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Abstract. Low-code development platforms are gaining popularity.
Essentially, such platforms allow to shift from coding to graphical model-
ing, helping to improve quality and reduce development time. The Cordis
SUITE is a low-code development platform that adopts the Unified Mod-
eling Language (UML) to design complex machine-control applications.
In this paper we introduce Cordis models and their semantics. To enable
formal verification, we define an automatic translation of Cordis mod-
els to the process algebraic specification language mCRL2. As a proof of
concept, we describe requirements of the control software of an industrial
cylinder model developed by Cordis, and show how these can be verified
using model checking. We show that our verification approach is effective
to uncover subtle issues in the industrial model and its implementation.

1 Introduction

Abstract models are commonly used during the design phase of software. For
example, class diagrams are used to describe the structure of a software sys-
tem, and behavioral models describe the possible executions. Model checking
can be used to verify that such behavioral models satisfy their requirements.
While model checking is a promising technique, its industrial applications are
still limited. There are several reasons for this. Among others, it is considered
tedious to create a detailed behavioral model prior to implementing the system.
Furthermore, model checking tools primarily use low-level, academic languages
that require specific expertise not typically acquired by engineers in industry.

Low-code development platforms (LCDPs) [20] are gaining popularity. Such
platforms focus on increasing the level of abstraction of software development,
shifting from coding to graphical modeling, and generating code from these low-
code models. LCDPs allow addressing both issues described above. First of all,
the detailed behavioral model is now created during specification of the system.
Second, if their semantics are well-understood, the models can be automatically
translated to the languages used by state-of-the-art model checkers.

The Cordis SUITE1 is an LCDP for machine-control applications, based on
graphic Model-Driven Software Engineering. Its development environment is the
Cordis Modeler, which uses Altova UModel2 as front-end for drawing the models.
1 https://www.cordis-suite.com.
2 https://www.altova.com.
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Cordis models are described in a rich language that uses an extension of UML [16]
class diagrams and state machine diagrams for describing the static structure and
behavior, respectively. Additionally, it includes a large fragment of Structured
Text [12]. Source code for Programmable Logic Controllers (PLCs) or the .NET
platform can be generated directly from the models. Hence, the resulting imple-
mentation is consistent with the corresponding Cordis model. Cordis, the company
developing this LCDP, has shown an interest in extending the Cordis SUITE with
model checking capabilities.

Our contributions are as follows. We describe the structure and semantics of
Cordis models, and automatically translate these to mCRL2 [9] to enable model
checking. The use of mCRL2 is motivated by the availability of its tool set [2]
with powerful verification tools such as simulation, model checking and the ver-
ification of first-order modal μ-calculus formulae [8]. We illustrate the feasibility
of modeling and verification of Cordis models using a pneumatic cylinder. We
specify, informally and formally, two typical requirements of the cylinder and
verify whether they are satisfied by the model. One of the requirements is not
satisfied by the cylinder model. We analyze its counterexample and identify a
subtle issue in the model. The issue is reproducible in the implementation. A fix
of the issue, now distributed by Cordis, is described and verified.

Related Work. A large amount of work has been done in the application of
formal verification to industrial domains. Most of this work focuses on specific
domains, such as railway infrastructure management [1,10,21] and medical appli-
cations [13,17,22]. Closer to our research are works on modeling and verification
of control software, such as CERN’s FSM language [11], which uses a strict
hierarchical architecture of finite state machines for a specific machine control
application, and OIL, developed and used by Canon Production Printing, which
has a strong focus on separation of concerns [3].

Modeling languages such as SysML and UML can be used to model systems
from any domain. The verification of state machine diagrams in these languages
has been studied extensively, see, e.g., [1,6,14,15,19,23,24]. UML state machine
diagrams are, e.g., transformed to Petri nets [15]. Others transform various
UML behavioral diagrams into a single transition system for the model checker
NuSMV [5]. The work closest to ours focuses on the verification of SysML state
machines in the railway industrial domain [1]. Like in our work, state machines
are assigned a formal semantics, and translated to mCRL2 for formal verifica-
tion. Their semantics and execution model focuses on distributed execution of
state machines communicating via queues, whereas our work focuses on a strictly
sequential execution with communication via shared variables.

Outline. In Sect. 2 we introduce Cordis models. The cylinder model is described
in Sect. 3. In Sect. 4 we describe the mCRL2 specification of Cordis models, the
requirements of the cylinder model, and the results of its verification. Discussion
and conclusions are presented in Sect. 5 and Sect. 6, respectively.
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2 Cordis Models

The Cordis SUITE is a collection of tools for developing, testing and deploying
system control software, with a focus on machine control. We consider three
of these tools. The Cordis Modeler is an LCDP for creating machine-control
applications. It uses an extension of the Unified Modeling Language (UML)
such that every Cordis model describes the structure and behavior of a machine
using class diagrams and state machine diagrams, respectively. Additionally, it
can check for design errors, and generate source code for Programmable Logic
Controllers (PLCs) or the .NET platform. The Cordis Machine Control Server
(MCS) loads model information from the modeler, and connects to the PLC
in order to exchange state information and data with the running system. The
Cordis Machine Control Dashboard (MCD) is a Human-Machine Interface used
to show live system data and live state machine diagrams when the PLC is
running, providing real-time and historical information about the execution.

2.1 Class Diagrams

Fig. 1. Cylinder class

In this paper we illustrate the syntax and
semantics of Cordis models, and their ver-
ification, using the concrete example of a
pneumatic cylinder. The static structure of
a Cordis model is described by its class
diagram. The class diagram of the pneu-
matic cylinder is described in Example 1.
Pneumatic cylinders are commonly used
in factory automation systems for clamp-
ing, ejecting and lifting, and in industrial
processes for materials handling and pack-
aging. A pneumatic cylinder consists of a
cylinder barrel with a piston that moves
back and forth by means of compressed air
controlled by electrically controlled valves.

Example 1. The cylinder we consider
moves the piston between the zero posi-
tion (completely retracted) and the end
position (extended). Its class diagram con-
sists of a single class, shown in Fig. 1.
Classes can be tagged with stereotypes
<<Machine>> and <<MachinePart>>,
respectively, denoting the machine con-
trolled by the system and a component of
it. For the sake of simplicity, we consider
the cylinder in isolation, but it typically is
a machine part in a larger machine. A class
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has properties, variables stored in the class, and operations, both tagged with
Cordis-specific stereotypes describing their role in the system.

Stereotypes <<Input>> and <<Output>> describe variables used to inter-
face with the environment, typically the hardware. Inputs iZeroPosSensor and
iEndPosSensor detect whether the cylinder is at its zero or end position, respec-
tively.The outputsoValveMoveToZeroPos andoValveMoveToEndPos are used to
actuate the valves. Stereotypes <<InputSignal>> and <<OutputSignal >>
are used to define shared variables to communicate between objects within the
model, input signals are read by the cylinder and output signals are written by
the cylinder. Stereotypes such as <<Observer>>, <<Var>>, <<Setting>>
and <<Message>> are less important for the verification and ignored in this
paper, see [25] for a more detailed explanation. Class operations, with stereo-
type <<Cmd>>, are commands issued (asynchronously) to the class, by the envi-
ronment or another component. Commands TOGGLE, MOVE_TO_ZERO_POSITION,
MOVE_TO_END_POSITION, and EmergencyStop are self-explanatory. Command
CONDITIONING can be used to force (re)initialization of the cylinder.

2.2 State Machine Diagrams

Structure. The behavior of an object is defined using a hierarchy of state machine
diagrams. Cordis state machine diagrams are similar to those defined in standard
UML [16], with some Cordis specific details.

At the highest level, a state machine diagram consists of top-level state
machines. A (top-level) state machine consists of a hierarchy of states and pseudo-
states, whose types are mostly taken from standard UML, connected by transi-
tions. A state can be a reference to a subdiagram or to a substatemachine. The key
difference between these is whether they are executed as part of the diagram that
references it (subdiagram) or separately (substatemachine). When a transition to
a substatemachine is taken, control is transferred to the substatemachine.

Transitions have a source and target state, and can optionally be labeled by
guards and actions. For a transition without guard, the guard is assumed to be
true if the source of the transition is an initial state or an exit node, or the target
of the transition is a choice node. If the source is a choice node, the empty guard
is treated as else. Otherwise, the empty guard is assumed to be false.

Example 2. Consider the top-level state machine Main of the cylinder from our
running example, shown in Fig. 2. From the initial state of Main, denoted by •,
substatemachine Disabled is reached. This substatemachine has a number of
states used to model different ways out of it (see Figs. 4 and 5). For instance,
if Disabled determines that the cylinder is in its zero position it reaches state
CondInZero, hence, guard [State(Disabled.Conditioning.CondInZero)]

evaluates to true and state machine Main takes the transition to In_Zero_Pos.

Cordis models can contain prestates and poststates to model behavior that
must be executed every time an object is allowed to execute a step, regardless of
its current state. Pre- and poststates can either appear inside a state machine,
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Fig. 2. State machine Main.

or at the top-level of the state machine diagram. The behavior of multiple pre-
and poststates is always combined into a single pre- or poststate by taking the
sequential composition of all pre- and poststates in a predefined order.

The poststate of the cylinder model updates output signals oInEndPosition,
oInZeroPosition and oEnabled to reflect the cylinder’s current position.

Semantics. Cordis models are executed using a cyclic execution model. In each
cycle all objects execute in a predetermined order defined in the class diagram.

The order of execution within an object is depicted as an activity diagram
in Fig. 3a. First the inputs are read. This essentially caches the current values
of the inputs, input signals and the currently active command in local variables.
To facilitate reasoning about the behavior of subsystems in isolation during ver-
ification, we also consider input signals and commands as free variables. Second,
the (combined) prestate of the object is executed. If a new command was sent to
the object, the guard condition is evaluated to determine whether the command
can be accepted. If the guard condition is true, the command action is executed,
otherwise the reject action is executed; these are defined in Structured Text by
the user. The command ready condition determines whether, at the end of the
current cycle, the command has been fully processed and can be removed from
the interface. If this condition is false, the command will remain on the interface;
if it is not overwritten by a new command, in the next cycle only the command
ready condition is reevaluated. Since a single command can be evaluated per
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Fig. 3. Order of execution of (a) one object, and (b) a state machine within the object.

cycle, if a new command is issued it overwrites the previous one. After the com-
mand has executed, all state machines in the object execute in a predetermined
order, in turns. Finally, the poststate is executed and the outputs are written.

Figure 3b depicts the execution of a single state machine. First, the do behav-
ior of the current active state is executed. Second, if a transition is enabled in
the current configuration, one such transition is executed. If multiple transitions
are enabled, one is selected as follows: if the source state of one enabled transi-
tion contains the source state of another enabled transition, the transition from
the outermost state is executed; transitions to other states take priority over
self-loop transitions; otherwise the first transition from a predetermined order
is executed.3 If a transition was executed, the current state is changed and the
behavior of the transition and the entry behavior of the target state are executed.
If no transition is executed, the current state is unchanged.

3 Cylinder

We now describe the behavior of the cylinder model introduced in Sect. 2.
State machine Main, in Example 2, refers to substatemachines Disabled,

MovingToZeroPosition, MovingToEndPosition, and it contains subdiagrams
InZeroPosition and InEndPosition. We next elaborate on the details relevant
for the verification, described in Sect. 4.2. For a full model description, see [25].

3 Currently, the implementation chooses the order of creation.
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Fig. 4. Substatemachine Disabled

Disabled. From the initial state of Disabled, shown in Fig. 4, if command
EmergencyStop was accepted, the system moves to subdiagram Emergency

Stop, otherwise the system moves directly to Wait_For_Conditioning. Subdia-
gram Conditioning of Disabled, shown in Fig. 5, determines, based on the cur-
rent values of the input signals, inputs and outputs, which state in Main reflects
the current situation of the cylinder using a cascade of choice nodes. The cascade of
choice nodes can be interpreted as an if ... else if ... else ... conditional.
The states without outgoing transitions are used from state machine Main to deter-
mine the appropriate exit from Disabled.

Fig. 5. State machine diagram Conditioning
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MovingToZero- MovingToEndPosition and InZero- InEndPosition. The two
substatemachines MovingToEndPosition and MovingToZeroPosition are
symmetric, and describe the behavior of the cylinder when it is moving to the end
position or to the zero position, respectively. Subdiagrams InEndPosition and
InZeroPosition are also symmetric, and describe the behavior of the cylinder
when it is completely extended or retracted, respectively.

4 Model Checking Cordis Models Using mCRL2

We enable formal verification of Cordis models through an automatic translation
of the Cordis semantics to the modeling language mCRL2 [9]. The language is
based on process algebra with data. Its associated tool set [2] can be used for
modeling, validating and verifying systems. Although mCRL2 allows specifying
communicating, parallel processes, the formalization of the semantics of Cordis
models we present in this work only uses sequential processes. In the following
subsections we describe our translation to mCRL2, see Sect. 4.1, and the for-
malization of a number of properties, see Sect. 4.2. We again use the model of a
pneumatic cylinder (see Example 1) as a running example.

4.1 Translation to mCRL2

The mCRL2 specification of Cordis models consists of a sequence of several
processes that model the behavior of the system. Essentially, each execution
step shown in Fig. 3 is represented by a process in the mCRL2 specification.

The basic building block in a process is an action, such as a, b, that can be
parameterized with data, e.g., a(0), b(false). When p and q are processes, the
sequential composition p.q denotes the process in which first p is executed and
upon termination, q is executed. The alternative composition, or choice, p + q

denotes that either p or q is executed. Recursive processes can be defined by
writing process equations of the form P = q, where P is the name of the process,
and q is a process expression in which named processes are referred to.

In the mCRL2 specification of Cordis models, all processes are parameterized
with the current configuration of the system, i.e., the current states of all state
machines, and the current values of all class properties and operations. In what
follows we sometimes omit (part of) the parameters, and write ... instead. Each
state machine in the model is identified uniquely by a nonnegative index.

Example 3. For the cylinder example discussed in this paper, the process describ-
ing the top-level of the system is as follows.
P_main(state_machine: Nat, s1: List(State), ..., cmd2: Command, cmd2_ready: Bool,

cmd2_accepted: Bool, behaviors: List(Int), ...,

M2’ToggleToZeroPosition: Bool, M2’iZeroPosSensor: Bool,

M2’iEndPosSensor: Bool, M2’oValveMoveToZeroPos: Bool,

M2’oValveMoveToEndPos: Bool, M2’iCompressedAirOK: Bool,

M2’iZeroPosSensorConnected: Bool, M2’iEndPosSensorConnected: Bool,

M2’iResetOutputsOnEStop: Bool, M2’iForceEnablingToZeroPos: Bool,

M2’iForceEnablingToEndPos: Bool, M2’oInZeroPosition: Bool,

M2’oInEndPosition: Bool, M2’oEnabled: Bool, ...) = P_set_inputs();
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The parameter state_machine tracks the state machine that is currently exe-
cuting. The current configuration of the system is tracked by, for every top-
level state machine, a list of states s1, containing the currently active states.
States are defined using sort State = struct State_(state:Nat, entry:

List(behavior), cont:List(behavior)) that is, unique identifier,state, and
entry and continuous behavior, entry and cont. For every machinepart, indexed
by an integer i, the command currently on the interface (along with some addi-
tional information) is kept in cmdi. Also class properties are stored as parameters.
The machinepart Cylinder has index 2 and, e.g., input iEndPosSensor is stored
as M2’iEndPosSensor, where M2 refers to machinepart 2.

We next focus on the most relevant parts of the mCRL2 specification follow-
ing the Cordis semantics execution. See [25] for a more detailed description.

At the beginning of each cycle, the values of the inputs are received by the
system. As the inputs are not controlled by the system, we model these by
receiving arbitrary values of the domain of the inputs.

Example 4. For the cylinder model this is formalized as follows.
P_set_inputs(..., M2’iZeroPosSensor: Bool, M2’iEndPosSensor: Bool, ...) =

sum M2’iZeroPosSensor’, M2’iEndPosSensor’: Bool
. inputs(M2’iZeroPosSensor’, M2’iEndPosSensor’)

. P_set_free_input_signals(M2’iZeroPosSensor = M2’iZeroPosSensor’,
M2’iEndPosSensor = M2’iEndPosSensor’);

In this equation P_set_inputs is a parameterized process which represents the
reception of the <<Input>> parameters. The sum denotes a generalized alterna-
tive composition that generates the choice between all four combinations of the
input parameters. Subsequently, P_set_free_input_signals is called, where
the new values of the inputs are assigned to the process parameters.

The process P_set_free_input_signals is similar to P_set_inputs, it
allows setting arbitrary values to the input signals. This process in turn calls
P_set_free_commands, which cycles through all machineparts to model com-
mands that are issued by the environment. Issuing commands is modeled by a
non-deterministic choice over all commands of the machinepart. Commands are
indexed by an integer i. If no new command is issued this is indicated by action
no_freecmd. If command i is issued this is indicated by action freecmd(i).

Once all external inputs to the system have been established, the cyclic execu-
tion of machineparts is performed. In the case of the cylinder, only machinepart
2 needs to execute. First, the prestate is executed (which is empty in case of the
cylinder). Subsequently, the command on the interface is executed.

Example 5. In the cylinder model, command MOVE_TO_ZERO_POSITION has
index 6, and it is executed using the following code.
P_command_6(..., s1: List(State), ..., cmd2: Command,

cmd2_ready: Bool, cmd2_accepted: Bool, ...) =
(isCommand2_MOVE_TO_ZERO_POSITION(cmd2) && !cmd2_accepted)

-> command(6, true)
. P_command_6_exec(behaviors = accept(cmd2), cmd2_accepted = true,

cmd2_ready = S79 in s1 || S103 in s1 || S89 in s1 || S93 in s1)
+ (isCommand2_MOVE_TO_ZERO_POSITION(cmd2) && cmd2_accepted)

-> chk_ready . P_statemachines_M2(cmd2_ready = ...);
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When a command is issued, cmd2_accepted is currently false. If the command
guard evaluates to true, the second argument of the action command is true;
otherwise it is set to false. If the command is accepted, the command accept
behavior is listed for execution, indicated by behaviors = accept(cmd2); if
the command is rejected, reject(cmd2) is assigned instead. If the command
was accepted in a previous cycle, cmd2_accepted is true, and action chk_ready

is reported. In both cases, the command ready condition is evaluated in the
assignment to cmd2_ready. Here it is true if the state machine is currently in
one of four states. If the command was just accepted, the corresponding behavior
is executed in P_command_6_exec, otherwise no transition behavior is executed.

Subsequently, the state machines execute. There is a separate process for
each top-level state machine. In the cylinder, the corresponding process for
Main is P_statemachines_S1. This cycles through all state machines in order,
and allows each state machine to take a transition. Transitions are defined
by sort Transition = struct Transition_(source:List(State), dest:

List(State), behavior:List(behavior)), that is, its source states, its target
states, and the behavior to execute if it is taken. The state machine process offers
a non-deterministic choice over all transitions in the state machines.

Example 6. We give an example of one transition in the process of the cylinder.
The other transitions are similar.
P_transitions_S1(state_machine: Nat, s1: List(State),...) =

...

+ (state_machine == 1 && (head(source(t100)) in s1)

&& (!M2’iCompressedAirOK || isCommand2_EmergencyStop(cmd2) && cmd2_accepted))

-> trans(100)

.P_execute_behaviors_S1(behaviors = behavior(t100) ++ entry(head(dest(t100))),

s1 = dest(t100) ++ remove_prefix(s1, rhead(source(t100))), ...)

+ ...

In this excerpt, t100 refers to the transition with source state Main.Enabled

and target state Main.Disabled.InitialState in Fig. 2, guarded by [NOT

InpSignal(iCompressedAirOK) OR CmdChk(EmergencyStop)].
The summand consists of a guard which says that state machine Main is exe-

cuting, i.e., state_machine == 1, and source state Main.Enabled is part of
the current configuration, i.e., (head(source(t100)) in s1). Furthermore, it
checks if command EmergencyStop was accepted using isCommand2_Emergency
Stop(cmd2) && cmd2_accepted.4 In case the condition is satisfied, the action
trans(100) is executed and P_execute_behaviors_S1 is called in order to
execute the behaviors labelling the transition (if any), behavior(t100), as
well as the entry behavior of the target state, entry(head(dest(t100))).
The next state that is reached in the state machine is dest(t100) ++

remove_prefix (s1, rhead(source(t100))), where dest(t100) is the con-
figuration reached after taking t100, and remove_prefix(s1, rhead(source

(t100))) removes all the states that are left by taking t100 from the configura-
tion. Following the priority rules, transitions that have lower priority include the
negation of the guards of all transitions with higher priority in their condition.

4 Note that in mCRL2, && (conjunction) binds stronger than || (disjunction).
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After all state machines have executed one transition and the corresponding
behavior, the poststate is executed. A pre- or poststate consists of Structured
Text code that is translated to a sequence of mCRL2 processes. The poststate
execution amounts to executing the corresponding processes.

For the poststate of the cylinder, this is modeled as follows.
P_poststate_M2(..., behaviors: List(Int), ...) =

(behaviors == []) -> post_done.P_remove_command_M2()
+ (behaviors != [] && head(behaviors) == 3)
-> post(3).P_3(behaviors = tail(behaviors));

In P_3 the process parameters are updated, reflecting the poststate assignments.
After this, P_poststate_M2 is reentered and transition post_done is taken,

and if a command was on the interface and the command ready condition was
true, it is removed from the interface and the process parameters for it are reset
to their default value. Execution subsequently repeats from the beginning.

4.2 Formal Verification of Requirements

One of the primary goals of formalizing Cordis models using mCRL2 is to enable
the formal verification of requirements. In this section, we first describe the
requirements. Subsequently we discuss their formalization.

Requirements. In total, we have formulated 12 requirements for the cylinder,
and formalized and verified them. Due to space limitations, in this section we
describe one safety requirement and one liveness requirement. For details of the
remaining requirements the reader is referred to [25].

The requirements we consider are the following two:

1. Invariantly, if one of the output signals oInEndPosition or oInZeroPosi-

tion is true, also output signal oEnabled is true.
2. Whenever output signal oEnabled is false and input signal iCompressed-

AirOK is true, inevitably output signal oEnabled becomes true unless com-
mand CONDITIONING is accepted.

Formalization of Requirements Using the Modal μ-calculus. We describe require-
ments using the first order modal μ-calculus [8]. This is a very expressive tem-
poral logic that extends the μ-calculus with data.

In general, the requirements we are interested in refer to the interfaces of the
machine parts, that is, their inputs, input signals, commands, output signals, and
outputs. The first three are set explicitly in the translation. The output signals and
outputs are only available implicitly, thus, in order to expose their values, we have
extended the translation with self-loops. For this, we use actions such as state_
M2’oInEndPosition(true), where state indicates this is a stateloop, M2 refers
to the machinepart, oInEndPosition is the name of the output, and true is its
current value. Similarly, we expose the current state of the system.

This is used to formalize the first requirement as follows.
[true*](<state_M2’oInEndPosition(true)||state_M2’oInZeroPosition(true)>true

=> <state_M2’oEnabled(true)>true)
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This formula should be read as follows. First, [true*] represents all
sequences consisting of zero or more actions. After each such sequence
the remainder of the formula should hold. For the remainder, note that
formula <a>true holds in every state with an outgoing a transition. If
we write the action formula a || b inside a modality, this matches the
set of actions containing a, b; essentially, || here denotes the union
of the sets of action represented by a and b, which are the singleton
sets containing a and b, respectively. Hence, <state_M2’oInEndPosition

(true)||state_M2’oInZeroPosition(true)>true holds in every state that
has an outgoing transition labeled state_M2’oInEndPosition(true) or
state_M2’oInZeroPosition(true). In each such state, the formula requires
that also <state_M2’oEnabled(true)>true holds, i.e., the state has an out-
going transition labeled state_M2’oEnabled(true). We refer to [9] for a more
extensive introduction to the first order μ-calculus.

The second requirement is formalized as follows.
nu X(enabled: Bool = false, compressedAirOk: Bool = false) .

(forall e: Bool . <state_M2’oEnabled(e)>true =>

((forall c: Bool . [exists a2, a3, a4, a5, a6: Bool .

free_input_signals(c, a2, a3, a4, a5, a6)]X(e,c)) &&

[!exists a1, a2, a3, a4, a5, a6: Bool .

free_input_signals(a1, a2, a3, a4, a5, a6)]X(e,compressedAirOk))) &&

(forall e: Bool . [state_M2’oEnabled(e)]false =>

((forall c: Bool . [exists a2, a3, a4, a5, a6: Bool .

free_input_signals(c, a2, a3, a4, a5, a6)]X(enabled,c)) &&

[!exists a1, a2, a3, a4, a5, a6: Bool .

free_input_signals(a1, a2, a3, a4, a5, a6)]X(enabled,compressedAirOk))) &&

(val(!enabled && compressedAirOk) =>

mu X . [!((exists a2, a3, a4, a5, a6: Bool .

free_input_signals(false, a2, a3, a4, a5, a6)) ||

command(9, true) ||

(exists b: Bool . state_M2’oValveMoveToZeroPos(b) ||

state_M2’oValveMoveToEndPos(b) ||

state_M2’oInZeroPosition(b) ||

state_M2’oInEndPosition(b) ||

state_M2’oEnabled(b)) ||

(exists i: Nat, l: List(Nat) . states(i, l))

)]X || <state_M2’oEnabled(true)>true)

This formula uses a greatest fixed point (nu) and a least fixed point (mu). The
greatest fixed point is parameterized by two Boolean variables, enabled and
compressedAirOk, that keep track of whether oEnabled or iCompressedAir

Ok have become true, respectively. In order to keep track of these values,
we distinguish two cases. If a transition state_M2’oEnabled(e) is enabled,
denoted by forall e: Bool. <state_M2’oEnabled(e)>true, we check if an
action free_input_signals is enabled. If so, we determine the value assigned
to iCompressedAirOk using forall c: Bool . [exists a2, a3, a4, a5,

a6: Bool .free_input_signals(c, a2, a3, a4, a5, a6)]X(e,c)). We
use exists inside the modality to represent generalised union, and match any
value for the rest of the input signals. We update enabled to the value observed
by the self-loop, and compressedAirOk to the value set in free_input_signals.
If free_input_signals is not enabled, only compressedAirOk is updated. The
case where state_M2’oEnabled(e) is not enabled is handled in a similar way.
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Now, if enabled is false, and compressedAirOk is true, the least fixed point
subformula needs to hold. To interpret this formula, we first note that formula
mu Y . [!a]Y || <b>true captures that inevitably a state is reached where
a b transition is enabled, unless an a transition happens. So, in principle, the
following formula denotes that, as long as iCompressedAirOk does not become
false, represented by the first argument to free_input_signals, and com-
mand CONDITIONING is not accepted, represented by command(9, true), then
we inevitably end up in a state where oEnabled is true.
mu Y . [!((exists a2, a3, a4, a5, a6: Bool .

free_input_signals(false, a2, a3, a4, a5, a6)) ||
command(9, true))]Y ||

<state_M2’oEnabled(true)>true)

However, as we extended the model with self-loops, by taking such self-loops we
trivially end up in an infinite sequence on which no state where oEnabled holds
is reached. We therefore need to exclude paths through these self-loops.5

4.3 Results

We have verified the two properties from Sect. 4.2, as well as 10 additional
requirements. For our experiments we have used Cordis Modeler version
3.14.1630. 7156 and mCRL2 tool set Release 202106.0. The cylinder model
described and studied in this paper is relatively simple, its state space after
reduction has 3049 states and 18736 transitions. This is reflected by the verifi-
cation time: each of the properties can be verified in less than 5 s. Property 2
is false, and all of the other requirements are satisfied by the model. In case a
property does not hold, the mCRL2 tool set offers a subset of the labeled tran-
sition system that underlies the cylinder specification as a counterexample that
contains sufficient information to prove that the property is violated [26]. In the
next section, we discuss the counterexample to property 2 in detail.

5 Discussion

The counterexample of requirement 2 has 39 states and 39 transitions. It is a
transitions sequence that leads to a cycle on which iCompressedAirOK remains
true and command CONDITIONING is never accepted, but oEnabled remains false,
shown in Fig. 6. The counterexample follows the execution model of Sect. 2.2. In
each cycle the state machines are executed in the predetermined order: Main,
MovingToZeroPosition, MovingToEndPosition and Disabled.

For the sake of readability, in Fig. 6, the actions which are not essential to
describe the trace are labeled with τ ; a sequence of τ transitions is denoted by
a dotted arrow labeled τ . We denote true and false as tt and ff, respectively.

5 We here rely on the fact that the additional information is only exposed through
self-loop transitions. This avoids the need for introducing an additional greatest fixed
point.
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The execution starts from the state with an unlabeled arrow pointing to it; in
the first cycle, state Main.Disabled.Wait_For_Conditioning is reached via
trans(207 ). In the second cycle, iCompressedAirOK is set to true, command
CONDITIONING is accepted, indicated by command(9 , tt), and, with trans(174 )
state Main.Disabled.Conditioning.InitialState is reached.

The third cycle starts in the loop, moving in counterclockwise direction. In
this cycle (and subsequent) iCompressedAirOK remains true, no new command
is issued, but action chk ready expresses that command CONDITIONING is still
on the interface. It follows that the self-transition in Fig. 4, trans(175 ), from
state Main.Disabled.Conditioning to state Main.Disabled.Conditioning

.InitialState, is taken. Subsequent cycles behave identically and state Main

.Disabled.Conditioning.InitialState is infinitely often re-entered.

Fig. 6. Counterexample found verifying property 2

Reproducing the Counterexample. By loading the executing PLC code in the
debugger provided by the PLC vendor and stepping through it, we can reproduce
the exact behavior of the counterexample. This increases the confidence in the
correctness of the translation to mCRL2, and proves that the counterexample
contains ample information to be efficiently reproduced in the running system.

Root Cause Analysis and Solution. The system is able to loop in the self-transition
from and to subdiagram Conditioning, in Fig. 4, because of two reasons: (1) in
Cordis models, the outermost enabled transition gets priority over more deeply
nested transitions, this is inherited from the semantics; and (2) the command con-
tinuously remains active on the interface. We focus our analysis on the latter.
Command CONDITIONING has guard condition State(Main.Disabled), com-
mand ready condition NOT State(Main.Disabled), and no accept and reject
actions. Thus, command CONDITIONING is accepted if the system currently is in



100 A. Stramaglia and J. J. A. Keiren

state machine Disabled, and the command is ready if the system leaves Disabled.
In the counterexample, when command CONDITIONING is accepted, we are in state
machine Disabled, the command ready condition is false, and the self-loop on
Conditioning has higher priority than the transitions in Fig. 5.

Based on the analysis, we observe that command CONDITIONING behaves
like a trigger that always remains high. The solution to avoid this behavior is
to modify the command ready condition from NOT State(Main.Disabled) to
true. This way, the command will only act as one single trigger to enter state
machine conditioning: when issued and accepted, command CONDITIONING stays
active on the interface for exactly one cycle. The change does not affect the rel-
evant behavior of the cylinder model. Changing the cylinder model accordingly,
and re-verifying the requirements shows that also requirement 2 holds.

6 Concluding Remarks

In this paper we have discussed the semantics of Cordis models, an extension
of standard UML used for modeling complex machine-control applications, in
order to enable the verification of these models. Even though Cordis models
are not primarily designed for formal verification, we were able to characterize
and implement an automatic translation to mCRL2. As a proof of concept we
have verified the behavior of an industrial cylinder model against a number
of requirements. Furthermore, we have shown that the verification process is
effective to find bugs, and that these can be reproduced in the actual system.

There are some aspects to the formalization and verification process that
we do not explicitly report in this paper. In particular, using earlier versions
of the Cordis modeler and the mCRL2 translation, we have uncovered inconsis-
tencies between the implementation of the models and the mCRL2 translation.
Addressing those has resulted in modifications to both the semantics in the
Cordis modeler and the mCRL2 translation. In order to understand and debug
such issues, both having clear counterexamples in mCRL2, and the ability to
step through the PLC code using a debugger have proven indispensable.

Future Work. Cordis models of complete industrial systems usually consist of
multiple interacting objects. To this end, the translator from Cordis models to
mCRL2 has been extended to deal with multiple component systems. We are
currently expanding our work to deal with such complex models. In particu-
lar, we are investigating the use of symbolic model checking techniques [4] to
deal with large state spaces. Furthermore, compositional model checking [18]
could help in the verification of large models by incrementally generating state
spaces of subsystems, reducing them, and combining them into larger subsys-
tems, prior to verification. We are investigating improvements to static analysis
tools to optimize mCRL2 models [7], and static analysis techniques such as dead
variable analysis for Cordis models, reducing state space sizes. Finally, in our
collaboration with Cordis, we are integrating model checking into the Cordis
SUITE.
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