,
we achieved the best accuracy of 77.7% using the K Nearest Neighbor classifier
with k values as 2. For Visualization meditation, we achieved the best accuracy
of 68.6% using the Random Forest classifier. For Zazen meditation, we achieved
the best accuracy of 73.8% using the Quadratic Discriminant Analysis classifier.
For Dzogchen meditation, we achieved the best accuracy of 74.7% using the K
Nearest Neighbor classifier with k values as 2.

Classification between Mind-wandering Vs. Meditation [Cross Practice Validation]

Leave One Out Meditation Practice

B shamatha 80

B Visualization
Zazen 60
W Dzogchen
40
20
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Fig. 3. Classification results for different machine learning classifiers.
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Neural Network Classifiers: We achieved different classification accuracies
for different network architecture sizes. We achieved the highest average clas-
sification accuracy using the network with the following configuration [80, 140,
100]. For Shamatha meditation, we achieved the best accuracy of 73.83% on
most network architectures. For Visualization meditation, we achieved the best
accuracy of 68.33% using the more extensive networks. For Zazen meditation,
we achieved best the accuracy of 58.11% using the [40, 80, 60] architecture. For
Dzogchen meditation, we achieved the best accuracy of 63.8% using the [40, 80,
60] architecture.

Classification between Mind-wandering Vs. Meditation using MLP [Cross Practice Validation]

Leave One Out Mediaton Practice

M Dzogchen 80 —

M Shamatha
Visualization

B Zazen 60

40 +

Classification Accuracy

Classifier Name

Fig. 4. Classification results for neural network classifiers with varying network
architectures.

5.2 Lower Dimensional Visualization Insights

We used t-SNE, PCA, and LLE algorithms to reduce the dimensionality of our
input feature space from five features to two features to plot them on a 2-D
plane.

t-Distributed Stochastic Neighbor Embedding (t-SNE): As shown in
the Fig.5, we obtained a good separation of meditative and mind-wandering
states using t-SNE, close to a linear separation. The perplexity measure for this
reduction is 5.

Principal Components Analysis (PCA): Using the PCA algorithm, we were
able to see a separation between the meditative vs. mind-wandering classes, as
shown in Fig. 6. However, some portions of their representation were mixed and
could not be easily separated. We were able to separate the 2-D representation
using an ellipse manually.
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Locally Linear Embedding (LLE): Using the LLE dimensionality reduction
algorithm, we clustered the mind-wandering classes together. At the same time,
the meditative state data points were spread out all over the 2-D plane, as shown

in Fig. 7.
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Fig. 5. Linear separation of classes using t-SNE with perplexity 5.
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Fig. 6. Principal components analysis based dimensionality reduction.

LLE of Meditation vs Mind-wandering

0.1501 ¢ Mind-wandering
® Meditation

0.125 A
0.100 -

0.075 4

0.050 4

0.025 4

0.000{ © ESSGESC® adem@® o0 o

T T T T T T T
-0.12 -0.10 -0.08 -0.06 -0.04 -0.02 0.00

Fig. 7. Locally Linear Embedding based dimensionality reduction.
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6 Discussion and Conclusion

Mind-wandering is often characterized as our attention being oriented away
from the task at hand towards our internal, self-generated thoughts. This phe-
nomenon is most often linked to a disruption in normal cognitive functions [3].
Too frequent mind-wandering can lead to depression, anxiety, insomnia, neg-
ative mood, and other detrimental effects. This study showed a difference in
neural-signals between mind-wandering and meditation across meditation styles
practices worldwide. We showed this difference by windowing the recordings and
extracting the EEG signals’ band-wise multi-taper power spectral density (PSD).

Using the machine learning models specified in Sect. 4.3, we got the highest
classification accuracy using the KNN classifier for Shamatha and Dzogchen,
QDA for Zazen, and Random Forest for Visualization styles when these were left-
out as test sets. Using the Neural Network classifiers with architectures specified
in Fig.4, we achieved the highest average classification accuracy for all styles
from the biggest network, i.e., [80, 140, 100]. We got good separation using t-
SNE, PCA, and LLE with almost linear separation between mind-wandering and
meditation sample points.

This research is essential since the computing power doubles every 18 months,
and we have more and more devices with higher computational power. Each year,
significant advancements are made towards technology, giving us everything at
our fingertips. In these times, it is of utmost importance that we do not let our
minds get lost in this sea of information, most of it not very important to us,
leading to overuse and drain of sensory, perceptual, and cognitive resources. For
this reason, practicing meditation may help us train our minds to gain control
of our thoughts, focus our attention, and increase our metacognitive awareness
and our propensity for compassion.

7 Limitation

This study is limited only to expert meditators and does not consider how the
neural signatures differ between novice/non-meditators, which will be further
investigated in future studies. We observed the classification outcome by varying
only a few of the hyperparameters. Further experiments are needed to tune to
the best hyperparameters. However, our results show a significant distinction
between the two states, and future research can explore the involvement of region
and frequency-specific discrimination.
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Abstract. In a complex human-computer interaction system, estimating mental
workload based on electroencephalogram (EEG) plays a vital role in the sys-
tem adaption in accordance with users’ mental state. Compared to within-subject
classification, cross-subject classification is more challenging due to larger vari-
ation across subjects. In this paper, we targeted the cross-subject mental work-
load classification and attempted to improve the performance. A capsule network
capturing structural relationships between features of power spectral density and
brain connectivity was proposed. The comparison results showed that it achieved
a cross-subject classification accuracy of 45.11%, which was superior to the com-
pared methods (e.g., convolutional neural network and support vector machine).
The results also demonstrated feature fusion positively contributed to the cross-
subject workload classification. Our study could benefit the future development
of a real-time workload detection system unspecific to subjects.

Keywords: Mental workload classification - Capsule network - Feature fusion -
Cross-subject - EEG - Brain connectivity - Power spectral density

1 Introduction

With the prevalence of human-machine interactive systems, mental demand is dramat-
ically increased to result in high mental workload. Excessive mental workload would
quickly cause fatigue so that performance and accuracy are declined. In contrast, an
extremely low mental workload would lead to inefficiency. Therefore, an appropriate
level of mental workload should be maintained. In order to maintain the appropriate
level of workload, we have to evaluate mental workload.

Traditional methods for evaluating mental workload include National Aeronautics
and Space Administration-Task Load Index (NASA-TLX), subjective scale method, pri-
mary task performance method, and auxiliary task performance method. These methods
rely on humans’ self-feeling and the evaluation might be influenced by a few factors
such as humans’ emotions. Alternative ways based on physiological information have
gradually become popular as they are objective for workload evaluation [1]. To date,
electroencephalogram (EEG) [2], electrocardiogram (ECG) [3], eye movement [4], and
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functional near-infrared spectroscopy (fNIRS) [5] have been used for mental workload
evaluation. Among them, EEG is a good choice because of its low cost, high temporal
resolution, and portability.

Machine learning methods such as k-Nearest Neighbors (k-NN) [6], Random Forest
(RF) [7], and Support Vector Machines (SVM) [8] were utilised to classify mental
workload levels based on EEG. More recently, deep learning has shown advantages in
the classification of mental workload. Convolutional neural network (CNN) is one of the
deep learning models, which has been widely utilised for diverse applications, including
P300 feature detection [9], seizure detection [10], and mental workload classification
[11]. CNN exhibits advantages compared to the traditional machine learning methods.
For example, Asgher et al. used CNN to analyse and classify mental workload levels in
the n-back tasks, which outperformed SVM [12]. Although CNN has been applied to
diverse applications successfully, it is not good at capturing spatial relationships between
features. A new model called capsule network was proposed to overcome this drawback
and is able to capture spatial relationships [13]. In addition, it is worth noting that the
majority of studies performed within-subject classification for the mental workload,
leaving less studies for cross-subject classification. The cross-subject classification is
more difficult because there is a larger variation across subjects.

Features extracted from the time domain, spectral domain, and spatial domain can
be used to classify mental workload. In the time domain, the decrease of event-related
potential P300 in amplitude has been discovered to be associated with the increase of
mental workload [14, 15]. In frequency domain, several studies have illustrated the asso-
ciations between EEG signal frequencies and mental workload [16-22]. Band powers
(including delta, theta, alpha, beta, and gamma bands) or their ratios have been used to
evaluate the levels of mental workload. For instance, Ryu et al. found that the power in the
alpha band was suppressed under the high mental workload conditions [18]. Moreover,
the percentage of theta power at some brain regions was significantly increased with
the increase of difficulty in the simulated air traffic control (ATC) task [19]. Besides,
delta, beta, and gamma bands have also been reported to be related to mental workload
[20-22]. In spatial domain, since the human brain has been considered to be a large-scale
network composed of various brain regions [23], brain connectivity analysis may reveal
the interactions between brain regions. For instance, brain connectivity has been found to
be relevant to schizophrenia [24], attention-deficit/hyperactivity disorder (ADHD) [25],
autism [26] and motor imagery (MI) [27]. For the mental workload studies, it has also
been adopted [7, 28]. As shown in the assessment of driving drowsiness [29], functional
connectivity can provide complementary information. It implies that the combination of
features from different domains may benefit the classification.

In this study, we attempted to develop a feature fusion-based capsule network to
capture structural relationships between features derived from the spectral domain and
spatial domain for the cross-subject classification of mental workload. We compared it
to other methods (i.e., k-NN; RF; SVM; and CNN) in terms of classification accuracy
and showed the detailed results in this paper. Our study addresses the shortcomings
mentioned above and provides a potential solution.
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2 Methods

2.1 Experiment and Dataset

A total of seven subjects were recruited for the experiment. The subjects had not attended
any EEG-related experiments or flight simulation experiments previously. The insti-
tutional ethics review committee of the National University of Singapore approved
the experimental protocol. All subjects signed a consent form before the start of the
experiment.

In the experiment, subjects experienced different levels of manipulation difficulty
in controlling an aircraft by a joystick. Oculus Rift virtual reality headset was used
to display virtual 3D aircraft. The subjects started with a low difficulty task and then
performed the medium and high difficulty tasks, which corresponded to low, medium,
and high levels of mental workload, respectively. Each task lasted 2 min, resulting in a
total of 6 min for three tasks. And each subject repeated the tasks three times. Besides,
62 EEG channels were used to record EEG data at a sampling rate of 256 Hz.

2.2 Feature Extraction and Fusion

The recorded data were preprocessed to mitigate artifacts and then divided into segments
with a length of two-second. This resulted in 540 segments for each subject. Each
segment (62 x 512) is a sample in the following classification evaluation. Short-time
Fourier transform (STFT) with a one-second sliding time window and no overlapping
was used to extract power features in five bands: delta (1-4 Hz), theta (4-8 Hz), alpha
(8-12 Hz), beta (12-30 Hz), and gamma (30—45 Hz). This resulted in 2 features for each
frequency band and each EEG channel. We collected all features to form a matrix of 62
x 10 (62 channels x 5 bands * 2).

Besides, we used phase locking value (PLV) to estimate phase synchronization
between EEG channels. According to our previous study [7], the dominant frequency
band for PLV is the gamma band. We, therefore, extracted PLV features from this band.
PLV value ranges from O (reflecting no phase synchronization) to 1 (reflecting perfect
phase synchronization) [30-32]. PLV value between channel k and channel / in the time
span t = {t1, t2, ..., tx} can be calculated by

PLV;, = (ej(‘ﬂk(t)_(/’l(t))> (1)

where () represents the arithmetic mean over the time span, ¢; and ¢; are the sig-
nal phases in channels £ and /. After estimating each pair of channels, we obtained a
connectivity matrix of 62 x 62. Subsequently, we merged the band power matrix and
connectivity matrix to form a larger feature matrix of 62 x 72. After that, the features
were normalized to the range [0, 1] along with the channel dimension. For PLV features,
elements on the diagonal were not included for the normalization because these elements
represented self-connections.
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2.3 Model Architecture

The model architecture is illustrated in Fig. 1. The proposed model consists of two con-
volutional layers, one primarycaps layer, and one digitcaps layer. The first convolutional
layer has 8 convolution filters with the kernel size of 5 x 5 and the stride of 1. Rectified
linear unit (ReLU) was used as an activation function. The settings of the second con-
volution layer were the same as the settings of the first layer except for the number of
filters (16 for the second layer). The output size of the second layer was 16 x 54 x 64.
This was followed by a primarycaps layer, where the number of filters was 32, the stride
was 2, and the kernel size was 5 x 5. Each primary capsule was a vector with a depth of
4, of which the length and direction represent occurrence probability and associations
to each workload level.

Data
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Fig. 1. The proposed model architecture. Colorful dots stand for subjects. The leave-one-subject-
out was used to evaluate the model performance. The sizes of the outputs of each layer are shown
in the figure.

The detailed operation process of the primarycaps layer is as follows. First, the layer
used 32 filters to extract deeper features from the output of the upper layer. The features
matrixes of 25 x 30 were achieved by 32 filters. Subsequently, we grouped the features
with 4 as a unit to (32/4) * 25 * 30 primary capsules to encode the probability and
low-level features related to mental workload level. We set three capsules with depth
8 in the digitcaps layer because there are three classes in our study. Capsules’ length
represents the probability of each mental workload level. Dynamic routing was used to
train capsule layers.

2.4 Dynamic Routing

The dynamic routing mechanism [13, 33] is as follows. In the first step, the i-th pri-
mary capsule y; is transformed into a high-level mental workload “predicted vector” i;);
through the weight matrix W;;(j = 1, 2, 3) by

wjji = Wijui 2
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It represents the relative relationship between low-level mental workload features and
high-level mental workload features.

In the second step, the “predicted vector” i1;; is weighted and summed to obtain s;
as follows

sj = Zicjjitj); A3)

where c;; is the coupling coefficient between the i-th primary capsule and the j-th mental
workload capsule, representing the probability that the i-th low-level primary capsule
is connected to the j-th high-level mental workload capsule. The sum of all coupling
coefficients is 1. The coupling coefficient c¢;; is calculated by
exp(bjj)
Cj = = (4)
Lrexp(bik)

where b;; is the log prior probability of the i-th primary capsule connected to the j-th
mental workload capsule.

In the third step, the nonlinear function is used to compress s; to obtain the vector
output v; of the j-th mental workload capsule by
1>

Ils;j 8j
Vj =

L sl sl

(&)

This operation can ensure that the length of the mental workload capsule vector is
between 0 and 1. We initialized log prior probability b;; by zeros and updated them in
the routing process by

bij <~ blj~|-1:lj|,' - Vj (6)

where - stands for the scalar product. Iteration is stopped until the predefined maximum
number of the iteration is reached. This iteration process can increase weights for the
features closely associated with one mental workload level while decreasing the weights
for the other features.

2.5 Loss Function

The margin loss and the reconstruction loss were used as the optimization objective of
the model. The margin loss is calculated by

Ly = T max(0,m™ — ||vk||)2+x(1 — Ty) max(0, llvg|| — m™)? (7)

where T} is an indicator of the class. When the mental workload of class k is present,
Ty is equal to 1 (otherwise Ty = 0). m™ and m™ are set as 0.9 and 0.1, respectively. A is
a coefficient for adjusting the proportion of the loss for absent mental workload classes
and is set as 0.5 in our case.

A reconstruction loss was used additionally to encourage the mental workload cap-
sules to encode the instantiation parameters of the input mental workload. The recon-
struction loss is calculated by mean square error (MSE). We scaled down the reconstruc-
tion loss by 0.00001 so that it did not dominate the margin loss during training. In the
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end, the total loss was the sum of the margin losses of all mental workload capsules and
the reconstruction losses.

Model training was terminated when the maximum number of iterations (i.e., 200)
was reached or the average loss was less than 107>, Moreover, we adopted a decaying
learning rate. In other words, the learning rate was gradually reduced along with the
iterations. This could help reduce the frequency of the fluctuation during the training,
especially for the time around the minimum loss. The learning rate was changed after
each iteration and was calculated by

Ir=1Ir x a®°" (8)

where /r represents the learning rate, a represents the base of the decaying learning rate,
and epoch represents the number of iterations until the current epoch.

3 Result

3.1 Methods Comparison

We performed a leave-one-subject-out scheme to evaluate the performance of the meth-
ods. Specifically, all data of a subject were used for testing while the data of the remaining
subjects were used for training. This was repeated until every subject was in the testing
set once. The final accuracies averaging across all subjects were reported in the format
of mean =+ standard deviation in this paper.

80 T T T T T T

7ol | CapsNet (PLV+PSD)EIk-NN (PLV+PSD)
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Fig. 2. Method comparisons in terms of testing accuracy
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In this study, we not only compared different input features in the capsule network but
also compared the capsule network with other mental workload classification methods
(i.e., k-NN, SVM, RF, and CNN). CNN consists of convolutional layers, max-pooling
layer, fully connected layer, and softmax. The input data were kept the same for all
methods and the models were tuned to be as good as they can.

As shown in Fig. 2, the capsule network with the feature fusion of PLV and PSD
achieved an average testing accuracy of 45.11% = 6.82%, which was the best perfor-
mance in the method comparison. The parameter settings of the model can be found in
Table 1.

Table 1. Parameters of the capsule network model

Name of the Value
parameter
Training settings Initial Learning 0.001
Rate
Base of Decaying | 0.9
Learning Rate
Weight of 0.00001
Reconstruction
Loss
Maximum No. of | 200
Epochs
Batch Size 20
Convolution layer | Kernel Size 5x%x5
Padding 0
Stride 1
Convolution layer | Kernel Size 5x5
Padding 0
Stride 1
Capsule |1 Kernel Size 5x5
layers Padding 0
Stride 2
Vector Length 4
2 Routing No 3
Vector Length 8

The second-highest testing accuracy was 43.86% =+ 6.41%, which was achieved by
CNN in the case of feature fusion of PLV and PSD. The methods k-NN, SVM, and
RF achieved accuracies of 35.21% + 5.25%, 41.53% + 4.59%, and 40.16% =+ 6.50%,
respectively (see Fig. 2). The detail of testing accuracies for each subject can be found
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in Table 2. The results showed that deep learning models outperformed the traditional
methods. It implies that deep learning models have a high capacity to learn essential
information from EEG data.

Table 2. Comparison of testing accuracies under different methods

Methods (%) | S1 S2 S3 S4 S5 S6 S7 Mean =+ Standard
deviation

CapsNet 57.04 |43.15 [41.11 [47.78 34.81 [47.04 |44.81 |45.11 £6.82
(PLV+PSD)

CapsNet 64.07 4130 3833 |44.44 |36.11 |31.48 4537 43.01+10.46
(PLV)

CNN 50.00 143.89 [33.15 |44.81 3833 4519 51.67  43.86+6.41
(PLV+PSD)
k-NN 27.78 4074 13296 4278 33.70 |31.67 3685 35214525
(PLV+PSD)
SVM 39.07 |47.96 14037 |36.85 36.67 |47.04 4278 | 41.53 +4.59
(PLV+PSD)
RF 5148 38.15 3537 38.70 (3333 37.41 |46.67 | 40.16 +6.50
(PLV+PSD)

Better performance in the capsule network compared to CNN might be due to the
capability of capturing structural relationships between features in the capsule network.
‘We noticed that the standard deviation was smaller and the mean was higher in the case
of feature fusion compared to the single feature category of PLV. This might be because
the different kinds of features complement each other to improve the robustness so that
there is a relatively robust performance across subjects.

In terms of the average training accuracy, the capsule network achieved the training
accuracy of 98.72% =+ 0.42%, while k-NN, SVM, RF, and CNN performed accuracies of
88.81% £ 0.63%, 100%, 100%, and 96.91% 4 0.79% (see Fig. 3). The respective training
accuracies for each subject are listed in Table 3. It was worth noting that SVM and RF had
the highest training accuracy but the lower testing accuracy. It reflected that the overfitting
was obvious in these two methods for the cross-subject mental workload classification.
In the case of the same input features, in addition to SVM and RF, the training accuracy of
the capsule network was also relatively high (see Fig. 3). However, the capsule network
achieved a better testing accuracy. Taken together, the capsule network less suffers from
overfitting. In this study, we observed that feature fusion of PLV and PSD was better
than single category of features in both training accuracy and testing accuracy, showing
the spectral features and connectivity features are complementary.
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Fig. 3. Comparison of training accuracies under different methods

Table 3. Comparison of training accuracies under different methods

Methods (%) S1 S2 S3 S4 S5 S6 S7 Mean =+ Standard
deviation

CapsNet (PLV + | 98.95 | 98.61 | 97.96 | 98.46 | 99.04 | 98.80 | 99.20 | 98.72 £0.42
PSD)

CapsNet (PLV) 97.84 | 9735 | 96.08 | 97.01 | 97.01 | 9753 | 97.50 | 97.19 £0.57

CNN (PLV + 9639 | 96.42 | 9642 | 9624 | 9793 | 98.15 | 96.85 | 96.91 +0.79
PSD)
k-NN (PLV + 88.30 | 89.32 | 87.62 | 88.95 | 89.38 | 89.01 | 89.04 | 88.81 £0.63
PSD)

SVM (PLV + 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 % 0.00
PSD)

RF (PLV + PSD) | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |100.00 | 100.00 | 100.00 £ 0.00

4 Conclusion

In this study, we targeted the difficulty of the cross-subject mental workload classifica-
tion. A feature fusion-based capsule network was proposed, which captured structural
relationships between features of power spectral density and brain connectivity. We
demonstrated that the feature fusion-based capsule network achieved the best perfor-
mance in the cross-subject mental workload classification in terms of testing accuracy.
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This study suggests that the feature fusion-based capsule network is relatively robust to
the large variation across subjects and could be a good candidate way for the classification
with large variations.

Although the feature fusion-based capsule network achieved the best performance
in the cross-subject mental workload classification, the accuracy is not very adequate to
make practical usage efficient. In the future, the accuracy should be further enhanced.
We also noticed the training accuracies were much higher than the testing accuracies,
implying the issue of model overfitting. A further study is required to mitigate this issue.
Finally, it would be better to have a larger sample size for validating the performance of
models.

References

1. Radiintz, T.: Dual f