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Preface

The International Conference on Brain Informatics (BI) series has established itself as
the world’s premier research conference on brain informatics, which is an emerging
interdisciplinary and multidisciplinary research field that combines the efforts of
cognitive science, neuroscience, medical science, data science, machine learning,
artificial intelligence (AI), and information and communication technology (ICT) to
explore the main problems that lie in the interplay between human brain studies and
informatics research. The 15th International Conference on Brain Informatics (BI 2022)
provided an international forum to bring together researchers and practitioners from
diverse fields for the presentation of original research results, as well as the exchange and
dissemination of innovative and practical development experiences on brain informatics.
The main theme of BI 2022 was “Brain Science Meets Artificial Intelligence” with
respect to the five tracks: Cognitive and Computational Foundations of Brain Science;
Human Information Processing Systems; Brain Big Data Analytics, Curation and
Management; Informatics Paradigms for Brain and Mental Health Research; and
Brain-Machine Intelligence and Brain Inspired Computing.

TheWICI InternationalWorkshoponWeb IntelligenceMeetsBrain Informatics, held
in Beijing, China, in 2006, kicked off the Brain Informatics conference series. It was
one of the first conferences to focus on the application of informatics to brain sciences.
The 2nd, 3rd, 4th, and 5th BI conferences were held in Beijing, China (2009), Toronto,
Canada (2010), Lanzhou, China (2011), andMacau, China (2012), respectively. In 2013,
health was added to the conference title, with Brain Informatics and Health (BIH)
events placing an emphasis on real-world applications of brain research in human
health and well-being. BIH 2013, BIH 2014, BIH 2015, and BIH 2016 were held
in Maebashi, Japan, Warsaw, Poland, London, UK, and Omaha, USA, respectively.
In 2017, the conference returned to its original design and vision to investigate
the brain from an informatics perspective and to promote a brain-inspired informa-
tion technology revolution. Thus, the conference name was changed back to Brain
Informatics at Beijing, China, in 2017. The editions in 2018 and 2019 were held in
Arlington, Texas, USA, and Haikou, China, respectively.

The COVID-19 pandemic had the most significant impact on BI 2020, with the
conference originally scheduled for Padua, Italy, being hosted virtually and shortened to
one day. In 2021, the conference was still held online due to the impact of the pandemic;
however, to increase participation, we decided to go back to the usual three-day event,
with one day dedicated to workshops and special sessions, one day to the excellent
keynote sessions, and one day to the technical sessions.

Drawing from our years of offline and two years of online experience designing
and facilitating the BI conference, we organized a three-day hybrid conference in 2022.
The hybrid format of this conference was unique in that it was co-hosted in Padua,
Italy (in person) and Queensland, Australia (online). The most exciting thing is that the
University of Padua celebrated its 800th anniversary in 2022, andwe took the opportunity
to celebrate by hosting the 15th International Conference on Brain Informatics in Padua.
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During the conference, we took measures to safeguard the health of all attendees and
employees due to the ongoing pandemic.

The BI 2022 hybrid conference was supported by the Web Intelligence Consortium
(WIC), the University of Padua, the Padova Neuroscience Centre, the University of
Oxford, theUniversity ofQueensland, theChineseAssociation forArtificial Intelligence,
Peking Union Medical College, the IEEE Computational Intelligence Society, the
International Neural Network Society, and Springer.

BI 2022 solicited high-quality papers and featured keynote talks from world-class
speakers, panel discussions, workshops, and special sessions. The conference involved
several world leaders in brain research and informatic technologies, including Silvestro
Micera, Robert Legenstein, Gustavo Deco, Themis Prodromakis, and Christian Georg
Mayr. This proceedings contains 30 high-quality papers accepted and presented at BI
2022, which provide a good sample of state-of-the-art research advances on BI from
methodologies, frameworks, and techniques to case studies and applications.

We would like to express our gratitude to all BI 2022 committee members for their
instrumental and unwavering support. BI 2022 had a very exciting programwhich would
not have been possible without the dedication of the Program Committee members in
reviewing the conference papers and abstracts. BI 2022 could not have taken place
without the great team effort and the generous support from our sponsors. Our gratitude
goes to Springer for sponsoring student first-author registrations, which were selected
based on the quality of the submitted papers and their need for financial support. We are
grateful to the LNCS/LNAI team at Springer for their continuous support in coordinating
the publication of this volume. Also, special thanks to YangYang, Hongzhi Kuai, YuCao
and for their great assistance and support. Last but not least, we thank all our contributors
and volunteers for their support during this challenging time to make BI 2022 a success.

July 2022 Mufti Mahmud
Jing He

Stefano Vassanelli
André van Zundert

Ning Zhong
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Estimating the Temporal Evolution
of Synaptic Weights from Dynamic

Functional Connectivity

Marco Celotto1,2,3(B) , Stefan Lemke1,4 , and Stefano Panzeri1,3

1 Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems,
Istituto Italiano di Tecnologia, Rovereto, Italy

marco.celotto@iit.it
2 Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
3 Department of Excellence for Neural Information Processing, Center for Molecular

Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE),
Hamburg, Germany
s.panzeri@uke.de

4 Department of Cell Biology and Physiology, University of North Carolina,
Chapel Hill, USA

stefan.lemke@unc.edu

Abstract. How to capture the temporal evolution of synaptic weights
from measures of dynamic functional connectivity (DFC) between the
activity of different simultaneously recorded neurons is an important and
open problem in systems neuroscience. To address this issue, we first sim-
ulated models of recurrent neural networks of spiking neurons that had
a spike-timing-dependent plasticity mechanism generating time-varying
synaptic and functional coupling. We then used these simulations to
test analytical approaches that relate dynamic functional connectivity
to time-varying synaptic connectivity. We investigated how to use dif-
ferent measures of directed DFC, such as cross-covariance and transfer
entropy, to build algorithms that infer how synaptic weights evolve over
time. We found that, while both cross-covariance and transfer entropy
provide robust estimates of structural connectivity and communication
delays, cross-covariance better captures the evolution of synaptic weights
over time. We also established how leveraging estimates of connectivity
derived from entire simulated recordings could further boost the estima-
tion of time-varying synaptic weights from the DFC. These results pro-
vide useful information to estimate accurately time variations of synaptic
strength from spiking activity measures.

Keywords: Dynamic functional connectivity · Spiking neural
network · Communication delay · Transfer entropy · Cross-covariance

1 Introduction

Neurons in biological networks are connected by directed, plastic synapses.
Neurons are sparsely connected and the identity, the strength, and the
c© Springer Nature Switzerland AG 2022
M. Mahmud et al. (Eds.): BI 2022, LNAI 13406, pp. 3–14, 2022
https://doi.org/10.1007/978-3-031-15037-1_1
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communication delay of the connections between cells-pairs determine the net-
work dynamics [6,15,16]. Importantly, the strength of each synapse can change
over different time scales - ranging from tenths of milliseconds to days - due
to processes including synaptic potentiation and depression [2]. Such changes in
synaptic weights are thought to be neural-activity dependent and driven by Heb-
bian mechanisms of plasticity such as spike-timing dependent-plasticity (STDP).

Many electrophysiological in vivo experiments record simultaneously the
spiking activity of several neurons within a network, but without the ability to
measure directly synaptic activity. Robust methods to estimate synaptic weights
and how they evolve over time from functional measurements of neural activ-
ity are thus critical to investigate several neuroscientific questions. For example,
sleep is thought to play an essential role in synaptic homeostasis and memory
formation. Several theories and experimental findings support the idea that spe-
cific features of non-REM sleep might contribute to the up- and down-scaling
of synaptic weights [23]. Experimentally, it has been shown that the nesting
between spindles and slow oscillations can increase the dynamic functional con-
nectivity (DFC), measured as peaks of cross-correlation between pairs of puta-
tively connected cells, over the temporal range of minutes [14]. However, the
corresponding synaptic changes over the same time span are difficult to charac-
terize. In general, it remains unclear how changes in DFC measures relate to the
temporal dynamics of synaptic weights in spiking neural networks.

Previous works investigating the relationship between functional connectivity
measures and ground truth synaptic connectivity have often utilized the Izhike-
vich network [11] as a reasonably realistic model of a cortical spiking neural
network [9,18]. These studies highlighted that bivariate connectivity measures,
such as cross-covariance and transfer entropy, can provide robust estimates of the
underlying directed connectivity in simulated networks. However, they did not
examine the temporal evolution of functional and structural connectivity within
spiking networks incorporating STDP. Here, we examined the performance of
several different DFC methods in estimating the temporal dynamics of synaptic
weights (termed dynamic structural connectivity or DSC) from up to 90 min
of spiking activity in simulated spiking networks with STDP. We first deter-
mined the performance of DFC measures in inferring static properties of the
simulated networks (such as pairwise synaptic connectivity and the associated
communication delays). We then applied these measures with a sliding window
approach to compute DFC and quantify its relationship with DSC. We found,
that, among all tested DFC measures, the cross-covariance better captured the
evolution of synaptic weights over time. Importantly, we also established how
to use the information obtained from the static, time-averaged analysis of the
network, to enhance the estimate of DSC from DFC.

2 Simulated Spiking Network and Inference Pipeline

To investigate the relationship between DSC and DFC, we simulated a spik-
ing neural network in which the strength of synaptic weights changed over time
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according to an STDP rule. We then compared the performance of different
functional connectivity measures in estimating both the ground truth structure
of the network (i.e. which pairs of neurons were connected, their communication
lag, and the type of synapse), and how the strengths of the synaptic weights
changed over time (Fig. 1). We simulated a spiking network of N = 100 neurons
in which the dynamics of each neuron was described using the Izhikevich neuron
model [10]. This model has a good tradeoff between biological plausibility and
computational efficiency. The structure of the network was set by Izhikevich [11]
to mimic the connectivity of a real population of cortical neurons (Fig. 1A). 80%
of neurons in the network were excitatory and 20% were inhibitory. Excitatory
neurons were randomly connected to 10 postsynaptic neurons which could be
either excitatory or inhibitory (800 excitatory synapses in total). Each excita-
tory synapse had a random communication delay (δ) whose value was uniformly
distributed between 1 and 20 ms and was constant over time. Inhibitory neurons
were randomly connected to 10 postsynaptic excitatory neurons (200 inhibitory
synapses), therefore no inhibitory-to-inhibitory (I-I) connections were present in
the network. The lack of I-I synapses caused the average firing rate of excita-
tory neurons (5.11 ± 0.03 Hz) to be lower than the one of inhibitory neurons
(8.23±0.04 Hz). Inhibitory connections had a communication delay of 1 ms. The
simulation ran with 1 ms temporal precision for a duration decided by the user.
During the simulation, the strength of excitatory synapses - which were all ini-
tialized to the same, positive, value - changed dynamically due to an STDP rule:
when a presynaptic neuron i fired before a postsynaptic neuron j the strength
of the synapse from i to j (wij) was strengthened, on the other hand when j
fired before i wij got weaker (Fig. 1B). The decay time of the STDP rule was
τ = 20 ms and synaptic weights were updated every 1 s with a memory fac-
tor which made the weights change, on average, over the timescale of 1–2 min
(obtained measuring the synaptic weights autocorrelation, not shown).

We used different measures to compute the static and dynamic functional
connectivity of the network from the spiking activity (Fig. 1C). Such measures
were all directed (meaning that, for each pair of neurons, they could take different
values in the two directions) and allowed computing the strength of communi-
cation for different delays (δ). When computing static functional connectivity,
we used data from the whole simulated recording to compute a single connec-
tivity value for each pair of neurons (i, j). We computed all connectivity mea-
sures with δ ranging from 1 to 50 ms then, for each pair, we determined the
static functional connectivity (wij) as the maximum connectivity value across
delays. We selected the communication delay (δij) as the lag that maximized
the functional connectivity. Calling fij(δ) the generic measure of functional con-
nectivity, then: wij = maxδ(fij(δ)) and δij = argmaxδ(fij(δ)). By taking the
top percentile of connectivity values for each measure we obtained sparse static
networks (Fig. 1D). If the measure f was signed we could also infer whether a
synapse was excitatory or inhibitory. Then, we used a sliding window approach
to compute, for each measure, the DFC of all the synapses that were inferred
as present (Fig. 1E). We exploited the static measures of communication delay
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between pairs to compute delay-consistent DFC and then evaluated the per-
formance of the different measures in recovering the ground-truth dynamics of
synaptic weights.

Δ
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Fig. 1. Graphical depiction of the method. A) Structural connectivity of the simulated
network for N = 10 neurons. Synaptic weights could be either excitatory (green) or
inhibitory (purple). Excitatory connections had randomly distributed communication
delays. B) The strength of the synaptic weights changed over time due to STDP. C)
Structural and biophysical properties of the network determined the spiking activity
of the neural population. D) Static functional connectivity was measured from spiking
activity. E) Dynamic functional connectivity was measured from activity, also leverag-
ing on the inferred static connectivity of the network. (Color figure online)

3 Inferring the Presence of Synapses

We tested the performance of different measures of functional connectivity in
estimating the presence of synapses from spiking activity. Two of these measures
were based on Pearson correlation, which is commonly used to estimate the
connectivity between pairs of neurons [3,9,14]. The first method was normalized
cross-correlation (XCorr):

XCorrij(δ) =
E[it−δjt]

σiσj
(1)

where it and jt′ are the binary values of the spike trains from neurons i and j
at times t and t′, and the expected value was computed across time. σi and σj

are standard deviations of the spike trains of neurons i and j, respectively.
The second method was the normalized cross-covariance (XCov), which is

insensitive to correlations in the average firing rate due to subtraction of the
average activity value from the spike trains before computing the correlation:

XCovij(δ) =
E[(it−δ − i)(jt − j)]

σiσj
(2)
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Here i and j are the average firing rates of neurons i and j, respectively.
Additionally, we computed the functional connectivity using two variants

of the information-theoretic measure of information transfer known as transfer
entropy [8,21], a measure that has been successfully used to characterize time-
dependent changes in recurrent connectivity between mass signals [1]. Transfer
entropy has the theoretical advantage - with respect to correlation measures -
of being assumption-free in terms of the joint probability distribution of the
lagged activity of neuron i and j. This also means that transfer entropy does
not assume that the interactions between neurons are linear. Additionally, this
measure respects the Wiener-Granger causality principle of causal communica-
tion by conditioning the information between the past of the emitter and the
present of the receiver neuron on the past activity of the receiver neuron. Our
first implementation of transfer entropy uses single time-points statistics to build
the probability distribution of lagged neural activity. We refer to this implemen-
tation as TE :

TEij(δ) = I(it−δ; jt|jt−1) =
∑

p(it−δ, jt, jt−1) log2
p(jt|it−δ, jt−1)

p(jt|jt−1)
(3)

where p(it−δ, jt, jt−1) is the joint probability distribution of the present state of
the receiver neuron jt, its past lagged by one time step jt−1 and the past state
of the emitter neuron lagged by δ time steps it−δ. The sum occurs over all the
(it−δ, jt, jt−1) triplets of events in the probability space. The probability distri-
bution is sampled across time. The lag of the receiver past is set to −1 since it
has been proven to be theoretically optimal for determining real communication
delays [24].

The second implementation of transfer entropy uses multidimensional pasts
of the emitter and the receiver neuron to consider the possible relevance of time
windows longer than 1 ms when transmitting information. Using the terminology
of [9] we refer to this measure as Higher Order Transfer Entropy (HOTE ):

HOTEij(δ) = I(i(k)t−δ; jt|j(l)t−1) =
∑

p(i(k)t−δ, jt, j
(l)
t−1) log2

p(jt|i(k)t−δ, j
(l)
t−1)

p(jt|j(l)t−1)
(4)

where k and l are the dimensions of the past activity of the emitter and the
receiver neuron i and j, respectively. For the analysis reported in this paper we
set k = l = 5 ms.

We computed these four functional connectivity measures between all pairs
of neurons in the network and estimated the communication strength and delay
for each pair as described in the previous section. We then evaluated the per-
formance of the different metrics in determining the presence or absence of
synapses between pairs of neurons, varying the threshold probability of connec-
tivity strength incrementally from 0 to 1 in steps of 0.01. Since the two classes
of present and absent synapses were unbalanced (only 10% of all the possible
synapses were present in the network) we used precision-recall (PR) curves to
study the performance in this classification task [4] (Fig. 2A). Calling TP , FP



8 M. Celotto et al.

and FN the number of true positive, false positive and false negative inferred
synapses, respectively, we have that precision = TP

TP+FP and recall = TP
TP+FN .

Therefore, if for a given measure the two distributions of present and absent links
were perfectly separable, we would get that for recall = 1 also precision = 1.
On the other hand, a random classifier would always have a precision equal to
the ratio of synapses present in the model (10%, dashed line in Fig. 2A) for each
recall value.
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Fig. 2. Performance of functional connectivity measures in estimating structural con-
nectivity. A) Precision-recall (PR) curves computed from 90 min of simulated activity
for TE, HOTE, XCov and XCorr. Each point is one percentile of the distribution of
functional connectivity values across pairs. B) AUPR trend with simulation length
(length ranges from 5 to 90 min). C) Comparison of precision in identifying connected
pairs with simulation lengths, for top 10th (1000 pairs) and top 5th (500 pairs) per-
centiles of each measure’s distribution. D) Fraction of pairs belonging to each group of
synapses, from 90min simulation and using the top 10th percentile of connections. GT
= ground truth. (Color figure online)

After 90 min of simulation, XCov, TE and HOTE all performed well in the
classification task, having a PR curve whose shape approached the optimal one.
Among these three measures, XCov showed the best PR curve and TE the
worst one. XCorr, on the other hand, performed poorly, with a PR curve far
from optimal. The area under the precision-recall curve (AUPR) is a useful met-
ric to summarize the goodness of a PR curve; a perfect classifier has an AUPR
equal to one. We computed how AUPR scales with simulation length for different
measures. This analysis confirmed that XCov and HOTE were the best metrics
in evaluating which links were present for long recordings, while HOTE worked
better than XCov and TE for recording shorter than 10 min (Fig. 2B). We mea-
sured how the precision of the different measures scaled with the simulation time
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for the top 10th and top 5th percentile of inferred synapses. For the top 10th
percentile (i.e. 1000 inferred synapses, which equals the ground truth number
of connections) we found that the maximum precision in the classification was
obtained with XCov, which topped at 92% for 90 min of simulated recording
(Fig. 2C top). With a more conservative threshold of the top 5th percentile of
connections (i.e. half of the true total number), we captured the top 500 real con-
nections after 30 min of simulation (Fig. 2C bottom) for all measures but XCorr.
To investigate why XCorr performance was so poor when compared to the other
measures, we computed the fraction of links inferred by each measure as the top
10th percentile of synapses in the four subgroups of excitatory-to-excitatory (E-
E), excitatory-to-inhibitory (E-I), inhibitory-to-excitatory (I-E) and inhibitory-
to-inhibitory (I-I) synapses (Fig. 2D). XCov performed best in determining the
correct fraction of synapses belonging to each group, while XCorr overestimated
the number of I-I connections and underestimated the number of E-E connec-
tions. This behavior of XCorr is due to the aforementioned differences in average
firing rate between inhibitory and excitatory neurons, with a higher firing rate
for inhibitory neurons, as XCorr is sensitive to the correlation between average
firing rates. Given the poor performance of XCorr in estimating the presence of
synapses, we discarded it in the following analyses.

4 Inferring Synapse Type and Communication Delay

We studied how, for each ground truth synapse, different functional connec-
tivity measures performed in inferring whether the synapse was excitatory or
inhibitory, and the value of the communication delay of that pair of neurons.

We could not use information-theoretic measures to infer whether
synapses were excitatory or inhibitory as these measures are only positively
defined. Therefore, we only examined the XCov performance on this excita-
tory/inhibitory classification task. We classified a connection as excitatory and
inhibitory based on XCov value, with positive correlation values assigned as
excitatory connections and negative correlation values as inhibitory connections.
After 90 min of recording XCov could reliably separate excitatory and inhibitory
synapses (Fig. 3A). We found that the performance of the classifier increased with
recording time for both the excitatory and the inhibitory class (Fig. 3B).

We also compared how functional connectivity measures performed in infer-
ring ground truth communication delays. After 90 min of simulation, all mea-
sures estimated delays with a correlation across synapses that was above 0.85
(see Fig. 3C for the relationship between the ground truth delays and those esti-
mated using XCov - on the top - and using HOTE - on the bottom). The trend
of the correlation between ground truth and estimated delays with simulation
lengths was approximately linear in the explored range (Fig. 3D). Nonetheless,
HOTE estimated the delays more precisely than XCov and TE. After 90 min of
simulation, HOTE had an average delay error, measured as the absolute value
of the difference between ground truth and inferred delay, below 1 ms. On the
other hand, XCov and TE showed a systematic error in the delay estimation of
approximately 2 ms (see Fig. 3C and Fig. 3E).
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Fig. 3. Performance of the measures in estimating connection type and delays. A) Dis-
tributions of functional connectivity values measured using XCov for excitatory (green)
and inhibitory (purple) cells. B) Performance of a classifier in identifying excitatory
and inhibitory synapses with simulation length. The decision boundary of the classifier
was set to XCov = 0. C) Scatter plots of real and estimated delays across cell pairs
using XCov (top) and HOTE (bottom). The size of the markers is proportional to the
number of pairs having that specific combination of ground truth and estimated delay.
The dashed line is the identity line x = y. Black dots far from the identity line cor-
respond to pairs of measured and real delays that occurred only once. D) Correlation
between ground truth and estimated delays with simulation length. E) Average error
in delay estimation with simulation length. (Color figure online)

5 Relationship Between Dynamic Functional
Connectivity and the Temporal Evolution
of Synaptic Weights

Finally, we investigated how the ground truth evolution of the synaptic weights,
that is the DSC, related to the measured DFC. We computed DFC using a sliding
window approach. We first selected a size for the sliding window T and then
shifted it through the simulated recording in steps of length T . We computed
DFC only for pairs of neurons that were putatively connected, which we selected
as the top 5th percentile of links for each measure after 90 min of simulation
(Fig. 1C), and only at the communication delay that we measured for each pair
(Fig. 3C). Moreover, we computed DFC only for excitatory synapses since the
inhibitory ones had a constant synaptic weight in the simulated network. We
calculated the across-time correlation between DFC and DSC for all synapses to
quantify the performance of each functional connectivity measure in estimating
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the DSC. To do this, we averaged the DSC over windows of width T , so that
the number of DSC and DFC samples over time were matched.

In Fig. 4A we show the DSC (top left), the DFC computed using TE (top
right), HOTE (bottom left) and XCov (bottom right) for three example synapses
and T = 10 min. It is visible that, while all measures work reasonably well
in tracking how the strength of the gray and the green synapses change over
time, TE and HOTE fail in quantifying the temporal evolution of the brown
synapse. We found that, on average, DFC computed via XCov correlates with
DSC better than the DFC computed via TE or HOTE (Fig. 4B). In particular,
while DFC computed via TE and HOTE had a high temporal correlation with
DSC (above 0.7) for the majority of synapses, their distributions showed a large
tail of synapses whose correlation between DSC and DFC was distributed around
zero (such as the brown one in Fig. 4A). For XCov, the number of synapses whose
DSC was poorly estimated decreased rapidly with the correlation strength, and
the average correlation was 0.82 (Fig. 4B, right). Therefore, the DFC computed
using XCov outperformed the one obtained from TE and HOTE in inferring the
simulated changes of the synaptic weights over time.

We then studied how the across-time correlation between DSC and DFC
depends on the width of the sliding window T . The correlation between DFC
and DSC increased with the window size, reaching a plateau around T = 5 min
(Fig. 4C, left). Below T = 5 min the correlation dropped due to the limited
sample size used to compute DFC, manifesting a tradeoff between the temporal
precision of the DFC measures (T ) and their performance in estimating DSC. We
repeated the same analysis without keeping the delay consistent when computing
DFC but simply taking the maximum connectivity value across delays (between
1 and 50 ms) for each window (Fig. 4C, middle). When not keeping the delay
consistent with the previously measured one, the correlation between DSC and
DFC dropped substantially. For sizes of the sliding window lower than T = 5 min,
the advantage of keeping a consistent delay was particularly evident, with a boost
in the correlation between DSC and DFC larger than 0.2 (Fig. 4C, right). This
result showed a clear benefit in leveraging estimates of delay derived from entire
simulated recordings when inferring DSC from DFC.

6 Discussion

We studied how different measures of functional connectivity can be used to
infer the static and dynamic properties of synapses from spiking activity in
a simulated neural network. This problem is of relevance because in many in
vivo experiments only spiking activity is measured, but it is important to also
infer the changes in synaptic connectivity to understand the evolution of the
neural network under study. We addressed the problem at the level of simulated
recordings with single-neuron cellular resolution. As such, our approach differs
from and complements other studies of DFC at the level of mass neural activity
[7], which lack the ability to resolve interactions between pairs of individual
neurons.
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Fig. 4. Relationship between dynamic structural and functional connectivity. A)
Dynamic connectivity for 3 example synapses, T = 10 min. Top left: ground truth
dynamics of synaptic weights (DSC). Top right: Transfer entropy DFC. Bottom left:
HOTE DFC. Bottom right: Cross-covariance DFC. B) Distribution of the across-time
correlation coefficients between DSC and DFC, T = 10 min. Left: Transfer entropy.
Middle: HOTE. Right: Cross-covariance. Colored dots show where the synapses in
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and middle panels). (Color figure online)

Consistent with previous studies, we found that among the considered func-
tional connectivity measures, XCov and HOTE performed best in identifying
which pairs of neurons were connected [9]. Cross-covariance could also reliably
classify excitatory and inhibitory synapses, while HOTE was the best measure
in recovering the ground-truth communication delay between neurons. Cross-
covariance performed best in inferring DSC, with an across-time correlation
above 0.8 between DFC and DSC for sliding window sizes larger than 5 min.
We also found that, when computing DFC, keeping the communication delay
consistent with the one obtained from the static network analysis boosted the
relationship between DFC and DSC, especially for moving windows shorter than
5 min. It is possible that this correlation boost by keeping the delay constant is
because considering delays that differ from the ground truth one enhances the
detection of spurious correlations. This specifically holds under the assumption
that communication delays are constant in the recording period as is the case
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of our spiking network. Such spurious correlations might possibly be induced
by other neurons in the population connected with a lag to both neurons in a
putatively connected pair.

The present study has limitations that we plan to address in future works.
First of all, it will be important to validate the DFC measures on more biologi-
cally realistic simulated neural networks presenting global oscillations, correlated
inputs to neurons (mimicking sensory perception and motion), and more hetero-
geneity in the firing rates and in the average synaptic weights over time. Indeed,
such effects could act as confounders of the relationship between DFC and DSC
[19] or could require refined null hypotheses based on permutation tests to assess
the presence of links. In the model we also assumed that (i) the communication
delays are constant and (ii) no synapses are formed or eliminated over time.
(i) assumes that the main parameters determining the conductance velocity of
action potentials (e.g. axons diameters and myelin levels) are approximately con-
stant over time scales of tens of minutes. Experimental finding suggest that this
assumption is reasonable, especially in adult mice where the formation of new
myelin occurs in the range of weeks [17]. Assumption (ii) is more delicate since
in mice it has been shown that, especially during sleep, dendritic spines can be
formed and eliminated within hours [25]. It will be important to investigate how
much we can relax these hypotheses while still exploiting the knowledge obtained
from the static network inference. Moreover, we plan to test the performance of
other bivariate (e.g. Granger causality) and, especially, other multivariate mea-
sures for estimating DSC. These measures might include using Granger Causality
estimates based on Generalized Linear Models (GLMs) [5,13,22] and maximum
entropy models [12,20]. Such multivariate measures could be useful e.g. to alle-
viate the effect of confounders such as common inputs.

To conclude, here we lay down foundations for relating dynamic functional
connectivity to the temporal evolution of synaptic weights in spiking neural
networks. The results obtained here provide a benchmark for further improving
methodologies that infer DSC from DFC.
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Abstract. A multi-dimensional stimulus can elicit a range of responses
depending on which dimension or combination of dimensions is consid-
ered. Such selection can be implicit, providing a fast and automatic selec-
tion, or explicit, providing a slower but contextualized selection. Both
forms are important but do not derive from the same processes. Implicit
selection results generally from a slow and progressive learning that leads
to a simple response (concrete/first-order) while explicit selection derives
from a deliberative process that allows to have more complex and struc-
tured response (abstract/second-order). The prefrontal cortex (PFC) is
believed to provide the ability to contextualize concrete rules that leads
to the acquisition of abstract rules even though the exact mechanisms
are still largely unknown. The question we address in this paper is pre-
cisely about the acquisition, the representation and the selection of such
abstract rules. Using two models from the literature (PBWM and HER),
we explain that they both provide a partial but differentiated answer such
that their unification offers a complete picture.

Keywords: Cognitive control · Prefrontal cortex · Computational
model · Abstract rules

1 Introduction

Two main strategies are generally reported for the selection of behavior [5,6].
On the one hand, implicit memory elaborated by slow learning processes can
generate a rigid behavior (also called default behavior), robust in stable worlds,
easy to generate but difficult to quickly adapt to changes. On the other hand,
explicit memory manipulating models of the world can be used for the prospec-
tive and explicit exploration of possible behaviors, yielding a flexible and rapidly
changing strategy, where behavioral rules can be associated to contexts and
selected quickly as the environment changes. In the simplest case, this means
learning rules defined as associations between an object’s properties and a direct
response. Such rules can be called concrete, while more complex or abstract rules
may involve the learning of second order relations on top of the first-order rules.
The prefrontal cortex (PFC) is believed to provide the ability to contextualize
concrete rules that leads to the acquisition of abstract rules [6]. Considering the
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number of contexts we encounter every day and the ease with which we select
appropriate strategies for each, some relevant questions arise: How do we repre-
sent these strategies or rules and how do we determine which one is appropriate?
An important way of understanding how the PFC supports contextual learning
and implements cognitive control is thus to understand how its representations
are organized and manipulated.

There is sufficient evidence to suggest that the PFC is organized hierar-
chically [3] with more caudal areas learning first-order associations and more
rostral areas putting them in context to facilitate learning of abstract rules.
This can be done by top-down modulation in the PFC, which underlies the abil-
ity to focus attention on task-relevant stimuli and ignore irrelevant distractors,
in two ways: either as a result of weight changes in modulated pathways and
predictions, or through activation-based biasing provided by a working mem-
ory system. These mechanisms have been explored in two prominent models
of the PFC. One well established model for cognitive control function through
the working memory system is the Prefrontal cortex and Basal ganglia Working
Memory model (PBWM) [10] in which a flexible working memory system with
an adaptive gating mechanism is implemented. At the biological level, the model
proposes that the PFC facilitates active maintenance for sustaining task-relevant
information, while the Basal Ganglia (BG) provides the selective gating mecha-
nism. A hierarchical extension of this model [7] proposes that hierarchical control
can arise from multiple such nested frontostriatal loops (loops between the PFC
and the BG). The system adaptively learns to represent and maintain higher
order information in rostral regions which conditionalize attentional selection in
more caudal regions.

A second hierarchical model, Hierarchical Error Representation (HER) [1],
explains cognitive control in terms of the interaction between the dlPFC (dorso-
lateral prefrontal cortex) and the mPFC (medial part of the PFC). The dlPFC
learns to maintain representations of stimuli that reliably co-occur with out-
come prediction error and these error representations are used by the mPFC to
refine predictions about the likely outcomes of actions. The error is broadcasted
through the PFC in a bottom-up manner, and modulated predictions from top-
down facilitate selection of an appropriate response. Thanks to its recursive
architecture, this model, presented in more details below, can elaborate hierar-
chical rules on the basis of learning by weight updating, both to select pertinent
stimuli and to map a representation inspired with principles of predictive coding
[2]. In addition to its elegant recursive mechanism, proposing an original com-
putational mechanism to account for the hierarchical structure of the PFC, the
HER model is also very interesting because its proposes to decompose the func-
tioning of the PFC between, on the one hand, the prediction of the outcome and
the monitoring of the error of prediction and, on the other hand, the elaboration
of contextual (and possibly hierarchical) rules to compensate errors. This distri-
bution of functions has also been reported between respectively the medial and
lateral parts of the PFC [6], yielding more importance to the biological plausi-
bility of the HER model. For these reasons, the HER model could be presented
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as a more elaborated and accurate model of the PFC, except for one point of
discussion that we put forward here. All the adaptations of the HER model are
made through learning by weight modifications, whereas the property of work-
ing memory of the PFC, as it is for example exploited in the PBWM model, is
often presented as a key mechanisms for its adaptive capabilities. An important
question is consequently to determine up to which point working memory and
attentional modulations are necessary for the learning of hierarchical rules in
cognitive control.

In the work presented here, we seek to answer specific questions about the
nature of top-down modulation and selective attention, through the lens of hier-
archical learning and representations. We start from the implementation of the
hierarchical HER model and its study for a task in which individual first-order
rules can be learned alone or associated within specific contexts to form second-
order rules. We can evaluate the performances of the HER model in these differ-
ent cases and compare them with a case where an attentional mechanism should
be deployed to facilitate and orient its learning. As discussed in the concluding
part, we observe that the attentional mechanism should be considered not only
for the processing of information but also for the learning of rules, particularly
in the hierarchical and contextual case.

2 Methods

This section first summarizes the HER model algorithm and equations, as
described in the original paper [1] and subsequently presents the task that we
have chosen for our study.

2.1 Model Details: HER

Working Memory Gating. At each level of the hierarchy, external stimuli
presented to the model may be stored in WM based on the learned value of
storing that stimulus versus maintaining currently active WM representations.

External stimuli are represented as a vector s, while internal representations
of stimuli are denoted by r. The value of storing the stimulus represented by s
in WM versus maintaining current WM representation r is determined as:

v = XTs (1)

where X is a matrix of weights associating the external stimuli (s) with corre-
sponding WM representations (r).

The value of storing stimulus si(vi) is compared to the value of maintaining
the current contents rj of WM (vj) using a softmax function:

probability of storingsi =
(expβvi + bias)

(expβvi + bias) + expβvj
(2)
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Outcome Prediction. Following the update of WM, predictions regarding
possible responses and outcomes are computed at each hierarchical layer, using
a simple feedforward network:

p = WTr (3)

where p is a vector of predictions of outcomes and W is a weight matrix asso-
ciating r and p.

Top-Down Modulation. Beginning at the top of the hierarchy, predictions
are used to modulate weights at inferior layers and modulated predictions are
computed, as shown with the red arrows in Fig. 1.

For a given layer, the prediction signal p’ additively modulates stimulus-
specific predictions p generated by the lower layer. In order to modulate pre-
dictive activity, p’ is reshaped into a matrix P’ and added to W in order to
generate a modulated prediction of outcomes:

m = (W + P′)Tr (4)

These modulated predictions are then used to modulate predictions of additional
inferior layers (if any exist)

m = (W + M′)Tr (5)

Response Selection. Actions are learned as response-outcome conjunctions at
the lowest layer of the hierarchy. To select a response, the model compares the
modulated prediction of correct feedback to the prediction of error feedback, for
each candidate response:

uresponse = mresponse/correct − mresponse/error (6)

This is then used in a softmax function to determine a response:

Prob(ui) =
expγui

∑
expγu

(7)

Bottom-Up Process. Following the model’s response, it is given feedback
regarding its performance and two error signals are computed at the bottom most
hierarchical layer, one comparing the unmodulated predictions to the outcome:

e = a(o− p) (8)

and another comparing the modulated predictions to the outcome:

e = a(o−m) (9)

where o is the vector of observed outcomes and a is a filter that is 0 for outcomes
corresponding to unselected actions and 1 everywhere else.
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The outer product of the first error signal and the current contents of the WM
at the bottom level is used as the feedback signal for the immediately superior
layer where this process is repeated (Fig. 1).

O′ = reT (10)

Effectively, at the second layer, the outcome matrix is a conjunction of stim-
uli, actions and outcomes. This matrix is reshaped into a vector o’ and used to
compute the prediction error at the superior layers:

e′ = a′(o′ − p′) (11)

Weights Updating. The second error signal is used to update weights within
the bottom-most hierarchical layer, it updates the weights connecting the WM
representation to prediction units (W), as well as weights in the WM gating
mechanism (X):

Xt+1 = Xt + (eTt Wt · rt)dT
t (12)

An eligibility vector d is used instead of the stimulus vector s. When a
stimulus i is presented, the value of di is set to 1, indicating a currently observed
stimulus and at each iteration of the model, d is multiplied by a constant decay
parameter indicating gradually decaying eligibility traces.

Wt+1 = Wt + α(etrTt ) (13)
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Fig. 1. (a) Model schematics: Figure adapted from [1] (b) Task schematics: Figure
adapted from [8] (Color figure online)

2.2 Task

To design our task, we consider the framework introduced by [8] which is com-
posed of three subtasks where the stimuli are letters having three dimensions:
color (red, green or black), case (upper or lower) and sound (vowel or consonant).
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In the first subtask (Block 1 in Fig. 1(b)), black color indicates to ignore the stim-
ulus and green color indicates to discriminate the case (rule T1: left button for
upper, right button for lower). In the second one (Block 2 in Fig. 1(b)), black
color indicates to ignore the stimulus and red color indicates to discriminate the
sound (rule T2: left button for vowel, right button for consonant). The third
one (Block 3 in Fig. 1(b)) is a random mix of trials from the other two blocks.
This framework is interesting because, whereas rules T1 and T2 in blocks 1 and
2 require the subject to attend to a single dimension of the stimulus, block 3
requires to pay attention to both and to decide which rule to apply based on the
third (contextual) dimension. Let us also mention here that, while there is no
apparent difficulty with such tasks, it is actually harder than it appears depend-
ing on the way a task is learnt. During block 1, one can either learn the rule:
“green means case and black ignore” or the rule: “black ignore, else case”. The
same is true for block 2 with sound. If we now consider block 3 and depending
on how a subject learnt the first two blocks, she may succeed or fail immediately.
In this latter case, this means block 3 cannot exploit previous learning and has
to be (re)learnt.

The original task was cued by instruction and corresponding performances
were reported in the paper [8]. Here, we wish to explore the inherent capability
of a model to learn an abstract and hierarchical rule task without instructional
cues, as in the paradigm reported by [4] and also to consider how the hierarchy
can be learnt, depending on how information is represented in the model. We
used two types of learning paradigms for the simulations: the first paradigm in
which rules T1 and T2 were learned one after the other, and the performance
of the model was then tested on random trials interleaved from rule T1 and
T2 (to say it differently, we apply successively block 1, 2 and 3). In the second
paradigm, an entire abstract rule that we call T3, corresponding to the selection
on rules T1 and T2 depending on the contextual cue ‘color’ was directly learned
(block 3 applied first) and performance of the model was subsequently tested on
rule T1 and T2 (blocks 1 and 2). In the next section, we report performances
observed with the HER model and with an adapted version that we propose
subsequently.

3 Results

We have first studied how the HER model, as it has been designed (cf Sect. 2.1),
can address the tasks defined above, under the two mentioned paradigms (cf
Sect. 2.2). Due to the design of the HER model, each layer can only map or
process one stimulus value, thus requiring as many layers as there are stimulus
dimensions. The mapping in the model is also highly sensitive to the stimu-
lus dimensions relative to one another, particularly higher-dimensional stimulus
are preferentially mapped onto the lowest hierarchical layer. This rests on the
assumption that stimulus dimensions better able to predict and reduce uncer-
tainty about the response are mapped to lower layers.

This may not always be the case in real life situations though. We often have
to adapt and generalize the same rules over several different contexts. In the
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task we consider as well, the context is determined by the color, which has 3
possible values - one of which always maps to the same response (to ignore) and
the other 2 determine the response based on other stimulus dimensions.

3.1 Learning Curves

Performance observed for the first and second learning paradigms are reported in
Figs. 2(a) and (b) respectively. We see in the Fig. 2(b) that due to its hierarchical
structure, when there is an underlying abstract rule to learn (rule T3), the model
is able to use the hierarchical information to acquire the rule while retaining
performance in each of the sub-rules (Rule T1 and T2). It does so by monitoring
an “error of errors” at each hierarchical layer, broadcasting this error to superior
layers (bottom-up processing) that put it in context with the stimulus feature
being attended to and finally sends this prediction information to the lower layers
(top-down modulation) which are able to then select the appropriate response. In
the Fig. 2(a), we show that when the composite rules are first learnt sequentially,
the model is not able to compose them into a single rule, but instead has to
relearn its representations to reach optimal performance.

Next we show that due to the design of the model, a task which has only
one level of hierarchy, such as the one considered here, can not be learnt with
a model with 2 layers. In Fig. 2(c) we see that with 2 layers, the model is able
to learn the subparts of the rule (rules T1 and T2), but performance on the
composite rule T3 saturates at 80%. By exploiting the gating mechanism, each
sub-rule can be learnt individually by gating the 2 relevant feature dimensions
at the 2 layers (color, vowel/consonant for rule T1 and color, lower/upper case
for rule T2). However, in the third rule T3 when the 2 relevant features change
from trial to trial to determine the correct response, the model fails to learn,
since the contextual stimulus features don’t provide top-down information about
“which” other stimulus feature to attend to at the lower layer.

3.2 Gating Weights

In the model, the gating weights determine both, when to update or maintain
a stimulus feature, and also which of the stimulus features is to be gated. We
observed the adjusted weights after each rule that is learned. In the first block,
vowel, consonant and black have high values of getting updated at the lowest
layer, while in rule T3 all the “lower level” cues have high values of getting
updated. In such a case, there is again competition between which one of them to
gate, and both can win with close probabilities, in the absence of any information
from the superior layers. Depending on what is gated into the top two layers,
any of those mappings could emerge.

3.3 Prediction Weights

The prediction weights at layer 0 are Stimulus-Action-Outcome conjugations
and the gating mechanism determines which stimulus and in turn which
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(a) (b) (c)

Fig. 2. Performance of the model with 3 layers for the two paradigms (a, b), plotted
as an average over 100 runs, only for the runs that reached convergence criteria. The
convergence criteria was defined as having a performance greater than 85% in the last
200 trials. (c) Performance for the model with 2 layers on the first learning paradigm.

action-outcome association is to be selected. The selected associations are then
modulated by superior layers and used the determine the response. At layer 1,
the prediction errors of layer 0 are contextualized to make SxSxAxO conjugations
and so on.

In the task considered for all our simulations, there are 5 concrete rules or
S-A-O predictions to learn: Black - Action3, Vowel, Lower case - Action1 and
Consonant, Upper case - Action2 (Fig. 1(b)). In Fig. 3, we present examples of
how a model with 3 layers selects a response by additive prediction modulation.
We observed that elaborating a mapping between the stimulus and what is gated
into the internal representation (r) at different layers could be done in differ-
ent ways, including randomly, as long as these mappings led to orthogonal and
mutually exclusive activations of predictions (in W). For example, in Fig. 3(e),
in Block 2, the color red was not gated into the internal representation, but the
random gating of the other 2 dimensions still led to an appropriate modulated
prediction that could initiate the correct response.

3.4 New Model

To explain the deficit of attentional mechanism in the HER model, and illustrate
the advantage of our proposal, we performed some simple simulations. The model
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Examples of how the model solves different cases of stimuli. The matrix shows
the prediction values at different layers (first 3 rows), given the internal representation
of the stimulus, and how they are modulated additively (row 4) to give the final Action-
Outcome predictions that are used for response selection. a, b show the case when the
stimulus is black, in rules 1 and 2 respectively. d, e show the case when the stimulus is
Green, Vowel (rule T1) and Red, Upper case (rule T2). c, f show the case for Green,
Vowel and Red, Upper case in rule T3 (Color figure online)

was trained individually on the two discrimination tasks ie, on the two concrete
rules (T1 - vowel/consonant and T2 - lower/upper case), to obtain prediction
weights or Stimulus-Action-Outcome associations as in Fig. 4(b). We tested the
ability of the HER model with 2 layers, to use this information and contextualize
it to learn the abstract rule. The bottom layer of the model was initialized to
the predictions previously learned and moreover, it was “frozen” such that no
learning happened at this level, implying that these behaviors were rigid. At the
upper layer, the gating weights were biased to update the internal representation
with the context, which was the color in this case, implying saliency to previously
unattended cues. As expected, the model failed to learn the abstract rule with
these modifications. With the modified model, we used the same protocol i.e. the
bottom layer was kept frozen, and there was a bias added to the upper layer to
encourage gating of the color. However, instead of an independent gating at the
bottom layer, we included an output gating from the upper layer, which used the
prediction errors at the upper layer to select which stimulus dimension was going
to be gated into the bottom layer (Fig. 4(a)). To put it more generally, the bottom
layer was responsible for response selection while the upper layer was responsible
for action-set selection through targeted attention (cf [6] for more details about
the structuring concept of action-set and its role in PFC information processing).
Our modified model achieved optimal performance fairly quickly, as shown in
Fig. 4(c).
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4 Discussion

The PFC plays a major role in cognitive control and particularly for learn-
ing, selecting and monitoring hierarchical rules. For example, in experimental
paradigms, discrimination or categorization tasks can be considered as first-order
rules which could be learned individually. However, when conflicting stimuli are
presented simultaneously, a contextual cue is needed to identify which of the
first order rules is to be applied, thus forming second-order rules.

The inner mechanisms of the PFC have been studied in computational models
and among them, the property of working memory used for biasing by selective
attention in the PBWM model and, more recently in the HER model, the separa-
tion between outcome prediction error monitoring, and hierarchical rule learning.
Considering the indisputable progress brought by the design of the HER model,
we questioned whether it was now a standalone model of the PFC to be used
in any circumstances or if the contribution of certain mechanisms like selective
attention was still to be considered in some cases and possibly added to the
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Fig. 4. (a) The modified model with output gating from layer 1. The gating weights in
layer 1 (X1) learn over time to gate the context into r1. The selected prediction units
from layer 1 (p1) are then used to make a decision on which value of the stimulus s
is gated into r0 (the output gate). (b) Prediction weights (W0) for the concrete rules
at layer 0. These weights are pre-learned by training the model with rules T1 and T2,
independently. (c) Performance of the original model compared to the modified model
over a 100 runs, when layer 0 is fixed to the weights in figure (b) and only layer 1
prediction weights (W1) and gating weights (X1) are learned.
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general framework of PFC modeling. More specifically, considering the deploy-
ment of cognitive control in realistic behavioral tasks and considering that most
hierarchical representations arise from the intersection between agents and the
problems they face, and are created over time in a learning process, in a rapid
and flexible way, our question was to know if the HER model could account for
this kind of process.

Using a task elaborated along two paradigms, we show that, when concrete
rules are already learnt and need to be contextualized, the use of a biasing selec-
tive attention mechanism is more effective than modulated weights changes in
displaying effective cognitive control. When concrete rules are acquired first,
superior layers must learn to select the appropriate concrete rule by targeted
attention, rather than by relearning representations. We observe that a subject
can perform optimally on a given task even though she uses a different rule
representation compared to the official one. On a single task, this has no conse-
quence and there is actually no way to know which exact rule is used internally.
However, when this rule needs to be composed with another rule such as to form
a new rule, this may pose problem and lead to bad performance. This has been
illustrated on the task: if a subject uses any of the alternative rules for tasks T1
or T2, she’ll be unable to solve task T3 even though this task is merely made
of a mix of T1 or T2 trials. The reason for the failure of the HER model in this
case is to be found in the failure to attend the relevant dimension of the task,
here, color, thus claiming for considering and incorporating this mechanism to
a versatile PFC model. Analyzing these results in a more general view, we can
remark that most experimental paradigms that study hierarchy break down the
complexity of a task by providing instructional cues to the participant. Even
in studies with rodents and non-human primates, shaping is used in learning
paradigms to enable the learning of complex or abstract rules. In developmental
learning, this kind of shaping is called curriculum learning. It is evident that such
breaking down of complexity must facilitate the acquisition of abstract rules, and
hence modeling approaches must demonstrate these behavioral results.

From a more conceptual point of view, the term hierarchy can be used in
many different ways, two common ones being processing hierarchies and repre-
sentational hierarchies. In the first, higher levels exert control over lower levels,
for example by controlling the flow of information or by setting the agenda for
lower levels [9]. In the second one, higher levels form abstractions over lower
levels, such that lower levels contain concrete, sensory and fine-grained infor-
mation, whereas higher levels contain general, conceptual and integrated infor-
mation [3,11]. It is thus important that a model of the PFC to exploit both
views, suggesting to incorporate an attentional mechanism for the flexible and
controlled design of hierarchical rules from previously learned concrete rules, as
we proposed in the new model sketched here.
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Abstract. Neural signals are the recordings of the electrical activity
individual or groups of neurons, and they are used for disease stag-
ing, brain-computer interface control and understanding the neural pro-
cesses. When carrying out a functional connectivity study in rodents,
processing must be done to eliminate disturbance in the data in order
to have the most faithful representation of the neural activity. This step
mainly includes filtering and artefact removal, where the latter can be
approached by diverse methods. Furthermore, it is important to identify
when the rodent is stressed, as the local field potentials can be coupled to
theta oscillations. To this end, we set out to develop a machine learning-
based model for the detection of stress in rodents with multi-modal
recordings, namely local field potentials, respiration and electrocardiog-
raphy. We explore subject-specific and cross-subject models, as well as
employing an artefact detection model as a generic anomaly detector.
Results show that subject-specific models can achieve a good perfor-
mance, but the variability is significant across all three signals among
rodents of the same age, gender and species.

Keywords: Computational neuroscience · Machine learning ·
Physiological signals

1 Introduction

Neural signals are used in many applications, such as the detection of Alzheimer’s
disease, attention deficit hyperactivity disorder, Parkinson’s disease, seizures,
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etc. [1,2]. When studying specific structures within the brain, animal models
allow the recording of neural activity via invasive methods carried out without
the limitations of human experimentation, both technical and ethical. Benefits
of the invasive signals include less susceptibility to noise and a higher spatial
resolution, allowing specific structures within the brain to be studied.

To achieve a successful analysis of neuronal signals, they must have a min-
imal amount of disturbance. To this end, processing is applied to the signals
to standardise the data by removing phenomenons that may interfere with the
study [3]. This includes filtering, baseline drift removal, artefact removal and
stress removal. The first one is used to capture the band-with of interest, e.g.
less than 300 Hz for LFP, and to remove power-line noise, as it has a specific band
of 50 or 60 Hz. Baseline drift can be generated from a diverse range of sources,
including perspiration, respiration, body movements, and poor electrode con-
tact, and is detrimental to power spectral analysis. Similarly, artefacts detection
and removal techniques have been developed to counter the diverse range of
disturbances, from stimulation to spike bleeding [4,5]. However, no research has
been done which focuses on automatic systems which detect anaesthesia-related
stress in a rodent, as mostly it is done by a manual review of the data, via sup-
porting channels of other modalities, or video recordings [6]. The detection and
removal of these segments are crucial, as they can distort the neural recordings,
biasing results. We define stress as a period where alterations in the respiration
frequency or heart rate are measured compared to the baseline.

The process of manual review of neural recording requires a significant
amount of time, which could be used instead for posterior analysis. In this sce-
nario, developing automatic techniques to identify stress can be of great benefit
to researchers. Machine Learning (ML) techniques are algorithms that learn
from patterns in data and are able to make predictions of new data based on it.
Within neuroscience, the application of these models to process large datasets
to diagnose, classify patterns, control brain-machine interfaces and gain insight
into the brain has risen [7].

In this article, we present our research into ML-based stress detection in LFP
obtained from rodents. The remainder of the paper is organised as follows: in
Sect. 2 we explain the methodology, including data acquisition, processing and
the employed ML models. Afterwards Sect. 3 we show the results, followed by a
discussion in Sect. 4 and lastly Sect. 5 finished with the conclusion.

2 Methodology

The methodology is composed of three sections, where we describe first the data
acquisition, second the signal processing and lastly the ML models used.

2.1 Data Acquisition

For the analysis, five three-month-old female C57BL/6J (WT) mice were used.
The mice were anaesthetised for the recording process with a initial dose of ure-
thane followed by a mixture of xylazine/tiletamine-zolazepam after 30 min. A



Detection of Healthy and Unhealthy Brain States from LFP Using ML 29

32-electrode-silicon probe (ATLAS Neuro Probe: E32-100-S1-L6-NT; pointy tip
feature; 100 μm spaced electrodes; mean impedance 0.28 MΩ in Krebs’ solu-
tion) was utilised to record the LFP from the dentate gyrus up to the cortical
layers. The LFP, along with the supporting electrocardiogram (ECG) and res-
piration signals were recorded at 10 kHz for further processing. All of the ani-
mals were kept in an SPF animal facility with a 12-hour duration of light and
dark cycles and unrestricted access to food and water. The experimental proce-
dures were performed according to the European Committee guidelines (decree
2010/63/CEE) and the Animal Welfare Act (7 USC 2131), in compliance with
the ARRIVE guidelines. They were approved by the Animal Care Committee
of the University of Padua and the Italian Ministry of Health (authorisation
decree 522/2018-PR). For more details, we refer the reader to the published
experimental analysis [1,8].

2.2 Signal Processing

Offline data processing of electrophysiological signals was carried out in Matlab
utilising custom-written scripts. To begin, the Open-Ephys format files with
the recorded signals from the different channels were converted to Matlab file
format. Subsequently, the raw signals had the 50 Hz noise and its harmonics
removed via the application of a gaussian filter. The first 24 channels’ signals were
filtered using the built-in non-causal zero-phase distortion filtering algorithm,
which in order to avoid phase distortion, the data is processed in both forward
and reverse directions using coefficients from the built-in Butterworth transfer
function. Using a median estimation approach, baseline drift was eliminated
from the ECG and respiration signals. Afterwards, the recordings were low-pass
filtered (filter order: 5; cut-off frequency: 190 Hz for LFP, 25 Hz for ECG, and
10 Hz for respiration) and down-sampled to 500 Hz, 50 Hz and 20 Hz, respectively.

A three-step method was used to automatically identify stable LFP win-
dows using respiratory and ECG data. In the first step, a script calculates
the respiration and heartbeat rates and using specific upper and lower bounds,
anomalous patterns were identified. By taking the median of the individual rates
and adding/subtracting a tolerance margin of 20%, the boundary values were
obtained. As a result, we have a labelled LFP as normal where both signals
were steady and stressed when either one was not stable. Figure 1 showcases the
behaviour of the three signals under normal (A) and stress (B) cases, where in
the latter, there are some fast oscillations in the LFP, irregular heartbeats in the
electrocardiogram, and abnormal cycles in the respiration recording.

The LFP of the five rodents were labelled with –1 for stress and 1 for normal.
The statistical model of the duration of stress segments was 10 s, the shortest
lasting 4 s and the longest 48 s. Out of each stress segment, non-overlapping
windows of 1 s were extracted to create the examples which would be shown to
the model, and the same amount was randomly sampled from normal segments.
A total of 47808 stress examples and 47808 normal examples constituted the
final dataset.
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Fig. 1. One second segments of local field potential, electrocardiogram and respiration
signals in (A) normal state (B) stressed state.

We then created models trained with different characteristics or features of
the examples, including the following set of features:

– The raw signal.
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– From the Pawfe Toolbox [9]: integrated absolute value, mean absolute value,
slope sign change, zero crossing, mean absolute value slope, root mean
square, RMS, waveform length, time domain, histogram, the marginal dis-
crete wavelet transform.

– From the EEG-FET Toolbox [10]: ratio of band power alpha to beta, band
power gamma, band power beta, band power alpha, band power theta, band
power delta, hjorth activity, hjorth mobility, hjorth complexity, skewness, kur-
tosis, first difference, normalised first difference, second difference, normalised
second difference, mean curve length, mean energy, mean teager energy, log
root sum of sequential variation, tsallis entropy, shannon entropy, log energy
entropy, renyi entropy, arithmetic mean, standard deviation, variance, median
value, auto-regressive model, maximum value, minimum value.

– The Fourier transform of the signal.
– Spectral features: power per band, ratios among bands and relative power,

where the bands are defined as: 0.1–1.7 Hz slow oscillations, 1.7–4.7 Hz delta,
4.7–10 Hz theta, 10–25 Hz beta, 25–45 Hz low gamma, 45–90 Hz high gamma
and 90–125 Hz fast oscillations.

For the subject-specific models, data from each rodent was split into train-
ing (80%) and validation (20%), and tested with the full data of the other
rodents. Similarly, for the cross-subject models, we combined the samples of
all the rodents and split them into training (80%) and testing (20%). In both
cases, no normalisation of features was used.

2.3 Machine Learning Classification Models

ML techniques are a series of algorithms that can learn patterns in data in order
to make accurate predictions in unseen examples. While there are a substantial
amount of techniques and models, including the sub-topic of deep learning, we
explored five different models which can be used to deal with non-linear data
such as neural signals. These techniques are the following:

Decision Trees: Decision Tree (DT) algorithms can be used to build both classi-
fications and regression trees, where each internal node has exactly two outgoing
edges, namely binary trees. The splits are selected using Gini index as a splitting
criterion and the obtained tree is pruned by cost-complexity pruning.

Ensemble of Decision Trees: Ensemble Techniques (ET) combines many decision
tree classifiers to create more accurate predictions than a single decision tree
classifier. The basic idea underlying the ensemble model is that a number of
weak learners cooperate to produce a strong learner, enhancing the model’s
accuracy.

Multi Layered Perceptron: A Multi-Layered Perceptron (MLP) is an ML algo-
rithm for the analysis of patterns and classification. It consists of no less than
three parts: an input layer, a hidden layer and an output layer. When it con-
tains multiple numbers of hidden layers, it helps in modelling complex non-linear
relations better than the shallow architecture.
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Support Vector Machines: Support vector machines (SVM) are learning
machines premised on the statistical learning theory, where the model optimally
separates the classes by determining the maximal margin hyperplane. This opti-
mal hyperplane should maximise the margin between the data from the positive
class and the negative class.

k-Nearest Neighbours: The k-Nearest Neighbours (kNN) classifier employs met-
rics of distance to labeled examples as to categorise new ones. The parameter k
indicates the number of neighbours that will be chosen to compare, which has a
major influence on the accuracy of kNN algorithm.

Having described the different classification models used, we proceed to
report on the results obtained by the various approaches to the stress detec-
tion task.

3 Results

In this section, we will first report the results obtained by the subject-specific
model with ECG and respiration, followed by the cross-subject model with LFP
and lastly, a generic LFP anomaly detector.

3.1 Subject-Specific Model with ECG and Respiration

In Fig. 2, the box plot of the heartbeat per second and respiration rate are shown,
for both normal and stress states of each rodent. Each rodent behaves differently,
more so than the difference among the states. This means that a cross-subject
model is unlikely to achieve good results. In order to test this, we build first
several classifiers with the heartbeat per second and respiration rate of a single
rodent, where the best performance was obtained by the kNN. Afterwards, we
built a model for each rodent and classified the recording of the other rodents,
where the results are compiled in Table 1. The row in the table indicates the
rodent used to train the model, and the column the rodent whose data is being
predicted. The inability of a model trained with the data of a single rodent
to have a stress detection accuracy perform well with another rodent confirms
that there is a bigger difference between the animal’s respiration and ECG than
between the individual “stress” and “normal” states. With the results of these
modalities in mind, we proceed to train the models with LFPs in cross-subject
and inter-subject manners in order to evaluate their feasibility.

3.2 Cross Subject Model with LFP

We trained several classifiers for a cross-subject model, that are compiled in
Table 2. The features with the best performances are achieved by the raw sig-
nal followed by the Fourier transform of the signal. In regards to the methods,
DT achieves the lowest accuracies, with the best performing features being the
Fourier transform. The use of ET boost the performance significantly, however
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Fig. 2. Respiration frequency and beats per second of normal and stress segments per
rodent.

the best model is the one trained with the raw signal. Both SVM and MLP
perform similarly, where the best models are those trained with the raw signal.

Lastly, the model with the best performance is the kNN with raw signal,
where the model has been able to accurately classify 95.2% of the stress seg-
ments and 84.2% of the normal segments. This means that the euclidean dis-
tance among stress segments is smaller than in the normal segments. As it has
yielded the best results, for the remainder of the article, we will be using the
combination of kNN with the raw signal.



34 M. I. Fabietti et al.

Table 1. Accuracy of the subject-specific kNN models for ECG and respiration (chance
level accuracy 50%).

Rodent k15 k16 k37 k38 k39

k15 97.6 49.9 49.7 49.8 50.1

k16 54.6 98.7 54.1 53.6 50.1

k37 58.7 63.7 98 98.9 53.2

k38 59 64.2 51.3 99.2 51.5

k39 42.3 50 50.1 50 99.9

Table 2. Accuracy of the cross-subject models for LFP (chance level accuracy 50%).

Method Raw sig. Pawfe Tbx. EEGTbx. Fou.Tran. Spec. Fea.

DT 53.7 51.7 54.1 55.3 54.5

ET 72.7 53.3 56.9 60.3 57.6

kNN 89.7 53.5 55.2 69.5 57.5

SVM 76.7 53.5 56.6 65.2 56

MLP 74.3 52.3 57.3 63.7 57.2

The under-performing results across the other features indicate that the vari-
ance among subjects might be present in the LFP too. In order to understand
the issue more, we created models trained with only the examples of one rodent
and then asked the model to predict stress or normal in the examples of other
rodents (not seen by the model). The kNN-based subject specific models com-
piled in Table 3, where the row in the table indicates the rodent used to train
the model and the column the rodent whose data is being predicted.

Table 3. Accuracy of the subject-specific kNN models for LFP (chance level accuracy
50%).

Rodent k15 k16 k37 k38 k39

k15 96.6 53.4 49.1 48.4 49.9

k16 47.0 99.8 46.8 51.0 49.7

k37 45.1 49.7 94.3 49.6 49.3

k38 49.6 53.2 47.1 99.1 50.6

k39 49.3 54.7 47.4 52.6 85.0

Overall there is a poor cross-subject generalisation; therefore, instead of iden-
tifying the stress in a signal, we changed the example’s labels instead to which
animal they had come from (regardless of stressed or normal). This was done in
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order to evaluate that if the computational methods are able to correctly iden-
tify from which animal the example came from, the differences among animals is
significant and bigger than the difference among stress and normal states. The
results are compiled in Table 4, where several methods achieve good performance.
The best results across all models are obtained with the Fourier transform of the
signal, indicating that the differences among rodents are strongly represented in
the spectral properties of the signals. This is why the extracted spectral fea-
tures and the features from the EEG toolbox perform noticeably better than
the Pawfe toolbox and the raw signal. It is worth noting that even those sets of
features that were poorly discriminant for stress and normal classes produce a
great result for identifying the animal.

Table 4. Accuracy of the subject identifier models of LFP (chance level accuracy 50%).

Method Raw Sig. Pawfe Tbx. EEGTbx. Fou.Tran. Spec. Fea.

DT 67.9 77.4 90.2 95.2 90.9

ET 87.2 81.1 91.9 96.5 93.0

kNN 96.3 78.4 89.1 95.6 91.3

SVM 87.4 80.3 91.5 97.3 93.0

MLP 97.3 83.5 92.4 97.5 93.4

3.3 LFP Anomality Detector

Alternatively, we also explored the possibility of using a classifier trained for
artefact detection as a generic anomaly detector. We propose three approaches:
(1) using the trained classifier in this new task, (2) applying transfer learning and
lastly (3) using it for feature extraction in conjunction with a classifier. We used
a private dataset of LFP acquired in freely moving rodents, where specialists
have labelled segments of the signal as artefactual or not based on the power of
an artefact-free portion [11]. In order to not introduce a new bias of the model,
signal processing was done to match the characteristics between the datasets,
including down-sampling from 1 kHz to 500 Hz and up-scaling from microvolts
to millivolts.

Afterwards, we extracted 1-second non-overlapping normal and artefacts and
used it to train a 1D-CNN, a model which has achieved the best performance for
the task [12]. The network is an adaptation of AlexNet [13], which was done by
flattening one dimension of the filters and pooling layers, and the components of
the 12-layer architecture are listed in Table 5. The convolutional layer filter sizes
are expressed inside brackets, multiplied by the quantity and succeeded by the
stride (s) and the same notation is used for the pooling window’s sizes and stride.
The input size, number rectified linear unit in the fully connected layers and soft
max units in the classification layer are within brackets as well. The number of
filters was decreased to multiples of 16 due to the lower dimensionality of the
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input. The optimisation algorithm used to train it was Adam, with an initial
learning rate of 0.001, the momentum of 0.9 and a batch size of 256. A balanced
dataset of 43840 examples was split into training (70%), validation (15%) and
testing (15%), where the performance accuracy on the different sets was 98.44%
for training, 98.21% for validation and 96.8% for testing.

Table 5. Architecture of the 1D-CNN model.

Architecture Component

Layer 1 Input [500]

Layer 2 Convolution 1 [1,11] x 32, s = 1

Layer 3 Max Pooling 1 [1,3], s = 2

Layer 4 Convolution 2 [1,5] x 64, s = 1

Layer 5 Max Pooling2 [1,3], s = 2

Layer 6 Convolution 3 [1,3] x 128, s = 1

Layer 7 Convolution 4 [1,3] x 128, s=1

Layer 8 Convolution 5 [1,3] x 128, s = 1

Layer 9 Max Pooling 3 [1,3], s =2

Layer 10 Fully Connected [1024]

Layer 11 Fully Connected [512]

Layer 12 Classification [2]

The results of the three approaches are compiled in Table 6. Employing
the classifier directly shows poorer results, as most of the stress segments are
classified as normal. This can be attributed to the fact that artefacts have a
higher amplitude and the waveform has no resemblance to physiological activity.
Fine-tuning leads to slightly better results, but the model struggles with this new
task. Lastly, feature extraction and a KNN classifier yield worse results than the
previous subject-specific models in Table 3 as the waveform information is lost,
in addition to the same lack of generalisation when used in other rodents.

Table 6. Results of the generic anomaly detector (chance level accuracy 50%).

Method Metric k15 k16 k37 k38 k39

Classification Accuracy 43.6% 50.9% 49.8% 49.7% 50.0%

Specificity 78.0% 87.8% 92.0% 94.0% 95.5%

Sensitivity 18.3% 12.5% 7.9% 6.0% 4.5%

Fine-tuning Val. Accuracy 55.9% 55.9% 53.7% 52.6% 52.7%

Feature extraction + kNN Acc 89.5% 88.0% 75.3% 70.7% 65.9%

Specificity 84.7% 85.5% 75.2% 69.6% 65.0%

Sensitivity 96.2% 90.4% 75.5% 71.9% 66.8%
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Fig. 3. From left to wright, box-plots of the power of normal and artefact examples
from external dataset and power of normal and stress segments per rodent.

In order to understand the difference among the tasks and transfer-learning
limitations, boxplots of the power of each segment for normal and artefact exam-
ples from external dataset and power of normal and stress segments per rodent is
presented in Fig. 3. The power of a signal is the main characteristic used to label
artefacts, and as it is shown in the figure it is significantly bigger compared to nor-
mal signals. While stressed states have slightly higher power than normal ones, the
difference is smaller, explaining why the network struggles in this new task.

4 Discussion

Researchers in the field of neuroscience are familiar with the struggles of variabil-
ity. Comparing the brain and neural activity, the most complex organ, among
subjects is no simple task. The variability can be inter-subject (when comparing
different subjects), intra-subject (the same subject, over time) and inter trials
(the same subject across trials). The impact of this uncontrollable variable limits
the performance of ML classifiers, and is one of the main challenges of several
applications. For example, in emotion recognition with EEG, we find reported
cross-subject accuracies from 38.7% to 53.8% [14]. The impact of variability have
also been explored for brain computer interface decoding [15], inhibition brain
function [16], drowsiness detection [17] and others.

For newcomers to the field or those from other areas such as computer science,
a cross-subject performance nearing 50% is arguably a positive result, especially
when compared to other fields such as image recognition. In such fields, the
models are expected to out-perform the chance level accuracy, that is referred to
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as the performance achieved by a classifier that would randomly label the data
(i.e. 50% in the balanced binary classification scenario). However, we have been
able to achieve subject-specific models with excellent performance through the
use of kNN and the raw LFP signal. This means that a portable online model
could be developed for stress detection in cases where these supporting signals
are not available due to the presence of an artefact or have gotten disconnected.
To our best knowledge, no other studies have been conducted on automatic stress
detection on animal models, which can be attributed to the fact that researchers
still rely on manual review of the data. We hope this research can aid those
looking to reduce the review time.

Future work includes the use of transfer learning to show that a model trained
with the data of a group of rodents can be successfully adapted to detect stress
in a new subject with little training data sample size requirements.

5 Conclusion

We set out to build a model to identify stressed segments in LFP obtained from
rodents. First, we developed models with features of the supplementary signals,
respiratory frequency and beats per second. Wewe found that while a subject-
specific model could be achieved (>98% accuracy on average), these models
couldn’t be used to predict stress in other rodents with good results. Thus,
we focused on analysing the LFP signal in itself, where we extracted different
features for a cross-subject model and achieved good performance with a kNN
and the raw signal. Commonly extracted features of local field potential such
as power bands, relative power and ratios to the theta band were not class-
discriminative, suggesting that the LFP activity during stress presents subtle
differences compared to normal activity.

When looking at subject-specific models, we found the same lack of gener-
alisation present in the models built with the supporting signals. This means
that the difference among subjects is bigger than the states of “normal” and
“stressed” across all the modalities. While this may be attributed to biolog-
ical differences, the effect of anaesthesia may also have a role in it. To sum
up, achieving good generalisation is not possible due to these differences; how-
ever, the results are acceptable compared to other brain signal cross-subject ML
applications.
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Abstract. In the recent years, one of the leading technology which is
earning greater mode of interest in the growing various fields of artifi-
cial intelligence is Brain computer interfaces (BCI). Recognizing emo-
tions based on physiological signals specifically, Electroencephalography
(EEG) signals with advancement of BCI applications, has turn into a
very popular research topic. In this paper for effective representation
of features the proposed model adopts COSLETS transformation app-
roach, a combination DCT (Discrete Cosine Transform) and wavelets
Transform. The obtained set of features is mapped on to the low dimen-
sional subspace to employ principal components using PCA and finally
GRNN (General Regression Neural Network) is presented for effective
classification of four different emotional states from publicly available
EEG based GAMEEMO dataset. The experimental results are promis-
ing and performed well, compared to other state of methods.

Keywords: BCI-Brain computer interfaces · EEG signals · Emotion
recognition · COSLETS · GRNN

1 Introduction

Interaction of every individual along various external environment in their day-
to-day activities relies on emotions. Emotion plays a essential role in the life
of human beings as they produce different aspects, which is indicial of human
behaviour and described in assorted ways depending upon the particular situa-
tions, perceiving and understanding emotional states is part of human interac-
tion. It is defined as the mental condition of a person which includes thoughts,
feelings, behaviour, and psycho-physiological responses to external or internal
stimuli. Reciprocal action between humans and machines exists in many envi-
rons, by the means of BCI technology [9]. More and more researchers across
the globe have evaluated the nature of emotions significantly by the means of
facial expressions, speech, body gesture in various areas such as e-learning, rec-
ommend system, smart home, smart city and intelligent conversational systems.
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According to the experience of researchers from previous studies, resolving with
lack of compatibility in traditional emotion recognition based on facial expres-
sion, speech, and other characteristics was not more accurate with recogniz-
ing emotions based on physiological electrical signals, which is more arduous
to be counterfeit thereby reflecting the individual’s true emotions. With the
advancement of cost-effective sensor technologies, an investigation into emotion
recognition has grown progressively popular among EEG [7,8] signals which are
depicted by the fact that EEG signals are tough to cover up and have a real-
time discrepancy. It is leading non-invasive type of BCI involved in measuring
brain’s electrical activity. Established the antecedent methods of EEG-based
emotions recognition from it’s enlighten characteristics are reported in brief. In
the past, recent for intently recognizing emotions of different classes upon dif-
ferent applications, researchers focused on the following benchmark data sets:
SEED [1], DEAP [3], MANHOBHCI [2], DREAMER [9], ASCERTAIN [4], AMI-
GOS [6] and GAMEEMO [5] and in-depth knowledge and extensive works on
these familiar datasets can found in [10–13]. Recognition of emotions based on
EEG signals are split into the sequence of steps: (1) inducing emotions, (2)
recording EEG signals, (3) prepossessing of signals, (4) feature extraction, (5)
EEG feature dimensional reduction from feature selection or feature transforma-
tion techniques, (6) Study of emotional patterns and classifications. In above all
mentioned phases, each one is bottom-line factors in analysing emotional states.
Good deal of efforts from researchers for all phases have been accomplished in
adaptive EEG based BCI systems. In this paper proposed study targeted interest
on mapping Large/High dimension data into new decreased low dimension one
for making classification stage easier in predicting different emotional states.

2 Related Work

In the area of machine learning there are often many factors arise resulting in dif-
ferent problems on the basis of which final classification is done, one of the most
essential factor is number of input features. When there is a higher number of input
feature, it gets tough to visualize the training set and then working on it, generally
most of these features are correlated, and leads to redundancy. At this situation,
dimension reduction (DR) algorithms come into play [14]. It is the processes of
reducing enormous amount of random variables under consideration, by gather-
ing a set of principal variables. It is increasingly becoming very popular in grow-
ing research fields of various applications such as Signal processing [17], Speech
processing, Neuroinformatic [15], Bioinformatic [16]. Necessary benefits can be
obtained by processing dimension reduction techniques some of them are: data
storage reduction, minimum computation time, redundant data can be eliminated,
minimization of noise can be achieved to have good quality of data. It simplifies
classification process, resulting best accuracy rates and visualization of data can be
boosted. Basically DR can be divided into feature selection and feature extraction.
In the past, recent literature, researchers focused on various DR algorithms such as
PCA (Principal Component Analysis), ICA (Independent Component Analysis),
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GA (Genetic Algorithm), LDA (Linear Discriminant Analysis) etc., for different
applications of EEG signals. In the year 2020 Gao et al. [18], PCA algorithm was
applied on EEG signal for classifying emotion along with fusion of power Spectrum
and wavelet energy entropy features resulting in good classification accuracy. In
the study of Granados et al. [19] used EEG signals, electrocardiogram and galvanic
skin response for developing emotion classification model based on advanced clas-
sical machine learning approaches. According to the 2-dimensional emotion model
(valence/arousal). Li et al. [24] proposed emotion recognition model from extrac-
tion of frequency related features using RASM (rational asymmetry) and LSTM
(Long-short-term-memory network) for temporal related EEG signals. Alhagry
et al. [20] presented a model for classifying emotions into low/high arousal valence
and liking states from raw EEG signals of DEAP dataset by applying LSTM to
extract relevant features. In this study productive emotion classification method
for EEG signals from various types of video games is presented using GAMEEMO
database. This particular dataset was focused by researchers in emotion recog-
nition using different methods in recent years some of them are Turcer et al.
[21], developed LEDPatNet19 model by achieving 92% of classification accuracy.
GoogleNet model based deep learning approach was proposed by Muzaffer Aslan
[22] by converting EEG signals into EEG images using continuous wavelet trans-
form with classification accuracy of 98.53 for SVM and 98.78 for K-NN. Sengul
Dogan [23] achieved 99% of results in developing accurate emotion classification
system in bringing about novel feature generation tetromino pattern.

Being motivated from the above mentioned literature, any machine learn-
ing algorithm primary desire is to have small number of features as input
for appropriately producing outstanding results for all type of data domains.
In this backdrop we begin our proposed study in conducting experiments for
enhanced classification rates in recognizing emotions from EEG signals fol-
lowed by designing feature generation algorithm using transformation technique
called COSLETS. The proposed algorithm has been tested on GAMEEMO EEG
dataset. The presented work performed well in achieving promising results when
compared to other state of art techniques. This paper has followed by differ-
ent sections. Section 3 explains proposed methodology and related theory to the
proposed work. Section 4 explains about the classifications. Section 5 tells about
the dataset, experimental results, discussion and conclusion of proposed study.

3 Proposed Method

The proposed research study is carried out for developing the classification model
in recognizing four different emotional states. The proposed method adopts
Coslets transformation technique which is inspired by the work [25]. Coslet trans-
formation technique is a combination of two different approaches, DCT and
Wavelet Transform. The main objective of this research work is to design feature
generation algorithm in reducing dimension of data for recognizing emotions. In
accomplishing this task we concentrated on DCT approach which is very popu-
lar on compressing the data size. In this work it has been examined to represent
EEG data by preserving information with low frequency.Wavelet transforms [33] is
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used for measuring signal properties which is changing overtime. In this study pro-
posed model extracts features by implementing coslets transformation approach
on pre-processed EEG signals, the obtained features vector after transformation
are projected onto the lower dimensional feature space employing PCA and finally
the data will be given to GRNN for classifying four different emotions classes such
as happy, funny, boring and clam.

3.1 Discrete Cosine Transform (DCT)

It is one of the popular and suitable transformation technique which plays
prominent role in compression schemes [26] and its enlightened properties helps
in converting signals which is time series into fundamental frequency compo-
nents, considerably co-efficients with low frequency are fixed initially and high
frequency are followed in the next. DCT is linear Invertible function, defined

f : RN → RN where R is set of Real Numbers and N is the length of the
sequence.

Let f(x), x = 0, 1, 2, 3 . . . N −1 be a sequence of length N . Then the Notation
for 1D DCT consisting N real number is expressed by the following equation

F(u) =
(

2
N

) 1
2

+
N−1∑
x=0

Δ(x)
[
cos

(2x + 1)u
2N

]
f(x) (1)

where ∀u = 1, 2 . . . ..m are scaling factors
For highly correlated signals DCT is capable of exploring good energy com-

paction [26]. Employing DCT for EEG Signals let on compressing the useful
data to the few primary co-efficient as a consequence only these co-efficient can
be used in machine learning algorithm at the stage of classification.

3.2 Wavelets

The majority of existent signals are non-stationary in nature, which means sig-
nal properties may change over time. To meet the interest of events in this
area, analysis of time-frequency approaches are widely used. Short-Time Fourier
Transform (STFT) is convention way of Time-frequency analysis, which results
in Spectrogram plot. In STFT, Fourier transform of the signal is considered over
Short-time-window, although STFT is mostly used time frequency approach it
also has limitation, on improvement in time resolution impacting poor frequency
resolution (due to Heisenberg’s uncertainty principle) to overcome this issue, the
substitute to STFT is wavelet transform. Its properties accomplish the task of
signals with low frequency being spread over time and high frequency burst
appearing on Short intervals. Wavelet transform use wavelet function along with
variable size of windows [28]. From the previous sections the obtained DCT co-
efficient are analysed using wavelets and proved that it is very effective way for
describing information content of signals. Most importantly selection as wavelets
bases are highly subjective in nature since it depends on the data being used.
We choose ‘Haar’ as the wavelet basis for representation of data. The difference
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in information between approximation of signals at 2j+1 and 2j can be gathered
by decomposing the signal on orthogonal basis. In the case where ϕ(t) is orthog-
onal wavelet, an orthogonal basis of H2j is calculated by scaling the wavelet with
co-efficient 2j and transforming it on a lattice with an interval 2−j .

The Haar wavelet’s mother wavelet function ϕ(t) can be described as

ϕ(t) =

⎧⎨
⎩ −1,

1, & 0 ≤ t < 1/2,
1
2 ≤ t < 1,

0, & otherwise

Its scaling function ϕ(t) can be described as

ϕ(t) =
{

1, & 0 ≤ t < 1,
0, & otherwise

It is perceived that selection of basis, scaling function and wavelets, which
leads to achieve good localization in each spatial and Fourier domains. Assum-
ing ‘x’ as given 1D signal, wavelet composed of stages at the most. Initially
we attained two set of co-efficient namely: Approximation co-efficient CA1 and
detailed co-efficient CD1. These co-efficient are acquired through convolving sig-
nal ‘x’ with low pass filter for approximation and detail with high pass filter:
observed by dyadic decimation.

3.3 Principal Component Analysis (PCA)

It is most powerful and premise approach of dimension reduction and it plays vital
role for extracting features based on Statistical Analysis [31]. The feature obtained
after COSLETS transformation end up with high dimension which result in com-
plex computation and time consuming. PCA discover principal patterns of data
with high dimension displaying their similarity and differences. In order to find the
dominant correlations in the data, large dimension data point are mapped onto the
smaller dimensional feature space verifying orthogonality with maximum Covari-
ance of the data which is aligned in the direction of principal axis. The most rele-
vant features attained after applying PCA is ten EEG features, which will be given
as input to GRNN (General Regression Neural Network) classifier. The proposed
model architecture is represented in the below Fig. 1.

Fig. 1. Architecture of proposed coslets transformation for emotion recognition.
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4 Classification

Due to the major advantage of considering first few transform co-efficients as
discriminating features for exhibiting the actual information in a signal by nearly
neglecting other co-efficient information. We gained large number of observed
EEG data to be processed at the phase of classification of EEG signals. In
this regard, PCA (Principal component Analysis) is applied to observed data
and transformed on to the reduced orthogonal feature space [27]. The EEG
features obtained after PCA is 10 in number which will be given as input to
GRNN which is supervised learning model associated with inherent abilities also
good at time series classification and prediction tasks when compared with other
classifiers [32]. It is variants of radial basis function, where systematically the
weights of these network are evaluated and in the hidden layers it uses Gaussian
activation function. Some of the prime advantage of GRNN: It is a single pass
and fast learning network as there is no requirement for iterative training as
other Neural Network follow, even it performs well for data contaminated with
noisy environment. The Topology of GRNN consists of three layers namely:
Input layer, Hidden layer and Output layer. The general Notation for calculating
weights vector of this network is given below.

F (I) =
∑n

i=1 TiWi∑n
i=1 Wi

, Wi = e[
||I − It||2

2h2
] (2)

where the outputF (I) is weighted average of the target values T i of training
cases I i close to a given input case I.

5 Experiments and Results

This section describes the experimental design, results and about the dataset we
have chosen for evaluation of the proposed work.

5.1 Dataset

GAMEEMO [5] is challenging benchmark dataset for EEG based emotion recog-
nition application. The dataset consists of EEG signals recorded using 14 (AF4,
AF3, F7, F8, P7, P8, T7, T8, FC5, FC6, O1, O2, F4, F3) channel Emotiv Epoc+
EEG sensor, sampling rate of EEG device is 2048 Hz, from 28 participants aged
between 20–27 while they were playing four different types of computer games
for 20 min duration (5 min for each game). After playing each game, participant
exhibited four different types of emotions such as Horror, Funny, Calm and Bor-
ing. The dataset contains both raw EEG signals and pre-processed EEG signals,
specifically all the subjects contain 38252 samples for each class of emotion. We
have opted pre-processed EEG signals for implementation, the recorded signals
were down sampled at 128 hz, and are prepossessed using 5th order sinc filter
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(built in filter of EEG device) which eliminates movements of hands, head and
arms which are considered as artifacts.

5.2 Experimental Results and Performance Analysis

This section presents the results based on bench-mark publicly available video
game based EEG dataset. As we mentioned in the earlier section the dataset
consists of 14 channel EEG signals recorded from 28 healthy subjects while they
were playing four different video games. Previous sections detailed about how
DCT is used for data compression resulting from higher dimension to lower
dimension. To start with the implementation phase, the pre-processed EEG fea-
tures which is in time domain of all subjects in each class of emotion with the
length of 38000 were divided into training and testing phase in the ratio of 80:20
for classification purpose, the same procedure was followed for all 14 channels
EEG signals collected from 28 subjects in all four class of emotion. Initially all
the prepossessed EEG features were used for DCT transformation (compressing
higher dimension data to lower dimension), this approach convert time domain
EEG features into fundamental frequency components, EEG feature with low fre-
quency co-efficients are mainly concentrated for further process and co-efficient
with high frequency are neglected, because most of the transformed co-efficient
produced by DCT consists of zero or small in number and only few of them are
with large in numbers, after applying DCT to prepossessed EEG features (38000
for each person from each emotion), the dimension of the features were reduced
from 38000 to 9000 features and to obtain highly discriminating features, 1D
wavelet is applied to DCT transformed features space. In order to reduce the
orthogonal feature space of EEG data PCA is applied to reduce the dimension
of the data which finally gave us 10 most relevant features for further classifica-
tion of different emotions. GRNN was preferred due to its good performance in
wide range of applications and it also good at prediction task. In the proposed
method the results obtained for all channel of EEG signal is given below the
Table 1 (Comparison Table of Different Dimensional Reduction Methods) and
Table 2 (Comparison Table of Different Classifiers for GAMEEMO Dataset). It
is observed that tabulated results comparing existing methods with our proposed
study outperforms well with combination of DR and GRNN as classifiers.

Table 1. Comparison table of different dimensional reduction methods.

Study Methods Dataset Accuracy

Yu Chen [30] LDA + Ada-boost DEAP 88.70

Qiang GAO [18] PCA + SVM Own data-set 89.17

DongKoo [29] Genetic algorithm DEAP 71.76

Proposed method Coslets approach GAMEEMO 100
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Table 2. Comparison table of different classifiers for GAMEEMO dataset.

Method AF3 AF4 F3 F4 F7 F8 FC5 FC6 O1 O2 P7 P8 T7 T8

Alakus et al.

method+KNN

61 75 59 67 67 75 64 68 65 65 61 73 61 64

Alakus et al.

method+SVM

81 88 63 72 84 80 66 68 57 70 59 81 65 81

Alakus et al.

method+MLPN

86 87 79 83 84 84 79 85 79 83 79 77 75 79

Tuncer et al.

method+SVM

98.75 98.57 99.11 98.39 98.21 98.75 98.57 99.29 99.11 98.39 98.57 98.57 98.04 98.57

Our Proposed

method+GRNN

100 100 100 100 100 100 100 100 100 100 100 100 100 100

5.3 Discussion and Conclusion

Analysis of this research work is to present a new emotion classification model
based on EEG Signals. The main purpose in this study was to reduce the higher
dimensional data into smaller one without information loss for better classifi-
cation. The presented model is defined as COSLETS transformation. Which is
combination of DCT and Wavelet transform. Our main concern with data in
hand was to reduce the size/dimension, where DCT is widely used for data com-
pression. Importantly its properties is capable of working with correlated input
data and examine energy of first few transform co-efficients, the other followed
co-efficients are simply neglected. Wavelet transforms was primarily designed
for extracting features with non-stationary signals we applied 1D wavelet trans-
form for DCT co-efficients and to enhance the numerical strength of the model
PCA is used for better representation of data. Conventional networks such as
GRNN have generalization and convergence properties, in this direction we used
GRNN as for classifying four different emotions. Experimental results revealed
that COSLET transformation is the first of this kind in the literature for EEG
based emotion recognition and it has superiorly performed well for all 14 channel
of EEG Signals in the particular dataset. In future we wish to work with several
new dimension reduction approaches which is necessary for recognizing more
classes of emotions with different applications in the field of machine learning.
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Abstract. The present paper proposes a computational approach to
explore the influences of social learning on social cognition among indi-
viduals with Autism Spectrum Disorder (ASD) compared to the Typi-
cally Developing (TD) group. An experimental paradigm is designed to
perceive and differentiate social cues related to real-time road and traffic
light situations. The computational metrics such as sensitivity index (d′),
response bias (c) and detection accuracy (DA) are recorded and analysed
using machine learning classifiers. The results revealed that cognitive
level is attenuated in ASD (d′ = 0.427, c = −0.0076 and DA = 51.67%)
compared to TD (d′ = 1.42, c = −0.0027 and DA = 80.33%) with an
improvement considering social influence as key factor (Sf ) with best-
fit quantitative value for ASD (Sf = 0.3197) when compared to TD
(Sf = 0.3937). The automated classification with an accuracy of 96.2%
supported the significance of the metrics in distinguishing ASD from
TDs. The present findings revealed that social conformity and social
influence imparted growth in ASD cognition.

Keywords: Support Vector Machine (SVM) · Machine learning ·
Correlation coefficient · Social learning

1 Introduction

Autism Spectrum Disorder (ASD) refers to a group of neurodevelopmental con-
ditions that involve social atypicality and repetitive/stereotyped behaviour [26].
These conditions cannot be cured through conventional medication and often
lead to reduced quality of life [7]. Therefore, ASD should be identified as early
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as possible to allow the selection and administration of therapies to mitigate this
reduction and support these people effectively [5,22]. However, the spectrum of
impairments in the behavioural and neural domain increases disorder hetero-
geneity making the identification and diagnosis of ASD extremely difficult [16].
ASD normally can be detected at an early age (about two years ) but may also
be detected later, depending on the severity of symptoms [4]. Although several
tools have been developed to detect and identify subtypes of ASD, the proce-
dures are onerous and normally are not used unless there is a strong doubt or a
high risk of ASD [1,2].

Several studies theoretically reported the ability to visually search and per-
ceive information that is intact in ASD. In a theoretical framework, a study
demonstrated cognition using different vital parameters such as visual infer-
ence drawn from present information, reliable prior experiences, and statistical
learning [13]. The social learning parameter significantly aids in evoking cogni-
tion, working memory and prediction ability among individuals [8,20,24]. Social
learning is a process where one learns by observing, following, and reproducing
other person’s experiences [19]. For example, when Typically Developing (TD)
children were provided with others’ responses related to systematic risks (play-
ing with fire), they changed their perspective and conformity style very quickly
[10,17]. Quantitatively, on average, the influence factor in a social learning pro-
cess lies in the range between 0.3 and 0.5 for healthy individuals [18,23]. The
models which make use of others’ experiences such as observational (Haaker
et al., 2017), instruction-based learning [17], and social learning and influence
[11,21], suggesting that perception can also be learned without directly expe-
riencing the stimulus. Their simplicity allows individuals to take advantage of
others’ experiences and enhance their social interaction. With this fact in mind,
the present paper has utilised social learning as one of the factors in building
cognition in neuro-affected individuals. However, to our information, there is no
study examining the social influence and its impact with a motive to provide
objective markers for ASD diagnosis.

The present paper has mathematically modelled independent response-
making and social learning-based responses to provide cognition levels in ASD.
The paper has evaluated cognition level and influential level by answering the
hypothesis of whether social influence can alter cognition level.

The rest of the paper is organised as follows: Sect. 2 introduces the cognitive
model, Sect. 3 discusses the methodology of this work, Sect. 4 contains the results
and discussion, and Sect. 5 concludes the paper with future recommendations.

2 Cognitive Model

A Two-Alternative Forced-Choice (TAFC) task is designed to practically acquire
and assess the independent social response and social-influence impact on
response patterns. An experimental paradigm is designed in which the partic-
ipants perceive, discriminate, and decide independently which stimuli are risk-
involving and which one is safe [25]. The non-trivial behavioural task involves two



52 T. Wadhera and M. Mahmud

stimuli - risky and safe condition images (related to road incidences), randomly
presented to participants in N = 120 trials. They were instructed to perceive and
distinguish the stimuli into their correct category and respond accordingly. The
computational parameter is modelled mathematically as the sum of independent
learning (P IL

n ) and social learning (PSL
n ), which is given as in Eq. 1:

Pn = P IL
n + PSL

n ; 0 < Pn < 1 (1)

The term P IL
n is determined by computing whether the provided risk/safe

stimuli are correctly identified and responded to by participants for any trial. It
is given by Eq. 2:

P IL
n =

{
1, if response is correct, and
0, if response is incorrect

(2)

for n varying from 1 to N , where n is current trial number, and N represents the
total number of trials. The value {P IL

n = 1} indicates that the individual has
categorised the trial correctly, whereas {P IL

n = 0} suggests that the individual
has not perceived stimuli. The term PSL

n represents social learning with a value =
1 to indicate improvement in response with the observation of others’ responses.
It is given by the Eq. 3:

PSL
n = Sf (βn − P IL

n ), (3)

where Sf is the influential factor, which quantitatively represents the influence
of others on an individual. Its value lies between 0 (no influence) and 1 (full
influence). In the present work, numerous computer simulations are performed
on the experimental data acquired from all the participants to investigate Sf

in ASD and TD. The constant (βn) represents the standard responses shown
to the individuals. The term (βn − P IL

n ) measures the difference in response
provided for observation (βn) and the individual’s own response (P IL

n ). In case
the response of individual and standard responses match (i.e., βn = P IL

n ), then
Pn = P IL

n , which reflects that the individual need not rethink their decision.

3 Methodology

3.1 Participant’s Demographic Data

A total of Fifty children with ASD (6–21 years) were selected from local Non-
Governmental Organisations (NGOs) after assuring those who already followed
the conventional Diagnostic and Statistical Manual of Mental Disorders, Fifth
Edition [3] diagnostic criteria to maintain homogeneity among ASD participants.
The TD individuals (5–20 years) were recruited via word-of-mouth, consider-
ing their medical and neurological (ASD, epilepsy) status. The parents of both
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groups were also interviewed to follow the further exclusion criteria: any psy-
chiatric problem such as anxiety or any other disorder (dyslexia, cerebral palsy,
schizophrenia) or impairment (specific language impairment) (Table 1).

Table 1. Summary of demographic statistics and psychological evaluations

Participants/

Characteristics

ASD TD

Data Normality Data Normality

p k s p k s

Number 50 – 50 –

Male: Female ratio 9:1 – 3:2 –

Age years 13.9± 3.1
(8–21)

0.30 −1.22 0.38 11.8± 2.9
(8–18)

0.15 −1.14 0.64

Non-verbal IQ 112.8± 11.2
(90–130)

0.57 −1.0 −0.29 111.1± 10.4
(88–128)

0.23 −0.20 -1.38

ADOS CSS 8.52± 4.73 0.54 0.008 0.29 – – – –

Verbal IQ MISIC 109.1± 11.12
(79–120)

0.23 −1.51 1.3 113.1± 12.3
(85–128)

0.09 −0.01 −1.49

Performance IQ 110.3± 12.8
(84–128)

0.34 −1.51 −0.33 111.2±11.8
(85–132)

0.21 −0.73 −0.48

Full-scale IQ 107.5± 11.09
(80–126)

0.48 −1.0 0.89 112.6± 11.5
(87–130)

0.15 −1.12 0.93

BRP 2.97± 0.12
(2.72–3.24)

0.23 −0.12 −0.29 3.94± 0.15
(3.67–4.36)

0.70 −0.13 0.34

(k: Kurtosis; p: Significance probability; s: Standard deviation)

3.2 Experimental Paradigm

The stimuli were in the animated images (1396× 561), representing risk involv-
ing and safe situations, as shown in Fig. 1. The stimuli were designed in the
PsychToolbox software [6] of the MATLAB toolbox and presented on a Dell
Inspiron laptop (1366× 768 pixels, 40 pHz refresh rate). The experiment is a
visual-perception based TAFC task in which the participants have to choose one
of the choices to proceed further. The inter-stimulus interval was of 800 ms dura-
tion and distance between the participants, and the laptop screen was kept at
51 cm. It was made sure that selected images provided sufficient information to
participants without any requirement for contextual details. The response levels
were binary, either yes or no and without any intermediate level. Participants
were instructed to respond only after the stimulus was shown by pressing the
corresponding key (‘R’ for risky and ‘S’ for safe). The experimental design was
such that pressing any other key would not affect the experiment or response.
Each participant was instructed to complete 120 trials (N = 120) without any
time restriction.
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Fig. 1. (i) Stimulus provided to participants (ii) Layout of experimental task.

3.3 Theoretical Foundations and Experimental Phases

Theoretically cognitive metrics such as independent and social learning are found
implicitly contributing to perception and decision-making. Following which,
in the present paper, the experiment was conducted in two phases with a
motive to evaluate the cognitive performances of the ASD and TD participants
computationally. In the first phase, the independent learning (i.e., PSL

n = 0,
Pn = P IL

n ) responses are acquired from the participants. In the second phase,
the impact of social learning is considered along with independent knowledge
(P̃n = P IL

n + PSL
n ) in evaluating the response of the participants. The standard

responses and peer responses were provided to ASD and TD individuals for social
learning. After observing provided responses, the ASD and TD participants were
asked to re-evaluate their responses, and their experimental data were recorded
again. The main goal is to quantitatively compute Sf .

3.4 Data Analysis

Statistical Analysis of Experimental Data. The behavioural (signal detec-
tion) statistics are evaluated to ensure the unbiased task performance of par-
ticipants. The two behavioural parameters-sensitivity index (d′) and response
bias (c) have been assessed by computing the participant’s Hit Rate (HR) and
False Alarm Rate (FAR) using Eqs. 4 and 5, respectively, adopted from [12]. The
HR gives the probability of correctly discriminated responses for change in the
trials while FAR providing the likelihood of incorrectly discriminated response
(mistake) corresponding to no-change in trials.

HR =
X

X + (Y forX)
(4)

FAR =
(XforY )

(XforY ) + Y
(5)
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The equation used to compute d′ is given in Eq. 6 as adopted from [15]:

d′ = z(HR) − z(FAR) (6)

in which z represents the z-transform of the (HR) and (FAR). The values can
measure how discriminable participants’ intentions are within the experimental
task. The higher values indicate that participants have learned to perform better
on the given task. It lies in the range of 0 to 4.0, and relatively, the proportion
of correct responses (A) (Macmillan & Creelman, 2004) lies within a range of
0.5 to 0.98 [14]. The parameter (A) can be computed using Eq. 7.

A = 0.5 +
(

HR + FAR

2

)
(7)

The parameter c measures the bias and reflects observers’ valuation, i.e., care
about correct responses (HR, and correctrejections(1 − FAR)) and mistakes
(misses(1−HR), and FAR). It can be computed using Eq. 8 adopted from [9].

c = 0.5(z(HR) + z(FAR)) (8)

The value of c can be positive, negative, or equal to zero [15]. The case
indicates a neutral/unbiased decision such that both stimuli (risky & safe) are
of equal importance to participants. The best-fit value of factor Sf is deduced
by comparing the performance of ASD participants with standard responses and
peer-group responses.

Machine Learning Based Analysis of Experimental Data. Two state-of-
the-art models, namely Support Vector Machine (SVM) and K-Nearest Neigh-
bour (KNN) classifiers, are utilised to classify ASD and TDs. 10-fold cross-
validation is utilised in dividing data into training and testing sets prior to
providing to SVM and KNN classifiers. The training dataset is further divided
into 80% for training and 20% for validation purposes. The efficacy of the SVM
classifier is validated using different performance metrics such as sensitivity,
specificity, and area under the curve (AUC).

4 Results and Discussion

4.1 Statistical Results from First and Second Phase

The range of d′ indexes and c values for both the groups in both phases has
been reflected through a histogram (Fig. 2 (i, ii)). The distribution obtained for d′

values shows diversity in participants’ policies to increase classification accuracy.
On average, the c values reflect that participants have followed a neutral decision
criterion (approximately) while interpreting the given risk-involving stimulus
category (risky or safe). The scatter plot (Fig. 2(iii)) shows that d′ and c are
negatively correlated for both the groups (r(ASD) = −0.112; r(TD) = −0.167),
suggesting more discriminable and less biased decision criteria in both groups.
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Fig. 2. Histograms of (i) Sensitivity indexes (d’), (ii) Response biases (c), and (iii)
Scatter plot of d’ versus c in ASD and TD participants.

A paired samples t-test on values revealed that TDs’ performance is signif-
icantly higher than ASD (Mean ± σ = 0.99± 0.72, t(49) = 8.625, p = 0.001) in
first and second phase (Mean ± σ = 0.87± 0.53, t(49) = 6.302, p = 0.01). The
results from the two-sampled t-test on (c) values yielded an insignificant differ-
ence in the performance of TD and ASD participants (First Phase: Mean ± σ=
0.0058 ± 0.005, t(49) = 0.413, p = 0.68) and (Second Phase: Mean ± σ = 0.0032
± 0.002, t(49) = 0.355, p = 0.45). It reflects the tendency of participants of both
groups to provide a neutral decision.

The bar graphs plotted in Fig. 3 (i, ii) show d′ and c mean values (with
a 95% confidence interval) of ASD and TD participants for the experimental
task. In ASD, the d′ mean is 0.427, indicating their moderate performance with
classification accuracy (computed using equation (14)) of about 51.67%. And
comparatively, the d′ index is higher for TD participants with a mean value
of 1.42 and classification accuracy of 80.33%. The c value (Fig. 3 (ii)) in ASD
(Mean = −0.0076) and in TD (Mean = −0.0027) is approximately equal to zero
reflecting no biasing in their approach.
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Fig. 3. Mean values of (i) Sensitivity index (d′) and, (ii) Response bias (c) in ASD
and TD participants for first and second phase with standard error (95% confidence
interval).

To reflect the impact of social learning, the relationship between ΔP (P̃n−Pn)
and (βn − P IL

n ) (i.e., deviation in the provided and initial response) has been
computed. In case, the participants’ initial response is already similar to the
response of an influential person (βn = P IL

n ) then (ΔP = 0), otherwise ΔP

will change corresponding to (βn −P IL
n ). After analysing the responses (P̃n and

Pn), it is observed that ASDs have changed their response on an average by
(ΔP = P̃n − Pn = 0.13) and TDs by (ΔP = P̃n − Pn = 0.09, where P̃n is
the response of participant after social learning and Pn is the initial response
of the same participant before social learning (independent learning) and ΔP is
the change in final and initial response. The scatter plots, as shown in Fig. 4 (i,
ii), represent the variation in ΔP concerning (βn − P IL

n ) for participants with
ASD and TD. The equation of the fit line has been used to attain the value of
the influence factor Sf in ASD. The participants with ASD get more influenced
(Sf = 0.3937) than TDs (Sf = 0.3197).

Machine Learning Based Classification. The d′, c, and detection accuracy
(DA) values of ASD and TD individuals are fed to the SVM and KNN classifier
for classifying ASD and TD individuals. A 10-fold cross-validation methodology
is trailed in structuring balanced training and testing sets beforehand provide for
SVM and KNN classifiers. The dataset comprises of 80% training data includ-
ing 20% data for validation purposes and rest 20% was testing data. We have
checked for any incomplete data information, or outliers and noise in the data.
The not available values and near zero variance values were removed from the
dataset at priority basis. The effectiveness of classifiers is computed via sensitiv-
ity, specificity, accuracy and area under the curve (AUC).

The performance of the classifiers is summarised in a tabular form in Table 2.
The tabular comparison shows that SVM classifier performs better in classifying
ASD and TD individuals in comparison to KNN classifier. Among different com-
bination of the features, the SVM classifier has shown high sensitivity, specificity,
accuracy and AUC for combined set of all the four features.
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Fig. 4. Scatter plots representing social influence in (i) ASD, and (ii) TD participants.
The equation of Fit line is (i) y = 0.3937x + 0.1001 and (ii) y = 0.3197x + 0.0099.

4.2 Discussion

The main objective of the paper is to quantitatively address cognition in ASD
which involves individual knowledge (based on independent learning) and social
influence. The individuals with ASD were given a risk-based decision-making task
in two phases. In the first phase, the individuals have to complete the task on
their intellect (without social influence). In the second phase, the social learning is
included and the participants have to re-evaluate their prior decision after observ-
ing standard responses. On analysing the performance of individuals with ASD in
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Table 2. Summary of SVM performance metrics in ASD and TD classification

Feature input Sensitivity (%) Specificity (%) Accuracy (%) AUC

SVM KNN SVM KNN SVM KNN SVM KNN

d′ + c 80.2 77.5 75.5 71.2 78.1 74.6 0.801 0.788

d′ + DA 87.3 84.7 84.4 79.9 85.2 82.4 0.862 0.834

c + DA 80.3 76.5 74.6 73.4 76.3 75.4 0.786 0.784

d′ + c + DA 97.8 93.2 95.3 88.9 96.2 89.4 0.988 0.903

the first phase, it has been found that cognition is intact but attenuated in compar-
ison to TD. The second phase results depicted that social learning has an amplified
the cognition level in ASD. Thus, suggesting that cognition can be induced in ASD,
through repetitive observational learning. Finally, the computational parameters
were fed to SVM and KNN classifiers to find the performance of the proposed
parameters in classifying ASD and TD groups. The SVM classifier outperforms
KNN classifier and provides an accuracy of 95.3% for a combined set of all the input
features (d′, c,DA) while classifying ASD and TD groups. The present study is sig-
nificantly important as through quantitative values the cognitive deficits and other
behavioural signs can be targeted mathematically and objectively, which will pace
the ASD diagnostic procedure.

The statistical analysis suggested that participants with ASD have a specific
ability to distinguish between risky and safe stimuli with d′ = 0.42 (mean value)
though poor in comparison to TD (d′ = 1.42). The finding ’no bias’ (neutral
decision criterion; c = −0.0076) means that individuals with ASD did not tend
to prefer safe stimuli more than risky or vice versa. The negative correlation
between d′ and c for both ASD and TD group showed that their decision criteria
became more discriminable and less biased with the practice. The comparison of
the performance of ASD individuals with standard results revealed the best-fit
value for social influence factor as Sf = 0.3937 in ASD and Sf = 0.3197 with
TD individuals. In this manner, the present work has experimentally analysed
impact of social learning on ASD individuals at the individual and group levels.
Thus, it can be said that individuals with ASD have influential factor value
(0.3937 average) which is consistent with the previous studies suggesting that, on
average, the influence factor lies in the range between 0.3 and 0.5 (Soll & Larrick,
2009). The positive impact of social learning in individuals with ASD also reflects
that their working-memory is adaptive enough to revise the opinion by observing
others’ responses. Thus, the positive impact of social learning has generated a
possibility of enhancing the cognition of ASD through social interaction.

5 Conclusion

The present work provides quantitative insights into the contribution of social
learning as a knowledge amplifying process for building perception and enhancing
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independent knowledge in ASD individuals. Social learning positively contributes
to enhancing cognition and decision-making and amplifying independent learning
in individuals with ASD. It can shape the knowledge and develop a predictive and a
judging eye in ASD individuals. The SVM classifier provides an accuracy of 96.2%
for a combination of features (d′, c,DA) in classifying ASD and TD groups. Thus,
it can be said that ASD individuals may have risk knowledge, but atypical visual
judgement and prediction might be responsible for not utilising or regulating this
knowledge properly. In future, it is important to investigate the extent to which
ASD individuals show long-lasting effects in their performance under the influence
of untrained peers. The direction of influence and impact of gender and age on risk-
perception and risk-taking behaviour is an important factor that needs to be stud-
ied. Further research coupling individual decision-making with low-probability or
high-impact risk could provide precise levels of risk perception in ASD. For that
purpose, the present study, which considers the basic perceptual features, can pro-
vide significant pieces of evidence.
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Abstract. A coordination game is one in which two players are rewarded for
making the same choice from the same set of alternatives. The ability of humans to
tacitly coordinate effectively is based on the identification of pronounced solutions
associated with salient features attracting the player’s attention. These prominent
solutions are referred to as focal points. Game theory fails to account for how
people make decisions in tacit coordination games, and human behavior in these
games cannot be explained by a single theory. One of the accepted theories for
explaining human behavior is level-k theory. This theory assumes that each player
has a different level of reasoning by which she assesses the behavior of other
players in the game and makes strategic decisions based on that assessment. In
Previous studies, we have found an association between the players’ cognitive
load as reflected by EEG power and the level-k during the coordination game. The
goal of the current study was to examine the relationship between alpha frequency
and its sub-bands and level-k during a tacit coordination game in the context of
semantic processing.

Keywords: EEG · Tacit coordination games · Focal points · Alpha band

1 Introduction

Acoordinationgame is one inwhich twoplayers are rewarded formaking the samechoice
from the same set of alternatives [1]. Research has shown that humans have the ability to
successfully play coordination games evenwhen communication is not possible (e.g. [1–
4]). The ability of humans to tacitly coordinate effectively is based on the identification
of pronounced solutions associated with salient features attracting the player’s attention
[1]. At present, no single consensus exists about how humans converge on the same focal
point solution [5].One of the accepted theories of human behavior is level-k theory. This
theory [6–8] assumes that humans make predictions about other players’ actions based
on their level k value, which reflects their depth of reasoning ability. That is, the level-k
theory implies that each player believes that she is the most sophisticated person in the
game and bases her actions on the assumption that everyone else is at one level below
her. Previous studies that have examined the relationship between electrophysiological
metrics in the framework of level-k theory have found that a linear relationship exists
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between the player’s coordination ability and game difficulty with the that-beta ration
(TBR)which reflects the cognitive load of the player [9, 10]. In addition the researches in
[11] showed that the level-k of the player can be predicted based on the EEG signal using
deep learning methods. In the current study we aimed to examine the power distribution
of alpha frequency and its various components when performing tasks at different levels
of reasoning based on level-k theory. To that end, an electrophysiological-behavioral
experimental design was constructed. In this experiment, players were presented twice
with the same set of 12 tasks. In the first presentation, the players performed a picking
task inwhich each player had to freely select aword from a string of fourwords displayed
on the screen. In the second presentation, the same 12 tasks were displayed again, but
this time each player had to coordinate the choice of the specific word with an unknown
player. According to level-k theory, it could be assumed that the picking task is level-k
= 0 whereas the coordination task is level-k > 0. EEG was recorded from the scalp of
each of the players while performing each of the tasks. Based on the electrophysiological
results we examined the individual alpha frequency power distribution as a function of
the level-k.

2 Materials and Methods

2.1 Measures

Level-K Theory. One main cognitive theory that tries to analyze and explain human
behaviors in case of tacit coordination scenarios is the level-k theory which is derived
from the cognitive hierarchy theory [13, 16, 17]. The level-k theory holds that players’
reasoning depth relies on their subjective level of reasoning k. For example, players
in which k = 0 (sometimes referred to as L0 players) will act and choose randomly
in their given space of solutions, while L1 players assume that all other players are L0
reasoners and will act according to this assumption, i.e., their strategy will assume all
other players select a random solution. That is, L0 players might utilize rules but will
apply them randomly (picking), whereas Lk≥1 players will apply their strategy based on
their beliefs regarding the actions the other players (coordination).

2.2 Experimental Design

Procedure. The study comprised the following stages. First, participants received an
explanation regarding the overarching aim of the study and were given instructions
about the experimental procedure and the interface of the application. Participants were
offered a reward based on the total number of points they earned in both tasks (picking
and coordination). The experiment consisted of two sets of 12 different trials each with
a different set of words. For example, game board #1 displays a trial containing the set
{“Water”, “Beer”, “Wine”, “Whisky”} appearing in Hebrew, respectively. Each set of
words was displayed between two short vertical lines following a slide containing only
the lines without the word set so that participants will focus their gaze at the center of
the screen (Fig. 1, A and B).
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In thefirst experimental condition, the taskpresented to theplayerswas apicking task,
i.e., participants were only required to freely pick a word out of each set of four words
presented to them in each of the 12 trials. Subsequently, participants were presented with
the coordination task, comprising the same set of 12 different trials. However, in the
coordination condition participants were instructed to coordinate their choice of a word
with an unknown partner so that they would end up choosing the sameword from the set.
Each participant sat alone in front of the computer screen during the entire experimental
session. It is important to note that no feedback was given between the games. That is,
the participants were not informed whether they have coordinated successfully or not
with their unknown co-player.

Fig. 1. (A) Stand by screen (B) Game #1 {“Water”, “Beer”, “Wine”, “Whisky”}

Figure 2 portrays the outline of the experiment. Each slide containing the set of
words (task trials) was preceded by a slide containing only the vertical lines without the
word set (stand-by slides) to keep the gaze of participants in the middle of the screen
throughout the experiment. Each of the stand-by slides was presented for U(2,2.5) sec.,
while each slide containing the set of words was presented for a maximal duration of 8
s. Following a task trial, participants could move to the next slide with a button press.
The sequence of the task trials was randomized in each session.

Fig. 2. Experimental paradigm with timeline
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Participants. The experiment involved 10 university students that were enrolled in one
of the courses on campus (right-handed, mean age = ~26 [years], SD = 4). The study
was approved by the IRB committee of the University. All participants provided written
informed consent for the experiment.

EEGRecordings. EEGwas recorded from participants while they were performing the
tasks. The EEG was recorded by a 16-channel g.USBAMP biosignal amplifier (g.tec,
Austria) at a sampling frequency of 512 Hz. 16 active electrodes were used for collecting
EEG signals from the scalp based on the international 10–20 system. The recording was
done by the OpenVibe [12] recording software. The impedance of all electrodes was
kept below the threshold of 5K [ohm] during all recording sessions. Before performing
the actual experiment, participants underwent a training session while wearing the EEG
cap, to get them familiar with the application and task.

3 Results and Discussion

3.1 EEG Preprocessing Scheme

Based on the literature (e.g. [13–17]), we have focused on the following cluster of
frontal and prefrontal electrodes (Fp1, F7, Fp2, F8, F3, and F4). The preprocessing
pipeline consisted of finite impulse response (FIR) band-pass filtering (BPF) [1, 32] Hz
and artifact removal following ICA. The data was re-referenced to the average reference
and down sampled from 512 Hz to 64 Hz following baseline correction (see Fig. 3).
Data was analyzed on 1-s epoch windows from game onset which resulted in a total of
12 decision points (i.e., EEG epochs) per participant.

Fig. 3. Preprocess pipeline

3.2 Alpha Band Decomposing Analysis in Coordination Process

The oscillations in the alpha band can be divided into two main sub-bands, lower-alpha
(8–10 [Hz]) and upper-alpha (10–13 [Hz]) [18–20]. Previous research has already shown
that coordination necessitates the exertion of additional resources compared to picking
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as reflected by the modulation of the alpha frequency band (see for example [9–11,
17]). Here, based on previous findings, we assumed that as the complexity of the task
increases, i.e., the progression form picking (level-k = 0) to coordination (level-k >

0), alpha frequency should decrease more in the upper-alpha than in the lower-alpha,
especially in the context of semantic processing [18–22].

The statistical comparisonwas performed as follows. For eachEEGepochwhichwas
recorded during the picking and coordination tasks we calculated the relative energy of
the lower-alpha and upper-alpha frequency bands (see Fig.A.1 inAppendixA). Then,we
divided the relative energy values between the corresponding picking and coordination
games in order to estimate the change in energy that occurred in the different alpha bands.
That is, for each two corresponding epochs we estimated the energy changes within the

alpha band according to the ratio
Elower−Alpha|coordination

Elower−Alpha|picking and
Eupper−Alpha|coordination

Eupper−Alpha|picking , for the
lower- and upper-alpha band, respectively.

Analysis of the results of all 12 games showed that the decrease in upper-alpha
between coordination and picking was significantly more pronounced compared to the
decrease in lower-alpha (t(1438)= 3.9937, p< 0.001). In order to estimate the dynamic
changes in the power distribution of the alpha frequency band throughout the course of
the experiment, we split the set of 12 games into thirds. The first third included games
1 through 4, the middle third, games 5 through 8, and the final third, games 9 through
12. Table 1 displays the average values of the relative changes in upper- and lower-alpha
together with the p-value associated with each of the paired t-tests.

It is evident form Table 1 that the same trend appeared at the first (games 1–4) and
middle (games 5–8) thirds of the experiment (t (478) = 5.7788, p < 0.001; t(478) =
3.5248, p < 0.001, respectively). Regarding the final third (games 91–2), it can be seen
that the average change in upper-alpha was lower than in lower-alpha, but the difference
was not significant. Figure 4 resents graphically the distribution of the data by box plots.
The three upper panels present the boxplots for upper- and lower-alpha according to the
split of the data by thirds. The lower panel displays the boxplot corresponding to each
sub-band for the entire dataset of 12 games.

Table 1. Relative power change between coordination and picking in alpha sub-band (lower and
upper) – t-test results.

All games Games 
1- 4

Games 
5- 8

Games 
9- 12

Mean ( ) 0.9084 0.8812 0.9052 0.9389

Mean ( ) 0.8740 0.8284 0.8550 0.9385

t-test p-value p < 0.001 p < 0.001 p < 0.001 p > 0.05
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Fig. 4. Relative power change between coordination and picking in alpha sub-band (lower and
upper) – boxplot scheme

4 Conclusions and Future Work

The alpha frequency band has been previously shown to be modulated by mental work-
load [23, 24], and alertness [25]. The overarching goal of the current study was to
examine the susceptibility of the lower- and higher-alpha frequency bands to varying
levels of mental effort corresponding to different level-k. In this study we employed two
cognitive tasks, i.e., picking and coordination, each associated with a different level-k
(level-k = 0 and level-k > 0, respectively).

Our results indicate that the differential effect of level-k on the alpha sub-bands was
modulated as a function of task progression. Specifically, in the first and middle thirds
of the dataset (games 1–4 and games 5–8, respectively) the difference in relative energy
in the alpha band was significant, whereas, in the case of the last third of the dataset
(games 9–12) there was no difference in the relative energy in the alpha band indicating
that the alpha sub-bands were less sensitive to the differential effect of level-k in the
final section of the experiment. The decrease in the upper alpha frequency band in the
coordination task (level-k> 0) was more pronounced compared to the lower-alpha sub-
band (see Table 1). Themore pronounced decrease in upper alpha is further confirmation
of the effect of performing the semantic task which known as alpha desynchronization
[26]. These results are consistent with previous studies [26–28] that showed that there is
connection between intensity and fluctuations in alpha frequency band to abilities such
as language, imagination, perception, and planning abilities that can be termed brain
cognition.

There are a number of possible directions for future research. Behavioral experiments
have shown that players in coordination games are influenced by a variety of factors such
as loss-aversion [29], social value orientation [30–32] revenue distribution [30] and
culture [31, 33]. The effect of these factors and the possible interaction effects should be
examined in the context of level-k and since they may contribute to the variability in the
individual coordination ability of players [34, 35] and therefore modulate the associated
electrophysiological patterns. Moreover, extracting the brain sources associated with
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different level-k may improve models that aim to simulate the behavior of autonomous
agents [36–39] as well as brain-computer interfaces.

Appendix A: Alpha Band Decomposition and Relative Power
Estimation

Following the pre-processing step, we have estimated the relative power in the alpha
sub-bands (lower and upper alpha) for each picking and coordination epoch. The full
process of alpha band power estimation is presented in Fig. A.1. we have used the
Discrete Wavelet Transform (DWT) [40, 41] (black rectangles). The DWT is based on a
multiscale feature representation. Every scale represents a unique thickness of the EEG
signal [42]. Each filtering step contains two digital filters, a high pass filter, g(n), and a
low pass filter h(n). After applying each filter, a down sampler with factor 2 is used in
order to adjust time resolution. In our case, we used a 3-level DWT, with the input signal
having a sampling rate of 64 Hz (left red rectangle). As can be seen in Fig. A.1, this
specific DWT scheme resulted in the coefficients of the four EEGmain frequency bands
(green rectangles). Next, we use two band pass filters to split the alpha band into the
upper-alpha ([8–10] Hz) and lower-alpha (10–13 [Hz]) sub bands. Finally, to calculate
the relative energy (right red rectangle), we divided the energy of each band by the sum
of all the different bands (delta, theta, alpha, beta).

Figure A.1. EEGAlpha band power estimation and decomposition to lower and upper sub bands
using 3 level DWT scheme
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Abstract. Identifying the neural basis of dyslexia is a fundamental goal of devel-
opmental neuroscience. Final-phoneme elision (PE) test is a paradigm used for
assessing phonological deficit (PD), which is widely considered a causal risk fac-
tor for dyslexia. However, the causal relationship between PD to dyslexia has
been examined primarily based on behavioral observations. Towards facilitating
the exploration of the neurophysiological origins of the theorized link between PD
and dyslexia, we set out to isolate differential neural activation patterns in children
with dyslexia during PE. Accordingly, we present a machine-learning-based app-
roach to identifying differential brain activity in childrenwith dyslexia and controls
during the PE. Our method formulates an optimization problem to extract infor-
mative EEG components based on the ‘Neural-congruency hypothesis’, termed
Phoneme-relatedNeural-congruency components. It then uses amachine-learning
algorithm to optimally combine the resulting components to differentiate between
the neural activity of children with dyslexia and controls. We apply our approach
to a real EEG dataset involving children with dyslexia and controls. Our findings
demonstrate that ourmethodgenerates novel insights into the neural underpinnings
of dyslexia and the potential neural origins of phonological deficits as a causal
factor of dyslexia. Notably, our approach overcomes several methodological chal-
lenges in conventional EEG analysis methods; therefore, it could be utilized in
studying the neural origins of other behaviorally defined developmental disorders
previously overlooked because of such methodological constraints.

Keywords: Electroencephalography · EEG · Neural-congruency · Dyslexia ·
Final-phoneme Elision · Neural-based models

1 Introduction

Developmental dyslexia is a neuro-developmental disorder characterized by the dif-
ficulty of children learning to read, affecting 5%–20% of children [15, 15]. Current
research suggests that dyslexia originates from a weakness in phonological awareness -
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one’s ability to make judgments of and perform conscious manipulations on the sound
structure of spokenwords [13]. Indeed, the PhonologicalDeficitsHypothesis (PDH) pos-
tulates that Phonological Deficits (PD) are causally linked to dyslexia [16]. However,
the relationship between PD to dyslexia has been primarily considered for behavioral
observations [12]. Hence, studies need to explore the neurophysiological origins of the
link between PD and dyslexia.

One paradigm for capturing behavioral measures of PD is the Final-phoneme Eli-
sion Test (PE) which is used as part of dyslexia screening protocols for children. PE
measures phonological awareness at the phonemic sensitivity level [14]. As part of the
PE test, participants are asked to identify which word is produced after eliminating the
final phoneme from a given target word. Behavioral measures of accuracy (i.e., num-
ber of correct responses) and response time quantify performance. These measures are
robust, concurrent and longitudinal predictors of children’s reading ability [13] across
languages (e.g., [2]). However, to our knowledge, few studies explore the neurophysi-
ological basis of these differences observed during PE [11]. We argue that this lack of
studies is due to methodological challenges in isolating informative neural components
in neurophysiological measures during PE.

Electroencephalography (EEG) signals are often used as a neuro-imagingmodality to
study the underlying neural basis of neurocognitive processes and explore their connec-
tion to behavioral observations of cognitive deficits. Such studies typically involve par-
ticipants performing an experimental paradigm pertinent to the neurocognitive function
being researchedwhile their EEG signals are recorded. Typically, such experiments elicit
time-locked Event-related Potentials (ERP) - stereotypical neural waveforms evoked in
the brain in response to an event, such as the presentation of the brief stimulus or event.
ERPs are known to be modulated by the underlying cognitive processes involved in the
experimental task performance. EEG analysis methods can then be employed to extract
informative components from the ERP waveforms and gain insights into the underlying
neural basis of the cognitive process. However, isolating such information from the EEG
responses can be a challenging methodological task in general because of the feeble sig-
nal strength of ERP and the low signal-to-noise ratio (often less than −20 dB) in the
EEG data. Therefore, analysis methods need to consider prior domain knowledge about
the nature of the ERP waveforms (i.e., spatial distribution) that can be experimental
paradigm specific.

Traditional ERP analysis methods attempt to extract ERP components from the EEG
signals by averaging participants’ neural responses across multiple trials and obtaining a
grant-average ERP waveform for each participant or group. The resulting grant-average
ERP waveform exhibit visually recognizable features (i.e., peaks or valleys in the wave-
form at specific timestamps after the event’s onset) referred to as ERP components.
The latency and amplitude of these ERP components are used as dependent variables to
establish differences between groups and conditions and to gain insights into the neural
underpinning of the cognitive process [1]. However, a limitation of ERP analysis is that
it only explores neural-activity time-locked to the event’s onset and only for a short
time window after the onset (typically < 500 ms). Thus, it cannot efficiently capture
differential neural activity occurring beyond this time window. Moreover, EPR analysis
only explores neural activity differences at predefined timestamps where the peaks and
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valleys of the ERP waveform appear, ignoring the rest of the signal. As we argue below,
these assumptions do not hold during the PE task, which limits the applicability of ERP
analysis in our study.

Despite its limitations, ERP analysis has been successfully employed in studying
the neural basis of several psychological processes, including attention, memory and
conditions, decision making, personality traits, perception, and intelligence [3]. In addi-
tion, ERP analysis has been used for studying auditory speech-processing deficits and
their relation to dyslexia (see [9, 10, 18] and references therein). However, this was
done through surrogate experimental paradigms, such as the oddball experiment and the
mismatch negativity, and not directly on the phoneme elision task.

Machine Learning (ML) methods have also been employed to analyze EEG signals
for studying neurocognitive processes. Typically, these ML methods attempt to extract
neural components by identifying spatial projections (i.e., a weighted average across
channels) of the single-trial ERP components that are informative of differences across
conditions and groups. For example, Single-trial Discimiminant Analysis [17] was pro-
posed to characterize the neural correlates of perceptual decision-making by employing
a moving-window classifier trained locally over the time of the ERP. In the context of
spatial cognition, a Commons Spatial Pattern (CSP)-based single-trial analysis [6] was
proposed for the neural basis disambiguation of the spatial-cognition processes- namely,
Perspective Taking and Mental Rotation. Single-trial Correlation Analysis [3] was pro-
posed for studying the neural underpinnings for the Stimulus Presentation Modality
Effects in Traumatic-Brain-Injury treatment protocols. In general, ML methods isolate
more informative neural components when compared to traditional ERP analysis meth-
ods by increasing the signal-to-noise ratio. However, they still rely on local features that
are time-locked to the event onset and are typically limited to within-participant com-
parisons because of the large inter-subject variability in the EEG signals [5]. Therefore,
current ML approaches do not consider differences in neural activity beyond the limited
time window of the ERP waveform and are often localized at predefined timestamps.

Some characteristics of the PE paradigm are incongruous with the methodological
assumptions of current EEG analysis approaches (both ML-based and traditional ERP
analysis), making their direct application to the paradigm ineffective. First, PE gener-
ates varying-duration neural responses beyond traditional ERP time windows. Specif-
ically, the stimuli employed in the paradigms are auditory and vary in duration from
500 ms-1500 ms across trials. As such, information of recognizing the phoneme eli-
sion span beyond the time window of traditional ERP components (typically less than
600 ms, i.e., N100, N200, P300, N400 component sets), which traditional approaches
primarily exploit. Moreover, the variability in the stimulus duration suggests that neural
differences likely spread throughout the signal and are not localized in a narrow time
window following the stimulus onset as assumed by many ML-based methods. These
PE paradigm characteristics limit the application of traditional EEG analysis methods
that expect fixed-duration neural responses and localized and time-locked activations
and focus primarily on exploiting differences in traditional ERP components.

This paper presents a novel machine-learning-based approach to identifying differ-
ential brain activity in children with dyslexia during the PE test. This approach over-
comes many of the methodological limits of existing methods. Our method formulates
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an optimization problem to extract informative EEG components based on the “Neural-
congruency hypothesis”. This relates to the premise that neural activity elicited during
a cognitive task is similar (i.e., congruent) among participants that have mastered the
task but less congruent otherwise [7, 8]. In doing so, our approach overcomes the need
for having fixed-duration stimuli and localized time-locked activations. It can exploit
neural activations beyond the traditional ERP components and spread throughout the
stimulus-response. It then uses a machine-learning algorithm to optimally combine the
resulting components to differentiate between children with dyslexia and controls. We
evaluate the utility of our approach to identify novel neural components informative of
the neural underpinnings of dyslexia for PD using a real EEG dataset involving children
with dyslexia and controls.

2 Materials and Methods

2.1 Experimental Paradigm and Data Collection

The data for this study were collected as part of a broader project aiming to study
the neural underpinnings of dyslexia in children [4] and its relation to core cognitive
deficits. This section introduces a specific task’s design and data collection apparatus:
final phoneme elision.

Final Phoneme Elision Paradigm. The Final-phoneme Elision test comprises a set of
100 trials where in each trial, participants listen to a target word followed by a 1500 ms
pause and then listen to a second word. In 50% of the items, the second word is formed
by removing the final phoneme from the target word. A participant’s task was then to
respond (by pressing an appropriate key on the keyboard after each trial) to whether the
second word was formed by the omission of the final phoneme from the target word or
not. The participants had up to 2500 ms to respond. A training session demonstrated the
task to the participants before completing the main trial sequence.

Participants andEEGDataCollection. Participants for the experiment were recruited
from inner-city public elementary schools in Cyprus. A total of 90 children were
recruited, half of which (i.e., 45 children) were identified as children with Dyslexia
(DYS) and the other half as a group of chronological-age control (CAC). All partic-
ipants were native Greek speakers in Grades 3 and 6 (refer to [4] for details on the
recruiting and screening procedures). As part of the study, participants had to complete
the Final-phoneme Elision test while EEG signals were measured. As part of the exper-
iment session, participants were fitted with a standard 64-channel EEG cap. Electrodes
were placed following the 10/20 layout. DC offsets of all sensors were kept below 20mV
using electro-gel. A trigger channel was used to record time markers denoting the onset
of all events in interest (i.e., presentation of the first and second word and participants’
response). A Biosemi Active-two system (BioSemi, Amsterdam, Netherlands) was used
to collect the EEG data. The study was carried out per the Cyprus National Bioethics
Committee recommendations and received approval from theMinistry of Education and
Culture, Cyprus (#7.15.01.27/17).
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EEG Pre-processing. All EEG data preprocessing was implemented using custom
python code and the MNE library. Preprocessing was done separately on the recordings
of each individual. First, all EEG channels were re-referenced to the average channel.
Then, a 0.5 Hz high pass filter was applied to the continuous EEG data to remove DC
drifts, followed by the application of notch filters at 50 Hz and 100 Hz to reduce the
power-line noise interference. As the study focused on exploring neural activity rele-
vant to PD and the recognition of the final-phoneme elision, continuous EEG data were
epoched based on the onset of the second word (i.e., the elision word). Specifically,
continuous EEGwas epoched starting−200 ms before the second word’s onset until the
second word’s articulation. Each epoch was then normalized by dividing each channel
by the standard deviation across time.

After all preprocessing steps, the observations of each participant i, comprise a set
of EEG trials {X 1

i ,X 2
i , . . .XN

i }, where each, X k
i ∈ R

D×Tk corresponds to the neural
activity following the onset of the elision word of the k-th trial; Tk is the trial duration;
D = 64 denotes the number of channels, and N = 100 is the number of trials.

2.2 Phoneme-Related Neural-Congruency Components

Our goal in this analysis was to isolate those components in the EEG signal modu-
lated by the final phoneme-elision processing and are predictive of differences between
DYS and CAC groups. Our approach is motivated by the hypothesis that a group of
individuals with developed phonological skills (i.e., the CAC group) would exhibit con-
gruent neural activation patterns when engaged in phoneme-elision. On the contrary,
the corresponding neural activation patterns of individuals with phonological deficits
(i.e., DYS) will deviate from such consonance. Grounded on this hypothesis, we for-
mulated an optimization procedure to isolate neural components congruent among par-
ticipants in the CAC group and explore those components as potential differentiating
metrics between CAC and DYS. This section introduces our approach for isolating such
phoneme-related neural-congruency components. The following section discusses how
we employ machine learning to differentiate between DYS and CAC using the extracted
neural components.

Consider the group of participants in the CAC group as S = {s1, s2, .., ss} where
si ∈ Z

+ denotes the participants’ index. We define the between-subject, Rb ∈ R
D×D

and within-subject Rw ∈ R
D×D cross-covariance matrix as follows:

Rb = 1

S(S − 1)

∑

i∈S

∑

j∈S

(
1 − δ̇ij

)
R
ij

Rw = 1

S

∑

i∈S
Rii

where

Rij = 1

K
XiXT

j
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K is a normalizing constant, and Xi ∈ R
D×T is the matrix comprised of all single-trial

EEG of participant i, concatenated across columns, defined as:

Xi = [X 1
i ,X 2

i , . . .XN
i ]

For a given projection vector w ∈ R
D, the average Pearson Product Moment Correlation

Coefficient between the concatenated single-trial responses, projected onto vector w,
across every pair of participants in group S is defined as:

ρ = wTRbw

(wTRww)

The correlation coefficient ρ can be considered as a measure of the degree of congruency
in neural activity of the component w, among participants with intact phonological
awareness. Therefore, we aim to identify those components w that maximize ρ. That is

w
∧ = argwmax

wTRbw

(wTRww)
(1)

The solution of the optimization in (1) are the eigenvectors of the generalized eigenvalue
problem:

(R(−1)
w Rb)wk = λkwk

where wk is the k-th eigenvector of the matrix
(
R−1
w Rb

)
and corresponds to the com-

ponents that capture the k-th most considerable correlation in neural activity, while λk
is the corresponding eigenvalue that captures the strength of the correlation. We note
that Eq. (1) has D solutions (i.e., {w∧1,,w

∧

2, . . . ,w
∧

D,}) corresponding to the D eigenvec-
tors of the matrix

(
R−1
w Rb

)
, and the solutions are ordered from the highest to the lowest

eigenvalue.
Given the set of solution vectors {w∧1,,w

∧

2, . . . ,w
∧

D,}, we define the phoneme-related
neural congruency (PRNC) of an individual s /∈ S with respect to the k-th component
w
∧

k, as:

PRNCs,k = w
∧T
k R

b
sw
∧

k

w
∧T
k R

b
sw
∧

k

where

Rb
s = 1

S

∑

i∈S
Rsi + Ris,Rw

s = 1

S

∑

i∈S
Rss + Rii,

In our analysis, we calculated the Phoneme-related neural congruency scores (i.e.
PRNC) separately for each participant. The participants’ data for which the PRNC score
was to be calculated was excluded from the component extraction step to avoid training
bias during the optimal component extraction. The PRNC measures the strength of the
congruency of the neural activity between a given individual and the CAC group for each
component. Therefore, the congruent activity of each participant for the first Ḋ = 10
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components (i.e., those with the highest eigenvalues) is captured by a vector u(s) defined
as:

u(s) = [
PRNCs,1,PRNCs,2, . . .PRNCs,D,

]T

The vector u(s) is a feature vector that captures the strength of congruency in neural
activity of participant s in the CAC group for the first Ḋ components.

2.3 Classification of Phoneme-Related Neural-Congruency Components

Our goal was to explore the use of the feature vector of neural-congruency components
u(s) as a predictor of a participant’s group assignment (i.e., DYS or CAC).Moreover, we
aimed to investigate which neural-congruency components carry predictive information.
Towards this goal, we formulated a classification model. Specifically, we considered the
dataset.

{
u(s) ∈ R

Ḋ, ys ∈ {DYS,CAC}
}

∀s∈S

and employed a sparse logistic regression classifier using the vector u(s) as indepen-
dent variables, and an individual’s group ys as the dependent variable. The classifier
is trained using a leave-one-participant-out cross-validation procedure to avoid training
bias. The generalization performance of the classifier was calculated as the area under
the Receivers Operator Characteristic curve (AUC). The statistical significance of AUC
scores was established using a permutation test (10,000 repetitions). Finally, the coef-
ficients of the lasso classifier were inspected to identify components that likely carry
predictive information between the groups.

2.4 Spatiotemporal Profiles of Phoneme-Related Neural-Congruency
Components

Given the solutions to the generalized eigenvalue problem, the temporal profile of each
component was calculated as the product of each componentw

∧

k , with each of the single-
trial responses and taking the grant-average response of the projected components.More-
over, the topographical profile (i.e. the forwardmodel) of each componentwas calculated
as:

ak = Rww
∧

k

w
∧T
k Rww

∧

k

The forward model captures the covariance between each component’s activity as
measured by each electrode.

3 Results

We aimed to explore whether neural activity measured by the extracted phoneme-related
neural congruency components is informative in differentiating between children with
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dyslexia and CAC; therefore, to gain insights into the neural basis of the causal link
between PD, as captured in the PE task, and dyslexia. To assess this, we trained a
sparse lasso classifier using the PRNC scores as features and evaluated the ability of the
classifier to differentiate between groups. A leave-one-participant-out cross-validation
assessment indicates that the classifiers achieved an area-under-the-curve (AUC) score
of 0.79. The Receiver Operating Characteristic (ROC) curve that illustrates the classi-
fier’s performance is shown in Fig. 1. The permutation test confirms that the classifier’s
AUC score is statistically significantly higher than random performance p < .001, thus
rejecting the null hypothesis. The strong classifier performance indicates that the neural
activity carried within the phoneme-related neural congruency components encapsulates
the neural underpinnings of PD and dyslexia.

Fig. 1. ReceiverOperatingCharacteristic (ROC) curve showing the cross-validation classification
performance. Light-gray indicates the expected performance under the null-hypothesis

Further, a two-way ANOVA comparing the effect of participants’ grade (i.e., Grade
3 vs Grade 6) and Group (DYS vs CAC) showed a significant main effect (F(2,86) =
12.15, p < .0001), and also significant group differences (T (2,86) = 4.94, p < .0001),
and intercept (T (2,96) = 12.16, p < .0001) were revealed. The ANOVA model did not
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yield significant age group differences (T (2,86) = 0.24, ns). The box plots for the two-
way ANOVA (Fig. 2) show that the lasso-weighted PRNC scores are higher in the CAC
group than in the DYS group.

Fig. 2. Box-plot of the average neural-congruency scores for each group.

The forward model topographies of each of the ten Phoneme-related neural-
congruency components are illustrated in Fig. 3. Each topography captures the covari-
ance in neural activity asmeasured by each electrode. It also alludes to the source location
of the underlying activity eliciting the component. By visual inspection, the topographic
patterns are consistent with those observed in single-dipole modeling, indicating that
the extracted components originated from separate localized sources in the brain.

4 Discussion and Conclusion

In this study, we explore whether neural activity captured by the proposed phoneme-
related neural-congruency components was informative of differences between children
with dyslexia (DYS) and without (i.e., CAC) to facilitate the exploration of the neu-
rophysiological origins of the theorized link between PD and dyslexia. Towards this
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investigation, we propose a novel machine-learning-based approach to identify differ-
ential neural activity between children with dyslexia and a chronological-age control
group during the final-phoneme elision test. Our method overcomes several method-
ological challenges in existing EEG analysis methods that have hindered exploring such
neural components during PE. Specifically, our approach overcomes traditional meth-
ods requiring experiments with fixed-duration neural responses that assume localized
time-locked activations. Therefore, our approach can isolate neural components dur-
ing PE characterized by varying stimulus-response durations and whose activations are
not localized in a narrow time window. Moreover, our method does not explicitly tar-
get traditional ERP components. Instead, it captures regularities spread throughout the
stimulus-response and beyond the conventional ERP components window, which allows
it to capture the differences in PE responses traditional methods cannot. The utility of
our approach is demonstrated on a real-life EEG dataset.

Fig. 3. Forward model of the 10 PRNC components, ordered by their corresponding eigenvalue

The primary result of this study is evidence suggesting that congruency among
neural activations captures information about the underlying neural basis of the causal
link between phonological deficits and dyslexia in children. Particularly, the proposed
phoneme-related neural-congruency components carry information that differentiates
between DYS and CAC (AUC 0.79, p < .0001), suggesting that the neural activation
patterns of the two groups differ. Specifically, results show that children without phono-
logical deficits (i.e., CAC) exhibit similar neural activation patterns with respect to
the phoneme-related neural congruency components, which suggest a set of common
underlying neural basis that are activated synchronously to identify and recognize phone
elision. In contrast, the neural activation patterns in children with dyslexia deviate from
this congruency pattern, which points to the potential underlying neural causes of phono-
logical deficits. We interpret these findings as indicating that children with phonological
deficits have not yet optimized the neural pathways for recognizing phoneme elision.

Further examination of the results provides additional insights into interpreting the
neural-congruency components. In particular, the two-way ANOVA revealed a main
effect on the group (DYS vs CAC) factor but no effect on the participant’s age fac-
tor, suggesting that neural-congruency components capture neural activity relevant to
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a core phonological deficit independent of age. Moreover, an inspection of the neural-
congruency components’ forwardmodel exhibit topographies consistent with the single-
dipole model, suggesting that the source of their neural activity in the brain is localized.
Moreover, differences between DYS and CAC groups are observed in the combined
neural activity of a small set of neural-congruency components. Hence, we infer the dif-
ferences in the final-phoneme elision occur by contributions frommultiple brain regions
and spread over the entire time window processing the elision stimulus.

In conclusion, we proposed a novel approach to extracting informative components
from EEG activity during the final-phoneme elision test. Our findings demonstrate that
our method generates novel insights into the neural underpinnings of dyslexia and the
potential neural origins of phonological deficits as a causal factor of dyslexia. In future
studies, we plan to explore the spatial sources of the identified neural-congruency com-
ponents by using source localization techniques to identify the corresponding brain areas
eliciting the differential activity. Moreover, we plan to explore EEG activity during the
‘encoding’ step (i.e., presentation of the target word) of the final-phoneme elision test.
Notably, as our approach overcomes methodological challenges of conventional EEG
analysis methods; therefore, it opens up the possibility of studying the neural origins of
other behaviorally defined developmental disorders previously overlooked because of
such methodological constraints.
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Abstract. Diffusion MRI imaging and tractography algorithms have
enabled the mapping of the macro-scale connectome of the entire brain.
At the functional level, probably the simplest way to study the dynam-
ics of macro-scale brain activity is to compute the “activation cascade”
that follows the artificial stimulation of a source region. Such cascades
can be computed using the Linear Threshold model on a weighted graph
representation of the connectome. The question we focus on is: if we
are given such activation cascades for two groups, say A and B (e.g.,
controls versus a mental disorder), what is the smallest set of brain con-
nectivity (graph edge weight) changes that are sufficient to explain the
observed differences in the activation cascades between the two groups?
We have developed and computationally validated an efficient algorithm,
TRACED, to solve the previous problem. We argue that this approach to
compare the connectomes of two groups, based on activation cascades,
is more insightful than simply identifying “static” network differences
(such as edges with large weight or centrality differences). We have also
applied the proposed method in the comparison between a Major Depres-
sive Disorder (MDD) group versus healthy controls and briefly report
the resulting set of connections that cause most of the observed cascade
differences.

Keywords: Connectome · Structural brain networks · Activation
cascade · Root-cause analysis

1 Introduction

Diffusion MRI imaging and tractography algorithms have enabled the mapping
of the macro-scale connectome of the entire brain [23]. This network represen-
tation enables the application of powerful tools from graph theory and graph
algorithms in the study of the brain’s structure and function. Earlier work has
focused on various important network properties of the brain such as small world-
ness [1], presence of hubs [12], modularity [22], etc. These studies have revealed
that seemingly local pathologies in specific regions can have far-reaching global
effects on other parts of the brain [19,24].

c© Springer Nature Switzerland AG 2022
M. Mahmud et al. (Eds.): BI 2022, LNAI 13406, pp. 86–98, 2022
https://doi.org/10.1007/978-3-031-15037-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15037-1_8&domain=pdf
http://orcid.org/0000-0001-5091-3850
http://orcid.org/0000-0002-8625-0013
http://orcid.org/0000-0002-4491-861X
https://doi.org/10.1007/978-3-031-15037-1_8


Root-Cause Analysis of Activation Cascade Differences in Brain Networks 87

Probably the simplest way to study the dynamics of brain activity at the
macro-scale is to compute the “activation cascade” that is generated by the
artificial stimulation of a source region. Activation cascades, represented in the
form of directed acyclic graphs (DAGs), describe how an activation starting
from one region (i.e., source node) propagates to the rest of the brain, activating
other brain regions along the way. Previous work has applied the Asynchronous
Linear Threshold (ALT) model on the mouse meso-scale connectome to simu-
late the propagation and integration of sensory signals through activation cas-
cades [21]. Those modeling results were validated with functional data from cor-
tical voltage-sensitive dye imaging, showing that the order of node activations
in the model matches quite well with the empirical activation order observed
experimentally [21].

The question that we focus on in this study is: suppose we are given two
groups with significant differences in the activation cascades generated in their
brain networks, what is the smallest set of brain connectivity (i.e., graph edge
weight) changes that are sufficient to explain the observed differences in the
activation cascades between the two groups? Answering this question can be
valuable in many studies when two groups should be compared, not only in terms
of structural connectome differences, but also in terms of functional dynamics.
For example, we can identify a (generally small) set of brain connectivity changes
that appear to cause the functional activation differences in a given disorder, by
comparing the corresponding activation cascades with healthy controls. Further,
the corresponding connections can be used as possible targets in interventions
and treatments such as deep brain stimulation [20,26].

We have developed an algorithm named TRACED (The Root-cause of Acti-
vation Cascade Differences) to solve the previous problem, as illustrated in Fig. 2.
TRACED starts by identifying node membership differences between the two
groups (say A and B) within the activation cascade of each source. Then, for
each source, we identify the smallest set of edges that, if their weights in group A
are modified to be equal to the weights in group B, the corresponding activation
cascades will be the same in both groups. We have computationally validated
TRACED across many test cases. Additionally, we have applied TRACED in the
comparison between a group of patients with major depressive disorder (MDD)
and a group of controls. This paper focuses on the proposed computational
method – a more comprehensive MDD-focused study of the two groups will be
presented in a different article.

Previous work detected significant topological differences in terms of network
metrics such as edge weights and centrality measures for various neurological
disorders, including multiple sclerosis [7,15], Alzheimer’s disease [6], Parkinson’s
disease [27], and schizophrenia [8]. We argue that the activation cascade app-
roach to comparing the connectomes of two groups is more insightful than sim-
ply identifying such “static” network differences. The former makes some clear
and simple assumptions about the processing and propagation of information
in the brain, and it creates a causal connection between structural changes and
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functional effects. Therefore, the identified abnormalities are more interpretable
and robust to subject variability.

2 Linear Threshold Model and Activation Cascades

Our starting point is a structural macro-scale brain network. In this network
representation, the graph is denoted by G = (V,E), each node in V corresponds
to a brain region, and E contains edges that correspond to connectivity between
brain regions. For structural networks constructed with diffusion tensor imaging
(DTI), the edges are undirected. Each edge (x, y) in E is associated with a weight
w(x, y) that represents the strength of the corresponding connection.

In the linear threshold model, each node can be either active or inactive.
Initially, all nodes are inactive, except a single source node. If a neighbor y of a
node x is active, then we say that x “receives an activation” from y with strength
w(y, x). Node x becomes active if it receives a cumulative activation from all its
active neighbors that is more than a threshold θ.

More formally, a node x at time t is associated with a binary state variable
A(x, t) indicating whether x is active (1) or not (0). For the source node s, we
have that A(s, t = 0) = 1 and for all other nodes:

A(x, t + 1) = 1 if
∑

y|(y,x)∈E

w(y, x)A(y, t) ≥ θ (1)

for t ≥ 0. If x becomes active in the cascade of source s, ts(x) is the time of its
activation. By convention, ts(x) = ∞ if node x never gets active.

An activation cascade, in the form of a directed acyclic graph (DAG), shows
whether as well as how each node becomes active. The nodes in the activation
cascade of source s form the following set:

U(s) = {x ∈ V | ts(x) < ∞} (2)

The edges in the activation cascade include (x, y) ∈ E if node x becomes active
before y. So, the presence of this edge in the cascade DAG means that x partic-
ipates in the activation of y. Mathematically,

F (s) = {(x, y) ∈ E | ts(y) < ts(x)} (3)

We denote the activation cascade as H(s) = {U(s), F (s)}. In Fig. 1 we show
a simple example illustrating an activation cascade generated in a toy network
using the linear threshold model.

For a given θ, different source nodes may give different cascade sizes. Some
source nodes do not activate any other node giving rise to empty cascades, while
other source nodes may activate every node in the network causing a full cascade.
The third case is that of a partial cascade, which is more likely in practice. It
would be unrealistic to set the threshold θ so high that we get many empty
cascades – that would correspond to a comatose brain! However, it would also
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Threshold = 2Edge weight = 2Edge weight = 1
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Fig. 1. An illustrative example of an activation cascade obtained using the linear
threshold model. Node B is the source of the cascade. The threshold θ = 2. Node
A gets active through the edge (A, B), and node C becomes active after both A and
B are active. The rest of the nodes stay inactive in this cascade.

be unrealistic to set θ so low that we get many full cascades. The previous
observations guide us to choose a range of θ values that result in more partial
cascades, across different source nodes.

When comparing the structural brain networks of two subjects, or two
groups, we rely on the membership of each source’s cascade: If a node x is active
in the cascade of source s in one network, is x also active in the corresponding
cascade of the other network? The similarity between the node membership of
two cascades is quantified using the Jaccard similarity metric, applied on the
set of active nodes in the two cascades. A small Jaccard similarity represents a
large difference between the two cascades. If U(s) and U ′(s) denote the set of
nodes activated from source s in networks G and G′, respectively, the difference
between the two cascades is quantified by:

d{U(s), U ′(s)} = 1 − J{U(s), U ′(s)} = 1 − |U(s) ∩ U ′(s)|
|U(s) ∪ U ′(s)| (4)

where J{U(s), U ′(s)} is the Jaccard similarity of the two cascades.

3 TRACED Algorithm

We expect that a mental disorder (or any other genuine distinction in the struc-
tural brain networks of a group) would cause cascade membership differences
for several different sources [25,28]. Additionally, it is reasonable to expect that
these cascade membership differences will be caused by a rather small set of
brain connectivity abnormalities (a larger set of abnormalities would probably
be lethal). Under these assumptions, we aim to detect the smallest set of edge
weight changes that can explain the observed cascade membership differences
between the two groups.

The Case of a Single Source Node: The problem of finding the root-cause
for the activation cascade differences of a single source s can be formulated as
follows: We are given the cascade of s in the control and the abnormal networks.
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Fig. 2. Method overview: the abnormal and control networks may have several edges
with different weights. We generate the activation cascade for each source using the
linear threshold model, and identify the cascade membership differences across the two
networks. We identify a subset of edges (containing only edge BD in this example)
whose weight change can explain the majority of the observed cascade differences. In
other words, if we restore the weights of this subset of edges in the abnormal network
to be equal to the corresponding weights in the control network, the majority of the
cascade differences between two networks no longer exist.

Compute the minimum set of edges C in the abnormal network so that, if we
restore the weights of those edges to be equal to the corresponding weights in the
control network, the activation cascade of s will be identical in the two networks.
We create C-restored network by replacing the weight of edge e (e ∈ C), in the
abnormal network with the weight of e in the control network.
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The mathematical formulation of the previous problem is:

Ĉ = arg min
C∈{E∪E′}

|C| s.t. U ′
C(s) = U(s) (5)

where the set of active nodes in the control cascade of s is denoted by U(s), the
set of active nodes in the abnormal cascade of s is U ′(s), and the set of active
nodes in the C-restored network of s is U ′

C(s). By convention, we take the weight
of any edges that are not present as 0.

A naive algorithm would be to search among all 2m solutions (m = |E ∪E′|)
but that would be computationally infeasible for the scale of structural brain
networks.

Instead, the TRACED algorithm starts from an empty set C and gradually
“grows” the solution by adding one edge at a time. The original empty set C
can grow into m different sets, each with a distinct edge. In the next step, each
of these m sets can include one of the remaining m − 1 edges, creating a total
of m(m − 1) sets with two edges each. This way, when Ĉ is found, the number
of candidate solutions is mk, where k = |Ĉ|. Since we are adding edges step
by step following an approach similar to breadth-first-search, the solution is
guaranteed to be optimal. Note that even though the run-time of this approach
grows exponentially with the solution size k, we expect (as previously mentioned)
that k will be small in practice.

The run-time of the algorithm can be improved however based on the follow-
ing observation. Let us define as “candidate edges” the edges that point from
U(s) ∩ U ′

C(s) (nodes active in both cascades) to U(s)�U ′
C(s) (nodes active in

one cascade but not the other). We know that at each “growth” step at least one
of the candidate edges should be added to the solution. Otherwise, it is impos-
sible to change the activation status of the nodes in U(s)�U ′

C(s). Therefore, in
each step we only consider candidate edges, and thus limit the number of new
possible solutions created. If b is an upper bound on the number of candidate
edges, the number of total solutions generated during the search is at most bk.

Figure 3 illustrates the execution of the TRACED algorithm with a small
example. We start with an empty solution C and with the two activation cascades
(control and abnormal) for a single source s. Then, we identify the candidate
edges between the two cascades. For each candidate edge we “grow” a new branch
of the solution tree. We repeat these steps until U(s) = U ′

C(s).
TRACED has a time complexity of O(bk(|V | + |E′|)) because it iterates

through bk candidate solutions and executes the linear threshold model once for
each possible solution.

In Sect. A.1 we introduce an improvement that further reduces the average
run-time and allows multiple optimal solutions to be found, by adding more
than one edge into a candidate solution at each step. That improvement does
not change the algorithm’s main idea or its worst-case run time.

To computationally validate the correctness of the algorithm, we created
pairs of small-scale graphs for which we know the edges that cause activation
cascade differences between the two networks. These examples are designed so
that they vary in several factors: they can have one or multiple optimal solutions,
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Fig. 3. Illustration of TRACED: the tree structure shows how the solution is gradually
computed one edge at a time – different branches of the tree can lead to different
solutions. The final solutions are marked in red. Along with each candidate solution
C, we present the corresponding cascade H ′

C(s). In this example, two solutions can
explain equally well the observed differences between the two cascades that originate
from source C. (Color figure online)

only one edge or multiple edges in one solution, and edges in a solution that are
dependent on each other (i.e., an edge included in the cascades only when the
weight of another edge is restored). TRACED results in the correct results in all
cases, identifying one or multiple optimal solutions correctly.

Aggregation Across Different Source Nodes: The previous algorithm may
produce different sets of edges for different source nodes. Some of these edges
may be the result of noise in the data or other artifacts. We select a subset of
these edges based on the following argument: if TRACED identifies a certain
edge as causal, not only for one source but for multiple, it is likely that edge
represents a genuine and important difference between the control and abnormal
networks.

We use the coverage metric to measure the number of sources for which
an edge e has been identified as causal for the cascade membership differences.
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Edges with higher coverage play a more central role in the observed differences
between the two networks.

To test if the coverage of an edge is significant or not, we construct a null
hypothesis that all edges in the network have the same probability ( |Ĉ(s)|

|E| , where

Ĉ(s) refers to the set of edges identified to be causal to cascade membership
differences with source node s) to be reported as causal for source s. Under that
assumption, the coverage metric follows a binomial distribution:

coverage′(e) ∼ B

(
∑

s

|Ĉ(s)|, 1
|E|

)
(6)

So, the final output of TRACED is the set of edges for which the coverage
value is much higher than expected based on chance (p < 0.05 in the binomial
distribution).

This final step makes the TRACED algorithm heuristic - the set of edges that
we finally report is no longer guaranteed to explain all differences in the acti-
vation cascades of all sources. Nevertheless, the result captures edges that have
influenced the activation cascades across many source nodes, and is therefore
more reliable.

4 A Case Study on Major Depressive Disorder

The focus of this paper is on the analysis method presented in the previous
section, rather than a specific application. To illustrate one potential applica-
tion of this method, however, we summarize here the results of a comparison
between a group of severe MDD patients and a group of healthy controls. The
DTI data for this comparison was provided to us by Dr. Helen Mayberg’s group
and they were originally used in the PReDICT study [3,4]. The PReDICT study
was approved by Emory’s Institutional Review Board and the Grady Hospital
Research Oversight Committee. We constructed structural brain networks apply-
ing probabilistic tractography on diffusion MRI scans of 90 MDD patients and
18 control subjects. The brain was parcellated into 396 regions (198 regions for
each hemisphere) using the multi-modal cortical parcellation of Glasser et al.
[9], and the Brainnetome Atlas [5] for sub-cortical regions. We applied the lin-
ear threshold model and generated an activation cascade for each source node,
and measured the cascade membership differences between the two groups. The
threshold that we used ranges from 0.1 to 0.3 among different source nodes,
and is determined for each source node as the one associated with most signifi-
cant cascade membership differences. We then applied TRACED to identify the
minimal set of connections that can explain the observed cascade differences.

Table 1 lists the connections that we identified as causal for the cascade
membership differences between the two groups. These connections have a sig-
nificant overlap with findings of earlier studies reporting MDD-related struc-
tural/functional changes. The connections identified as causal are adjacent to
parts of Brodmann area 24 [14], area 32 [10], area 9 [13], area 10 [16], and the
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orbitofrontal region [18]. All of these regions have been reported to be patholog-
ically relevant for MDD in earlier studies. Some of the reported connections are
also in the default mode network (DMN), which has been shown to be heavily
affected by MDD [14], with increased functional connectivity [11]. We are going
to further analyze this dataset and also compare our findings with those of other
network analysis methods in a follow-up MDD-specific article.

Table 1. The connections that can explain the cascade differences between a group
of MDD patients and a group of controls. The name of each node is based on the
parcellation of Glasser et al. [9], followed with a brief description of the location of
that region (L: left hemisphere, R: right hemisphere).

Node 1 Description – Node 2 Description

p24 (L) area-24 posterior – a24 (L) area-24 anterior

10v (L) area-10 ventral – 10pp (L) medial polar area-10

a24 (L) area-24 anterior – 9m (L) area-9 medial

Pir (L) piriform olfactory cortex – pOFC (L) posterior OFC

13l (L) area-13 lateral – OFC (L) orbital frontal complex

p32 (L) area-32 posterior – 10d (L) area-10 dorsal

p32 (L) area-32 posterior – 9m (L) area-9 medial

10v (R) area-10 ventral – 10pp (R) polar 10p

pOFC (L) posterior OFC – 13l (L) area-13 lateral

10pp (L) medial polar area-10 – OFC (L) orbital frontal complex

p32 (L) area-32 posterior – 10pp (L) medial polar area-10

5 Discussion

Various network analysis metrics and methods have been proposed in the past
to compare structural brain networks. For instance, earlier work has investi-
gated the differences between brain networks in terms of small-worldness [1], effi-
ciency [2], and modularity [22]. At the node level, the clustering coefficient, par-
ticipant coefficient, and different node centrality metrics (especially the between-
ness centrality) have been widely adopted [17,29]. At the edge level, researchers
have investigated the edges with significant weight differences and the subnet-
work they form [14].

TRACED falls in the spectrum of the edge-level analysis, and the resulting
set of connections is a subset of edges that have significant weight differences
between the two groups. Additionally however TRACED also incorporates the
information flow across the entire network in varied paths (because of all the
source nodes considered). We aggregate this topological information across the
entire network to describe the role that a specific network element (node or edge)
plays in the network, and how that role is different between the two groups.
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Fig. 4. Earlier work has mostly focused on brain connectivity differences using graph-
theoretic metrics (e.g., node centrality metrics). TRACED associates connectivity
changes with their impact on information transfer in the brain. It measures the impact
of such changes on activation cascade differences, and identifies the specific connections
that cause these differences through root-cause analysis.

Figure 4 illustrates typical node-level and edge-level network analysis metrics
and compares them with TRACED. Compared to identifying solely edges with
significant weight changes, TRACED associates a structural change (i.e., restor-
ing the weight of a connection to its value in the other group) with functional
changes (the node membership of the corresponding activation cascades). This
is favorable for two reasons: it makes the results more interpretable, and less
sensitive to variability across subjects. A significant difference in the weight of a
connection between two networks may be simply due to subject variability. With
TRACED, a connection is identified as causal not only based on its weight but
also based on the topological role of that edge in the propagation of information
(activation cascades) from different source nodes.

Compared to node-level analysis metrics, TRACED can provide higher spa-
tial resolution because it identifies specific connections instead of entire brain
regions. Additionally, some network analysis metrics often make implicit assump-
tions about information transfer in the brain (e.g., the betweenness centrality met-
ric assumes that information travels through shortest paths, while the communi-
cability metric assumes that information follows random-walks). These assump-
tions may not be realistic (e.g., shortest path routing requires information about
the complete network stored in every node). It is also harder to interpret these
metrics in terms of their associated localities in the brain (e.g., a node may have
much lower communicability in one group but what is the corresponding set of
affected information pathways?). TRACED makes an explicit assumption about
information transfer, namely activation cascades based on the linear threshold
model, and it associates structural connectivity changes with corresponding func-
tional changes, making the results more transparent and informative.
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A Appendix

A.1 Optimization of TRACED

A key observation is that if adding a single edge (x, y) into a solution set does not
change the activation status of node y, we will inevitably need to add additional
edges pointing to y to build a final solution. Otherwise, for a solution C with (x, y),
we can always find a better solution C ′ = C − {(x, y)} with U ′

C(s) = U ′
C′(s).

Therefore, we can improve the original TRACED algorithm, by adding a
collection of edges in each iteration, so that U ′

C(s) changes when we create a
new partial solution. This way we can reduce the number of partial solutions
that we create during the search for the optimal solution. How do we find the
collection of edges that can cause the change in UC(s)? We know that we focus
on change of activation status of nodes in U ′

C(s)�U(s), and so we can discuss
the case of nodes U(s) \ U ′

C(s) and U ′
C(s) \ U(s) separately.

1. For each node v in U(s)\U ′
C(s), we can check if there is an ensemble of edges

from U(s) ∩ U ′
C(s) pointing to this node, so that if we include the ensemble

into the solution, v would be active in the updated U ′
C(s). It is guaranteed

that we can find at least one such collection of edges. Otherwise, we cannot
explain why this v could be active in U(s).

2. For nodes in U ′
C(s)\U(s), we can further find its subset TC(s) so that for each

node v ∈ TC(s),
∑

u∈U(s)∩U ′
C(s) w(u, v) ≥ θ. We can prove that U ′

C(s) \ U(s)
will no longer be in U ′

C(s) if and only if we add an ensemble of edges for
each node in TC(s) into C. If for a node v in TC(s) we do not add edges
connecting to v into C, v will remain active and present in U ′

C(s). If we
add edges connecting to v for every node v in TC(s), none of the nodes in
U ′
C(s) \ U(s) receive an activation more than θ, so that they will no longer

be active.

With this modification, each partial solution C corresponds to a state U ′
C(s),

and it is guaranteed that there are no edges that can be removed from C without
changing that state. Therefore, all partial solutions corresponding to one state
are equivalent, in terms of the edges that need to be added to the solution to
reach another state. Therefore, we can construct a graph of solutions, where
each node x corresponds to a state, and each edge (x, y, {e1, . . . }) corresponds
to an ensemble of edges {e1, . . . } needed to be added into the partial solutions
corresponding to state x so that the new solution leads to state y. Such an
edge is also weighted, with a weight that is equal to the number of edges in
the collection. Notice that there can be multiple edges between two nodes, each
corresponding to one collection of edges and may have a different weight different
than other edges.

With such a graph of solutions, our goal is equivalent to finding the weighted
shortest path between the initial state U ′(s) and the final state U = U ′

Ĉ
(s) in
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the graph. This is because the sum of the weights of edges along a path in the
graph of solutions would be the number of actual edges we include in the final
solution. We can find the shortest path using Dijkstra’s algorithm since we have
only positive weights. The major benefit of having this graph of solutions is that
we can deal with the case of multiple optimal solutions more explicitly. They
will be represented as multiple shortest paths from the initial state to the final
state.
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Abstract. Contradictory data exist whether the category number affects the learn-
ing performance in rule-based and integration-information classification tasks.
When an effect is observed, the performance is better for a lower number of
categories. We aimed to investigate the effect of the category number on the per-
formance in the unstructured category learning tasks with probabilistic feedback.
We conducted four experiments. The stimuli consisted of dot motion sequences.
We presented eightmotion directions (0°–315° through 45°) withmotion direction
coherence of 75% (Experiments 1, 3, and 4) and 20% (Experiment 2). We used
the probabilistic rule of 79% (Experiments 1–3) or 75% (Experiment 4) correct
answers. Eight observers classified the eight stimuli into 8 categories (Experiments
1–2); 2 categories (Experiment 3); 4 categories (Experiment 4). The results show:
1.) awide variety of strategies adopted by the observers; 2.) Accuracy and response
time changed at a different rate during learning; 3.) The rate of improvement dif-
fered between the experiments; 4.) The response time is a better characteristic
of incremental category learning. The findings imply that the learning perfor-
mance depends predominantly on the complexity of the rule of stimulus–response
associations and to a lesser extent task’s difficulty.

Keywords: Accuracy · Learning · Probabilistic feedback · Response time ·
Unstructured category learning

1 Introduction

Categorization is the process of sorting things into groups. In the categorization learning
paradigm, the observer gives the same answer to all members of one category and
different answers to members of other categories [1]. Categorization has an essential
role for the individual to survive and succeed in unknown circumstances and in everyday
life.

In an attempt to explain how unknown stimuli are classified and stored in memory
and how the observer learns a new category, numerous categorization models were cre-
ated [2]. The early theories proposed a single category-learning system for all types of
categories [2, 3]. Later theories assume multiple category learning systems [2, 4–6]. It
is usually assumed that two independent systems participate in category learning. One
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system, explicit (also named declarative, verbal, rule-based), relies on the medial tempo-
ral lobe (MTL) and uses working memory, executive control, attention, and hypothesis
testing by application of simple rules [2, 7]. The other system, implicit (also procedural,
nonverbal, or similarity-based), relies on the dorsal striatum and does not involve work-
ing memory or attention but learns associations between motor responses and category
labels [2]. The learning from the implicit system is often assumed to be unavailable to
awareness and/or impossible to verbalize [4, 8].

One approach to test whether single or multiple systems are involved in the classi-
fication process is to manipulate different characteristics of the classification task and
evaluate whether these manipulations have a different effect depending on the category
structures. Such approach is used in behavioral [9], neuropsychological [6], and neu-
roimaging investigations. Ashby and O’Brien [11] distinguished four different category
structures: rule-based (RB), information-integration (II), prototype, and unstructured
category. In rule-based category structures, the category can be learned via some logical
reasoning process. The rule that maximizes accuracy is easy to describe verbally [3]. In
information-integration category structures, the optimal strategy is difficult or impossi-
ble to describe verbally. Accuracy is maximized only if information from two or more
stimulus dimensions is integrated at some pre-decisional stage [4]. In prototype type
of structures, the exemplars of a category are created by randomly distorting a proto-
type [12, 13]; thus, the category members have high similarity. In unstructured category
classification, the exemplars in a category are arbitrarily selected; they are not based
on similarity as in prototype classification, on some abstract logical relationship as in
rule-based classification, or the covariance of features as in information-integration.

Most studies show that certain manipulations affect either the outcome of the RB or
the II classification studies but not both types, as predicted by multiple-system theories.
One such manipulation is to change the number of categories in the classification task.
The categories’ learning accuracy deteriorates for RB classification when four instead
of two categories are used. In contrast, II category learning is unaffected by category-
number manipulations [9]. These results were taken as evidence for multiple-systems
involved in category learning. However, Stanton and Nosofsky [14] conducted an II
category learning similar to the work of Madox and colleagues and obtained significant
deterioration in 4-category compared to 2-category classification for two different II
category structures. Stanton and Nosofsky [14] see evidence in favor of single-system
models in these contradictory results. Thus and so far, the case of single or multiple
systems mediating category learning is still, to a great extent, open to debate.

Most of the existing studies used either RB or II structures, whereas the unstruc-
tured categories are extremely rarely studied and are among the most difficult cate-
gories to learn [15, 16]. Neuroimaging studies of unstructured-category learning have
reported task-related activation in the striatum (in the body and tail of the caudate nucleus
and the putamen), but typically not in the medial temporal lobe structures [17–19].
Togetherwith a neuropsychological study of [20], these findings imply that unstructured-
category learning is mediated by procedural memory, not by declarative one. Indeed,
in a behavioral study of unstructured-category learning [21], the authors demonstrated
that by switching the response keys’ locations, unstructured-category learning recruits
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procedural memory. II tasks are also supposed to be mediated by procedural memory
[4].

Except for the structure of the categories, the classification studies differ by the
provided feedback. It could be incomplete, indicating only whether a response is correct
or wrong, or it could provide full information showing the proper stimulus category.
It could also be probabilistic, being inaccurate in a particular proportion of cases. The
most used probabilistic classification task is the Weather Prediction task [8], in which,
based on a combination of one to four cards (cues), the observers have to select one
of two categories: “sun” or “rain.” The classification outcome depends differently on
the cards – two cards are highly predictive for the classification, while the other two
are much less predictive. Hence, the classification is based on a combination of cues
from the different cards, though the task could be performed with high accuracy using
only the most predictive cards. Probabilistic category learning was developed to study
procedural memory [10]. Still, some researchers suppose that a declarative component
is also involved in the task [22] or that the task is entirely declarative [23].

The present study aims to investigate the effect of the number of categories on the
performance of unstructured category tasks with probabilistic feedback. Contrary to the
Weather prediction task, in our study, the classification is based on a single stimulus
dimension – the direction of motion of dot patterns. A single stimulus was presented in
each trial; thus, all stimuli were equally predictive for the outcome as they are associated
with the same probability to their category. Also, in one of the experiments, we reduced
the directions’ coherence in the stimuli, making the categories less distinct. In this way,
we expect to obtain new knowledge about the least studied type of category learning – the
unstructured one, and a better understanding of the involvement of different processes
and brain structures depending on the classification tasks.

The present research studies the learning processes in one of the least investigated
classification tasks. It explores the effect of category number and distinctiveness in
unstructured probabilistic classification using two different performance measures –
response time and accuracy and their interrelation that allows evaluating better the con-
tribution of the experimental manipulations revealing a potential competition between
the explicit and implicit memory systems. Both the individual and the averaged learning
curves were explored.

2 Materials and Methods

2.1 Stimuli

The stimuli consisted of 85-frame motion sequences of dots (diameter 0.16° and density
0.85 dots/deg2) moving with constant speed at 5 deg/s in a circular aperture with a diam-
eter of 15° positioned in the middle of a computer screen. Eight motion directions were
presented: 0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°. Motion direction coherence
was 20% in Experiment 2 and 75% in Experiments 1, 3, and 4. We varied stimulus–
response association and randomly assigned one label (color) to each category by a
probabilistic rule of 79% correct answers in Experiments 1, 2, and 3 and of 75% correct
answers in Experiment 4. Each experiment was run on a separate day and consisted of
two sessions, separated by a 2-min break.
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The stimuli were binocularly viewed from 57 cm and presented on the computer
screen (21" Dell Trinitron refresh rate 85 Hz; resolution 1280× 1024 pixels). A custom
program developed under Matlab PsychToolbox [24] generated stimuli and controlled
the experiments.

2.2 Procedure

After a warning signal, a fixation point appeared in the center of the screen. A motion
direction stimulus was presented for 1 s, followed by two circles of a diameter of 3° and
different colors shown to the left and the right of the fixation point. The observer had to
decide which of the colored circles corresponded to the correct answer and respond by
clicking the mouse button. All combinations of different colors were presented an equal
number of times. The colored circle corresponding to the correct response appeared as
feedback on the screen center for 1 s. As not all colors are equally detectable in the
retinal periphery [25], the colored circles were positioned at 10° from the screen center.

In Experiments 1 and 2, the observers had to classify the eight motion directions into
eight categories with one exemplar in each. In Experiment 3, they had to classify the
eight motion directions into two categories, eachwith four exemplars, and in Experiment
4 – into four categories, each with two exemplars. Before each experiment, the observers
were informed of the number of categories.

Full feedback was provided after every response, and thus observers learned to
associate each of the motion directions with the appropriate response through trial and
error. The observers were told that at the beginning of each task, they could not know
which stimulus belonged to which category, but by following the feedback, they could
learn to categorize the stimuli and that in approximately 20% of the trials, the feedback
would be false.

All observers were presented with the same random order of stimuli in each experi-
ment. Several restrictions were used to generate the stimulus sequences: they consist of
blocks with a random permutation of all possible stimulus–response combinations. An
additional requirement is that the last stimulus–response combination differs from the
starting one of the next block. This way of generating the sequences allows controlling
to a certain degree, the effect of the memory processes by having an approximately equal
separation between the presentations of each stimulus–response combination.

2.3 Observers

Eight healthy observers (mean age 30 years, range 22–39 years, 4 males, 4 females)
participated in the study. The Ethics Board of the Institute of Neurobiology approved
this study. All participants provided informed written consent to the approved protocol
before the start of the investigation, according to the Declaration of Helsinki.
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2.4 Statistical Analyses

All analyses were performed in the software R environment [26]. The package lme4 [27]
was used to fit generalized linear mixed models to the observers’ binary responses in the
classification tasks. The package glmmTMB [28] was used for modeling the dependence
of the response timeon the experiment and the trial number.Model assumptionswere ver-
ified by using the DHARMa package [29] to test for overdispersion, heteroscedasticity,
and temporal dependency.

The mixed models consider the individual differences among the observers with the
assumption that a common function relates the dependent variable and the experimental
factors, the difference among the participants being in the value of the parameters.

3 Results

Large individual differences in the performance of the subjects both in the learning rate
and the effect of the experimental conditions were observed. For 5 out of the 8 subjects,
the highest proportion of correct responses is obtained in Experiment 1, but the worse
performance varied greatly between them, with a slight prevalence for Experiment 2.
The mean proportion of correct responses ranged from 0.48 to 0.98.

The large individual differences make the use of average learning curves and the
assumptions of the generalized linear mixed models questionable. As shown in [30],
averaging will lead to a misleading interpretation of the results if the learning is not
gradual. To give credit to our analyses and conclusions, we applied the change-point
algorithm of [30] to the individual learning curves. This algorithm uses the cumulative
record to test whether the distribution of the different learning measures changes in
the learning process. It is based on the insight that when the performance is stable,
the cumulative record will approximate a straight line. In contrast, a change in the
distribution will be apparent as a change in the cumulative record slope. The point of
maximal deviation from a straight line is most likely a change point. The changes in
performance reflected in a slope change of the cumulative records are evaluated on
statistical grounds. A logarithm of the odds (logit) against the null hypothesis of no
change is used as evidence that a particular putative point is a change point.

We applied the algorithm of [30] to each observer’s responses in each condition using
a logit of 2, corresponding approximately to a significance level of 0.01. The observers’
binary responses were regarded as generated from a random rate process with a fixed
probability. The cumulative records are presented in Fig. 1. The algorithm shows one
or more change points from all 32 cumulative records, only in 6 cases (marked with
black dots). No cumulative record indicates sharp changes in the learning curve. These
results imply that while the individual data look quite diverse, the process of learning
has similar characteristics.

Figure 2A presents the average learning curves obtained by calculating the number of
correct responses in blocks of 28 presentations for Experiments 1–3 and in blocks of 32
presentations – for Experiment 4. The data imply performance improvement depending
on the experiment; thus, the learning rates varied with the number of the categories and
the induced noise.
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Fig. 1. The cumulative records of the observers’ responses in the four experiments. The black
dots show the presence of a change in the learning performance.

To evaluate the learning rate differences between the four experiments, we performed
a generalized linear mixed model regression on the binary responses obtained in each
experiment and each condition. A binomial distribution with a logit link was used (i.e., a
mixed logistic regression). In this way, the learning curves are described by the following
formula:

πi = exp(Xiβ + Ziui)

1+ exp(Xiβ + Ziui)
(1)

In (1) πi is the probability of success on trial i (the number of successes at trial i follows
a binomial distribution), Xi is ni×pmodel matrix of the fixed effects, Zi is ni×qmodel
matrix for the random effects for trial i. The coefficient β represents the p − 1 vector
of the fixed-effect regression coefficients, ui is the q − 1 vector of the random-effects
coefficients for trial i distributed according to a normal probability distribution with
mean zero and q × q covariance matrix D.

As fixed factors, we considered the experiment, the trial number treated as a continu-
ous predictor, and their interaction. The trial number was scaled. We tested models with
random slopes and intercepts and selected the model that best describes the experimen-
tal data based on the likelihood ratio test. The chosen model has a random slope and a
random intercept that varies with the condition. Model validation indicated no problems.
In the analysis, we used as a reference value the accuracy data from Experiment 3 in
which the classification was with the least number (2) of categories.
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The results of the analysis show that the trial number significantly affected the number
of correct responses (Wald’s χ2(1) = 21.15; p < 0.001). While the effect of the exper-
iment was not significant at p = 0.05 (Wald’s χ2(1) = 3.12; p = 0.37), the interaction
between the trial number and the experiment is significant (Wald’s χ2(1)= 30.70). This
result implies differences in the learning rate depending on the number of categories or
the presence of noise. However, the significant interaction is due only to the lower learn-
ing rate in Experiment 2 compared to the reference – the classification in 2 categories.
This result implies no effect of category number but suggests that the increased noise in
motion direction makes the difference between the categories less distinct. In this case,
either the task requires more attention, or the classification performance becomes more
similar to prototype categorization. Due to the random generation of the motion patterns
and the reduced coherence of the motion directions, the performance might be based
on the patterns’ similarity. Most similar should be the patterns with the same motion
direction, but some confusion between the neighboring categories could be expected.
The fitted dependencies of the correct responses on the trial number are presented in
Fig. 2B.

Fig. 2. A – The averaged learning curves for Experiments 1–4. B – The fitted dependence of the
correct responses on the trial number

We next evaluated whether the reaction time also changes with the trial number
and, if yes, whether this change is the same for all experimental tasks. One hypothesis
is that when the observers learn the associations between the stimulus attributes and
their corresponding category, the reaction time will decrease. To test this hypothesis,
we performed a generalized linear mixed model with the response time as a dependent
variable and the experiment, the trial number, and their interaction as predictors. In
the model, the trial number was scaled and considered as a continuous predictor. We
tested several distributions for the reaction time, as suggested by [31]. The model with
Gamma distribution and identity link showed a lower Akaike information criterion and
was applied to the data. The random effects included by-subject random intercept that
varied with the classification task. Also, we included a dispersion model that varied with
the subject, the classification task, and the trial number. Its inclusion specifies that the
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covariates’ variance is not the same and changes with their value allowing to model
heteroskedasticity.

The results of the analysis show a significant effect of the trial number (Wald’s
χ2(1) = 192.972; p < 0.001). The estimated effect of the trial number on the reaction
time is illustrated in Fig. 3A. It demonstrates the significant effect of the experiment
(Wald’sχ2(3)= 11.828; p< 0.05) and the significant interaction between the experiment
and the trial number (Wald’s χ2(3) = 53.648; p < 0.001). The figure clearly shows
that the reaction time is longer in Experiment 2 and is almost independent of the trial
number. In contrast, in the rest of the classification tasks, the reaction time decreases
with the trial number. It is apparent that the reaction time increases with the number
of categories for classification. Whereas the main effect of the experiment is due to the
longer reaction times in Experiment 2, the interaction term significance is due to the
different slopes in Experiment 4 (classification in 4 categories) and in Experiment 2.
The reaction time decreases more sharply with the trial number for classification in 4
categories as compared to classification in 2 categories.

We also tried to evaluate the relationship between the accuracy and response time
using a methodology proposed by [32]. Their approach estimates whether the observers
are trying to keep similar accuracy at the expense of a change in reaction time, whether
the accuracy and the reaction time are independent, and whether the two performance
measures co-vary. To distinguish between these potential outcomes, a generalized linear
mixed model is applied with the binary responses of the classification tasks used as
a dependent variable and the experiment, the trial number, and the logarithm of the
response time and their interactions - as predictors. Hence, two continuous predictors –
the response time and the trial number were included, and the experiment was considered
a categorical factor. In this way, it is possible to capture the correlation between accuracy
and the response timewithin a given subject.We tested different randomeffects structures
and compared their outcomes by the likelihood-ratio method. In the final model, a by-
subject random intercept and by-subject random slope varying with the classification
task were included.

The results of the analysis show that the inclusion of the reaction time as a predictor
eliminated to a great extent the effect of the classification task. The main effect of the
experiment (Wald’s χ2(3) = 5.299; p = 0.15); the interaction between the experiment
and the trial number (Wald’s χ2(3) = 4.902; p = 0.18); the triple interaction between
the trial number, the reaction time and the experiment (Wald’s χ2(3)= 4.222; p= 0.24)
are insignificant at p = 0.05. The interaction between the trial number and the reaction
time also turned insignificant (Wald’s χ2(1) = 3.058; p = 0.08). The only significant
effects in the model remained the trial number (Wald’s χ2(1)= 16.914; p < 0.001), the
effect of the logarithm of the reaction time (Wald’s χ2(1) = 44.955; p < 0.001), and
the interaction between the experiment and the logarithm of the reaction time (Wald’s
χ2(3) = 11.936; p < 0.001).
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Fig. 3. A – The fitted dependence of the response times on the trial number; B – The fitted
dependence of the correct responses on the response time

Figure 3B represents the accuracy changes depending on the reaction time’s loga-
rithm and the experiment. The figure shows that the accuracy declines with the increase
in reaction time, opposite to the speed-accuracy trade-off that would imply a higher
number of errors for shorter response times. The reduction in accuracy with reaction
time seems most extreme for the classification tasks with 8 and 4 categories (Experi-
ments 1 and 4) and least affected for the case when, due to the induction of noise in
the stimulus motion, the discrimination of the stimuli deteriorates (Experiment 2). How-
ever, the estimated regression coefficients show a significant difference in the interaction
term between the experiment and response time only for Experiment 4 compared to the
reference (Experiment 3). Thus, the accuracy of the classification and the time needed
for the task performance are related to each other. Significant differences are observed
in the time needed to classify the stimuli in 4 and 2 categories.

4 Discussion

In the present study, we explored the effects of category number and their distinctiveness
on the learning performance in unstructured classification tasks with probabilistic feed-
back. The manipulation of the category number is assumed to be a proper test, whether
single or multiple systems are involved in the classification [9, 14]. In all experiments,
we used the same 8 stimuli that differ in motion direction. The only difference is the
number of categories they were randomly assigned to and the noise level induced in
motion direction.

The use of probabilistic rule hampers the learning of the stimulus–response asso-
ciations, allowing greater exploration of the learning processes and more observations
before the learning maximum is reached. Our data show that learning the association
between the stimuli and the response categories is very difficult, and not all subjects
succeeded in achieving high performance. There are significant differences in learning
ease, depending on the category number and the induced noise. While the average learn-
ing curves for the different experiments show improvement with the trial number, this
is not the case for all participants and conditions.



108 B. Genova et al.

Intuitively, we would assume that explicit memorization is involved in unstructured
category learning [11]. However, there are fundamental differences between explicit
memorization and unstructured-category learning. In a typical memorization task, the
observers are presented with a list of things to remember, and they repeat them until they
learn them. In unstructured-category learning, however, the stimulus–category label
pairs are not explicitly presented and are learned from the accumulation of trial-by-
trial feedback. Moreover, suppose all the classification tasks in our study are performed
based on explicit memorization. In that case, no differences should be observed between
the experimental conditions as the same stimuli are used in all of them, while our data
indicate significant differences in the timing of the responses between the categorization
in two and four categories.

As each stimulus in Experiments 1 and 2 is assigned to a separate category, this task
could be considered an identification. It is logical to assume that there might be a dif-
ference between identification and categorization tasks. On the one hand, categorization
might be expected to be easier than identification since the stimuli in a common cate-
gory need not be discriminated from each other; thus, less information about a stimulus
is required to classify it than to identify it. In this regard, it is worth mentioning the
mapping hypothesis [15, 33] that considers the one-to-one mapping in the identification
and many-to-one mapping of stimuli onto responses in categorization. According to it,
all inter-stimulus confusions in the identification task that are within-class confusions
would result in correct categorization responses. Only between-class confusions would
result in categorization errors.

On the other hand, when using randomly grouped distinct stimuli (except for Exper-
iment 2) in different categories, the categorization may be more difficult than identifi-
cation since the observers must remember which stimuli are in a category; hence they
have an additional task. This assumption would explain the deterioration of performance
with the increase in category members as observed, for example, in RB classifications
(e.g. [15]).

A winning strategy in unstructured category learning will be not to focus attention
on remembering the members of a common category but to consider the task as identi-
fication with more identical answers, which would be an example of fast learning [34].
Indeed, based on the learning curves obtained in our study, it seems that the observers
perform similarly both in the identification and the categorization tasks as if only an
association between a single stimulus and its category is learned independently from the
number of the rest members of this category. Whereas the average performance suggests
significant differences between the experimental conditions with the best performance in
Experiment 1 (the highest proportion of correct responses and steepest learning curves),
this observation was not confirmed by the data’s statistical analysis. Only in Experiment
2 (classification into 8 categories and lower coherence of motion direction), the learning
rate turned to be significantly lower than in the rest of the classification tasks. The higher
noise level in the stimuli could smear the motion directions’ differences, making the
task more similar to prototype learning. The unclear boundaries between the motion
directions may prevent the generalization from previous experience with the stimuli.

The lack of differences in the learning curves depending on the number of categories
in the unstructured categorization is similar to the II tasks that rely on proceduralmemory.
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Most studies show that the increase in the number of categories does not affect the II
classification performance (e.g. [9] but see [14]), though it affects the RB classification.
Both unstructured and II tasks are based on gradual learning of the stimulus–response
associations over many trials. It is generally assumed that the basal ganglia are involved
in this type of learning (e.g. [10, 35]). Neurophysiological studies on the effects of basal
ganglia damage on learning in tasks that involve incremental learning supposed to rely
on procedural memory also support this hypothesis (e.g. [36, 37]).

The basal ganglia are also supposed to be involved in tasks with probabilistic feed-
back [38]. However, in probabilistic learning, the role of the basal ganglia seems to
depend on task complexity. For multi-cue tasks like the Weather Prediction task, the
basal ganglia are not involved in the initial stages of learning, but in its later stages,
the learning switches to more subtle integrative rules of stimulus–response associations.
Conversely, in single-cue probabilistic categorization, activity in the basal ganglia is
observed in the initial phases of the learning process up to the moment when the asso-
ciation between the stimulus and the response is learned, and later on, their activity
decreases [18, 39] replaced by activity in MTL [40], or prefrontal cortex (PFC) [39] that
govern declarative strategies.

Hence, in an unstructured classification, it seems natural to expect no effect of the
category number due to the similarity between this type of categorization and the II
tasks. Due to the probabilistic feedback and the single-cue classification, it is possible
to expect a switch from implicit learning supposed to be involved in this type of task
to a more declarative explicit one. Do our data support such expectations? To answer
this question we consider the differences in the response timing observed between the
different classification tasks.

It is thought that the procedural system can learn almost any type of category struc-
ture. For example, pigeons, which are supposed to lack an explicit reasoning system,
learn RB and II categories equally well using identical to human procedural strategies
[41]. Some evidence suggests that in purely procedural tasks, people perform declara-
tively. The declarative strategy is includedwhen the task is complex.We have an arbitrary
structure of stimulus–response associations, so our task is complex, Experiment 1 being
the most complex. Procedural memory will solve it, but slowly, by trial-by-trial infor-
mation accumulation. When the declarative memory intervenes (this is an example of an
optimization process), it inhibits the procedural system’s ability to access motor output
systems, though it does not exclude procedural learning [42]. This interference may
explain the extension of the response time in Experiment 1.

Experiment 2 has similar complexity as Experiment 1, but in addition to it, the
reduced coherence of motion direction makes the distinctiveness of the categories less
clear. It is the only experiment in which the learning does not reduce the response time.
This finding may imply that when the stimulus noise is high, and the difference between
the categories is less clear, more time is needed for stimulus encoding, and this prolonged
processing deteriorates previously learned associations.

Our data show a significant difference in response time for categorization in two
and four categories, implying more effective learning for the case of four categories.
Also, using the response time as a predictor of classification accuracy, we obtained
differences for categorization in two and four categories. Usually, the response time
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analysis is taken as a complementary tool to confirm the results from the accuracy-based
analysis of the experimental factors’ effect. To our knowledge, only one study [43] ana-
lyzes the binary measurements that correspond to the sequences of correct and incorrect
responses together with the continuous measurements representing the time needed to
respond in a learning task. Its approach is quite different from ours, but it shows that
the combined analysis provides evidence for more accurate and reliable estimates of the
learning process and its dynamics than the separate analyses of the accuracy measure-
ments and response time. It should be stressed that the response time for classification
in two categories is shorter than that for classification in four categories, but it changes
less in the process of learning. This finding would imply that the task of stimulus classi-
fication in two categories is not more difficult than the classification in four categories.
One potential explanation of the less effective learning for the case of two categories
may be that motion direction stimuli have natural categorization in different groupings
like oblique and cardinal directions, or leftwards and rightward motions, upward and
downward. In complex tasks like in the Weather Prediction tasks, the observers often
use single-cue rules in the learning process that reflect memory operations dependent on
interactions between theMTL and the PFC [38] before gradually shifting to a more opti-
mal strategy that better reflects the relationship between the stimuli and their association
with the responses. In classification in two categories, it might be easier to formulate
simple rules between the stimuli in a category as rules-with-exceptions, thus delaying
the involvement of the more optimal rules of categorization. Also, the rules’ exceptions
need memorization that might also affect the learning dynamics due to the additional
cognitive load.

Future research is needed to understand the dissociation between the effect of cate-
gory number on the response time and the accuracy of the classification, and the role of
stimulus similarity on unstructured classification. Here, we used stimuli that have some
inherent classification. It may have interfered with the random separation of the stimuli
in groups and the different learning dynamics depending on category number.

Considerations of the results allude that in unstructured category learning with prob-
abilistic feedback, the performance reflects the competition between the explicit and
implicit memory systems. Unfortunately, there are not enough arguments in favor of
this idea at this stage of the research. However, the study results provide new data about
unstructured categories that are very rarely studied.

5 Conclusions

The results of the present study imply that in the unstructured category learning with
probabilistic feedback the number of categories has diverse effects on the two charac-
teristics used to represent the learning process. The classification accuracy is greatly
unaffected by the category number, similar to the information-integration tasks. At the
same time, the learning performance represented by the response time shows faster per-
formance improvement for categorization in four than in two categories. Hence, the
learning curves are less sensitive to the differences in the learning process. The response
time is a better characteristic of incremental learning in these categorization tasks.When
the boundaries between the classification categories are less distinct, the ability to gen-
eralize from the previous experience severely deteriorates. This result implies a role of
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similarity-based processes in unstructured classification tasks. The classification tasks
with arbitrary stimulus–response associations and probabilistic feedback are challeng-
ing, showing great differences in learning rate when classification is based on a single
cue. Future studies are needed to describe better the similarities and the differences in
the performance and the processes involved in unstructured classification tasks.
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Abstract. While most models of brain information encoding focus on
neurons, recent studies have shown that calcium dynamics of astrocytes,
the major class of non-neural cells in the brain, can add information
about key cognitive variables that is not found in the activity of nearby
neurons. This raises the question of what could be the contribution of
astrocytes in information processing, and calls for analysis tools to char-
acterize this contribution. Here we construct simulations with realistic
dependencies of astrocytic activity on external variables and we use these
simulations to understand how to optimally set parameters of informa-
tion theoretic analysis of astrocytic activities. Applications of our tech-
niques to simulated and real astrocytic data show how to set parameters
of information analyses that provide conservative, yet reliable, estimates
of astrocytic calcium dynamics contribution to circuit-level brain infor-
mation processing.

Keywords: Mutual information · Astrocytes · Significance testing ·
Information estimation

1 Introduction

Established models of how populations of brain cells encode information consider
exclusively the encoding at the level of population of neurons [1,6,12,13]. How-
ever, this view has been recently challenged by studies of the activity of astrocytes
[3]. Astrocytes, the most abundant glial cell type in the mammalian brain, are
not electrically excitable but display excitability based on complex dynamics of
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intracellular calcium (Ca2+) concentration. Astrocytic Ca2+ dynamics can
be recorded in vivo with high spatial resolution using functional two-photon
microscopy [28]. Recordings of astrocytes in sensory areas have shown that these
cells can encode sensory stimuli [10,21,24,25,27]. Recently, several laboratories
[3,5,11] begun to investigate how astrocytes encode information about external
variables. As an example, our work [3] has shown that astrocytes in hippocam-
pal CA1 recorded during spatial navigation in a virtual environment encode spa-
tial information that is complementary and synergistic to that carried by nearby
“place cell” neurons. This additional non-neural reservoir of information suggests
the possible presence of novel cellular mechanisms underlying how brain circuits
encode information, and invites the inclusion of astrocytes in the models of brain
information processing.

To improve our understanding of how astrocytes participate in information
encoding it is important to have statistical tools that can be used to clarify
whether astrocytes genuinely carry information about specific cognitive vari-
ables. Because little is known about how astrocytes encode information, non-
parametric analyses that make little assumptions (e.g. linearity) about how infor-
mation is encoded are particularly desirable at this stage. It has been recently
proposed [3] that information theory [20,22] may be an ideal candidate to this
aim. However, the use of information theory with limited size datasets and noisy
biological cells is made difficult by statistical issues [9,18]. The neural literature
has studied, using computer simulations, how to set optimally procedures and
parameters of the analysis given the levels of information encoded by neurons
and the size of the dataset available [9]. However, such studies have not been
performed for astrocytes.

Here, we performed simulations of astrocytic Ca2+ dynamics matching the
statistical properties of signals recorded from real subcellular regions of interest
(ROIs) of hippocampal astrocytes during virtual spatial navigation. We used
these simulations to investigate how to optimally apply information theoretic
methods to determine the presence and amounts of genuine information encod-
ing by astrocytes. Last, we validated results and predictions of simulations by
applying this methodology to in vivo recordings of hippocampal astrocytic sub-
cellular Ca2+ signals during spatial navigation.

2 Computing Amount and Significance of Information
in Astrocytic Calcium Activity

Here we introduce the measures of information about external variables carried
by astrocytic activity, and we define the parameters of its computation from real
data. Suppose we have a two-photon microscopy calcium imaging experiment
where a mouse is performing a task or is shown a certain set of sensory stimuli. In
this scenario we can record Ca2+ signals from astrocytic cellular compartments
(for example, a soma or a process) defined as ROIs in a given field of view
(FOV). We are interested in quantifying whether the Ca2+ response r of the
astrocytic ROI, measured at given imaging time frame, encodes information
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about an external variable s that varies during the task or a stimulus variable
that is varied across the experiment. In the experimental dataset that we will
use [3], the Ca2+ dynamics of hippocampal CA1 astrocytes were recorded while
a mouse was navigating in a linear track in a virtual reality environment. With
this dataset we were interested in determining whether the astrocytic Ca2+

response encoded the position of the mouse along the linear track, similarly
to how neurons called place cells do in hippocampus [16]. How selective is an
astrocytic ROI with respect to an external variables s can be computed by using
the mutual information I(R;S) between the set of astrocytic responses R and
the set of external variables S, defined as follows [22]:

I(R;S) =
∑

s

P (s)
∑

r

P (r|s) log2
P (r|s)
P (r)

(1)

where P (s) is the probability of the external variable taking the value s, P (r) is
the probability of measuring an astrocytic response r across all data points, and
P (r|s) is the probability of observing a responses r given a value s observed for
the external variable. We assume that both astrocytic activity and the external
variable take continuous values, and that we have discretized them into a num-
ber of bins R and S, respectively. These probabilities can be estimated as nor-
malized histograms of occurrences of discretized stimulus-response values. Such
probabilities are computed from the finite number N of experimentally avail-
able datapoints (denoted “trials” hereafter) measuring simultaneously s and r.
I(R;S) measures, in units of bits, how well we can infer the value of s from a
single trial observation of the astrocytic response r. Zero bits indicate that no
information can be gained from observing r, whereas positive values of informa-
tion indicate that it is possible to reconstruct with some precision the value of s
from the value of r. One bit means a reduction of uncertainty about s of a factor
of 2 from a single-trial observation of r.

A first important question that can be addressed with mutual information
analysis of astrocytes regards individuating how many and which ROIs carry
information about external variables. An information value can be greater than
zero even when the considered ROI actually has no information. This can hap-
pen because of random fluctuations in probability values generated by the lim-
ited number of trials that were sampled [18]. The statistical significance of each
mutual information value can be determined by creating a null-hypothesis dis-
tribution obtained from surrogate datasets in which the relationship between
s and r is destroyed by randomly shuffling the values of s and r across trials.
A second important question regards quantifying precisely how much informa-
tion each ROI carries. This is made difficult by the fact that, because of the
limited number of trials available, the “plugin” information measure obtained
simply by plugging the experimental probabilities into Eq. 1 is affected by a
systematic upward bias [19]. Several bias correction procedures can be used to
obtain an unbiased estimate mutual information [14,15,17,18,26]. Two widely
used methods are Panzeri-Treves bias correction (PT) method [19], which ana-
lytically estimates the bias, and the quadratic extrapolation (QE) method [26],
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which estimates bias through extrapolating the information values obtained with
data subsampling.

Thus, free parameters and algorithmic choices of the information analysis
include the number of bins S and R, used to discretize the external variable s and
the astrocytic Ca2+ activity, and the bias correction method used to compute
information. Studies considering other types of brain signals have shown that
computer simulations, characterized by realistic levels of information content
and numerosity of trials, can be used to optimally set the information analysis
parameters [9,18]. However, no such work has been performed for astrocytes.
Here, we implemented data-driven simulations to identify optimal parameters to
perform mutual information analysis of astrocytic data. To understand how to
optimally set information estimation parameters, we simulated set of astrocytic
Ca2+ responses (n = 20) that realistically captured the dependency of astrocytic
activity on the position of mouse during spatial navigation in virtual reality.
(Astrocytic Ca2+ signals simulation software and mutual information software
can be found at github.com/jbonato1/AstroSimulation). Ca2+ responses were
modeled matching statistical parameters (mean and standard deviation) of Ca2+

responses of real astrocytic ROIs recorded in vivo from the hippocampal CA1
area of mice navigating in a virtual environment [3]. Responses for each spatial
position were drawn from a Gaussian distribution with the parameters found in
the data. We evaluated the effects of trial numerosity, number of bins used to
discretized the data, and information levels, by systematically modulating these
parameters across simulations. The information level in the simulated responses
was controlled by a parameter α [9] linearly rescaling the modulation of r by s.
α = 1 (no rescaling) yields simulated responses with the same response properties
and thus information levels as real data, whereas 0 < α < 1 corresponds to
modeling responses with reduced information content, and α = 0 (modulation
of r by s completely rescaled away) corresponds to no information. We report
results of simulations for α = 1 (full-information, Fig. 1A), α = 0.5 (Fig. 1B) and
α = 0 (no-information, Fig. 1C).

We first evaluated the performance of the non-parametric shuffling in classify-
ing simulated responses as carrying significant information. We performed these
numerical experiments as function of the number of trial per stimulus numerosity
(Ns), and information content (Fig. 1D–F). For this first study, simulated astro-
cytic responses were discretized into R = 4 equally spaced bins and space in the
linear track was discretized into S = 12 spatial bins. For each simulated response
we computed a null-hypothesis distribution generating 100 shuffles and we set a
significance level of p< 0.05. When using the plugin estimate of mutual informa-
tion, we found that for the full-information model (α = 1) the shuffling procedure
classified correctly significance down to Ns = 64 (log2(Ns/R) = 4). When reduc-
ing the information content (α = 0.5) the shuffling test required more samples
to perform correct detection. Finally when the model had no-information we
found that false positive rate was stable at the level of 5% set by our statistical
threshold. The use of PT bias correction procedure did not affect the statistical

https://github.com/jbonato1/AstroSimulation.git


Optimizing Measures of Information Encoding in Astrocytic Calcium Signals 121

power of the non-parametric shuffling test, while QE method resulted in reduced
statistical power.

Fig. 1. Sensitivity of information content measures for realistic simulations of position
encoding astrocytic Ca2+ signals. (A–C) Mean Ca2+ responses across trials as a func-
tion of position for simulated astrocytic ROIs (n = 20 ROIs) for α = (1, 0.5, 1) models,
respectively. The number of trials per spatial positions (Sect. 2, here 64) was varied
across simulations. (D–F) Percentage of significant realizations detected using different
methods (plugin, PT, and QE) as a function of Ns/R ratio for α = 1, 0.5, 1 models. For
each bias correction method, PT (red lines) and QE (green lines) information value
was compared to the shuffled distribution of the corresponding values. 20 iterations of
the simulation were generated for each number of trials used. (Color figure online)

Astrocytic Ca2+ signals and position recorded during spatial navigation are
continuous variables, and the number of bins into which they are discretized
is one of the most delicate parameters of the analysis. A too coarse discretiza-
tion may wash out all information, and a too fine discretization may make the
measures too noisy especially when data are scarce. Thus, S must be chosen to
obtain to optimally trade off these two competing effects.
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Fig. 2. Characterization of information theoretic methods applied on simulations of
astrocytic Ca2+ responses. (A) Average information estimate over 20 simulations as a
function of the number of position bins. Simulations were repeated with fixed response
discretization (R = 4), number of trials resembled experimental data sampling condi-
tions. (B) Percentage of realizations classified as significant as a function of the number
of position bins. (C) Average information estimate over 20 simulations as a function
of the number of response bins. Simulations were repeated with fixed stimulus dis-
cretization (S = 12) and constant number of trials per stimulus Ns = 68. In (A–C)
information computations were performed without bias correction (plugin, black line),
PT (red line) or QE (green line) bias corrections. (D) Percentage of significant real-
izations as a function of Ns for different values of number of response bins (no bias
correction). The corresponding values of information for each R value are indicated
by corresponding colored marks in panel (C). Data is shown as (mean ± std). (Color
figure online)

We performed simulations using the full-information model (α = 1) to gen-
erate data with a number of trials per stimulus resembling in vivo experimental
data [3]. In these simulations we investigated the effect of position discretization
while we kept the discretization of the response fixed at (R = 4). We found
that (Fig. 2A) bias-corrected information measures (both PT and QE meth-
ods) plateaued for values of S in the range (4–16). Conversely, plugin estimates
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monotonically increased with S, as their value contained an uncorrected upward
bias component. For plugin estimates, we found that the fraction of realizations
correctly detected as significantly informative (100 random shuffles, p< 0.05)
decreased for S values greater than 16 (Fig. 2B), thus indicating insufficient
sampling. The PT bias correction procedure did not affect the statistical power
of the non-parametric shuffling test, while the QE method resulted in reduced
statistical power. Thus, for further statistical tests we used uncorrected plugin
estimators.

We characterized the effect of response discretization performing numeri-
cal experiments in which we simulated a realistic number of trials per stimulus
(Ns = 68, equal to the average number of trials per stimulus in real data, see
Sect. 4), while the position discretization was set within the information esti-
mate plateau identified before (S = 12). We found that (Fig. 2C) bias-corrected
information measures (both PT and QE methods) plateaued over a large range
of R, whereas plugin estimates were strongly affected by bias. Statistical power
was strongly dependent on the selection of discretization parameters (Fig. 2D)
showing, in these sampling conditions, adequate power up to R = 8. Further
increasing R would be possible only with much larger number of trials to avoid
underestimation of significant astrocytes ROIs.

3 Measuring Conditional Mutual Information to Evaluate
Genuine Information Encoding

In many cases, cognitive tasks rely on several correlated external variables. An
important question is how to determine whether astrocytic activity is genuinely
informative about each such correlated variable. For example, in the mentioned
spatial navigation experiments different parts of the track have different visual
cues to aid navigation [3,4,7], thus there is a correlation between position s
and visual cue identity v (Fig. 3A). How do we determine for example if the
astrocyte encodes genuinely spatial information above and beyond what can be
explained by its possible tuning to the visual cue v? One way to address this
issue it to compute the conditional mutual information (CMI) [9] of an astrocytic
response r about a stimulus s conditioned on the value of a visual stimulus v. This
quantifies the amount of information encoded in responses R about positions S
that cannot be explained by the tuning to a set of visual stimuli V and it is
defined as:

I(R;S|V) =
∑

v

P (v)
∑

r,s

P (r, s|v) log2
P (r, s|v)

P (r|v)P (s|v)
(2)

where P (r, s|v) is the joint probability of observing response r and stimulus s at
fixed visual stimulus v. A non-zero value of CMI denotes genuine tuning of the
astrocyte to s. The statistical significance of a CMI value can be assessed against
a null-hypothesis distribution obtained shuffling the relationship between r and s
within each specific v. We evaluated the performances of CMI statistical testing
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Fig. 3. Determining the significance of conditional mutual information. (A) Schematic
of a virtual track containing three distinct visual patterns [3,4,7]. (B–C) Percentage
of significant realizations classified with the shuffling test and without bias correction
(plugin) for models with genuine spatial information (B) and without spatial informa-
tion (C). Data is shown as (mean ± std).

in classifying simulated responses as bearing genuine spatial information. We
used numerical experiments leveraging on the full information model (α = 1),
simulating astrocytic Ca2+ signals bearing spatial information. We found that, to
achieve robust CMI significance detection, it is required to sample approximately
256 trials per stimulus (Fig. 3B). Then, we quantified the extent of false positives
reported by the CMI statistical testing. We performed numerical experiments
generating astrocytic Ca2+ signals devoid of spatial information (α = 0). We
found that the false positive rate was stable at 5% set by our statistical threshold
(Fig. 3C).

4 Spatial Information in CA1 Astrocytes During Spatial
Navigation

Here we apply the information theoretical formalism presented in Sects. 2 and 3
to investigate information encoding in astrocytic Ca2+ dynamics using real two-
photon functional imaging data. We used the dataset of [3], in which subcellular
Ca2+ dynamics of hippocampal CA1 astrocytes (specifically labeled with the
genetically encoded Ca2+ indicator GCaMP6f [2,8,23]) were recorded from head-
fixed mice navigating in a monodirectional virtual corridor (Fig. 4A–B).

First, we investigated the influence of stimulus-response discretization on
mutual information estimation and statistical significance detection on real data.
We estimated the underlying probabilities for a grid of discretization parameters
S (8, 12, 16, 20, 40, 60, 80) and R (2, 4, 6, 8, 10). We used a uniform-count binning
procedure for positions and an equally-spaced binning procedure for responses.
We found that correcting the information measures for the limited sampling bias



Optimizing Measures of Information Encoding in Astrocytic Calcium Signals 125

with PT method yield stable results over a wide range of discretization param-
eter S (4–16) (Fig. 4C), confirming the efficacy of the PT method in accurately
estimating the information value.

Fig. 4. Spatial information encoding in CA1 astrocytes during virtual navigation. (A)
2-photon Ca2+ imaging was performed in head-fixed mice running along a 180 cm
virtual track [3]. (B) Normalized astrocytic Ca2+ responses as a function of position
for ROIs with significant spatial information computed with R = 4 and S = 12 (n =
311 ROIs out of 356 total ROIs, 7 imaging sessions from 3 animals). Responses are
ordered according to the position of the maximum of the Ca2+ responses. Vertical
scale: 50 ROIs. (C) Mutual information values with PT bias correction as a function of
the number of position bins. (D) Percentage of ROIs classified significant as a function
of the number of bins for the stimulus. (E) Fraction of astrocytic ROIs showing a
significant decrease in their information content when position is shuffled within the
same visual cue (Binomial test with 0.05 probability of success; *, p < 0.05; **, p ≤ 0.01;
***, p ≤ 0.001). Data are mean ± s.e.m. from 7 imaging sessions in 3 animals. (Color
figure online)
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Significant realizations were affected by both S and R parameters. We found
consistent results for R > 2 (∼90% of significant realizations) over the range of S
(4–16) (Fig. 4D). This suggests that trial numerosity in this dataset limited the
statistical power at more granular discretization conditions. These results are
stable in the range (4–16) for S and in (4–10) for R confirming that performing
mutual information measures within these parameters represents an optimal
choice.

The virtual corridor used in the generation of this dataset [3] had three
distinct visual cues extending 60 cm each (Fig. 4A). Thus, to test for genuine
spatial information encoding, we applied the formalism described in Sect. 3. We
performed the CMI significance test, for a set of position discretization conditions
(S = (9, 12, 15, 18, 30, 60)) while responses were discretized with R = 4. For both
discretization procedures we used equally spaced bins. We found that a large
fraction (∼40 to 55%) of astrocytic ROIs carried significantly genuine spatial
information over a range (9–18) of position discretization conditions (Fig. 4E).

5 Conclusions

We created simulations of astrocytic responses with realistic dependencies of
activity on external variables to investigate how to optimally set parameters
and analyses procedures for a given experiment. While we do not wish to claim
that such parameters will be always optimal, our results and simulation software
provides a mean to set such parameters given certain easily measurable primary
features of astrocytic data. Our results show that simple discretization and use
of direct estimates, obtained from plugging in the empirical probabilities into the
information equations, work well with reasonably high statistical power and with
a rate of false positives that never exceeds the set p-value selection threshold.

Applications of these procedures to in vivo astrocytic functional imaging data
demonstrated that a large fraction of astrocytic subcellular compartments in the
CA1 region of the hippocampus carries genuine information about the spatial
position, giving support to the emerging concept of astrocytic place cells as a
part of the network computations performed in the hippocampus.

Future technical work includes investigating how to combine our informa-
tion computations and selection criteria with other conservative criteria used for
ruling out effects of data non-stationarities, such as reliability of Ca2+ activity
across trial blocks [3].
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Abstract. Feature importance is one of the most common explanations provided
by Machine Learning (ML). However, different classification algorithms or dif-
ferent training sets could produce different rankings of predictive features. Thus,
the quantification of differences between feature importance is crucial for assess-
ing model trustworthiness. Rank-biased Overlap (RBO) is a similarity measure
between incomplete, top-weighted and indefinite rankings, which are all charac-
teristics of feature importance. In RBO, tuning persistence p allows to truncate
rankings at any arbitrary depth, so to evaluate their overlapping size at increasing
number of features. Classification of Parkinson’s disease (PD) with Explainable
Boosting Machine (EBM) was chosen here as case study for introducing RBO
in ML. An imbalanced dataset, 168 healthy controls (HC) and 396 PD patients,
with 178 among clinical and imaging features was obtained from PPMI. Imbal-
anced, undersampled (K-Medoids) and oversampled (SMOTE) datasets were used
for training EBMs, obtaining their respective feature importance. RBO score was
calculated between ranking pairs incrementally increasing the depth by five fea-
tures, from 1 to 178. All classifiers reached excellent AUC-ROC (~1) on test set,
demonstrating the EBM prediction stability when trained on imbalanced datasets.
RBO revealed that the maximum size of overlapping (80%) among rankings was
obtained truncating at top 40 features, while their similarity decreased asymptot-
ically to 50% when more than 45 features were considered. Thanks to RBO it
was possible to demonstrate that, for the same accuracy, the more similar are the
feature importance, the more stable is the model and the more reliable is the ML
interpretability.
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1 Introduction

Explainable Artificial Intelligence (XAI) and interpretable Machine Learning (ML) is a
recently born field, which aim is to maximize the explainability and interpretability of
ML findings [1]. One of the most common explanations provided by ML algorithms is
the feature importance [2], that is the contribution of each feature in the classification.
The ordered list of features by their individual contribution is a top-weighted ranking
where the variables on the top are more predictive than the variables in the tail [2, 3].
In the medical and clinical field, the feature importance provides to the researcher an
immediate overview of the biological measures involved in a specific disease [4].

The predictive contribution of each feature depends on the ML algorithm used for
the classification. Indeed, different models produce different rankings of importance and
one highly predictive feature in a classifier could be unimportant in another classifier
[2]. Moreover, the same ML classifier could show different feature importance rankings
when trained on different folds/subsets of the same dataset [1]. Another example is
the prediction of a rare disease with an imbalanced dataset [5] and there is the need
to balance the classes through undersampling or oversampling. The balance of classes
could improve theML performance but could also provide a different feature importance
than the one obtained with an imbalanced training set, thus preventing an exhaustive
interpretation of the findings. For these reasons, the comparison of feature importance
rankings is fundamental for understanding how different ML approaches or different
training sets influence the reliability and trustworthiness of the findings. In other words,
themain questions are: how similar are the feature importance lists produced by different
ML methods or by the same classifier trained on different datasets? What statistics,
measure or metric should be used?

The quantification of the dissimilarity or similarity of two rankings is usually per-
formed with correlation coefficients calculated with the Kendall’s τ [6], Spearman’s ρ

[3] or their variants [7–9]. However, τ, ρ and their variants are unweighted measures
and thus they are not able to emphasize the features on the top of the ranking [3]. Fur-
thermore, these statistics are not applicable on indefinite and non-conjoint rankings,
thus resulting not suitable for assessing the similarity of ML feature importance. On the
contrary, the rank-biased overlap (RBO) [3] is a similarity measure that estimates the
size of overlapping between indefinite ranked lists, representing a good candidate for
comparing the classification feature importance. RBO score varies in a range from 0
to 1, where 1 indicates that the two rankings are identical, and zero indicates absence
of similarity [3]. The weight given to the first d (depth) features in a ranking can be
modified by tuning the persistence (p), a probability parameter in the range [0,1]. A
lower value of p gives more importance to the top features, while a high value explores
the ranking at a deeper depth [3].

The first aim of the present work is to introduce the RBO as a similarity measure
for quantifying the differences between feature importance produced by explainable
classification models. The Explainable Boosting Machine (EBM) [10] is a glass-box
algorithm that showed high interpretability ofMLfindings, reaching excellent accuracies
for example for the prediction of Alzheimer’s disease [11] or for distinguishing between
Parkinson’s disease and SWEDD [12]. However, it has never been assessed whether and
how EBM is able to deal with imbalanced datasets of neurodegenerative diseases. Thus,
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the second aimof the present study is to compare the performance ofEBMmodels trained
on imbalanced data and on balanced datasets obtained through undersampling with
K-Medoids [13] and oversampling with Synthetic Minority Over-sampling Technique
(SMOTE) [14]. The prediction of the Parkinson’s disease (PD) was chosen here as case
study, and for this purpose an imbalanced dataset with clinical and imaging features was
obtained from the Parkinson’s Progression Markers Initiative (PPMI). The third and last
aim of this work is to use the RBO similarity measure for quantifying the differences
among the three feature importance rankings produced by the EBM algorithm trained
on the imbalanced, undersampled and oversampled dataset.

In summary, the three main contributions of the present study are: (i) introducing the
RBO as measure for quantifying the similarity between feature importance rankings;
(ii) building EBM classifiers on three different training sets - imbalanced, undersampled
and oversampled datasets – and comparing their performance in predicting PD; (iii)
assessing the similarity between feature importance rankings produced by the three
EBM classifiers through the RBO score.

2 Materials and Methods

2.1 Participants

Data used in the preparation of this article were obtained from the Parkinson’s Pro-
gression Markers Initiative (PPMI) database (www.ppmi-info.org/data). For up-to-date
information on the study, visit www.ppmi-info.org. Table 1 reports the demographic,
the clinical and imaging characteristics of the cohort, which consisted of 168 healthy
controls (HC) and 396 PD. Only subjects without missing clinical and imaging features
were considered and all data used for the analysis are acquired at the baseline visit.

2.2 Clinical and Imaging Features

The number of items per clinical assessment and the total number of features (178)
used for training the ML models are reported in Table 1, and consisted in: Movement
Disorder Society Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) [15], part
I, II and III, Montreal Cognitive Assessment (MoCA), State-Trait Anxiety Inventory
(STAI), Geriatric Depression Scale (GDS), Scales for Outcomes in Parkinson’s Disease
- Autonomic Dysfunction (SCOPA-AUT), Judgment of Line Orientation (JLO), the
University of Pennsylvania Smell Identification Test (UPSIT), Epworth Sleepiness Scale
(ESS), Hoen and Yahr (H&Y) scale for assessing the stage of PD (not included in the
training features since it is not for diagnosis). The neuroimaging technique commonly
used for the diagnosis PD is the dopamine transporter single-photon emission computed
tomography (DaT-SPECT) of the striatum, the region comprising caudate and putamen.
The specific binding ratio (SBR) of these two regions of interest (ROI) is calculated for
each hemisphere from the count densities and normalized by the occipital cortex uptake.
More details of the imaging protocol can be found on www.ppmi-info.org.

http://www.ppmi-info.org/data
http://www.ppmi-info.org
http://www.ppmi-info.org
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Table 1. Demographic, clinical and imaging data of the imbalanced PPMI dataset.

HC
(168)

PD
(396)

#a

Age 61.1 ± 11.3 61.7 ± 9.65 –

Gender (M/F) 109/59 260/136 –

H&Y 0.005 ± 0.07 1.57 ± 0.51 –

MDS-UPDRS-I 2.89 ± 2.76 5.61 ± 4.12 13

MDS-UPDRS-II 0.35 ± 0.95 5.39 ± 4.14 13

MDS-UPDRS-III 1.19 ± 2.06 20.9 ± 8.84 33

MoCA 28.1 ± 1.09 26.9 ± 2.38 26

STAI 47.7 ± 4.97 47.3 ± 5.32 40

GDS 5.17 ± 1.39 5.26 ± 1.45 15

SCOPA-AUT 5.11 ± 3.38 8.58 ± 6.51 21

JLO 13.1 ± 1.95 12.8 ± 2.1 1

UPSIT 34 ± 4.75 22.3 ± 8.34 4

ESS 5.66 ± 3.38 5.81 ± 3.42 8

Left Caudate SBR 3.0 ± 0.63 1.99 ± 0.59 1

Right Caudate SBR 2.9 ± 0.61 1.98 ± 0.59 1

Left Putamen SBR 2.14 ± 0.56 0.812 ± 0.35 1

Right Putamen SBR 2.16 ± 0.58 0.843 ± 0.36 1

Tot: 178
a Number of items per test, i.e. number of features used for training EBM models. Age, gender,
and H&Y not included in the features space.

2.3 Sampling of the Dataset

The aim of sampling is to balance the dataset, thus, to obtain an equal sample size
of the two classes. The original imbalanced dataset HC-PDimb (168-396) was randomly
sampled by applying two different approaches, the first was an undersampling technique
applied on the majority class (PD), the second one was an oversampling method applied
on the minority class (HC), as described as follows.

Undersampling. The undersampling of the imbalanced dataset was done with the K-
Medoids approach [13], which is an unsupervised method of clustering applied on the
majority class (PD), where the number of clusters is equals the number of minority
examples (HC= 168). The final dataset HC-PDund (168-168) is a combination of all data
from the minority set and the cluster centers from the majority set. The undersampling
was conducted with the Python package sklearn_extra.cluster.KMedoids of scikit-learn
(v. 0.23) (metric “euclidean” and method “pam”).
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Oversampling. SMOTE [14] was applied on the minority class (HC), for generat-
ing new synthetic data by randomly interpolating pairs of nearest neighbors. The final
dataset HC-PDover (396-396) is a combination of all data from the majority (PD)
and minority set (HC) and, additionally, the new synthetic minority data such that
final dataset is balanced. The oversampling was conducted with the Python package
imblearn.over_sampling.SMOTE (v. 0.9.0).

The original imbalanced dataset and the two sampled datasets – HC-PDimb, HC-
PDund and HC-PDover – were then randomly split with a static seed into training and test
sets with a percentage respectively of 80% and 20% bymaintaining proportions between
class distributions.

2.4 Machine Learning Analysis

The EBM algorithm [10] is based on standard Generalized Additive Models (GAMs)
[16], which accuracy is improved by adding pairwise interactions [17], taking the name
of GA2Ms with the form:

g
(
E
[
y
]) = β0 +

∑
fj
(
xj

) +
∑

fij
(
xi, xj

)
, (1)

where E is the estimate of the additive model, xi = (xi1, . . . , xip) is the feature vector
with p features, yi the response, xj denotes the jth variable in the feature space, g is
the link function that adapts the GAMs to regression (g = identity) or classification (g
= logistic), β0 is the intercept that adjusts the prediction from the model, and f j is the
feature function,which could be plot for visualizing the contribution of each feature to the
final prediction [17]. The feature importance is calculated after learning the best feature
function f j by training the model on one feature at a time, so to obtain its contribution
to the prediction [17].

In this work, three EBM models were built on the three training sets – imbalanced,
undersampled and oversampled - and the performance was evaluated on the test set
with the Area under the Curve of the Receiver Operating Characteristic (AUC-ROC).
Moreover, the AUC-ROC (mean ± standard deviation) was calculated on the whole
dataset with a 5-fold cross-validation (cv, sklearn.model_selection.cross_val_score of
scikit-learn v. 0.23) for assessing overfitting. The pairwise interactions between fea-
tures were not here considered to avoid complexity in the interpretation of the findings.
The feature importance ranking of the three classifiers (FI[HC-PDimb], FI[HC-PDund],
FI[HC-PDover]) was obtained by ordering the features by their mean absolute contribu-
tion in the prediction of the training data, calculated as logit of the probability (logarithm
of the odds) from the logistic link function g (Eq. 1) [17].Machine Learning analysis was
conducted with the Python package InterpretML (v 0.2.7) [18] (implementation of EBM
provided by Microsoft) on a MacOS 10.14.6 (2.9 GHz, 32 GB of RAM). The Python
package seaborn (v. 0.11.2) was used for plotting the feature importance rankings.

2.5 Rank-Biased Overlap (RBO)

The feature importance produced by explainable ML algorithms is a top-weighted rank-
ing, that is an ordered list of items where the variables on the top are more important
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than the variables in the tail [2, 3]. Other two characteristics of a feature importance
ranking is that it could be incomplete, that is it could not cover all variables in the
domain, and it could be indefinite, since the user’s decision to stop the ranking at a
particular depth is arbitrary [3]. One of the most used measure of rank similarity is the
correlation that quantifies the direction (positive or negative) and the magnitude of the
association between a pair of lists. The Kendall’s τ [6] and Spearman’s ρ are two of the
most widely used measures of correlation [3]. However, both τ and ρ require that the
two rankings are conjoint and since they are unweighted measures, they are not able
to place more emphasis on the items on the top of the rank [3]. Several variants of the
correlation measures were proposed for considering the weight of items in a list and for
comparing non-conjoint ranks, for example the top-weighted variant of the Kendall’s τ,
the τAP [7], the adaptations of Spearman’s ρ [9] and Spearman’s footrules [8], or the
Kolmogorov-Smirnov’s D [19]. However, all these variants do not fully satisfy the need
to compare indefinite rankings, that is the need to truncate the feature importance at
any particular and arbitrary depth [3]. To overcome this issue, a similarity measure was
introduced, the rank-biased overlap (RBO), which is calculated as the expected aver-
age overlap between two indefinite rankings at incrementally increasing depths [3]. The
depth of interest could be varied by tuning an input parameter of the RBO, called user’s
persistence (p). The persistence p is a probability (in the range [0,1]) of continuing to
the next rank in the list, while on the contrary, 1 − p is the probability that the user
stops at a given depth d of the ranking [3]. A lower value of p gives more importance
to top results, and when p = 0 only the first feature in the ranking is considered. Given
two infinite rankings S and T to depth d and the persistence p, the RBO is calculated as
follows [3]:

RBO(S,T , p) = (1 − p)
∑

pd−1 · Ad , (2)

where, d = 1 to∞ is the depth of the ranking to be examined, Ad = Xd/d is the
agreement between S and T, i.e. the proportion of S and T that is overlapped, and
Xd = |S:d ∩ T:d | is the size of overlap (intersection) between S and T. The RBO varies
in the range [0,1], where 0 means disjoint rankings and 1 means identical rankings [3].

In this work, the RBO was used for assessing the similarity between pairs of feature
importance rankings (RBOimb_und, RBOimb_over, RBOund_over) that were obtained by
training the EBM algorithm on the different datasets: imbalanced, undersampled and
oversampled. Here, to investigate the similarity between feature importance rankings
at different depths, the values of stopping depth d, i.e. the number of the top features
in the ranking, were increased with a fixed step of 5 features in the range [1, 178].
Consequently, the value of persistence p was automatically increased and calculated as
p = d−1

d , assuming the values in the range [0, 0.9944]. The Python package rbo (v.0.1.2)
was used as implementation of the RBO by Webber et al. [3].

3 Results

3.1 Machine Learning Analysis

The EBMmodels HC-PDimb andHC-PDover reached both anAUC-ROCof 1 (1± 0with
5-fold cv), while the classifier HC-PDund had an AUC-ROC of 0.99 (0.998± 0.004 with
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5-fold cv). The rankings of the first twenty most important features in the models HC-
PDimb, HC-PDund andHC-PDover are reported in Fig. 1A, B and C. Figure 1D reports the
first fifty most important features ordered by their average importance across the three
EBM models, where the first ten important features were NP2TRMR (MDS-UPRDS
II item 2.10 Tremor), PUTAMEN_L (SBR of the left putamen), NP3FACXP (MDS-
UPRDS III item3.2Facial expression),NP3BRADY(MDS-UPRDS III item3.14Global
Spontaneity of movement) and NP3RTCON (MDS-UPRDS III item 3.18 Constancy of
rest), PUTAMEN_R (SBR of the right putamen), NP2HWRT (MDS-UPRDS II item 2.7
Handwriting), NP3PRSPR (MDS-UPRDS III item 3.6a Pronation-Supination - Right
Hand), NP3HMOVL (MDS-UPRDS III item 3.5b Hand movements - Left Hand) and
NP3RIGRU (MDS-UPRDS III item 3.3b Rigidity - RUE).

3.2 RBO Scores

The RBO scores calculated by tuning the value of depth d and consequently the per-
sistence p in each pair of comparisons (RBOimb_und, RBOimb_over, RBOund_over) are
reported in Table 2. The maximum similarity (~1) was obtained when only the first
item (NP2TRMR, MDS-UPRDS II item 2.10 Tremor) in the ranking was compared
between FI[HC-PDimb] and FI[HC-PDund]. The maximum values RBOimb_over = 0.802
and RBOund_over = 0.74 were reached both when the first 40 features in the rankings
were compared (p = 0.975, Table 2).

Table 2. RBOof the pairwise comparisons of the feature importance rankings obtained by training
the EBMmodels on the imbalanced, undersampled and oversampled datasets. Raising p increases
the depth d of comparisons (number of features considered). In bold the maximum value.

p d RBOimb_und RBOimb_over RBOund_over

0 1 ~1 ~0 ~0

0.800 5 0.755 0.548 0.423

0.900 10 0.780 0.695 0.603

0.950 20 0.803 0.778 0.705

0.967 30 0.806 0.799 0.733

0.975 40 0.800 0.802 0.740

0.980 50 0.788 0.795 0.735

0.990 100 0.679 0.692 0.646

0.993 150 0.571 0.583 0.546

0.994 178 0.520 0.531 0.499

Abbreviations: d = depth; p = persistence; imb = imbalanced dataset (HC-PDimb); und =
undersampled dataset (HC-PDund); over = oversampled dataset (HC-PDover).
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Fig. 1. Ranking of the first twenty most important features obtained by the EBM model trained
(A) on the imbalanced dataset; (B) on the undersampled dataset; (C) on the oversampled dataset.
(D) Feature importance (first fifty features) ordered by their average importance across the three
classifiers trained on the imbalanced dataset (in green), on the undersampled dataset (in blue) and
on the oversampled dataset (in red). (Color figure online)

Figure 2 depicts the RBO curves of the three ranking comparisons by raising the
depth d, that is by considering a higher number of features as important. TheRBOimb_over
and RBOund_over curves show a similar increasing trend, moreover the three curves reach
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a plateau between d = 20 and d = 40, revealing that the maximum similarity among
the three RBOs is obtained when the first 40 features are considered. For values d > 45
there is a decrease in the similarity among the three feature importance until the RBO
curves asymptote to the final value of ~0.5.

Fig. 2. RBO curves of the pairwise comparisons of feature importance rankings obtained by the
EBM models HC-PDimb, HC-PDund and HC-PDover for increasing values of depth d, that is for
increasing number of important features considered.

4 Discussion and Conclusions

The purpose of this work was to introduce the RBO [3] score as similarity measure for
comparing feature importance rankings produced by explainable ML. The classification
of Parkinson’s disease from clinical and imaging features was chosen as case study
and conducted with the Explainable Boosting Machine [10, 17, 20] algorithm on three
datasets, imbalanced, undersampled and oversampled. EBM models reached excellent
accuracies (~1), thus demonstrating the robustness of EBM in dealing with imbalanced
datasets. Interestingly, RBO allowed to reveal that the three feature importance rankings
had the highest size of overlapping (~80%) when the depth was truncated at 40 features.

The classification task has two main goals: to obtain good accuracy in distinguishing
classes and to provide the feature contribution in the prediction [1, 2, 21]. The classifier
performance could be evaluated through several metrics (e.g. accuracy, precision recall)
that are easy to compare both quantitatively and statistically (e.g. McNemar’s test) [22].
However, when a multiplicity of models reach excellent accuracies, it is difficult to
decide which one is better and what Breiman calls the Rashomon Effect takes place
[21]. Indeed, for the same performance, a classifier can consider a feature more or less
important than the importance given by another classifier. For this reason, it is crucial
to quantify the differences between ML rankings, because if different models produce
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similar feature importance, “it is more likely that these reflect genuine aspect of the data”
as stated by Saarela and Jauhiainen [2]. The present study faces the Rashomon Effect
[21], given that all the three EBM models trained on the imbalanced, undersampled
and oversampled datasets reach the highest accuracy (AUC-ROC ~1). The stability of
the EBM performance in presence of imbalanced data is an important finding for the
automatic prediction of neurodegenerative diseases from clinical and imaging features.
The rarity of some pathologies prevents having large enough samples as well as balance
between classes [5], thus the ML struggles to provide reliable findings. On the contrary,
EBM seems to be unaffected by the perturbations due to the imbalance between classes,
probably thanks to the use of bagging, gradient boosting and additive modularity [10,
17, 20], which are all methods strongly suggested by the previous literature [21]. As
further evidence of the stability of EBM algorithm, the RBO score found high similarity
(80%) among the three feature importance at a depth of 40 features.

Another interesting finding is that the feature importance obtained with the over-
sampled dataset was slightly less similar than the other two rankings produced by the
imbalanced and undersampled datasets. This is probably due to the nature of the SMOTE
algorithm itself that could have altered the feature correlation of the original dataset by
generating new synthetic minority data [23]. Indeed, it should be reported as limitation
that EBM algorithm may consider important features that are on the contrary not pre-
dictive when correlation among features, heavy multicollinearity and/or non-linearity
around a prediction exist [10]. Another limitation of the present study is related to the
percent split of training and test sets (80-20); future works might assess whether the
use of different proportion could produce different accuracies and feature importance.
Further research might explore the application of RBO to compare the explanations
produced by different ML algorithms, such as Random Forest [24]. It would be also
interesting to investigate how the tuning of EBM hyperparameters, such as the outer
bags or the learning rate, could affect the feature importance and the accuracy in this
specific case study.

In conclusion, the present work demonstrated that RBO is a suitable similarity mea-
sure, allowing to state that, for the same classification accuracy, the more similar are the
feature importance produced with different training sets, the more stable is the model
and the more reliable is the interpretability and explainability of the ML findings.
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Abstract. Deep learning models are being increasingly used in precision
medicine thanks to their ability to provide accurate predictions of clinical
outcome from large-scale datasets of patient’s records. However, in many
cases data scarcity has forced the adoption of simpler (linear) feature
extraction methods, which are less prone to overfitting. In this work, we
exploit data augmentation and transfer learning techniques to show that
deep, non-linear autoencoders can in fact extract relevant features from
resting state functional connectivity matrices of stroke patients, even
when the available data is modest. The latent representations extracted
by the autoencoders can then be given as input to regularized regression
methods to predict neurophsychological scores, significantly outperform-
ing recently proposed methods based on linear feature extraction.

Keywords: Resting state networks · Functional connectivity · Deep
learning · Feature extraction · Predictive modeling

1 Introduction

Improvements in neuroimaging have provided physicians and radiologists with the
ability to study the brain with unprecedented precision. In particular, Resting
State functional Magnetic Resonance Imaging (RS-fMRI) measures spontaneous
fluctuations in blood oxygen-level dependent neural activity and allows estimating
the brain functional connectivity in the absence of any task-related activity [1].

Functional connectivity of resting state networks has shown to be a valuable
predictor of individual neuropsychological scores in stroke survivors, making it a
potentially useful tool in clinical practice [2–4]. However, building robust predic-
tive models from such high-dimensional measurements requires a large number of
training samples, which are not always available in clinical populations. Such lim-
itation can be partially addressed by exploiting linear dimensionality reduction
techniques such as Principal Component Analysis (PCA), Independent Compo-
nent Analysis (ICA), or sparse coding in combination with regularized regression
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methods [5,6]. Nevertheless, the choice of the dimensionality reduction technique
is non-trivial because it can affect performance of the predictive model [5,7].

Here we show that better performance can be achieved by exploiting the rep-
resentational power of non-linear dimensionality reduction techniques, namely,
deep autoencoders [8]. Autoencoders (AE) are becoming popular in functional
neuroimaging thanks to their ability to disentangle the underlying brain dynam-
ics in a completely unsupervised way [9,10] and have already been successfully
used to build predictive models of psychiatric disorders [11,12]. Nevertheless, the
application of such powerful deep learning models is often hindered by the limited
size of clinical datasets. In this work we propose to mitigate this issue using two
complementary approaches: data augmentation, which allows to expand the sam-
ple size by combining/distorting existing samples, and transfer learning, which
allows to exploit additional large-scale datasets (in our case, from the Human
Connectome Project [13]) containing functional connectivity data in order to
pre-train the autoencoder.

The proposed approach is validated on a reference dataset containing func-
tional connectivity matrices of stroke patients [3]. The features extracted by the
autoencoder are used as predictors of the corresponding neurophsychological
scores by means of regularized linear regression methods. The latter can limit
multicollinearity and overfitting, which makes them particularly suitable for the
analysis of neuroimaging data (for a recent review, see [14]). The performance
of our method is benchmarked against other popular dimensionality reduction
methods based on PCA and ICA, showing promising results.

2 Materials and Methods

2.1 Datasets

The main dataset used in our study consists of 100 resting state functional con-
nectivity (RSFC) matrices from symptomatic stroke patients, taken from pre-
vious studies [3,5]. The patients underwent a 30-minute-long RS-fMRI acquisi-
tion, 1–2 weeks after the stroke occurred. Several scores were taken during the
neuropsychological assessment: here we focus on language, verbal memory and
spatial memory indexes, which are available for a subset of subjects (language:
N = 94; memory: N = 77). In order to implement a transfer learning approach,
we also used a dataset from the Human Connectome Project [13], consisting of
RSFC matrices of 1050 healthy subjects. RSFC data represent the connectivity
between brain regions that share functional properties and can be expressed as
a symmetric matrix. In our case, the matrix of each subject is of size 324 × 324;
following common practice [5], the data was vectorized by only considering the
upper triangular matrix. Null values were converted to zero.

2.2 Dimensionality Reduction

Dimensionality reduction is the process of taking some input data in a high
dimensional space and mapping it into a new “feature” space whose dimen-
sionality is much smaller [15]. Our main focus was to test different variants of
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deep autoencoders in their ability to extract useful features from RSFC data,
and compare their performance with standard linear dimensionality reduction
methods [5]. The models were initially compared in terms of their reconstruc-
tion error, which corresponds to the mean squared error between the original
matrix and the reconstructed one. During the unsupervised feature extraction
process, the entire dataset (n = 100) was used regardless of the availability of
neuropsychological scores.

Linear dimensionality reduction techniques, such as PCA and ICA, apply a
linear transformation to the input data. That is, if the original data is in Rd

and we want to embed it into Rn (n < d) then we would like to find a matrix
W ∈ Rn,d that induces the mapping x → Wx. A natural criterion for choosing
W is in a way that will enable a reasonable recovery of the original input x [15].
Compared to deep autoencoders, the main drawback of PCA and ICA is that
they cannot extract nonlinear structures modeled by higher than second-order
statistics [16]. In the following, we will briefly review the main techniques used
in the present study and their implementation.

Principal Component Analysis. Before performing PCA the data was stan-
dardized to obtain a distribution with zero mean and unit variance. This step
was implemented using the predefined function StandardScaler from sklearn.
PCA was then performed by using the function PCA from the same library, which
performs linear dimensionality reduction using Singular Value Decomposition of
the data to project it to a lower dimensional space.

Independent Component Analysis. ICA performs the decomposition step
by imposing the constraint that the resulting components must be independent.
In this work we used the FastICA algorithm from sklearn, which is a block
fixed-point iteration algorithm based on negative entropy as a non-gaussianity
measure, which converges faster than adaptive algorithms [9]. As in the case of
PCA, data was first standardized.

Autoencoders. An autoencoder is an unsupervised neural-network based app-
roach for learning latent representations of high-dimensional data that can be
used to reconstruct the original input, while compressing it into a latent space
that usually has much lower dimensionality [17]. Learning such “undercomplete”
representations forces the autoencoder to capture the most salient features of the
training data by discovering its latent factors of variation [18].

Let’s consider a basic auto-encoder with a single hidden layer, n neurons in
the input/output layers and m neurons in the hidden layer. The model takes an
input x ∈ Rn and first maps it into the latent representation h ∈ Rm by using
an encoding function h = gφ(x) = σ(Wx+b) with parameters φ = {W, b}, where
σ(·) denotes the activation function of the neurons, W denotes the connection
weights and b denotes the neurons’ biases. Afterwards, a reconstruction of the
input x′ is obtained through the decoder function x′ = fθ(h) = σ(W ′h + b′)
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with θ = {W ′, b′}. The two parameter sets (θ, φ) are usually constrained to be
of the form W ∈ Rn,m = W ′T ∈ Rm,n, using the same weights for encoding the
input and decoding the latent representation [19]. The parameters are learned
by minimizing an appropriate cost function over the training set, which usually
corresponds to the Mean Squared Error between the original input and the
reconstructed output:

LAE(θ, φ) =
1
n

n∑

i=1

(x(i) − fθ(gφ(x(i))))2 (1)

Fully connected AE do not have any spatial bias over the image structure.
Convolutional autoencoders are an AE variant that exploits convolution filters
to more efficiently capture local spatial structure. For a mono-channel input x
the latent representation of the k−th feature map is given by:

hk = σ(x ∗ W k + bk) (2)

where the bias is broadcasted to the whole feature map, σ is an activation func-
tion, and ∗ denotes a convolution. The reconstruction is obtained using:

y = σ(
∑

k∈H

hk ∗ Ŵ k + c) (3)

where c represents the bias of the input channel, H identifies the group of latent
feature maps and Ŵ identifies the flip operation over both dimensions of the
weights [19].

In this work we considered both fully-connected and Convolutional Autoen-
coder (CAE) architectures. As baselines, we implemented two simple, 1-layer
AE with linear and non-linear activation functions. We then implemented a
more sophisticated CAE architecture, as shown in Fig. 1. In the latter case, the
encoder consisted of 3 convolutional layers followed by 2 fully connected layers,
and the same structure was mirrored in the decoder. In order to overcome van-
ishing gradient the Leaky Rectified Linear activation function was used. Mean
Square Error was used as loss function, which was minimized using the Adam
optimizer with a learning rate of 1e−3. Dropout was used as a further regularizer.
Hyperparameters were automatically optimized using Optuna [20].

Fig. 1. Workflow and architecture of the deep convolutional autoencoder.
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2.3 Data Augmentation and Transfer Learning

Deep networks perform remarkably well in many domains, but they are heavily
reliant on big data to avoid overfitting. Given the limited size of our clinical
dataset, we thus devised two approaches in order to promote a better general-
ization of the CAE during the feature extraction process.

The first method was based on Data Augmentation, which consists in combin-
ing and distorting each training sample in order to provide a more representative
distribution as input to the autoencoder [21]. In particular, we designed a mix-
up augmentation method that consists of a random convex combination of two
input samples leading to a total of 7421 synthetic samples:

x̂ = λxi + (1 − λ)xj

where xi and xj are raw input vectors and λ are values sampled from the Beta
distribution1. Following previous work [22], the choice of the parameters λ ∈ [0, 1]
was distributed accordingly to λ ∈ Beta(α, α) for α ∈ (0, inf). In the mix-up,
the samples to be combined were chosen randomly from all available images.
Isaksson et al. [23] tested the utility of the mix-up data augmentation technique
for a medical image segmentation task using 100 MRI scans and observed an
improvement when α = 0.5. Although our dataset could be slightly different, we
decided to use the same α value for consistency.

The second method was based on Transfer Learning (TL), which consists in
first training the autoencoder on a larger-scale dataset and subsequently tune it
on the smaller dataset. In our case, we took advantage of the Human Connectome
Project database for the pretraining phase. Afterwards, the model was fine-tuned
using the stroke dataset freezing the weights of the convolutional layers.

2.4 Regularized Regression

The feature sets extracted by each method were used as regressors for the pre-
diction of the neuropsychological scores.

Ridge regression [24] is a regularized regression method that controls the
regression coefficients by adding the L2 penalty term λ

∑p
j=1 β2

j to the objective
function. The least absolute shrinkage and selection operator (LASSO) model
[25] is an alternative method that adds the L1 penalty term λ

∑p
j=1|βj |. To

implement regularized regression we exploited a flexible approach based on elas-
tic net [26], which combines the penalties of Ridge and LASSO regression:

min
(β0,β)

(
y − β0 − XT β

)2

+ λ

(
1
2

(1 − α) β2 + α |β|
)

, (4)

The elastic-net loss function requires two free parameters to be set, namely
λ and α. The penalty parameter λ controls the amount of shrinkage, while the
parameter α controls the type of shrinkage. Following previous work [5], these

1 Note that although the extracted features were obtained using the synthetic data,
the model performance was always measured on the final stroke dataset.
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parameters were tuned using Leave-One-Out Cross validation (LOOCV). To
evaluate the regression model we used R-squared (R2), Mean Squared Error
(MSE) and Bayesian information criterion (BIC).

3 Results

3.1 Dimensionality Reduction

Figure 2 shows the reconstruction error against the number of components/latent
units for each method. The trend is similar across models: the larger the number
of components, the better the reconstruction. The CAE trained directly on the
stroke dataset obtained the worst reconstruction error, while the CAE trained
on the augmented dataset achieved the best performance. This result highlights
the importance of increasing the variability of the training distribution in order
to improve the quality of the features extracted by complex convolutional archi-
tectures. The simple 1-layer AEs achieved an intermediate reconstruction error,
comparable to those of PCA and ICA, which is no surprise given the intrinsic
similarity between these techniques [27].

3.2 Regularized Regression

Table 1 presents the metrics obtained in the neuropsychological scores prediction
task. As it can be observed, the λ parameter is usually small. On the other hand,
it can be seen that the α value mainly takes the two extremes: α ∼ 1, which
corresponds to a ridge regression; and α ∼ 0, which corresponds to a LASSO
penalization; an intermediate α ∼ 0.75 only happens in few cases. In order to
have a better visualization, Fig. 3 presents the methods sorted by lowest MSE
error and highest R2.

Fig. 2. Reconstruction error achieved by different feature extraction methods.
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Concerning the metrics obtained for the language score, it can be observed
that PCA slightly outperforms the other models in terms of R2 and MSE,
though the margin is fairly small. However, the CAE trained with Data Aug-
mentation achieves the best performance in both spatial and memory scores, with
a considerable margin over the other methods. Such remarkable performance is
approached also by the CAE trained using Transfer Learning. Interestingly, the
autoencoder with a single linear layer is often the one achieving the lowest BIC
value, suggesting that such architecture is particularly useful to select a few
representative components from the data distribution.

3.3 Getting Deeper on Augmentation and Transfer Techniques

Given the remarkable performance of the CAE trained using data augmentation
and transfer learning, in a series of additional simulations we explored how the
size of the augmented dataset could impact model performance, and whether a
combination of data augmentation and transfer learning might further improve
the predictive accuracy2. We thus designed four additional training regimens:

Table 1. Regression metrics and parameters obtained for the different feature extrac-
tion methods.

Language score (n = 94) Spatial score (n = 77) Memory score (n = 77)

R2 MSE BIC α λ R2 MSE BIC α λ R2 MSE BIC α λ

PCA 0.52 0.48 493 0.00 0.22 0.21 0.79 300 1 0.09 0.32 0.68 363 1 0.03

ICA 0.51 0.49 351 0.25 0.09 0.24 0.75 396 0.00 0.56 0.27 0.73 381 1 0.04

Lin AE 0.43 0.57 323 0.25 0.06 0.27 0.73 412 0.00 0.56 0.25 0.75 297 0.5 0.15

NonLin AE 0.50 0.50 357 0.75 0.00 0.26 0.74 456 0.00 0.22 0.26 0.74 369 0.75 0.01

CAE 0.42 0.57 624 0.25 0.01 0.27 0.73 390 0.5 0.01 0.27 0.73 759 0.00 0.7

CAE-AUG 0.50 0.50 421 0.50 0.06 0.33 0.65 315 0.5 0.09 0.40 0.61 316 1 0.04

CAE-TL 0.44 0.56 454 0.00 0.03 0.31 0.69 407 0.75 0.00 0.39 0.61 302 0.75 0.01

Fig. 3. MSE (orange) and R2 (violet) metrics obtained by different methods sorted
by accuracy. (Color figure online)

2 It should be pointed out that for these simulations we did not implement an exhaus-
tive hyper-parameter optimization, as in the previous cases.
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1. Aug(15000): Similarly as before, the CAE is trained with synthetic images
obtained via the mix-up strategy; however this time the size of the aug-
mented stroke dataset is increased to ∼15000 samples (i.e., twice the size used
previously);

2. TL-Aug: The CAE is first trained over the HCP dataset, as done before for
the Transfer Learning scenario. The model is then also trained on the initial
augmented stroke dataset (∼7500 samples);

3. AugTL-Aug: The CAE is first trained over synthetic HCP data obtained by
applying the same mix-up augmentation strategy (∼6000 samples). The model
is then also trained on the initial augmented stroke data (∼7500 samples);

4. AugTL-Stroke: The CAE is first trained over synthetic HCP data obtained
by applying the same mix-up augmentation strategy (∼6000 samples). The
model is then also trained on the original stroke dataset.

Figure 4 shows the reconstruction error obtained by the four different reg-
imens. The errors are comparable to that achieved previously by the simpler
Data Augmentation technique, suggesting that also in these cases we achieve
very good reconstructions.

At the same time, regression results reported in Table 2 and Fig. 5 clearly
show that these improved data augmentation and transfer learning regimens
further boosted the model’s performance, both in terms of R2 and MSE. All reg-
imens generally enhance the CAE accuracy, however the most striking improve-
ment is given by the TL-Aug regimen, which reaches significantly better per-
formance compared to all methods previously investigated, establishing a new
state-of-the-art for the stroke-prediction task. Interestingly, this improved model
achieves such accurate predictions by relying, on average, on fewer components
compared to other methods, which might be particularly relevant to improve
interpretability of the resulting model.

Fig. 4. Reconstruction error achieved by the four new augmentation/transfer regimens.
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Table 2. Regression metrics and parameters obtained by the four augmentation/
transfer regimens.

Language score (n = 94) Spatial score (n = 77) Memory score (n = 77)

R2 MSE BIC α λ R2 MSE BIC α λ R2 MSE BIC α λ

Aug (15000) 0.51 0.49 421 0.5 0.06 0.36 0.58 570 0.00 0.05 0.41 0.59 570 0.00 0.05

TL-Aug 0.56 0.45 284 0.00 0.03 0.40 0.56 367 0.5 0.09 0.47 0.54 357 0.75 0.08

AugTL-Aug 0.53 0.46 421 0.5 0.06 0.23 0.77 247 1 0.16 0.43 0.57 239 1 0.08

AugTL-Stroke 0.47 0.53 433 1 0.02 0.28 0.72 380 0.00 0.81 0.42 0.58 242 1 0.16

Fig. 5. MSE and R2 metrics obtained by augmentation/transfer regimens sorted by
accuracy.

4 Conclusion

In this work we investigated whether deep autoencoders could extract relevant
features from resting state functional connectivity data of stroke patients, which
can successively be used to build predictive models of neuropsychological scores.
We implemented a variety of autoencoder architectures, ranging from simple,
one-layer linear networks to more sophisticated convolutional versions exploit-
ing several layers of non-linear processing. In order to deal with the issue of data
scarcity, which is known to affect the performance of deep learning models, we
also explored data augmentation and transfer learning techniques. The autoen-
coder’s performance was benchmarked against other conventional approaches,
such as Principal Component Analysis (PCA) and Independent Component
Analysis (ICA).

The different methods were first evaluated in terms of their reconstruction
error. In general, all methods achieved similar reconstruction error, though the
autoencoders trained using data augmentation obtained slightly better accuracy.
The quality of the features extracted by different methods was then assessed
based on their capacity to serve as predictors for neuropsychological scores of the
patients in three cognitive domains (i.e., language, spatial memory, and verbal
memory). To this aim, the extracted features were given as input to regularized
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regression models, and performance was evaluated in terms of coefficient of deter-
mination, mean squared error and Bayesian information criterion. Results showed
that the performance of the basic autoencoders was overall comparable to that of
traditional methods (ICA and PCA). However, more sophisticated convolutional
architectures trained using data augmentation and transfer learning achieved a
much higher performance, with considerable gains of 7% (language), 66% (spa-
tial memory) and 47% (verbal memory) with respect to the previously reported
state-of-the-art methods [5]. The larger accuracy gains for memory scores can
be explained by the fact that prediction of language scores is likely close to ceil-
ing. Memory has a more distributed neural basis and the prediction of deficits
from structural lesions is relatively poor compared to other behavioral domains
[4,6]. Therefore, predicting memory scores represents an important benchmark
for RSFC-based machine learning methods.

In conclusion, our results demonstrate the great potential of deep learning
models for the analysis of multi-dimensional neuroimaging data even in cases
with limited data availability, which is often considered a critical limitation in
clinical studies. Future work should aim at further consolidating our findings, for
example by systematically evaluating the performance of deep learning models on
the prediction of other neuropsychological and behavioral scores, or by increasing
the sample size in order to allow testing model generalization on fully held-out
data. The latter task calls for multi-centric, coordinated efforts for collection,
harmonization and sharing of patients’ functional imaging data. Moreover, a
key research frontier would be to design and implement advanced techniques in
order to interpret the features extracted by non-linear “black-box” models, such
as deep networks. Although standard back-projection techniques [5] only work
with linear dimensionality reduction, there is a growing interest in designing
explainability techniques that can visualize the features that mostly influence
the decision of deep networks (for a recent review, see [28]). Such techniques
would be particularly relevant in the case of medical applications, since they
could provide valuable insights to the clinicians for the design of more effective
rehabilitation protocols.
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19. Masci, J., Meier, U., Cireşan, D., Schmidhuber, J.: Stacked convolutional auto-
encoders for hierarchical feature extraction. In: Honkela, T., Duch, W., Girolami,
M., Kaski, S. (eds.) ICANN 2011. LNCS, vol. 6791, pp. 52–59. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-21735-7 7

https://doi.org/10.1007/978-3-030-86993-9_20
https://doi.org/10.1007/978-3-030-86993-9_20
https://doi.org/10.1007/978-3-030-31760-7
https://doi.org/10.1007/978-3-642-21735-7_7


Prediction of Neuropsychological Scores with Autoencoders 151

20. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-
generation hyperparameter optimization framework. In: Proceedings of the 25rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing (2019)

21. Shorten, C., Khoshgoftaar, T.: A survey on image data augmentation for deep
learning. J. Big Data 6, 1–48 (2019)
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Abstract. In the modern world, it is easy to get lost in thought, partly
because of the vast knowledge available at our fingertips via smartphones
that divide our cognitive resources and partly because of our intrinsic
thoughts. In this work, we aim to find the differences in the neural sig-
natures of mind-wandering and meditation that are common across dif-
ferent meditative styles. We use EEG recording done during meditation
sessions by experts of different meditative styles, namely shamatha, zazen,
dzogchen, and visualization. We evaluate the models using the leave-one-
out validation technique to train on three meditative styles and test the
fourth left-out style. With this method, we achieve an average classifica-
tion accuracy of above 70%, suggesting that EEG signals of meditation
techniques have a unique neural signature across meditative styles and
can be differentiated from mind-wandering states. In addition, we gen-
erate lower-dimensional embeddings from higher-dimensional ones using
t-SNE, PCA, and LLE algorithms and observe visual differences in embed-
dings between meditation and mind-wandering. We also discuss the gen-
eral flow of the proposed design and contributions to the field of neuro-
feedback-enabled mind-wandering detection and correction devices.

Keywords: Meditation · Mind-wandering · Classification · Machine
learning · Deep learning · Cognition · Neuro-feedback · EEG

1 Introduction

Mind-wandering, also known as task-unrelated thought, daydreaming, fanta-
sizing, zoning-out, unconscious thought, and undirected thought, is a com-
mon phenomenon, that most of us experience for approximately 50% of our
daily waking time [11]. There are two types of mind-wandering, intentional or
stimulus-independent or self-generated and unintentional or stimulus-driven [11].
Sometimes, these thoughts could be productive, i.e., used for creative thinking,
future planning, and problem-solving, and sometimes could be detrimental to
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our mental health, leading to depression [2], anxiety, schizophrenia and negative
mood [23].

In contemporary times, our mind wanders in anticipation of a text message,
email, or social media notification, or thinking about how we can level up in the
game in which we are stuck. Mind-wandering takes our attention away from the
present, which we regret later, leading to an unending spiral of despair. However,
all hope is not lost. Meditation is one of the many ways to control our thoughts.
Meditation is a set of exercises that helps in the regulation of emotion, and
attention [24]. It is also known as an exercise in which the person orients their
attention to dwell upon a single sound, concept, or experience [22]. Meditation
has positive effects on our mood and mental health by reducing unnecessary
mind-wandering and enhancing our cognitive performance [15] (Fig. 1).

Although meditation has many benefits, it is hard to accomplish and sustain
a state of mind where we must not get overwhelmed by our thoughts [8]. In
some cases, meditators encountered troubling thoughts and, and in other cases,
it aggravated mental health issues such as anxiety and depression [8].

Fig. 1. Sustaining mind-full moments

The human brain generates movement by taking input from relevant sen-
sory receptors, computing the desired inputs to stimulate motor neurons, which
move the limbs. Brain-Computer Interface aims to capture the signals produced
during these computations and process them to decode human intention to con-
trol external devices, say a joystick [4]. The decoding of human intentions is a
difficult problem. The challenge here is to take a pattern of EEG signals and
ascertain which brain regions contribute how much to the signal. In simpler
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terms, it is difficult to find out the representation of each brain region in the sig-
nal component, and an even more challenging task to model those contributions.
Many recent papers aim to model this representation. In a recent paper, wavelet
transformation-based feature extraction techniques were applied to capture the
difference between expert and non-expert meditators. They used Bior3.5, Coif5
and db8 wavelets for this feature extraction [13]. Another approach to finding
the representation of human intentions in EEG signals was to take topological
maps generated from the EEG signals and feed them through a convolutional
neural network [14]. Advancement in deep learning in the past two decades has
ushered in an era of creating ever-larger networks to represent complex relation-
ships. However, the problem arises when one questions on what basis the model
is making these predictions. This is a problem highlighted by Riberio et al.,
wherein they discuss a model that performs well but has learned the wrong rep-
resentation [17]. Recent work [12] uses the functional connectivity between brain
regions as features to understand the significance and contribution of each region
to the generated EEG signal. Previously, feature engineering-based methods were
used to feed input to machine learning classifiers with varying degrees of success.
[21] used the gamma-band entropy-based features and fed them through a Ran-
dom Forest classifier to differentiate between meditators vs. non-meditators. [19]
and [7] used numerous machine learning classifiers to discriminate between men-
tal states. They concluded that machine learning classifiers used hand-crafted
features did not capture the most optimum representation to decode EEG sig-
nals. Deep learning-based algorithms have an advantage over traditional machine
learning-based classifiers because they do not need hand-crafted features. These
algorithms are designed to extract features from the raw data presented.

Previous works have distinguished between mind-wandering and attentive
states and achieved a per subject mean accuracy of 65% using SVM and logistic
regression and a mean AUC score of 0.715 using SVM and 0.635 using logistic
regression. On the leave-one-out participant comparison, they achieved a mean
accuracy of 59% using SVM and 58% using logistic regression [3].

This work attempts to detect whether the meditator is in a meditative or a
mind-wandering state and generalize across meditative styles. We also lay the
foundation for future work, where we aim to develop a real-time brain-computer
interfacing technology to determine whether the user is in a meditative state or
not. The system under consideration alerts the user when their mind beings to
wander through a neuro-feedback mechanism and help them orient back to a
calm meditative state.

2 Motivation

2.1 Impact on Cognition

The rapid pace of software and hardware innovations [10] enables us to perform
multiple tasks simultaneously. This ability granted to us by contemporary tech-
nological advancements has positive effects, such as communicating with distant
people, getting news about what is going on halfway around the world, and
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much more. However, at the same time, it has detrimental effects, which include
sensory overloading or simply taking in more information than we can process,
leading to accidents due to the usage of mobile phones while walking and driv-
ing. Hence, we need to evolve with technology, the ability to focus our attention
on the things that we can control and on the things that matter. Hence, we need
to learn to focus our attention and not let our minds wander.

Mind-wandering, sometimes also referred to as daydreaming, fantasiz-
ing, zoning-out, unconscious thought, undirected thought, is defined as task-
unrelated thought that occupies nearly 50% of our awake time daily. The benefits
of focused attention or meditation has been highlighted by researchers through-
out history [15]. Research on meditation has revealed that it is highly effective in
regulating pain, insomnia, increasing calmness, bringing psychological balance,
and improvement of general well-being and physical and mental health [1].

2.2 Technological Considerations

The work resulting from this paper can help create a device that helps the
user improve their focused attention through a neuro-feedback mechanism. For
a certain period, the user wears an EEG headband capable of producing high-
quality data once a day. A mobile app reading and processing the data cap-
tured by the headband determines whether the user is in a meditative state
or a mind-wandering state. While meditating, the user will get an audio-visual
neuro-feedback from their mobile phone if their mind begins to wander (Fig. 2).
Few neural markers for neuro-feedback have been discussed by Gupta et al. [16].

Fig. 2. A user is wearing a portable EEG headset while meditating. The real-time EEG
signals are captured, processed, and meditative states sent to the user’s mobile phone.
When the user’s mind begins to wander, an audio neuro-feedback is given to them,
enabling them to reorient their focus away from task-irrelevant thoughts.
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3 Dataset Description

We have used the publicly available EEG dataset [24]. Electroencephalographic
(EEG) recordings were conducted on participants from meditative communi-
ties in India, Nepal, and the United States. Their respective instructors selected
highly experienced and skilled meditators from each community. Each commu-
nity provided space for recording the meditation sessions. Participants studied
at least one of the different meditation practices - Zazen, Dzogchen, Shamatha,
and Visualization. Some participants recorded sessions for a single meditative
style and, in some cases, multiple meditative styles. EEG activity was recorded
when the participants were sitting in their usual posture for meditation, and
mind-wandering [24]. We used a pre-processed version of the dataset acquired
from the author. The pre-processed data is sampled 128 Hz.

4 Methods

4.1 Feature Extraction

Sliding Window. We used the Yasa Sliding Window [20] library in python to
create windows of 5 s for meditation recordings of 600 s each and a window of
5 s with a step size of 0.5 for the mind-wandering recordings of 60 s each. We
obtained 1431 epochs of meditation and 1665 epochs of mind-wandering.

Multitaper Bandpower. The Multitaper method is an approach to deter-
mine the power of a signal at different frequencies [24]. We extracted the five
frequency bands from each channel of the EEG signals, namely: delta (0.5–
4 Hz), theta (4–7 Hz), alpha (8–13 Hz), beta (14–30 Hz) and gamma (31–50 Hz).
We calculated the power of each frequency band by integrating the power
spectral density (PSD) of that particular frequency band [25]. We used the
mne.time frequency.psd multitaper() in the MNE-Python package to calculate
multi taper power spectral density (PSD) [5].

After pre-processing, the EEG recording of each participant had a different
number of channels. Hence, to give the model a uniform input, we averaged the
channel data across different frequency bands (delta, theta, alpha, beta, gamma),
giving us five features as model inputs.

4.2 Validation

Leave One Out Meditation Style. Out of the four meditation styles (Zazen,
Dzogchen, Shamatha, and Visualization), we picked one style as a test set and
trained on the remaining three styles.

4.3 Classifiers

K Nearest Neighbors (KNN). K nearest neighbors is a non-parametric clas-
sifier. They work by determining the K (specified by the user) number of training
samples closest in the distance to the new point and predict the labels from these
k training samples.
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Support Vector Machine (SVC): A maximal margin classifier that attempts
to maximize the distance between the closest training patterns known as support
vectors. Maximal margin regularization parameter C, which denotes the trade-off
between margin width and the number of misclassifications for linear SVM can
be optimized from [10−3, 103] using grid search-based hyperparameter tuning on
the validation set extracted from the training set.

Decision Tree Classifier: A Decision Tree Classifier is a predictive model
used in statistics and machine learning. It creates a decision tree to iteratively
go from the observations about an item to classify it into either of the given
target labels.

Random Forest Classifier: It is an ensemble method that consists of a set of
mutually independent and random trees. Each tree is populated using a random
subset of features. Selection is based upon the majority voting over all the tree
outputs.

Multi Layered Perceptron (MLP): The objective function (Cross-Entropy
loss function) for this non-linear function approximator was optimized on our
dataset, using first-order gradient-based optimization called Adam [6]. The
binary prediction was performed using sigmoid as the output function.

Ada Boost Classifier: Ada Boost classifier is a meta estimator that initially
fits a classifier to the dataset. In subsequent training, it makes copies of the
model and puts more weight on instances that are hard to classify.

Gaussian Naive Bayes: It is a generative model that learns the actual data
distribution by assuming that likelihood probabilities come from a multidimen-
sional Gaussian distribution, and that all features are class-wise independent.

Quadratic Discriminant Analysis (QDA): QDA is a generative model,
which assumes that each class follows a Gaussian distribution. These are used
in cases where a non-linear decision boundary works best.

4.4 Visualization

t-Distributed Stochastic Neighbor Embedding (t-SNE): t-SNE is a sta-
tistical dimensionality reduction algorithm that reduces high dimensional data
into dimensions, which aids in the visualization of the data [9]. We have employed
the use of t-SNE to reduce five dimensional (five bands) data points into two-
dimensional to visualize the difference between meditative and mind-wandering
stages.
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Principal Components Analysis (PCA): PCA is an unsupervised
dimensionality-reduction machine learning algorithm. This algorithm generates
new uncorrelated variables that successively maximize variance in the data. The
algorithm helps reduce the dimensions of the data to visualize the data with the
least information loss.

Locally Linear Embedding (LLE): LLE is an unsupervised method for
dimensionality reduction. It does so by projecting the data to a lower dimension
while preserving distance in the local neighborhoods [18].

5 Results

5.1 Classification Insights

We used the leave-one-out method to iteratively train on three meditative prac-
tices and test on the left-out practice. With this as our train and test sets, we
applied various machine learning and neural network classifiers to separate med-
itation and mind-wandering states. The classification accuracies in Fig. 3 and
Fig. 4 represent the testing accuracy on the left-out meditation style.

Machine Learning Classifiers: We achieved the best test accuracy on dif-
ferent machine learning models for meditation styles. For Shamatha meditation,
we achieved the best accuracy of 77.7% using the K Nearest Neighbor classifier
with k values as 2. For Visualization meditation, we achieved the best accuracy
of 68.6% using the Random Forest classifier. For Zazen meditation, we achieved
the best accuracy of 73.8% using the Quadratic Discriminant Analysis classifier.
For Dzogchen meditation, we achieved the best accuracy of 74.7% using the K
Nearest Neighbor classifier with k values as 2.

Fig. 3. Classification results for different machine learning classifiers.
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Neural Network Classifiers: We achieved different classification accuracies
for different network architecture sizes. We achieved the highest average clas-
sification accuracy using the network with the following configuration [80, 140,
100]. For Shamatha meditation, we achieved the best accuracy of 73.83% on
most network architectures. For Visualization meditation, we achieved the best
accuracy of 68.33% using the more extensive networks. For Zazen meditation,
we achieved best the accuracy of 58.11% using the [40, 80, 60] architecture. For
Dzogchen meditation, we achieved the best accuracy of 63.8% using the [40, 80,
60] architecture.

Fig. 4. Classification results for neural network classifiers with varying network
architectures.

5.2 Lower Dimensional Visualization Insights

We used t-SNE, PCA, and LLE algorithms to reduce the dimensionality of our
input feature space from five features to two features to plot them on a 2-D
plane.

t-Distributed Stochastic Neighbor Embedding (t-SNE): As shown in
the Fig. 5, we obtained a good separation of meditative and mind-wandering
states using t-SNE, close to a linear separation. The perplexity measure for this
reduction is 5.

Principal Components Analysis (PCA): Using the PCA algorithm, we were
able to see a separation between the meditative vs. mind-wandering classes, as
shown in Fig. 6. However, some portions of their representation were mixed and
could not be easily separated. We were able to separate the 2-D representation
using an ellipse manually.
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Locally Linear Embedding (LLE): Using the LLE dimensionality reduction
algorithm, we clustered the mind-wandering classes together. At the same time,
the meditative state data points were spread out all over the 2-D plane, as shown
in Fig. 7.

Fig. 5. Linear separation of classes using t-SNE with perplexity 5.

Fig. 6. Principal components analysis based dimensionality reduction.

Fig. 7. Locally Linear Embedding based dimensionality reduction.
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6 Discussion and Conclusion

Mind-wandering is often characterized as our attention being oriented away
from the task at hand towards our internal, self-generated thoughts. This phe-
nomenon is most often linked to a disruption in normal cognitive functions [3].
Too frequent mind-wandering can lead to depression, anxiety, insomnia, neg-
ative mood, and other detrimental effects. This study showed a difference in
neural-signals between mind-wandering and meditation across meditation styles
practices worldwide. We showed this difference by windowing the recordings and
extracting the EEG signals’ band-wise multi-taper power spectral density (PSD).

Using the machine learning models specified in Sect. 4.3, we got the highest
classification accuracy using the KNN classifier for Shamatha and Dzogchen,
QDA for Zazen, and Random Forest for Visualization styles when these were left-
out as test sets. Using the Neural Network classifiers with architectures specified
in Fig. 4, we achieved the highest average classification accuracy for all styles
from the biggest network, i.e., [80, 140, 100]. We got good separation using t-
SNE, PCA, and LLE with almost linear separation between mind-wandering and
meditation sample points.

This research is essential since the computing power doubles every 18 months,
and we have more and more devices with higher computational power. Each year,
significant advancements are made towards technology, giving us everything at
our fingertips. In these times, it is of utmost importance that we do not let our
minds get lost in this sea of information, most of it not very important to us,
leading to overuse and drain of sensory, perceptual, and cognitive resources. For
this reason, practicing meditation may help us train our minds to gain control
of our thoughts, focus our attention, and increase our metacognitive awareness
and our propensity for compassion.

7 Limitation

This study is limited only to expert meditators and does not consider how the
neural signatures differ between novice/non-meditators, which will be further
investigated in future studies. We observed the classification outcome by varying
only a few of the hyperparameters. Further experiments are needed to tune to
the best hyperparameters. However, our results show a significant distinction
between the two states, and future research can explore the involvement of region
and frequency-specific discrimination.
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Abstract. In a complex human-computer interaction system, estimating mental
workload based on electroencephalogram (EEG) plays a vital role in the sys-
tem adaption in accordance with users’ mental state. Compared to within-subject
classification, cross-subject classification is more challenging due to larger vari-
ation across subjects. In this paper, we targeted the cross-subject mental work-
load classification and attempted to improve the performance. A capsule network
capturing structural relationships between features of power spectral density and
brain connectivity was proposed. The comparison results showed that it achieved
a cross-subject classification accuracy of 45.11%, which was superior to the com-
pared methods (e.g., convolutional neural network and support vector machine).
The results also demonstrated feature fusion positively contributed to the cross-
subject workload classification. Our study could benefit the future development
of a real-time workload detection system unspecific to subjects.

Keywords: Mental workload classification · Capsule network · Feature fusion ·
Cross-subject · EEG · Brain connectivity · Power spectral density

1 Introduction

With the prevalence of human-machine interactive systems, mental demand is dramat-
ically increased to result in high mental workload. Excessive mental workload would
quickly cause fatigue so that performance and accuracy are declined. In contrast, an
extremely low mental workload would lead to inefficiency. Therefore, an appropriate
level of mental workload should be maintained. In order to maintain the appropriate
level of workload, we have to evaluate mental workload.

Traditional methods for evaluating mental workload include National Aeronautics
and Space Administration-Task Load Index (NASA-TLX), subjective scale method, pri-
mary task performance method, and auxiliary task performance method. These methods
rely on humans’ self-feeling and the evaluation might be influenced by a few factors
such as humans’ emotions. Alternative ways based on physiological information have
gradually become popular as they are objective for workload evaluation [1]. To date,
electroencephalogram (EEG) [2], electrocardiogram (ECG) [3], eye movement [4], and
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functional near-infrared spectroscopy (fNIRS) [5] have been used for mental workload
evaluation. Among them, EEG is a good choice because of its low cost, high temporal
resolution, and portability.

Machine learning methods such as k-Nearest Neighbors (k-NN) [6], Random Forest
(RF) [7], and Support Vector Machines (SVM) [8] were utilised to classify mental
workload levels based on EEG. More recently, deep learning has shown advantages in
the classification of mental workload. Convolutional neural network (CNN) is one of the
deep learning models, which has been widely utilised for diverse applications, including
P300 feature detection [9], seizure detection [10], and mental workload classification
[11]. CNN exhibits advantages compared to the traditional machine learning methods.
For example, Asgher et al. used CNN to analyse and classify mental workload levels in
the n-back tasks, which outperformed SVM [12]. Although CNN has been applied to
diverse applications successfully, it is not good at capturing spatial relationships between
features. A new model called capsule network was proposed to overcome this drawback
and is able to capture spatial relationships [13]. In addition, it is worth noting that the
majority of studies performed within-subject classification for the mental workload,
leaving less studies for cross-subject classification. The cross-subject classification is
more difficult because there is a larger variation across subjects.

Features extracted from the time domain, spectral domain, and spatial domain can
be used to classify mental workload. In the time domain, the decrease of event-related
potential P300 in amplitude has been discovered to be associated with the increase of
mental workload [14, 15]. In frequency domain, several studies have illustrated the asso-
ciations between EEG signal frequencies and mental workload [16–22]. Band powers
(including delta, theta, alpha, beta, and gamma bands) or their ratios have been used to
evaluate the levels ofmentalworkload. For instance, Ryu et al. found that the power in the
alpha band was suppressed under the high mental workload conditions [18]. Moreover,
the percentage of theta power at some brain regions was significantly increased with
the increase of difficulty in the simulated air traffic control (ATC) task [19]. Besides,
delta, beta, and gamma bands have also been reported to be related to mental workload
[20–22]. In spatial domain, since the human brain has been considered to be a large-scale
network composed of various brain regions [23], brain connectivity analysis may reveal
the interactions between brain regions. For instance, brain connectivity has been found to
be relevant to schizophrenia [24], attention-deficit/hyperactivity disorder (ADHD) [25],
autism [26] and motor imagery (MI) [27]. For the mental workload studies, it has also
been adopted [7, 28]. As shown in the assessment of driving drowsiness [29], functional
connectivity can provide complementary information. It implies that the combination of
features from different domains may benefit the classification.

In this study, we attempted to develop a feature fusion-based capsule network to
capture structural relationships between features derived from the spectral domain and
spatial domain for the cross-subject classification of mental workload. We compared it
to other methods (i.e., k-NN; RF; SVM; and CNN) in terms of classification accuracy
and showed the detailed results in this paper. Our study addresses the shortcomings
mentioned above and provides a potential solution.
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2 Methods

2.1 Experiment and Dataset

A total of seven subjects were recruited for the experiment. The subjects had not attended
any EEG-related experiments or flight simulation experiments previously. The insti-
tutional ethics review committee of the National University of Singapore approved
the experimental protocol. All subjects signed a consent form before the start of the
experiment.

In the experiment, subjects experienced different levels of manipulation difficulty
in controlling an aircraft by a joystick. Oculus Rift virtual reality headset was used
to display virtual 3D aircraft. The subjects started with a low difficulty task and then
performed the medium and high difficulty tasks, which corresponded to low, medium,
and high levels of mental workload, respectively. Each task lasted 2 min, resulting in a
total of 6 min for three tasks. And each subject repeated the tasks three times. Besides,
62 EEG channels were used to record EEG data at a sampling rate of 256 Hz.

2.2 Feature Extraction and Fusion

The recorded data were preprocessed tomitigate artifacts and then divided into segments
with a length of two-second. This resulted in 540 segments for each subject. Each
segment (62 × 512) is a sample in the following classification evaluation. Short-time
Fourier transform (STFT) with a one-second sliding time window and no overlapping
was used to extract power features in five bands: delta (1–4 Hz), theta (4–8 Hz), alpha
(8–12 Hz), beta (12–30 Hz), and gamma (30–45 Hz). This resulted in 2 features for each
frequency band and each EEG channel. We collected all features to form a matrix of 62
× 10 (62 channels × 5 bands * 2).

Besides, we used phase locking value (PLV) to estimate phase synchronization
between EEG channels. According to our previous study [7], the dominant frequency
band for PLV is the gamma band. We, therefore, extracted PLV features from this band.
PLV value ranges from 0 (reflecting no phase synchronization) to 1 (reflecting perfect
phase synchronization) [30–32]. PLV value between channel k and channel l in the time
span t = {t1, t2, …, tn} can be calculated by

PLVk,l =
〈
ej(ϕk (t)−ϕl(t))

〉
(1)

where 〈·〉 represents the arithmetic mean over the time span, ϕk and ϕl are the sig-
nal phases in channels k and l. After estimating each pair of channels, we obtained a
connectivity matrix of 62 × 62. Subsequently, we merged the band power matrix and
connectivity matrix to form a larger feature matrix of 62 × 72. After that, the features
were normalized to the range [0, 1] along with the channel dimension. For PLV features,
elements on the diagonal were not included for the normalization because these elements
represented self-connections.
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2.3 Model Architecture

The model architecture is illustrated in Fig. 1. The proposed model consists of two con-
volutional layers, one primarycaps layer, and one digitcaps layer. The first convolutional
layer has 8 convolution filters with the kernel size of 5 × 5 and the stride of 1. Rectified
linear unit (ReLU) was used as an activation function. The settings of the second con-
volution layer were the same as the settings of the first layer except for the number of
filters (16 for the second layer). The output size of the second layer was 16 × 54 × 64.
This was followed by a primarycaps layer, where the number of filters was 32, the stride
was 2, and the kernel size was 5 × 5. Each primary capsule was a vector with a depth of
4, of which the length and direction represent occurrence probability and associations
to each workload level.
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Fig. 1. The proposed model architecture. Colorful dots stand for subjects. The leave-one-subject-
out was used to evaluate the model performance. The sizes of the outputs of each layer are shown
in the figure.

The detailed operation process of the primarycaps layer is as follows. First, the layer
used 32 filters to extract deeper features from the output of the upper layer. The features
matrixes of 25 × 30 were achieved by 32 filters. Subsequently, we grouped the features
with 4 as a unit to (32/4) * 25 * 30 primary capsules to encode the probability and
low-level features related to mental workload level. We set three capsules with depth
8 in the digitcaps layer because there are three classes in our study. Capsules’ length
represents the probability of each mental workload level. Dynamic routing was used to
train capsule layers.

2.4 Dynamic Routing

The dynamic routing mechanism [13, 33] is as follows. In the first step, the i-th pri-
mary capsule ui is transformed into a high-level mental workload “predicted vector” ûj|i
through the weight matrixWij(j = 1, 2, 3) by

ûj|i = Wijui (2)
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It represents the relative relationship between low-level mental workload features and
high-level mental workload features.

In the second step, the “predicted vector” ûj|i is weighted and summed to obtain sj
as follows

sj = �icijûj|i (3)

where cij is the coupling coefficient between the i-th primary capsule and the j-th mental
workload capsule, representing the probability that the i-th low-level primary capsule
is connected to the j-th high-level mental workload capsule. The sum of all coupling
coefficients is 1. The coupling coefficient cij is calculated by

cij = exp(bij)

�kexp(bik)
(4)

where bij is the log prior probability of the i-th primary capsule connected to the j-th
mental workload capsule.

In the third step, the nonlinear function is used to compress sj to obtain the vector
output vj of the j-th mental workload capsule by

vj = ||sj||2
1 + ||sj||2

sj
||sj|| (5)

This operation can ensure that the length of the mental workload capsule vector is
between 0 and 1. We initialized log prior probability bij by zeros and updated them in
the routing process by

bij ← bij+ûj|i · vj (6)

where · stands for the scalar product. Iteration is stopped until the predefined maximum
number of the iteration is reached. This iteration process can increase weights for the
features closely associated with one mental workload level while decreasing the weights
for the other features.

2.5 Loss Function

The margin loss and the reconstruction loss were used as the optimization objective of
the model. The margin loss is calculated by

Lk = Tk max
(
0,m+ − ||vk ||

)2+λ(1 − Tk) max(0, ||vk || − m−)2 (7)

where Tk is an indicator of the class. When the mental workload of class k is present,
Tk is equal to 1 (otherwise Tk = 0). m+ and m− are set as 0.9 and 0.1, respectively. λ is
a coefficient for adjusting the proportion of the loss for absent mental workload classes
and is set as 0.5 in our case.

A reconstruction loss was used additionally to encourage the mental workload cap-
sules to encode the instantiation parameters of the input mental workload. The recon-
struction loss is calculated by mean square error (MSE).We scaled down the reconstruc-
tion loss by 0.00001 so that it did not dominate the margin loss during training. In the
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end, the total loss was the sum of the margin losses of all mental workload capsules and
the reconstruction losses.

Model training was terminated when the maximum number of iterations (i.e., 200)
was reached or the average loss was less than 10−5. Moreover, we adopted a decaying
learning rate. In other words, the learning rate was gradually reduced along with the
iterations. This could help reduce the frequency of the fluctuation during the training,
especially for the time around the minimum loss. The learning rate was changed after
each iteration and was calculated by

lr = lr × aepoch (8)

where lr represents the learning rate, a represents the base of the decaying learning rate,
and epoch represents the number of iterations until the current epoch.

3 Result

3.1 Methods Comparison

We performed a leave-one-subject-out scheme to evaluate the performance of the meth-
ods. Specifically, all data of a subjectwere used for testingwhile the data of the remaining
subjects were used for training. This was repeated until every subject was in the testing
set once. The final accuracies averaging across all subjects were reported in the format
of mean ± standard deviation in this paper.
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In this study,we not only compared different input features in the capsule network but
also compared the capsule network with other mental workload classification methods
(i.e., k-NN, SVM, RF, and CNN). CNN consists of convolutional layers, max-pooling
layer, fully connected layer, and softmax. The input data were kept the same for all
methods and the models were tuned to be as good as they can.

As shown in Fig. 2, the capsule network with the feature fusion of PLV and PSD
achieved an average testing accuracy of 45.11% ± 6.82%, which was the best perfor-
mance in the method comparison. The parameter settings of the model can be found in
Table 1.

Table 1. Parameters of the capsule network model

Name of the
parameter

Value

Training settings Initial Learning
Rate

0.001

Base of Decaying
Learning Rate

0.9

Weight of
Reconstruction
Loss

0.00001

Maximum No. of
Epochs

200

Batch Size 20

Convolution layer Kernel Size 5 × 5

Padding 0

Stride 1

Convolution layer Kernel Size 5 × 5

Padding 0

Stride 1

Capsule
layers

1 Kernel Size 5 × 5

Padding 0

Stride 2

Vector Length 4

2 Routing No 3

Vector Length 8

The second-highest testing accuracy was 43.86% ± 6.41%, which was achieved by
CNN in the case of feature fusion of PLV and PSD. The methods k-NN, SVM, and
RF achieved accuracies of 35.21% ± 5.25%, 41.53% ± 4.59%, and 40.16% ± 6.50%,
respectively (see Fig. 2). The detail of testing accuracies for each subject can be found



Feature Fusion-Based Capsule Network 171

in Table 2. The results showed that deep learning models outperformed the traditional
methods. It implies that deep learning models have a high capacity to learn essential
information from EEG data.

Table 2. Comparison of testing accuracies under different methods

Methods (%) S1 S2 S3 S4 S5 S6 S7 Mean ± Standard
deviation

CapsNet
(PLV+PSD)

57.04 43.15 41.11 47.78 34.81 47.04 44.81 45.11 ± 6.82

CapsNet
(PLV)

64.07 41.30 38.33 44.44 36.11 31.48 45.37 43.01 ± 10.46

CNN
(PLV+PSD)

50.00 43.89 33.15 44.81 38.33 45.19 51.67 43.86 ± 6.41

k-NN
(PLV+PSD)

27.78 40.74 32.96 42.78 33.70 31.67 36.85 35.21 ± 5.25

SVM
(PLV+PSD)

39.07 47.96 40.37 36.85 36.67 47.04 42.78 41.53 ± 4.59

RF
(PLV+PSD)

51.48 38.15 35.37 38.70 33.33 37.41 46.67 40.16 ± 6.50

Better performance in the capsule network compared to CNN might be due to the
capability of capturing structural relationships between features in the capsule network.
We noticed that the standard deviation was smaller and the mean was higher in the case
of feature fusion compared to the single feature category of PLV. This might be because
the different kinds of features complement each other to improve the robustness so that
there is a relatively robust performance across subjects.

In terms of the average training accuracy, the capsule network achieved the training
accuracy of 98.72%± 0.42%, while k-NN, SVM, RF, and CNN performed accuracies of
88.81%±0.63%, 100%,100%, and96.91%±0.79%(seeFig. 3). The respective training
accuracies for each subject are listed in Table 3. It wasworth noting that SVMandRF had
the highest training accuracy but the lower testing accuracy. It reflected that the overfitting
was obvious in these two methods for the cross-subject mental workload classification.
In the case of the same input features, in addition to SVMandRF, the training accuracy of
the capsule network was also relatively high (see Fig. 3). However, the capsule network
achieved a better testing accuracy. Taken together, the capsule network less suffers from
overfitting. In this study, we observed that feature fusion of PLV and PSD was better
than single category of features in both training accuracy and testing accuracy, showing
the spectral features and connectivity features are complementary.
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Table 3. Comparison of training accuracies under different methods

Methods (%) S1 S2 S3 S4 S5 S6 S7 Mean ± Standard
deviation

CapsNet (PLV +
PSD)

98.95 98.61 97.96 98.46 99.04 98.80 99.20 98.72 ± 0.42

CapsNet (PLV) 97.84 97.35 96.08 97.01 97.01 97.53 97.50 97.19 ± 0.57

CNN (PLV +
PSD)

96.39 96.42 96.42 96.24 97.93 98.15 96.85 96.91 ± 0.79

k-NN (PLV +
PSD)

88.30 89.32 87.62 88.95 89.38 89.01 89.04 88.81 ± 0.63

SVM (PLV +
PSD)

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 ± 0.00

RF (PLV + PSD) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 ± 0.00

4 Conclusion

In this study, we targeted the difficulty of the cross-subject mental workload classifica-
tion. A feature fusion-based capsule network was proposed, which captured structural
relationships between features of power spectral density and brain connectivity. We
demonstrated that the feature fusion-based capsule network achieved the best perfor-
mance in the cross-subject mental workload classification in terms of testing accuracy.
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This study suggests that the feature fusion-based capsule network is relatively robust to
the large variation across subjects and could be a good candidateway for the classification
with large variations.

Although the feature fusion-based capsule network achieved the best performance
in the cross-subject mental workload classification, the accuracy is not very adequate to
make practical usage efficient. In the future, the accuracy should be further enhanced.
We also noticed the training accuracies were much higher than the testing accuracies,
implying the issue of model overfitting. A further study is required to mitigate this issue.
Finally, it would be better to have a larger sample size for validating the performance of
models.
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Abstract. Different EEG/MEG source imaging (ESI) algorithms can render dif-
ferent reconstructions, so as to the same algorithm with different hyperparame-
ters. Moreover, we found the locations of active sources also have an impact on
the performance of ESI algorithms. For the real EEG/MEG source reconstruction,
as the ground true activation is unknown, it is hard to validate which algorithm
performs better. In this paper, we proposed to use statistical features from source
space to predict whether the reconstruction is a satisfactory solution. The train-
ing data and testing data are from solutions from different algorithms based on
synthetic EEG data where ground truth activations are available. The good and
bad solutions are determined by Area Under Curve (AUC) and localization error
(LE). We extract spatial and general statistical features from solutions, then we
used machine learning models to classify good vs. bad solutions, and showed the
feasibility of judging the quality of solution without knowing ground truth, which
can serve as a feedback for further hyperparameter tuning.

Keywords: Brain source imaging · Solution quality · Graph fourier transform ·
EEG/MEG

1 Introduction

Brain source localization using the EEG/MEG measurement provides an important
means to understand brain functions and to uncover the abnormal patterns for patients
with brain disorders. EEG/MEG has a very high temporal resolution up to one mil-
lisecond compared to around one second of temporal resolution of fMRI. EEG or MEG
devices also have the advantage of being inexpensive, easy portability and versatility.
EEG is accepted as a powerful tool to capture the instantaneous brain functionality by
measuring the neuronal processes [21]. However, one disadvantage of EEG is its poor
spatial resolution as it measures the electric potential on the scalp rather than a direct
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measurement of the brain sources. EEG/MEG source imaging (ESI) bridges the gap
between the scalp EEG measurement and the brain source activations as it infers the
brain sources activation by solving the inverse problem based on the measurement of
EEG or MEG [13,18]. However, given that the dimension of source signal significantly
outnumbers the EEG/MEG sensors, the ESI is an ill-conditioned inverse problem that
requires sophisticated design of regularizations that utilize the spatial-temporal assump-
tions on the source space [22,23].

Recently, numerous algorithms have been developed with different assumptions on
the source structure. One seminal work is minimum norm estimate (MNE) where �2
norm is used as a regularization [12]. Variants of MNE algorithm include dynamic
statistical parametric mapping (dSPM) [6] and standardized low-resolution brain elec-
tromagnetic tomography (sLORETA) [24]. The �2-norm based methods tend to render
spatially-diffuse source estimation. To promote a sparse solution, Uutela et al. [28]
introduced the �1-norm, known as minimum current estimate (MCE). Also, Rao and
Kreutz-Delgado proposed an affine scaling method [26] for a sparse ESI solution. Bore
et al. proposed to use the �p-norm regularization (p < 1) on the source signal and the
�1 norm on the data fitting error term [4]. Babadi et al. [1] demonstrated that sparse dis-
tributed solutions to event-related stimuli can be found using a greedy subspace-pursuit
algorithm. Liu et al. proposed a dictionary learning framework to learn discrimina-
tive source activation patterns from different classes [16]. It is worth noting that the
sparse constraint can be applied to the original source signal or the transformed spa-
tial gradient domain [8,17,19]. As the brain is activated not discretely or pointwisely,
an extended area of source estimation is preferred [2], and it has been used for multi-
ple applications, such as somatosensory cortical mapping [5], and epileptogenic zone
in focal epilepsy patients [3]. Recently, deep learning has been used to learn the map-
ping between EEG/MEG and source activation. Hecker et al. proposed a convolutional
neural network approach for ESI and showed improved performance compared to tra-
ditional methods. Jiao and Liu proposed an unrolled optimization neural network based
on iterative procedures in constrained optimization to solve ESI problem and achieved
more accurate result [14].

However, different algorithms provide different solutions with varied quality, how
to assess the solution quality given the statistical features of solution has not been
explored. The contribution in this paper is to conduct a pilot study on how to distin-
guish when an algorithm provides a good solution vs a bad solution based on the sta-
tistical features. The correctly identified bad solution can be used to further guide the
hyperparameter tuning process.

2 EEG/MEG Source Imaging Problem

EEG data are mostly generated by pyramidal cells in the gray matter with an orientation
perpendicular to the cortex. The ESI forward model can be expressed as Y = LS +E,
where Y ∈ R

C×T is the EEG/MEG measurements, C is the number of EEG/MEG
channels, T is the number of time points, L ∈ R

C×N is the leadfield matrix which
characterizes the mapping from brain source space to EEG/MEG channel space, S ∈
R

N×T represents the electrical potentials inN source locations for all the T time points,
and E is the uncertainty/noise. The ESI inverse problem is to estimate S given the
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EEG/MEG measurements. Since channel number C is much smaller than the number
of sources N , estimating S becomes ill-posed and has infinitely number of solutions. In
order to find a unique solution, different regularizations were introduced by using prior
assumptions of the source solution. More specifically, S can be obtained by solving the
following minimization problem:

argmin
S

1
2

‖Y − LS‖2F + λR(S), (1)

where ‖ · ‖F is the Frobenius norm. The first term of Eq. (1) is called data fitting which
tries to explain the observed EEG data, and the second term is called regularization term
which is imposed to find a unique solution of Eq. (1) by using the sparsity or other neuro-
physiology inspired regularizations. IfR(S) equals �2 norm, the problem is called mini-
mum norm estimate (MNE) [12]; ifR(S) is defined using �1 norm, the problem becomes
minimumcurrent estimate (MCE) [28]. As the cortex is discretizedwith 3Dmeshes, sim-
ply employing �1 norm on S will result in an estimated discrete source located across
the cortex instead of an extended continuous area in the cortex. In order to encourage
source extents estimation, Ding proposed to use a sparse constraint in the transformed
domain by introducing TV defined from the irregular 3D mesh [7]. Other researchers
used the same TV definition such as [15,18,25,27,29]. The TV was defined to be the �1
norm of the first order spatial gradient using a linear transform matrix V ∈ R

P×N with
its definition can be found in [7]. The use of TV regularization is especially useful when
a focal area of brain sources are activated, which is common for epilepsy patients [9].

3 Method

The ESI algorithms usually render dichotomous accuracy illustrated in Fig. 3, where a
long tail in the boxplot of both LE and AUC (defined later) representing bad reconstruc-
tion. The bad solutions typically lost the spatial structure as the left one in Fig. 2.

The solution quality assessment framework (SQAF) is illustrated in Fig. 1. It starts
from collecting MRI scans from the subject and digitized locations of EEG or MEG
sensors, and coregister the EEG/MEG sensors with the head model built from MRI
images using boundary element method (BEM) or finite element method (FEM). Then
we can build a forward model which characterizes the mapping from source space to the
sensor space. The SQAF is to validate the quality of solutions from the ESI algorithms
using spatial and general statistical features, which can further guide the ESI algorithm
selection or parameter tuning.

Figure 2 provides an example of a good solution vs a bad solution, where the solu-
tion on the left represents a good recovery of an focal source extent activation, while
the figure on the right has a bad reconstruction solution where sources are spatially
over-diffused and non-continuous in the cortex.

Feature Extraction:We use basic statistical features of solution, including mean, vari-
ance, median, skewness, kurtosis, and the recently proposed spatial graph frequency
(SGF) [15], and also the data fitting, which is defined by ‖y − Ls‖22/‖y‖22 to measure
how the solution fits the measured EEG or MEG data. Specifically the SGF is defined
as follows:
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Fig. 1. ESI solution quality assessment framework.

Definition 1. Spatial Graph Frequency (SGF): fG is a function of s, where s is the
signal defined on the irregular 3D mesh representing the brain source signal on the
cortex, and SGF is defined as follows:

fG(s) =
N∑

m=1

∑

n∈N (m)

I(ui(m)ui(n) < 0)/2, (2)

where N is the number of nodes (sources), N (m) denotes all the neighbors of node
m, and I(·) is the indicator function to check if the values of ui at node m and n have
a sign flip. The sign flip makes an analogy to counting the number of zero crossings
of a basis signal within a given window for a time series data. The Laplacian matrix
is constructed within the first order of neighbors. The SGF basically counts how many
sign flips among neighboring nodes, measuring the level of spatial variations in the
source space.

With the extracted features, we use several typical machine learning models, such
as Support Vector Machine (SVM), Random Forest (RF), Decision Tree (DT), Naı̈ve
Bayesian (NB), K-Nearest Neighbors (KNN) and Logistic Regression (LR). The dataset
was split into 70% for training and 30% for testing. In order to find the best hyperpa-
rameter for the machine learning models, we provide a range of hyperparameters and
use 3-fold cross validation to select the best hyperparameters, and the hyperparameters
are listed in Table 1. Using the training data, we conducted 3-fold cross validation to
select the best hyperparameter, and then trained the model on the training dataset, and
then tested on the testing dataset.
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Fig. 2. A good solution with concentrated activation patches vs a bad activation where sources
are reconstructed wide spread on the cortex.

Table 1. Hyperparameter tuning

Model Hyperparameter Optimal value Range

LR C 1 [0.01, 0.1, 1, 10]

Penalty �2 [�1, �2]

DT Criterion entropy [entropy, gini]

Max depth 7 [ 1 4 7 10 13 16 19]

RF N estimators 40 [10, 17, 25, 32, 40]

Max features auto [auto, sqrt]

Max depth 8 [2, 4, 6, 8]

GB N estimators 95 [10, 15, 20, 25, ..., 80, 85, 90, 95]

Max depth 4 [2, 4]

Learning rate 0.1 [0.001, 0.01, 0.1]

SVM Gamma 10 [0.01, 0.05, 0.1, 1, 10]

Kernel rbf [linear, rbf]

C 10 [0.01, 0.05, 0.1, 1, 10]

KNN N neighbors 10 [2, 4, 6, 8, 10]

P 1 [1, 2]

Weights distance [uniform, distance]

4 Result

Synthetic Data Generation. We first computed the BEM model based on the pre-
operative MRI images from a 26-year old male subject. Brain tissue segmentation and
source surface reconstruction were conducted using FreeSurfer [10]. EEG signals were
measured using a 128-channel BioSemi EEG cap. We coregistered EEG channels with
the head model using Brainstorm and further validated on MNE-Python toolbox [11].
Then, the leadfield matrix L can be calculated. The source space contains 2052 sources,
so the dimension of L is 128 by 2052. We used the forward model to generate scalp
EEG data with simulated sources as the ground truth. The 2052 sources are activated
in turn with 3 level of neighbors activated at the same time. The magnitudes of the
center source, the first level neighbors, the second level neighbors, and the third level of
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Fig. 3. Histogram for AUC (left) and LE (right).

neighbors are set to be 1, 0.8, 0.6, and 0.4, respectively. The SNR (signal-to-noise ratio)
for the channel noise is set to be 10 dB, and each activation pattern is repeated 10 times
subject to the randomness of the channel noise. Eventually, there are 20520 samples for
ESI algorithms to reconstruct the source solutions.

Then we conducted source reconstruction with different ESI methods, including
MNE [12], dSPM [6], sLORETA [24] and our recently proposed UONN [14]. The
solutions are compared with the ground truth to calculate the performance metrics of
all the solutions from the ESI algorithms. The performance metrics include localization
error (LE) and AUC, which are defined as follows [20]:

(1) Localization error (LE): it measures the geodesic distance between two source loca-
tions on the cortex meshes using the Dijkstra shortest path algorithm.

(2) Area under curve (AUC): it is particularly useful to characterize the overlap of an
extended source activation pattern.

The traditional ESI algorithms such as MNE, sLORETA, dSPM render over-
diffused reconstructions, while our proposed algorithm [14] has a much higher prob-
ability of providing more reliable reconstructions. The histogram in terms of AUC and
LE measured from the combined solutions from all the ESI algorithms is given in Fig. 3.
We set the threshold for good solution when AUC > 0.95 and LE < 15mm (flagged
as 1), and bad solution otherwise (flagged as 0).

The selected best parameter setting based on 3-fold cross-validation for SVM is
C =10, and penalty is �2, the selected parameter for LR is C = 10, and �2 penalty,
the selected parameter for KNN is K = 8 and p = 1, and the weight is based on
the distance. For DT, the best parameter setting is: splitting criterion: entropy, and max
depth is 4. For RF, the max depth is 8, max features is set to be auto, and number of
estimators is set to be 40. For GB, the max depth is set to be 4, and number of estimators
is 40. We use the default setting for NB.

The feature importance evaluated by LR is given in Fig. 4. The SGF is the most
important feature, followed by variance and EEG data fitting.

Finally, the AUC curves from different algorithms are given in Fig. 5. And all the
classification results are given in Table 2. All the algorithms achieved very accurate
performance with or without SGF. Given the performance for the models without SGF
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Fig. 4. Feature Importance evaluated by LR with SGF (left), and without SGF (right).

Fig. 5. Comparison of the AUC values between with feature frequency (on the left) and without
feature frequency (on the right).

feature already achieved very high accuracy, adding SGF didn’t show a significant
improvement.

5 Discussion and Limitation

This research provides a simple yet important pilot study to distinguish the good vs bad
solutions rendered by different ESI algorithms. The key features are based on spatial
graph Fourier transform which has not been much explored in the ESI context. We
found the SGF is the top one feature to distinguish the good vs. bad solutions. This
research demonstrates the feasibility of solution quality check with simple machine
learning models and statistical features, which can help to find an enhanced design of
hyperparameters of the ESI algorithms.

This paper has some limitations, for example, there is only one activated source,
and the activated area is still a much smaller region compared to the whole cortex,
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Table 2. Performance comparison among different machine learning models

Model With SGF Without SGF

Recall F1 Precision ACC AUC Recall F1 Precision ACC AUC

LR 0.981 0.839 0.733 0.932 0.961 0.866 0.797 0.738 0.920 0.960

DT 0.999 0.846 0.734 0.934 0.968 1.000 0.847 0.734 0.935 0.968

RF 0.993 0.846 0.737 0.935 0.972 0.992 0.846 0.737 0.935 0.971

GB 0.990 0.846 0.738 0.935 0.971 0.991 0.846 0.738 0.935 0.971

SVM 1.000 0.847 0.734 0.934 0.963 0.999 0.846 0.733 0.934 0.963

KNN 0.901 0.816 0.746 0.927 0.966 0.882 0.808 0.746 0.925 0.964

NB 0.990 0.843 0.733 0.933 0.958 0.992 0.844 0.734 0.934 0.959

thus making other basic features important predictors. The basic statistical features
(variance, skewness) can provide good prediction towards solution quality, especially
variance, which counts the variations of source signal across the space, although the spa-
tial neighborhood relationship is ignored. However, with larger activated source extents,
where the source voxels demonstrate synchronous signal across a large spatial area, we
expect to see the proposed SGF feature stands out more predominantly.
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Abstract. As brain investigation progresses, the need has become urgent from
acquiring the higher resolution neuroimaging data to give amore detailed interpre-
tation. In particular, the technological development and innovation of theMagnetic
Resonance Imaging (MRI) machine, through increasing the magnetic field from
low (such as 3T) to high (such as 7T), has revealed significant advantages regarding
the image quality enhancement, etc. Currently, due to the limitations of hardware,
physics and physiology, the large-scale acquisition of the high-resolution MRI
neuroimages is still running on the road. Hence, enhancing the quality of the low-
fieldMRI data is critical by using the advanced artificial intelligence technology. In
this study, we propose a novel image enhancement framework, namely SR-MRI,
trying to improve the quality of the low-resolution neuroimage: (1) combining
with the Real-ESRGAN deep learning model; (2) bridging the 3T-MRI and the
7T-MRI within the same analysis scale; and (3) systematically comparing mul-
tiple evaluation indicators, including Brenner, SMD, SMD2, Variance, Vollath,
Entropy, and NIQE. The experimental results suggest that the edge, fineness and
texture features of the low-resolution neuroimages are restored to a great extent
from the SR-MRI framework. In addition, the evaluation results of multiple indi-
cators show that the processed 3T-MRI can achieve the similar effect from the
7T-MRI machine.

Keywords: Magnetic Resonance Imaging (MRI) · Super-resolution · Brain
informatics · Deep learning · Real-ESRGAN model

1 Introduction

As the most important information processing and control center in the human body, the
brain is closely related to cognitive, emotional, psychological and behavioral functions
[1]. With the rapid development of medical informatization and the popularization of
medical neuroimages in this digital age, Magnetic Resonance Imaging (MRI) plays
an increasingly significant role in the detection and diagnosis of various diseases for
smart health [2]. The quality of MR neuroimages, as the carrier of patients’ pathological
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information, can influence doctors’ perception, reception, comprehension and diagnosis
of patients’ pathological information.

Themagnetic resonance phenomenon is produced by using a highmagnetic field and
a radio signal to excite hydrogen protons in the human body. By changing the intensity
of external gradient magnetic field “T”, different tissues of the body can resonate at
different frequencies and draw structural images in human body [3]. The letter “T”
indicates Tesla in the magnetic resonance, which is the magnitude of the field strength.
Theoretically, the stronger the field intensity is used, the higher the signal to noise ratio
(SNR) is given, implying that more image resolution can be offered. From the hardware
perspective, the 7T-MRI machine, even the machine with the higher Tesla, is developed
to obtain the higher-resolution MRI data. However, due to the limitations of hardware
and physics, the acquisition system cost of the high-resolution (HR) 7T MRI is high
[4]. Therefore, the current mainstream still depends on the 3T-MRI technology, which
has generated massive amounts of data. Furthermore, from the method perspective,
the super-resolution (SR) reconstruction of low-resolution (LR) MR neuroimages is
attracting greater attention, which can reduce the requirements of hardware equipment
without increasing the cost of imaging technology. The reconstructed high-resolution
MR neuroimages can help doctors make accurate diagnosis of patients’ condition.

So far, the natural images have been the focus of academic super-resolution net-
work processing. However, as the super-resolution advances and the medical indus-
try’s demand of high-resolution images grow, more network structures and associated
approaches for medical images are being presented [5]. For instance, Liu [6] proposed
a multi-scale fusion convolution network to conduct super-resolution for MRI recon-
struction in order to investigate the various edge responses utilizing various convolu-
tion kernel sizes. Shi [7] put forward a new residual learning-based SR technique for
MRI by combining local residual block with global residual network. Furthermore,
numerous researchers have focused on different improved methods, such as the modi-
fied SRCNN (Super-Resolution Convolutional Neural Network) based global residual
learning strategy [8] and the GAN based common algorithms [9]. As a result, in this
paper, we introduce a novel super-resolution reconstruction framework for enhancing
the MR neuroimaging quality from 3T to 7T, combining with different deep learning
algorithms. Different from the common pipeline of the super-resolution reconstruction,
the current work builds flexible components to process different scale neuroimaging data
within a unified framework towards the goal of greater practice. In addition, considering
the necessity of the systematic analysis from the Brain Informatics methodology [10],
multiple evaluation indicators are calculated to verify the effectiveness of the enhanced
3T-MRI.

2 Method

In this section, we introduce a novel super-resolution framework, namely SR-MRI, for
enhancing MR neuroimaging from 3T to 7T. Figure 1 depicts the image enhancement
framework, which is made up of three components: the preprocessing component, the
super-resolution component and the evaluation component.
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Fig. 1. The detailed components and their workflows in the SR-MRI framework. (S is the mag-
nification of neuroimaging reconstruction. FR: Full Reference; RR: Reduced Reference; NR: No
Reference.)

2.1 The Preprocessing Component

In the preprocessing component, through the operation of spatial alignment, the images
have been aligned into the template derived from 555 healthy subjects of the IXI database
(http://www.brain-development.org) [11]. To execute the nonlinear registration properly,
we also need to initialize it by a linear registration to acquire the image’s orientation and
size close enough for the nonlinear registration. The significance of spatial alignment
is to align images to the same template space for comparison, as well as to eliminate
noise that may arise during PNG conversion. Subsequently, we slice both 3T and 7TMR
neuroimages along the Z axis, and convert them from 3D NIfTI format to PNG format.

2.2 The Super-Resolution Component

In the component of super-resolution, three super-resolution methods are integrated
into this framework, including the bicubic interpolation algorithm, and the SRCNN

http://www.brain-development.org
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and Real-ESRGAN models based on deep learning. These methods are performed to
reconstruct low-resolution images, respectively. Meanwhile, images can be magnified
with different scales in these three various methods. Obviously, more effective super-
resolution algorithms can be added to the framework to improve the image quality.

SRCNN technology is the first time to apply the deep learningmodel of convolutional
neural network in the field of super-resolution reconstruction [12]. Its network structure
is shown in Fig. 2. The supplied low-resolution image is first enlarged to the intended
size using bicubic interpolation. Secondly, to match the non-linear mapping between
LR and HR images, a three-layer convolutional neural network is utilized. Finally, the
output of the network is the reconstructed HR image.

Fig. 2. The network structure of SRCNN.

Real-ESRGAN (Real-Enhanced Super-Resolution Generative Adversarial Net-
works) is one of the top SR technologies in recent years including the Generative Net-
work and the Discriminator Network [13]. The model manages to achieve a decent
mix between image improvement and artifact reduction. The study proposes a high-
order degradation procedure, and uses the ‘sinc’ filters to the mimic typical ringing and
overshoot problems in order to synthesize more realistic degradations. The Generative
Network (as shown in Fig. 3) is a deep network constructed by several residual-in-
residual dense blocks (RRDB) without batch normalization, making it easier to train
deeper and more complicated network architectures. Meanwhile, to improve discrimi-
nator capabilities and stabilize training dynamics, the researchers used a U-Net discrim-
inator with spectral normalization regularizations. For most real-world images, Real-
ESRGAN trained on synthetic data is able to increase details while reducing annoying
artifacts.

2.3 The Evaluation Component

There exist two types of image quality evaluation methods: subjective and objective
[14]. The former relies on the subjective perception of the experimenter, while the latter
measures the image quality according to the quantitative index. The use of one or more
image indicators creates a mathematical model, ensuring that the outcomes of objective
evaluations are congruent with people’s subjective sentiments. According to whether the
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Fig. 3. The structure of Generative Network of Real-ESRGAN.

original image is referenced and the degree of reference, the objective quality evaluation
can be divided into the following three types: (a) Full Reference (FR), (b) Reduced
Reference (RR), (c) No Reference (NR) [15]. Since both FR method and RR method
require the information from the original images as the reference for assessment, and the
data used in this article is not HRMR neuroimages. Consequently, this research opts for
the NR method [16], which does away with the need for reference images and relies on
some information from the image to be reviewed for quality evaluation. Following that,
in the evaluation component, numerous distinct NR indicators are integrated, including
Brenner, SMD, SMD2, Vollath, Entropy, NIQE and so on

1. Brenner. The Brenner gradient function is the simplest gradient evaluation function.
It simply calculates the square of the gray difference between two adjacent pixels,
which is given by:

D
(
f Brenner

)
=

∑
y

∑
x
|f (x + 2, y) − f (x, y)|2 (1)

where D
(
f Brenner

)
is the index calculated by the Brenner gradient function, and

f (x, y) represents the gray value of the pixel (x, y) corresponding to image f .
2. SMD. The SumofModulus of grayDifference (SMD) function takes the gray change

as the basis for focus evaluation. SMD extracts the change size of the gray value of
point (x, y) and its adjacent points by performing a differential operation on the gray
level of the point (x, y) and its neighboring points, which is given by:

D
(
f SMD

)
=

∑
y

∑
x
(|f (x, y) − f (x, y − 1)| + |f (x, y) − f (x + 1, y)|) (2)

where D
(
f SMD

)
is the index calculated by the Sum of Modulus of gray Difference

function.
3. SMD2. The SMD2 function is the product of modulus of gray difference. That is, the

two gray differences in each pixel field are multiplied and then accumulated pixel
by pixel, which is given by:

D
(
f SMD2

)
=

∑
y

∑
x
|f (x, y) − f (x + 1, y)| ∗ |f (x, y) − f (x, y + 1)| (3)

where D
(
f SMD2

)
is the index calculated by the SMD2 function.
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4. Variance. The Variance function may be utilized as the evaluation function since
the sharply focused image has a bigger gray difference than the unfocused image,
which is given by:

D
(
f Variance

)
=

∑
y

∑
x
|f (x, y) − μ|2 (4)

where D
(
f Variance

)
is the index calculated by the Variance function.

5. Vollath. TheVollath function is based on the image cross-correlation function, which
efficiently suppresses noise and reduces interference from impurities. The function
is defined as follows:

D
(
f Vollath

)
=

∑
y

∑
x
f (x, y) ∗ f (x + 1, y) − M ∗ N ∗ μ (5)

where D
(
f Vollath

)
is the index calculated by the Vollath function, and μ indicates

the average gray value of the whole image, andM and N are the image’s width and
height, respectively.

6. Entropy. The Entropy function, which is based on statistical characteristics, is a
useful metric for assessing the richness of visual data. According to information
theory, the information quantity of an image is measured by the information entropy
of the image, which is given by:

D
(
f Entropy

)
= −

L−1∑
I=0

Pi ln(Pi) (6)

where D
(
f Entropy

)
is the index calculated by the Entropy function, and Pi is the

probability of pixels with gray value I in the image, and L is the total number of gray
levels (usually 256).

7. NIQE. The Natural Image Quality Evaluator (NIQE) [17] is the evaluation index of
ECCV’s PIRM competition in 2018. The NIQE first extracts the region of interest
from the image when extracting the statistical features of the image. It stems from
the fact that the human eye prefers to judge the image quality by the clearer part of
the image. When using the collected 36 features for image quality evaluation, the
Multivariate Gaussian Model (MVG) is used to fit, which is given by:

fX (x1, ..., xk) = 1

(2π)k/2|�|1/2 exp

(
−1

2
(x − v)T�−1(x − v)

)
(7)

where (x1, ..., xk) are the 36 features collected, v and� are the mean and covariance
matrix of MVG, which can be obtained by maximum likelihood estimation.

The value of NIQE is obtained by calculating the distance of the MVG parameters
between the natural image and the distorted image:

D
(
f NIQE

)
= D(v1, v2, �1, �2) =

√
(v1 − v2)T

(
�1 + �2

2

)−1

(v1 − v2) (8)

where D
(
f NIQE

)
is the index calculated by the NIQE.
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3 Results and Discussions

3.1 MR Neuroimage Acquisition and Preprocessing

In this work, two datasets with the accession numbers of ds001553 and ds001555 are
obtained from the OpenNeuro platform (https://openneuro.org). Each study was per-
formed by three people with no known history of neurological diseases (5 females; age
= 25 ± 5 years). All participants gave informed consent in compliance with a protocol
approved by the Institutional Review Board of the National Institute of Mental Health
in Bethesda, MD, USA. For 3T images, its accession number is ds001553. 372 coronal
slices were obtained in a General Electric 3T MRI scanner using image parameters: TR
= 7240 ms, TE = 2.7 ms, TI = 725 ms, Flip angle = 12°, and resolution = 1 × 1
× 1 mm3. For 7T images, its accession number is ds001555. 354 coronal slices were
obtained in a Siemens 7T MRI scanner equipped with a 32-element receive coil using
image parameters: TR = 3000 ms, TE = 3.88 ms, TI = 1500 ms, Flip angle = 6°, and
resolution = 1 × 1 × 1 mm3. As for spatial alignment, we registered the correspond-
ing 3T and 7T images using Matlab SPM12 toolbox, to minimize the possible global
distortions. To do so, all the images were linearly aligned to the MNI space by using
an individual template [18]. After one subject’s MRI data is aligned to the MNI stan-
dard space, the NIfTI file is converted to 78 images of PNG format by slicing. Finally,
we obtained 234 normalized images from three subjects, with respect to the 3T scale,
and the same number of normalized images at the 7T scale. As individual differences
are not concerned about the core point in this paper, the average effectiveness of all
super-resolution images corresponding to different scale is evaluated respectively in the
following evaluation phase.

3.2 The Super-Resolution Results of the MR Neuroimaging

From Fig. 4, it can be seen that the resolution of MR neuroimages has been greatly
increased by using the proposed SR-MRI framework.

In this framework, the super-resolution images using the bicubic interpolation algo-
rithm have relatively higher ambiguity compared with the results from the SRCNN and
Real-ESRGAN methods, not only on the edge, but also in the region. The image rebuilt
using the SRCNN model has somewhat enhanced intra-regional resolution, however
it still falls short of the image recovered by the Real-ESRGAN model. By using the
Real-ESRGAN reconstruction, the images are clearest at the junction of white matter
and gray matter, and the edge, fineness and texture characteristics are recovered to a
large extent. Therefore, the Real-ESRGANmethod is embedded into the current frame-
work with stronger recommendation. In the next section, we compare the performance
of super-resolution results from both 3T and 7T MRI using quality evaluation of no
reference.

3.3 Quantitative Analysis Based on No-Reference Indicators

As shown in Table 1, the evaluation value of each index is given by averaging all values
from a group of images (234 slices). Apart from the NIQE index of the seven indexes
in this article, the greater an index value is, the higher an image quality has.

https://openneuro.org
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Fig. 4. The reconstructed MRI results based on the proposed SR-MRI framework. (a) shows the
reconstructed results based on the normalized-3T MR neuroimages; (b) shows the reconstructed
results based on the normalized-7T MR neuroimages. (×2 is the two times magnification for
super-resolution reconstructed images, and ×4 is the four times magnification.)

In Table 1, it is found that all indicators of 7T MRI are superior than those of 3T
MRI. When comparing the image quality of three alternative processing algorithms
in this SR-MRI framework, the Real-ESRGAN method outperforms the SRCNN and
bicubic interpolation methods. Meanwhile, the four times magnification produces a
superior visual quality than the two times magnification. In addition, to evaluate the
enhanced scale before and after running this SR-MRI framework, the difference of
indictors is calculated between both 3T and 7T normalized MR neuroimaging and the



192 Y. Cao et al.

Table 1. Comparison of super-resolution results between 3T and 7T MRI based on quality eval-

uation of no reference. (∗ in D
(
f ∗)

is Brenner, SMD, SMD2, Variance, Vollath, Entropy, and
NIQE, respectively. I: Normalized 3T; II: Normalized 7T; III: 3T-Bic ×2; IV: 7T-Bicx2; V: 3T-
SRCNN×2; VI: 7T-SRCNNx2; VII: 3T-Real-ESRGAN×2; VIII: 7T-Real-ESRGANx2; IX: 3T-
Bic×4; X: 7T-Bicx4; XI: 3T-SRCNN×4; XII: 7T-SRCNNx4; XIII: 3T-Real-ESRGAN ×4; XIV:
7T-Real-ESRGANx4.)

super-resolution reconstructed images, respectively. On the one hand, by comparingwith
the NIQE difference of |D

(
f ∗,II

)−D
(
f ∗,I

)
| = 4.57 calculated by the normalized 3T and

7T images, the NIQE difference after the super-resolution reconstruction processes is
reduced obviously.On the other hand, the difference calculated by the other six indicators
is increased after running this framework. It is found that the SR-MRI framework can
enhance the performance of images, and even the enhanced 3T-MRI could achieve the
similar effect from the 7T-MRI machine.

4 Conclusion

In this paper, by developing a novel super-resolution framework, namely SR-MRI, com-
bined with the pre-trained SRCNN and Real-ESRGAN models, we apply the image
super-resolution reconstruction technology based on deep neural network to enhance the
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MR neuroimages. The effectiveness of the deep super-resolution model is verified by
comparing multi-scale MRI data from 3T to 7T. It has been shown that when the 3TMR
neuroimages are processed using the current framework, the image quality is increased
considerably, and the effect from a 7T MRI machine could be achieved similarly. In the
future, the further research is needed to integrate more super-resolution techniques into
this framework and apply it to more potential scenarios towards accelerating the clinical
practice.
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Abstract. Virtual-reality exposure therapy (VRET) is a novel inter-
vention technique that allows individuals to experience anxiety evoking
stimuli in a safe environment, to recognise specific triggers and gradu-
ally increase their exposure to perceived threats. Public-speaking anxiety
(PSA) is very common form of social anxiety, characterised by stressful
arousal and anxiety generated when presenting to an audience. In self-
guided VRET participants can gradually increase their tolerance to expo-
sure and reduce anxiety induced arousal and PSA over time. However,
creating such a VR environment and determining physiological indices
of anxiety induced arousal or distress is an open challenge. Environ-
ment modelling, character creation and animation, psychological state
determination and the use of machine learning models for anxiety or
stress detection are equally important, and multi-disciplinary expertise
is required. In this work, we have explored a series of machine learning
models with publicly available data sets (using electroencephalogram and
heart rate variability) to predict arousal states. If we can detect anxiety-
induced arousal, we can trigger calming activities to allow individuals
to cope with and overcome the distress. Here, we discuss the means of
effective selection of machine learning models and parameters in arousal
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detection. We propose a pipeline to overcome the model selection prob-
lem with different parameter settings in the context of Virtual Reality
Exposure Therapy. This pipeline can be extended to many other domains
of interest, where arousal detection is crucial.

Keywords: Arousal · EEG · HRV · Random forest · Glossophobia ·
Stress · VRET

1 Introduction

Anxiety is an emotional state characterised by negative affect and worry,
heightened arousal, careful environmental monitoring, rumination and avoidance
behaviour, ranging from mild to severe. Intense states of anxiety, or even fear -
a more rudimentary physiological response to a perceived threat that can lead
to fight/flight/freeze reactions and panic behaviour - can be symptoms of differ-
ent psychological disorders. For example, phobias are defined by an exaggerated
fear or unrealistic sense of threat to a situation or object, which appear in many
forms. In the Diagnostic and Statistical Manual of Mental Disorders (DSM-5,
2013) [18,23], the American Psychiatric Association defines five types of phobia,
related to natural environments (e.g., heights), animals (e.g., spiders), specific
situations (e.g., public spaces), blood/injury or medical issues, and other types
(e.g. loud noise, vomiting, choking). These debilitating disorders affect about
13% of the world’s total population. Research is ongoing for contributing fac-
tors to the onset, development, and maintenance of phobias and anxiety-related
disorders, their underlying cognitive and behavioural processes, physical man-
ifestation, and treatment methods [4,5,26,31]. Traditional treatments of such
disorders include in-vivo exposure, interoceptive exposure, cognitive behavioural
therapy (CBT), applied muscle tension, supportive psychotherapy, hypnother-
apy, and medications such as beta-blockers or sedatives [9].

Virtual reality exposure therapy (VRET) is one of the most promising novel
treatments, enabled by its superior immersive capabilities that generate a greater
sense of presence and enhance user effects, especially for negatively valenced,
high arousal stimuli [37]. Over the last two decades VRET, encompassing psy-
chological treatment principles and enabled by advancing display and computing
technology developments, has become a popular digital intervention for various
psychological disorders [6,38], being as effective as in-vivo (i.e., face-to-face)
exposure therapy post-intervention [20]. For example, a meta-analysis showed
VRET for Social Anxiety Disorder (encompassing an exaggerated fear of being
rejected, negatively evaluated or humiliated during social interactions, obser-
vations and/or in performance situations) to be more effective than wait-list
controls (with large effect sizes), and even therapist-led in-vivo exposure ther-
apy (though only small effect size) [6]. It shows good acceptability in users due
to its safe, controlled and empowering means of exposure. A vital part of the
development of VRET is the integration of bio-signals, such as heart rate vari-
ability or cortical arousal, to assess and ameliorate physiological distress states
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(e.g., fear or anxiety induced arousal) during exposure. Here, correct detection of
physiological states through robust models for effective management of anxiety-
induced arousal or stress is pivotal to facilitating intervention and enhancing
psychological health and well-being.

2 Related Work

Arousal detection, a noninvasive intervention, requires a multi-disciplinary app-
roach, where psychological state determination, machine learning models for
arousal or stress detection, and exploration of the related domains for model
implementation are equally important. In this paper, we narrow down the areas
and present an overview of the state of the art scenarios.

Emotion/Stress Detection: Koelstra et al. (2012) presented a multimodal dataset
for the analysis of human affective states [21]. They collected physiological signals,
including electroencephalographic (EEG) data from participants watching music
videos and rated each video in terms of excitement, stress, arousal, flaws, valence,
like, dislike. The data has been widely used for developing various machine learn-
ing models for arousal, anxiety and stress detection. Ahuja and Banga (2019) cre-
ated another dataset from the Jaypee Institute of Information Technology where
they classified mental stress in 206 students [2]. They used Linear Regression (LR),
Support Vector Machine (SVM), Näıve Bayes (NB) and Random Forest (RF)
machine learning classification algorithms [10,11,15,25,28,32–34] to determine
mental stress. Using SVM and 10-Fold cross-validation, they claimed an 85.71%
accuracy. Ghaderi et al. (2015) used respiration, galvanic skin response (GSR)
from hand and foot, heart rate (HR) and electromyography (EMG) at different
time intervals to examine different stress levels. Then they used k-nearest neigh-
bour (k-NN) and the SVM machine learning model for stress detection [16].

Emotion/Stress Detection using EEG: EEG is a non-invasive way to mea-
sure electrical responses generated by the outer layers of the cortex, primarily
pyramidal cells. It has been used to investigate neural activity during arousal,
stress, depression, anxiety or various other emotions. Several studies have applied
machine learning methods to classify and/or predict emotional brain states based
on EEG activity [12,13]. For example, Chen et al. (2020) designed a neural feed-
back system to predict and classify anxiety states using EEG signals during the
resting state from 34 subjects [8]. Anxiety was calculated using power spectral
density (PSD), and then SVM was used to classify anxious and non-anxious
states. Shon et al. (2018) integrated genetic algorithm (GA)-based features in
the machine learning pipeline along with a k-NN classifier to detect stress in EEG
signals [36]. The model was evaluated using DEAP data set [21] for the iden-
tification of emotional stress state. Other work also used the publicly available
DEAP data set for emotion recognition in virtual environments [27]. Based on
Russell’s circumplex model, statistical features, high order crossing (HOC) fea-
tures and powerbands were extracted from the EEG signals, and affective state



198 M. A. Rahman et al.

classification was performed using SVM and RF. In major depressive disorder
(MDD, n = 32), Duan et al. (2020) [14] extracted interhemispheric asymme-
try and cross-correlation features from EEG signals and combined these in a
classification using k-NN, SVM and convolutional neural networks (CNN). Sim-
ilarly, in other research by Omar [3] frontal lobe EEG data was used to identify
stressed patients. Fast Fourier Transformation (FFT) was applied to extract
features from the signal, which were then passed to machine learning models,
such as SVM and NB for subject-wise classification of control and stress groups.
Table 1 shows a summary of ML models used for arousal detection and their
performance.

Machine Learning and VRET: Balan et al. (2020) used the publicly available
DEAP [21] database and applied various machine learning algorithms for clas-
sifying the six basic emotions joy, anger, sadness, disgust, surprise and fear,
based on the physiological data [5]. They presented the stages of model devel-
opment and its evaluation in a virtual environment with gradual stimulus expo-
sure for acrophobia treatment, accompanied by physiological signals monitoring.
In [39], authors used a hybrid machine learning technique using k-Means++
clustering algorithm and principal component analysis (PCA) to cluster drug
addicts to find out the relationship between cardiac physiological characteristic
data and treatment effect. The author showed the relationship between cardiac

Table 1. Machine learning models of arousal detection.

Ref. Domain Data type Model Performance Modality

[5] Acrophobia GSR, HR,

BVR

SVM, RF,

kNN

SVM-42.6% kNN-

89.5%, RF-99%

Unimodal

[39] Drug addiction HRV PCA,

k-Means++

... Unimodal

[24] Spider phobia Clinical

characteristics

RF,

Permutation

Test

∗p < 0.05;

∗ ∗ p < 0.01;

∗ ∗ ∗p < 0.001

Unimodal

[35] Spider phobia fMRI, Genetic

Data

SVM, GPC ... Unimodal

[31] PSA ... ... ... Unimodal

[7] Anxiety disorder EEG SVM Healthy subjects-

97.70 ± 3.32%,

Anxious subjects-

92.29 ± 4.44%

Unimodal

[36] Stress EEG k-NN with GA

Based Feature

Selection

k-NN 71.76% Unimodal

[27] Emotion

Recognition

EEG SVM,RF RF-74.0%,

SVM-57.2%

Unimodal

[14] Major depressive

disorder

EEG KNN, SVM,

CNN

CNN-94.13%,

SVM-88.22%,

KNN-83.15%

Unimodal

[3] Stress EEG SVM, NB SVM-90%, NB-81.7% Unimodal

[21] Human affective

state

EEG LR, SVM, NB Multimodal

[2] Metal stress EEG LR, SVM, NB 85.71% Unimodal
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Fig. 1. Proposed Machine Learning Pipeline: We collect EEG and multimodal physiolog-
ical data from suitable sensors. To clean the data for further processing we used individ-
ual phases of feature selection, feature prepossessing and feature constructions for model
selection which was used for parameter optimisation. This process was repeated using
automated machine learning for the best possible outcome from the collected data set.
After model validation, we use our trained model for meltdown moment detection, work-
place stress detection, VRET and/or other domains where arousal detection is crucial.

physiological characteristics and treatment effects using virtual reality. Other
research [35] used a single session VRET for patients with spider phobia, includ-
ing clinical, neuroimaging (functional magnetic resonance imaging, fMRI), and
genetic data for baseline and post-treatment (after six months) analysis. They
claimed a 30% reduction in spider phobia, assessed psychometrically, and a 50%
reduction in individual distance avoidance tests using behavioural patterns.

3 ML Model Pipeline and Data Set

First, we collected EEG and multimodal physiological data from suitable sensors.
Then we cleaned the data for further processing. Here we used individual phases
of feature selection, feature prepossessing and feature constructions for model
selection used for parameter optimisation. This process was repeated using auto-
mated machine learning for the best possible outcome from the collected data
set. After the model validation, we apply our trained model to VRET and/or
other domains where arousal detection is crucial. Figure 1 shows the proposed
machine learning pipeline.

Data Set: For this research, we explored three publicly available data sets. The
first one is the SWELL data set of [22]. The authors calculated the inter-beat inter-
val (IBI) between peaks in electrocardiographic (ECG) signals. Then, the heart
rate variability (HRV) index was computed on a five minutes IBI array by append-
ing the new IBI sample to the array in a repeated manner. The data set was manu-
ally annotated with the conditions under which the data was collected. This data
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set has 204885 samples with 75 features and 3 labelled classes. Here, 25 people
performed regular cognitive activities, including reading e-mails, writing reports,
searching, and making presentations under manipulated working conditions. We
used a second publicly available data set of [30], which was initially inspired from
[19], with HRV data to train our proposed machine learning model and determine
arousal levels. We also used a third publicly available data set titled ‘EEG during
Mental Arithmetic Task Performance’ [40] to explore EEG recordings of 36 par-
ticipants during resting state and while doing an arithmetic task. This data set
has been commonly used to identify anxiety in individuals triggered while per-
forming arithmetic tasks. It has been collected using a Neurocom monopolar EEG
23-channel system device. Electrodes (Fp1, Fp2, F3, F4, Fz, F7, F8, C3, C4, Cz,
P3, P4, Pz, O1, O2, T3, T4, T5, T6) were placed on the scalp using international
10/20 standard. The sampling rate for each channel 500 Hz with a high-pass filter
of 0.5 Hz and a low-pass filter 45 Hz cut-off frequency. In the experimental manip-
ulation, participants were asked to solve mental arithmetic questions to increase
cognitive load and induce stress, thus, evoking higher arousal states.

Fig. 2. The time domain representation of EEG data of [40]. The top Figures show the
combined representations. Figures on the left show the initial condition and figures on
the right show the stressed condition in channels F3, F4, Fz, Cz. We can clearly see
the increase of oscillatory patterns of the signal from initial to stressful condition.
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4 Result Analysis

In this study, we took the data set of EEG signals during mental arithmetic
tasks1 [40]. Decomposed EEG signals for a duration of 5 s before and during
an arithmetic task are shown in Fig. 2. The signals were in edf format, which
were converted to epochs and their statistical features (mean, std, ptp, var,

Fig. 3. Average frequency content of signal before and during the arithmetic task
using [40] data set. We can clearly see changes in excitation levels. The figure on
the left shows the initial level, whereas the right figure shows the stressed condition
during mathematical problem solving. The figures were generated using the open source
python package MNE-Python [17].

1 https://physionet.org/content/eegmat/1.0.0/.

https://physionet.org/content/eegmat/1.0.0/
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minim, maxim, argminim, argmaxim, skewness and kurtosis) were calculated.
These were then used for the classification of the signals. RF model was used
for this purpose which gave an accuracy of 87.5%. Figure 2 shows the time-
domain representation of EEG signal of [40]. In this figure, plots on the left
show recordings during the initial condition and plots on the right during stressed
condition in channels F3, F4, Fz, Cz. We can clearly see the increase of oscillatory
patterns of the signal from initial to stressful condition (Fig. 4).

Figure 3 shows average frequency content of signal epochs before and during
solving arithmetic tasks using [40] data set. We can see some changes in exci-
tation levels. The figures on the left show the signal in a relaxed state, whereas
figures on the right depict the signals under stress while performing mental
arithmetic task. Similarly, subsequent images in Fig. 3 show the time-frequency
analysis of individual channels (F3, Cz, P4) generated using power plots and
topographic maps. Significant difference can be seen between plots before and

Fig. 4. Images above show the time frequency representations plotted using power
plot topographic maps. Changes in Power Spectral Density can be seen for individual
channels before and during the stressed conditions. The figures were generated using
the open source python package MNE-Python [17].
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during evoked stress states. The Fig. 5 shows the pair plot of few notable fea-
tures MEAN-RR, MEDIAN-RR, SDRR-RMSSD, MEDIAN-REL-RR, SDRR-
RMSSD-REL-RR, VLF, VLF-PCT from SWELL dataset [22]. These statistical
features have been used to classify the signals aiming for arousal detection. This
publicly available HRV dataset has been used to train our machine learning mod-
els. The Fig. 6 shows the prediction of stressful moments from the HRV data set
generated by [30] inspired from [19]. We used the publicly available data set
of [30] to train our proposed machine learning model and determine momen-
tary stressful states. Figure 7 shows the performance (accuracy, precision, recall

Fig. 5. The figure shows the pairplot of a few notable features MEAN-RR, MEDIAN-
RR, SDRR-RMSSD, MEDIAN-REL-RR, SDRR-RMSSD-REL-RR, VLF, VLF-PCT
from SWELL dataset [22]. These statistical features have been used for the classification
of the signals aiming at arousal detection. This publicly available HRV dataset has been
used to train our machine learning models.
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Fig. 6. The figure shows the prediction of stressful moments from the HRV data set
generated by [30] inspired from [19]. We used the publicly available data set of [30]
to train our proposed machine learning model for VRET and determine momentary
stress states.

Fig. 7. Figures show the performance (accuracy, precision, recall and F1 -Score) of the
publicly available data set that we used to train our model. Here we consider QDA,
GNB, SVM, MLP, ADB, KNN, DT and RF machine learning models. KNN, DT and
RF has been used with multiple parameter settings. The figure on the top shows the
performance on SWELL [22] data set and figure on the bottom shows the performance
on EEG data set of [40].
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and F1 -Score) of the publicly available data set that we have used to train our
model. Here we consider Gaussian Näıve Bayes (GNB), Quadratic Discriminant
Analysis (QDA), Support Vector Machine (SVM), Multilayer Perceptron (MLP),
AdaBoost (ADB), k-nearhood neighbour (KNN), Decision Tree(DT) and ran-
dom Forest (RF) machine learning models. KNN, DT and RF have been used
with multiple parameter settings. The figure on the top shows the performance
of the SWELL [22] data set and figure on the bottom shows the performance on
the EEG data set of [40]. If we use a different set of data then they results may
vary slightly as showed by [1].

5 Challenges and Future Research Directions

As we mentioned in the Related Work section (Sect. 2) this work is derived
through multidisciplinary research. So, diverse open domain challenges have been
identified. Some of the key issues are-

– The real-time analysis of the machine learning data. Stream processing will
be one of the next challenges that we want to overcome for the same problem.

– The placement of the BCI electrodes is an important consideration, and inter-
esting to investigate further to determine the most relevant regions of the
brain to monitor arousal.

– In future, additional sensor/polar devices, chest-straps and/or wrist bands
could be used to collect further types of signals. Moreover, additional data
should be collected from different experimental conditions to further improve
efficacy.

6 Conclusion

In self-guided VRET, participants can gradually increase their own exposure to
anxiety evoking stimuli (like audience size, audience reaction, salience of self etc.)
to desensitise and reduce momentary anxiety and arousal states, facilitating ame-
lioration of PSA over time. However, creating this VR environment and deter-
mining anxiety induced arousal or momentary stress states is an open challenge.
In this work, we showed which selection of parameters and machine learning
models can facilitate arousal detection. As such, we propose a machine learning
pipeline for effective arousal detection. We trained our model with three pub-
licly available data sets where we particularly focused on EEG and HRV data.
Considering the scenarios, our proposed automated machine learning pipeline
will overcome the model selection problem for arousal detection. Our trained
machine learning model can be used for further development in VRET to over-
come psychological distress in anxiety and fear related disorders. Further useful
applications of the model can be seen in meltdown moment detection in Autism
Spectrum Disorder (ASD) and other scenarios where stress and arousal play a
significant role and early intervention will be helpful for physiological amelio-
ration. For example, early identification and signalling of a meltdown moment,
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can facilitate initiation of targeted interventions preventing meltdowns, which
will help parents, carers and supporting staff deal with such occurrences and
reduce distress and harm in individuals with ASD. Finally, arousal and increas-
ing stress have become buzzwords of recent times, adversely affecting a vast range
of populations across the globe regardless of age group, ethnicity, gender, or work
profile. Due to the long ongoing COVID-19 pandemic, changing scenarios, work
patterns and lifestyles, increasing pressures, and technological advancements are
a few possible reasons for this trend [16,21,29,30]. Thus, accurate detection of
distress related arousal levels across the general population (e.g., in educational
settings or the workplace) may help to avoid associated adverse impacts through
effective interventions, prevent long-term mental health issues and improve over-
all well-being.
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Abstract. Tumors are the second leading cause of death. Among the
tumors, brain tumors constitute one of the most complex tumor cat-
egories with a high mortality rate. Therefore, brain tumor detection
and segmentation from non-invasive imaging like MRI is an important
research area. Although most recent researches for brain tumor detec-
tion are focused on deep learning methods, machine learning, geometrical
approaches, thresholding and hybrid models are also explored frequently.
In this paper, a novel brain tumor segmentation method containing
thresholding, computational geometry and heuristics is proposed. The
proposed model is tested with two brain tumor datasets to show com-
parative results for brain tumor segmentation with thresholding, convex
hull and an area heuristic. The application of different filtering on a direct
convex hull model and a heuristic-based convex hull model shows that
the convex area based heuristic with the convex hull approach is able to
segment brain tumors more accurately than previous approaches.

Keywords: Brain tumor · Image analysis · Convex hull ·
Segmentation

1 Introduction

Cells are the building blocks of the human body and they have a certain lifespan
where they grow, mature and eventually die. New cells replace the dead cells and
the normal cell life-cycle continues. However, in some cases, due to some genetic
abnormalities, some cells do not die in time or they have unnecessary growth
creating an abnormal shape with excessive cells. These structures are called
‘tumors’. Tumors are normally named according to the organ of their origin.
Tumors can be either non-cancerous (i.e. benign) or cancerous (i.e. malignant).

Brain tumors are tumors that originate from any brain or skull component
(i.e. skull bones/muscles, brain membranes, brain nerves, brain tissues etc.).
There are more than 150 types of brain tumors based on their locations [9,11,22].
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About 4.25 malignant brain tumor cases exist globally per 100,000 person-years
[15] with Europe and North America having the highest numbers of cases. More
than 1,400,000 people suffer from malignant brain tumors worldwide and 9 out
of 10 patients generally die within 5 years of their disease being diagnosed [7]. If
a brain tumor is detected at an early stage it may be possible to remove it and
the patient might eventually be tumor free.

Researchers from both medical and technological backgrounds have there-
fore been working on brain tumor detection, segmentation and diagnosis for
a long time. Brain tumor analysis from medical images like Magnetic Reso-
nance Imaging (MRI), Computed Tomography (CT), Positron Emission Tomog-
raphy (PET), Cerebral Angiography, Myelography etc. have been studied by
researchers with different image recognition, segmentation, machine learning
and deep learning techniques. MRIs have been used in most of the recent studies
because of their clarity. Various types of frequencies can be used in MRI imaging
with different response times and echo times of the pulse signals that are used
to produce multiple types or modalities of image sequences (i.e. T1-weighted,
T2-weighted, Fluid Attenuated Inversion Recovery (Flair) etc.).

The brain tumor analysis problem has also been explored from a geometric
perspective. Various fractal and computational geometry approaches have been
proposed and tested for automatic brain tumor detection, tumor segmentation,
3D tumor reconstruction, tumor area/volume calculation etc. Fractal features
and algorithms have been applied in most of these works. Some researches have
used computational geometry techniques like ‘Convex Hull Computation’ and
‘Delaunay Triangulation’ for brain tumor analysis. Delaunay triangulation has
been used for 3D brain tumor reconstruction from 2D slices [1]. Convex hull
computations have been used for brain tumor segmentation [27], tumor area or
volume calculation [10] and artefact removal from brain tumor images [29].

Convex hull computation [25] is one of the most well-known topic in compu-
tational geometry. In the 2D case, it calculates the minimum or smallest convex
area containing a given set of points. The 2D convex hull computation problem has
been solved with algorithms like Gift wrapping, Graham scan, Quickhull, Divide
and Conquer each having different time complexities [23]. Convex hull algorithms
generate a minimum convex polygon enclosing a set of points, and hence graph-
based and image-based researches have been using convex hull computation for
object detection problems in regular images [21], medical images [10,27,29], gam-
ing platforms [26] and many other types of images. The brain tumor detection from
MRIs can be represented as an object (i.e. tumor) detection problem from an image
(i.e. MRI) by calculating the convex hull for the tumor.

In this paper, a convex hull computation based approach is used for brain
tumor segmentation. A convex hull algorithm is used to detect the tumor area
from brain MRIs with different filtering and thresholding methods. The proposed
system uses brain MRIs as inputs and produces the convex hull for the tumor
regions as outputs. The input images are pre-processed by basic image pre-
processing methods to resize and normalize the images and redefine them to
achieve homogeneity. The system then focuses on the abnormal regions of the
brain by removing pixels containing healthy brain tissues using a thresholding
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method, such as Yen’s thresholding, adaptive thresholding, anisotropic filtering
or a customized (manually defined) thresholding which is then applied to each
pre-processed image to highlight the tumor region. As the intensities of the
pixels from the tumor region are generally higher than pixels containing healthy
tissues, region-labeling is used to identify all connected high intensity pixels
regions and extract the major remaining region as the tumor region from the
image. The key-points of the abnormal area (i.e. tumor area or major region)
are extracted based on their intensity-level. A convex hull algorithm is used
to define the specific tumor boundary using the hull area with the extracted
key-points. The method is applied separately on region-segmentation with Yen’s
filters, adaptive thresholding, anisotropic filtering and customized or manual
thresholding. An area-based heuristic is added to the methods that calculates
the convex area of the extracted major region to check if it is a part of non-
tumor region or not. For each image, the area-heuristic is also separately applied
to the region-segmentation with the mentioned thresholdings and filtering to
generate an area-heuristic region-segmentation for each of them. The brain tumor
image segmentation is therefore viewed as a problem from a (computational)
geometry perspective.

The major contributions of this paper include - i) applying various exist-
ing thresholding, filtering, region-growing methods (i.e. Yen filters, adaptive
thresholds, anisotropic filtering, customized thresholds, region-based segmenta-
tion etc.) on different types of brain MRIs from two brain tumor MRI datasets to
decide on the best thresholding for brain MRIs, ii) defining a convex area based
measurement (i.e. area-heuristic) to detect the tumor area more accurately, iii)
generating the convex hulls for the detected tumor region using each method,
and iv) finally analyzing the results produced by each method.

The next sections are organized as follows: some related works are mentioned
in Sect. 2, the methodology is summarized in Sect. 3, the experimental setup with
results are mentioned in Sect. 4 and the conclusion is provided in Sect. 5.

2 Literature Review

Medical image data analysis is the research area of computer science that works
with machine learning, deep learning, image processing and many other rele-
vant methods to extract meaningful medical image objects. Brain tumor image
analysis is a subset of medical image analysis that specifically analyzes images
of the brain to detect tumors. It has also been explored for decades due to the
complexity and variation of brain images.

Researchers have been reviewing existing works of brain tumor analysis for
understanding past and new challenges and scopes. A recent survey [2] included
detail definitions and explanations of MRI techniques, MRI image types, brain
tumors, brain tumor types and characteristics. They focused on machine learn-
ing models of brain tumor segmentations and classifications. Their detail study
also mentioned statistics on publications, performance metrics and datasets.
Most commonly used brain tumor segmentation methods like various thresh-
olding, supervised MLs (i.e. Artificial Neural Networks (ANN), Support Vector
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Machines (SVM), K-Nearest Neighbors (KNN), Random Forests etc.), unsuper-
vised MLs (i.e. clustering, active contour models etc.) were discussed. They also
described future possible uses of Deep Neural Network (DNN), Fuzzy C-means
Clustering (FCM) and Particle Swarm Optimization (PSO) for brain tumor
analysis research.

Saman et al. [30] reviewed the existing researches on brain tumor segmenta-
tion and feature extraction and explained every step of the procedure in detail.
Various machine learning and thresholding approaches were discussed for dif-
ferent types of segmentations (i.e. intensity-based, manual, atlas-based, surface-
based, and hybrid). Feature extraction models like texture-based, intensity-based
and shape-based methods were also discussed. They also briefly mentioned the
recent focus on DNNs. Abd-Ellah et al. [19] listed recent works and their applica-
tions on brain tumor segmentation and classification with Fuzzy Hopfield Neural
Network (FHNN), Convolution Neural Network (CNN), Cascaded Correlation
Artificial Neural Network (CCANN), Backpropagation Neural Network (BPNN),
Feedforward Backpropagation Neural Network (FFBPNN), Probabilistic Neural
Network (PNN), and other Deep Learning (DL) models. Because of their sig-
nificantly higher performances, most recent researches on brain tumor analysis
used different Deep Neural Networks (DNN).

Geometry has been one of the areas contributing to brain image analy-
sis. ‘Fractal Geometry’ was mostly used for brain tumor analysis from brain
images in [6]. Fractal geometry is a non-Euclidean geometry that is used to
describe complex structures found in nature. Generally, the components present
in nature or in human/animal bodies do not have simple shapes that can be
described by euclidean geometry. Fractal geometry therefore defines self-similar
structures that are able to create infinitely complex objects by magnification
of the structure recursively with self-similarity. Fractal geometry features and
algorithms have been long used by researchers for brain tumor image analysis.
Iftekharuddin et al. [17] extracted fractal features for brain tumor segmentation
and classification in pediatric brain images. Fractal features were extracted with
the Piece-wise Triangular Prism Surface Area (PTPSA) algorithm. They used a
novel fractional Brownian motion framework to extract fractal wavelet features
from 204 MRIs of T1, T2 and FLAIR sequences. The fractal features were fused
with intensity values and the feature set was able to detect tumors from single
and multimodal MRIs where only the tumor region had the highest intensities.
Although the model outperformed other existing fractal feature based systems,
it performed poorly for MRIs that contained other parts of the brain with similar
intensities as tumor pixels.

Fractal algorithms like PTPSA, Piece-wise Modified Box Counting (PMBC)
and Blanket algorithm were also used in brain tumor segmentation research
[14,18]. Each MRI was divided into multiple pieces and these algorithms were
applied to the pixel intensities of every piece of MRI. Fractal dimension (FD) and
cumulative histograms were generated with different thresholding and filtering.
PMBC algorithm for tumor detection outperformed other similar methods in [18].
FD was calculated for 80 MRI and CT images in [14] for statistical validation.



214 K. Sailunaz et al.

FD was proven as an effective measure for brain tumor detection from the com-
parisons of average tumor FD and non-tumor FD for all of the images in the
dataset, negative and positive FD differences of half images for Blanket, PMBC
and PTPSA algorithms. The FD scores for the tumor areas and the non-tumor
areas had very distinguishable characteristics that helped segmenting a tumor
accurately from the rest of a brain.

Computational geometry, another well-known field of geometry, has also been
used in brain tumor detection and segmentation. Bharathi et al. [1] used Delau-
nay triangulation for 3D tumor reconstruction by using stacks of 2D parallel
cross-sectional segmented slices. Pre-processing and tumor boundary detection
were done by Sobel operators and morphological operations. Then Delaunay
triangulation was applied between points of two consecutive 2D planes. The
connected 2D slices were used to reconstruct the 3D tumor using a stacking
algorithm. The proposed novel idea of 3D reconstruction improved the quality
of tumor segmentation. The datasets and proper experimental results represent-
ing their performance were absent in the published work. As a result, their claim
of ‘proposed method was better than other segmentations’ needed to be justified
by experiments on benchmark datasets. The proposed method also specified the
tumor location, size and calculated the volume of the segmented tumor.

‘Convex hull computation’, another primary topic of computational geome-
try was also used for brain tumor segmentation in multiple researches. Shivhare
et al. [27] generated the convex hull of the tumor region and used it as the
input for an active contour model. One of the benchmark datasets for brain
image analysis BRATS2015 [3] was used in their experiments. The key points
were extracted from high energy regions of the image according to the assump-
tion that tumor was the highest energy region of the image. The key points
were used to draw the convex hull of the brain tumor. The convex hull of the
tumor was then used to create a more accurate tumor segmentation with the
active contour model. The model segmented the tumor into the tumor core,
the complete tumor and the enhanced tumor. The proposed method achieved
81% to 92% Dice similarity coefficient and outperformed the other state-of-the-
art image segmentation models. The convex hull computation was also used in
another brain tumor research for the tumor convex area generation [10]. The
proposed tumor segmentation model generated a similarity graph of each MRI
and applied a spectral clustering-based segmentation algorithm. All connected
regions were found using a connected component labeling algorithm and the
largest component was identified as the tumor. The convex hull was generated
for the tumor and the convex area was measured. The tumor volume was then
calculated from the convex area and both the tumor segmentation and tumor
volume were produced as final outputs.

A number of image processing and deep-learning based methods are being
used for brain tumor segmentation with high accuracy in recent years. But there
is an absence of research describing euclidean geometric approaches to address
brain tumor detection and segmentation. Hence, this paper will focus on thresh-
olding approaches to analyze the pixel intensities and represent the brain tumor
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segmentation as a computational geometry problem to be solved by computing
the convex hull of the detected tumor region.

3 Methodology

The methodology of the proposed framework follows a sequence of steps to pro-
cess the input MRIs for finding the tumor convex hulls. Figure 1 shows the
framework for the implemented system for brain tumor detection. Each MRI
input is pre-processed and then filtering and thresholding are applied on the
pre-processed image. After that, region-based segmentation and area-heuristic
region-based segmentation are applied on the image separately to extract the
possible tumor region. Finally, a convex hull is generated for the extracted region
which is compared to the original tumor to check the accuracy of the segmented
tumor convex hull.

Fig. 1. Workflow of the proposed brain tumor segmentation system.

3.1 Pre-processing

The first step of the methodology is image pre-processing. As the dimensions of the
MRIs are not consistent, the first step of image pre-processing is ‘Image Reshap-
ing’. Each image is checked for its’ dimensions and then it is converted into 2D.
Also, the images have different heights and widths which creates inconsistencies
in the pixel intensity calculations and locations. Therefore, every image is resized
to height of 300 pixels height and 250 pixels width. Then the images are converted
from RGB (i.e. color) to grayscale for further processing. The original pixel values
of each image are from 0 to 255 where 0 represents black pixels (i.e. lowest inten-
sity pixels) and 255 represents white pixels (i.e. highest intensity pixels). To ensure
the consistency and ease of calculation, the images are normalized to the range of 0
to 1 (fractional values) after reshaping and resizing. The original pixel values var-
ied from 0 to 255 with 0 being the value for black pixel and 255 for white pixel.
To normalize the pixel values within the range of 0 to 1, the min-max normaliza-
tion is used according to Eq. 1. Zi is the normalized pixel value, Pi is the original
pixel value, Max is the maximum range and Min is the minimum range. As Max
= 255 and Min = 0, the normalized pixels values are calculated with dividing the
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original pixel values by 255. Finally, each image is converted into a 2D array storing
the pixel intensity for each corresponding cell of the array.

Zi =
Pi − Min

Max − Min
=

Pi

Max
=

Pi

255
(1)

3.2 Tumor Area Extraction

The tumor area is extracted using filtering, thresholding, region extraction and
area-heuristic methods. All of the input images are tested individually with every
region-based and area-heuristic region-based segmentation methods.

Filtering and Thresholding. Different image equalization and filtering meth-
ods are applied on the images so that the best method can be chosen. Threshold-
ing is applied on the images to convert the grayscale images into binary images
while removing the non-ROI areas. Thresholds are applied using Otsu’s method
[20], Ridler-Calvard method [31], Li’s iterative method [4], mean of grayscale
values, minimum of the histogram values, triangle method, adaptive method,
anisotropic method [8] and Yen’s method [16]. Among all these methods, filtering
using the threshold from Yen’s method, adaptive thresholding and anisotropic
filtering produces the best results that highlights the tumor better than the other
filters. Yen’s method uses bilevel thresholding on maximum correlation criteria
where a cost function is optimized until the threshold value reduces the discrep-
ancy between the threshold and original image while reducing the number of bits
for representing the threshold image. On the other hand, adaptive thresholding
uses the mean value of a defined number of neighbors of a pixel as a threshold for
the pixel. The anisotropic filtering mentioned above is a texture based filtering.

Another customized (manual) thresholding is also applied to the images.
After converting the images into 2D arrays, each pixel intensity is manually
checked with a customized threshold value which is varied from 0.3 to 0.9 to find
the perfect customized threshold for the images. Most of the time, the whole
tumor area does not have the same intensity and some parts of the tumor have
intensity value less than 0.6. Therefore, choosing any threshold value less than
0.5 or greater than 0.5 results in either including non-tumor regions or loosing
some parts of the tumor area. So, a customized threshold value 0.5 is applied on
each pixel of the converted 2D array. If the pixel value is less than 0.5 then it is
replaced by 0, otherwise the original value is kept.

Region-Based Segmentation. After applying the Yen, anisotropic, cus-
tomized and adaptive thresholding, the tumor area is extracted from the image
using region labeling. All of the connected sets of pixels are identified as individ-
ual regions and a label is assigned to each of them after removing artefacts from
the image borders. Each region label is then associated with properties of that
region like area, centroid, axis lengths etc. Then an overlay is stacked on the orig-
inal grayscale image to plot each region with a colored rectangle bounding box.
Generally, the tumor region is the largest high intensity region. So, the region
with the maximum area (i.e. maximum number of connected pixels) is identified
as the major region from the image and is considered to be the tumor region.
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Area-Based Heuristic. One common problem after analyzing the detected
major regions from the MRIs, is that the system might detect a non-tumor area
of the image that has a connected set of pixels with similar intensities but higher
number of pixels. To solve this problem, an area-based heuristic approach is used.
The major region collected from the previous part is the largest connected compo-
nent in the image with the region area possessing the highest number of connected
pixels. Therefore, checking only the region area is not enough to find the tumor.
Checking the co-ordinates of the centers of the regions is not a valid approach either
as the tumor can be located at any place of the image. After assessing all the prop-
erties (i.e. Area, Bounding Box, Centroid, Major Axis Length, Minor Axis Length,
Convex Area etc.) for each region in a region-based segmentation, the convex area
is the most appropriate one to consider for the tumor.

The convex area computation returns the area defined. Due to the finite
resolution (i.e., pixels) of the display device, this area is a set of connected
pixels. As the images are resized with height of 300 pixels and width of 250
pixels, the complete image is a convex area defined by 75,000 pixels. In most
cases, the tumor occupies at most 20% to 30% of the total area. So, the area-
based heuristic checks if the extracted major region has a convex area of 22,500
pixels or more (i.e., 30% or more of the total area). To achieve that, the regions
are sorted in a separate dictionary according to their convex areas after labeling.
Then, the major region is extracted with it’s label. The system checks the convex
area corresponding to that label and if the convex area is more than 30% of the
total area, the sorted dictionary is used to find the label of the next region that
has a convex area of less than 22,500 pixels. Then the label for the latter region is
used to extract the corresponding characteristics from the properties dictionary
to define that as the tumor area.

3.3 Convex Hull Generation

Each method explained in the previous part extracts a region from the processed
image and detects that as a tumor area which is a connected set of pixels that
represents the tumor. As the convex hull is the minimum convex area enclosing
a set of points, the pixels are needed to be extracted from the detected area
to create the set of points for convex hull algorithm. After extracting all of
the tumor pixels from the tumor area, each pixel is considered as a point with
x and y coordinates as its’ location on a 2D logical matrix. The convex hull
algorithm then uses the set of pixel coordinates as the input points and generates
the minimum convex area by defining the convex hull enclosing the detected
tumor pixels.

3.4 Convex Hull Accuracy Detection

The images containing only the convex hulls of the segmented tumor using all of
the methods are collected for comparison analysis. Each generated convex hull
image is compared to the original tumor image (containing only the tumor) to
check the accuracy of the detected tumor convex hull. Different metrics are used
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on these two images to check which method works better. The details about the
performance metrics are included in the next section.

4 Experimental Results

4.1 Datasets

Two different datasets were used for the experiments. Dataset1 (i.e. the Kaggle
brain tumor dataset) [28] includes 253 axial (i.e. horizontal intersection) view
MRIs and Dataset2 (i.e. the CjData or Figshare brain tumor dataset) [12,13]
includes 3064 axial, coronal (or frontal) and sagittal (or longitudinal) views of
T1-weighted MRIs [5,24]. Table 1 shows the information on the datasets with
references.

Table 1. The datasets

Datasets #Images View Type

Dataset1: Kaggle [28] 253 Axial 2D or 3D
Dataset2: CjData [12,13] 3064 Axial, Coronal, Sagittal 2D (T1)

Fig. 2. Sample MRIs from the datasets.

Figure 2 show some sample MRIs from Dataset1 and Dataset2. As all of the
images in Dataset1 were axial view images and the experiments could detect
the brain tumors more accurately for Dataset1 than for Dataset2. Also, in most
cases, the brain tumor images in Dataset1 had higher intensity pixels than the
other parts of the brain. Dataset2 included more complex images with horizontal,
vertical and cross-sectional views of the skull. The tumors in Dataset2 images
were not as clear as the tumors in Dataset1 and the pixel intensities of the
tumor regions were similar to the other parts of the brain and sometimes were
even lower. All the files of Dataset2 were in .mat format. Each file included an
integer label for the tumor type, a patient ID, the MRI data, a vector with
coordinates of tumor border and a tumor mask.

4.2 Performance Metrics

The performance metrics used to compare the actual tumor and the convex hull
of detected tumor region included the commonly used brain tumor segmenta-
tion performance measures. The resultant convex hulls were used to calculate
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the Dice Coefficient (DCC ), Jaccard Coefficient (JCC ), precision, recall and
specificity. All these metrics work with two images - the reference image and the
resultant image.

Let, A be the resulting image (i.e. convex hull of detected tumor region) and
B be the reference image (i.e. tumor ground truth). DCC measures the similarity
between A and B with Eq. 2. As DCC does not satisfy the triangle inequality,
JCC provides a more proper distance metric with Eq. 3.

DCC(A,B) =
2|A ∩ B|
|A| + |B| (2)

JCC(A,B) =
|A ∩ B|
|A ∪ B| (3)

Table 2 and 3 report the results of the various performance metrics applied
to Dataset1 and Dataset2, respectively.

4.3 Results and Discussion

The DCC, JCC, precision, recall and specificity were calculated for all MRIs
from both datasets and the results are included in Table 2 and 3. The ‘Region’
result represents the result of the convex hull generated by region-based seg-
mentation after applying Yen filter whereas ‘Region (Anisotropic+Yen)’ is the
region-based segmentation with a combination of Yen and anisotropic filter-
ing. ‘Region (Adaptive)’ represents the result of region-based segmentation with
adaptive thresholding and ‘Region (Manual)’ is the region-based segmentation
with customized thresholding. Similarly, ‘ConvexArea’ represents the result for
region-based segmentation with area heuristic using Yen’s method. ‘Convex
(Anisotropic+Yen)’, ‘ConvexArea (Adaptive)’ and ‘ConvexArea (Manual)’ are
the results for region-based segmentation with area heuristic using anisotropic
filtering, adaptive thresholding and customized thresholding respectively.

Table 2. Comparisons of segmentation results on Dataset1.

Method DCC JCC Prec. Rec. Spec.

Region 0.61 0.50 0.52 0.87 0.76
Region (Adaptive) 0.67 0.55 0.57 0.90 0.81
Region (Manual) 0.57 0.46 0.48 0.86 0.75
Region (Anisotropic) 0.59 0.49 0.51 0.85 0.73
ConvexArea 0.77 0.65 0.68 0.93 0.97
ConvexArea (Adaptive) 0.74 0.61 0.64 0.92 0.96
ConvexArea (Manual) 0.75 0.62 0.65 0.92 0.97
ConvexArea (Anisotropic) 0.79 0.69 0.70 0.93 0.98
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Table 3. Comparisons of segmentation results on Dataset2.

Method DCC JCC Prec. Rec. Spec.

Region 0.10 0.06 0.06 0.86 0.64

Region (Adaptive) 0.14 0.10 0.12 0.53 0.79
Region (Manual) 0.09 0.05 0.06 0.74 0.69

Region (Anisotropic) 0.09 0.05 0.05 0.86 0.63

ConvexArea 0.13 0.10 0.16 0.16 0.97
ConvexArea (Adaptive) 0.16 0.12 0.17 0.20 0.96

ConvexArea (Manual) 0.10 0.08 0.13 0.14 0.96

ConvexArea (Anisotropic) 0.12 0.09 0.15 0.14 0.97

Fig. 3. Sample segmentation execution of an image (Y1.jpg) from Dataset1.

The results reported in Table 2 show that the area-heuristic based region-
segmentation generated better results than the region-based segmentation con-
sidering all the performance metrics values for Dataset1. These results have been
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Fig. 4. Sample segmentation execution of an image (222.jpg) from Dataset2.

validated by a domain expert who confirmed that the developed approach is
promising and could lead to a stable solution which will guide pathologists and may
act as a seed for developing a learning tool for juniors to benefit from their seniors.
Among the methods of normal region-based segmentations, region-segmentation
with adaptive thresholding achieved the best results in terms of all the perfor-
mance metrics. In case of the area-heuristic methods, the anisotropic filtering with
area heuristic showed the best results for tumor segmentation. The region-based
segmentation with area heuristic produced the convex hulls with second highest
dice coefficient values and region-based segmentation with area heuristic using cus-
tomized thresholding had the third highest DCC values.

The same thing was true for JCC which means the convex hull generated
from the extracted area was very similar to the original tumor using area-
heuristic anisotropic filtering, area-heuristic region-based segmentation while
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manual thresholding area-heuristic region-based segmentation performed well
too. The region-based segmentation with area heuristic using adaptive thresh-
olding also performed well and had a difference of 1%–4% from the other area-
heuristic based methods. The other metrics values like precision, recall and speci-
ficity followed the same pattern.

The performance metrics values for Dataset2 were considerably lower than
the corresponding values of Dataset1 as mentioned in Table 3. Dataset2 had
almost 12 times more images than Dataset1 and it had a combination of different
types of view of the skull, but that was not the problem. After analyzing the
images in Dataset2, the problem found was related to the pixel intensities of the
images. In Dataset1, the tumor region was mostly a highlighted connected region
with high-intensity pixels whereas in Dataset2 almost all parts of the image had
very similar intensities. Only a few images in Dataset2 had high intensity pixels
for tumor regions. Therefore, extracting the correct tumor region from images of
Dataset2 was very challenging. This issue affected the output as per the results
reported in Table 3.

Despite the lower values for the metrics, the area-heuristic based region-
segmentation produced better results for Dataset1 than the region-based seg-
mentation for Dataset2. Although all the methods for area-heuristics had sim-
ilar results, the region-based segmentation with the area heuristic using adap-
tive thresholding produced the best results. But for Dataset2, all the perfor-
mance metrics values did not behave similarly to the corresponding ones for
Dataset1. For example, the region-based segmentation with area heuristic using
adaptive thresholding had higher DCC, JCC, precision and specificity among all
region-segmentation methods, but the recall value was higher for regular region-
segmentation.

Figure 3 and Fig. 4 show sample executions on one image from Dataset1 and
one from Dataset2 respectively. Figure 3a) shows the original image, tumor, Yen
thresholding, adaptive thresholding, customized/manual thresholding, and all
four region-segmentation and Fig. 3b) shows area-heuristic region-segmentation
for the same image. Similarly, Fig. 4a) and 4b) are samples of all eight methods
on an image from Dataset2.

For Fig. 3, region-segmentation, region-segmentation with anisotropic filter-
ing and region-segmentation with manual thresholding were very similar for
both datasets and had very similar convex hulls whereas region-segmentation
with adaptive thresholding extracted an incorrect area in both cases. Figure 4
shows the results for an image from Dataset2. Only adaptive thresholding and
anisotropic filtering produced incorrect regions whereas manual thresholding had
the most accurate tumor convex hulls. The problem with lower intensity tumor
pixels can be seen in the Dataset2 images. As other parts of the image included
a large set of connected high intensity pixels (i.e. part of skull or part of other
healthy brain tissues) and the tumor pixels had lower intensities with a smaller
connected set of pixels, the system picked the major region from the skull image
and detected that as the tumor region.
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The intensity overlapping issue was a common problem for many images in
Dataset2 that had large set of connected high intensity pixels from parts of the
brain or skull and the tumor had a small set of connected low intensity pixels.
Hence, the system detected non-tumors parts as tumors. After applying the con-
vex area heuristic condition, the system detected the correct tumor region with
area-heuristic region-based segmentation. The area heuristic could not detect
the correct tumor region for manual thresholding and anisotropic filtering, but
it at least stopped detecting a large part of skull as tumor and concentrated on
smaller connected high intensity regions.

5 Conclusion

Brain tumor image segmentation is a well-known research area that have been
explored using thresholding, supervised/unsupervised machine learning and deep
learning methods for a long time and achieved high accuracy. The goal of this
research was to solve the same problem from a geometric perspective - ‘Brain
tumor segmentation from MRIs as an application of convex hull generation’.
The main focus of this research was to explore further possibilities of apply-
ing computational geometry tools for brain tumor segmentation. Experiments
done on different thresholding and filtering methods and their combination with
region-based segmentation showed that tumor pixels could be identified and dis-
tinguished from the other parts of the image with certain threshold conditions.
But applying a more directed convex area based heuristic on the thresholdings
and region-segmentation improved the tumor detection considerably. The major
limitation of the system was that it could not extract the tumor area from many
images where the tumor area pixels were not the only high intensity connected
set of pixels. A possible future extension of this research would be to define a
better heuristic-based approach using other region properties and their combina-
tions to extract only the tumor region from the image. This would include other
image properties like texture, shape and applying brain-based pre-processing as
skull stripping.
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Abstract. Attention Deficit Hyperactivity Disorder (ADHD) is a mental disor-
der that is marked by abnormally high levels of impulsivity, hyperactivity and
inattention. One of the methods to detect and diagnose brain disorders is Elec-
troencephalogram (EEG). This paper proposes a framework that uses Quantita-
tive Electroencephalogram (QEEG) features to diagnose ADHD in children. A
19-channel EEG signal is used to extract the spectral, amplitude, functional con-
nectivity and Range EEG (rEEG) features from five frequency bands to diagnose
ADHD children. Four feature selectionmethods: ANOVA, Chi-square, Gini Index
and Information Gain are used to rank the QEEG features based on their relative
importance to the classification task. The feature ranks are then averaged and the
top-600 most discriminative features are passed as the input to an array of classi-
fiers. We carried out experiments on a benchmark ADHD dataset and proved that
our proposed framework gives better accuracy as compared to the state of the art.
The highest accuracy of 81.82% is obtained with the Random Forest classifier,
while the KNN, SVM and ANN classifiers yield accuracies of 78.51%, 76.86%
and 76.93%, respectively.

Keywords: Attention Deficit Hyperactivity Disorder · Quantitative EEG
features · Range EEG features · Functional connectivity features · Amplitude
features · Spectral features

1 Introduction

Attention-deficit hyperactivity disorder (ADHD) is a long-term mental health condition
that ismarked by inattention and/or hyperactivity-impulsivity. It affects howpeoplework
and their intellectual growth.ADHD is estimated to impact 5%of children globally and is
one of themost frequentmental disorders affecting children and adults [1]. Affected chil-
dren/people lack the cognitive ability to follow brief talks and operate in a goal-oriented
manner. As a result, despite having an IQ above average, their education and work per-
formance is below average. The constant feeling of failure causes most afflicted people
to develop further psychological issues, such as anxiety disorders, depression, and drug
usage. Two gene mutations: dopamine transporter (DAT1) and dopamine D4 receptor
are linked to the ADHD phenotype [11]. Dopamine and noradrenalin metabolism and
neurotransmission in the prefrontal cortex and other subcortical areas are all dysfunc-
tional in adults. Three clinical presentations of ADHD are characterized based on the
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most prevalent features: mainly ADHD-I: inattentive type, ADHD-H: predominantly
hyperactive impulsive type, and ADHD-C: mixed type clinical presentations [2, 3].

In the last two decades, several studies have explored the usage of different types
of QEEG features belonging to the frequency, spatial, temporal, and spectral domains
to distinguish between ADHD and healthy individuals [22, 23]. Absolute power and
relative power of a EEG signal were used as QEEG features in [18], with t-test and
Principal Component Analysis (PCA) being employed for feature selection. The NEU-
RAL toolbox that includes Range EEG (rEEG) features was proposed by Toole et al. to
classify EEG signals [17]. The Approximate entropy (ApEn) as a nonlinear information-
theoreticmetric and spectral analysis of each bandwas utilized to analyze the EEG signal
in [4]. The results of this investigation demonstrated that the mean approximate entropy
of the ADHD patients was considerably lower than that of the healthy individuals over
the right frontal regions (Fp2 and F8) while doing a cognitive activity, but not while
the subjects were at rest state. Ghassemi et al. conducted a study to investigate EEG
signals in adults while performing a Continuous Performance Test (CPT) using three
nonlinear features: wavelet entropy (WE), correlation dimension (CD) and Lyapunov
exponent (LE), and classified them using the K-Nearest Neighbor (KNN) classifier [5].
Another study by the same authors explores several frequency domain features from
Event Related Potentials obtained from Independent Components of EEG (ERPIC), for
an adult performing a CPT task [12]. They revealed a significant correlation between
the clinical situation of the ADHD and normal adult participants, and several features
were selected from independent components of EEG signals for the classification. The
chaotic nonlinear dynamics of EEG signals was quantified using the multifractal singu-
larity spectrum, the maximum Lyapunov exponent, and approximate entropy in another
research [6]. Features that were highly associated were extracted through the applica-
tion of PCA. They also analyzed that the greatest Lyapunov exponent (LE) over the left
frontal-central cortex was significantly different between ADHD and age-matched con-
trol groups. In addition, in the prefrontal cortex of ADHD patients, mean approximation
entropy was considerably lower. Finally, they found that nonlinear characteristics were
more effective than band power features in distinguishing between ADHD and normal
behavior. In another study, fractal dimension (FD), ApEn and LE nonlinear features were
used for classification using a multilayer perceptron (MLP) neural network [7]. Double
input symmetrical relevance (DISR) and minimum Redundancy Maximum Relevance
(mRMR) approaches were used to select the best features for classification. Region-wise
nonlinear properties (LE, Higuchi fractal dimension, Katz fractal dimension, and Sev-
cik fractal dimension) of EEG signals were classified by using a multilayer perceptron
neural network in [8].

A novel idea was proposed by TaghiBeyglou et al. in [9] to combine the nonlinear
EEG features with temporal and spectral analysis. This work used a combination of
filter banks, time windowing techniques, Common spatial pattern (CSP) and nonlinear
features for the analysis of ADHD data. Rezaeezadeh et al. developed two classification
methods based on univariate data derived from individual EEG recording channels, and
multivariate features collected from brain lobes for distinguishing ADHD children from
normal children [10]. Entropymeasurements were employed as nonlinear univariate and
multivariate characteristics in [10]; the authors proved that entropy mapping could be a
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useful tool to visually track the changes in the brain region. The nonlinear features and
decomposition method were recently combined to extract the features from EEG signals
for ADHD detection [13]. The EEG signals were decomposed using empirical mode
decomposition (EMD) and discrete wavelet transform (DWT), and the autoregressive
modelling coefficient and relative wavelet energy were calculated. From the decom-
posed coefficient, a number of nonlinear features were retrieved for the classification.
Several EEG features from different domains are used to diagnose ADHD and healthy
individuals. The authors in their previous work have used a mix of amplitude, spectral,
range and connectivity QEEG features for alcoholism diagnosis [32].

Several studies have explored the ADHD disorder and their impact on child brain
functioning by using EEG. ADHD children show a significant difference in the direct
information transfers from one electrode to other as compared to healthy children [20].
Coherence features have been used to find the functional connectivity and synchroniza-
tion between brain regions of ADHD and healthy subjects [29–31]. The direct phase
transfer entropy was used to find the flow of information transfer between the brain
regions of ADHD and healthy children [21]. To investigate the structural and functional
information of ADHD subjects, graph signal processing and graph learning techniques
have recently become popular [24]. Deep learning and Convolutional Neural network
(CNN) are also some of the recent techniques that have been applied to distinguish
between ADHD and healthy children [25, 26]. Our paper proposes a framework that
extracts a set of discriminative quantitative EEG features from spectral, amplitude, rEEG
and functional connectivity domains to design an automated computer-aided diagnosis
system for ADHD children. In this paper, Sect. 2 describes the materials and method for
the proposed framework. Section 3 discusses the experimentation results, and Sect. 4
concludes the paper.

2 Materials and Method

2.1 Dataset

We have used a recently introduced ADHD dataset of raw EEG recordings of ADHD
and healthy children, available online at [35]. A total of 121 children participated in this
study; from these, 61 children were diagnosed with ADHD and 60 were healthy. Out of
61 ADHD participants, there were 48 boys and 13 girls, and the mean age was 9.62 ±
1.75 years. Similarly, among the 60 healthy children there were 50 boys and ten girls,
with a mean age of 9.85± 1.77 years. An experienced child and adolescent psychiatrist
used the DSM-IV criteria listed in [36] to classify children with ADHD. DSM-IV has
listed some scales for inattention and hyperactivity-impulsivity symptoms. Some criteria
for rating scales of inattention are; - failing to pay attention to schoolwork, less attention
in play activity, lack awareness in listing, having difficulties in organizing a task, avoiding
the task that requires attention, forgetting daily activities, and getting easily distracted
by extraneous stimuli. Some of the criteria for rating scales of hyperactivity-impulsivity
are: - difficulty in awaiting a turn in any task, frequently interrupting or intruding on
others, fidgeting with hands or feet or squirming in the seat, often leaving the seat in the
classroom, and talking excessively.
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The patients were referred to the Roozbeh Hospital’s psychiatric clinic in Tehran,
Iran, for an ADHD evaluation. EEG signals were acquired using a digital instrument
(SD-C24, Sholeh Danesh Co., Tehran, Iran) (Tehran, Iran). The visual attention task
was used to develop the EEG recording procedure. The children were given a task in
which they were presented with 20 photos of various characters, and were instructed
to count them. The images were picked at random, in sizes large enough to be seen,
and the number of characters in each picture was calculated at random between 5 and
16. Each image was presented immediately after the child’s response to ensure constant
stimulation during the EEG recording. As a result, the length of the EEG recording
is determined by the child’s performance. The correct and incorrect replies were not
taken into account, and the activity was not developed with rewards in mind. During this
experiment, 19 electrodes: Fz, Cz, Pz, C3, T3, C4, T4, Fp1, Fp2, F3, F4, F7, F8, P3, P4,
T5, T6, O1, O2, were put on the scalp using the 10–20 system as displayed in Fig. 1. The
data is recorded at a 128 Hz sampling frequency with 16 bits EEG resolution. Electrodes
A1 and A2 are used as earlobe references.

Fig. 1. 19 electrode positions on the brain scalp according to the 10–20 system.

2.2 Proposed Method

The proposed method is divided into four steps. In the first step, we pre-process the
raw EEG data and decompose the EEG signal into five frequency bands. After the
pre-processing, we extract 540 features from the amplitude domain, 714 features from
the spectral domain, 720 features from rEEG and 450 functional connectivity QEEG
features for classification. In the spectral domain, we extracted four features (Absolute
and relative power, approximate and permutation entropy) using the common average
reference montage with respect to the entire signal and the remaining features were
extracted using bipolar montage. So, the feature vector used for the classification has
2424 features from spectral, amplitude, rEEG and functional connectivity domains. In
third step, we identified the most discriminative 600 features by averaging the feature
ranks given by four popular feature selection techniques. The final step is to classify
the selected QEEG features using Random Forest, SVM, KNN and ANN classifiers.
Figure 2 shows the pipeline of the proposed framework. Each step is described in detail
as follows.

Pre-processing. All EEG signals were digitized at 128 Hz sampling frequency in the
pre-processing stage. Then each signal is filtered using bandpass filter to generate five
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Fig. 2. Proposed framework.

frequency bands corresponding to delta (δ: 0–3 Hz), theta (θ : 4–7 Hz), alpha (α: 8–
12 Hz), beta (β: 13–30 Hz), and gamma (γ : 30–100 Hz) [14, 14].

The topographic map represents the activity across the scalp. Figure 3 displays the
band-wise topographicmap of anADHDand a healthy participant. In this representation,
the blue colour across the scalp represents less activity and the red colour represents high
activity. As observed fromFig. 3, the delta band (Fig. 3(a)) shows low activity for ADHD
childrenwhile performing the taskwhile the gamma band (Fig. 3 (e)) shows high activity.

Fig. 3. Topographic map of ADHD and healthy participants. ADHD band-wise topographic map
is displayed from (a) to (e), and the healthy participant band-wise topographic map is displayed
from (f) to (j). The blue colour represents less activity and the red colour represents high activity
across the scalp. (Color figure online)

Feature Extraction. In this step, we extract twenty-six QEEG features from each of
the 19 channels in each frequency band. Tables 1, 2, 3 and 4 list the extracted features
from four different quantitative measurements. Table 1 lists all the features extracted
from the spectral domain. Spectral features are obtained by converting the EEG signal
into the frequency domain, with frequencies ranging from 0 to 100 Hz at a resolution
of 0.5 Hz using the Fast Fourier transformation (FFT). Afterwards, all the features are
extracted from each of the five bands for the 19 EEG channels.
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Table 1. Spectral measures.

S. No. Measurement Description

1 AP Absolute power

2 RP Relative power

3 Sp_En Shannon entropy

4 Sp Flatness Wiener entropy

5 Sp Sd The difference in spectral estimation for a short period of time

6 Edge Freq Spectral_edge_frequency: 95% of spectral-power contains between 0.5
and fc Hz(cut-off-frq)

7 Fd Fractal-dimension

8 ApEn Approximate entropy

9 PeEn Permutation entropy

Table 2 lists all the range EEG (rEEG) measurements [16, 16] that are similar to
amplitude-integrated EEG and measure the peak-to-peak amplitude of EEG signal.

Table 2. rEEG measures.

S. No. Measurement Description

1 rEEG Mean Range EEG Mean

2 rEEG Median Range EEG median

3 rEEG lower margin Range EEG:5th percentile Lower margin

4 rEEG Upper margin Range EEG 95th percentile upper margin

5 rEEG width Rang EEG: upper margin – lower margin

6 rEEG Sd Range EEG standard Deviation

7 rEEG Cv Range coefficient

8 rEEG asymmetry Range EEG measures of skew about median

Similarly, Table 3 lists all the functional connectivity measurements. Functional
connectivity (FC) refers to features that measure how the neural activity in one brain
area interacts with other brain regions. To find the FC features of a brain, we have to
arrange the EEG signal in a particular montage. So here, we use the bipolar montage
to extract the FC features. Table 4 lists all the amplitude features computed from signal
power and signal envelope.

Feature Selection. Feature selection is a technique to reduce the input vector dimension
for classification. In the proposed framework, we used the ensemble feature ranking
method to select the most discriminative features for classification. We used four feature
selection techniques: -ANOVA, Chi-square test, Information Gain and Gini Index (GI)
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Table 3. Functional connectivity measures.

S.No Measurement Description

1 Connectivity BSI Brain Symmetry Index

2 Connectivity Corr Pearson Correlation-between envelopes of
hemisphere-paired channels

3 Connectivity Coh_mean Coherence-mean value

4 Connectivity coh_freqmax Coherence-frequency of maximum value

5 Connectivity con_max Coherence-maximum value

Table 4. Amplitude measures

S. No Measurement Description

1 Total power Total power of a signal

2 SD Standard-Deviation

3 SK Skewness

4 KU Kurtosis

5 Env Mean Envelop Mean Value

6 Env SD Envelop standard deviation

to obtain the feature ranks which were then averaged and sorted in the ascending order.
The top-600 features were thus obtained from the averaged feature ranks.

Classifiers. In our experiments, four classifiers are used to predict the accuracies of
various methods. These are explained below. The Random Forest (RF) classifier is a
collection of individual decision trees, and each tree makes an individual prediction. The
most voted class is the final prediction of the classifier. The KNN classifier assigns class
labels to the test samples based on their similarity to those in the training set. A distance
function is used to find the distance from the nearest neighbours. SupportVectorMachine
(SVM) classifier separates the classes by finding the best hyperplane for dividing the
multidimensional space into categories. The artificial Neural Network (ANN) is a brain-
inspired network that consists of an input layer, one or more hidden layers, and an output
layer. A weight is associated with each connection and the performance of the network
may be improved repeatedly by adjusting the network weights.

3 Results and Discussions

The machine configuration in this study has an Intel(R) Core (TM) i5-8265U CPU
running at 1.80 GHz, 8 GB of RAM, with Windows 10 Professional K 64 bit installed.
To conduct the experiments and analysis, we used the MATLAB R2019a version.
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This section summarizes the findings of this study. A comprehensive evaluation has
been conducted to evaluate the proposed framework for classifying the EEG signals of
ADHD and healthy children. The accuracy of the proposed method and three state-of-art
methods are shown in Table 5. Using the Random Forest classifier, we achieved the best
accuracy of 81.82% for the proposed method.

Our feature vector comprises of 2424 features obtained from five frequency bands
corresponding to the 19 EEG channels, and ranked separately using Information gain,
Chi-square, ANOVA and GI feature selection techniques. Next, we averaged the feature
ranks to yield the top-600 discriminative features that are passed as the input to an array
of classifiers. We performed five-fold (split the data into 80–20 ratio) cross-validation to
train the model. The k-value determines the number of nearest neighbours in KNN. We
used k= 8 and the Manhattan function to calculate the distance. We used a RF classifier
having 500 trees of depth 8 with six nodes in each subtree. For SVM, we employed an
RBF kernel with a penalty value of 10 and an eps of 0.1. We use a rectifying linear unit
activation function (ReLU) and twohidden layerswith 90 and 10neurons, respectively, in
the ANN classifier. The Adam optimizer, which is a stochastic gradient-based optimizer
for network weight optimization is used with 100 iterations. Table 5 presents the findings
of the proposed technique for all four classifiers (KNN, SVM, RF, and ANN) in terms of
accuracy, F1-score, precision, and recall. We compare our findings to those of [17–19],
which are state-of-the-art techniques for QEEG-based classifications.

Table 5. Comparison of the classification accuracy of the proposed method and existing work

Existing method Model Accuracy F1-score Precision Recall

Mumtaz et al. 2016 [18] KNN
SVM
RF
ANN

69.42%
70.25%
69.42%
67.77%

0.6942
0.7024
0.6940
0.6774

0.6948
0.7028
0.6780
0.7678

0.6942
0.7025
0.6842
0.6777

Toole et al. 2016 [17] KNN
SVM
RF
ANN

71.90%
73.55%
79.34%
79.34%

0.7048
0.7353
0.7934
0.7931

0.7678
0.7367
0.7934
0.7955

0.7190
0.7355
0.7934
0.7934

Huang et al. 2020 [19] KNN
SVM
RF
ANN

63.64%
67.77%
75.21%
74.38%

0.6356
0.6770
0.7520
0.7436

0.6380
0.6787
0.7523
0.7443

0.6364
0.6777
0.7521
0.7438

Proposed method KNN
SVM
RF
ANN

78.51%
76.86%
81.82%
76.93%

0.7820
0.7685
0.8179
0.7692

0.8009
0.7688
0.8195
0.7691

0.7851
0.7686
0.8182
0.7693

We also find the band-wise number of features shortlisted in the top-600 selected
features for EEG classification. When we carefully examine the result, it is found that
bands delta, alpha and gamma are equally important for ADHD classification among
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all the bands, as we observe in Fig. 4. Similarly, we also compute the participation of
each electrode in the top-600 selected features for classification. Figure 5 displays a
detailed analysis of the electrode participation for classification. The feature count for a
pair of electrodes in bipolar montage is incremented by one for both the electrodes, for
visualization purpose only.
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Fig. 4. Number of features belonging to the five frequency bands in the top-600 feature subset.

Though all the 19 electrodes contribute to the shortlisted set of features for classifica-
tion, but FP2, O2, F7 and F8 are slightlymore important, as observed fromFig. 5. In [28],
it is mentioned that for the eyes open resting state, the frontal and central region, espe-
cially electrode FP2, shows some significant activity, and for the eye closing state, the
O1 electrode shows significant changes. Similarly, both the frontal and parietal regions
are implicated in ADHD and involve brain networks and attention [27]. This evidence
indicates that our framework is informative and gives accurate analysis. Our work has
some limitations, though, such as it requires a fixed setup where the number of bands is
fixed. We may try adaptive sub-bands with more advanced features in future.
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Fig. 5. The number of features associated with different electrodes in the top-600 feature subset.
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We also tried to find out the more affected part of the brain in ADHD children by
examining a reduced feature set comprising of the top-100 ranked features. Figure 6
displays the electrodes contributing to the maximum number of features in the reduced
feature set. The O2, P8 and T7 electrodes are related to the right occipital region, right
parietal lobe and the left temporal lobe, respectively. Two electrodes are selected from
the frontal lobe, F7 associated with the left frontal region, and FP2 associated with the
frontal right lobe. Our findings reveal that the brain’s frontal, parietal, and occipital
areas discriminate between ADHD and children, resulting in very accurate EEG signal
classification.

Fig. 6. The most discriminative electrodes for ADHD detection.

4 Conclusion

In this paper, we designed and implemented a QEEG features based classification frame-
work for identifying ADHD and healthy children. After pre-processing the data, 19 elec-
trodes’ EEG signals were divided into five frequency bands. The spectral, amplitude,
rEEGand functional connectivity featureswere extracted from each frequency band. The
average feature rank was used to select the top-600 significant QEEG features for clas-
sification. Among the four classifiers, Random Forest gave the best accuracy of 81. 82%
as compared to the other three classifiers (KNN, SVM and ANN with 78.51%, 76.86%
and 76.93% accuracies, respectively). In future, we will explore the inclusion of more
QEEG features with different feature extraction techniques in the proposed framework.
More studies on ensemble-based heterogeneous classifiers and spiking neuron-based
classifiers for ADHD diagnosis will be the future scope of the work [33, 33].
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Abstract. Postpartum depression is a severe mental health issue exhib-
ited among perinatal women after the childbirth process. While the nega-
tive impact of postpartum depression is extensive in developing countries,
there is a significant lack of proper tools and techniques to predict the
disorder due to negligence. This work proposes a machine learning-based
system for finding the risk factors and prevalence of postpartum depres-
sion in Bangladesh. We developed a survey of different socio-demographic
questions and modified questions from two standard postpartum depres-
sion screening scales (EPDS, PHQ-2). Data from 150 women have been
collected, processed, and implemented in different machine learning mod-
els to find—the best performing models. Based on the collected data of
the perinatal women in Bangladesh, the best performing machine learn-
ing model was Random Forest. The performance metrics for the best
model were AUC: 98%, Accuracy: 89%, and Sensitivity: 89%. The per-
formance of the models varies from 88%–98% (AUC), 82%–89% (Accu-
racy), and 81%–89% (Sensitivity). We have also found the top risk fac-
tors for causing PPD. According to this work, the prevalence of PPD in
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1 Introduction

Postpartum depression (PPD) is a non-psychotic mental disorder that is com-
monly seen in mothers within the first year of delivery [12,22]. PPD often goes
undiagnosed in most cases, and it can lead to severe complications and should
be managed promptly [1]. Women with PPD may experience significant difficul-
ties in cognitive and emotional processes that impact mother-infant attachment.
Globally, the prevalence of postpartum depression among perinatal women varies
between 0.5 and 60.8% [12]. The prevalence of PPD in Bangladesh is 39.4% in the
first twelve months after childbirth [4]. Identifying women at risk of having PPD
is essential for clinical practice because it enables targeted prevention treatments
[23]. A robust PPD classifier can assist health care practitioners in identifying
and effectively managing at-risk individuals [19], as evidenced by recent studies
examining this prospect and feasibility [17].

Machine learning (ML) assists in making precise estimates using data from
numerous sources and has been utilized in recent years in prediction studies [20].
ML is thought to assist mental health practitioners in more objectively defining
mental diseases than the Diagnostic and Statistical Manual of Mental Disorders
[25] and identifying these illnesses to improve the efficacy of therapies [11].

Considering the effectiveness of ML in predictive studies and the unique case
of PPD, ML-based classification can be applied for prevalence and risk factors
detection for PPD, providing benefit to the mothers and their families.

Given the severity of the problem of PPD, the number of existing works
for detecting it is not significant. Furthermore, most of the existing works are
from the perspective of developed countries, which might not be effective from
the perspective of developing countries such as Bangladesh. To our knowledge,
no such work currently exists that detects PPD in Bangladesh using machine
learning approaches.

The work aims to develop a machine learning-based system for risk analysis
and detection of postpartum depression among Bangladeshi perinatal women
and a survey questionnaire prior to data collection.

The contribution of the study can be summarized as follows:

1. Development and comparison of different machine learning models for detect-
ing PPD among Bangladeshi women

2. Finding the correlation between demographic factors and postpartum depres-
sion in Bangladesh

2 Related Works

The number of existing works to detect postpartum depression among women
is not significantly rich. In the perspective of Bangladesh, some research works
presented the prevalence and risk factors from a sociological perspective. While
narrowing down the existing works in the machine learning perspective, the
number of works drops low in numbers accordingly. The existing works in this
field are primarily from the perspective of developed countries [2,21,23,27].
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A significant number of the existing works are developed using data collected
from the hospital or any cohort studies. In this section, we have reviewed exist-
ing works for PPD detection, first from the Bangladesh perspective. Later, some
significant works on machine learning-based PPD detection are reviewed.

2.1 PPD in Bangladesh Perspective

Postpartum depression is one of the understudied research topics in Bangladesh.
Several studies have analyzed the prevalence and risk factors among Bangladeshi
perinatal women.

The study developed by Gausia et al. [9] has reported the prevalence and
associated factors of postpartum depression in the rural areas of Bangladesh. The
authors found the prevalence of PPD at 22% and the incidence of postpartum
depressive symptoms at 9.8% at 6–8 weeks postpartum.

Using a cohort study approach, Edhborg et al. [15] studied the incidence
and risk factors of PPD in Bangladesh. The researchers analyzed the mental
and socio-economic conditions of 588 women during pregnancy and after child-
birth. After implementing multiple Cox’s regression, it was found that 18.58%
of the participants were at risk of postpartum depression. The socio-economic
status, history of abuse and anxiety during pregnancy, and previous depressive
symptoms are the most critical risk factors for postnatal depression.

Azad et al. [4] developed a cross-sectional study to find the prevalence and
related risk factors in the slum areas of Dhaka city. The research shows that the
prevalence of PPD among the participants is 39.4% within the first 12 months
after childbirth. The authors used EPDS as the standard scale for measuring
the risk of PPD. The risk factors with the highest impact were found to the job
status.

A study [18] developed using hospital data found that 65.22% of the par-
ticipants were at risk of PPD. They found that the mother’s age, multigravida,
newborn’s gender, and congenital anomalies are the most critical factors respon-
sible for the prevalence of PPD.

2.2 Machine Learning for PPD Detection

Researchers are now approaching to predict and classify many health problems
with machine learning, including postpartum depression is one. Some notable
works are reviewed to analyze their implemented techniques and PPD classifi-
cation accuracy.

Zhang et al. [26] proposed that SVM and FFS-RF were found to have the
best prediction effects for PPD. They performed a longitudinal survey to collect
data from 508 women and used EPDS for measuring the risk of PPD.

Zhang et al. [27] implemented EHR datasets for detecting PPD among peri-
natal women. They found that logistic regression with L2 regularization was
the best performing algorithm using data up to childbirth. For the data after
childbirth, MLP performed the best.
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The PRAMS 2012–2013 dataset and the PHQ-2 questionnaire were proposed
to be implemented in several machine learning algorithms by Shin et al. [21] to
find the prevalence of PPD. The authors found Random Forest to be the best-
performing algorithm for predicting postpartum depression.

Andersson et al. [2] developed several machine learning models and used data
collected from hospitals in Sweden. The extremely Randomized Trees model was
the best performing model for this large population-based study.

Another research work was developed using data collected from hospitals
by Tortajada et al. [23]. The proposed work used MLP for predicting PPD and
achieved 81% accuracy. De Choudhury [8] performed a longitudinal online survey
on postpartum women and experimented with different regression models on the
dataset.

A comparison among Functional-gradient boosting, Decision-trees, Naive
Bayes and SVM for PPD detection is shown by Nataranjan et al. [16]. The
authors developed a longitudinal dataset for this research work and showed
that Functional-gradient boosting performed best among the implemented algo-
rithms. Wang et al. [24] developed a machine learning-based model on EHR data
and found that SVM performed best with their dataset.

3 Materials and Methodology

The development of the PPD screening survey and the methodology of the pro-
posed work are discussed in this section. The whole workflow of the model is
depicted in Fig. 1.

Fig. 1. Proposed workflow of the PPD detection model

3.1 Sampling

Study Population. All reproductive age group women who gave birth in the
last 24 months in Bangladesh.
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Study Location. The data collection was performed in different regions
of Bangladesh. We included women from separate residences, education, and
income level.

Study Type. A cross-sectional study was performed by interviewing 150 post-
partum women. The complete questionnaire is developed in Bangla for the ease
of the participants.

Time Period. The data was collected from January 2022 to February 2022 in
different geographical locations in Bangladesh.

Inclusion and Exclusion Criteria. All mothers who gave birth before the
interview and their latest born child is alive and not more than two years old
were included in the study. The study only included postpartum women who
gave their consent to this interview. Those mothers who are seriously ill and
unable to respond during data collection were excluded from this study.

3.2 Measures

The interview questionnaire contained socio-demographic questions, a PHQ-2
questionnaire, and the EPDS questionnaire.

Socio-demographic Questionnaire. Questions about general health, rela-
tionships, education, income level, and history of abuse are developed and added
to the questionnaire.

PHQ-2. The Patient Health Questionnaire-2 [14] is used to determine the moth-
ers’ mental health condition before, during, and after their latest childbirth using
only two questions for each time period.

EPDS. The Edinburgh Postnatal Depression Scale [7] is a ten-item self-report
assessment, that is used for in-depth screening for PPD among the participants.
This self-screening survey has been verified as a clinical screening tool for post-
partum depression in Bangladeshi women aged 6–8 weeks [7,10]. Several psychol-
ogists validated the questionnaire before starting the data collection process.

3.3 Data Collection Procedure

A pilot study was performed on 8 participants (5% of the 150 participants), and
the data from the pilot study were excluded from the original dataset. The data
was collected in person from different areas of Bangladesh, including different
cities and villages. However, in some cases, we had to collect data from appro-
priate participants online since it was hard to reach postpartum women during
the lockdown. The collected data were cross-checked to ensure the completeness
of the questionnaire by the participants.
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3.4 Data Preparation

At first, the collected data was transferred in digital format. Since the data
were cross-checked for completeness, no missing-value entries were found in the
raw dataset. We translated the data from Bangla to English to fit the model.
The data were encoded into numeric values. The PHQ2 questionnaire for the
different time periods of mothers’ lives was labelled “likely depressive” or “not
likely depressive” based on their results and the cutoff score. Similarly, the data
of the EPDS questionnaire were scored and added to calculate their sum for
getting the final EPDS score. In this study, we have considered three levels of
likely to have postpartum depression:

1. Score 0 to 8: Less likely to have PPD (Marked as “Low”)
2. Score 9–12: Likely to have PPD (Marked as “Medium”)
3. Score 13–30: Highly likely to have PPD (Marked as “High”)

3.5 Statistical Approach for Data Analysis

The processed data were analyzed, grouped by the level of EPDS score range,
using the statistical analysis tool, SPSS. Independent sample T-test assuming
unequal variances and Chi-Square test were used for numerical and categorical
variables as appropriate.

3.6 Machine Learning Approach for PPD Detection

Resampling to Address Dataset Imbalance. Unbalanced data can reduce
the accuracy of ML-based classification [6]. To correct the data imbalance, we
employed the widely used synthetic minority oversampling approach (SMOTE)
[5]. Instead of reproducing existing minority members, SMOTE develops syn-
thetic members based on Euclidean distances between data points in feature
space.

Model Development. We have implemented several supervised machine learn-
ing algorithms and ensemble models for PPD detection in the proposed work.
After reviewing the existing works, we have selected some of the most common
and best-performing models for the detection of postpartum depression. We
have used SVM, Random Forest, and Logistic Regression from the supervised
techniques and boosting classifiers as the ensemble methods, such as Gradient
Boosting and Extreme Gradient Boosting for PPD detection in this work. The
algorithms were selected in such a way that over-fitting or under-fitting problems
don’t affect the result. Both classical and ensemble algorithms were implemented
to ensure the validity of the performance of the model using the collected dataset.

Model Training for Classification. The processed dataset is split into an 80-
20 ratio as training and testing datasets. Five ML algorithms were individually
implemented to detect PPD in this proposed work. A 10-fold cross-validation
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strategy was used to evaluate the classification models. The original samples were
randomly partitioned into ten equal-sized subsamples, and a single subsample
was retained as validation data for testing the model built using the other nine
subsamples.

Model Performance Evaluation. The test dataset was fed into the trained
machine learning models for prediction. The original and the predicted data were
compared to develop a confusion matrix. A series of performance metrics were
obtained for each model, including Area under Curve, Sensitivity, Accuracy,
Precision, F1 Score, and Geometric Mean. Among these metrics, Area Under
Curve (AUC), accuracy, and sensitivity are the three most important metrics
for PPD detection. These are used to evaluate the effects of each model and
choose the best prediction model.

Table 1. Risk factors for postpartum depression

Risk factor χ2 (df) p-value Risk factor χ2 (df) p-value

Age range 6.77(6) 0.342 Loss during pregnancy 15.6(14) 0.337

Residence 0.931(2) 63% Abuse 15.0(2) <.001

Education level 4.61(6) 60% Sharing feeling with friends 5.26(2) 0.072

Marital status NaN NaN Number of latest pregnancy 6.96(8) 0.541

Job before pregnancy 7.74(12) 0.805 Pregnancy length 8.72(10) 0.558

Income before pregnancy 5.83(8) 67% Pregnancy planned 1.33(2) 0.515

Current job 11.2(12) 0.509 Checkup 1.63(2) 0.443

Current income 4.80(8) 0.779 Fear of pregnancy 6.04(2) 0.049

Husband’s education 8.03(6) 0.236 Diseases during pregnancy 9.08(4) 6%

Husband’s income 6.02(8) 0.645 Age of latest child 3.94(6) 0.685

Addiction 2.01(2) 0.365 Age of previous baby 23.3(18) 18%

Number of children 4.57(6) 0.6 Delivery mode 1.64(2) 44%

Disease before pregnancy 3.05(4) 0.549 Birth complicay 2.43(2) 0.296

Pregnancy loss 2.81(4) 0.59 Gender 0.539(2) 0.764

Family type 0.354(2) 0.838 Breastfeed 4.69(2) 0.096

Number of family member 12.7(20) 0.89 Illness of the baby 14.5(2) <.001

Relation with in-laws 16.1(4) 0% Worry for baby 5.62(2) 0.06

Relation with husband 20.3(4) <.001 Rest while baby is monitored 2.25(2) 0.325

Relation with baby 4.00(4) 0.406 Rest when baby sleeps 12.4(2) 0.002

Husband and baby relation 9.06(4) 6% Anger after delivery 44.0(2) <.001

Motherhood feeling 11.1(4) 3% Work feeling after delivery 13.3(6) 0.039

Received support 25.0(16) 0.07 PHQ 2 (before pregnancy) 1.13(2) 0.567

Want support 33.7(8) <.001 PHQ 2 (during pregnancy) 6.68(2) 0.035
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4 Result

4.1 Correlation of the Socio-demographic Features with PPD

The status of postpartum depression significantly differed by many factors [3,13].
We have collected 46 socio-demographic features of postpartum women for this
research work. These factors were statistically analyzed to understand better
these features and their effect on the occurrence of PPD. The distribution of
predictor variables are summarized in Table 1. From the analysis, it is found
that factors like relation with husband, need for support, history of abuse, illness
of the newborn, depression prior to pregnancy, etc., influence the occurrence of
PPD among women.

4.2 Prevalence of PPD

Fig. 2. Prevalence of PPD in Bangladesh

Using the trained model to predict PPD in the test dataset yielded the highest
AUC-ROC of 98% and the highest accuracy of 89% with the Random Forest
model. Among the 150 participants, 100 (66.7% of the total) were regarded as
likely to have PPD, considering the EPDS score over the cutoff score (medium
and high risk). The data distribution is shown in Fig. 2 15.33% of the participants
were at risk of depression prior to their latest pregnancy, and 25.33% were at risk
of depression during pregnancy. Participants with previous depressive symptoms
had a higher chance of PPD (73.91% more in the participants with previous
depression before pregnancy and 76.32% more in the participants with previous
depression during pregnancy) than women with no history of depression.

4.3 Effect of Machine Learning Classifier Models

Classification models were developed to predict the multiclass of postpartum
depression (High, Medium, Low). The classification process was performed in the
balanced dataset developed using SMOTE technology. The PPD prediction mod-
els were established using five ML algorithms Random Forest, Extreme Gradient
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Boosting, SVM, Gradient Boosting, and Logistic Regression. The algorithms were
applied to the training data set, and later test data set was fed into the model to
predict the PPD level. The performance metrics for the implemented models are
shown in the Table 2, and the ROC-AUC curve and the confusion metrics of the
best performing model, Random Forest, are illustrated in the Fig. 3.

Table 2. Performance metrics of the top five machine learning models

Classifier AUC Acc Sens Prec F1 score G-mean Cross val

Random Forest 98% 89% 89% 89% 89% 89% 63%

Extreme Gradient Boosting 94% 86% 85% 86% 85% 85% 55%

SVM 88% 84% 84% 86% 84% 84% 63%

Gradient Boosting 91% 84% 81% 83% 82% 81% 66%

Logistic Regression 91% 82% 83% 82% 82% 83% 57%

Fig. 3. Performance metrics of the Random Forest model

5 Discussion

5.1 Key Findings and Contributions

In the current work, we implemented supervised and ensemble techniques with
the data of postpartum women from Bangladesh. All the implemented algorithms
achieved similar performance, among which the Random Forest and the Extreme
gradient boosting algorithms had the best performance. The overall performance
of the machine learning algorithms ensures that the data properly fit into the
model.

The prevalence of postpartum depression among the studied women is found
to be about 66.67%, considering the medium and high probability of PPD based
on the EPDS scale. The random forest algorithm calculated the prevalence of
PPD as 70.17%.
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From the provided statistical analysis of the dataset, the correlation between
the demographic factors and PPD can be measured. The features can be cate-
gorized based on feature importance calculated from their p-value.

With significantly high-performance metrics, (Accuracy: 89%, AUC: 98%,
Sensitivity: 89%), the proposed model can be said to be significant and promis-
ing in predicting postpartum depression. To our best knowledge, this is the
first machine learning-based model to predict postpartum depression among
Bangladeshi perinatal women.

5.2 Limitations

It is important to compare the proposed work with the existing relevant works
for performance validation of the prior work. However, because earlier studies
employed various types of data and offered various machine learning algorithms
to detect the prevalence of PPD, the model prediction impacts cannot simply
be compared. Additionally, potential selection bias, small sample size, and the
requirement of more extended validation may have affected the performance of
the models.

6 Conclusion

This study aimed to compare a variety of machine learning algorithms for pre-
dicting perinatal women at risk of postpartum depression. We sought to identify
potential risk factors for developing postpartum depression, while early detection
of PPD. To understand this study’s quality, it is necessary to compare the results
and contributions of the proposed work. In the literature review section, we have
seen the lack of existing works based on cross-sectional studies and the implemen-
tation of several standardized scales for PPD screening. Drawing a comparison
among the existing works with this study, it can be said that this research work
has addressed these gaps in the existing works accordingly. Despite the novelty
of the current work, there are some limitations pointed out in the discussion
section. Further studies should develop to address these gaps. It is evident that
machine learning can considerably improve the early diagnosis of PPD. The pro-
posed work’s findings imply a potential benefit of utilizing machine learning to
screen new mothers for PPD in the perspective of Bangladesh. This work’s data-
driven, machine learning-based strategy can be expanded to create an accurate
and scalable system for cost-effectively offering preventive treatments, assuring
improved mental healthcare and support for postpartum mothers in Bangladesh.
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Abstract. ‘An epileptic seizure’, a neurological disorder, occurs when
electric burst travel over the brain, causing the person to lose control
or consciousness. Anticipating epilepsy when the event happen is ben-
eficial for epileptic control with medication or neurological pre-surgical
planning. To detect epilepsy using electroencephalogram (EEG) data,
machine learning and computational approaches are applied. Because of
their better categorization skills, deep learning (DL) and machine learn-
ing (ML) approaches have recently been applied in the automated iden-
tification of epileptic events. ML and DL models can reliably diagnose
diverse seizure disorders from vast EEG data and supply relevant find-
ings for neurologists. To detect epilepsy, we developed a hybrid network
that combines a ‘Convolutional Neural Network (CNN)’ and a ‘Long
Term Short Term Memory (LSTM)’. Our dataset is divided into two
categories: epilepsy and normal. CNN-LSTM has been used to train our
algorithm. With the Adam optimizer, our proposed CNN-LSTM model
achieves 94.98% training accuracy and 82.21% validation accuracy. We
also evaluate our results to those of machine learning methods such as
Decision Tree, Logistic Regression and Naive Bayes. The comparative
results clearly reveal that our suggested CNN-LSTM classifier outper-
forms the other learners.

Keywords: Epilepsy detection · EEG · CNN-LSTM

1 Introduction

Machine Learning (ML) has recently become popular for detecting diseases in
advance. This trend isn’t just about detection; it’s also about gaining a better
knowledge of the condition and working on treatments. In recent years, brain
research has become a trendy topic. ML is demonstrating a high level of proficiency
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in diagnosing disorders involving the brain and its functions. Following that line
of thought, this research focuses on the use of deep learning to detect epilepsy.

Epilepsy is a well-known neurological condition. Being an epilepsy sufferer
results in sudden seizure attacks, which involve loss of awareness, difficulty mov-
ing, muscle contraction, and other symptoms. Epilepsy can affect people of any
age, race, or origin. According to the World Health Organization (WHO), this
condition affects around 50 million individuals worldwide. This neurological dis-
order not only affects a person’s bodily well-being, but it can also lead to a lack
of social standing and support [26]. That is why it is critical to recognize epilepsy
early.

The main reason epilepsy is considered one of the most severe diseases is
because of sudden seizure attacks. The risk of mortality or physical injury can
be lowered if treatment is given promptly after the seizure occurs. However, as
one of the most common neurological illnesses, the exact cause is still mostly
unknown. Injury to the head or brain, on the other hand, has been discovered
to be a reliable cause of epilepsy. This also covers things like brain tumors and
strokes.

Electroencephalography is the most common method of detecting epilepsy
(EEG). The electroencephalogram (EEG) is a measurement of the electrical
activity of the brain [15]. The voltage change was measured by two electrodes
placed in human scruples while measuring the EEG. If there is any anomalous
brain activity in the EEG data, it suggests the presence of a neurological condi-
tion. However, it is time-consuming, and it is not the only approach to diagnosing
epilepsy [10].

In the identification of epilepsy, machine learning is providing better results.
Researchers are experimenting with various ways in an attempt to identify
seizures early enough to save the patient’s life. To detect epilepsy, EEG record-
ings are frequently combined with machine learning algorithms [10,16]. Even
the usage of wearables can improve efficiency to some extent because the patient
does not have to stay in the hospital all of the time. This is also something that
researchers are working on [25]. However, when it comes to utilizing machine
learning to diagnose epilepsy, EEG data appears to be the most useful.

In this paper, we will be using deep learning to detect epilepsy from EEG
data. We propose a hybrid model for detecting epilepsy. The LSTM method
is capable of retaining patterns for an extended period of time. The suggested
1D-CNN + LSTM architecture is then applied to data from EEG time series.

The following is the rest of the paper’s structure. Section 2 focuses on the
present field’s literature evaluation. The methodology is described in Sect. 3.
Section 4 contains the experiment’s findings as well as a comparison of several
methods. Section 5 concludes with future work.

2 Related Work

Numerous existing approach that have been used for detecting epilepsy disease
detection can be found. They are discussed in the following.
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EEG data were utilized to detect epilepsy in a study published in 2017. They
used an Artificial Neural Network (ANN) to diagnose the disease in that study
and were able to do so with 100% accuracy using a dataset of 170,502 entries
[26]. The dataset they utilized was far larger than the studies with which they
compared it.

Researchers employed a Wavelet-based deep learning technique to detect
epilepsy in another work published in 2019. They claim to overcome two fun-
damental problems by eliminating the need for feature extraction and working
effectively with limited datasets. Using the deep learning technique (CNN), they
were able to obtain 100% accuracy in binary classification and 99.4% in ternary
classification [4].

In 2017, a publication used the frequency domain to extract features from
EEG data in order to detect seizure events. They employed a deep learning
technique using multilayer senses to increase detection accuracy. And they have
a 95% accuracy rate [8].

A group of academics applied the Support Vector Machine (SVM) algorithm
on EEG data in a recent work published in 2019 to detect epilepsy. To find the
best parameters, they employed a genetic algorithm (GA) and particle swarm
optimization (PSO). In comparison to the GA approach, the PSO-based strategy
has a higher accuracy of 99.38% [29].

In 2020, a study was conducted with the goal of improving epilepsy detection
accuracy, and a generic algorithm was combined with four other algorithms:
Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Artificial Neural
Network (ANN), and Naive Bayes (NB), with the ANN achieving the highest
accuracy [17].

In a separate study, researchers analyzed EEG data in two distinct ways to
detect seizure attacks. The ML-based K-Nearest Neighbor (KNN) and the Fuzzy-
based Fuzzy Rough Nearest Neighbor (FRNN) are two examples (FRNN). And,
accordingly, 99.63 and 99.81% accuracy [24].

The popular deep learning model Convolutional Neural Network (CNN) was
used to detect seizure attacks from EEG data in a paper published in 2019. They
claimed to be able to extract spectral and temporal information from EEG data
using their deep learning model. The accuracy of their seizure detection was
99.46% [13].

In a paper published in 2019, deep learning was utilized to detect epilepsy
seizures automatically. This model is more accurate than ML models because
it does not require feature extraction. They have, however, employed feature
sealing to improve accuracy. They achieved 97.21% and 97.60% accuracy with
StandardScaler and RobustScaler, respectively [31].

In a report published in 2018, the Long Short-Term Memory (LSTM) net-
work was combined with convolutional neural networks (CNN) to detect epilepsy
seizures from EEG data. Their proposed technique has successfully recognized
185 seizures with no false positives [32].
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3 Methodology

The approach for this analysis is demonstrated in this section. Each component
revealed how the research was carried out in order to discover epilepsy. This
research’s methodology is shown in Fig. 1.

Fig. 1. Methodology steps.

3.1 Data Collection

There is accumulating evidence that indicates the temporal aspects of brain func-
tion may be categorized into four states: interictal (between seizures, or baseline),
preictal (before to seizure), ictal (seizure), and post-ictal (after seizures). Seizure
forecasting necessitates the capacity to distinguish a preictal state from the inter-
ictal, ictal, and postictal states. The fundamental difficulty in seizure forecasting
is distinguishing between preictal and interictal stages. Human brains function
was captured using intracranial EEG (iEEG), which comprises electrodes placed
on the cerebral cortex’s surface and the capturing of electrical signals using an
ambient monitoring device. At 400 Hz, iEEG was collected from 16 electrodes,
and captured voltages were compared to the electrode overall average. These
are long-term recordings that might last months or years, and they capture a
substantial number of seizures in certain persons.

3.2 Convolutional Neural Network (CNN)

CNN, often known as ConvNet, is a deep learning method that is mostly used for
image classification. The CNN framework was influenced by the Visual Cortex,
which is analogous to the pattern of interconnection in the nervous system. Con-
volution, max pooling and fully connected-Relu are among the different stages
used to categorize the dataset. Convolution is necessary for extracting features
and data resizing after many stages.
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3.3 Long Term Short Term Memory (LSTM)

LSTM is a deep learning artificial recurrent neural network variant (RNN).
LSTMs, unlike traditional neural networks, have input connections. It is capable
of handling both large data streams and single data points (such as images).
LSTM is used in non-segmented handwriting recognition, speech recognition,
network traffic anomaly detection, and emotion recognition. A standard LSTM
unit includes a cell, an entry gate, an exit gate, and a forgetfulness door. The
information flows within and out of the cell are regulated by the three gates, and
the cell’s time scores are uncertain. Because of it’s ambiguity in delay periods,
time series data-based LSTM networks are suitable for classification, analysis,
and forecasting. LSTMs are often used to fix the break - down and vanishing
gradient issues that are common in regular RNNs.

3.4 Proposed Hybrid CNN-LSTM Model

In contrast to conventional CNNs, RNNs enable the formation of associations
between input series, providing a new approach to hybrid features [12,33].
Researchers developed methods to integrate functionalities using LSTM (a vari-
ant of the RNN), which can evaluate the data’s long-term dependence to enhance
detection performance. A contemporary but similar strategy to extracting fea-
tures has been established in the function of this research by using many con-
volutional kernels. Our method is divided into two parts: a feature extraction
segment based on CNN and a feature fusion segment based on LSTM.

Fig. 2. Proposed CNN-LSTM model.

Figure 2 depicts our suggested CNN-LSTM model. In the proposed model,
two 1D convolutional layers are separated by a max-pooling layer and after which
a further 1D convolutional layer. An LSTM layer follows the third convolutional
layer, followed by a dropout layer, and finally a dense layer or output layer. The
output layer contains loss and accuracy parameters such as optimizer functions,
learning rates, and matrices.

The first convolution layer consists of 64 filters with a 3 by 3 kernel size. The
input layer sends data to the output layer. A Rectied Linear Unit activation
function is also present in the convolution layers (ReLU). ReLU aids the model
in reducing the problem of disappearing gradients [20]. After the convolution
layer, there is a max-pooling and dropout layer. With a max-pooling layer, the
feature map extracts the most features.

To save the features in the feature map, this max-pooling layer fits them into
a two-by-two slot. Several convolution layers are dropped out by the dropout
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layer, which removes 25% of the nodes. Dropout layers avoid overfitting [28]
while also reducing model loss. After that, an LSTM layer is added to the CNN
model. The LSTM layers contain 70 nodes. Its primary objective is to derive
definition from the CNN layer’s extracted features. The model is then placed
in an output layer. In the output layers, there are one nodes. The one nodes
correspond to two distinct classes. A sigmoid activation function is also included
in the output layer.

4 Result and Discussion

In this section, we’ll look at how the proposed model determines epilepsy. We
have used two classes in our research which are epilepsy and normal The EEG
was used to obtain data for this experiment. The dataset was split into two
parts, each with a train-test ratio of 80-20%. We utilized 80% of our data for
training our Cnn architecture, and the rest 20% had been used to verify it once
it had been trained.

4.1 System Configuration

We employed a GPU [1] with tensor flow capabilities to implement CNN-LSTM.
Because the CNN-LSTM model involves a lot of matrix multiplication oper-
ations, a powerful GPU is required for training. TBecause of the processing
power constraints of a CPU, the suggested CNN-LSTM architecture is intended
for training on the Google Colaboratory cloud server. The GPU and Jupyter
Notebook environments in Google Colab were created expressly to help com-
puter learners overcome the processing unit difficulty. Our suggested model was
trained and validated using Google Colab. The Python scikit-learn [23] com-
ponent had been used to implement standard classifiers such as Decision Tree,
Logistic Regression, and Support Vector Machine.

4.2 Hyperpararmeters Tuning

Because hyperparameters have a direct influence on the model’s behavior, they
are mandatory. We’ve trained our proposed model with a variety of optimizers,
including Adam, SGD, RMSProp, and Adamax, to examine how it reacts to
different optimization techniques. For training the model, we employed 16 batch
sizes and 200 epochs, as well as a learning rate of 0.001. The probability loss of the
class predicted by the sigmoid function is measured by the binary crossentropy
loss function as well.

4.3 Performance Matrix

We employed Accuracy, Loss, and MAE (mean absolute error) [27] to evalu-
ate epilepsy detection in this study. We also compared the proposed model’s
performance to that of existing machine learning classifiers using three metrics:
precision, recall, and F1-score.
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4.4 Result

The outcomes of our suggested model employing various optimizers are shown
in Table 1. The Adam optimizer has a 94.98% training accuracy and an 82.21%
testing accuracy. It also has a testing loss of 0.249 and a training loss of 0.12. The
RMSProp optimizer, on the other hand, has training accuracy and training loss
of 93.96% and 0.148%, respectively. RMSProp has a testing accuracy of 81.08%
and a training loss of 0.803. SGD, the Next optimizer, has a training accuracy of
70.65% and a testing accuracy of 72.97%. The training loss of the SGD optimizer
is 0.584, and the testing loss is 0.539. Finally, the Adamax optimizer has a
training accuracy of 98.80% and a training loss of 0.047, as well as a testing
accuracy of 79.97% and a testing loss of 1.323%.

Table 1. CNN-LSTM model performance.

Optimizer Training accuracy Training loss Validation accuracy Validation loss

Adam 94.98% 0.120 82.21% 0.249

RMSProp 93.96% 0.148 81.08% 0.803

SGD 70.65% 0.584 72.97% 0.539

Adamax 98.80% 0.047 79.97% 1.323

Table 2 compares the performance of our proposed CNN-LSTM model with
three existing machine learning techniques. Decision Tree, Naive Bayes, and
Logistic Regression are the three methods. Accuracy, precision, recall, f-score,
RMSE, and MSE are the parameters we utilized to compare. CNN-LSTM has a
precision of 0.84 and an accuracy of 82.21%, with recall, f-score, RMSE, and MSE
of 0.82, 0.83, 0.421, and 0.178, respectively. In every sector, it clearly outperforms
the other three algorithms.

Table 2. Comparisons among proposed CNN-LSTM and machine learning classifier.

Algorithm Accuracy Precision Recall F-score RMSE MSE

CNN-LSTM 82.21% 0.84 0.82 0.83 0.421 0.178

CNN 81.08% 0.81 0.83 0.82 0.568 0.205

Decision Tree 75.21% 0.74 0.79 0.77 0.504 0.254

Näıve Bayes 67.34% 0.72 0.61 0.66 0.577 0.334

Logistic Regression 80.00% 0.79 0.81 0.82 0.447 0.204

Figure 3 depicts the proposed CNN-LSTM algorithm’s training and valida-
tion accuracy. The training accuracy is shown in red, while the validation accu-
racy is shown in blue. From epoch 20 onwards, we can see that the training
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accuracy is ahead of the validation accuracy. The accuracy of training and vali-
dation is almost 70% in the first epoch, as seen in this graph. As the number of
epochs increases, so does the accuracy. The training accuracy is almost 83% at
epoch 50, whereas the validation accuracy is 80%. Training accuracy is 94% in
Epoch 200, whereas testing accuracy is 82%.

Fig. 3. Training and validation accuracy of the proposed CNN-LSTM.

The training and validation losses of our proposed CNN-LSTM method are
shown in Fig. 4. The training loss is shown in red, while the validation loss
is shown in blue. With the first epoch, the suggested CNN-LSTM algorithm’s
training and validation loss is near 0.6. When the epoch number is raised, the
training loss decreases. And it continues to fall until it reaches 0.2 at epoch 200.
The loss value for testing, on the other hand, continues to rise, reaching 0.9 at
epoch level 200.

Fig. 4. Training and validation loss of the proposed CNN-LSTM.
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5 Conclusion and Future Work

We proposed a new method for detecting epilepsy using EEG in this research.
To identify epilepsy from EEG data, a hybrid CNN-LSTM approach is used.
The proposed approach has a high accuracy, according to the results of the
experiments. Our suggested technique was also compared to various machine
learning classifiers. Data, on the other hand, is insufficient. In the future, we
will use additional data to train our model. We also apply some technique for
avoiding the overfitting problem. We also try to apply some other method [2,3,5–
7,9,11,14,18–22,30] to detect epilepsy.
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Abstract. Brain tumor, commonly known as intracranial tumor, is the
most general and deadly disease which leads to a very short lifespan. It
occurs due to the uncontrollable growth of cells which is unchecked by
the process that is engaged in monitoring the normal cells. The survival
rate due to this disease is the lowest and consequently the detection and
classification of brain tumor has become crucial in early stages. In manual
approach, brain tumors are diagnosed using (MRI). After the MRI dis-
plays the tumor in brain, the type of the tumor is identified by examining
the result of biopsy of sample tissue. But having some limitations such
as accurate measurement is achieved for finite number of image and also
being time consuming matter, the automated computer aided diagnosis
play a crucial rule in the detection of brain tumor. Several supervised
and unsupervised machine learning algorithms have been established for
the classification of brain tumor for years. In this paper, we have utilized
both image processing and deep learning for successful classification of
brain tumor from the MRI images. At first in the image preprocessing
step, the MRI images are normalized and through image augmentation
the number of images is enriched. Further the preprocessed images are
passed through a parallel CNN network where the features of the images
are extracted and classified. Our experimental result shows an accuracy
of 89% that is promising.

Keywords: Brain tumor · Data augmentation · Convolution neural
network · Deep learning

1 Introduction

An extracellular growth in the brain, also known as a brain tumor, an anoma-
lous living tissue in which cells proliferate and multiply uncontrolled, appear-
ing unrestrained by the module controls normal cells. There are many more
over 150 different types of brain tumors, but the two most common types are
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primary and metastatic. Tumors that arise from the brain’s tissues or the brain’s
surrounding are known as primary brain tumors. Glial and non-glial primary
tumors are classified as benign or malignant. Tumors that start somewhere else
in the body (such as the lungs) and spread to the brain via the circulation are
known as metastatic brain tumors. Cancerous tumors that have spread to other
parts of the body are known as metastatic tumors.

There are different treatment procedures for different type of tumor. So, it
is also obvious to classify what type of tumor it is. In this research, first we
focused on detecting the tumor and then classify the tumor according to their
type whether the tumor is Meningioma or Glioma or Pituitary or No Tumor.

The major tasks regarding medical image processing can be categorized in
many ways. It has been researched by many scientists for a long time from now.
Different researchers approached this problem in different ways and tried to solve
them efficiently. Yet there is scope to improve the prediction task and contribute
in health care. Many have done this research using MRI, many have used CT
scan image of brain tumor.

Magnetic Resonance Image (MRI) of brain is widely used. Because Magnetic
resonance imaging (MRI) may be a powerful imaging technique that makes prime
quality images of the carnal structures of the human body, particularly within
the brain, and produces much high information for medical diagnosis and clinical
research [7,16,17,29]. The characteristic values of MRI are greatly augmented
by the computerized and proper classification technique [22].

So in this paper for classifying brain tumor, we have utilized the MRI images
that has been collected from kaggle website to develop a statistical and effi-
cient model to make our classification accurate. In this regard at first we have
normalised the images as preprocessing step. After that, the images have been
augmented that helps to enrich and increase the size of the data. Once the pre-
processing and augmentation is done, the dataset is now ready to pass through
deep learning model. We have applied a parallel CNN model on the dataset
that perform the feature extraction and the classification that finally classify
the images into four brain tumor category that are “Meningioma”, “Glioma”
and “Pituitary” and “No tumor”.

The following are the portions of this document in order of appearance: The
past works on brain tumor detection and classification are described in Sect. 2.
The Parallel Convolution Neural Network model has been discussed comprehen-
sively in Sect. 3, which displays the complete process. The outcomes of our work
are discussed in Sect. 4, and the conclusion and future work of this research are
shown in Sect. 5.

2 Literature Review

Recent advancements in technological clinical applications have led to an
improved functioning of the incorporation of deep learning concepts.

A method, proposed by Cheng et al. [6], for extracting characteristics from
the selected area of T-1 MRI images based on manually defined tumor borders,
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with the best findings acquired using an SVM model incorporating bag of words
(BOW) features. One of the first assessments of the figshare brain MRI image
collection has been published in this research work.

A Gabor filter and discrete wavelet transform feature extraction method,
proceeded by a algorithm named multi-layer perceptron algorithm for classify-
ing the images , has been introduced in A. Qadar et al. [11]’s research work.
The shortcoming of both of these approaches is that feature extraction is done
through semi-manual techniques. CNNs offer a clear benefit in this situation
because they do not require human occupied segmentation and are capable of
extracting key characteristics through their own.

Using the transfer learning technique, K. Swati et al. [25] constructed a VGG-
19 model that’s been pre-trained to diagnose brain cancers out of a figshare
brain MRI image dataset. S. Deepak et al. [25] used the same transfer learning
technique to execute an extended GoogLeNet model on the equivalent figshare
dataset.

In the past, Justin Ker et al. [15] employed the InceptionV3 model to classify
brain histology slices, as well as histology slices from the tissues of brain and
breast.

A CNN-based deep learning network was satisfactorily used to solve the
problem of brain tumor categorization [?]. CNN-based classifier systems offer
the advantage of not requiring manually segmented tumor regions and giving a
fully automated classifier.

A CNN structure turned into designed through Pashaei et al. [18] to extract
attributes from mind MRI samples. The version blanketed 5 learnable layers
with 3× 3 filter sizes throughout all of them. The version contained 5 learnable
layers with 3× 3 filter sizes throughout all of them. The class accuracy of the
CNN version turned into 81%. The overall performance turned into advanced
with the aid of using combining CNN capabilities with an excessive getting to
know system classifier version (ELM). In this research, the recall measures for
pituitary tumors had been pretty high, whilst the ones for meningioma had been
pretty poor. This suggests that the classifier’s discrimination capability is not
unlimited.

To categorize brain tumors, Afshar et al. [1] constructed a CNN model which
is modified and known as a capsule network (CapsNet). CapsNet took into
account the tumor’s spatial relationship with its muscle tissue. Despite this,
there was only a slight improvement in performance.

Talo et al. [26] introduced a deep transfer learning to obtain effective classi-
fication results for finding brain tumor abnormalities categorization. They have
used ResNet-34 in their study, including comprised improved dense layer train-
ing, data augmentation during training, plus fine tuning of model named transfer
learning model. The studies revealed that a model which is based on deep trans-
fer may be utilized to classify medical photos with little or no pre-processing.

In their study, Yang et al. [28] used AlexNet and GoogLeNet to assess gliomas
from MRI data. On the reported performance criteria, GoogLeNet outperformed
AlexNet for the task. Transfer learning was used to detect brain tumors in
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content-based image retrieval (CBIR) [25]. The experiment was carried out with
the use of a freely released dataset, and the findings were positive.

3 Methodology

Biological systems have been highly inspired by the CNN which mainly contains
three neural layers that construct the architecture [4,9,19,23,24]. These lay-
ers are- Convolutional, Pooling, and Fully Connected (FC) layer [2,5,31]. This
section will broadly discuss the architecture of our model. Our proposed model
mainly covers two basic parts feature extraction and classification. Firstly, con-
volution and pooling layers are implemented simultaneously. After that in the
function level we adjoin the parallel layers. There after the flatten layers contain
Multi Layer Perceptrons into 2 levels. However, the neurons at each layers that
drop are needed to be calculated for preventing the overfitting problem. Finally
the classification is done using softmax function.

3.1 Dataset

The dataset has been collected from the kaggle website which is an open source
resource. There are total 3,264 numbers of T2 weighted contrast images which
are divided into four different classes where one class depicts the MRI images
with no tumor and other classes depict three different types of brain tumor
namely Meningioma, Glioma and Pituitary tumor. Here among all the 3024
images, Glioma contains 926 images, Meningioma contains 937, Pituitary holds
901 images and finally 500 images contains MRI images with no tumor. The MRI
brain images vary in “Axial”, “Coronal”, and “Sagittal” aspects. The resolution
of the MRI images is 512× 512 pixels which follows a matrix form. A sample
view of the dataset used in this research is given in Fig. 1 where four different
type of images has been shown of four different class tumor. In this figure the
first image is the sample example of Glioma tumor. The second image illustrates
the sample of Meningioma tumor. The third one is collected from the Pituitary
tumor class and finally the last one is the MRI image that contains no tumor.

Fig. 1. MRI images of 4 different types of brain tumor
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3.2 Data Preprocessing

Preprocessing technique is mainly applied on images to reduce the low frequency
background noise and normalize the data so that it can be prepared for better
feature extraction. Here in the preprocessing stage at first we have resized all
the images into 224× 224 pixels. The Z-score normalization has been used to
standardize the intensity of the images. After applying the normalization tech-
nique, the range of the pixel values of the images will be within 0 and 1. The
normalization can be calculated by the equation given below where x refers the
training sample and s denotes the standard deviation of training sample.

z =
x− b

s
(1)

3.3 Data Augmentation

Data augmentation is a process that helps to enhance the performance of a
model by enriching the dataset to a great extant. Usually by the data augmen-
tation process, more copies of data from the existing dataset are generated. It is
about fabricating more data from the existing dataset without losing the data
information. This process is efficient in case of smaller size of dataset as it helps
to increase the number of data and thus lessen the risk of overfitting problem.

As stated earlier, in this study we have used total 3264 MRI images of four
different types of brain tumor which is relatively smaller for assuring the neural
network model’s stability. For this reason we implemented the data augmentation
process on the MRI images before training the model. In case of this, we applied
the ImageDataGenerator. Here rotation, width shift, height shift, zoom has been
kept as 25, 0.10, 0.10, 0.10 respectively. The horizontal flip has been kept as true
and fill mode is nearest.

3.4 Feature Extraction

In the first phase of our model, it holds 5 convolution layers as CBr = iconv
where the values of n are 64, 128, 256, 512, 512 respectively that is followed by
max pooling layer. As we can see in Fig. 2, two CBr = iConv blocks are rendered
in parallel by the input image. The total number of dilation for example di =
1, 2, 3, ..., N are changed. As the rate of dilation increases, the performance of
convolution layer improves and attains quality picture details. As per definition,
the dilation rate 1 indicates the normal convolution layer. However, when the
dilation rate is two, each input will skip a pixel. The following Eq. 2 illustrates
the receptive file when the kernel size is ks that is dilated by the dilation rate di.

rf = di(k1) + 1 (2)

And Eq. 3 illustrates the size of the output O for ixi input image along with
dialation factor di, padding pd and the stride is st respectively.
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O = i + 2pdrfst + 1 (3)

Fig. 2. A full schematic diagram of network architecture

Each of the 1st CBr = iconv block contains 2 convolution and activation
layers whereas the last 3 blocks contains 4 convolution and activation layers with
(3× 3) filter size. The equation for convolution layer with filters as following:

Fs = f j×j
1 f j×j

2 ...f j×j
n (4)
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For the layer 1, the convolution network yield feature maps from the inputs
where the di denotes the dilation rate and mf×mf is considered as input feature
map.

Y o×o
l = Y

mf×mf

l1,di=k × lf + lb (5)

Here, lb and lf denotes bias and filter of the layer respectively.
After the completion of convolution, the features that has been generated,

are passed through the ReLU function which works as activation function for
creating new feature map as ReLU provides a range of amenities and gradients
can be easily expanded.

Max pooling layer is designed as 5 time incremental form that supports a
block of CBr = iconv. In our study, the maxpooling is mainly used for downscal-
ing the strained images using 2× 2 with stride 2. In the final convolution layer
total 512 filters have been utilized with jxj kernel size. Here the dilation rate is
one that is pursued by ReLU activation function. Afterthat, the flatten layer has
been applied where the architecture revealed to transforms the feature maps.

3.5 Classification

In the final stage of implementation, a classification task is performed using the
fully connected layer. In this case the output that is generated by flattened layer
is fed to the fully connected layer. Moreover, a dropout layer is appended after
every fully connected layer which mainly disconnect certain FC layer weight
randomly for diminishing overfitting problem. In this case we have selected the
dropout range as 0.5. Finally, the sigmoid activation function is exerted next to
the FC layer for classifying the brain tumor such as “Glioma tumor”, “Menin-
gioma tumor”, “Pituitary tumor” and “No tumor”.

In Fig. 2, the whole feature extraction and the classification that has been
discussed above is illustrated diagrammatically.

4 Experimental Results and Evaluation

This section is about the outcome of this research that has been gained after
applying our proposed model. Here at first we have depicted the accuracy and
loss curve. Here, we have splitted our dataset into 70% training and 30% valida-
tion ratio. The result of different performance matrices has also been illustrated
in the following subsection. Finally, we have shown a comparison of our proposed
model with other pretrained model and also with some recent works.

4.1 Result

Figure 3 graphically illustrates the performance of accuracy as well as loss for the
parallel CNN model on the MRI images. Here the left image shows the training
and testing accuracy curve whereas the right image indicates the training and
testing loss curve. It is clear from the graph that the both training and testing
accuracy follows an upward trend. On the other hand, the loss curve decrease.
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According to Fig. 3(a), it is appeared that the X axis indicates the total epoch
for train dataset whereas the Y axis depicts the accuracy and loss respectively.
From Fig. 3(a) it can be summarised by saying that the training accuracy rises
from 73% upto 92% and testing accuracy rises from 70% to 89% respectively
after the completion of 50 epochs.

According to Fig 3(b), the training loss decreases from 1.6 to .5 and testing
loss decreases from 1.6 to .6 respectively after the implementation of 50 epochs.
It is clear from both graph that the both training and testing accuracy follows
an upward trend whereas the loss decreases with time.

Fig. 3. Accuracy and loss curve: (a) accuracy vs epoch (b) loss vs epoch
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4.2 Performance Matrix

To evaluate the overall performance of our model and also to test the efficacy,
several performance matrix for example Recall, Precision and F1 score has been
calculated here. In Table 2, equation for each of the performance matrix utilized
in this research has been illustrated. Here, TP indicates true positive rate, FP
indicates false positive rate, TN indicates true negative rate and FN indicates
false negative rate.

Table 1. Data augmentation settings

Measures Derivations

Precision TP
TP+FN

Recall TP
TP+FN

F1 − score 2. Precision . Recall
Precision+Recall

Table 3 demonstrate that, for training the precision is 80%, recall is 73%,
F1-score is 77% and the AUC is 93%. For validation, the precision is 76%, recall
is 72%, F1-score is 72% and the AUC is 72%. The testing shows the value of
precision, recall F1-score and AUC are 52%, 31%, 50% and 68% respectively.

Table 3 demonstrate the values of precision, recall and F1-score of training,
validation and testing. It is clear from the graph that the values of precision,
recall, F1-score and AUC for training are 80%, 73%, 77% and 93% respectively
whereas for validation these values are 76% for precision and 72% for the other
performance matrix. For testing the values of precision, recall, F1-score and AUC
are 52%, 31%, 50% and 68%.

Table 2. Different parameters

Performance measures Training Validation Testing

Precision 0.80 0.76 0.52

Recall 0.73 0.72 0.31

F1-score 0.77 0.72 0.50

AUC 0.93 0.72 0.68

4.3 Comparison of Different Models

In this paper, several pretrained model have been used to train our dataset
so that we can compare our model with other pretrained model. Here, the
pretrained model (VGG19, ResNet50, EfficientNetB0) have been used in this
respect. After implementing all this models we have observed that out proposed
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parallel CNN model outperforms the other models. Table 4 illustrates the train-
ing and testing accuracy as well as the training and testing loss of the other
models.

Table 3. Comparison of results

Models Accuracy Loss

Proposed model .89 0.6

VGG-19 0.74 1.43

ResNet50 0.73 1.6

EfficientNetB0 0.75 1.46

In Table 4, we have compared our proposed method with other works. Here,
we have illustrated the classification technique that has been used in the previous
research as well as the accuracy of the work. As we can see, our proposed methods
outperforms all the previous works with 89% accuracy.

Table 4. Comparison with previous works

Reference Classifier Accuracy

Sajid S. et al. [21] CNN 86%

Iqbal S. et al. [8] Ensemble fusion 82.29%

Amian M. et al. [3] Random forest 55%

Our proposed model Parallel CNN 89%

5 Conclusion and Future Work

In this research work, the main objectives is to develop a system to classify
brain tumor type which works in the same line of work of a physician or medical
diagnosis. This research paper presented a step-by-step methodology for the
MRI brain tumor classification using Deep learning. This automated system of
classifying brain tumor holds some benefits of quick classification, effective and
time saving process. In this research we have employed deep neural network for
training dataset. Here, we classify four types brain tumor using our pretrained
model. However as the dataset used is this research is limited, there an overfitting
problem has been occured. So, in future, we aim at collecting more images to
train our model. Also, as the k fold cross validation has not been performed in
this work, so in future we aim at applying k fold cross validation to asses our
model. Moreover, it would be very interesting if we can include additional feature
information from locations or more from textures to make the system more
sensitive. And we intent to improve our proposed model applying the BRBaDE.
Thus we can ameliorate the performance by conducting parameter and structure
optimization [10,12–14,20,27,30].
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Abstract. Alzheimer’s disease (AD) is a neurodegenerative disease that
causes irreversible damage to several brain regions including the hip-
pocampus causing impairment in cognition, function and behaviour. Ear-
lier diagnosis of the disease will reduce the suffering of the patients and
their family members. Towards that aim, this paper presents a Siamese
Convolutional Neural Network (CNN) based model using the Triplet-loss
function for the 4-way classification of AD. We evaluated our models
using both pre-trained and non-pre-trained CNNs. The models’ efficacy
was tested on the OASIS dataset and obtained satisfactory results under
a data-scarce real-time environment.

Keywords: Structural magnetic resonance imaging · Alzheimer’s
disease · Mild cognitive impairment · Triplet-loss · Siamese CNN

1 Introduction

Nerve system disorders or Neurological Disorders (NLD) are diseases that
affect the central and peripheral nervous systems. This includes the brain, the
spinal cord, nerves (cranial and peripheral), autonomic nervous system, etc.
Any disruption in the functionality of these will manifest in the form of fatal
physiological disorders. Alzheimer’s Disease (AD) is one such incurable life-
threatening/life-altering disorder. Out of several NLD, Alzheimer’s disease (AD)
is the most prevalent and affects sizeable populations around the globe [2,11].
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The World Health Organization (WHO) has estimated that there are about
47.5 million cases of dementia with 7.7 million emerging cases every year. Out
of these, 60–70% of cases contribute to the prevalence of AD alone.

It takes a heavy toll on the emotional and physical well-being of family mem-
bers of those who got affected with such NLD. Moreover, the knowledge of family
members about these diseases is very limited to cope with the patient. Public
health care systems which are meant to provide supportive and complementary
therapies are not accessible to everyone for various reasons. As a result, the
patient and the family members will undergo immense distress mentally, physi-
cally, and emotionally. Hence it becomes vitally important to detect AD at the
earliest possible stage so that the suffering of the patient and family can be
curtailed to a greater extent.

Deep learning (DL) techniques have permeated the healthcare industry in
the last several years not only because they are accurate, fast, and efficient but
also because they are able to learn end-to-end models using compound data
[6,7]. This has opened up possibilities for the accurate identification of neuro-
logical disorders in an unprecedented manner. Neuroimaging, when coupled with
DL techniques, provides vital clues in the perception of brain activity and rele-
vant disorders [13]. These high-definition image data along with DL’s powerful
modelling technique extract features which can be elucidated by clinicians for
medical decision-making in complex AD disorders.

In this paper, we propose deep Siamese network architecture using both pre-
trained and non-pretrained convolutional neural networks (CNN) for the diag-
nosis of AD stages. The model is developed using Magnetic Resonance Imaging
(MRI) images extracted from the Open Access Series of Imaging Studies (OASIS)
[4] dataset. The proposed model does a 4-way classification of MRI images which
are categorized based on the Clinical Dementia Rating (CDR) score: CDR-0
(No Dementia), CDR-0.5 (Very Mild Dementia), CDR-1 (Mild-Dementia), and
CDR-2 (Moderate AD) (CDR-0 vs CDR-0.5 vs CDR-1 vs CDR-2).

In the rest of this paper, Sect. 2 presents the review of related literature,
Sect. 3 formulates the triplet-loss-based Siamese-CNN, Sect. 4 presents the exper-
imental results followed by conclusion and future work in Sect. 5.

2 Review of Recent Literature

The Siamese CNN (SCNN) is proven to be an effective model for the classification
of data points whenever the samples in the dataset are limited or imbalanced
[15,19]. The concept of the Siamese network for similarity computation was
originally proposed by Tiagman et al. [19] for efficient recognition of face images
that resulted in a performance on par with human-level performance. Ever since
there have been numerous applications of SCNN in various domains of pattern
recognition and computer vision [17]. In [15], a new framework was proposed
where the triplet loss function was introduced that leverages the concept of
the Siamese network for optimal classification of facial images. In this section,
we briefly outline some of the work carried out using various S-CNN for the
classification of AD using different modalities.
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In [5], the deep Siamese neural network was used to enhance the discrimi-
natory feature of whole-brain volumetric asymmetry. This paper demonstrated
the performance to be on par with the model that utilises whole-brain MRI
images. In [8], the authors have used the pre-trained VGG-16 model for the
classification of AD using the OASIS dataset. They have achieved a test accu-
racy of 99.05%. In [12], authors have proposed multimodal data for training to
predict the evolution of the disease. This achieved an accuracy of 92.5% on the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset that was curated
to consider the baseline and 12-month MRI. Mehmood et al. [9] have proposed
a transfer learning-based CNN classification to diagnose the early stage of AD,
namely Alzheimer’s Disease (AD) vs Healthy Control (CN) vs Early Mild Cog-
nitive Impairment (EMCI) vs Late Cognitive Impairment (LMCI), using the
ADNI dataset. Authors have provided a 2-way classification (AD vs CN & EMCI
vs LMCI) using this method and obtained an accuracy of 98.37% and 83.72%
respectively. In [14], authors have applied CNN for the classification of AD using
MRI images collected using the ADNI dataset. The algorithm applies specifically
preprocessing to the images of MRI to aid in the efficient diagnosis of AD. In
another study, [10], authors have used the popular AlexNet model for the feature
extraction from the brain MRI images for subsequent classification by popular
tools such as Random Forest (RF), Support Vector Machine (SVM), k-Nearest
Neighbour (KNN) etc. The proposed approach resulted in good accuracy in the
classification of AD disease. Arifa et al. [16] propose a hybrid approach to train
a deep neural network that combines the features from MRI and EEG signals.
The main idea of this approach is in the consideration of multi-modal data in
training the classifier. Chitradevi et al. [1] presented an approach to segment the
cerebral sub-regions for efficient classification of AD. The segmentation output
is fed to machine learning classifiers for the diagnosis of AD which resulted in
98% accuracy using the Grey-Wolf optimisation approach.

Based on this recent brief review of the research, we can conclude that:

1. Many works have been reported that leverage the CNN architecture for the
AD classification purposes either by the usage of pretrained models or a min-
imalist non-pretrained CNN model. These models have obtained satisfactory
results.

2. Not many works reported the use of Siamese in the recent past for the clas-
sification of AD except for a few works [5,8,12].

3. Pretrained models have been successfully utilised for the AD classification [8].
4. Although there has been reported use of Siamese for the classification of AD,

employing the triplet-loss function for the learning of the underlying CNN for
optimal separation of classes is not done to the best of our knowledge.

Furthermore, the CNN architectures mentioned in the literature have per-
formed well but these algorithms when presented with limited samples or imbal-
ance data points, the underlying model will be severely affected. We overcome
these limitations in two ways in our work: i) Adopting the Siamese model
that learns the similarity mapping with limited samples ii) Using pretrained
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architectures will allow better model convergence as it offers a good starting
point through optimal filter weights.

In our work, we employed both the pretrained VGG16 model and non-trained
CNN for the Siamese architecture for feature extraction using the triplet loss
function for the classification of AD. Adopting the Siamese architecture using
VGG16 has the inherent advantage of addressing the limitedness of the AD
dataset. Hence, the model proposed will not suffer from the problem of overfitting
or issues related to class imbalanceness. We have tested the performance of this
on OASIS dataset [4] and set the baseline accuracy. We believe that this work
will serve as a prelude for many work that exploits the benefit of triplet-loss
coupled with various DeepNet architectures in the literature.

3 A Brief Overview of the Triplet-Loss Siamese CNN

In this section, we present the overall architecture in building the Siamese CNN
using the Triplet loss function for the 4-way classification of AD.

3.1 Siamese CNN Architecture

Fig. 1. The Siamese architecture

The Siamese Convolutional Neural Network (SCNN), which has two or more
identical sub-networks, works in tandem to produce feature vectors for input
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images and helps to compute similarity scores as shown in Fig. 1. The objective
of this learning process is to learn a similarity model that produces distinc-
tive embedding for input images that optimally distinguishes them from images
belonging to the same or different classes. The model will be provided with three
images (triplets): where two images (anchor and positive) will be from the same
class whereas the third image (negative) will be from a different class. The objec-
tive of this model is to learn similarities between (A, P) and (A, N) images as
depicted in Fig. 1.

It can be seen from Fig. 1 that the input of the SCNN is a triplet of images:
Anchor (A), Positive (P) and Negative (N). The objective of SCNN is to produce
embeddings for every image in the triplet: A, P, and N in such a way that the
distance from the anchor image to the positive image becomes closer than the
anchor to the negative image.

Fig. 2. The training and testing phases

The triplets (A,P,N) will pass through these similarly-weighted ConvNet
encoders that transform the triplet images into an embedding space Fw(Ia),
Fw(Ip), Fw(In). These ConvNet encoders represent the Siamese architecture. It
is to be noted that the SCNN, although depicted as having separate branches,
essentially has a single ConvNet encoder that sequentially extracts features of
A, P , and N images. The final layer of the ConvNet encoder is a fully connected
(FC) layer which represents the embeddings for the input image. The L2 distance
metric can be used to measure the distance between (A,P) and (A,N) pairs as:
d(A,P ) = | |Fw(Ia) − Fw(Ip)| | and d(A,N) = | |Fw(Ia) − Fw(In)| |.

The triplet-loss function can be used at this stage using the d(A,P ) and
d(A,N) to compute the loss of the model being learned. Finally, the cosine
similarity measure will be used to transform the similarity score to a value in
the range of 0 to 1. Cosine similarity of Anchor image A with positive and
negative images will be computed separately. It is expected that the similarity
of (A,P ) is larger than the similarity of (A,N).
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3.2 Triplet Loss

This is a loss function-based distance measure that needs three inputs, Given A,
P , and N images:

L(A,P,N) = max(d(A,P ) − d(A,N) + α, 0) (1)

If there are m training triplet images, the overall cost function for the SCNN
would be:

J (L(A,P,N)) =
m∑

i=1

L(Ai, Pi, Ni) (2)

The constraint d(A,P ) − d(A,N) + α can be easily satisfied. Hence, we need
to choose triplets that are hard to train on such as the ones where d(A,P ) ≈
d(A,N). The subsequent Gradient Descent process will then minimise the loss
function such that d(x(i), x(j)) is smaller for similar pairs, typically for A and P,
and larger otherwise.

3.3 The ConvNet Encoders

We tested the efficacy of the proposed model by making use of both pre-trained
and non-trained CNN architectures. This will help us to determine the perfor-
mance efficacy of the SCNN model under different scenarios such as the presence
of a very deep ConvNet encoder and its impact on the embeddings, the influence
of pretrained weights, etc.

The Non-trained CNN. The non-trained CNN architecture we used has
three Convolutional layers, 2 pooling layers, and 2 Fully Connected (FC) or
Dense layers. This architecture is used as a ConvNet encoder to transform the
input image into the embedding space. This architecture can be represented as:
64C7 − MP2 − 64C3 − MP2 − 128C3 − FC1024 − FC48, where nCj denotes n
Convolutional layer with j × j filters, MPk indicates a Maxpooling layer with
k × k kernel, and FCn indicates a FC layer. This way every image (A, P, N) is
transformed into a k-dimensional embedding/feature vector.

The Pre-trained VGG16 Model. The VGG16 model [18] has been success-
fully applied in solving many computer vision problems [17]. Inspired by its
success, we have used this architecture in our proposed work in two ways: i) as a
feature extractor for the Siamese architecture and ii) as a traditional classifier.
The architecture of the VGG16 model is as shown in Fig. 3. The top layer con-
stituting 3 dense layers will be removed and replaced by one or two Dense layers
catering for our requirements. When used as a ConvNet encoder, we use a single
Dense layer to extract a 1-dimensional feature vector of length k. When used as
a classifier, the top layers were replaced by two dense layers of dimensions 256
and 4 respectively.

The overall process involved in the triplet-loss-based Siamese-CNN training
and subsequent classification of AD can be outlined in Fig. 2.
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Fig. 3. The VGG16 architecture

4 Experimental Results

Fig. 4. Sample triplets formation

In this section, we present the results of experiments carried out to demonstrate
the efficacy of the proposed model using the OASIS-3 dataset [4]. The dataset
can be categorized into 4 classes based on the CDR score as mentioned previ-
ously. The number of samples in CDR-0, CDR-0.5, CDR-1, and CDR-2.0 are
respectively, 3200, 2240, 896, and 64 images. The imbalance in the dataset is not
a cause of concern for the underlying SCNN model and represents the real-time
data-scarce scenario where our proposed model is expected to perform well.
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As mentioned previously, the SCNN requires triplet samples for training the
model: an anchor image (A), positive image (P), and negative image (N). In
our experiments, we draw hard triplets by drawing a batch of 200 random A,
P, and N images at a time. We then extract embeddings for the batch of 200
images using the ConvNet encoder and compute the distance d(A,P ) − d(A,N)
between them. The distance vector will be sorted and 16 hard triplets will be
drawn such that d(A,P ) ≈ d(A,N) and another 16 random triplets will be
drawn totalling 32 triplets suiting the batch size hyper-parameter of 32 used
in learning the SCNN. The sample triplets drawn in this manner are shown in
Fig. 4. The SCNN will update its weights in such a manner for 1000 iterations.

The hyperparameters used in learning the SCNN are tabulated as shown in
Table 1. For the remainder of this experimental section, unless it is mentioned
explicitly, the hyperparameter values conform to the values shown in this table.

Table 1. Hyperparameter values used in the architecture

Hyperparameter Value

Embedding size 48

Loss function Triplet-loss (refer Eq. 2)

Batch size 32

Epochs 1000

Activation function ReLU

Optimizer Adam

Learning rate 0.00001

Another critical hyper-parameter of the proposed model is the embedding
size(k) – the length of the feature vector obtained after transforming the image
through the ConvNet encoder. In order to determine the optimal value for k,
we ran a series of experiments by varying the length of the embedding size
and corresponding loss values over 1000 iterations are plotted in Fig. 5. This
experiment suggests that the length of the embedding vector doesn’t have much
impact on the convergence of the model or the loss value. As can be seen that the
k = 16 yielded optimal performance and hence We fixed this value for embedding
size for the rest of our experiments.

Table 2. Results outcome of proposed models

Models Accuracy FPR TPR F1-score

Proposed method 93.46 0.0004 0.9345 0.9344

Proposed method with VGG16 92.17 0.0004 0.9216 0.9217

VGG16 87.29 0.0008 0.8717 0.8719
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Fig. 5. Effect of embedding length on model’s performance

The result findings of the proposed model are shown in Table 2. Some impor-
tant observations from this experiment are:

1. The proposed model for the 4-way classification of AD achieves overall a good
recognition accuracy considering the limited samples and class imbalance that
exists in the dataset we considered. This is the true benefit of using Siamese
architecture. The usage of the triplet-loss function further enhances the class
separability among the four classes where samples of some classes have finer
distinctive features (for instance CDR-0.5 and CDR-1.0 MRI images).

2. Although the deep ConvNet models are known to perform well, their perfor-
mance on test data is lesser than the basic ConvNet encoder we proposed.
This may be due to the fact of using pretrained weights in the frozen lay-
ers. If we set those layers to trainable option with an empirically determined
learning rate would yield probably the best results [3].

3. Inspired by the success of the VGG16 model in solving many computer vision
problems, we leveraged the pretrained VGG16 model as a traditional classifier
for the 4-way classification of the AD. Firstly, the input samples were resized to
64 × 64 × 3 in order to be compatible with its architecture. The VGG16 model
was trained using the ImageNet weights and by removing the top layer. Two
dense layers were added with the final layer being the output 4-neuron layer
to classify the AD. The results of this model are not better than the proposed
Siamese based one. There could be many reasons for this but the main point
here is that we have insufficient samples to train the model. The reasonable
accuracy it managed to obtain was probably due to the immense training the
model originally underwent for the ImageNet competition. Those convolutional
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kernels could have contributed to the accuracy. This deserves further study and
we have indicated future avenues on this in the following section.

5 Conclusion and Future Work

In this study, we demonstrated the applicability of Siamese architecture using
the triplet loss function for the 4-way classification of AD using the MRI images.
This is a real-world data-scarce problem where the traditional way of classifying
using deep neural networks is impractical due to the non-availability of sufficient
training samples. The proposed work demonstrated that this could be circum-
vented effectively by the application of Siamese similarity finding deep neural
network. We used the triplet-loss function to calibrate the Siamese architecture.
The model resulted in an accuracy of 93.46%.

This work can be extended in many ways as mentioned below which deserve
a thorough independent study:

1. The ConvNet encoder that we employed to extract the embedding feature
needs to be thoroughly investigated to determine the fundamental capabilities
or limitations. The Siamese architecture produces even better results when
provided with a deep neural network for feature extraction. We could utilise
popular pretrained networks and analyse the best-performing model with the
goal in mind of the data-scarce real-world environment.

2. The ADNI dataset could be utilised and MRI images from different planes
(sagittal or axial) could be considered to see the applicability of the proposed
model.

The Siamese architecture using the triplet-loss function has not seen wider
applicability in the field of AD classification. We believe that our work presented
here would serve as good reference material for many such works in the future.
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Abstract. Cognitive-communication disorder is a type of language
alteration generally associated with a traumatic brain injury, but could
also be a sequelae from a disease. There is a latent possibility of estab-
lishing a connection between the ongoing epidemic language alterations
sequelae with those reorganization in language after a head trauma that
includes modifications in syntax production process.

From a set of syntax indices previously elaborated to study language
development, we propose a grammar-based analysis of such indices allow-
ing a depiction in terms of a triangle-segmented polygon. A finding of the
analysis is that the suggested context-free grammar gives the resources to
have a suitable representation of the construction of the syntax produc-
tion in individuals after a traumatic brain injury, in a post-recovery stage.
The produced maps could serve to interpret how rules, when demanding
more complexity, progress in contrast with a negative sample.

Keywords: Cognitive-communication disorder · Traumatic brain
injury · Syntax · Context-free grammar · Triangle-segmented polygon
maps

1 Introduction

A disorder in cognitive communication is within the ambit of faculty communica-
tion disruptions, a type of acquired language deficit that can follow a traumatic
brain injury (tbi) [17]. This type of sequelae has a group of intricate conse-
quences in different aspects of people living with this acquired alteration that
can go from the loss of friends to the risk of depression, anxiety, delirium and
psychotic behaviors [1,6]. Circumstances like these situate patients in an unin-
terrupted cycle of drop backs.

Final outcomes depend on several factors, but works analyzing numerical data
observe that a tbi represents a worldwide leading cause of death and disabil-
ity [2,5,23]. Moreover, a common factor strongly associated with sarscov-ii, i.e.
the deprivation of oxygen, is causing a number of alterations on communication at
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cognitive level [14]. Considering that this is a global scenario, along with an also
global increasing tendency [23] in the incidence of tbi, the context is intensified
and an increasing number of cases revealing language alterations can be expected.

Any communication attribute disrupted in cognition, such as executive func-
tioning or memory can lead to deficiencies in communication or even the daily
exchange of information [13]. Within the ongoing epidemic, information already
documented can be indirectly associated to those symptoms centered on the
analysis of attributes to trace cognitive communication disorders often related
to tbi [14]. Deficits in language such as syntax comprehension and production,
or in micro level, as in lexis, and macro level (pragmatic) [14], can also occur.

Syntax dictates the valid combinations of words that make sense for each
language [26]. In this study, we are not working on modeling those rules that
have accumulated varied abstraction approaches [12]. Instead, we look for the
depiction of indices, i.e. a set of assigned marks based on rules, as a result of a
prior evaluation, to have an index of syntax production of participants. This is
a way to discern the behavior of syntax features on atypical language. Previous
work showed that a subset of our current analyzed features has appropriate levels
of discrimination to recognize study cases, after assessing them with learning
methods [18,19]. However, we are looking for additional understanding about
the information that the entire feature set comprises.

The design of computational tools that add or complement information for
supporting clinical decision are proposed and explored in this work. We are
proposing triangular maps for representing the syntax indices evaluation from
participants recovering of a head trauma. This, with a purpose that go beyond
the prevalent objective of classification. We look for understanding the pattern
evolution of the studied language restructuring. For this, a context free grammar
(cfg) is specified to generate the maps and reveal what attributes can show.
Our principal finding, a descriptive cfg is proposed and related to a triangular
graph representation that seems to support the identification of evolving patterns
within features that assess syntax production.

The rest of the work is organized as follows. The closest works are briefly
described in previous research section. In Sect. 3 we mainly describe TBI corpus
and its feature set. Next, the proposed approach is detailed in Sect. 4 with an expla-
nation of the rationale behind it. The experimental setting is described in Sect. 5
followed by results in Sect. 6, including the discussion, and the advantage and lim-
itations of the approach. Closing the paper with conclusions and further work.

2 Previous Research

Language and its generation process have demanded the attention of several
research fields that, at first, studied ordinary language from their own perspec-
tives, achieving some understanding and worked on initial theories or models.
Then, the analysis of disorders in language, environmental or acquired, started.
Part of the efforts were addressed to defining subareas of study, exploring lan-
guage features sets delimitation, or approaching assessment methods, introduc-
ing some measures for that purpose.
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For instance, during the last forty five years, solely for aphasia, a language
impairment partially sharing some descriptive attributes with those of commu-
nication deficits presented in language after a tbi [8], around 550 measurements
were proposed [3]. With the advancement of language studies along other interre-
lated fields as in clinic and technology disciplines, a variety of language disorders
are being identified, with the consequent growing efforts to advance their under-
standing.

However, inconsistencies in findings have been reported due to contexts or con-
ditions faced in the execution of researches, with some recommendations to con-
sider in the employed methodology [9], such as analyses running on narrative lan-
guage samples [8–10]. We have the intrinsic and natural intervention of linguistics,
defining relations to standardize assessments of the development, state, or restruc-
turing of language [11]. Also the computational analyses that are mostly addressed
to assign a polarity, positive or negative, to the examined instances [16].

The investigation of interventions of narrative-based discourse can represent
the starting point in the design of treatment focused on the improvement of day-
to-day communication competence. Though, the works addressing the recovery
of basic communication are limited, solely three recent efforts were identified [21].
For this purpose, a suitable representation often results convenient to gain com-
prehension on the development of the inspected phenomenon.

Geometrically speaking, counting with three discrete values, an intuitive asso-
ciation can be established with a triangular depiction. Gross and Lentin [7] asso-
ciated a free-context grammar with the formulation of a triangle, making possi-
ble the generation of a polygon segmented in triangles, indeed associated with
graphs [15]. In the present work, this representation allows to depict variables
(features) extracted from narrative samples at a few consecutive time points
(recovery stages).

3 TBI Corpus

The availability of the traumatic brain injury corpus [24] is a substantial efforts
of more than one institution. Carnegie Mellon and Sydney Universities collabo-
rated in a longitudinal project accounting for four periodic time points every three
months, and one more at twenty-four months, for the recovery stage following a
tbi, dealing with a cohort group of 42 members, in average, per recovery point [25].

The sample consists of different narrative tasks, such as storytelling of Cin-
derella or an important event, that are examined in this paper. The noticeable
scarcity of instances for the last time point caused to treat together Cinderella
and an important event instances, as a single sample per time points reported
in this study. This was done to maintain conditions as similar as possible, for
the reported analysis. An extensive description of the examined characteristics
can be found in [11,16,20]. The studied features are divided in four subgroups
as explained next.
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3.1 Data Description and Feature Set

TBI corpus has a set of markers called IPSYN, abbreviation of the Index of Produc-
tive SYNtax. The indices are an implementation [11] of those variables delineated
by [20]. The scores are organized in 11 noun-phrase, 17 verb-phrase, 11 question &
answer, and 20 sentence-structure rules, indeed the global densities that are accu-
mulating the individual rates per subgroup. These last, i.e., the overall grades are
not considered here since we focus on individual markers as they are calculated,
taking values from the set {0, 1, 2} where a grammar is defined. According to the
target of each rule, a punctuation is assigned to every variable, that takes the previ-
ously mentioned values. All the variables are started in zero, if a sequence of terms
in the narrative meets the defined rule, then the variable receives a point. With
the presence of two different word stems, a second point is added. The variables
remain with their initial null value if the narrative sample does not contain the
sequence of the defined respective rule. We observe that, by their rules definition,
the domain is restricted to these three discrete values.

4 The Approach

In a context-free grammar definition, terminal and non-terminal symbols are
involved. The idea behind the approach of Gross & Lentin is that the non-terminal
S associated with the variable of the grammar definition is connected to what they
call a virtual side. The terminal symbols in the grammar, i.e. a, b, are linked with
real sides, where by real we mean a side value that is fix once is set. This is con-
trary to virtual sides that can be replaced according to what was defined for the
non terminal symbol S, dictating the further development of the polygon.

More recently, this idea was brought into a graph framework [15], allowing
a map generation to decipher the full trajectory to show all the called faces in
a flexible device, while they are stepping on the depth levels of its parse tree
connected with its triangle map related to the generated graph.

In an effort to gain understanding about the reconfiguration of the group
of language features (detailed in Sect. 3.1), a visual depiction of data is devel-
oped. We hypothesized an existing restructuring of the examined language given
the sample discrimination capacity showed in recent analysis [16,19]. An under-
standable decoded representation is the target, and we are looking for a lan-
guage behavior depiction where it is possible to recognize breaks, reconnections,
or remanent adaptations on the syntax attributes belonging to the reshaped lan-
guage after a traumatic brain injury. For that purpose, we defined a cfg to trace
syntax progression of this language. We already mentioned that ipsyn scores, i.e.
the syntax attributes we are working on, take values in {0, 1, 2}. Besides, a poor
punctuation prevails on the subgroups of ipsyn set when directives are assessed
on the narrative discourse samples, per participant. With this in mind, we elab-
orate the grammar to include every case presented in our examined sample, that
resulted in the formal definition of the context-free grammar.

Definition. Let set G = (V,Σ, S, P ), where Σ = {∅2, 0, 1, 2} is the finite ter-
minal symbol set, where ∅2 specifies the absence of the base to generate the
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next triangle. V = {S} is the non-terminal or variable set. The finite set P of
productions is given by:

S → 2SS (1)
S → ∅2SS

S → 0|1
The unique symbol S ∈ V also denotes the start variable.

4.1 The Rationale Behind Grammar Productions

As detailed previously (Sect. 3.1), ipsyn set is divided in four directive sub-
groups, but here we report results of three of them, for the noun-phrase, verb-
phrase and structure-sentence segments. The assessment for the question & nega-
tion subgroup was not included since, in previous analysis [19], this set showed
to bring limited information.

We explored the responses corresponding to the first sample, at three months
after the head injury. We traced the possible sequences presented in the examined
instances to determine a set of directives to produce the corresponding grammar
for each set of variables per participant, automatically.

Let call the current queue and entry as Qc and Ec, respectively, where Ec is
the character in the head of Qc. The process to analyse (parse) the sequence of
variables and generate a map is as follows:

1. While Qc is non-empty.
2. If Ec == 2,

then rule S =⇒ S → 2SS applies.
The array is divided in three parts.
The first one is the terminal 2,

the second entry applies S2 =⇒ 0|1,
and the remaining will be assigned as the current queue, Qc = S3.

Subscripts 2, 3 are used to emphasize that correspond to the second
and third segmentation of Qc.

3. Otherwise, the rule S → ∅2SS applies.
Qc is divided in two parts.
A ∅2 is fed.
The first segment is the next entry, applying S2 =⇒ 0|1
The second part is reassigned, Qc = S3

The absence of the base, the real side, allows the continuation of more com-
plex syntax composition and is remarked with the introduction of a ∅2 symbol,
represented in the recognized response chain as a −1 value.

5 Experiments

5.1 Experimental Setting

The variables were extracted for a sample of participants [22] registered during
the post-recovery period at periodic times, and these are analyzed comparatively
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against a negative sample recorded only once [4]. We observe that though the
examined sample has five times, the last corresponding to twenty-four months,
this is not as extent as the other, counting merely with eight transcripts for
the used narratives. To deal with this situation, we extended the sample of
Cinderella story recount, the task we initially considered, with another exercise
of an important event narrative, replicating this composition, as possible, for the
same sub sample of participants. In the same way, we built the samples for the
other two time points (three and twelve months) to have similar conditions of
comparison.

The negative cases (control group) count with individual instances per task.
Hence, we selected the instances from the sub sample as those as closer as possible
in age and years of education, to those in the study group.

6 Results

The definition of the cfg for ipsyn response attributes expresses them as a
triangle-partitioned polygon representation, and consequently allowing to look
through the data via its corresponding plot. As we previously explained, the
available data at twenty-four months is more restricted than for the other sam-
ples. After determining the instances we worked on, we have samples of sixteen
instances per time-point, whose polygonal representations are grouped by ipsyn
subset and by period. The generated maps are included in Figs. 1, 2 and 3, cor-
responding to noun phrase, verb phrase, and sentence structure, respectively. In
each figure, the first graph (a) represents the negative instances (i.e. NonTBI),
(b) the first sample at three months, and (c) and (d) to the twelve and twenty-
four months, respectively, where each row corresponds to scores of an individual.
Terminals are depicted as arrows in: light blue 2, blue 1, green 0, and red −1.

6.1 Discussion

An important property of the studied features is that they were defined grounded
on Linguistics. Also, we noted that the complexity of the rules, determining
the ipsyn indices, increases with their subsequent definition, including some
dependencies, that were called conditional rules [16,19]. Considering those facts,
for the present analysis we hypothesized that posterior markers are built on the
basis of those preceding. This justifies the connection of the suggested cfg with
the previously described triangular polygon map representation. Looking at the
real side as the base on which the subsequent syntax structures are built and
its absence to continue assembling the syntax could represent a signal of the
intended restructuring of the examined language. For this reason the ∅21 symbol
was introduced in the specification of the grammar. So, this is associated with
the −1 value (red arrow).

1 Read as: empty two.
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Fig. 1. Maps for noun phrase (Color figure online)
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Fig. 2. Maps for verb phrase (Color figure online)
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Fig. 3. Maps for sentence structure (Color figure online)
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A three bar pattern is evident from Figs. 1a to 1d, that correspond to the
noun-phrase group, though a more dominant completeness of the syntax struc-
ture on negative group (Fig. 1a) can be noticed. Note at the start of the feature
responses production chain, the grammar rule S → 2SS is mostly applied. That
is in agreement to our hypothesis, and suggests that the basis directives of the
grammar are satisfied, moreover with a notable favorable outcome for the con-
trol group in comparison to the response for the three and twenty-four months.
However, the maps for twelve months sample could indicate an amelioration on
language of affected group, in the construction of the noun-phrase basis rules.

On the second colored delimited block, the grammar rule S → ∅2SS predom-
inates on both groups. However, according to the defined noun-phrase policies,
the syntax structure is still more consistent on control group than on restruc-
tured studied set, given that the density of the execution of the rule is minor
on the former than on the latter. As a consequence of this, the last block is
extended to two columns for the three, twelve and twenty-four months samples,
where for negative set, it consists of only one, with insertions of ∅2 being more
recurrent to our study group than on the negative set. This could be a possible
sign of the difficulty in the construction of elaborated noun phrase directives in
those cases.

Observing this same time point at three months, we notice that these results
seem to be in agreement with those coming from the assessment of the complete
sample for the independent Cinderella task with some learning methods as Ran-
dom Forest, spaarc, Bayes Net, and cvr, where the macro F1-score fluctuates
in the [0.87, 1.00] interval [19]. Going from the highest to lower scores as we
advanced through the individual evaluations of the subsequent features, until
the performance moved around 0.5 for the last two, i.e. N10 and N11.

In the case of verb-phrase (Figs. 2a to 2d), the particularities for each group
are not as delimited as for the NP set. However, at a global level, we note a
variation in density color, as well as in length of the generated productions. At
three-months, we perceive a red-toned and longer derivations in comparison to
the negative graph. The same is replicated if we compare it against the plot for
twelve months, which in fact gives the appearance of an existing amelioration in
restructuring language. But, the achieved improvement seems to vanish at the
twenty-four months. This same behavior is reproduced by the sentence-structure
feature group (Figs. 3a to 3d). Locally, compared individually, we can notice
particular cases. The maps corresponding to the verb phrases rules indicate,
for example, that the instance number four is achieving and maintaining subtle
improvement. Fact that seems to be clearer in the development of the sentence
structure policy map, shorter and bluer in the twenty-four time point. In other
words, we have a notable reduced insertion of ∅2 rule, probably because of a
more appropriate construction of the sentence structure.

One last but not the least note is that there are few cases in noun-phrase
group responses where the diagram closing triangle showed a 2 value in the
second or third side, a fact that is in conflict with the specified cfg. The cfg
was formulated according to the facts considered to establish the hypothesis we
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base on. Considering this framework, we conjecture that these instances could
represent a singular behavior, suggesting a closer treatment of those examples.

Notice that any interpretation coming from the exposed rules has to be clin-
ically validated. The variation in the evolution of the maps and in consequence
on the examined language could give some hints to language pathologist to con-
sider in the rehabilitation therapies, but any recommendation about them is out
of the scope of this work.

6.2 Advantages and Limitations

The directives to automatize the processing of the fed entry is a double edge
resource. On one side, the linearity of the triangular polygon maps produced from
the automatized analysis of the worked groups response instances is convenient
to have a clustered arrangement of them and to observe the progression in the
syntax construction per participant. However, on the other side, we have to keep
in mind that they are restricting the sort of the produced map.

We build our framework and experimental setting based on a hypothesis
of a growing and dependable complexity in the syntax production defined by
the variables which were considered consecutively. This conjecture along with
the convenience of the current suggested representation need to be analyzed,
assessed and supported or rejected by specialists.

7 Conclusions and Further Work

We described a cfg that mostly define the responses to the noun-phrase, verb-
phrase and sentence-structure subgroup directives evaluation. These of language
instances belonging to participants at different time points, considering the three,
twelve and twenty-four months samples of the recovery stage after a traumatic
brain injury, whose evolution was contrasted with a negative set. This enabled a
triangle-segmented polygon diagram to decipher the syntax construction of the
analyzed groups. However, few cases were observed that do not seem to adhere
to it, closing the triangular representation with a 2 value. This fact requires to
study in depth data and participant profile, to determine how these cases, more
present on study sample than in negative group, should be attended.

This analysis could be directly extended to the question&negation group,
exploration that could bring us to a particularly practical context when com-
paring with their modest power of discrimination [19], when they are evaluated
with learning methods. It is desirable to count with the full transcriptions for
the considered tasks, that enable us to replicate this analysis on the entire sam-
ples of the complete recovery stage and compare against the results in syntax
production of the current results using blended instances to gain ground in the
understanding about the presented alterations around the tbi affected language.
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18. Roldán-Palacios, M., López-López, A.: Feature analysis for aphasic or abnormal
language caused by injury. In: Arai, K. (ed.) Intelligent Computing. LNNS, vol.
285, pp. 1–16. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80129-
8 1
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Abstract. Alzheimer’s disease (AD) is a degenerative neurological dis-
ease that is the most common cause of dementia. It is also the fifth-
greatest reason for death in adults aged 65 and over. However, there is no
accurate way of diagnosing neurological Alzheimer’s disorders in medical
research. Blood gene expression analysis offers a realistic option for iden-
tifying those at risk of AD. Blood gene expression patterns have previ-
ously proved beneficial in diagnosing several brain disorders, despite the
blood-brain barrier’s restricted permeability. The most extensively used
statistical machine learning and deep learning algorithms are data-driven
and do not address data uncertainty. Belief Rule-Based Expert System
(BRBES) is an approach that can identify various forms of uncertainty in
data and reason using evidential reasoning. No previous research studies
have examined BRBES’ performance in diagnosing AD. As a result, this
study aims to identify how effective BRBES is at diagnosing Alzheimer’s
disease from blood gene expression data. We used a gradient-free tech-
nique to optimize the BRBES because prior research had shown the limits
of gradient-based optimization. We have also attempted to address the
class imbalance problem using BRBES’ consequent utility parameters.
Finally, after 5-fold cross-validation, we compared our model to three
classic ML models, finding that our model had a greater specificity than
the other three models across all folds. The average specificity of our
models for all folds was 32%

Keywords: BRBES · Alzheimer’s disease · Gene expression data ·
Disjunctive BRBES · Class imbalance

1 Introduction

Alzheimer’s disease (AD), the most common form of dementia, is estimated to
affect 13.8 million individuals in the United States by 2050. [11]. The shift from
c© Springer Nature Switzerland AG 2022
M. Mahmud et al. (Eds.): BI 2022, LNAI 13406, pp. 301–315, 2022
https://doi.org/10.1007/978-3-031-15037-1_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15037-1_25&domain=pdf
http://orcid.org/0000-0002-0084-0179
http://orcid.org/0000-0002-5602-9510
http://orcid.org/0000-0001-5844-6388
http://orcid.org/0000-0002-7473-8185
http://orcid.org/0000-0002-3090-7645
http://orcid.org/0000-0003-0244-3561
https://doi.org/10.1007/978-3-031-15037-1_25


302 S. M. S. Raihan et al.

symptom-based to pathophysiology-based AD diagnosis revealed that structural
brain changes (MRI), molecular neuroimaging changes, and alterations in cere-
bral spinal fluid biomarkers are the most significant factors in AD diagnosis [6].
However, more research is required on the changes that cause symptoms and
how to mitigate, stop, or reduce the disease. Biological data are currently being
produced at a faster rate than it is being understood. As a result, the task is to
derive new information from existing data. In comparison to individual research,
a meta-analysis integrates many studies to enhance sample size [19]. In 2009, a
large-scale genome-wide association study (GWAS) involving 2,032 people with
Alzheimer’s disease and 5,328 healthy people found mutations at CLU and CR1
that were related to the disease [12]. In addition, a meta-analysis of four pre-
viously published GWAS dataset identified 11 additional susceptibility loci for
Alzheimer’s disease [24].

The demand for novel healthcare solutions, as well as continued efforts
to understand the biological basis of disease, necessitate extensive research in
the life sciences [27]. Recent advancements in the life sciences have allowed
researchers to get insights into the molecular characteristics of living organisms,
allowing them to explore biological systems comprehensively. Alzheimer’s disease
(AD), Parkinson’s disease (PD), and schizophrenia (SZ) are three of the most
common neurological disorders in which normal brain functions are interrupted.
As a result, a variety of neuroimaging techniques and deep learning-based anal-
ysis approaches contribute to establishing effective treatment strategies for the
classification and early identification of diseases [28]. Recently, the detection of
COVID-19 is performed using a nucleic acid-based diagnostic approach known
as RT-PCR. PCR has become the most widely used technology for several clin-
ical applications, including disease evaluation, surveillance, early detection of
biothreat substances, and antibiotic resistance profiling. PCR-based approaches
may be more cost-effective than traditional test procedures [39].

Gene set analysis methods are selected to diagnose diseases because of the
ease of collecting blood, sputum, saliva, serum, and other gene expression data.
It is necessary to identify the best strategy and design for addressing a spe-
cific issue because gene analysis experiment needs significant time and financial
investment. Technical difficulties such as sample preparation, array spotting, sig-
nal acquisition, dye intensity bias, normalization, and sample contamination can
lead to inconsistencies or inaccurate results [7]. Even if no technological concerns
exist, an inappropriate design might make array data analysis difficult.

Machine learning (ML) and deep learning (DL) artificial intelligence tech-
niques can be utilized to make effective diagnoses of certain diseases. The fun-
damental mechanism, however, supports explainability in the decision-making
process. However, [8] and [26] have pointed out that deep learning techniques’
manifold transformation strategy does not perform effectively, even for large
datasets with causal correlations.

In this study, we investigated how artificial intelligence algorithms that can
reason under ambiguity could be used to diagnose Alzheimer’s disease using gene
expression data from blood samples. However, Knowledge-based systems such
as Fuzzy Inference Systems , the Bayesian approach , Dempster-Shafer theory,
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and MYCIN are capable of reasoning under uncertainty [13]. We chose the dis-
junctive belief rule-based expert system (BRBES) technique because it can rea-
son under different types of uncertainty, such as imprecision, ambiguity, vague-
ness, incompleteness, ignorance, unpredictability. According to our knowledge,
BRBES has never been used in the diagnosis of Alzheimer’s disease. Also,
class imbalance is an essential problem in supervised classification of real world
datasets. We tried to utilize BRBES’ consequent utility parameters in a way
that will address the class imbalance problem.

2 Related Work

Alzheimer’s disease is gradually becoming a major global health and economic
issue, prompting extensive scientific research into the underlying genetic risk fac-
tors and regulatory indicators [34]. Furthermore, clinical trials demonstrate that
patients with Alzheimer’s disease have a wide range of symptoms and responds
to different treatments, implying that there are numerous biological origins for
the disease [30]. This complicates the investigation of AD even further. Data
acquired through high throughput gene expression profiling has provided new
opportunities for a better understanding of complicated disease mechanisms and
pathways at a molecular level in recent years [25].

Using cutting-edge computing technology like GPUs, deep learning models
have performed a wide range of experiments for the diagnosis and prediction
of Alzheimer’s disease [36]. Using both high-throughput screening data and a
deep learning-based prediction, this study [23] discovered gene mutations and
unusual splicing of the PLC1 gene in AD. Another study applied the ensem-
ble of random-forest and regularized regression model (LASSO) to AD-related
microarray datasets from four brain regions to find novel genetic biomarkers
using a machine learning-based feature-selection classification scheme [34]. How-
ever, a few studies have employed blood-based expression data to identify sig-
nificant genes related to Alzheimer’s disease or to predict early symptoms of a
disease [4]. Blood samples are easy to acquire, less intrusive, and contain proteins,
peptides, nucleic acids, lipids, and other metabolites [25]. Hampel et al. [10] inves-
tigated 19 blood-based biomarkers, demonstrating that blood-based biomarker
synthesis and standardization are crucial in the identification of Alzheimer’s dis-
ease. As a result, blood-based biomarkers will aid in interpreting the complexity
and variety of Alzheimer’s disease.

Deep learning, a branch of artificial intelligence (AI) inspired by the ner-
vous system, has recently made complicated, high-dimensional, nonlinear sys-
tems more accessible to model and analyze [5]. Deep learning models require
enormous amounts of data to be available. Health care, on the other hand, is a
distinct field. In reality, the world’s population (as of September 2016) is just 7.5
billion people, the majority of them lacking access to primary health care. Con-
sequently, we won’t be able to formulate a comprehensive deep learning model
for many patients [29]. Despite the fact that deep learning models have shown
to be effective in a wide range of applications, they are frequently regarded as
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black boxes. Indeed, model interpretability (i.e., determining which phenotypes
drive the predictions) is crucial for convincing medical practitioners to adopt the
predictive system’s recommendations [29].

On the other hand, the diseases are highly diverse, and we still don’t fully
understand the causes and progress of the vast majority of them [29]. Data spar-
sity, redundancy, and missing values make it challenging to train a good deep
learning model with diverse data sets [29]. Deep learning approaches disregard
data uncertainty and are susceptible to problems like catastrophic forgetting.
However, Raihan et al. investigated the idea of utilizing artificial intelligence sys-
tems that can reason with ambiguity to detect Parkinson’s disease using many
types of speech signal attributes [32]. They used the disjunctive belief rule-based
expert system (BRBES) to handle uncertainties such as imprecision, ambiguity,
vagueness, incompleteness, ignorance, and unpredictability. Furthermore, Rai-
han et al. employed a BRBES to detect COVID-19 in adult pneumonia patients
based on hematological and CT scan data of lung tissue infection. BRBES-based
adaptive Differential Evolution, a nature-inspired optimization algorithm, is used
to optimize the system (BRBaDE) [33]. This study [1] proposes combining data
and knowledge-driven methodologies into a unified framework to identify the
chances of survival of a patient suffering from COVID-19. They trained Xcep-
tion, InceptionResNetV2, and VGG Net are pre-trained neural network models
using X-ray images to identify critical and non-criticalCOVID-19 patients. This
study then assessed the prediction result and specified eight other major risk
indicators linked with COVID-19 patients by a knowledge-driven belief rule-
based expert system. Therefore, the article [37] aims to provide a novel optimal
training approach that combines DE and BRBES. Because it can generate near-
optimal values for both control parameters while maintaining balanced exploita-
tion and exploration in the problem space, this method is called enhanced belief
rule-based adaptive differential evolution algorithm. In addition, a novel opti-
mization technique based on eBRBaDE is provided, which takes into account
both BRBES variables and structure. In conclusion, disjunctive BRBES can
deal with uncertainty in real-world data without becoming exponentially com-
plex, and it can be optimized using gradient-free techniques. Therefore, we’ll
investigate how BRBES performs on diverse gene expression data from blood
samples of Alzheimer’s patients in the next section.

3 Methodology

Our research work is built on the insight gained in the research done in [9] and
[38]. From these two researches, we learned about thirteen hub genes associated
with AD. Hub genes are genes that have several connections with other genes,
resulting in an influential role in gene regulation. The thirteen hub genes are
RPS17, RPL26, RPS27A, COX7C, RPS24, RPL31, EEF1B2, RPS27, TOMM7,
RPL23, GAPDH, RHOA, and RPS29. For our experiment, we collected series
matrix data of our desired datasets from the Gene Expression Omnibus (GEO)
[3] and conducted GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r) analysis.

http://www.ncbi.nlm.nih.gov/geo/geo2r
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The adjusted p-value was selected as 0.05 and log 2-fold change (logFC) was
selected to be > 0.5 . The samples were divided into three groups based on disease
status which are AD (Alzheimer’s Disease), MCI (Mild Cognitive Impairment),
and Control group represented respectively by the digits 2, 1 and 0. In gene expres-
sion profiling, multiple probe molecules may identify the same gene. Hence, after
performing GEO2R, some of the gene symbols of the resulting table had more than
one probe sequences mapped to them. This was the case for the thirteen hub genes
we selected for our experiment too. For instance, gene RPS17’s expression values
in the series matrix file were recorded against four probe ids. But our research plan
was to consider each hub gene as a feature for the final dataset, where the expres-
sion values will be data samples. There were two options available to us: 1) Using
some filtering criteria, to select one from multiple probes associated with a gene
and use the expression set available against it, 2) To consider each probe as a differ-
ent sample of the gene, andhence forming the dataset by considering each combina-
tion of expression sets of the probes. The 2nd approach would also result in mas-
sive data augmentation. However, due to limitation of computational resources
and time, it couldn’t be implemented. The first approach on the other hand, was
implementable within the available resources. Since low adjusted p-value repre-
sents more significance, lowest p-value was selected as the filtering criteria. We
selected the probes with the lowest adjusted p-value to represent the expression
of the gene. The final dataset was split for 5-fold cross validation and input into
the BRBES. The BRBES was then optimized using a gradient free algorithm. The
entire process is depicted in Fig. 1.

Fig. 1. The methodology of experiment.

3.1 BRBES

A belief rule base (BRB) is the knowledge base of a Belief Rule-Based Expert
System (BRBES), while evidential reasoning is the inference engine (ER). While
BRBES can represent ambiguous knowledge, evidential reasoning can acquire
knowledge from ambiguous and diverse information. BRBES, unlike the conven-
tional IF-THEN rule base, can deal with sophisticated non-linear causality in the
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presence of uncertainty. It is comprised of two major components: antecedent and
consequent. Each antecedent attribute has certain referential values linked with
it. The resulting attribute is given a distribution of belief degrees. In the conven-
tional IF-THEN rule, antecedents and consequent attributes are associated with
a linear causal relationship. However, this relationship is non-linear in the case of
a belief rule. BRB can be formed utilizing both conjunction operator (AND). and
disjunctive operator (OR). Evidential Reasoning (ER) can deal with a wide range
of data uncertainty. As shown in Fig. 1 BRBES’s evidential reasoning includes
input transformation, matching degree computation, rule activation weight calcu-
lation, belief update, and rule aggregation. The input antecedent attribute value
is distributed over the referential values of that antecedent attribute using input
transformation.

Fig. 2. BRB-tree. There are 13 antecedent attributes, each representing a specific gene’s
expression value. The attributes are A1 : RPS17, A2 : RPL26, A3 : RPS27A, A4 :
COX7C, A5 : RPS24, A6 : RPL31, A7 : EEF1B2, A8 : RPS27, A9 : TOMM7, A10 :
RPL23, A11 : GAPDH, A12 : RHOA, and A13 : RPS29. All antecdent attributes have
three referential values - Low(L), Medium(M) and High(H). The single consequent C
also has three referential values - representing the relative weights of the three classes

Matching degrees are the names given to these altered values. Equation 4 of
[14] is used for input transformation. The rules are derived by performing multi-
plication or addition operations on the individual matching degrees, depending
on whether the BRB is conjunctive or disjunctive. The conjunctive BRBES faces
combinatorial explosion problem. In this study, we use disjunctive BRBES that
can avoid exponential complexity, and address uncertainty in real-world data.
When there are n attributes, disjunctive BRBES requires the same number of
referential values mi for all attributes and always provides m rules. Each rule
has the total matching degrees (αi where i = 1,..., l and l means the rules) after
the input transformation operation. Equation 4 of [41] is used to determine total
matching degrees for disjunctive BRBES. Using Equation 4 of [17], the rule’s
activation weight (wi) is determined using the total matching degrees (αi) and
relative rule weights (θi). The sum of a rule base’s rule activation weights should
be one, and if a rule isn’t active, it should be zero. After that, the belief update
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operation generates an initial belief matrix from a random number of ranges
[0,1]. The belief matrix will be a table with L columns and N rows if there are
L rules and N referential values.

The summation of the values in each column in the matrix is less than or
equal to 1. As a result, the sum of each rule’s degrees of belief must be less than
or equal to 1. Equation 7 is used to update belief degrees after the belief matrix
has been generated. Because there may be insufficient data for any antecedent
attributes due to ignorance, updating the degrees of confidence is critical. The
tau variable and the matching degrees of each antecedent attribute are used in
the belief update procedure. Thus it addresses the uncertainty caused by data
incompleteness or ignorance. Finally, evidential reasoning combines all of the
rules and uses Equation 5 of [20] to get the output for the input antecedent
attributes. The output value will be dispersed over the subsequent referential
values in a fuzzy form. Equation 12 of [42] as well as other approaches can then
be used to generate a numerical or crisp value. We chose disjunctive BRBES
in this study because disjunctive BRBES does not expand exponentially. There
were three referential values for all antecedent and consequent attributes: Low
(L), Medium (M), and High (H). The dataset was rescaled using the maximum
and minimum values in the dataset to be in the range [0,1]. Then the utility
values corresponding to low, medium and high were 0, 0.5 and 1 respectively.
The details of implementing the BRBES are available in [21].

3.2 Dataset

In this research, datasets GSE63060 and GSE63061 [35] of the Gene Expression
Omnibus (GEO) Database [3] were used for experimentation. Both datasets are
subseries’ of the superseries GSE63063 [35]. These are expression profile datasets
which respectively contain samples from 329 and 388 patients. The platforms
used by the creators of these datasets were respectively Illumina HumanHT-12
V3.0 expression beadchip and Illumina HumanHT-12 V4.0 expression beadchip.
The data was available normalized in series matrix format. The normalization
of both datasets was done using Robust Multiarray Averaging (RMA) method.
Both datasets were first processed in the way shown in Fig. 1. Then the processed
datasets were combined to generate the operational dataset. After combining the
datasets, there were 714 samples (Control : 239. MCI : 192, AD: 284). The three
classes Control, MCI and AD were labeled as 0, 1 and, 2 in the final dataset.

3.3 Model Training

During experimentation, 5-fold cross-validation was done to check on model
over-fitting. The model was trained using BRBaDE [21], which is a variant of the
gradient-free optimization algorithm called differential evolution (DE). BRBaDE
provides a balanced implementation of exploration and exploitation by varying
the crossover and mutation factors over iterations using an additional BRBES.
The parameters chosen for being optimized were the non-terminal antecedent
reference values, rule weights, belief degrees of the belief update matrix and
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the consequent referential utility values. Unlike previous works [21,32,33],
mean square error was not used in our experiment as we did not sum up the con-
sequent belief degrees. Since this is a classification problem, we utilized BRBES’s
unique ability to represent the consequent as a distribution of beliefs to represent
the classes. The consequent referential values were identified as Control, MCI
and AD. After multiplying with consequent referential utility values, the class
having the highest value was determined as the final crisp output (i.e., 0, 1 or
2 in our case). Then, classification error was used as the function to minimize
to optimize the BRBES through BRBaDE. The model was optimized for 5000
iterations with number of population being ten times the number of parameters.
The training, test set prediction of BRBES was done using MATLAB while in
case of the other machine learning models, python was used on the Google colab-
oratory (colab) platform. The peformance evaluation of all models and p-test was
performed using colab as well.

4 Results and Discussion

We have used BRBES for our classification and prediction. The performance of the
model is compared with other machine learning models such as Naive Bayes, K-
Nearest Neighbors, and Random Forest. In a confusion matrix, the performance
of classification models are displayed. Classification accuracy alone can be mis-
leading if the classes are unbalanced or there are more than two classes in the
dataset. An accurate understanding of a classification model’s errors and successes
can be obtained from a confusion matrix. With a balanced dataset, accuracy is a
good measure of classification. Accuracy refers to the number of correctly clas-
sified instances versus the total number of instances. However, since our dataset
has class imbalance, other metrics are needed for a fair evaluation. The measure
of precision is the dispersion or closeness of measurements. Recall or sensitivity
is known as the percentage of correct positive predictions compared to the total
number of positive examples. In order to compare models, the F1-score combines
precision and recall into a single metric. It is computed by taking their harmonic
mean of precision and recall. F1-score is generally a good measurement for com-
paring model performances. Specificity is determined by the proportion of true
negatives that are correctly predicted by the model. Since it is a multiclass classifi-
cation, macro average of the class-wise metrics have been depicted. The evaluation
in light of the above performance metrics are shown in Table 1. In this reseach,
5-fold cross validation was performed. Hence, the mean and standard deviation
were chosen to represent the overall performance of the models across all the folds.
Mean is a representative of central tendency of the results while standard devia-
tion shows the dispersion in them. They are shown in Table 1. To evaluate the
significance of BRBES models performance against, the other models, one tailed
p-test with p = 0.05 was performed on the mean values of the metrics. The results
of the p-test have been shown in Table 2. Also, the best confusion matrix among
the five folds for each of the four models are shown in Fig. 3.

If we observe Table 1 and Fig. 3, we can see that BRBES clearly outperforms
other models in terms of specificity, although other perform better in terms of



AD Diagnosis from Whole Blood Gene Expression Using BRBES 309

Table 1. Comparison of BRBES’ performance with traditional machine learning algo-
rithms using classification metrics Accuracy(Acc), Precision (Prec), Sensitivity/Recall
(Sens), Specificity (Spec) and F1-score(F1). The models compared are BRBES, Naive
Bayes (NB), Random Forest (RF) and K-nearest Neighor (KNN). The mean and stan-
dard deviation (SD) of the metrics across the five folds represent the central tendency
and dispersion of the results.

Algorithms BRBES NB RF KNN

Features Acc Prec Sens Spec F1 Acc Prec Sens Spec F1 Acc Prec Sens Spec F1 Acc Prec Sens Spec F1

Fold-1 0.35 0.23 0.31 0.35 0.29 0.44 0.47 0.47 0.28 0.45 0.51 0.48 0.49 0.24 0.49 0.51 0.48 0.49 0.24 0.50

Fold-2 0.42 0.41 0.39 0.30 0.39 0.42 0.43 0.42 0.26 0.43 0.50 0.49 0.47 0.26 0.48 0.41 0.38 0.39 0.30 0.40

Fold-3 0.42 0.28 0.37 0.31 0.35 0.48 0.51 0.48 0.26 0.48 0.56 0.51 0.50 0.24 0.52 0.49 0.46 0.47 0.26 0.48

Fold-4 0.41 0.42 0.36 0.34 0.35 0.48 0.49 0.49 0.26 0.48 0.50 0.48 0.48 0.25 0.50 0.49 0.48 0.48 0.25 0.49

Fold-5 0.43 0.29 0.38 0.30 0.36 0.38 0.45 0.39 0.31 0.39 0.49 0.44 0.46 0.25 0.47 0.50 0.47 0.48 0.25 0.49

Mean 0.406 0.326 0.362 0.32 0.348 0.44 0.47 0.45 0.274 0.446 0.512 0.48 0.48 0.248 0.492 0.48 0.454 0.462 0.26 0.472

SD 0.032 0.084 0.0311 0.023 0.0363 0.0424 0.0316 0.043 0.0219 0.0378 0.0277 0.0254 0.0158 0.0083 0.0192 0.04 0.0421 0.0408 0.0234 0.0408

Table 2. One tailed P-test of the BRBES model’s metrics averaged across the five
fold. The inference D stands for “Difference between mean performance is probably
real” and S stands for “Algorithms probably have the same performance”. The p-value
= 0.05 was used.

Acc Prec Sens Spec F1

Model p-value Inference Model p-value Inference Model p-value Inference Model p-value Inference Model p-value Inference

NB 0.129038 S NB 0.019381 D NB 0.099165 S NB 0.000766 D NB 0.090321 S

RF 0.002467 D RF 0.009419 D RF 0.008212 D RF 0.000124 D RF 0.003749 D

KNN 0.025783 D KNN 0.077684 S KNN 0.053969 S KNN 0.000194 D KNN 0.035882 D

other metrics. On investigating the reason behind this phenomenon, we learned
that BRBES was not being able to detect MCI classes well whereas other classes
were. This indicates a requirement of further improvement in the optimization
strategy of BRBES. However, mild cognitive impairment (MCI) is known to be
caused by AD and is a precursor of AD in most cases [2,31]. Figure 3 shows the
best confusion matrices among the five folds for each model. The criteria for best
was how well were the control and AD classes classified, as the focus of this research
is AD diagnosis. If two matrices had reciprocal superiority in respect of these two
classes, we looked for two other indicators based on the fact that AD is a precur-
sor of MCI. We looked at the false negative distribution of class 1 i.e., MCI. If a
matrix had more MCI false negative assigned to AD and less assigned control, we
considered it as the better matrix. Based on this criteria, fold-4s of BRBES and
Naive Bayes, fold-3 of Random forest and fold-1 of KNN were selected for repre-
senting in this research. It can be observed that BRBES has a high true positive for
AD compared to others. Also, if we observed in light of the principle of MCI false
negatives, we will see that compared to others, BRBES has predicted the least
number of MCI classes as control and most number of MCI classes (compared to
the other models) to AD. Hence, although BRBES did not succeed well in exactly
distinguishing MCI, the direction in which it predicted most MCI classes, is in line
with the reality that MCI is caused by AD.

Though BRBES could not outperform the other models in metrics other
than specificity, it’s standard deviation of accuracy, sensitivity and F1-score is
lesser than those of Naive Bayes and KNN. Standard deviation is a measure of
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Fig. 3. Confusion matrices of best folds

dispersion of data. The lesser it is, the lesser the data points fluctuate away from
the central tendency. Therefore, in accuracy, sensitivity and F1-score, BRBES
is more stable than Naive Bayes and KNN. Aside from this, Table 2 shows the
significance test results. The metrics used in this research are such that the higher
they are, the better the performance. Apart from specificity, the other metrics
of BRBES are lower than Naive Bayes, Random Forest and KNN. However,
if we observe the p-test results, we’ll see that Naive Bayes’s performance in
accuracy, sensitivity and f1-score isn’t significantly higher than those of BRBES.
Similar can be said about KNN in respect of precision and sensitivity, where the
performance is not significantly higher than BRBES. On the other hand, the
metric at which BRBES outperformed all three models i.e., specificity, shows
significant difference of performance. The high specificity denotes that BRBES
is comparatively better at diagnosing healthy patients as negative, rather than
diseased. If medication and treatment procedures of AD is applied on a healthy
patient based on such misdiagnosis, then that may prove harmful to the patient.

Moreover, we have attempted to address the class imbalance problem in real
world datasets using the uncertainty-handling features of BRBES. In a typical
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BRBES, the output utilities are multiplied with the corresponding consequent
beliefs in a sorted manner, as referential values need to be sequential. However,
in our experiment, during training we obtained the class distribution informa-
tion for each training fold. Then at the moment of using the consequent utilities,
we multiplied in a way to adjust the class imbalance. That is, the highest occur-
ring class was multiplied with the lowest utility values and the lowest occurring
class with the highest utilities. Those in the middle were multiplied in a similar
proportion i.e., the lower the class occurrence, the higher the multiplied output
utility and vice versa. Hence utility values became class weights. During testing,
we again collected the class ratios in the test folds and utilized the trained con-
sequent utilities in the same fashion. One might ask, if the utilities require class
ratio information, how can they be utilized in real time diagnosis of individual
patients. In such cases, the demographic observations of distribution of AD, MCI
and control can be used to represent class ratio.

Gene expression is the process by which information encoded in genes is used to
create RNA molecules that code for proteins or noncoding RNA molecules that
perform other activities. Simultaneous genome-wide analysis of gene expression
and genetic variation allows the mapping of genetic factors underlying individual
differences in quantitative expression levels. Interactions among different genes
and the surrounding environment can result in many genetic and neurological dis-
eases. So, a biological approach is implicit in finding the causes of such diseases.
AD is a progressive neurodegenerative disease characterized by the presence of
amyloid deposits and neurofibrillary tangles, in addition to the loss of cortical
neurons and synapses. Many underlying protectives and disease-modifying factors
may contribute to the core mechanism of AD. Though the earliest cognitive sign
is known to be loss and deficit in episodic memory, it is not sufficient to detect AD.
The damages done happens long before showing any clinical signs. The detection
method needs to be sensitive to memory loss related to age, brain disorder, and
depression. Early detection and intervention are key components in ensuring that
a patient gets the care needed to lead a moderate life. Due to the uncertain nature
of the underlying causes and its manifesting symptoms, we have proposed a Belief
Rule-based Expert System (BRBES). BRBES uses a belief rule base (BRB) as a
knowledge base and evidential reasoning(ER) as an inference engine [18]. It has
been tested in multiple past studies to be able to handle a wide range of uncer-
tainties, including vagueness, ambiguity, imprecision, incompleteness, ignorance,
and randomness [16]. BRBES is also widely used in medical fields where several
uncertainties are associated [14,15,22,40]. To our knowledge, using BRBES with
gene expression for predicting Alzheimer’s disease has never been done before.
The novelty of our research lies in the analysis of gene expression using BRBES.
It opens the frontier to new insights and topics for understanding AD and the
various uncertainties associated with its underlying causes. Moreover, the param-
eters in a BRBES are structured and the model itself is rule based. This allows
the development of an explainable AI model to be applied to whole blood gene
expression based diagnosis.
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One of the limitations of this research is that despite attempting to address
the class imbalance, BRBES did not perform well in detecting the lowest occur-
ring class 1, corresponding to MCI. It is indeed a fact to be acknowledged that
BRBES requires further improvement, if it is to be applied in A.I. based diag-
nosis of AD from whole blood gene expression data. Islam et al. [37] obtained
better results by applying joint optimization to optimize BRBES learning. In
this type of optimization, both the structure and parameters of the BRBES are
optimized. Hence applying joint optimization has a potential chance of improving
the BRBES’s performance in the current problem.

5 Conclusion

In this study, the prospect of a Belief Rule-based expert system optimized with
the gradient-free algorithm BRBaDE for identifying Alzheimer’s patients based
on whole blood gene expression data was investigated systematically. The prob-
lem of class imbalance was attempted to be addressed by using BRBES con-
sequent utilities as class weights. BRBES obtained higher specificity compared
to other machine learning models such as Naive bayes, Random Forest, and
KNN. But it did not perform quite well in other classification metrics compared
to other models. Therefore in future works, we will explore how to overcome
the performance limitations of BRBES. In [1], an enhanced form of BRBaDE
optimization has been used alongside deep learning for reasoning with BRBES,
which generated robust results. The joint optimization of structure and parame-
ter can be combined with deep learning and enhanced BRBaDE (eBRBaDE) [37]
to gain better results. Hence, we would apply the joint optimization technique
combined with deep learning and eBRBaDE to make up for the limitations in
decision-making of BRBES.

Acknowledgement. We thank M.S.H., R.U.I., and K.A. for their contributions to
conception and methodology, as well as M.S.H. and R.U.I. for their insightful com-
ments on the paper. M.A., S.M.S.R., and A.S., our fellow researchers, contributed
valuable insight and knowledge that substantially assisted the research. We also want
to thank Shagufta Mizan and Mahmud Shah Raihan for their helpful recommendations
on technical and domain-specific challenges.

Code Availability. The code for this research is available at https://tinyurl.com/

47fpybky.

References

1. Ahmed, T.U., Jamil, M.N., Hossain, M.S., Islam, R.U., Andersson, K.: An inte-
grated deep learning and belief rule base intelligent system to predict survival of
COVID-19 patient under uncertainty. Cogn. Comput. 14, 660–676 (2022). https://
doi.org/10.1007/s12559-021-09978-8

2. Bachurin, S.O., Gavrilova, S.I., Samsonova, A., Barreto, G.E., Aliev, G.: Mild
cognitive impairment due to Alzheimer disease: contemporary approaches to diag-
nostics and pharmacological intervention. Pharmacol. Res. 129, 216–226 (2018)

https://github.com/ScriptoPhage/BRBES-Alzheimer-s-Disease-Diagnosis-Model.git
https://github.com/ScriptoPhage/BRBES-Alzheimer-s-Disease-Diagnosis-Model.git
https://doi.org/10.1007/s12559-021-09978-8
https://doi.org/10.1007/s12559-021-09978-8


AD Diagnosis from Whole Blood Gene Expression Using BRBES 313

3. Barrett, T., et al.: NCBI GEO: archive for functional genomics data sets-update.
Nucleic Acids Res. 41(D1), D991–D995 (2012)

4. Cooper, Y.A., Nachun, D., Dokuru, D., Yang, Z., Karydas, A.M., Serrero, G.,
Yue, B.: Progranulin levels in blood in Alzheimer’s disease and mild cognitive
impairment. Ann. Clin. Translat. Neurol. 5(5), 616–629 (2018). https://doi.org/
10.1002/acn3.560

5. Cortes-Briones, J.A., Tapia-Rivas, N.I., D’Souza, D.C., Estevez, P.A.: Going deep
into schizophrenia with artificial intelligence. Schizophr. Res. (2021). https://doi.
org/10.1016/j.schres.2021.05.018

6. Dubois, B., et al.: Research criteria for the diagnosis of Alzheimer’s disease: revising
the NINCDS-ADRDA criteria. Lancet Neurol. 6(8), 734–746 (2007). https://doi.
org/10.1016/S1474-4422(07)70178-3

7. Fournier, M.V., Carvalho, P.C., Magee, D.D., da Carvalho, M.G.C., Appasani,
K.: Experimental design for gene expression analysis. In: Bioarrays, pp. 29–44.
Humana Press, Totowa, NJ (2007). https://doi.org/10.1007/978-1-59745-328-8 3

8. Grossberg, S.: A path toward explainable AI and autonomous adaptive intelligence:
deep learning, adaptive resonance, and models of perception, emotion, and action.
Front. Neurorobot. 14 (2020)

9. Gui, H., Gong, Q., Jiang, J., Liu, M., Li, H.: Identification of hub genes in patients
with Alzheimer disease and obstructive sleep apnea syndrome using integrated
bioinformatics analysis. Comput. Math. Methods Med. 2021, 9491–9502 (2021)

10. Hampel, H., et al.: Blood-based biomarkers for Alzheimer disease: mapping the
road to the clinic. Nat. Rev. Neurol. 14(11), 639–652 (2018). https://doi.org/10.
1038/s41582-018-0079-7

11. Hao, S., Wang, R., Zhang, Y., Zhan, H.: Prediction of Alzheimer’s disease-
associated genes by integration of GWAS summary data and expression data.
Front. Genet. 9 (2019). https://doi.org/10.3389/fgene.2018.00653

12. Harold, D., et al.: Genome-wide association study identifies variants at CLU and
cr1 associated with Alzheimer’s disease. Nat. Genet. 41(10), 1088–1093 (2009).
https://doi.org/10.1038/ng.440

13. Henkind, S.J., Harrison, M.C.: An analysis of four uncertainty calculi. IEEE Trans.
Syst. Man Cybernet. 18(5), 700–714 (1988)

14. Hossain, M.S., Ahmed, F., Andersson, K., et al.: A belief rule based expert system
to assess tuberculosis under uncertainty. J. Med. Syst 41(3), 43 (2017)

15. Hossain, M.S., Andersson, K., Naznin, S.: A belief rule based expert system to
diagnose measles under uncertainty. In: World Congress in Computer Science,
Computer Engineering, and Applied Computing (WORLDCOMP 2015): The 2015
International Conference on Health Informatics and Medical Systems 27 July 2015–
30 July 2015, pp. 17–23. CSREA Press (2015)

16. Hossain, M.S., Habib, I.B., Andersson, K.: A belief rule based expert system to
diagnose dengue fever under uncertainty. In: 2017 Computing Conference, pp. 179–
186. IEEE (2017)

17. Hossain, M.S., Khalid, M.S., Akter, S., Dey, S.: A belief rule-based expert system
to diagnose influenza. In: 2014 9Th International Forum on Strategic Technology
(IFOST), pp. 113–116. IEEE (2014)

18. Hossain, M.S., Rahaman, S., Mustafa, R., Andersson, K.: A belief rule-based expert
system to assess suspicion of acute coronary syndrome (ACS) under uncertainty.
Soft Comput. 22(22), 7571–7586 (2018)

19. Hosseinian, S., Arefian, E., Rakhsh-Khorshid, H., Scheltens, P.: A meta-analysis of
gene expression data highlights synaptic dysfunction in the hippocampus of brains

https://doi.org/10.1002/acn3.560
https://doi.org/10.1002/acn3.560
https://doi.org/10.1016/j.schres.2021.05.018
https://doi.org/10.1016/j.schres.2021.05.018
https://doi.org/10.1016/S1474-4422(07)70178-3
https://doi.org/10.1016/S1474-4422(07)70178-3
https://doi.org/10.1007/978-1-59745-328-8_3
https://doi.org/10.1038/s41582-018-0079-7
https://doi.org/10.1038/s41582-018-0079-7
https://doi.org/10.3389/fgene.2018.00653
https://doi.org/10.1038/ng.440


314 S. M. S. Raihan et al.

with Alzheimer’s disease. Sci. Rep. 10, pp. 8384, 734–746 (2020). https://doi.org/
10.1038/s41598-020-64452-z

20. Islam, R.U., Hossain, M.S., Andersson, K.: A deep learning inspired belief rule-
based expert system. IEEE Access 8, 190637–190651 (2020)

21. Islam, R.U., Ruci, X., Hossain, M.S., Andersson, K., Kor, A.L.: Capacity manage-
ment of hyperscale data centers using predictive modelling. Energies 12(18), 3438
(2019)

22. Karim, R., Andersson, K., Hossain, M.S., Uddin, M.J., Meah, M.P.: A belief rule
based expert system to assess clinical bronchopneumonia suspicion. In: 2016 Future
Technologies Conference (FTC), pp. 655–660. IEEE (2016)

23. Kim, S.H., et al.: Prediction of Alzheimer’s disease-specific phospholipase c gamma-
1 SNV by deep learning-based approach for high-throughput screening. Proc. Natl
Acad. Sci. 118(3), e2011250118 (2021). https://doi.org/10.1073/pnas.2011250118

24. Lambert, J.C., et al.: Meta-analysis of 74,046 individuals identifies 11 new suscep-
tibility loci for Alzheimer’s disease. Nat. Genet. 45(12), 1452–1458 (2013). https://
doi.org/10.1038/ng.2802

25. Lee, T., Lee, H.: Prediction of Alzheimer’s disease using blood gene expression
data. Sci. Rep. 10(1), 1–13 (2020). https://doi.org/10.1038/s41598-020-60595-1

26. Mahmud, M., Kaiser, M.S., McGinnity, T.M., Hussain, A.: Deep learning in mining
biological data. Cogn. Comput. 13(1), 1–33 (2021)

27. Mahmud, M., Kaiser, M.S., Hussain, A., Vassanelli, S.: Applications of deep learn-
ing and reinforcement learning to biological data. IEEE Trans. Neural Netw. Learn.
Syst. 29(6), 2063–2079 (2018). https://doi.org/10.1109/TNNLS.2018.2790388

28. Noor, M.B.T., Zenia, N.Z., Kaiser, M.S., Mamun, S.A., Mahmud, M.: Applica-
tion of deep learning in detecting neurological disorders from magnetic resonance
images: a survey on the detection of Alzheimer’s disease, Parkinson’s disease and
schizophrenia. Brain Inform. 7(1), 1–21 (2020). https://doi.org/10.1186/s40708-
020-00112-2

29. Miotto, R., Wang, F., Wang, S., Jiang, X., Dudley, J.T.: Deep learning for health-
care: review, opportunities and challenges. Brief. Bioinform. 196, 1236–1246 (2018)

30. Oxford, A.E., Stewart, E.S., Rohn, T.T.: Clinical trials in Alzheimer’s disease: a
hurdle in the path of remedy. Int. J. Alzheimer’s Dis. 2020 (2020)

31. Petersen, R.C., et al.: Mild cognitive impairment due to Alzheimer disease in the
community. Ann. Neurol. 74(2), 199–208 (2013)

32. Raihan, S., Zisad, S.N., Islam, R.U., Hossain, M.S., Andersson, K.: A Belief Rule
base approach to support comparison of digital speech signal features for parkin-
son’s disease diagnosis. In: Mahmud, M., Kaiser, M.S., Vassanelli, S., Dai, Q.,
Zhong, N. (eds.) BI 2021. LNCS (LNAI), vol. 12960, pp. 388–400. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-86993-9 35

33. Shafkat Raihan, S.M., Islam, R.U., Hossain, M.S., Andersson, K.: A BRBES to
support diagnosis of COVID-19 Using clinical and CT scan data. In: Arefin, M.S.,
Kaiser, M.S., Bandyopadhyay, A., Ahad, M.A.R., Ray, K. (eds.) Proceedings of the
International Conference on Big Data, IoT, and Machine Learning. LNDECT, vol.
95, pp. 483–496. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-
6636-0 37

34. Sharma, A., Dey., P.: A machine learning approach to unmask novel gene signa-
tures and prediction of Alzheimer’s disease within different brain regions. Genomics
113(4), 1778–1789 (2021). https://doi.org/10.1016/j.ygeno.2021.04.028

35. Sood, S., et al.: A novel multi-tissue RNA diagnostic of healthy ageing relates to
cognitive health status. Genome Biol. 16(1), 1–17 (2015)

https://doi.org/10.1038/s41598-020-64452-z
https://doi.org/10.1038/s41598-020-64452-z
https://doi.org/10.1073/pnas.2011250118
https://doi.org/10.1038/ng.2802
https://doi.org/10.1038/ng.2802
https://doi.org/10.1038/s41598-020-60595-1
https://doi.org/10.1109/TNNLS.2018.2790388
https://doi.org/10.1186/s40708-020-00112-2
https://doi.org/10.1186/s40708-020-00112-2
https://doi.org/10.1007/978-3-030-86993-9_35
https://doi.org/10.1007/978-981-16-6636-0_37
https://doi.org/10.1007/978-981-16-6636-0_37
https://doi.org/10.1016/j.ygeno.2021.04.028


AD Diagnosis from Whole Blood Gene Expression Using BRBES 315

36. Tanveer, M., et al.: Machine learning techniques for the diagnosis of Alzheimer’s
disease: a review. ACM Trans. Multimedia Comput. Commun. Appl. 16(1s) (2020).
https://doi.org/10.1145/3344998

37. Ul Islam, R., Hossain, M.S., Andersson, K.: A learning mechanism for BRBES
using enhanced belief rule-based adaptive differential evolution. In: 2020 Joint 9th
International Conference on Informatics, Electronics Vision (ICIEV) and 2020 4th
International Conference on Imaging, Vision Pattern Recognition (icIVPR), pp.
1–10 (2020). https://doi.org/10.1109/ICIEVicIVPR48672.2020.9306521

38. Xue, W., Li, J., Fu, K., Teng, W.: Differential expression of mRNAs in peripheral
blood related to prodrome and progression of Alzheimer’s disease. BioMed Res.
Int. 2020 (2020)

39. Yang, S., Rothman, R.E.: PCR-based diagnostics for infectious diseases: uses, lim-
itations, and future applications in acute-care settings. Lancet. Infect. Dis. 4, 337–
348 (2004). https://doi.org/10.1016/S1473-3099(04)01044-8

40. Zisad, S.N., Hossain, M.S., Andersson, K.: Speech emotion recognition in neuro-
logical disorders using convolutional neural network. In: Mahmud, M., Vassanelli,
S., Kaiser, M.S., Zhong, N. (eds.) BI 2020. LNCS (LNAI), vol. 12241, pp. 287–296.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59277-6 26

41. Zisad, S.N., Chowdhury, E., Hossain, M.S., Islam, R.U., Andersson, K.: An inte-
grated deep learning and belief rule-based expert system for visual sentiment anal-
ysis under uncertainty. Algorithms 14(7), 213 (2021)

42. Zisad, S.N., Hossain, M.S., Hossain, M.S., Andersson, K.: An integrated neural
network and SEIR model to predict Covid-19. Algorithms 14(3) (2021). https://
doi.org/10.3390/a14030094, https://www.mdpi.com/1999-4893/14/3/94

https://doi.org/10.1145/3344998
https://doi.org/10.1109/ICIEVicIVPR48672.2020.9306521
https://doi.org/10.1016/S1473-3099(04)01044-8
https://doi.org/10.1007/978-3-030-59277-6_26
https://doi.org/10.3390/a14030094
https://doi.org/10.3390/a14030094
https://www.mdpi.com/1999-4893/14/3/94


Feature-Selected Graph Spatial Attention
Network for Addictive Brain-Networks

Identification

Changwei Gong, Changhong Jing, Junren Pan, Yishan Wang,
and Shuqiang Wang(B)

Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences,
Shenzhen, China

{cw.gong,ch.jing,jr.pan,ys.wang,sq.wang}@siat.ac.cn

Abstract. Functional alterations in the relevant neural circuits occur
from drug addiction over a certain period. And these significant alter-
ations are also revealed by analyzing fMRI. However, because of fMRI’s
high dimensionality and poor signal-to-noise ratio, it is challenging to
encode efficient and robust brain regional embeddings for both graph-
level identification and region-level biomarkers detection tasks between
nicotine addiction (NA) and healthy control (HC) groups. In this work,
we represent the fMRI of the rat brain as a graph with biological
attributes and propose a novel feature-selected graph spatial attention
network (FGSAN) to extract the biomarkers of addiction and identify
from these brain networks. Specially, a graph spatial attention encoder
is employed to capture the features of spatiotemporal brain networks
with spatial information. The method simultaneously adopts a Bayesian
feature selection strategy to optimize the model and improve classifica-
tion task by constraining features. Experiments on an addiction-related
neural imaging dataset show that the proposed model can obtain supe-
rior performance and detect interpretable biomarkers associated with
addiction-relevant neural circuits.

Keywords: Neural imaging computing · Brain networks · Graph
attention · Generative deep learning

1 Introduction

Medical image computing is becoming increasingly significant in researching
many diseases because it enables the extraction and use of quantitative picture
characteristics from routine medical imaging at high throughput, hence improv-
ing diagnostic, prognostic, and predictive accuracy. Neuroimaging, a bridge field
integrating medical imaging computers and neuroscience, has also grown in
recent years. Neuroimaging is a powerful tool for studying neuroscience and
interpreting the anatomical structure and activity of the brain through qualita-
tive and quantitative analysis of images in two and three dimensions by using
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imaging methods, as well as for resolving unresolved issues in the field of neuro-
sciences and diagnosing and treating brain diseases.

The development of MRI changed the study of neuroanatomy by making it
feasible to conduct in vivo experiments with sufficient contrast to different brain
regions for the first time. Researchers may estimate the microstructure inside
a voxel using a computational method for MRI-based neuroanatomical investi-
gations. The capacity to gather high-quality, comprehensive information from
in vivo imaging has certainly shaped researchers’ knowledge of neuroanatom-
ical and structure-function interactions and provided new insights into vari-
ous disease processes. The introduction of functional neuroimaging in the past
three decades has raised much enthusiasm about its potential to revolutionize
researchers’ knowledge of the physical foundation of the brain and to offer valu-
able tools for clinical and research study. Functional magnetic resonance imag-
ing (fMRI) and resting-state functional magnetic resonance imaging (rs-fMRI)
[1] are the most powerful noninvasive functional imaging techniques available at
the time. Functional connection [2] in brain networks is often generated through
the observation of fMRI time series, and functional brain networks [3] describe
statistical correlation patterns between neuronal regions. Significant progress
has been made in functional brain network analysis using fMRI data over the
last decade. The variation of functional connectivity between brain areas has
been widely investigated in terms of brain diseases [4], as well as the association
between cognitive impairments and degenerative neurological and psychiatric
disorders [5].

Addiction is a disorder of the functioning brain characterized by abnormal
behavior [6]. Addicts are driven by an overwhelming need to seek and consume
drugs constantly. Although after prolonged withdrawal and awareness of the
harmful health implications of drug use and the detrimental impact on family
and society, addicts face the risk of relapse. Pioneering functional MRI studies
have shown that nicotine activates various brain regions [7]. However, few neu-
roimaging computational approaches have used functional MRI to investigate the
relationship between nicotine addiction and altered neuronal activity patterns
throughout the brain and identify these patterns and detect regional neuroimag-
ing biomarkers. Therefore, research into the neural mechanisms and supporting
diagnoses associated with nicotine and other drug addiction has become increas-
ingly critical.

Related Work. Machine learning technology has been widely used in the recog-
nition of natural scenes [8–10]. In brain image computing, machine learning-
based artificial intelligence technology has a broader scenario to make the analy-
sis technology of brain images sink, effectively improving the efficiency and diag-
nostic accuracy of physicians’ treatment [11]. Brain image analysis technology
for brain disease research can explore the disease’s mechanism and understand
the brain’s operation process [12]. Recent advances in machine learning, par-
ticularly in deep learning, are helping to identify, classify and quantify existing
brain images [13]. At the heart of these advances is the ability to automatically
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generalize hierarchical features from data rather than manually discovering and
designing features based on domain-specific knowledge, as was previously the
case [14]. Deep learning is rapidly becoming state-of-the-art and replacing many
original machine learning-based algorithms. Due to the development of deep
learning, various neuroscience applications have simultaneously improved their
performance significantly. Deep learning methods are a new approach for pro-
cessing high-dimensional brain image data and extracting low-dimensional fea-
tures [15–17]. For instance, convolutional neural network (CNN) methods [18]
reduce the dimensionality of medical image data by convolution operator to allow
the effective identification of patterns in neuroimaging. Generative adversarial
strategies can simulate the real distribution of data to reduce the interference
caused by noise and enhance the robustness of the model [19]. GAN(Generative
Adversarial Network), which is based on variational methods [20,21], is widely
used in medical image computing [22]. GAN is usually unsupervised in training,
and the newly generated data have the same distribution as the real data, thus
allowing robust and complex representation learning, making it a commonly used
method in medical image computation. However, existing methods for process-
ing network structured data to obtain interpretable and deterministic biological
markers are still challenging, especially for high-dimensional and sparse network
datasets.

To solve these issues, we developed a novel feature-selected graph spa-
tial attention network(FGSAN) to identify the efficient patterns of addiction-
relevant brain networks from fMRI data and detect discriminative biomarkers of
addiction-relevant brain regions that are interpreted by neuroscientific addiction
circuit mechanism. The designed feature selection is efficient for graph represen-
tation learning and obtaining more helpful brain network embeddings to extract
more accurately addiction-relevant biomarkers.

2 Method

Our FGSAN is composed of three primary components: 1) an encoder consists
of graph positional attention layer; 2) a feature selector with bayesian feature
selection strategy; and 3) a classifier. The specific architecture are demonstrated
in Fig. 1.

In the encoder(E), self-attention mechanism is adopted to transform the time
series of brain regions X = {xn}N

n=1 ∈ R
N×D and dynamic brain functional

connectivity {At}T
t=1 into the embeddings Z = {zn}N

n=1 ∈ R
N×d. Moreover, in

the feature selector, latent binary random vectors B = {bn}N
n=1 are introduced

to infer the posterior probability distribution and select more efficient brain
regional features. Therefore, the encoder is trained with double objectives: a
bayesian feature selection loss considered as the feature sparsity penalty, and a
classification loss for identifying nicotine addiction.



Feature-Selected Graph Spatial Attention Network 319

Fig. 1. Proposed feature-selected graph spatial attention network for identifying brain
addiction.

2.1 Graph Spatial Attention Encoder

The graph spatial attention encoder aims to embed the regional brain imag-
ing features aggregated with dynamic brain network attributes into a low-
dimensional latent space. The proposed layer that composes the encoder is based
on the graph attention networks(GAT) [23] with the addition of spatial encoding.
It allows each regional brain node to focus adaptively on other nodes accord-
ing to the spatial information of the graph-structure connectivities in the brain
networks.

Therefore, the attention coefficient, which is combined a shared attentional
mechanism and spatial encoding for brain connectivities, can be expressed as:

αl
n(i, j) =

exp
(
tanh

([
hl

n(i)Wl hl
n(j)Wl

] · cl + sψ(xi,xj)

))

∑
j∈N (i) exp

(
tanh

(
[hl

n(i)Wl hl
n(j)Wl] · cl + sψ(xi,xj)

)) (1)

here hl
n(i) is a hidden representation for brain node i at lth layer, W l ∈ R

dl×dl+1

is a parameterized weight matrix considered as the graph convolutional filter,cl

is a weight vector that can be learned in the train phase, and Sψ(xi,xj) is a scalar
that can be learned and is indexed by ψ(xi, xj) with positional information. It
indicates the spatial encoding and is accessible throughout all layers.

Formally, let hl+1
n (i) represent the output representation at lth layer, our

graph spatial attention layer is given as follow:

hl+1
n (i) = σ

⎛

⎝
∑

j∈N (i)

αl
n(i, j)hl

n(j)Wl

⎞

⎠ (2)



320 C. Gong et al.

In Eq. 2, the feature propagation mechanism aggregates the effects across overall
neighboring brain nodes and attaches spatial encoding information from dynamic
brain network connectivity {At}T

t=1.

2.2 Bayesian Feature Selector

To find the most effective features for identification from many regional brain
features and to acquire a set of fewer but discriminative biomarkers to reduce
classification error, we employ the bayesian feature selector. We define H =
{Ho

1 , ...,Ho
n} and Y = {y1, ..., yn} as the output features from the encoder and

labels of addiction or not. By introducing binary masking matrix B to achieve
the goal of selecting features, the expected posterior distribution is denoted as
p(B | H,Y) and an approximate distribution is represented as q(·). In order
to improve the identification performance and the accuracy of the model in
discriminating features, in the view of Bayesian inference, we optimize the model
by minimizing the KL divergence between the posterior distribution and the
approximate distribution:

argmin
q(·)

KL(q(B)‖p(B | H,Y)) = −Eq [log (p(B | H,Y))] + KL (q (B) ‖p (B))

(3)
In Eq. 3, the first term corresponds to a binary cross entropy loss for identification
task where the input features H are masked by B, and the second term becomes
a loss for learning the probability scores z which is used to compute the binary
matrix B by Bernoulli sampling method:

bn = σ

(
log (z) − log (1 − z) + log (un) − log (1 − un)

r

)
(4)

where un is sampled from a uniform distribution from 0 to 1, and r is the
relaxation parameter of Bernoulli sampling.

2.3 Classifier and Loss Function

To integrate the information of each node for the graph-level identification, we
utilize a readout function to cluster node features together by simply averaging
them:

R(H) = σ

(
1
N

N∑

i=1

�hi

)

(5)

where σ is nonlinear activation function. The readout function is similar to the
graph pooling operation. Other graph pooling methods can be used to replace
it. The selected and readout features are delivered to a multi-layer percep-
tron(MLP) to derive the final identification of predicted labels ŷ.
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The total loss function is the interpretation of Eq. 3:

L (X,A) = −
N∑

n=1

(yn log (ŷn) + (1 − yn) log (1 − ŷn)) + KL (Ber (z) ‖Ber(s))

(6)
The first term is used to guide the MLP in the classification of the selected features.
Furthermore, the second term is applied for training the selector to learn the prob-
ability mapping to the feature mask. Here Ber(s) is a binary random vector that
contains sparse elements for the purpose of complying with sparsity.

3 Experiments

Dataset and Preparation. The animal addiction experiment dataset contains
two types of data with equal numbers: functional MRI images of nicotine non-
addicted and nicotine addicted, each with 800 time series. By preprocessing
long-term functional MRI scans of experimental rats, we were able to create
the dynamic brain network dataset needed for the experiment. The Statistical
Parametric Mapping 8 (SPM8) program was used to do the first preprocessing
in MATLAB. Functional data were aligned and unwarped to account for head
motion, and the mean motion-corrected picture was coregistered with the high-
resolution anatomical T2 image. The functional data were then smoothed using
an isotropic Gaussian kernel with a 3 mm full-width at half-maximum (FWHM).
150 functional network regions were identified using the Wister rat brain atlas.
We assessed the spectral link between regional time series using magnitude-
squared coherence, resulting in a 150×150 functional connection matrix for each
time step, whose members represented the intensity of functional connectivity
between all pairings of regions.

Implementation Detail. The PyTorch backend was used to implement
FGSAN. One Nvidia GeForce RTX 2080 Ti was used to speed up the network’s
training. During training, the learning rate was set at 0.001, and the training
epoch was set to 500. Adam was used as an optimizer with a weight decay of
0.01 to reduce overfitting. We construct the encoder with three graph spatial
attention layers. All trials are repeated ten times, and the results are averaged.
The regularization value was set to 0.5 for all datasets and techniques.

Metrics. Evaluation of binary classification performance is based on quantita-
tive measures in four key metrics: 1) accuracy (ACC); 2) Precision (PREC); 3)
Sensitive (SEN); and 4) Specificity(SPEC). Our proposed method is evaluated
by 8-fold cross-validation.

3.1 Ablation Study

As indicated in Table 1, we conducted ablation research on identification to eval-
uate the effectiveness of our proposed encoder and bayesian feature selector,
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and two significant results were achieved: 1) In the comparison of the base-
line encoder approach showed impressive performance on the binary addiction-
related classification. This is due to the fact that the attachment of spatial
encoding enables the attention mechanism to get more positional information
and learn better graph representations; 2) The approach with feature selector
is generally performed well. It represents that feature selection plays its role as
an auxiliary to identifying the graph-structure patterns, and better embeddings
are selected to make the model perform classification tasks well.

Table 1. Comparison of various classification indicators of ablation experiments.

Method Metrics

ACC PREC SEN SPEC

GSAN 70.42 79.87 74.38 62.50

FGSAN (GAT-encoder) 77.92 84.97 81.25 71.25

FGSAN 82.08 87.74 84.38 74.25

Fig. 2. The performance comparison of FGSAN with other models. The method pro-
posed in this paper is compared with the existing methods for classification experi-
ments. The red line represents the method proposed in this paper. (Color figure online)
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Table 2. TOP five regional brain biomarkers extracted by the FGSAN model.

No. ROI name of biomarkers

1 Midbrain.R

2 Diagonal domain.R

3 Primary motor cortex.R

4 Hippocampal formation.L

5 Insular cortex.L

3.2 Identification Performance

This section conducts relevant comparative experiments to verify the superiority
of FGSAN. The method proposed in this paper is compared with the existing
GCN and DGI [24] methods. DGI learns node embeddings in an unsupervised
manner. DGI can continuously optimize model results by maximizing the degree
of correlation between two random variables. After multiple experimental ver-
ifications, it is found that our proposed FGSAN method is significantly better
than existing methods in classification indicators. As shown in Fig. 2, the method
proposed in this paper has noticeable performance improvement compared with
DGI and GCN. FGSAN outperforms the other two methods in every index of
the binary classification experiment. The binary classification performance is
outstanding on SPEC metrics, and FGSAN significantly outperforms the other
two methods.

3.3 Interpretable Brain Regional Biomarkers

The method presented here identified five brain regions with higher weights
associated with nicotine addiction. As shown in Table 2, the five brain regions
with higher weights are Midbrain.R [25], Diagonal domain.R [26], Primary motor
cortex.R [27], Hippocampal formation.I [28], and Insular cortex.L [29]. These
five brain regions have been proven to be associated with nicotine addiction in
previous research work. The brain regions discovered by our model are recognized
by experts in the relevant brain regions. We visualized the locations of these five
brain regions. As shown in Fig. 3, the locations of the five addiction-related
brain regions found by the model in the rat brain are shown in three different
directions.
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Fig. 3. Visualization of top-five addiction-related brain regions. These five brain regions
are all brain regions with higher weights output by the model. Their relevance to
nicotine addiction was separately validated in previous work.

4 Conclusion

In this research, we propose a new model called feature-selected graph spatial
attention network (FGSAN) for exploiting effective and interpretable regional
brain biomarkers and utilizing features of these biomarkers to identify the
addiction-related brain network patterns. Detailed model discussions were con-
ducted to examine the proposed FGSAN and the encoder’s and feature selector’s
superiority, among other concerns. We obtained better results than the compari-
son method by using the selected graph representations for classification, indicat-
ing an advantage in graph feature extraction that may yield better graph embed-
dings in the latent space. And more significantly, these embeddings can be well
explained in the neuroscience of addiction. Continuing our investigation into the
brain processes of nicotine addiction in rats will focus on our future research.
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Abstract. The human brain can be considered to be a graphical structure com-
prising of tens of billions of biological neurons connected by synapses. It has
the remarkable ability to automatically re-route information flow through alter-
nate paths, in case some neurons are damaged. Moreover, the brain is capable of
retaining information and applying it to similar but completely unseen scenarios.
In this paper, we take inspiration from these attributes of the brain to develop
a computational framework to find the optimal low cost path between a source
node and a destination node in a generalized graph. We show that our framework
is capable of handling unseen graphs at test time. Moreover, it can find alternate
optimal paths, when nodes are arbitrarily added or removed during inference,
while maintaining a fixed prediction time. Code accompanying this work can be
found here: https://github.com/hangligit/pathfinding.

Keywords: Cognition · Path finding · Graphical Neural Networks

1 Introduction

We are inundated with graphical structures of various forms in this contemporary era of
digitization. This includes, for e.g., social networks [15], wherein the nodes represent
individuals and the edges characterize the social connections between the individuals.
Another popular form of network includes recommender systems [25] that can be rep-
resented as bipartite graphs. The users/products represent the nodes, while the edges
depict the rating of likes/dislikes of a user for a certain product. Other graphs include
citation networks [24], molecular structures used in drug discovery [10].

Although concurrent implementation of these graphical structures are computation-
ally powerful in number-crunching, they lack the cognitive understanding to draw mean-
ingful conclusions that can readily be interpreted. On the other hand, one of the most
sophisticated and yet least understood graphical networks is the human brain [20]. Rather
than consisting of computational nodes, it is comprised of tens of billions of biological
neurons both sending and receiving information to the neighbouring neurons through
the connecting synapses [2,3]. One amazing attribute of the human brain is its ability to
learn to automatically adapt and efficiently reroute information through alternate neural
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paths, in case of certain damaged neurons [26]. Another important attribute is the capa-
bility to interpret distinguishing patterns in data and retain this information to be applied
in similar circumstances in the future [16]. For e.g., a child touching a hot cup of coffee
once or twice would feel a sensation of pain. The child’s brain will retain this experience
to avoid touching hot cups in the future even if the cups are of different size/colour/shape
etc. However, unlike computers whose computation power has been exponentially rising
over the past 4 decades, the capacity of the human brain to process information is lim-
ited by biological constraints. Therefore, is it possible to combine the benign attributes
of the human brain with the processing power of computational resources? In this work,
we explore this possibility in the context of path optimization.

The ability to navigate through a network from a source to a destination node while
optimizing for the lowest cost is an important problem. It has a tremendous number of
diverse applications, for e.g., the ubiquitous vehicle/robot navigation. The cost could
involve minimizing either the distance travelled, time taken, or even the traffic conges-
tion encountered. Other less frequent, but critical, use cases are search and rescue oper-
ations involving unmanned aerial vehicles. Here, minimizing the battery usage and the
data transmission are important factors to be optimized for. Traditionally, these prob-
lems can either be solved heuristically using approaches such as A-star or by deploying
“shortest path” algorithms such as Depth First Search (DFS), Breadth-First Search
(BFS), Djikstra, etc. These approaches tend to start with the source node and progres-
sively traverse the graph through the neighbouring nodes, then neighbours of the neigh-
bours until the destination node is found. Although accurate, computational complexity
rises with the number of hops between the source and destination nodes. On the other
hand, given a visual map drawn to scale, humans are fairly good at quickly determining
the approximate optimal path [4], irrespective of the number of hops between the nodes.
Is it also possible to additionally emulate this one-shot prediction capability in a com-
putational setting? In this regard, we propose using Graphical Neural Networks (GNNs)
to find the path with the lowest cost. Our framework has the following attributes:

1. If a node(s) or edge(s) is arbitrarily removed from the graph structure, the optimal
path is automatically rerouted through the remaining nodes/edges to find the next
best solution.

2. The framework can generalize to find the optimal path even on unseen graphs.
3. The time taken to find the lowest cost path between the source and destination node

remains constant irrespective of the number of hops between them.

2 Related Work

2.1 Artificial Neural Networks, ANNs

Over the last decade, the advent of data-driven, learning-based methods for training
artificial neural networks has made tremendous strides in achieving unprecedented lev-
els of performance on various tasks such as natural language processing [21], computer
vision [14], medical diagnosis [19], etc. Such networks have the capability to extract
meaningful information from the training data and extrapolate this to completely unseen
test data. In fact, they have achieved on par human performance [7] on tasks such as
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classification, disease diagnosis, etc. We also deploy ANNs to achieve generalization
on unseen data (graphs).

2.2 Graph Representation

Among the various ANN paradigms, feed-forward architectures such as Convolutional
Neural Networks (CNNs), Multi-Layer Perceptrons (MLPs) are ubiquitous. However,
on tasks such as path optimization, there is ambiguity on how the graph structure should
be represented when input through such architectures. One approach is to input the
graph as an adjacency matrix. [5] use the connectome [1] as input to a CNN to predict
autism in patients. The connectome is an adjacency matrix, encoding brain connectivity
as graphs between certain pre-selected regions in the brain. [13] used a pre-determined
number of regions in the connectome to train BrainNetCNN for predicting neurodevel-
opment. However, one major limitation of using adjacency matrices is that the number
of nodes forming the input to the network cannot change at inference time. Otherwise,
the network needs to be trained from scratch if the number of nodes is increased. Our
framework does not suffer from this limitation and the number of nodes forming the
input to the network can be changed without retraining the network. In fact, we show
in the experiments that our method is capable of automatically rerouting to an alternate
path, if some nodes/edges are removed at test time.

2.3 Reinforcement Learning, RL

RL is an alternate strategy for determining the optimal path in a map/graph. Tak-
ing inspiration from human psychology [17], a reward function is defined. The agent
explores the environment in a hit-and-trial manner incurring rewards along the way
[22]. If the training parameters are carefully chosen, the agent converges to an optimal
policy. [18] demonstrated path planning on small unseen maps. Instead of the adjacency
matrix, they directly used the map represented as a grid. While this can handle maps
with arbitrary structure and nodes, it is constrained to only planar graphs. In contrast,
our framework can additionally handle graphs with non-planar structure.

2.4 Shortest Path Algorithms

Shortest path algorithms such as DFS, BFS, Djikstra & their modifications have been
used in a wide array of applications. These range from marine navigation [6], software
defined networking [12], maze solving [11] to even optimal planning of sales persons
[27]. The limitation of these methods is that the time to find the optimal path is not con-
stant. Rather it depends on the number of nodes & edges in the graph. For dense graphs,
the computational complexity can be of polynomial order of the number of nodes. On
the other hand, the computational complexity of our method is constant. Irrespective of
the number of hops between the source and destination nodes, our framework takes the
same time to find the optimal path.
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3 Framework

The task tackled here is to find the lowest cost path between a source and a destination
node for an undirected graphical structure, G. The nodes are connected through edges
having arbitrary costs. The edge ei,j ∈ E connects node i (vi ∈ V ) to node j (vj ∈ V ).
Here V and E are the sets containing all nodes and edges respectively.

Traditionally these tasks are handled by graph traversal algorithms. One example is
Djikstra’s algorithm. The algorithm starts with the source node and gradually traverses
the graph, hopping from neighbouring nodes to eventually reach the destination in the
lowest cost. Algorithm 1 shows the pseudo-code of optimal path finding in the graph.
As can be seen in line 10, the algorithm loops through all neighbours of node v. An
edge indicates the presence of neighbours. Now, if either an edge or a node were to be
removed during the course of graph traversal, then all downstream computations would
need to be performed again to determine the next optimal path. This could be because,
the edge in the optimal path now no longer exists.

Algorithm 1: Dijkstra’s Algorithm for the Shortest Path
Input: G= (V,E), vsource, vdestination
Output: Shortest path l and distance d for the path

1 Q ← [] � Initialize an empty list
2 ∀vi ∈V : cost[vi] ← Inf, path[vi] ← Null, Q.add(vi) � cost stores the minimal distance

from the source node to each node, path is used to trace parent node once the low cost
path is found.

3 cost[vsource]=0
4 while Q is not empty do
5 vi ← argmincost[vk], ∀vk ∈ Q � Return node in Q with the lowest cost
6 Q.remove(vi)
7 if vi = vdestination then
8 break
9 end

10 for v j ∈ neighbors(vi) and v j ∈ Q do
11 dist ← cost[vi]+ ei j
12 if dist < cost[v j] then
13 cost[v j] ← dist � Update the lowest cost
14 path[v j] ← vi
15 end
16 end
17 end
18 l ← path[vdestination] � Iteratively trace the parent node till the source node
19 d ← cost[vdestination]
20 return l, d

In our framework, we use ANNs, as they are capable of learning patterns in the data
and robustly applying them to unseen data. However, in the context of optimal path
finding on graphs, we would like our framework to possess two additional properties:
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1. It should be invariant to the permutations/ordering of the nodes.
2. Addition/removal of nodes should not render the training of the ANN useless. Rather

it should be capable of being trained & tested on any number of nodes.

Traditional feedforward networks such as MLPs do not possess these two important
attributes. They are susceptible to node ordering and cannot easily handle addition of
new nodes. Figure 1 depicts the implications on the adjacency matrix, when the node
order is changed and when a new node is added. In the node re-ordering/permutation
case, the adjacency matrix is completely different, despite the graphs being isomorphic.
In the scenario of node addition, the adjacency matrix is extended. To accommodate
this extension, the architecture of the MLP would also need to be changed; thereby
requiring re-training.

Fig. 1. Shows the implications of permuting the node order and adding an additional node on the
adjacency matrix of a graph.

To circumvent these issues, we also use MLPs, but in the paradigm of a Graphi-

cal Neural Network. Let the input features for a node i be represented by z(0)i . These
input features for each node are passed through a series of graphical layers to produce

latent embeddings (z(l)i , for node i at layer l). Figure 2 depicts a high level overview
of the constituents of layer l. For simplicity, we demonstrate the information flow for
the first graph shown in Fig. 1. Note that the layer l takes the embeddings (z(l−1)) for
each node from the previous layer l−1 as input to produce corresponding embeddings
z(l) as output. The inputs are first passed through a neural network (M) comprised of
fully connected layer(s) followed by a non-linearity. An important characteristic of this
neural network is that the weights are shared between all nodes. Hence, nodes can con-
veniently be added or removed from a graph without re-training the network. This is
because the added node can simply use the same weights as those of the other nodes.
The output of the neural network is then passed through an aggregation function. For
each node, the input to the aggregation function depends on which are its neighbours.

For e.g., the neighbours of v1 are v2 and v3. Hence, information from M(z(l−1)
2 ) and
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M(z(l−1)
3 ) is aggregated to produce z(l)1 . The aggregation function is chosen so that its

output is invariant to the order of the input. Hence, even if the ordering of nodes in a
graph is changed, the output remains the same. Some examples of order invariant aggre-
gation functions include summation, mean, taking the maximum/minimum etc. for each
scalar value of the input vectors. Note that in the first layer, each node would incorporate
information from its immediate neighbours, the next layer will implicitly draw infor-
mation from the neighbours of its neighbours. The deeper we go into the network, each
node will retrieve information from nodes farther away from it in the graph.

The output embedding of the last graph layer is then passed through to a classifier
which predicts whether or not the corresponding node falls within the optimal path.
Next, we describe the mathematical details of the graph layers, the input node features,
the loss function to train the weights and how the edge weights are incorporated into
the graph based upon a modification of [23].

Fig. 2. Gives the high-level overview of graphical layer l, for the first graph shown in Fig. 1. Node
embeddings (z(l−1)) from the previous l−1 layer are taken as input to produce node embeddings
z(l) which can then be fed to the next l+1 layer to produce embedding z(l+1) and so on.

The embedding z(l)i ∈ R
dl of a node i at the l-th layer is updated as:

z(l)i = D(σ(ẑ(l)i )). (1)
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Here, σ is the non-linearity (we use LeakyReLU). D is the dropout layer. Note that ẑ is

obtained from the input node features of the previous layer, i.e., z(l−1)
i (∈ R

dl−1 ) in the
following manner:

ẑ(l)i = ∑
j∈N (i)∪{i}

αi j

(
W(l)z(l−1)

j

)
(2)

whereW (l) ∈R
d(l)×d(l−1) are the trainable parameters of the neural network. Meanwhile,

N (i)∈V is the set of neighboring nodes of i across which aggregation is done through
summation. The scalar weights αi j incorporate the edge cost between nodes i and j by
way of this equation:

αi j =
exp(a�σ([W(l)zi||W(l)z j||Weei j]))

∑ j′ ∈N (i)∪{i} exp(a�σ(W(l)zi||W(l)z j′ ||Weei j′ )).
(3)

The edge weights ei j are first mapped to a d(l) dimensional hidden feature representation

hi j = Weei j where We ∈ R
d(l) . The || symbol represents a concatenation of vectors.

a ∈ R
3d(l) and We are trainable parameters.

Note z(0)i ∈ R
3 are the one-hot encoded input features representing whether a node

in the graph is either the source, the destination or otherwise.

The output from the final graph layer L is the node embedding z(L)i . In the final layer,
we also determine the edge embedding (ui j) for each edge. It is the element-wise sum

of embeddings of nodes that it connects to, i.e., ui j = z(L)i + z(L)j
These edge embeddings and final layer node embeddings are passed through their

respective MLP classification layers. It predicts the probabilities of them being in the
optimal path. This probability for the node i and edge i j are respectively given by the
following equations:

p̂i = σ2(Wn
2(σ(Wn

1z
(L)
i +bn1)+bn2)) (4)

p̂i j = σ2(We
2(σ(We

1ui j+be1)+be2)). (5)

Wn
1,W

e
1(∈ R

m×d(L) ), Wn
2,W

e
2(∈ R

1×m), be1, bn1(∈ R
m), be2, bn2(∈ R) are also the traini-

able parameters of the model. m is a hyper-parameter. σ2 is the sigmoid non-linearity.
One may ask why we need separate weights for the node & edge classifications. Or
even why is the edge classification needed at all? This is because two nodes being in
the optimal path does not imply that the edge connecting them will necessarily be in
the optimal path. Figure 4 describes a simple example demonstrating the importance of
additionally predicting the probability of the edge being in the optimal path. Although
after edge removal, nodes 3 & 4 are in the optimal path, but the edge connecting them
(cost = 8) is not. We also empirically found that predicting the probability for both
edges & nodes is better than predicting for only the nodes or only the edges.

The loss function is the binary cross entropy between the predicted probability and
the ground truth over all training samples

min
W,b,a

EG,y∼Data − [y log p̂+(1− y) log(1− p̂)].
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The ground truth can be obtained directly while constructing a random graph structure
of larger cost around the optimal path. Or using shortest-path algorithms on known
graphs.

4 Experiments

Our model is trained with a learning rate of 1e–4 with the Adam optimizer used for
updating the weights. The data comprises of a total 10000 different arbitrarily created
graphical structures with up to 30 nodes. The training, validation and test split is as per
the ratio – 0.70:0.15:0.15. The test set is comprised of graphs with an arbitrary number
of nodes. This serves to analyze if the model can handle different number of nodes in
the inference graph. The test set also contains graph samples wherein some nodes/edges
have been arbitrarily removed. This is to see if the model can determine alternate paths
in case of such removal. Also, note that each of the 10000 structures is comprised of
10 different edge weight combinations for a total of 100000 samples. The ground truth
labels for the loss function are obtained using [8]. The metric we use for quantitative
evaluation is the Path Accuracy. It is the ratio of the number of graph samples in the
unseen test set, wherein the class of every node/edge in the graph is correctly predicted.
Hence, not only every node/edge in the optimal path must be classified as such but the
nodes/edges not in the optimal path should also be correctly classified as not belonging
to the optimal trajectory. Table 1 reports the Path Accuracy metric on both the training
and unseen test set for our method and its variations which we elaborate in the following
subsections.

Table 1. Reports the Path Accuracy metric for our method and its variations for both the training
and test set. (Higher is better)

Ours Fixed
structure

Fixed
nodes

Nodes
only

Edge
only

Training

data 98.01 99.26 99.41 97.75 97.43

Test data

(Unseen) 98.02 68.41 72.18 97.62 97.41

4.1 Unseen Test Data

From Table 1 it can be seen that our model is capable of maintaining good Path Accu-
racy performance even on unseen test data. Note that the test data comprises of graph
samples with an arbitrary number of nodes between 3 and 50. In addition, it also con-
tains graph samples wherein the edges/nodes are arbitrarily removed. Our model is
capable of robustly handling both scenarios. Figure 3 shows a plot of the accuracy
as the number of nodes is changed. Note that as the number of nodes in the graph is
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changed, the accuracy as depicted by the green curve remains fairly consistent. This is
because our model is trained to handle such instance with variable number of nodes in
the graph.

Fig. 3. The plot shows that, as the number of nodes is changed, the path accuracy metric of our
model (in green) remains constant. It is interesting to note that even though the model was trained
with up to a maximum of 30 nodes, it still maintains good performance beyond this number. The
red curve on the plot shows the performance for a model trained with a fixed number of nodes.
Its performance deteriorates when evaluated on a smaller number of nodes.

Meanwhile, Fig. 4 demonstrates a simple example of finding an optimal alternate
path in the case of a removed edge. Note that initially in the original graph, the optimal
path between nodes 2 and 4 is the direct edge connecting the two nodes having a cost
of 1. However, when this edge is removed the alternate lowest cost path between the
nodes is 2-0-1-3-5-4. This alternate path has a cost of 7 which is the lowest in the graph
after the edge removal.

4.2 Fixed Structure, Fixed Number of Nodes

Note that in our framework not only the number of nodes can change, but also the
structure of the graph constituted by the same nodes can vary. To demonstrate this, we
train another model wherein both the structure and the number of nodes (30) are kept
constant. Only the edge weights are changed. Consider the 2nd column of Table 1 for
the results. While the model performs well on the training samples containing graphs of
the same structure & nodes, its performance on the unseen test data drops dramatically.
This is because when training the model, it is not accustomed to handling variable nodes
& structures of the test data.
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Fig. 4. The Figure shows that if the shortest path between nodes 2-4 is removed, the network is
capable of automatically finding the alternate shortest path through nodes 2-0-1-3-5-4. The cost
via this alternate path is the lowest in the modified graph resulting from the edge removal

4.3 Variable Structure, Fixed Number of Nodes

Here, we train yet another model with the same number of nodes, but for which the
structure of the graph can change. Note that the performance of this model is better
than the previous model, as it is capable of handling arbitrary structures. However, its
test accuracy is still not better than our approach. The reason can be inferred from the
red curve in Fig. 3, wherein the performance is only good around the number of nodes
it is trained on, but deteriorates drastically on lesser number of nodes.

4.4 Loss Functions

In addition to classifying the nodes in the optimal path, our loss function also incor-
porates classifying the edges connecting the nodes in the path. The last 2 columns in
Table 1 shows the implications of training with the binary cross entropy function only
for the nodes and only for the edges. As can be seen, the performance of our model,
which combines both loss functions, is superior to the models trained with only the
individual loss functions.

4.5 Comparision with BrainNetCNN Approach

Note that the BrainNetCNN approach uses adjacency matrices, which requires fil-
ter sizes in the CNN to be fixed. Hence, graphs with an arbitrary number of nodes
cannot readily be handled. The original BrainNetCNN was meant for classifying
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neurodevelopment in patients. Therefore, we slightly modify the deeper layers to clas-
sify nodes/edges in the optimal path instead. We trained that model on graphs with both
fixed structure and variable structure, each with a fixed number of nodes. As the con-
volutional layer cannot deal with node permutation, we introduce another set of graphs
where the nodes are randomly permutated, resulting in a transformed adjacency matrix.
As we can see from Table 2, the performance of this model on the test set increases
when we consider random permutation during training. However, neither permutation
nor training with variable structures can enable the model to work on an arbitrarily
greater number of nodes.

Table 2. Reports the Path Accuracy metric for BrainNetCNN method and its variations for both
the training and test set. (Higher is better)

Fixed
structure

Node
permutation

Variable
structure

Training

data 99.99 98.53 99.91

Test data

(Unseen) 40.06 93.10 97.09

4.6 Relative Prediction Time

Figure 5 reports the relative time to find the optimal path as the number of hops between
the source and destination nodes is increased. It is normalized by the time taken to find
the optimal path between nodes one hop away. As can be seen, this number remains
stable for our approach. Hence, irrespective of the number of hops we have in the graph,
the prediction time remains the same. One explanation is that a forward pass of our
model always involves the same number of graph Convolutional layers. Compare this
with Djikstra’s algorithm wherein the relative time increases with the number of hops.

4.7 Evaluation on a Real World Dataset

We also evaluated our approach of optimal path finding on maps from the real-world
KITTI [9] dataset and found that it achieved a perfect score on the Path Accuracy metric.
One plausible explanation for this is that the maps of the road structure in KITTI are
on a plane. Our model, in contrast, was trained with non-planar graphs which tend to
be more challenging to handle and hence do not achieve a perfect score when evaluated
on a test set comprising non-planar graphs. Figure 6 shows predicted paths on a KITTI
map returned by our model under three different scenarios. We see that our model can
flexibly re-route the path to reach the destination when roads are inaccessible.
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Fig. 5. The plot shows the relative prediction time as a function of the number of hops between
the source and destination nodes.

Fig. 6. The Figure shows a map from the KITTI dataset, where locations of interest are modeled
as nodes in the graph. The numbers represent node ids and the green path is the shortest path
from location 5 to location 7 predicted by our model. We show the predictions when (a) all roads
are reachable, (b) one road (4–5) is blocked (marked as a red cross), (c) two roads (4–5, 5–6) are
blocked. (Color figure online)

5 Conclusion

In this paper we demonstrated how our biologically inspired computational framework
is capable of optimal path finding. It mimics the behaviour of the brain to find alter-
nate shortest paths on unseen data even when nodes/edges are removed. This is unlike
adjacency-matrix based conventional feedforward approaches which cannot easily be
trained with varying numbers of nodes. As we developed our framework for general-
ized graph structures, it can be extended to various applications.
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Abstract. This paper addresses computational analysis by psychological knowl-
edge inmotor learning of how people with certain personalities, alone and in pairs,
are being influenced by several factors during their motor learning processes. To
this end a second-order adaptive network model was designed for the social and
behavioural processes involved. Example simulations show how the model fits
to different situations. Mathematical analysis was performed for verification and
parameter tuning for validation.

1 Introduction

Motor learning can be regarded as a broad concept that involves many different phe-
nomena, disciplines, and applications. The concept, for example, encompasses great
theoretical and experimental interest among neuroscientists, psychologists, and phys-
iologists (Krakauer et al. 2019). It enables humans and animals to gain new skills or
it improves the accuracy and smoothness of a physical action (Wolpert and Flanagan
2010). Therefore, motor learning has tremendous practical relevance among babies,
injured people who rehabilitate, dancers, musicians, drivers, sporters, or coaches and
teachers (Krakauer et al. 2019).

Cano-De-La-Cuerda et al. (2015) propose several factors affecting motor learning.
Among others, they mention the relevance of practice and motivation. Implying that the
more someone practises or wants to learn something, the better someone gets good at
something. These two factors imply a behavioural or psychological and personal influ-
ence and that is where the focus will be on in this paper. To build on that, other scientists
have proposed related factors that may play a role in the behaviour of people in motor
learning as well. Motivation, for example, can be divided into intrinsic and extrinsic
motivation, each using different dynamics to influence the performance in the process
of motor learning (Benabou and Tirole 2003). Additionally, personal dynamics such as
self-confidence or the belief to acquire a certain skill appear to be relevant for motivation
levels as well (Benabou and Tirole 2003; Wattie and Baker 2017). Lastly, particularly
relevant in sports, different types of learning exist, such as auditory instructions, mental
visualisation, or kinesthetically, which imply different behaviours in motor learning as
well (Predoiu et al. 2020; Effenberg et al. 2007; Guillot and Collet 2008).

The aim of this research is to contribute to the psychological knowledge in motor
learning by helping to understand how peoplewith certain personalities, individually and
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in pairs, are being influenced by several factors during their motor learning process. Two
research questions that adhere to this configurative approach are formulated as follows:

1. How do different individual dynamics influence the performance in motor learning
of an individual?

2. How do duo dynamics influence the performance in motor learning of an individual?

To answer these research questions, a second-order adaptive mental model is
designed. The model contains two persons each having their own mental model. Links
between the two models are included to analyse duo dynamics. By means of this model,
several scenarios are expounded based on a sports context through which three simula-
tions are proposed that indicate the impact of individual dynamics on the performance
in motor learning of an individual, and 2) three simulations are proposed that provide
implications on how duo dynamics influence the performance in motor learning of an
individual.

In this paper, after the current section, the second section provides a background
of relevant literature regarding the main concepts. In the third section, the design of
the network model is proposed which constitutes the base model in this paper. In the
fourth section, the upper described simulations are presented as results. After that, in
section five, verification and validation of the model are discussed. In the final section,
a discussion is proposed in which the main findings are discussed, the research question
is answered, the strengths and limitations of the paper are addressed and lastly, the
implications for further research are provided.

2 Background Literature

This section discusses relevant concepts important in the dynamics of motor learning
and provides an explanation and justification on why certain factors are incorporated in
the design of the model this research applies.

AsWolpert and Flanagan (2010) imply in their paper, motor learning is about gaining
new skills or improving the accuracy or smoothness of a movement. This encapsulation
provides a rather simplistic description of what motor learning is about. To deepen
the understanding around the concept, some formal definitions will be discussed and
compared.Krakauer (2006) andUmphred andLazaro (2012) both discuss the essentiality
of practice. And second, “permanent changes’ used by Krakauer (2006) compared to
‘makes automatic the desired movement’ used by Umphred and Lazaro (2012) both
address a similarly long-lasting resolution of the process.

To elaborate on the concept of practice in light of this paper, one type of learning
related to this research is used. Reviewed comprehensively by Ridderinkhof and Brass
(2015) is Kinesthetic Motor Imaginary (KMI). This is a widely used technique among
professional athletes to improve motor performance without overt motor output. This
visual type of learning thus “enables one to practice movements without needing to
physically perform them” (Ridderinkhof et al. 2002, p. 54).

As is described by Cano-De-La-Cuerda et al. (2015), motivation also plays a signifi-
cant role in motor learning. Motivation is an explanation of why people perform certain
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behaviour. It provides reason, for example, to initiate, continue or terminate an action
(Wasserman and Wasserman 2020). Benabou and Tirole (2003) discussed the distinc-
tion and interrelation between intrinsic and extrinsic motivation. Extrinsic motivation is
described as motivation initiated by external rewards (Wasserman andWasserman 2020;
Benabou and Tirole 2003). Comparably, intrinsic motivation is “the individual’s desire
to perform the task for its own sake” (Benabou and Tirole 2003, p. 490). On top of that,
they describe the phenomenon called the ‘undermining effect’. This effect means that
rewards are often counterproductive because they undermine “intrinsic motivation”.

As described by Benabou and Tirole (2003), a concept closely related to intrinsic
motivation, and therefore interesting to integrate into this research, is confidence. They
describe the relationship as that when people have higher self-esteem they are more
motivated to start, continue or terminate certain behaviour. What is interesting, however,
is that in the case that confidence reaches too high, this would negatively affect the
intrinsic motivation of someone (Benabou and Tirole 2003).

A final compounding factor influencing the dynamics between intrinsic motivation
andpractice, in order to improve performance inmotor learning, is based on the belief that
skills are predominantly acquirable and attributes poor performance to a lack of effort
or insufficient preparation. This contrasts with the belief of ‘inherent ability’, which
encapsulates that skills are predominantly unchangeable (Wattie and Baker 2017). As
webelieve skills are acquirable, themodel described in the following section incorporates
the acquirable skill belief as an influencing factor in motor learning.

Researchquestions.Basedon this background, several sub-questions are formulated
which contribute to answering the two research questions proposed in the introduction:

1. How do different individual dynamics influence the performance in motor learning
of an individual?

• Towhat extent do acquirable skill beliefs influence intrinsic motivation, and what
does that imply for the performance in motor learning?

• How does visualising influence confidence, and what does that imply for the
performance in motor learning?

• To what extent does overconfidence influence the performance in motor learning
of an individual?

• How do intrinsic and extrinsic motivation each influence the performance in
motor learning?

2. How do duo dynamics influence the performance in motor learning of an individual?

• How do different motivation levels in duo-learning influence the performance in
motor learning?

• How does competitiveness influence the performance in motor learning?
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3 Method Used

In this section, we will elaborate on our model. We will explain how we have built
the model, which decisions we made based on the previous sections, and eventually
show the resulting model which we will use for analysis. In the first part of this section,
the network-oriented modeling approach used is briefly explained. Next, a one-person
model will be explained, and in the last part we will add a second person to this model
and we will explain how the persons work together.

The conceptual representation of the causal network model consists of states and
connections between the states. These connections can represent a causal impact. It is
assumed that the states have activation levels that vary over time. Adaptation of causal
relations and other network characteristics are incorporated in the approach too (Treur
2020). The network structure characteristics used are as follows:

Connectivity of the network Connection weightsωX,Y for each connection from a state
(or node) X to a state Y.
Aggregation of multiple impacts A combination function cY (..) for each state Y to
determine the aggregation of incoming causal impacts.
Timing in the network A speed factor ηY for each state.

In Table 1 the combination functions used are explained. The way in which these
network characteristics define the dynamics of a network model is explained as follows.

impactXi,Y(t) = ωωXi,YX(t)
aggimpactY(t) = cY(impactX1,Y(t),..., impactXk,Y(t)) 

(1)

Here X1,.., Xk are the states from which state Y gets incoming connections. This is
assembled in the following canonical differential equation used for all states:

dY(t)/dt = ηηY [aggimpactY(t)  - Y(t)] (2)

This differential equation can be rewritten into difference equation format to
determine the state values with regard to the change in time �t:

Y(t + ∆t) = Y(t) + ηηY [aggimpactY(t)  - Y(t)]∆t 
= Y(t) + ηY [cY(ωX1,YX(t), …., ωXk,YX(t)) - Y(t)]∆t

(3)

Moreover, self-model states (also called reification states) were added to the network
to make some of the network characteristics adaptive. For this model, these self-model
states are of type WX,Y and HX,Y . The W-states WX,Y are first-order self-model states;
they represent their corresponding connection weight ωX,Y . These states are used for
plasticity by Hebbian learning (Hebb 1949; Shatz 1992). Additionally, in this model
there are five second-order self-model statesHwX ,Y

representing the timing (speed factor)
characteristic ηwX ,Y

for the mentioned first-order self model statesWX,Y . Adding these
speed factors allowed for determining the moment when each of the learning activities
would take place. In this way, metaplasticity (Abraham and Bear 1996) of the model
was ensured.
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Table 1. Combination functions used

A total of 12 states are used in the second-order model for one person, thereby using
seven different combination functions for them as shown in Table 1, last column. The
full specification of the connections, weights, speed factors, and combination functions
can be found in the tables in the Appendix available as Linked Data at URL https://www.
researchgate.net/publication/357648578.

The central aspect in our model is the performance (X6) in motor learning of the
person. As mentioned before, the amount of practice is important for performance.
Therefore, a state is addedwhich represents the practice (X5). This state has a connection
to the performance and an incoming connection from motivation (X4). This is the state
which represents the general amount of motivation a person has in this particular skill,
and it is dependent on two different types of motivation.

At first, there is extrinsic motivation (X2), which is motivation coming from external
rewards. Secondly, there is intrinsic motivation (X3), which is the direct satisfaction this
particular skill brings to the person. Both of these motivations connect to motivation,
and there is a connection from extrinsic to intrinsic motivation as well. This is the pre-
viously mentioned undermining effect, therefore this connection has a negative weight.
Extrinsic motivation has a direct incoming connection from performance, the higher the
performance the more extrinsic motivation there is. Intrinsic motivation has an incoming
connection from confidence (X1), which in turn has an incoming connection from per-
formance. There are three other states to be mentioned. At first, there is acquirable skill
belief (X7). This state has an incoming connection from performance, but it is inversely
proportional to it. Theworse the performance is, themore there is to gain in this particular

https://www.researchgate.net/publication/357648578
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skill. Andwhen the performance is at its highest, there is no skill to be acquired anymore.
This acquirable skill belief has a direct connection to intrinsic motivation. There is also
a state representing visualising (X8). This is a context state which can be either turned
on or off, and it influences both confidence and practice directly. Lastly, there is a state
representing overconfidence (X9), which only activates when confidence becomes too
low. It represents the general idea of overconfidence, where too much confidence can
cause the person to be lazy and therefore less motivated.

Lastly, there are a few self-model states of first- and second-order. There is a first-
order self-model W-state (X10) which represents a Hebbian learning process for the
negative connection from extrinsicmotivation to intrinsicmotivation. It uses the negative
Hebbian function hebbneg, whichmakes that theweight becomes stronger negative over
time when extrinsic motivation is high while intrinsic motivation is low. A higher-order
self-model HW-state (X12) manages the speed of this W-state. The more performance
someone has at a particular motor learning skill, the harder it becomes to improve upon
this skill. Therefore, a first-order self-modelH-state X11 was added which is the inverse
of the performance and controls the speed factor of performance.

All states with only one incoming connection use an id function. Confidence, moti-
vation and practice use a scaled sum function, while intrinsic motivation and overcon-
fidence use an alogistic function. Overconfidence has a high steepness and threshold
value, it should not increase immediately but it should increase fast. Table 2 contains an
overview of the states for the one-person model with their explanations.

Table 2. States of the single person model with their explanation.

State State name State explanation

X1 C1 Confidence of the person

X2 EM1 Extrinsic motivation of the person

X3 IM1 Intrinsic motivation of the person

X4 M1 Weighted average of the motivation

X5 Pr1 (Amount and type of) Practice of the person

X6 Pe1 Performance of the person

X7 Asb1 Acquirable skill belief of the person

X8 V1 Visualizing

X9 O1 Overconfidence of the person

X10 WEM1,IM1 First-order self-model state for the weight of the connection from X2
(EM1) to X3 (IM1)

X11 HPe1 First-order self-model state for the speed factor of X6 (Pe1)

X12 HwEM1,IM1 Second-order self-model state for the speed factor of X10 (WEM1,IM1)

For the two-person model, context states will be used for the second person. The
two context states represent the second person’s intrinsic motivation and performance.
The second person’s intrinsic motivation influences the intrinsic motivation of the first
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person, and the second person’s performance influences both the intrinsic and extrinsic
motivation of the first person.

A total of 14 states are used in the second-order model, and seven combination
functions are used. A full overview of the model can be seen in Fig. 1, and the values
used for the connections, weights, speed factors and combination functions can be seen in
the tables in the Appendix (Linked Data) at https://www.researchgate.net/publication/
357648578. The speed factors and combination function variables remain the same
compared to the single-person model.

In next section, we will investigate this model, show the base result and answer the
research questions.

Fig. 1. 3D figure of the connectivity of the full two-person model.

4 Simulation Results

In Fig. 2 the base of the single-person model is shown; in such graphs, time t from
formulaa (1), (2), (3) is on the horizontal axis and activation level Y(t) on the vertical
axis. This is the result of running the model with the parameters shown in the tables
in the Appendix available as Linked Data at https://www.researchgate.net/publication/
357648578. All values are initially 0.5, except for X9 (overconfidence) and all higher-
order states, which are all initially 0. The state for performance, X6, initially increases
to around 0.9, and after a few timesteps, it converges to a value of around 0.85.

https://www.researchgate.net/publication/357648578
https://www.researchgate.net/publication/357648578


350 E. de Bruin et al.

That the value is going up and down for a while is due to some factors. At some
point, it is going down because X9 (overconfidence) increases. Moreover, X3 (intrinsic
motivation) decreases because the strength of the connection between X2 (extrinsic
motivation) and X3 increases due to Hebbian learning, and X2 itself is also increasing.

Performance still converges at a high value due to an increase of intrinsic motivation,
which is caused by a stabilising X7 (acquirable skill belief). This effect of acquirable
skill belief can be seen in Fig. 3, upper graphs. Two graphs are shown wherein the graph
on the left everything is initially set to 0, and in the graph on the right, there is no effect of
acquirable skill belief. Thismeans that X7 does not have an effect on intrinsicmotivation.
The connection weight value from X7 to X3 is put to 0, and a decrease in performance
can be noticed in the graph. On the other hand, overconfidence has a negative effect
on performance. This can be seen in Fig. 3, left under. In this scenario, X9 does not
have an effect on intrinsic motivation anymore which eventually leads to an increase of
performance in comparison with the base model.

Fig. 2. Base model simulation for base states (left) and self-model states (right).

In all the above-mentioned scenarios, X8 (visualising) is set at a constant value of
1. To which puts visualising at 1 between time points 100 and 300, and otherwise at 0.
The result of this model can be seen in Fig. 3 lower right, where we can clearly see that
visualising has a positive effect on performance.

Motivation, both intrinsic and extrinsic, have an important influence on the model.
Different ratios of intrinsic and extrinsic motivation do influence the model. In the base
model, motivation has a ratio of 80% intrinsic and 20% extrinsic motivation, as we
assumed this person values intrinsic motivation more than extrinsic motivation. In Fig. 3
we experimented with two other ratios. In the first figure, motivation is 100% intrinsic
motivation, and in the third figure motivation is 100% extrinsic motivation. From the
figures, we can see that the performance is better when extrinsic motivation has a higher
share. This is due to the fact that extrinsic motivation has a negative effect on intrinsic
motivation. Therefore, when performance is at its highest, extrinsic motivation will
also be high, causing intrinsic motivation to decrease. There is no negative influence
on extrinsic motivation, so when motivation only consists of extrinsic motivation, both
performance and extrinsic motivation will eventually rise to a value of 1.
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Fig. 3. Upper graphs: effect for removing acquirable skill belief when everything is initially 0.
Lower left: without the effect of overconfidence. Lower right: effect of visualising

Fig. 4. Left: Motivation = 100% intrinsic motivation. Right: Motivation = 100% extrinsic
motivation

That extrinsic motivation has a negative effect on intrinsic motivation is due to the
previouslymentioned undermining effect. The strength of this effect can be seen in Fig. 5.
Here extrinsic motivation has more influence on intrinsic motivation. To be precise, in
the model we lowered the weights of all incoming connections of intrinsic motivation,
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except for extrinsic motivation. It can be seen that a higher undermining effect causes a
worse overall performance.

Fig. 5. Extrinsic motivation has more influence on intrinsic motivation

We also created amodel for the two-person scenario,with the context states described
in the previous section. Figure 6 shows the result of running the simulator of person 1,
where every value is initially 0 and the weight values of the connections from the context
states are also 0. This figure represents the basemodel andwewill build upon this model.
In the first experiment, we investigate how a strong connection from the context states
to person 1’s intrinsic motivation influence its performance, and this will represent the
“friend” model. In Fig. 7 on the left, we see what happens in that case if both context
states, performance and intrinsic motivation, are high, and in Fig. 7 on the right, we see
what happens if only performance is high and intrinsic motivation is low. There is a clear
difference in performance, where the first case has a higher performance.

In our second experiment, we show how a strong connection from the context’s
performance state to person 1’s extrinsic motivation influences person 1’s performance.
This represents the “rival” model, where the person is only extrinsically motivated by the
other person’s performance. Here we investigate two cases where we make a difference
between how important extrinsic and intrinsic motivation is for person 1. We do this by
changing the weights of extrinsic and intrinsic motivation to the motivation of person
1. In the first case it is the same as the base model and the result can be seen in Fig. 8
on the left, in the second case we switch the ratio to 80% extrinsic motivation and 20%
intrinsic motivation and the result can be seen in Fig. 8 on the right. In this competitive
setting, it is clearly visible that the performance is higher when extrinsic motivation is
more important.

Finally, we look into what a balance in connections can do for a person’s learning.
All the connections from the context states are now activated and both context states are
set to 1. Moreover, motivation now is 50% extrinsic and 50% intrinsic motivation and
the result of this model can be seen in Fig. 9. In comparison with all other models of the
simplified 2 person model, this one scores the best.

The models, for both the single and two-person models, show interesting results
which give an insight into how different aspects influence a person’s motoric learning
ability. In the next section, we will use these results to answer our research questions.
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Fig. 6. Base result simplified two-person model

Fig. 7. Friend model, Left: second person high intrinsic motivation, Right: second person low
intrinsic motivation.

Fig. 8. Competitive model, Left: Intrinsic motivation is more important to person 1, Right:
Extrinsic motivation is more important to person 1.
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Fig. 9. Competition and cooperation are both important for person 1.

5 Verification and Validation of the Model

This section is meant for the verification of our model. At first, the model is analysed
mathematically, where we verify that the stationary points are as expected. Secondly,
we generate our own data based on the literature and tune several parameters to fit our
model to the data.

For mathematical verification, a state Y has a stationary point if dY(t)/dt = 0.
According to (1) and (2), this is equivalent to the following criterion:

Y = 0 or   cY( X1,YX(t), …., Xk,YX(t)) = Y(t) (4)

For the mathematical analysis, we looked at the one-person model and see whether
the resultingmodel is accurate.We took the final time point, namely 400, as the stationary
point for all states, because it is clearly visible that all states do not change anymore. To
calculate the aggregated impact for the states, per state we summed over all the weighted
incoming connections and used that value as input for the combination function of the
state. The formulas used can be seen in Table 1. The result of this for every base state can
be seen in Table 2. For all states, we get a correct aggregated impact with an accuracy
of <10–4. We also did the analysis on the two-person model, and this result can be seen
in Table 3. Again, the accuracy for all states is <10–4.

For the validation by parameter tuning, we used the one-person model. We could not
find data online we could use, so we generated our own data based on scores for results
found in the literature. In our data, we will take several factors into account. At first, the
intrinsic motivation is increased due to a high acquirable skill belief (Wattie and Baker
2017).

This increase in motivation will also increase performance (Wasserman andWasser-
man 2020), though it will increase slower. With the performance increasing, two things
will happen. Firstly, due to the performance increase, extrinsic motivation will also
increase. This will cause an undermining effect, which will decrease intrinsic motiva-
tion (Benabou and Tirole 2003, p. 490). Moreover, the confidence will increase at such
a level that its effect on intrinsic motivation will be less, or even make it decrease (Ben-
abou and Tirole 2003). But eventually, the model will find a stationary point where the
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Table 3. Aggregated impact for all base states in the single person model, with their accuracy.

State Xi X1 X2 X3 X4 X5 X6 X7 X8 X9

Time point t 400 400 400 400 400 400 400 400 400

Xi(t) 0.8747 0.8434 0.7945 0.8043 0.8434 0.8434 0.1566 1 0.0755

aggimpactXi(t) 0.8747 0.8434 0.7945 0.8043 0.8434 0.8434 0.1566 1 0.0755

deviation <10–4 <10–4 <10–4 <10–4 <10–4 <10–4 <10–4 <10–4 < 10–4

performance will still have increased. The resulting data can be found in the mentioned
Appendix.

The parameters which were tuned are all (non-adaptive) speed factors, the weights of
the incoming connections of intrinsic motivation, the combination function parameters
of intrinsic motivation, and the Hebbian function parameter. All initial values are set to 0
and visualising has no effect on confidence and practice. We ran the simulated annealing
algorithm, and after 7000 iterations the best RMSE was 0.08793. An overview of the
parameters with their values can be seen in the Appendix, and the resulting model can
be seen in Fig. 10.

Fig. 10. Simulation of the model with the tuned parameters.

The fit is decent, but it is not as curvy as was expected in the data. The differences
between the chosen values for the parameters and the values we used in the previous
sections are mostly visible in the speed factors and alogistic parameters. Firstly, almost
all speed factors are much lower, except for confidence and the second-order state for
the Hebbian weight between extrinsic motivation and intrinsic motivation. Secondly,
the values for the alogistic parameters of intrinsic motivation are completely different,
the steepness almost doubled and the threshold is much lower. This has also caused the
incoming connection weight values for intrinsic motivation to be lower than our original
model. Finally, there is a difference in the Hebbian parameter. It has increased causing
the weight of the connection from extrinsic to intrinsic motivation to be higher.
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6 Discussion

The aim of this research was to contribute to the psychological knowledge in motor
learning by helping to understand how people with certain personalities, alone and in
pairs, are being influenced by several factors during their motor learning process. This
was done by addressing several research questions. In this section, these questions are
addressed and answered by means of a discussion based on our results. Subsequently,
we reflect on our choices and results and give several options for future research.

First of all, with regard to individual motor learning, we did observe a difference
in performance when acquirable skill belief is mitigated, namely the performance will
decrease. However, the biggest difference can be seen when every other value is initially
set to 0. Then we can really see the effect of acquirable skill belief, which makes a lot of
sense. When everything is initially low, there is a lot of skill to be acquired. And when
the person believes in this acquirable skill, it will motivate him or her to practice.

In addition, visualising appears to have a positive effect on confidence. Moreover,
it also positively affects practice, and both these effects cause an increase in perfor-
mance. In our results, we however do not observe a long-term influence of visualising.
When visualising increases we see a clear increase in performance, but when visualising
decreases again the performance decreases to its previous value.

Regarding overconfidence, this has a negative effect on performance. Confidence
definitely is beneficial for the performance, however, when there is toomuch confidence,
a negative influence on performance is established. Though there is a negative influence
of overconfidence, this influence is rather small.

To continue, intrinsic and extrinsic motivation both have a positive influence on
performance. However, due to the undermining effect, extrinsic motivation also has a
negative effect on intrinsic motivation and therefore a small negative effect on perfor-
mance. In the results, we can see this clearly. When we totally mitigate the effect of
intrinsic motivation on motivation, the performance of the person increases. This is
because there is no negative effect of extrinsic motivation on performance anymore.
Moreover, when extrinsic motivation has a bigger influence on intrinsic motivation,
making the undermining effect more prominent, this clearly has a negative effect on the
performance.

Regarding the influence of duo learning on the performance of an individual; the
best motivation level of a person in duo learning depends on the setting. In a teamwork
setting, the person performs best when the other person is not only performing well but
motivated as well. This is a nice representation of how empathy works, where a person
performs well when it feels that the other is intrinsically motivated. In a competitive
setting, where the person is solely motivated by performing better than the opponent, the
best mindset is also a competitive mindset. There is no intrinsic motivation to be gained
by the other person performing well, and getting the motivation only from extrinsic
motivation will then increase the performance.

From the results, we can also conclude that a person thrives when there is a balance
of competitiveness and cooperation. As previously mentioned, in a competitive setting a
competitive mindset does perform better than a non-competitive mindset. But the perfor-
mance is still worse than when the people are cooperating well. The best performance
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can be achieved when there is cooperation, but also including some competitiveness.
This competitiveness is needed to keep the person on edge to perform better.

Altogether, the performance in motor learning on an individual is influenced by
several individual dynamics. The acquirable skill belief appears to have influence when
everything is initially zero, as when the person believes in this acquirable skill, it will
motivate him or her to practice and therefore increase the performance inmotor learning.
Regarding visual learning, it appears to have an influence on confidence and practice and
therefore increases the performance in motor learning. However, no long-term influence
was indicated. To continue, too much confidence seems to have a small negative effect
on the performance in motor learning. Lastly, both intrinsic and extrinsic motivation
have a positive influence on performance. However, due to the undermining effect,
extrinsic motivation also has a negative effect on intrinsic motivation and therefore a
small negative effect on performance. On top of that, the performance in motor learning
of an individual is also influenced by several duo dynamics. In a teamwork setting, the
individual performs best in motor learning when the other person is not only performing
well but also motivated. In a competitive setting, where the person is solely motivated by
performing better than the opponent, the best mindset to reach the highest performance
in motor learning is a competitive mindset. Lastly, someone’s performance in motor
learning thrives when there is a balance between competitiveness and cooperation.

To briefly reflect on this research, a non-adaptive state is used to incorporate the
influence of the acquirable skill belief on the performance in motor learning. However,
by doing this, the state of acquirable skill belief increases immediately without any per-
formance, because this is modelled as such. By making the state adaptive, the acquirable
skill belief remains zero at the beginning of the simulation, resulting in a more realistic
representation. Future research could explore this line of thought.

In addition, this research incorporated several factors of influence regarding the per-
formance in motor learning. However, many other factors of influence exist. To name a
few social factors, the way someone gets instructed or how someone receives feedback
might be important. But also the memory of someone or the possibility of errors with
regard to the motoric activity are valuable for consideration (Cano-De-La-Cuerda et al.
(2015). Further research could focus on enhancing the breadth of this model by incorpo-
rating those factors of influence as well. Moreover, further research could also centre its
attention towards a deeper understanding of the factors which are incorporated. Extrinsic
motivation, for example, is not just influenced by the performance of him or herself, or
of someone else. The extrinsic motivation assumingly is, for example, also influenced
by the type of reward someone gets offered. Lastly, this research indicated that it is quite
difficult to compare the single-person model with the two-person model, as both models
are distinguishable. Further research may also focus on designing an integrated model
which enables a comparison of both.
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Abstract. Raw EEG signal is dynamically collected from electrode
channels distributing on the scalp surface and stored in computers as
a 2D array of electrode channel (space) and time. In the past, most
experiments were based on pure 2D EEG signal array of space and time.
Shallow FBCSP ConvNet [5] is one of the successful models in handling
2D EEG signal array, which comes from FBCSP algorithm [4], a widely
used algorithm in EEG decoding. With an original cropping strategy,
Shallow FBCSP ConvNet reaches a high accuracy in EEG signal classi-
fication. In this paper, we propose a new cropping strategy to generate
3D EEG signal array of space, time and cropped piece. With redesigning
the existing 2D Shallow FBCSP ConvNet model to become a 3D model,
we obtained a good experimental result.

Keywords: 2D EEG signal · Shallow FBCSP ConvNet · Cropping
strategy · 3D array

1 Introduction

Brain computer interface (BCI) is a technology that establishes a direct connec-
tion path between human or animal brain and external equipment. BCI tech-
nology based on electroencephalography (EEG) is an effective and successful
technology so far, which benefits from the non-invasive and easy acquisition of
EEG signal and good time resolution.

BCI technology based on EEG has been widely used in many fields, such
as motor imagery [1], sleep stage analysis [2], emotion recognition [3] and so
on. In the field of motor imagery, this technology can help people with physical
disabilities achieve brain manipulation of wheelchairs and other equipment to
achieve limb movement; In the field of sleep state analysis, this technology can
help doctors analyze patients’ sleep state to monitor and diagnosing the disease.

Nowadays, the implementation of BCI technology based on EEG is roughly
divided into two steps: 1) EEG raw signal processing including data preprocess-
ing, such as filtering, artifact removal, and key feature extraction techniques. 2)
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Pattern recognition of the processed signal usually using machine learning tech-
nology to classify the input features. In this paper, after simple preprocessing of
EEG raw data, data cropping is carried out to generate 3D array, then convo-
lution is used to extract the three dimensional features respectively to generate
feature vectors, and finally the feature vectors are classified.

2 Related Work

2.1 FBCSP - Filter Bank Common Spatial Pattern

FBCSP [4], a method that is widely used in EEG decoding and has won several
EEG decoding competitions on BCI competition IV 2a and 2b, is the model
source of Shallow FBCSP ConvNet which is used in our experiment. The pipeline
of FBCSP is shown as follows (see Fig. 1):

1. Band-Pass Filtering: The first stage employs a filter bank that decomposes
the EEG into multiple frequency pass bands ranging from 4–8Hz, 8–12Hz,...,
36–40Hz, which cover 4–40Hz (the frequency range depends on the experimental
requirements).

2. Spatial Filtering: In second stage, per frequency band, the common spatial
patterns (CSP) algorithm is applied to extract spatial filters. CSP aims to extract
spatial filters that make the trials discriminable by the power of the spatially
filtered trial signal. The spatial filters correspond to the learned parameters θφ

in FBCSP then are applied to the EEG signal.

3. Feature Selection: The third stage employs a feature selection algorithm to
select discriminative CSP features from V(xi, θφ), where xi denotes raw EEG
signal and θφ denotes the parameters in stage 2. Specifically, feature vectors are
the log-variance of the spatially filtered trial signal for each frequency band and
for each spatial filter.

4. Classifier: The forth stage employs a trained classifier to predict pretrial
labels based on the feature vectors.

2.2 Shallow FBCSP ConvNet

In [5], three convolution models have been proposed, among which the best one
is Shallow FBCSP ConvNet. The Shallow FBCSP ConvNet is designed accord-
ing to FBCSP algorithm and uses two convolutions which respectively applied
on spatial dimension and time dimension to extract features. Then follows a
mean pooling layer to downsize and a linear classification module(a full connec-
tion layer + softmax) to classify. Figure 2 illustrates the process of the Shallow
FBCSP ConvNet.
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Fig. 1. [4] Architecture of the filter bank common spatial pattern (FBCSP) algorithm
for the training and evaluation phases.

Fig. 2. [5] Architecture of the Shallow FBCSP ConvNet where 22 electrode channels
constitute spatial dimension and 534 time points constitute time dimension.
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2.3 Cropping Strategy

Cropping strategy is a common strategy in EEG signal classification to increase
the number of data samples. EEG signal is usually cropped in the time dimen-
sion, and an entire trial is divided into multiple small crops. As Fig. 3 shows,
on the left, a complete trial is pushed through network, and then the network
produces a prediction. Finally the prediction is compared to the target (label)
for that to compute loss; On the right, instead of a complete trial, crops are
pushed through the network (for computational efficiency, multiple neighbor-
ing crops are pushed through the network simultaneously and these neighboring
crops are called compute windows). Therefore, the network produces multiple
predictions(one per crop in the window). The individual crop predictions are
averaged before computing the loss function.

Fig. 3. The proposed cropping strategy.

2.4 Other ConvNets

There are other state-of-the-art models that also perform well in EEG signal classi-
fication like EEGNet [8], DeepConvNet [5]. In this paper, we also use these models
to verify whether the new cropping strategy can be extended onto other models.

3 A Novel Cropping Method for EEG Classification

3.1 A New Cropping Strategy

In this paper, we propose a new cropping strategy. Based on the original cropping
strategy [5], each crop is cut into several smaller crops, and the original crop is
called crop window. The crops in each crop window are stacked in chronological
order to form a 3D new data as input of network. This method not only retains
the data enhancement of the original cropping strategy, but also makes each crop
window have a internal chronological order. This is also in line with the practical
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significance of EEG motor imagery (for example, a hand raising action can be
disassembled into three sequential sub actions: lifting, holding and lowering).

Fig. 4. New cropping strategy: a trial produces two crop windows which have overlap-
ping parts. Each crop window produces several crops and crops are stacked in chrono-
logical order to form a 3D data.

3.2 Model Construction and Work Flow

The original Shallow FBCSP ConvNet is a two-dimensional convolution neu-
ral network, which only respectively convolutes the time dimension and space
dimension of EEG signal. After being processed by new cop strategy, the data
has the third dimension, crop number (in chronological order). Thus after con-
voluting the time dimension and space dimension, we also need to convolute the
crop number dimension (see the left picture in Table 1). This is a bit similar
to the convolution of 2D data in the time dimension after the pooling layer(see
the right picture in Table 1). But in fact, it reduces the number of convolution
operations, reduces over fitting, and is more in line with the actual practical
meaning mentioned in Sect. 3.1.

After passing the 3D data through the 3D convolution neural network, each
crop window will get an n-dimensional prediction vector P (n is the number
of motor imagery types): In the training phase: define a loss function Ψ. The
parameter is the prediction vector P and the actual label corresponding to the
vector, and then the loss vector Loss is calculated, which is used to calculate
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Table 1. The difference between 3D and normal 2D convolutional neural models

Convoluting in crop number dimension Convoluting in time dimension after pooling layer

(conv_time): Conv3d (conv_time): Conv2d

(conv_spat): Conv3d (conv_spat): Conv2d

(pool): AvgPool3d (pool): AvgPool3d

(conv_crop): Conv3d (conv_time): Conv2d

(conv_classifier): Conv3d (conv_classifier): Conv2d

the gradient descent of the Error Back Propagation algorithm. The formula is
expressed as follows:

Lossi = Ψ(h(Di), labeli),Di = [Ci1, Ci2, ..., Cij ] (1)

where Cij denotes the j − th crop of the i − th crop window and Di denotes
i− th crop window in 3D data format. Function h denotes the operation through
the network. In the evaluation phase: The prediction vectors pi from Di pass
through a specific function f to finally obtain the classification type of the trial.
In this paper, f is a simple accumulation operation Σ followed by an argmax
function.

Fig. 5. The work flow of the proposed method.
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4 Experimental Analysis

4.1 Data and Preprocessing

The data set selected in this paper is BCI_IV_2a. The sampling frequency of
data is 250Hz and there are 25 electrode channels (22 EEG channels and 3 EOG
channels). There are nine subjects in this data set, each subject conducted two
sessions on different days (as training set session and test set session respec-
tively), each session is composed of 6 runs, and each run is composed of 48
trials. Figure 6 illustrates a trial. In the preprocessing stage, The experimen-
tal data are filtered in the frequency band of 4–38Hz to eliminate interference
caused by eye movement [6]. Afterwards, we applied electrode-wise exponential
moving standardization to compute exponential moving means and variances for
each channel and used these to standardize the continuous data [7]. At last, we
extracted each trial according to –0.5 s 4 s when cue occurs. As the sampling
frequency is 250Hz and we removed the EOG channels to eliminate interference
of eye movement, each trial is represented by a 22 * 1126(4.5 * 250 + 1, we
didn’t drop the last time points) array.

Fig. 6. In each trial, the cross appears between 0–2 s, followed by the left, right, lower
and upper arrow prompts of 1.25 s. The imaginary categories are left hand, right hand,
feet and tongue respectively. Between 3 and 6 s, it is motor imagery. After 6 s, the cross
disappears and the subject begins to rest briefly.

4.2 Experimental Results of Shallow FBCSP ConvNet

The comparative experiment of this paper is carried out between new cropping
strategy +3D neural network and original cropping strategy +2D neural network
which were both based on the Shallow FBCSP ConvNet. The data processed by
the two kinds of crop strategies go through the two models in Fig. 7 respectively,
and results are shown in Table 2 and 3. For both tables, crop window is always 1001
(4 s * 250Hz + 1, We didn’t drop the last time points, neither), and the difference
is the number of crop windows. For new cropping strategy, we divided each crop
window into 3 and 6 crops respectively. 3 crops in each crop window pratically
corresponded to three sub actions: lifting, holding and lowering. 6 crops in each
crop windows was just to obtain smaller granularity while maintaining a multiple
of 3. Note that subject 4 has data problem so we didn’t experiment on it.
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Fig. 7. Two kinds of convolutional neural network according to diffirent cropping strat-
egy. The parameters are what we set in out experiment.

4.3 Experimental Results of Other Models

In addition to Shallow FBCSP ConvNet, we also experimented the new cropping
strategy on EEGNet and DeepConvNet. For both models, we used the same
cropping strategy of 3 crops per crop window. And results are shown in Table 4.

Table 2. Original cropping strategy divided each trial (time dimensional length is
1126) into 2 crop windows whose index range from 0–999 and 126–1125. New cropping
strategy divided each trial into also 2 crop windows whose index range from 1). {0–499,
250–749, 500–999} and {126–625, 376–875, 626–1125}, each crop window has 3 crops.
2). {0–499, 100–599, 200–699, 300–799, 400–899, 500–999} and {126–625, 226–725,
326–825, 426–925, 526–1025, 626–1125}, each crop window has 6 crops.

Strategy Subject ID
1 2 3 5 6 7 8 9

Original cropping strategy
+ 2D neural network

62.5% 33.0% 66.7% 32.6% 41.0% 53.1% 62.5% 70.8%

New cropping strategy
+ 3D neural network
+ 3 crops per crop window

67.4% 37.5% 73.6% 35.1% 43.1% 56.6% 69.8% 70.1%

New cropping strategy
+ 3D neural network
+ 6 crops per crop window

62.5% 35.1% 68.4% 37.5% 39.2% 54.9% 71.2% 69.8%
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Table 3. Original cropping strategy divided each trial (time dimensional length is
1126) into 3 crop windows whose index range from 0–999, 63–1035, 126–1125. New
cropping strategy divided each trial into also 3 crop windows whose index range from
1). {0–499, 250–749, 500–999}, {63–562, 313–812, 563–1062} and {126–625, 376–875,
626–1125}, each crop window has 3 crops. 2). {0–499, 100–599, 200–699, 300–799, 400–
899, 500–999}, {63–562, 163–662, 263–762, 363–862, 463–962, 563–1062} and {126–625,
226–725, 326–825, 426–925, 526–1025, 626–1125}, each crop window has 6 crops.

Strategy Subject ID
1 2 3 5 6 7 8 9

Original cropping strategy
+ 2D neural network

67.4% 39.6% 71.2% 34.7% 44.4% 56.6% 71.2% 71.5%

New cropping strategy
+ 3D neural network
+ 3 crops per crop window

71.69% 39.9% 75.7% 38.5% 45.8% 69.8% 76.4% 72.2%

New cropping strategy
+ 3D neural network
+ 6 crops per crop window

68.8% 39.6% 76.7% 35.4% 44.4% 58.3% 75.7% 74.0%

Table 4. For both models, the top line is the result of original cropping strategy with
2D neural network and the bottom line is the result of new cropping strategy of 3 crops
per crop window with 3D neural network. The results show that the effect of the new
strategy on EEGNet and DeepConvNet was not as good as that on shallow FBCSP
ConvNet.

Model Subject ID
1 2 3 5 6 7 8 9

EEGNet 56.9% 29.9% 64.6% 33.7% 36.6% 41.0% 67.7% 68.4%
63.2% 28.8% 66.7% 33.0% 36.8% 45.5% 67.7% 67.7%

DeepConvNet 53.8% 29.2% 60.1% 34.0% 39.2% 49.3% 63.9% 70.1%
61.8% 34.0% 59.7% 33.3% 41.7% 51.4% 62.5% 72.9%

5 Conclusion and Future work

Experiments show that for time series such as EEG signal, on the original com-
monly used cropping strategy, which plays the role of data enhancement, the
appropriate internal time slice of each crop window and the design of the corre-
sponding convolution model can improve the accuracy of classification, especially
for Shallow FBCSP ConvNet.

In the future, for the time series data of motor imagery with some sub actions,
the whole motor imagery sequence can be cropped according to sub actions and
one sub action corresponds to one crop which makes the whole process of training
model more practical. In this paper, every crop in each crop window shares the
convolution of time and space dimensions (conv_time and conv_spat). Future
work will try to use the way of incomplete-sharing convolution template (mean-
ing that crops in each crop window will use convolutions of different weights
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because there are some differences between sub actions) to design the model
according to the characteristics of the data set.
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Abstract. Interpersonal synchronyusuallymeans that peoplemutually adapt their
behavior to each other over time. Such behavioral adaptivity is assumed to be
driven by some form of subjective internal synchrony detection. In contrast to
objective synchrony detection by an external (third-party) observer, subjective
synchrony detection relies solely on information that is perceived by each of
the synchronizing persons. Simultaneous actions of the two persons in principle
cannot be sensed instantaneously by one of the two persons, but will involve time
lags. These time lags reflect the time differences between a person’s own actions
and the sensing of the actions of the other person. In the computational agent
model described in this paper, we explore the role of time lags in different types
of subjective synchrony detection and its involvement in behavioral adaptivity.
Multiple simulation experiments show expected types of patterns of subjective
time-lagged synchrony detection and related behavioral adaptivity.

1 Introduction

When two persons become synchronized in their behavior, they tend to experience a
number of relation benefits such as more closeness, concentration, coordination, cooper-
ation, affiliation, alliance, connection, and bonding (Accetto et al. 2018; Hove and Risen
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2009; Hu, Cheng, Pan, Hu, 2022; Kirschner and Tomasello 2010; Koole and Tschacher
2016; Palumbo et al. 2017; Prince and Brown 2022; Ramseyer and Tschacher 2011;
Sharpley at al. 2001; Tarr et al. 2016; Valdesolo et al. 2010; Valdesolo and DeSteno,
2011; Wiltermuth and Heath 2009). In order for these relational benefits to emerge, it
stands to reason that people are capable of detecting synchrony based on the (subjective)
information; e.g., (Dhamala, Assisi, Jirsa, Steinberg, Kelso, 2007) that is available via
sensing of their own actions and sensing the other person’s actions. The pathways for
sensing own actions are based on internal mechanisms whereas the pathways for sensing
actions of the other person partly involve mechanisms used in the external world and for
sensing. Therefore, it has to be taken into account that simultaneous actions of the two
persons in principle cannot be sensed instantaneously, but will involve time lags. Any
mechanism for subjective synchrony detection therefore has to incorporate this time lag.

The computational adaptive neural agent model described in the current paper intro-
duces two computational mechanisms for subjective synchrony detection using time lags
and in addition covers how these different types of synchrony detection lead to behavioral
adaptivity concerning the interaction with the other person. The model addresses intrap-
ersonal synchrony and interpersonal synchrony for three differentmodalities:movement,
affective and verbal responses. Simulation experiments were based on an experimen-
tal scenario, in which different stimuli for each of the two agents alternate over time
independently and the same holds for periods in which communication is allowed. This
work extends our previous work (Hendrikse et al. 2022c) where time differences in the
pathways toward the detector states from the own actions and sensing the actions of
the other were assumed to be non-existent. In the current paper, we describe simulation
experiments in which we varied the computations and sizes of these time lags.

The design of the adaptive neural agent model was based on the self-modeling
network modeling approach introduced in Treur (2020a, b); this is briefly described
in Sect. 3. The simulation experiments were conducted using the available dedicated
software environment; some are described in Sect. 5. In Sect. 2 background literature is
discussed and in Sect. 4 the designed adaptive neural agent model is described in more
detail. Finally, Sect. 6 contains a discussion and conclusion.

2 Background Perspectives

There is an extensive literature in the behavioral sciences describing how synchronies
between two persons can be detected from an objective external third-person (observer)
point of view; e.g., (Altmann 2011; Behrens et al. 2020; Schoenherr et al. 2019a, b). A
basic assumption here is that an external observer has objective information available on
the (movement, affective, verbal) actions of the two persons. For the sake of brevity, this
can be termed objective synchrony detection. In contrast, subjective synchrony detection
occurs when synchrony is detected by each of the two persons in the considered dyad.
These persons usually do not have access to objective information about their joint
actions. Subjective synchrony detection has a distinct profile of characteristics. The
following characteristics have been addressed in the model:

Asynchrony of Pathways: Fast Sensing of Self, Slow Sensing of Other. For someone
to notice or experience synchrony for themselves, several dedicated mechanisms and
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pathways have to be used. More specifically, this subjective form of synchrony detection
essentially depends on subjective information acquired by a person on actions (e.g.,
movements, affective reactions, verbal responses) by the self and actions by the other.
Therefore, it is crucial to consider the pathways that enable a person to sense own
and other’s actions. Roughly speaking, the pathways leading to subjective synchrony
detection within a person may be sketched as follows:

mutual interaction 
patterns of own actions  and  patterns of actions of the other 
internal sensing   and  external sensing 
patterns of sensed own actions and  patterns of sensed actions of the other 
patterns of synchrony for sensed own actions and sensed actions of the other 
subjective synchrony detector states 

Even in this simplified sequence of events, it should be noted that the internal and
external sensing processes occur in parallel, but differ in timing:Generally, sensing self is
faster than sensing the other; see also, e.g., (Rayner et al. 2009; Shelton andKumar 2010;
Thompson et al. 2014). This makes that the generated subjective information from both
sides does not refer to the same time point; due to the differently paced parallel pathways,
a time lag is created between when the two types of information become available for
processing in the brain. In the literature addressing objective synchrony detection from
an external observer viewpoint, a number of approaches have been developed to handle
time lags; e.g., (Schoenherr et al. 2019a, b). These methods have been used as inspiration
for the way in which, for the subjective synchrony detection introduced here, time lags
have been handled based on sliding (rolling) time windows.

Asymmetry of Time: Only Past, No Future. Subjective synchrony detection is also
different from objective synchrony detection in a second way. In subjective synchrony
detection, people only have information from the past available. People do not have
information available from the future, given that sensing does not address future states.
In contrast, researchers who analyze objective synchrony detection within already com-
pleted time series, in many cases future time points are freely used as well, for example,
to determine a global mean level of a signal over time. Regarding subjective synchrony
detection, this can only be done for the past. Even if these computations are only done
locally by considering some type of sliding (or rolling) window, for the subjective case
such a windowwill necessarily have a focus only on values from the past, as values from
the future are simply not available yet.

Anormality of Signals: Non-normalized Levels. A third issue that distinguishes sub-
jective synchrony detection from objective synchrony detection is that it is plausible,
at least for humans, that the level of detected synchrony depends both on timing and
strength of the signals. This is in contrast to some approaches for objective synchrony
detection where the absolute strength of signals is changed to a more relative strength
by applying a normalizing factor to the signals during the detection process.

From Subjective Synchrony Detection to Behavioral Adaptivity. After subjective
synchrony detection occurs, a subsequent issue is how this affects the interaction. For
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example, Prince and Brown (2022) suggested that synchrony induces what they call
partnered interaction, which is: ‘…real-time behavioral adaptivity between the partners,
as studied in a large literature devoted to joint action and joint agency (e.g., Accetto et al.
2018; Fairhurst et al. 2013; Izawa et al. 2008; Keller et al. 2014; Pacherie 2012)’. This
perspective is also adopted here. Two types of behavioral adaptivity are addressed:

• short term affiliation, modeled based on changed thresholds for intrinsic excitabilities
of states (nonsynaptic plasticity)

• long-term bonding, modeled based on the changed strengths of connections (synaptic
plasticity)

In the neuroscientific literature, such as (Chandra and Barkai 2016), the distinction
between synaptic and nonsynaptic (intrinsic) adaptation is discussed in some detail. A
classical notion of synaptic plasticity is Hebbian learning; e.g., (Hebb 1949; Shatz 1992).
Nonsynaptic adaptation of intrinsic excitability of (neural) states has been addressed in
more detail recently; e.g., (Chandra and Barkai 2016; Debanne et al. 2019; Zhang et al.
2021). The latter form of adaptation has been related, for example, to how deviant
dopamine levels during sleep can result in dreams that might use more associations due
to easier excitable neurons; e.g., (Boot et al. 2017). A difference in pace is assumed here
as well between the two adaptation processes that happen in parallel. The adaptation
of connections is assumed to take place at a slow pace and the adaptation of intrinsic
excitabilities at a fast pace. Finally, plasticity is often highly context-dependent according
to what is called metaplasticity; e.g., (Abraham and Bear 1996; Robinson et al. 2016). To
enable context-sensitive control of plasticity, second-order adaptation has been included,
which makes the model more realistic.

3 The Self-modeling Network Modeling Approach Used

In this section, the network-oriented modeling approach used as described in Treur
(2020a, b) is briefly introduced. This modeling approach allows to model in a network-
oriented manner any adaptive dynamical systems model, as shown in Treur (2021).
As discussed above, in this case the challenge is to model an interplay of a number of
dynamic and adaptive processes, which typically requires a complex adaptive dynamical
system.

Following Treur (2020a, b), a temporal-causal network model is characterized by
(here X and Y denote nodes of the network, also called states):

• Connectivity characteristics. Connections from a state X to a state Y and their
weights ωX,Y

• Aggregation characteristics. For any state Y, some combination function cY (..)
defines the aggregation that is applied to the impacts ωX,YX(t) on Y from its incoming
connections from states X

• Timing characteristics. Each state Y has a speed factor ηY defining how fast it
changes for a given causal impact
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The following difference equations that are used for simulation, incorporate these
network characteristics ωX,Y , cY (..) and ηY in a standard, canonical numerical format:

Y (t + �t) = Y (t) + ηY [cY (ωX1,Y X1(t), . . . ,ωXk ,Y Xk(t)) − Y (t)]�t (1)

for any state Y and where X1 to Xk are the states from which Y receives its incoming
connections. Within the software environment described in Treur (2020a, Ch. 9), a large
number of currently around 60 useful basic combination functions are included in a
combination function library. The combination functions that are applied in the model
introduced here can be found in Table 1. Here the W indicates a sliding window; for
further explanation, see Sect. 4.

Table 1. The combination functions used in the introduced neural agent model.

Advanced 
logistic sum

alogisticσ,τ(V1, …,Vk)
Steepness σ
Excitability 
threshold τ

X4-X5, X10-X16, X24-X26,
X31-X38, X45-X47, X54-X59,
X63-X71, X75-X93

Complemental 
lagged difference

compdifflagιδ,λ(W1, W2)
ιδ state 
identifier
λ time lag

X18-X23, X39-X44 
(synchrony detectors)

Complemental 
one-sided lagged 
average difference 

compdifflag1avιδ,λ(W1, W2) 
ιδ state 
identifier
λ max time lag

X18-X23, X39-X44
(synchrony detectors)

Stepmod stepmodρ,δ(V) Repetition ρ
Step time δ

X2 (stimulus person A) 
X60-X62, X72-X74
(communication channels)

Stepmodopp stepmodoppρ,δ(V) Repetition ρ
Step time δ X1 (stimulus person B)

Euclidean eucln,λ(V1, …,Vk)
Order n
Scaling factor λ

X6-X9, X27-X30 (sensing)
X48-X53 (communication)

Function Notation Formula Parameters Used for

The two combination functions in the second and third row address different
approaches for synchrony detection based on sliding windows for time lags; they were
specifically developed and included in the library for the research reported here. They
will be explained in Sect. 4.

By using a self-modeling network (also called a reified network), a similar network-
oriented conceptualization can also be applied to adaptive networks; see Treur (2020a,
b). This works through the addition of new states to the network (called self-model states)
which represent (adaptive) network characteristics. In the graphical 3D-format as shown
in Sect. 4, such additional states are depicted at a next (higher) level (called self-model
level or reification level), where the original network is at the base level.

As an example, the weight ωX,Y of a connection from state X to state Y can be repre-
sented (at a next/higher self-model level) by a self-model state namedWX,Y . Similarly, all
other network characteristics from ωX,Y , cY (..) and ηY can be made adaptive by includ-
ing self-model states for them. As another example, an adaptive excitability threshold
τY (as parameter for a logistic combination function) for state Y can be represented by
a self-model state named TY and an adaptive speed factor ηY can be represented by a
self-model state named HY . As the outcome of self-modeling is also a temporal-causal
network model itself, as has been shown in Treur (2020a, Ch. 10), this self-modeling



374 S. C. F. Hendrikse et al.

network construction can easily be applied iteratively to obtain multiple orders of self-
models (first-order, second-order, …). The second-order self-model level can be used
to make the adaptation speed context-sensitive as addressed by metaplasticity literature
such as Abraham and Bear (1996); Robinson et al. (2016). For instance, the metaplastic-
ity principle ‘Adaptation accelerates with increasing stimulus exposure’ formulated by
Robinson et al. (2016) has been modeled by using second-order self-model states for the
introduced model, as will be discussed in Sect. 4. Such a second-order self-model may
include a second-order self-model state HwX,Y representing the speed factor ηwX ,Y

for
the dynamics of first-order self-model state WX,Y , which in turn represents the adap-
tation of connection weight ωX,Y . Similarly, a second-order self-model may include a
second-order self-model state HTY representing the speed factor ηTY

for the dynamics
of first-order self-model state TY , which in turn represents the adaptation of excitability
threshold τY for Y.

4 The Adaptive Neural Agent Model

In this section, the introduced adaptive neural agent model is explained in some detail.
The controlled adaptive agent design uses a self-modeling network architecture of three
levels as discussed in Sect. 3: a base level, a first-order self-model level, and a second-
order self-model level. Here the (middle) first-order self-model level models how con-
nections of the base level are adapted over time, and the (upper) second-order self-model
level models the control over the adaptation. In the Appendix available as Linked Data at
URL https://www.researchgate.net/publication/359993066 detailed explanations of all
states and a complete specification of the model by role matrices can be found. Figure 1
shows a graphical overview of the base level of the agent model (agents are indicated
by the big boxes).

Sensing, Sensory Processing, Conscious Emotions, Preparing and Acting. In Fig. 1,
the boxes indicate agents, where states involved in sensing can be found on the left-hand
side, and states involved in execution or expression of actions (move, exp_affect, talk) on
the right-hand side. Within a box the agent’s internal mental states are depicted: sensory
representation states (rep), preparation states (prep) for each of the three modalities
(movement m, expression of affect b, and verbal action v), and a conscious emotion
state. The representation states for the modalities have outgoing connections to the
corresponding preparation states and incoming (prediction) connections back to model
internal mental simulation (Damasio 1999; Hesslow 2002).World states are modeled for
dynamic stimuli sensed by the agents and the world situation’s suitability for enabling
interaction ismodeled similarly. Finally, two context statesmodel the (default) conditions
to maintain excitability thresholds.

TheSynchronyDetector States andTheir IncomingPathways. Six synchrony detec-
tor states (depicted in Fig. 1 by the darker pink diamond shapes) are introduced, three
intrapersonal synchrony detector states for the three pairs of the three modalities: move-
ment - emotion (m-b), movement - verbal (m-v), emotion - verbal (b-v). These synchrony
detector states have incoming connections from the two execution states for the modal-
ities they address. Following Grandjean et al. (2008), the conscious emotion state is

https://www.researchgate.net/publication/359993066
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triggered by incoming connections from the preparation state for affective response b
together with the three intrapersonal synchrony detector states. In addition, the con-
scious emotion state has an incoming connection from the verbal action execution state
(for noticing the emotion in the verbal utterance) and an outgoing connection to the
preparation of the verbal action (for emotion integration in the verbal action preparation).

In addition, three interpersonal synchrony detector states are included for the three
modalitiesm, b, and v. Each of themhas two incoming connections: from the sensing state
(used for representing the action of the other person) and the execution state (representing
the own action) of the modality addressed.

As discussed conceptually in Sect. 2, acquiring information about the actions from
the other person follows a longer and therefore slower pathway (via the external world
and sensors) than for the own actions. In Figs. 1 and 2 it can be seen that the pathways
for sensing the own actions and for sensing the actions of the other person are indeed of
different lengths.

Fig. 1. Base level of (1) the introduced adaptive neural agent model (upper picture) with three
modalities and (in dark pink) six synchrony detector states for intrapersonal synchrony and
interpersonal synchrony and (2) how the agents interact (lower picture) according to the three
modalities. (Color figure online)
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The pathways for sensing own actions are the one-connection pathways from exe-
cution states directly to detector states: the upward arrows from states move, exp_affect
and talk in Fig. 1. More specifically, for internal sensing for intrapersonal synchrony
detectors within an agent A just the following one-step internal pathways are used

Moreover, for internal sensing for interpersonal synchrony detectors the following
one-step internal pathways are used

In contrast, the pathways for external sensing of the actions from the other person
are three-connection pathways, first frommove, exp_affect and talk to world states, next
from world states to sensing states, and finally from sensing states to detector states.

movem,B → wsm,B,A → senseB,m, A → intersyncdetB,A,m

exp_affectb,B → wsb,B,A → senseB,b, A → intersyncdetB,A,b

talkB,A,v → wsv,B,A → senseB,v, A → intersyncdetB,A,v

To cope with the time lags caused by these differences in pathways, for the detector
states time-lagged forms of synchrony detection are used based on the two combination
functions shown in the second and third row in Table 1. For each detector state, each of
these functions consist of a detector-state-specific sliding window denoted byW (ιδ, λ)
for time lagλ (to the past) and state identifier ιδ, eachwithλ+1values. The combination
function described in the second rowworks according to one uniform globally fixed time
lag λ according to the formula in Table 1, row 2. The combination function in the third
row considers multiple (one-sided to the past) time lags ν between 0 and some maximal
time lag λ for the past and takes averages for them according to the formula in Table
1, row 3. These combination functions for two (heuristic) methods for subjective time-
lagged synchrony detection have been applied as alternative options and compared for
different simulation scenarios.

The Synchrony Detector States and Their Outgoing Pathways. Tomodel the behav-
ioral adaptivity induced by the synchrony detection, for some states and connections
involved in the interaction, their excitability and connection weights are adaptive. Here,
two different time scales for the adaptations are considered. On the short-term, the
excitability of such states is enhanced, so that these states become more responsive or
sensitive. On the long-term, the weights of such connections are made stronger so that
propagation between states is strengthened (a form of a more endurable bonding). The
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Fig. 2. Overview of the overall second-order adaptive network model.

more synchrony is detected, the lower the excitability thresholdswill become (short-term
adaptation) and weights for these connections will slowly become stronger (long-term
adaptation); each type of all these adaptations contributes in its own way (and time
scale). This makes the sensed signals more accessible to the brain and expressions of
modalities to the other agent stronger. These forms of adaptivity were modeled using
the notion of self-modeling of the network model:

• first-order self-model T-states TY for short-term adaptation of the adaptive base
excitability thresholds τY , for the internal representation states and execution states Y
for the three considered modalities (movement, affective response and verbal action)

• first-order self-modelW-statesWX,Y for adaptation of the adaptive connectionweights
ωX,Y for internal connections from sense states to representation states and from
preparation states to execution states

• second-order self-modelHT-states to control the adaptationof the adaptive excitability
thresholds τY and second-order self-modelHW-states to control the adaptation of the
adaptive base connection weights ωX,Y ; this follows the second-order adaptation (or
metaplasticity) principle ‘Adaptation accelerates with stimulus exposure’ (Robinson
et al. 2016)

5 Simulation Results

To investigate the effect of time lags on the synchrony detection and consequently on the
induced behavioral adaptivity, several simulation experiments during 1440 time units
(2880 iterations) have been conducted for a variety of lags, both for synchrony detection
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based on a single time lag (using the combination function in row 2 of Table 1) and for
synchrony detection based on an average over multiple time lags (using the combination
function in row3 of Table 1). Experimentswere donewith lag sizes of 2, 3 and 5, and a lag
of 0 as a base simulation to compare the results of the simulations with the different lag
sizes against. These different lag sizes have been chosen in such a way that the estimated
highest value of synchrony detection based on the lengths of the different pathways is
approximately in the middle (a lag size of 2.5). All simulations use two different stimuli
for the two agents in a repetitive way: for agent A value 1 for time 0–120 and value 0
for time 120–180, for agent B value 0 for time 0–60 and value 1 for time 60–180, and
so on. Moreover, repetitive intervals of 30 time units were used where the environment
enables or does not enable (verbal and nonverbal) communication: 0–30 not enabling
communication, 30–60 enabling communication, and so on.

To get an idea of the general behavior of the agents, the results of all the states of
one example of these simulations (for the specific settings of the network characteristics
specified in the above-mentioned Appendix) is depicted by the three graphs in Fig. 3.
Note that first a period of relatively complex and variable patterns occurred (Fig. 3),
whereas after a while more ordered forms of behavior emerged, presumingly due to the
synchrony-induced long-term behavioral adaptivity. In the latter period it is seen that
interpersonal synchrony is systematically high in the communication enabling intervals.
The two forms of (short-term and long-term) synchrony-induced behavioral adaptivity
are illustrated in the lower graphof Fig. 3: theW-states (representing connectionweights)
for long-term adaptivity start at 0.4 and meander upward to around 0.8 and the T-states
(representing excitability thresholds) for short-term adaptivity start at 0.7 and fluctuate
with the communication enabling periods: low, down to 0.2, when communication is
enabled (and therefore high interpersonal synchrony is detected), and higher, around
0.4, when communication is not enabled. The same patterns of results, including the
apparently two kinds of episodes (more chaotic patterns followed by ordered patterns),
were obtained in all simulation patterns. Therefore, the simulation results are evaluated
over the first and second half of the time interval within a simulation.

An overview of the outcomes of the simulation experiments is shown in Tables 2
(averages over time period 0–720) and 3 (averages over time period 721–1440). In each
of these tables the upper part summarizes the results for the single lag detection and the
lower part for the averages over multiple lags in the past. As can be seen, these averages
do differ for different lags but the differences are not dramatic. The yellow highlighted
numbers indicate the highest values per category. As an example, in Table 2, in the first
column of agent B for movement the base number for lag 0 is 0.522 whereas for multiple
lags up to 2 (or up to 5) the number is 0.565. The difference between these numbers
is 0.043, which makes a relative difference (with respect to the base number 0.522) of
8%. The other differences vary but in general are smaller. Roughly, it can be seen that
especially for the first phase most of these highest numbers occur for lags of 2 or 3 time
units.
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Fig. 3. Different views at one example simulation for averaged multiple time lags up to 2 time
units. Upper graph: base states except the synchrony detectors. Middle graph: time-lagged syn-
chrony detectors. Lower graph: the behavioral adaptivity T-states (short term adaptation) and
W-states (long-term adaptation).



380 S. C. F. Hendrikse et al.

Table 2. Overview of the simulation outcomes for the first 0–720 time units.

Intersync 
movement 
A

Intersync 
emotion 
A

Intersync 
verbal 
A

Intersync 
Average 
A

W-
states
A

Intersync 
movement 
B

Intersync 
emotion 
B

Intersync 
verbal 
B

Intersync 
Average 
B

W-
states
B

Lag 0 0.541 0.565 0.538 0.548 0.539 0.522 0.511 0.528 0.520 0.523
Fixed lag:

2 time units 0.539 0.577 0.546 0.554 0.569 0.526 0.507 0.530 0.521 0.535

Fixed lag:
3 time units 0.535 0.580 0.544 0.553 0.578 0.528 0.506 0.480 0.505 0.548

Fixed lag:
5 time units 0.503 0.574 0.518 0.532 0.578 0.526 0.498 0.493 0.506 0.548

Lag 0 0.541 0.565 0.538 0.548 0.539 0.522 0.511 0.528 0.520 0.523
Multiple

lags: up to
2 time units

0.541 0.571 0.543 0.552 0.551 0.565 0.549 0.552 0.555 0.527

Multiple
lags: up to

3 time units
0.540 0.573 0.544 0.552 0.559 0.564 0.547 0.506 0.539 0.531

Multiple
lags: up to

5 time units
0.536 0.576 0.542 0.551 0.570 0.565 0.545 0.537 0.549 0.539

Table 3. Overview of the simulation outcomes for time units 721–1440

Intersync 
movement 
A

Intersync 
emotion 
A

Intersync 
verbal 
A

Intersync 
Average 
A

W-
states
A

Intersync 
movement 
B

Intersync 
emotion 
B

Intersync 
verbal 
B

Intersync 
Average 
B

W-
states
B

Lag 0 0.741 0.740 0.747 0.743 0.743 0.738 0.741 0.747 0.742 0.740
Fixed lag:

2 time units
0.736 0.736 0.746 0.739 0.745 0.735 0.736 0.746 0.739 0.740

Fixed lag:
3 time units

0.731 0.733 0.743 0.736 0.745 0.732 0.733 0.743 0.736 0.742

Fixed lag:
5 time units

0.694 0.705 0.703 0.701 0.723 0.711 0.696 0.683 0.697 0.712

Lag 0 0.741 0.740 0.747 0.743 0.743 0.738 0.741 0.747 0.742 0.740
Multiple

lags: up to
2 time units

0.739 0.738 0.747 0.742 0.743 0.737 0.739 0.747 0.741 0.738

Multiple
lags: up to

3 time units
0.737 0.737 0.746 0.740 0.743 0.736 0.737 0.746 0.740 0.739

Multiple
lags: up to

5 time units
0.733 0.734 0.743 0.737 0.744 0.733 0.734 0.743 0.737 0.739

6 Discussion

Interpersonal synchrony relates to behavioral adaptivity in the interaction and relation-
ship between the synchronized persons; e.g., (Accetto et al. 2018; Hove and Risen 2009;
Kirschner and Tomasello 2010; Koole and Tschacher 2016; Palumbo et al. 2017; Prince
and Brown 2022; Tarr et al. 2016; Valdesolo et al. 2010; Wiltermuth and Heath 2009).
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To explain the relation between synchrony and behavioral adaptivity, in Hendrikse et al.
(2022c) subjective synchrony detector states were introduced and the pathways from
these detector states to the behavioral adaptivity were explored in more detail. However,
the pathways toward the detector states from the own actions and sensing the actions
of the other were assumed to be simple. As discussed in the current paper, acquiring
information about the actions from the other person follows slower pathways (via the
external world and sensors) than for the own actions. Therefore, two combination func-
tions for two (heuristic) methods for subjective synchrony detection with time lags have
been applied as alternative options and compared for different simulation scenarios. The
first function works according to a uniform globally fixed time lag. The other combi-
nation function calculates the averages over different time lags. Simulation results, as
depicted in Tables 2 and 3, do show differences for synchrony detection (and the induced
behavioral adaptivity) over different time lags applied but these differences are relatively
modest.

Computational modeling of synchrony between agents was already investigated in
earlier work such as Hendrikse et al. (2022a, b). However, in the models described there,
no internal detection of synchrony is incorporated.Moreover, in Hendrikse et al. (2022b)
no behavioral adaptivitywas covered,whereas inHendrikse et al. (2022a) another type of
adaptivity was modeled, namely of internal connections from representations to prepa-
rations. As already mentioned above, in Hendrikse et al. (2022c) also internal synchrony
detector states were used, in that case with the focus on the induced behavioral adaptiv-
ity, thereby neglecting the differences in timing of the incoming signals to these detector
states by implicitly assuming the sensing processes being synchronous. In contrast, the
current paper explored different ways in which asynchronous sensing processes for sub-
jective synchrony detection can be addressed computationally by considering time lags.
Thus, a more realistic human-like adaptive agent model was obtained for subjectively
detected synchrony. Themodel can provide a basis to develop adaptive virtual agents that
are able to concentrate and bondwith each other and in the further future with humans by
behavioral adaptivity. Furthermore, future research could consider the notion of social
presence (Tschacher et al. 2018) by dynamically detecting the time differences between
the actions of an agent itself and another agent. Our model implies that time differences
might slightly affect the simultaneously experienced presence of the two agents, because
higher interpersonal synchrony scores have been reached when a time lag was taken into
account.
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