
Deductive Verification of Smart Contracts
with Dafny

Franck Cassez(B) , Joanne Fuller, and Horacio Mijail Antón Quiles

ConsenSys, New York, USA
{franck.cassez,joanne.fuller,horacio.mijail}@consensys.net

Abstract. We present a methodology to develop verified smart con-
tracts. We write smart contracts, their specifications and implemen-
tations in the verification-friendly language Dafny. In our methodol-
ogy the ability to write specifications, implementations and to reason
about correctness is a primary concern. We propose a simple, concise yet
powerful solution to reasoning about contracts that have external calls.
This includes arbitrary re-entrancy which is a major source of bugs and
attacks in smart contracts. Although we do not yet have a compiler from
Dafny to EVM bytecode, the results we obtain on the Dafny code can
reasonably be assumed to hold on Solidity code: the translation of the
Dafny code to Solidity is straightforward. As a result our approach can
readily be used to develop and deploy safer contracts.

1 Introduction

The Ethereum network provides the infrastructure to implement a decen-
tralised distributed ledger. At the core of the network is the Ethereum Virtual
Machine [29] (EVM) which can execute programs written in EVM bytecode.
This remarkable feature means that transactions that update the ledger are not
limited to assets’ transfers but may involve complex business logic that can be
executed programmatically by programs called smart contracts.

Smart Contracts are Critical Systems. Smart contracts are programs and
may contain bugs. For example, in some executions, a counter may over/un-
derflow, an array dereference may be outside the range of the indices of the
array. These runtime errors are vulnerabilities that can be exploited by mali-
cious actors to attack the network: the result is usually a huge loss of assets,
being either stolen or locked forever. There are several examples of smart con-
tract vulnerabilities that have been exploited in the past: in 2016, a re-entrance
vulnerability in the Decentralised Autonomous Organisation (DAO) smart con-
tract was exploited to steal more than USD50 Million [13]. The total value netted
from DeFi hacks in the first four months of 2022 [8], $1.57 billion, has already
surpassed the amount netted in all of 2021, $1.55 billion.

Beyond runtime errors, some bugs may compromise the business logic of
a contract: an implementation may contain subtle errors that make it deviate
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from the initial intended specifications (e.g., adding one to a counter instead of
subtracting one).

The presence of bugs in smart contracts is exacerbated by the fact that the
EVM bytecode of the contract is recorded in the immutable ledger and cannot
be updated. The EVM bytecode of a contract is available in the ledger, and
sometimes the corresponding source code (e.g., in Solidity [11], the most popular
language to write smart contracts) is available too, although not stored in the
ledger. Even if the source code is not available, the bytecode can be decompiled
which makes it a target of choice for attackers. Overall smart contracts have all
the features of safety critical systems and this calls for dedicated techniques and
tools to ensure they are reliable and bug-free.

Smart Contracts are Hard to Verify. Ensuring that a smart contract is
bug-free and correctly implements a given business logic is hard. Among the
difficulties that software engineers face in the development process of smart
contracts are:

– The most popular languages Solidity, Vyper [27] (and in the early develop-
ment stage its offspring Fe [12]) to write smart contracts have cumbersome
features. For instance there is a default fallback function that is executed
when a contract is called to execute a function that is not in its interface.
Some features like the composition of function modifiers have an ambigu-
ous semantics [31] and developing a formal semantics of Solidity is still a
challenge [19]. There are defensive mechanisms (reverting the effects of a
transaction, enforce termination with gas consumption) that aim to provide
some safety. However, these mechanisms neither prevent runtime errors nor
guarantee functional correctness of a contract.

– Most of the languages (e.g., Solidity, Vyper for Ethereum) used to develop
smart contracts are not verification-friendly. It is hard to express safety (and
functional correctness properties) within the language itself. Proving proper-
ties of a contract usually requires learning another specification language to
write specifications and then embed the source code into this specification
language.

– Smart contracts operate in an adversarial environment. For instance, a con-
tract can call other contracts that are untrusted, and that can even call back
into the first contract. This can result in subtle vulnerabilities like re-entrancy,
which are caused by other contracts.

Our Contribution. We present a methodology to develop verified smart con-
tracts. First, we write smart contracts, their specifications and implementations
in the verification-friendly language Dafny. This is in contrast to most of the
verification approaches for smart contracts that build on top of existing lan-
guages like Solidity or Vyper and require annotations or translations from one
language to another. In our methodology the ability to write specifications,
implementations and to reason about correctness is a primary concern. Sec-
ond, we use a minimal number of contract-specific primitives: those offered at
the EVM level. This has the advantage of reducing the complexity of compil-
ing a high-level language like Dafny to EVM bytecode. Third, we propose a
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simple, concise yet powerful solution to reasoning about contracts that have
external calls. This includes arbitrary re-entrancy which is a major source of
bugs and attacks in smart contracts. To summarise, our methodology comprises
3 main steps: 1) reason about the contract in isolation, closed contract, Sect. 2;
2) take into account possible exceptions, Sect. 3.1; 3) take into account arbitrary
external calls, Sect. 3.2. Although we do not yet have a compiler from Dafny to
EVM bytecode, the results we obtain on the Dafny code can reasonably be
assumed to hold on Solidity code: the translation of the Dafny code in Solidity
is straightforward. As a result our approach can readily be used to develop and
deploy safer contracts.

Related Work. Due to the critical nature of smart contracts, there is a huge
body of work and tools to test or verify them. Some of the related work targets
highly critical contracts, like the deposit smart contracts [7,22,23], including the
verification of the EVM bytecode.

More generally there are several techniques and tools1 e.g., [2,3,9,14,15,30],
for auditing and analysing smart contracts written in Solidity [11] or EVM byte-
code, but they offer limited capabilities to verify complex functional requirements
or do not take into account the possibility of re-entrant calls.

Most of the techniques [1,4,10,16,18,20,26,28] for the verification of smart
contracts using high-level code implement a translation from Solidity (or Michel-
son for other chains) to some automated provers like Why3, F∗, or proof assis-
tants like Isabelle/HOL, Coq.

The work that is closest to our approach is [5]. In [5] a principled solution
to check smart contracts with re-entrancy is proposed and based on instrument-
ing the code. Our solution (Sect. 3.2) is arguably simpler. Another difference is
that [5] does not use the gas resource and is restricted to safety properties. Our
approach includes the proof of termination using the fact that each computation
has a bounded (though potentially arbitrary large) amount of resources. Mod-
elling the gas consumption is instrumental in the solution we propose in Sect. 3.2
as it enables us to prove termination and to reason by well-founded induction
on contracts with external calls.

2 Verification of Closed Smart Contracts

In this section, we introduce our methodology in the ideal case where the code of
a smart contract is closed. By closed, we mean that there are no calls to functions
outside (e.g., an external library or another smart contract) of the contract itself.

An Abstract View of the EVM. The Ethereum platform provides a global
computer called the Ethereum Virtual Machine, EVM, to execute smart con-
tracts.

In essence, smart contracts are similar to classes/objects in OO programming
languages: they can be created/destructed, they have a non-volatile state, and
they offer some functions (interface) to modify their state. Smart contracts are
1 https://github.com/leonardoalt/ethereum formal verification overview.

https://github.com/leonardoalt/ethereum_formal_verification_overview


Deductive Verification of Smart Contracts with Dafny 53

usually written in high-level languages like Solidity or Vyper and compiled into
low-level EVM bytecode. The EVM bytecode of a contract is recorded in the
ledger and is immutable. The state of the contract can be modified by executing
some of its functions and successive states’ changes are recorded in the ledger.

Transactions and Accounts. Participants in the Ethereum network interact
by submitting transactions. Transactions can be simple ETH (Ethereum’s native
cryptocurrency) transfer requests or requests to execute some code in a smart
contract. The initiator of a transaction must bound the resources they are will-
ing to use by providing a maximum amount of gas maxG. In the EVM, each
instruction consumes a given (positive) amount of gas. The execution of a trans-
action runs until it (normally) ends or until it runs out of gas. Before running a
computation, the initiator agrees on a gas price, gp, i.e., how much one gas unit
is worth in ETH. At the end of the computation, if there is gl gas units left,2

the initiator is charged with (maxG− gl) × gp ETH. To implement this type of
bookkeeping, the initiator must have an account, the balance of which is larger
than the maximum fee of maxG × gp ETH, before executing the transaction.

There are two types of accounts in Ethereum: a user account which is asso-
ciated with a physical owner; and a contract account which is associated with
a piece of code stored in the ledger. Both have a balance, stored in the ledger,
which is the amount of ETH associated with the account. An account is uniquely
identified by its (160-bit) address.

Execution of a Transaction. The execution of a transaction involving a con-
tract account can be thought of as a message call : an account m sends a message
to a contract account c to execute one of its functions f(·) with parameters x;
this call is denoted c.f(x). The call can originate from a user account or from a
contract account. When executing c.f(x) some information about the caller m
is available such has m’s account’s address and the maximum amount of gas m
is willing to pay for the execution of c.f(x). The caller m can also transfer some
ETH to c at the beginning of the transaction. The general form of a transaction
initiated by m and involving a contract c is written:

m → v, g, c.f(x)

where m is the initiator of the transaction, v the amount of ETH to be trans-
ferred to c before executing f(x), and g the maximum amount of gas m is willing
to pay to execute c.f(x). To reason about the correctness of smart contracts in a
high-level language (not EVM bytecode), we use some features that are guided
by the EVM semantics:

– the values of m, v, g in a transaction are fixed; this means that we can write
a transaction as a standard method call of the form c.f(x,msg, g) where
msg = (m, v) by just adding these values as (read-only) parameters to
the original function f . We specify all the contracts’ functions in this form
c.f(x,msg, g). In msg, m is the message sender, msg.sender, v the message
value, msg.value.

2 The EVM tracks the amount of gas left relative to the maximum.
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– The only requirement on the gas consumption is that every function consumes
at least one unit of gas, and similar for every iteration of a loop. We use the
gas value to reason about termination, and we do not take into account the
actual gas cost that only makes sense on the EVM bytecode.

Specification with Dafny. To mechanically and formally verify smart con-
tracts, we use the verification-friendly language Dafny [17]. Dafny natively
supports Hoare style specification in the form of pre- and post-conditions, as well
as writing proofs as programs, and offers both imperative, object-oriented and
functional programming styles. The Dafny verification engine checks that the
methods satisfy their pre- and post-conditions specifications and also checks for
the runtime errors like over/underflows. The result of a verification can be either
“no errors” – all the methods satisfy their specifications –, “possible violation”
of a specification – this may come with a counter-example – or the verification
can time out. The form of verification implemented in Dafny is deductive as
the verifier does not try to synthesise a proof but rather checks that a program
adheres to its specification using the available hints. The hints can range from
bounds on integer values to more complex lemmas. We refer the reader to [17]
for a more detailed introduction to the language and its implementation.

To model the concepts (transaction, accounts) introduced so far, we provide
some data types and an Account trait, Listing A.1. A trait is similar to an
interface in Java. It can be mixed in a class or in another trait to add some
specific capabilities. The trait Account provides two members: the balance of
the account and its type3 (contract or non-contract which is equivalent to user).
For example, a user account can be created as an instance of the UserAccount
class, line 16. A contract account is created by mixing in the Account trait and
by setting the type of the contract accordingly: for instance, the Token contract,
Listing A.2, mixes in Account providing the balance and isContract members.
For high-level reasoning purposes it is enough to define a type Address as a
synonym for Account.

Example: A Simplified Token Contract. We now show how to use our
methodology to specify, implement and reason about a simple contract: a sim-
plified Token contract. This contract implements a cryptocurrency: tokens can
be minted and transferred between accounts. The contract’s functionalities are:

– the contract’s creator (an account) can mint new tokens at any time and
immediately assign them to an account. This is provided by the mint function;

– tokens can be sent from an account from to another to provided the sender’s
(from) balance allows it. This is provided by the transfer function.

The complete Dafny code (specification and implementation) for the Token
contract is given in Listing A.2:

– the contract is written as a class and has a constructor that initialises the
values of the state variables;

3 In this paper we do not use any specific features related to the type of an account.
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Listing A.1. Datatypes and Account Trait in Dafny.

1 /** A message. */
2 datatype Msg = Msg(sender: Account , value: uint256)
3
4 type Address = Account
5
6 /** Provide an Account. */
7 trait Account {
8 /** Balance of the account. */
9 var balance : uint256

10
11 /** Type of account. */
12 const isContract: bool
13 }
14
15 /** A user account. */
16 class UserAccount extends Account {
17
18 constructor(initialBal: uint256)
19 ensures balance == initialBal
20 {
21 balance := initialBal;
22 isContract := false;
23 }
24 }

– each method has a specification in the standard form of predicates: the pre-
conditions, requires, and the post-condition, ensures;

– the Token contract has a global invariant, Ginv(). The global invariant must
be maintained by each method call. To ensure that this is the case, Ginv() is
added to the pre- and post-conditions of each method4 (inductive invariant);

– the contract is instrumented with ghost variables, and possibly ghost func-
tions and proofs. Ghost members are only used in proofs and do not need
to be executable. Moreover, a ghost variable cannot be used to determine
the behaviour of non-ghost methods for example in the condition of an if
statement;

– the sum(m) function is not provided but computes the sum of the values in
the map m;

– each method consumes at least one unit of gas and returns the gas left after
when it completes.

The Token contract has two non-volatile state variables: minter and balances.
The minter is the creator of the instance of the contract (constructor) and is
a constant, which enforces it can be written to only once. Initially no tokens
have been minted and the map that records the balances (in Token, not ETH) is
empty (line 20). In this specification the creator of the contract is free to deposit
some ETH into the contract account. Note that we can also specify Solidity-like
attributes: for instance, payable is a Solidity attribute that can be assigned
to a function to allow a contract to receive ETH via a call to this function. If
a function is not payable, ETH cannot be deposited in the contract via this
function. In our setting we can simply add a pre-condition: msg.value == 0
(Listing A.2, line 36).

4 For the constructor it is only required to hold after the constructor code is executed.
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The global invariant of the contract (line 9) states that the total amount of
tokens is assigned to the accounts in balances. The ghost variable totalAmount
keeps track of the number of minted tokens. The transfer method (line 32)
requires that the source account is in the balances map whereas the target
account may not be in yet. In the latter case it is added to the map. Note that
the initiator must be the source account (msg.sender == from, line 36).

Verification of the Simplified Token Contract. The Dafny verification
engine can check whether implementations satisfy their pre-/post-conditions. In
the case of the Token contract, Dafny reports “no errors” which means that:

– there are no runtime errors in our program. For instance the two requirements
balances[from] >= amount (line 34) and balances[to] as nat + amount
as nat <= MAX UINT256 guarantee that the result of the operation is an
uint256 and there is no over/underflows at lines 50, 51. The update of a map
m is written m[k := v] and results in a map m′ such that m′[w] = m[w], k �= w
and m′[k] = v (lines 50, 51, 72).

– The global invariant GInv() must be preserved by each method call: if it holds
at the beginning of the execution of a method, it also holds at the end. This
global invariant must also hold after the constructor has completed. If Dafny
confirms GInv() holds everywhere, we can conclude that GInv() holds after
any finite number of calls to either mint or transfer.

– There are some other pre- and post-conditions that are in the specifications.
For example, the old keyword refers to the value of a variable at the beginning
of the method and line 41 states that the balance of the from account has
been decreased by amount.

The specification of the Token contract presented in this section assumes
the pre-conditions hold for each message (method) call. In practice, this has
to be ensured at runtime: it is impossible to force an initiator to submit a
transaction that satisfies the pre-conditions of a method. However, this is a
reasonable assumption as in case the pre-conditions do not hold, we can simply
abort the execution. This kind of behaviour is supported by the EVM semantics
where it is possible to return a status of a computation and abort (similar to an
exception) the execution of the function and revert its effects on the contract’s
state. Another more serious simplification of the Token contract is that there is
no external call to another contract’s method. It turns out that external calls
can be problematic in smart contracts and are the source of several attacks.
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Listing A.2. A Simple Token Contract in Dafny.

1 class Token extends Account {
2
3 const minter: Address // minter cannot be updated after creation
4 var balances : map<Address , uint256 >
5
6 ghost var totalAmount: nat
7
8 /** Contract invariant. */
9 predicate GInv()

10 reads this `totalAmount , this `balances
11 {
12 totalAmount == sum(balances)
13 }
14
15 /** Initialise contract. */
16 constructor(msg: Msg)
17 ensures GInv()
18 ensures balance == msg.value && minter == msg.sender
19 {
20 isContract , minter , balances , balance := true , msg.sender , map[], msg.value;
21 totalAmount := 0;
22 }
23
24 /**
25 * @param from Source Address.
26 * @param to Target Address.
27 * @param amount The amount to be transfered from `from ` to `to `.
28 * @param msg The `msg ` value.
29 * @param gas The gas allocated to the execution.
30 * @returns The gas left after executing the call.
31 */
32 method transfer(from:Address ,to:Address ,
33 amount:uint256 ,msg:Msg ,gas: nat) returns (g:nat)
34 requires from in balances && balances[from] >= amount && msg.sender == from
35 requires gas >= 1
36 requires msg.sender == from && msg.value == 0;
37 requires to !in balances ||
38 balances[to] as nat + amount as nat <= MAX_UINT256
39 requires GInv()
40 ensures GInv()
41 ensures from in balances && balances[from] >= old(balances[from]) - amount
42 ensures to in balances
43 ensures to != from ==> balances[to] >= amount
44 decreases gas
45 modifies this
46 {
47 balance := balance + msg.value;
48 var newAmount: uint256 := balances[from] - amount ;
49 balances :=
50 balances[to := (if to in balances then balances[to] else 0) + amount ];
51 balances := balances[from := newAmount];
52 }
53
54 /**
55 * @param to Target Address.
56 * @param amount The amount to receiving the newly minted tokens
57 * @param msg The `msg ` value.
58 * @param gas The gas allocated to the execution.
59 * @returns The gas left after executing the call.
60 */
61 method mint(to:Address ,amount: uint256 ,msg:Msg ,gas:nat) returns (g:nat)
62 requires msg.sender == minter
63 requires gas >= 1
64 requires to !in balances ||
65 balances[to] as nat + amount as nat <= MAX_UINT256
66 requires GInv()
67 ensures totalAmount == old(totalAmount) + amount as nat
68 ensures GInv()
69 modifies this `balances , this `totalAmount
70 {
71 balances :=
72 balances[to := (if to in balances then balances[to] else 0) + amount ];
73 // The total amount increases.
74 totalAmount := totalAmount + amount as nat;
75 g := gas - 1;
76 }
77 }
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In the next section we show how to reason about smart contracts under
adversarial conditions: exceptions and external calls.

3 Verification Under Adversarial Conditions

In this section we show how to take into account adversarial conditions: in the
first section we describe how to move pre-conditions into runtime checks and
enrich our specifications to precisely account for when a function call should
revert. In the second part we propose a general mechanism to capture the possible
adversarial effects of external calls.

3.1 Aborting a Computation

As mentioned before we cannot enforce the initiator of a transaction to satisfy
any pre-conditions when calling a method in a smart contract. However, a simple
way to handle exceptional cases is to explicitly check that some conditions are
satisfied before executing the actual body of a method, and if it is not the case to
abort the computation. In the EVM semantics this is known as a revert operation
that restores the state of the contract before the transaction. The EVM has a
special opcode, Revert to return the status of a failed computation.

In the previous section, we used pre-conditions to write the specification
of the methods. We can automatically push these pre-conditions into runtime
checks at the beginning of each method. To take into account the possibility of
exceptions in a clean way, we lift the return values of each method to capture
the status of a computation using a standard return generic type of the form
datatype Try<T> = Revert | Success(v: T). If a computation is successful,
the value v of type T is returned and boxed in the Success constructor, otherwise
Revert is returned.5

The implementation of the methods6 mint and transfer can be lifted using
the return datatype Try<T> as in Listing A.3, line 1. This datatype allows for
the return of arbitrary values of type T and as a special case when no value is
returned, we can set T = Unit the type inhabited by a single value.

The new code (Listing A.3) introduces the following features:

– the conditions under the first if statements of mint and transfer (respec-
tively at lines 22 and 47) are the negation of the conjunction of all the pre-
conditions that are in Listing A.2.

– The pre-condition GInv() remains in the code. It is not a runtime check but
a property of the contract that has to be preserved. This invariant is not part
of the executable code.

– In this example of a closed contract we can characterise exactly when the
transaction should revert (r.T? is true if and only if r is of type T). For
instance the post-condition at line 7 precisely defines the conditions under
which the method should not abort.

5 Revert is sometimes called Failure and can return a string error message.
6 The constructor has no pre-condition, so we can assume it always succeeds.
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– The post-conditions at lines 15 and 40 ensures that the state of the contract
(balances) is unchanged.

Dafny returns “no errors” for this program, and we can conclude that the global
invariant is always satisfied after any number of calls to mint or transfer. The
code for each method does not enforce any pre-condition on the caller and can
be translated into runtime checks at the EVM bytecode level.

Listing A.3. The Token Contract with Revert.

1 datatype Try<T> = Revert () | Success(v: T)

2
3 method transfer(from:Address ,to:Address ,amount:uint256 ,msg:Msg ,gas:nat)

4 returns (g: nat , r: Try<()>)

5
6 requires GInv()

7 ensures // if r is of type Success

8 r.Success? <==>

9 (from in old(balances)

10 && old(balances[from]) >= amount

11 && msg.sender == from

12 && gas >= 1

13 && (to !in old(balances)||old(balances[to]) as nat + amount as nat<=MAX_UINT256 ))

14 /** State is unchanged on an revert. */

15 ensures r.Revert? ==> balances == old(balances)

16 ensures g == 0 || g <= gas - 1

17 ensures GInv()

18
19 decreases gas

20 modifies this

21 {

22 if !(from in balances && balances[from]>=amount && msg.sender ==from && gas>=1

23 && (to !in balances || balances[to] as nat + amount as nat<=MAX_UINT256) ) {

24 return (if gas >= 1 then gas - 1 else 0), Revert ();

25 }

26 var newAmount := balances[from] - amount;

27 balances := balances[to := (if to in balances then balances[to] else 0) + amount ];

28 balances := balances[from := newAmount];

29 g, r := gas - 1, Success (());

30 }

31
32 method mint(to:Address ,amount:uint256 ,msg:Msg ,gas:nat) returns (g:nat ,r: Try<()>)

33 requires GInv()

34 ensures r.Success? ==> totalAmount == old(totalAmount) + amount as nat

35 ensures r.Revert? <==>

36 !(msg.sender == minter && gas >= 1 &&

37 (to !in old(balances)||

38 old(balances[to]) as nat + amount as nat<=MAX_UINT256 ))

39 // state unchanged on a revert.

40 ensures r.Revert? ==> balances == old(balances)

41 ensures g == 0 || g <= gas - 1

42 ensures GInv()

43
44 modifies this `balances , this `totalAmount
45 decreases gas

46 {

47 if !(msg.sender == minter && gas >= 1 &&

48 (to !in balances || balances[to] as nat + amount as nat<=MAX_UINT256 )) {

49 return (if gas >= 1 then gas - 1 else 0), Revert ();

50 }

51 balances := balances[to := (if to in balances then balances[to] else 0) + amount ];

52 // The total amount increases.

53 totalAmount := totalAmount + amount as nat;

54 g, r := gas - 1, Success (());

55 }

3.2 Reasoning with Arbitrary External Calls

We now turn our attention to smart contracts that have external calls. The
semantics of the EVM imposes the following restrictions on the mutations of
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Listing A.4. The Token Contract with a Notification.

method transfer (...) returns (g: nat , r: Try<()>)
...
{

...
balances := balances[to := (if to in balances then balances[to] else 0) + amount ];
balances := balances[from := newAmount];
// External call to contract `to `.
// If we notify before updating balances , a re -entrant call may drain the contract
// of its tokens.
g, status := to.notify(from , amount , gas - 1);
...

}

state variables for contracts: the state variables of a contract c can only be
updated by a call to a method7 in c. In other words another contract c′ �= c
cannot write the state variables of c.

Assume that when we transfer some tokens to a contract via the transfer
method, we also notify the receiver. The corresponding new code for transfer is
given in Listing A.4. If the method notify in contract to does not perform any
external call itself, the segment to.notify(·) cannot modify the state variables
of the Token contract, and the Token contract invariant GInv() is preserved.
We may not have access to the code of notify(·) and may be unable to check
whether this is the case.

If notify can call another contract it may result in unexpected consequences.
For instance if the external call to the method to.notify(·) occurs before the
update of balances[from], to.notify may itself call (and collude with) from
and call from to do the same transfer again. As a result many transfers will
be performed (as long as some gas is left) and tokens will be created without
a proper call to mint. The result is that the number of minted tokens does
not correspond anymore to the number of tokens allocated to accounts, and
the global invariant Ginv() does not hold anymore after transfer. This type
of issue is commonly known as the re-entrancy problem. This vulnerability was
exploited in the past in the so-called DAO-exploit [13].

There are several solutions to mitigate the re-entrancy problem. A simple
solution is to require that calls to external contracts occur only as the last
instruction in a method (Check-Effect-Interaction pattern [6]). This is a syntactic
sufficient condition to ensure that every update on a contract’s state occurs
before any external calls. This enforces re-entrant calls to happen sequentially.
A semantic approach for taking into external calls is proposed in [5] and rely
on identifying segments of the code with external calls and adding some local
variables to capture the effects of a call and reason about it.

We propose a similar but hopefully simpler technique8 to model external calls
and their effects. Similar to [5] we do not aim to identify re-entrant calls but we
want to include and model the effect of possible external (including re-entrant)
calls and check whether the contract invariant can be violated or not. For the
7 We assume that all methods are public.
8 It can be implemented directly in Dafny with no need for extra devices.
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sake of simplicity we describe our solution to this problem on the to.notify(·)
example, Listing A.4, and make the following (EVM enforced) assumptions on
to.notify(·):
– it always terminates and returns the gas left and the status of the call (revert

or success),
– it consumes at least one unit of gas,
– it may itself make arbitrary external calls including callbacks to transfer

and mint in the Token contract. As a result there can be complex nested
calls to transfer and mint.

Our solution abstracts the call to to.notify(·) into a generic externalCall.
The new code for the transfer method is given in Listing A.5. We model
the effect of the external call to.notify(·) (line 17) by a call to the
externalCall(·) method.

The idea is that externalCall(·) is going to generate all possible re-entrant
calls including nested calls to transfer. To do so, we introduce some non-
determinism to allow an external call to callback transfer and mint. This
occurs at lines 51 and 57. Note that the parameters (from, to, amount, msg)
of the re-entrant calls are randomly chosen using the havoc<T>() method that
returns an arbitrary value of type T.

The code of externalCall works as follows:

– non-deterministically pick k and use it to decide whether a re-entrant call
occurs or not (lines 42–58). There are three options, and we use k mod 3
to select among them. If k mod 3 = 0 (and there is enough gas left), a re-
entrant call to transfer occurs. If k mod 3 = 1 a re-entrant call to mint
occurs. Otherwise, (k mod 3 = 2), no re-entrant call occurs.

– finally (lines 61–69), we non-deterministically pick a boolean variable b to
decide whether a new external call occurs.

We do not provide a formal proof that this captures all the possible re-entrant
calls9, but rather illustrate that it models several cases. First, externalCall
can simulate an arbitrary sequence mint∗ of calls to mint. This is obtained
by selecting successive values of k such that k mod 3 = 1 and then selecting
b = true. For instance, the sequence of values k = 1, b = true, k = 1, b = true,
k = 2, b = false simulates two reentrant calls to mint, i.e., mint.mint. As the
gas value is also a parameter of all the methods and can be arbitrarily large, this
model can generate all the sequences of calls in mint∗. Second, externalCall
can also simulate nested transfer/mint calls. For instance, the sequence of
values k = 0, b = true, k = 1, b = false, simulates two reentrant calls to
transfer with a nested call to mint. Third, nested calls to transfer can also
be generated by externalCall. The sequence of values k = 0, b = true, k = 0,
b = false simulates two nested re-entrant calls to transfer.

The re-entrant calls can be executed with arbitrary inputs and thus the input
parameters are havoced i.e., non-deterministically chosen and externalCall can
9 This is beyond the scope of this paper.
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Listing A.5. The Token Contract with External Calls.

1 method transfer(from:Address ,to:Address ,amount:uint256 ,msg:Msg ,gas:nat)

2 returns (g:nat ,r:Try<()>)

3
4 ... // Ensures and requires same as Listing A.3

5 {

6 if !(from in balances && balances[from]>=amount && msg.sender ==from && gas>=1

7 && (to !in balances || balances[to] as nat + amount as nat <= MAX_UINT256) ) {

8 return (if gas >= 1 then gas - 1 else 0), Revert ();

9 }

10 var newAmount := balances[from] - amount;

11 balances := balances[to := (if to in balances then balances[to] else 0) + amount ];

12 balances := balances[from := newAmount];

13 // If we swap the line above and the externalCall ,

14 // we cannot prove invariance of GInv()

15 // At this location GInv() must hold which puts a restriction

16 // on where external call can occur.

17 var g1 , r1 := externalCall(gas - 1); // to.notify( from , amount );

18 assert g1 == 0 || g1 <= gas - 1;

19 // We can choose to propagate or not the failure of external call.

20 // Here choose not to.

21 g, r := (if g1 >= 1 then g1 - 1 else 0), Success (());

22 }

23
24 /**

25 * Simulate an external call with possible re -entrant calls.

26 *

27 * @param gas The gas allocated to this call.

28 * @returns The gas left after execution of the call and the status of the call.

29 *

30 * @note The state variables of the contract can only be modified by

31 * calls to mint and transfer.

32 */

33 method externalCall(gas: nat) returns (g: nat , r: Try<()>)

34 requires GInv()

35 ensures GInv()

36 ensures g == 0 || g <= gas - 1

37 modifies this

38 decreases gas

39 {

40 g := gas;

41 // Havoc `k` to introduce non -determinism.

42 var k: nat := havoc ();

43 // Depending on the value of k % 3,

44 // re -entrant call or not or another external call.

45 if k % 3 == 0 && g >= 1 {

46 // re-entrant call to transfer.

47 var from: Address := havoc ();

48 var to: Address := havoc ();

49 var amount: uint256 := havoc ();

50 var msg: Msg := havoc ();

51 g, r := transfer(from , to, amount , msg , g - 1);

52 } else if k % 3 == 1 && g >= 1 {

53 // re-entrant call to mint.

54 var to: Address := havoc ();

55 var amount: uint256 := havoc ();

56 var msg: Msg := havoc ();

57 g, r := mint(to , amount , msg , g - 1);

58 }

59 // k % 3 == 2, no re -entrant call.

60 // Possible new external call

61 var b:bool := havoc ();

62 if b && g >= 1 {

63 // external call makes an external call.

64 g, r := externalCall(g - 1);

65 } else {

66 // external call does not make another external call.

67 g := if gas >= 1 then gas - 1 else 0;

68 r := havoc ();

69 }

70 }

71
72 /** Havoc a given type. */

73 method {: extern} havoc <T>() returns (a: T)
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generate an arbitrary number of external and re-entrant calls including nested
calls to transfer and mint.

The key ingredient that allows us to reason and prove correctness is the gas
value. We require that gas strictly decreases (line 38) after each recursive call.
This is stated in Dafny with the decreases clause. Dafny checks that the
value of the gas parameter strictly decreases on mutually recursive calls.

Our objective is now to prove, using this model of external calls, that the
global invariant GInv() of the contract is always satisfied. This seems to be a
complex task as our model includes an arbitrary and unbounded number of pos-
sibly nested external calls. The result is a mutually recursive program: transfer
can call externalCall and externalCall can call transfer or externalCall.
However, the property that the gas value strictly decreases on every call enables
us to reason by induction. As the gas decreases on each new call, the induction is
well-founded. And Dafny can indeed prove that the global invariant GInv() is
preserved by all the methods including an arbitrary number of possibly re-entrant
externalCalls. Our solution provides a way to model the effects of external calls
abstractly but conservatively while still being able to prove properties in modular
manner in an adversarial environment modelled by externalCall. Compared
to other approaches we also guarantee termination because we take into account
the minimum amount of gas that computations take.

Note that externalCall has the pre-condition GInv(). This means that in
transfer the predicate GInv() must be true before the call to externalCall.
This amounts to having restrictions on where external calls can occur. However,
without any knowledge of what external calls can do, this seems to be a reason-
able restriction. For instance, if the external call has a callback to mint we can
only prove the preservation of the invariant Ginv() if it holds before the call
to mint. Of course if we have more information about an external call, e.g., we
know it does not call back, we can also take it into account with our model: we
can adjust externalCall to reflect this knowledge.

In our example, if we swap the lines 12 and 17 (Listing A.5), Dafny cannot
verify that GInv() is preserved by transfer. The reason is that the invariant
Ginv() does not hold before the external call.

To the best of our knowledge this solution is the first that does not require
any specific reasoning device or extension to prove properties of smart con-
tracts under adversarial conditions, but can be encoded directly in a verification-
friendly language.

Running Dafny and Reproducing the Verification Results. The code
used in this paper omits some functions and proofs hints (like sum) and may not
be directly verifiable with Dafny. The interested reader is invited to check out
the code in the repository https://github.com/ConsenSys/dafny-sc-fmics to get
the full version of our contracts. The repository contains the code of the Token
contract, a simplified auction contract and instructions how to reproduce the
Dafny verification results.

The auction contract demonstrates that global invariants (GInv() in Token)
are not limited to specifying state properties but can also capture two-state

https://github.com/ConsenSys/dafny-sc-fmics
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or multi-state properties. This can be achieved by adding ghost history vari-
ables using sequences. This type of specifications is expressive enough to encode
some standard temporal logic properties on sequences of states of a contract,
e.g., “Once the variable ended is set to true, it remains true for ever” in the
simplified auction contract.

In our experiments, Dafny can handle complex specifications and the con-
tracts we have verified are checked with Dafny within seconds on a standard
laptop (MacBook Pro). The performance does not seem to be an issue at that
stage, and if it would become an issue, there are several avenues to mitigate
it: Dafny supports modular verification, so we can break down our code into
smaller methods; Dafny has built-in strategies to manipulate the verification
conditions and break them into simpler ones that can be checked independently.

4 Conclusion

We have proposed a methodology to model and reason about (Ethereum) smart
contracts using the verification-friendly language Dafny. The main features
of our approach are: i) we encode the specifications and implementations of
contracts directly in Dafny with no need for any language extensions; ii) we
take into account the possibility of failures and (arbitrary number of) external
calls; iii) we specify the main properties of a contract using contract global
invariants and prove these properties in a modular manner by a conservative
abstraction of external calls with no need to know the code of externally called
contracts.

To the best of our knowledge, our abstract model of the effect of external
calls is new and the associated proof technique (mutually recursive method calls)
is readily supported by Dafny which makes it easy to implement.

We have tested our methodology on several contracts (e.g., Token, Simple
Auction, Bank) and we believe that this technique can be used to verify larger
contracts. Indeed, we can take advantage of the modular proof approach (based
on pre- and post-conditions) supported by Dafny to design scalable proofs.

Our current work aims to automate the methodology we have presented by
automatically generating the different versions of a given contract (closed, revert,
external calls) from a simple source contract.

The approach we have presented is general and not exclusive to Dafny, and
our methodology can be implemented within other verification-friendly lan-
guages like Why3 [20], Whiley [25], or proof assistants like Isabelle/HOL [21]
or Coq [24].
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Ulbrich, M. (eds.) Deductive Software Verification: Future Perspectives. LNCS,
vol. 12345, pp. 204–218. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64354-6 8

27. Vyper Team: Documentation (2020). https://vyper.readthedocs.io/en/stable/
28. Wesley, S., Christakis, M., Navas, J.A., Trefler, R., Wüstholz, V., Gurfinkel, A.:
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