
Verification of Behavior Trees using
Linear Constrained Horn Clauses

Thomas Henn1(B) , Marcus Völker1 , Stefan Kowalewski1 , Minh Trinh2 ,
Oliver Petrovic2 , and Christian Brecher2

1 Informatik 11 - Embedded Software, RWTH Aachen University, Aachen, Germany
{henn,voelker,kowalewski}@embedded.rwth-aachen.de

2 Laboratory for Machine Tools and Production Engineering, RWTH Aachen
University, Aachen, Germany

{m.trinh,o.petrovic,c.brecher}@wzl.rwth-aachen.de

Abstract. In the field of industrial production the usage of Behav-
ior Trees sparks interest due to their modularity and flexibility. Con-
sidering Behavior Trees are used in a safety-critical domain, there is
increased interest for methods to verify a Behavior Tree’s safety. Cur-
rent approaches for Behavior Trees are only semi-automatic since they
require manually added low-level details about the action’s behavior.

In this paper, we describe an automatic verification method for safety
properties on Behavior Trees using Linear Constrained Horn Clauses
(LCHCs). Our approach encodes all components of the verification task
as CHCs, that is, the structure and semantics of the Behavior Tree, the
implemented actions in the leaf nodes and the safety property itself.
These clauses are then solved by a state-of-the-art SMT solver, leading
to an efficient algorithm for Behavior Tree verification, which we eval-
uate by comparing our method against a general purpose verification
framework.

Keywords: behavior tree · formal verification · constrained horn
clauses · software safety

1 Introduction

Behavior Trees describe the executions of agents and systems. One of the major
advantages is their modularity [10]. Complex tasks are composed of simpler
tasks, without further knowledge about the implementation of the simple tasks,
since all nodes share a common interface. This advantage and the visualization
of Behavior Trees (e.g., see Fig. 1) contribute to their popularity and helps to
design, develop, and test Behavior Trees. At first, Behavior Trees were used
to characterize the behavior of non-player characters (NPCs) in video games

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. F. Groote and M. Huisman (Eds.): FMICS 2022, LNCS 13487, pp. 211–225, 2022.
https://doi.org/10.1007/978-3-031-15008-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15008-1_14&domain=pdf
http://orcid.org/0000-0002-3090-1243
http://orcid.org/0000-0001-7348-0146
http://orcid.org/0000-0001-9397-2009
http://orcid.org/0000-0002-2611-5995
http://orcid.org/0000-0002-4861-1332
http://orcid.org/0000-0002-8049-3364
https://doi.org/10.1007/978-3-031-15008-1_14


212 T. Henn et al.

[14]. Since then, other communities, like the robotics [5,6,12,13] and artificial
intelligence communities [9,11], have used Behavior Trees to model their agents.

This usage of Behavior Trees in safety-critical environments leads to an
increasing interest in the application of formal methods on Behavior Trees.
However, the clear and intuitive graphical representation of Behavior Trees is
achieved by defining the control flow implicitly. Therefore, execution paths can
easily be overlooked.

Previous work focuses mostly on defining a clear syntax and semantics, since
no common standard, for representing Behavior Trees, exists [2–4]. A first app-
roach to verify Behavior Trees looks promising, but still needs additional input
in form of logical formulas from the user about the low-level behavior [1].

In this paper, our contribution is the demonstration of a viable approach
for an automatic (i.e., no further input about the Behavior Tree is required)
verification of Behavior Trees. Our approach is based on a logical encoding
of the Behavior Tree’s semantics. We utilize Linear Constrained Horn Clauses
(LCHCs), because solving LCHCs has been proven to be efficient [7] and their
successful usage in software verification has been presented in [8,9].

The paper is structured as follows: Sect. 2 shows the current state-of-the-
art concerning the verification and analysis of Behavior Trees. In Sect. 3, we
introduce the notion of a Behavior Tree and Constrained Horn Clauses. In Sect. 4,
we present the encoding of Behavior Trees using CHCs. The presented approach
is then evaluated on several verification tasks and compared to a general purpose
verification framework in Sect. 5. We finish with a summary and outlook in
Sect. 6.

2 Related Works

In several other works, alternative encodings of Behavior Trees which could
be used for verification purposes, are presented. In [2], the authors show how
Behavior Trees can be encoded as Communicating Sequential Processes (CSP).
The motivation behind this work is to provide a more precise formalization for
Behavior Trees since there is no standardized formalism or rigorous semantics
for Behavior Trees. CSPs are no intended to be used as a control architecture
but is suited for verifying and specifying concurrent systems. To use the CSP
formalism for verification purposes was left for future work.

Another approach which encodes Behavior Trees in a description logic is
presented in [3]. The shown encoding in description logic could be utilized for
a runtime verification that checks whether a proper action is executed. The
extension of the approach was left for future work as well as the verification
whether a given Behavior Tree is guaranteed to execute successfully.

In [21] another approach for runtime monitoring is presented. Behavior Trees
are translated into a communication channel system. The, in the paper, intro-
duced Behavior Trees only model a subset of the “classical” Behavior Trees since
parallel nodes are omitted. Also the environment is not part of the formal model
and therefore the properties can only be analyzed in a simulation or in a real
world scenario.



Verification of Behavior Trees using Linear Constrained Horn Clauses 213

The authors of [4] present an correct-by-construction approach. Linear Tem-
poral Logic (LTL) formulas are used to define the correct behavior which the
synthesized Behavior Tree has to exhibit. The approach does not allow the ver-
ification of already existing Behavior Trees.

In [1] a verification approach is presented which is based on the transforma-
tion of (sub-)trees to a collection of LTL formulas. These constructed LTL for-
mulas, representing the semantics of the Behavior Tree, are then checked against
properties encoded as other LTL formulas. The need of LTL formulas, given by
the user, which describe the semantics of the action and condition nodes, prevent
an automatic usage of the verification algorithm. The necessary level of detail
differs from property to property and should be adapted for every verification
run.

3 Preliminaries

In Sect. 3.1, we introduce the structure as well as the semantics of behaviour
trees. Afterwards, we give a short introduction to Constrained Horn Clauses in
Sect. 3.2.

Fig. 1. Example behavior tree with collision and obstacle detection.



214 T. Henn et al.

3.1 Behavior Trees

A Behavior Tree, as depicted in Fig. 1, is a directed acyclic graph with a distin-
guished root node [10]. It describes the control flow between the possible actions.
All nodes in a Behavior Tree have the same interface when it comes to the exe-
cution. A node starts its execution when it receives a tick. Each node returns one
of the following three statuses: SUCCESS, FAILURE and RUNNING. The status indi-
cates that the subtree performed its task successfully, unsuccessfully or that the
task is still in execution, respectively. The possibility, to return RUNNING, shows
that Behavior Trees are not an extension of (hierarchical) finite state machines
since a Behavior Tree does not stay in a node until the execution is complete.
The whole tree is executed by ticking the root node. Usually, this is done in an
infinite cycle, i.e. the root node is ticked again as soon as it returns SUCCESS,
RUNNING or FAILURE.

The leaves encode actions (drawn as a box) and conditions (drawn as a
ellipse). Condition nodes only return SUCCESS or FAILURE and check the condi-
tion of the system, described by the Behavior Tree, or the environment. They
also have no side effects (i.e. do not alter variables or the state of the system).
Ticking an action node corresponds to a function call which triggers the action to
be performed. If the execution of the action is not finished, RUNNING is returned.
Otherwise the successful or failed execution is reported to the parent node.

The inner nodes, also called composite nodes, of a Behavior Tree are respon-
sible for the control flow. Based on the returned status of their subtrees, they
decide which subtrees to tick next or to return a status to their parent. The
children of an inner nodes are ordered from left to right (i.e. the first child
is depicted as the leftmost child). A sequence node (represented by →) exe-
cutes is children consecutively. When a sequence node is ticked it propagates
the tick to the first child. If a child returns SUCCESS the next child is ticked. If
the child is the last one the sequence node returns SUCCESS instead since the
whole sequence was executed successfully. Whenever a child returns FAILURE
or RUNNING the sequence node stops ticking the other child nodes and returns
FAILURE or RUNNING, respectively.

Complementary to the sequence node is the selector node (represented by
?). A selector node also executes its children from left to right, but stops the
ticking of other child nodes whenever a child returns SUCCESS or RUNNING and
returns the same value to its parent. If a child returns FAILURE the next child in
order is ticked or FAILURE is returned from the selector node if the child is the
last one. Selector and sequence node have the same behavior; only the roles of
SUCCESS and FAILURE are switched.

The third type of composite node is the parallel node (represented by ⇒). A
parallel node executes its children in parallel and returns a value based on the
accumulated return values of its children. Parallel nodes are parametrized with
a variable m ∈ N which is less than or equal to the number of children. SUCCESS
is returned when at least m children finished their execution with SUCCESS. If
n − m + 1 children returned FAILURE the parallel node returns FAILURE. In all
other cases RUNNING is returned.



Verification of Behavior Trees using Linear Constrained Horn Clauses 215

Behavior Trees composed of these node types are sometimes called clas-
sic Behavior Trees. In practice there are custom nodes and extensions since
no standard exists. The idea, that sequences do not necessarily start from the
beginning, but from a child which returned RUNNING, is incorporated in sequence
with memory nodes (represented by →m). These nodes behaves similar to the
regular sequence nodes except that if the last value returned was RUNNING, the
corresponding child is ticked instead of the first child when the sequence with
memory node is ticked again. The same extension exists for selector nodes which
are called selector with memory (represented by ?m).

The BT in Fig. 1 corresponds to assembly robot which performs at task
(DoWork) if no collisions & obstacles are detected and a target is selected.

3.2 Constrained Horn Clauses

Constrained Horn Clauses (CHCs) are a structure for clauses from a first-order
logic [8]. Given sets of predicates P, functions F , and variables V a Constrained
Horn Clause is defined as formula of the following structure:

∀V.p1(
−→
X1) ∧ · · · ∧ pk(

−→
Xk) ∧ ϕ → h(

−→
X ), k ≥ 0 (1)

where p are predicates,
−→
Xi ⊆ V are subsets of variables, ϕ is a quantifier-free

formula over X and F , and h can be either a predicate or a quantifier-free
formula. A Constrained Horn Clause is called linear if k ≤ 1.

A set of CHCs is satisfiable when there exist an interpretation of all predicates
such that all implications hold. Since all variables are universal quantified, we
omit the quantifier and in the style of logic programming languages we replace
∧ by comma and reverse the implication:

h(
−→
X ) ← p1(

−→
X1), · · · ,pk(

−→
Xk), ϕ (2)

4 Encoding of Behavior Trees

In this section, we present our approach how the Behavior Trees semantics can
be encoded in linear Constrained Horn Clauses. Section 4.1 explains the general
idea and introduces a common interface and some auxiliary definitions to simplify
further explanations. The following sections propose how every node type can
be encoded using only the knowledge of their direct children which creates a
logical representation of the Behavior Tree which is as modular and flexible as
the Behavior Tree itself. After we presented the encoding of the Behavior Tree,
we show how safety properties and the environment is transformed in linear Horn
Clauses in Sect. 4.9 and 4.10 respectively.

4.1 Idea

The approach of encoding procedures with Constrained Horn Clauses, presented
in [8,9], is based on creating uninterpreted predicates which corresponds to pro-
gram locations. The SMT solver finds an over-approximation of variable valua-
tions which are valid at these specific program locations. E.g., the interpretation



216 T. Henn et al.

of a predicate loc1 with x > 0 characterizes all states at location loc1 where x is
positive.

To identify the different nodes, which could have the same type, we assign
an index i ∈ N to each node where the root node always has the index 0. The
number of children of node i is denoted with ni and the index of the j-th child
of node i is the result of the auxiliary function child(i, j). The parameterized
threshold for parallel node i is given as mi.

We also introduce two vectors of variables X and X ′ where X is a vector con-
taining all program variables as well as all variables introduced by our encoding.
X ′ is a primed copy of the vector X which is used to distinguish variables before
and after some changes. E.g., the formula y′ = y + 1 encodes the increment of
the variable y by 1.

For every node i, we add the following predicates: tick i(X), successi(X),
failurei(X) and running i(X). These predicates represent the states when a node
is ticked and when the node returns SUCCESS, FAILURE or RUNNING.

Since these four predicates exist for all nodes and the behavior of the com-
posite nodes only depends on the return value of their children, we can use these
predicates as a means to encode the semantics with CHCs.

4.2 Action Node

As mentioned before, an action node corresponds to a function in a program.
These functions are represented as Control Flow Automata (CFA) which are
directed graphs. The nodes (in the CFA) are called locations and the edges
correspond to the instructions which are performed in order to move from one
location to the next location. We omit a detailed definition of CFAs since more
information can be found in the literature [20]. These CFA have four designated
locations for the entry and exit. One entry location l0 and one for each return
value and exit location named lsuccess, lrunning, lfailure.

In [20] is shown how CFAs can be encoded using Constrained Horn Clauses.
We use presented approach for the encoding of CFAs: e.g., the clause li(X ′) ←
x′ = x + 1, lj(X) encodes the transition from location j to location i which is
the labeled with x = x + 1.

The predicates used for the location representation need to be connected
with the predicates for the action node. The semantics of an action node i are
encoded by the following clauses:

l0(X) ← tick i(X)
successi(X ′) ← lsuccess(X)
running i(X

′) ← lrunning(X)
failurei(X

′) ← lfailure(X)

Intuitively, the first clause states that if the action node i is ticked with the
variables X the execution continues at the initial location of the corresponding



Verification of Behavior Trees using Linear Constrained Horn Clauses 217

CFA. The remaining clauses propagate the state reaching one of the exit location
of the CFA to the predicates of the BT.

In order to model asynchronous function calls to external libraries, we allow
the use of nondeterministic values. This method is also used for modeling the
environment which is explained in Sect. 4.10.

4.3 Condition Node

Condition nodes are represented by functions in the same way as action nodes.
Therefore, they can be encoded in the same way as in Sect. 4.2 and we can
construct predicates and clauses for the CFA of condition node i. Note, that we
only have two exit locations for condition nodes, since condition nodes never
return RUNNING.

The clauses for encoding a condition node i are the following:

l0(X) ← tick i(X)
successi(X ′) ← lsuccess(X)
running i(X

′) ← lrunning(X), false
failurei(X

′) ← lfailure(X)

The boolean condition false encodes that lr(X) is not reachable.

4.4 Sequence Node

Clause 3 encodes the propagation of a tick from a sequence node i to its first
child.

tick child(i,1)(X) ← tick i(X) (3)

When a child returns FAILURE or RUNNING the value is propagated to the parent
of the sequence node. Since the sequence stops its execution independent from
the child node which returns FAILURE or RUNNING, we use a clause for each child
to propagate the return value, as shown in clauses 4 and 5.

failurei(X) ← failurechild(i,j)(X) ∀1 ≤ j ≤ ni (4)

running i(X) ← runningchild(i,j)(X) ∀1 ≤ j ≤ ni (5)

The successful execution of a child triggers the tick of the next child in the
sequence which is encoded in the set of clauses 6. Only if the last child returns
SUCCESS the value is propagated to the parent of the sequence node (see clause
7).

tickchild(i,j+1)(X) ← successchild(i,j)(X) ∀1 ≤ j < ni (6)
successi(X) ← successchild(i,ni)(X) (7)



218 T. Henn et al.

The clauses generated for node 1 from Fig. 1 are shown in the following
enumeration. Since the control flow is determined directly by the return values,
there is no modification of variables.

tick2(X) ← tick1(X)
tick3(X) ← success2(X)

running1(X) ← running2(X)
failure1(X) ← failure2(X)
success1(X) ← success3(X)
running3(X) ← running3(X)
failure3(X) ← failure3(X)

4.5 Sequence Node with Memory

A sequence node with memory needs to keep track which of its children needs to
be ticked when the sequence node itself is ticked next time. We introduce a fresh
variable nexti for every sequence node i with memory to store the information.
The variable is initialized with the index of the first child to ensure that the first
time the sequence node with memory is ticked, it starts from the beginning.

Since every child can return RUNNING, we encode the propagation of the tick
with clauses 8. In contrast to clause 3, the propagation of the tick is no longer
unconditional, but we enforce that the value of the variable next i is the same as
the index of the child being ticked.

tick child(i,j)(X) ← tick i(X),next i = j ∀1 ≤ j ≤ ni (8)

The value of next i must be set whenever a child returns RUNNING. In clauses 9
the value is changed. To prevent that other variables change their values, we
use another auxiliary function id which ensures that variables keep their value
if they are elements of the passed set.

running i(X
′) ←runningchild(i,j)(X),next ′

i = j,

id(X\{next i}) ∀1 ≤ j ≤ ni (9)

The clauses for FAILURE and SUCCESS must be adapted as well. The clauses 10
for the FAILURE cases are similar to the clauses 9 for RUNNING. They differ in the
index which is assigned to next i. For the clauses concerning the SUCCESS case,
only the last one, clause 12, must be adapted in order to reset the variable next i.
The clauses 11 are identical to the ones for sequence nodes without memory, since
they trigger the tick of the next child.



Verification of Behavior Trees using Linear Constrained Horn Clauses 219

failurei(X
′) ← failurechild(i,j)(X),

next i = child(i, 1),
id(X\{next i}) ∀1 ≤ j ≤ ni (10)

tick child(i,j+1)(X) ← successchild(i,j)(X) ∀1 ≤ j < ni (11)
successi(X ′) ← successchild(i,ni)(X),

next i = child(i, 1), id(X\{next i}) (12)

4.6 Selector Node

The selector node is complementary to the sequence node, as explained in
Sect. 3.1. The Constrained Horn Clauses needed to encode the semantics for
a selector node, with or without memory, are similar to the clauses for sequence
nodes. We use the same clauses but switch the occurrences of SUCCESS and
FAILURE in the Constrained Horn Clauses. The exact formalization is trivial and
omitted in this paper.

4.7 Parallel Node

Verifying programs with concurrency and modelling interleaving semantics is
challenging when using linear Constrained Horn Clauses. It also creates more
complex and larger models which in turn impacts the time needed for verification.
Often the precise modeling of concurrency is not necessary, depending on the
properties which are to be verified. Therefore, we assume that it is sufficient to
model the execution of a parallel node’s children as atomic.

Similar to the encoding of sequence nodes with memory, we introduce new
fresh variables to keep track of the execution status of the parallel node i.
cnt successi, cnt running i and cnt failurei are new integer variables which are
used to store the amount of returned SUCCESS, RUNNING and FAILURE values.
Also for every child j, we add a boolean variable executed j to memorize whether
a child has been executed and in order to prevent that a child is ticked more
than once.

For every parallel node i, we introduce a new predicate intermediatei(X)
which represents all states before and after children of the parallel node are
executed. The following formulas representing the different conditions when the
parallel node stops executing and return either SUCCESS, FAILURE or RUNNING.
The formula continuei evaluates to true when none of the the conditions are
fulfilled.



220 T. Henn et al.

cond successi := cnt successi ≥ mi

cond failurei := cnt failurei ≥ ni − mi + 1
cond running i := (cnt failurei+

cnt running i ≥ ni − mi + 1)
∧ (cnt successi + cnt running i ≥ mi)

continuei := ¬(cond successi ∧ cond failurei
∧ cond running i)

While propagating the tick to the predicate intermediatei(X), the newly
introduced variables are initialized. The counter variables are set to 0 while the
executed flag for the children is set to false. The other variables keep their values
and for the sake of readability we omitted the argument for the id function.

intermediatei(X ′) ← tick i(X), cnt success ′
i = 0,

cnt running ′
i = 0, cnt failure ′

i = 0,
ni∧

j=1

executed ′
child(i,j) = false, id(. . . )

From the intermediate predicate the tick is propagated to the children, when
the executed flag is still false and none of the return conditions for the parallel
node holds.

tickchild(i,j)(X) ← intermediatei(X), executed i = false,

continuei ∀1 ≤ j ≤ ni

In the following, we only present clauses when a child returns SUCCESS, clause 13,
and when the parallel node returns SUCCESS, clause 14. The clauses for RUNNING
and FAILURE are analogous. In case the child execution ends successfully, the
counter cnt success is incremented by one and the executed flag is set to true
in order to prevent that from the intermediate predicate the tick of the child is
again reachable.

intermediate(X ′)i ← successchild(i,j)(X),
executed ′

child(i,h) = true,

cnt success ′
i = cnt successi + 1,

id(...) ∀1 ≤ j ≤ ni (13)

Clause 14 encodes that once the success condition is fulfilled, the result is
propagated to the parent.

successi(X) ← intermediatei(X), cond success (14)



Verification of Behavior Trees using Linear Constrained Horn Clauses 221

4.8 Root Node

The root node with index 0 can be any arbitrary node type, but there are some
additional clauses which model the initialization, clause 15, and the repeatedly
ticking, clauses 16.

The variables used in the action nodes as well as the variables we introduced
for the encoding must be initialized. The initialization can be interpreted as
a sequence of assignment to variables. These assignments can be encoded in a
formula init .

tick0(X) ← init (15)

The complete Behavior Tree is usually ticked repeatedly. A Behavior Tree
is only ticked again, when it is not currently executing. Therefore, clauses 16
encode a tick, after the root node finished its execution

tick0(X) ← success0(X)
tick0(X) ← running0(X)
tick0(X) ← failure0(X) (16)

4.9 Safety Property

In the previous sections, we presented how behaviour trees can be encoded using
linear Constrained Horn Clauses. In this section, we present how to encode the
safety properties of interest. Safety properties are equivalent to the reachability
problem. Here, we show how additional clauses can be used to assert a condition
over the Behavior Trees’ variables. Given the safety condition safe(X), clause
17 encodes whether the safety property holds at every tick of the root node.
This encoding of invariants is not limited to the root node’s tick predicate. Any
introduced predicate can be used, depending on where in the Behavior Tree the
property should hold.

true ← tick0(X),¬safe(X) (17)

A possible safety property for the example behavior tree in Fig. 1 is that the
robot is executing the action node DoWork if no collision or obstacle is detected.

If adding clause 17 leads to the SMT solver not finding a satisfying interpre-
tation, the Behavior Tree fulfills the safety property since there exists no variable
valuation which holds at the tick of the root node and is unsafe.

4.10 Environment

In many use cases, the system described by the Behavior Tree interacts with
its environment. As in Fig. 1 the environment can be modeled as an subtree
and is connected via a parallel node with the Behavior Tree of the system.
To model the environment adequately, it is necessary to allow nondeterminism



222 T. Henn et al.

since some events only occur randomly or do not follow specific steps. In order
to accommodate this, we added the possibility of assigning a random value to a
variable.

p2(X ′) ← id(X\{y}), p1(X) (18)

Clause 18 illustrates the idea of modeling nondeterminism. Predicate p2 is reach-
able from predicate p1 where all variables except variable y retain their value. In
the Horn Clause, y′ is unconstrained and therefore can take any nondeterministic
value.

5 Experiments

We implemented the linear encoding in our verification tool ArcadeBT which
is a spin-off from ArcadePLC [19], a verification tool for Programmable Logic
Controller programs. ArcadeBT is written in C++ and uses the open source
SMT solver Z3 [16] in version 4.8.15. In this version Z3 uses the Spacer algo-
rithm [17] to solve Constrained Horn Clauses.

Since, to the best of our knowledge, no publicly available verification tool,
which targets safety properties of Behavior Trees, exists, we compare our imple-
mentation against the general purpose verification framework SeaHorn [15]. It
analyzes C programs by encoding the semantics in Constrained Horn Clauses
which are then solved using Z3. In this section, we show the performance
improvements, gained by exploiting the structure of Behavior Trees and the
direct encoding of the semantics in Constrained Horn Clauses in contrast to
transforming the Behavior Tree to a C program which is then analyzed by a gen-
eral purpose verification framework which uses a similar encoding in Constrained
Horn Clauses, and the same SMT solver Z3.

Our implementation currently does not contain a counterexample genera-
tor, as Z3 does not store the necessary information during the execution to
reconstruct a counterexample. In the future, it should be possible to extract a
counterexample from the derivation tree [18].

5.1 Benchmark

We used 39, from us created, different Behavior Trees for our benchmark. Each
verification tasks consists of one or more safety properties. In these 39 tasks, there
are 26 satisfiable tasks and 13 unsatisfiable tasks. The size of the verification
tasks ranges from small (less than 5 nodes) to medium size Behavior Trees with
18 nodes.

Although our experiments with Behavior Trees containing parallel nodes
show similar performance, we excluded them for reasons of fairness, since the
simplified semantic could not be easily represented in C code which is the input
for the SeaHorn framework. The generated C code does not use arrays, exter-
nal header files, pointer arithmetic or dynamic memory allocation which would
create are more challenging verification task.



Verification of Behavior Trees using Linear Constrained Horn Clauses 223

All benchmarks were executed on a Linux 5.10 computer with 2 GHz, 16 GB
memory and a timeout of 10 s. The implementation and the tasks can be found
on GitHub1.

Fig. 2. Time spent by Arcade and Seahorn on verification of each task.

5.2 Discussion

Figure 2 illustrates the time needed for ArcadeBT and Seahorn to solve the 39
tasks. Each data point represents one of the verification tasks. The solid diagonal
line splits the coordinate system into an area where ArcadeBT performs better
(above the line) and where Seahorn performs better (below the line). Since
both projects only share the SMT solver Z3 as a shared component, the time is
measured for the complete execution of the respective verification tool.

In most cases ArcadeBT is 2 to 3 times faster than Seahorn and it does
not matter whether the safety property is satisfiable or unsatisfiable. Both tools
have 6 tasks where the time limit is reached and they do not return an answer. In
four cases both tools cannot find an answer. The reason is likely a shortcoming in
Z3 which in some cases has difficulties finding linear invariants for the predicates.
The other two cases in which SeaHorn needs more than 10 s, are the only tasks
which contains the modulo operator in at least one arithmetic expression. Since
ArcadeBT can solve both tasks in reasonable time, it is very likely that this
is due to a minor bug in SeaHorn. On the other hand, the two tasks where
ArcadeBT needs more than 10 s, are not very different from other tasks which
can be solved. A possible explanation is that these are also cases where Z3 has
difficulties in finding linear invariants. Seahorn may be able to find the solution
since it does not only use SMT solving, but also code optimization techniques
and static analysis (e.g., value set analysis) which might simplify the Constrained
Horn Clauses given to the SMT solver.
1 https://github.com/embedded-software-laboratory/ArcadeBT.

https://github.com/embedded-software-laboratory/ArcadeBT


224 T. Henn et al.

6 Conclusion and Outlook

Behavior Trees are models which can visualize complex systems clearly. We
showed that the not explicitly visible control flow can lead to overlooked bugs
and that a verification approach based on linear Constrained Horn Clauses is
able to find them. We also showed that an encoding utilizing the Behavior Tree
structure is also faster than a general purpose verification framework.

Properties, which need a more precise modelling of concurrency than our
atomic approach, are not supported yet. Also, multiple occurrences of the same
action node leads to a redundant modeling since for every node new predicates
are introduced. An extension of our presented encoding to handle interleaving
semantics and model action nodes in a compositional way, leading to less redun-
dancy, is left for future work.

Acknowledgements. Funded by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) under Germany’s Excellence Strategy – EXC-2023 Internet
of Production – 390621612.

References

1. Biggar, O., Zamani, M.: A framework for formal verification of behavior trees with
linear temporal logic. IEEE Robot. Autom. Lett. 5(2), 2341–2348 (2020). https://
doi.org/10.1109/LRA.2020.2970634

2. Colvin, R., Hayes, I.: A semantics for behavior trees using CSP with specification
commands. Sci. Comput. Program. 76, 891–914 (2011). https://doi.org/10.1016/
j.scico.2010.11.007

3. Klöckner, A.: Interfacing behavior trees with the world using description logic. In:
AIAA Guidance, Navigation, and Control Conference (2013). https://doi.org/10.
2514/6.2013-4636

4. Colledanchise, M., Murray, R.M., Ögren, P.: Synthesis of correct-by-construction
behavior trees. In: 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 6039–6046 (2017). https://doi.org/10.1109/IROS.2017.
8206502

5. Klöckner, A.: Behavior Trees for UAV Mission Management (2013)
6. Ogren, P.: Increasing Modularity of UAV Control Systems using Computer Game

Behavior Trees (2012). https://doi.org/10.2514/6.2012-4458
7. Beyer, D.: Software verification and verifiable witnesses. In: Baier, C., Tinelli, C.

(eds.) TACAS 2015. LNCS, vol. 9035, pp. 401–416. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0 31

8. Bjørner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn clause solvers for
program verification. In: Beklemishev, L.D., Blass, A., Dershowitz, N., Finkbeiner,
B., Schulte, W. (eds.) Fields of Logic and Computation II. LNCS, vol. 9300, pp.
24–51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23534-9 2

9. Komuravelli, A., Bjorner, N., Gurfinkel, A., Mcmillan, K.: Compositional verifica-
tion of procedural programs using horn clauses over integers and arrays, pp. 89–96
(2015). https://doi.org/10.1109/FMCAD.2015.7542257

10. Colledanchise, M., Ögren, P.: Behavior Trees in Robotics and AI: An Introduction.
arXiv abs/1709.00084 (2017)

https://doi.org/10.1109/LRA.2020.2970634
https://doi.org/10.1109/LRA.2020.2970634
https://doi.org/10.1016/j.scico.2010.11.007
https://doi.org/10.1016/j.scico.2010.11.007
https://doi.org/10.2514/6.2013-4636
https://doi.org/10.2514/6.2013-4636
https://doi.org/10.1109/IROS.2017.8206502
https://doi.org/10.1109/IROS.2017.8206502
https://doi.org/10.2514/6.2012-4458
https://doi.org/10.1007/978-3-662-46681-0_31
https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1109/FMCAD.2015.7542257


Verification of Behavior Trees using Linear Constrained Horn Clauses 225

11. Colledanchise, M., Parasuraman, R., Ogren, P.: Learning of behavior trees for
autonomous agents. IEEE Trans. Comput. Intell. AI Games 11, 183–189 (2018).
https://doi.org/10.1109/TG.2018.2816806

12. Coronado, E., Mastrogiovanni, F., Venture, G.: Development of Intelligent Behav-
iors for Social Robots via User-Friendly and Modular Programming Tools, pp.
62–68 (2018). https://doi.org/10.1109/ARSO.2018.8625839

13. Colledanchise, M., Natale, L.: Improving the Parallel Execution of Behavior Trees,
pp. 7103–7110 (2018). https://doi.org/10.1109/IROS.2018.8593504

14. Isla, D.: Handling complexity in the halo 2 AI. In: Game Developers Conference
(2005)

15. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verification
framework. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206,
pp. 343–361. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-
4 20

16. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

17. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive
programs. In: CAV (2014)

18. Paulson, L.C.: The foundation of a generic theorem prover. J. Autom. Reason. 5,
363–397 (1989)

19. Biallas, S., Frey, G., Kowalewski, S., Schlich, B., Soliman, D.: Formale Verifikation
von Sicherheits-Funktionsbausteinen der PLCopen auf Modell- und Code-Ebene.
Tagungsband Entwicklung und Betrieb komplexer Automatisierungssysteme. EKA
(2010)

20. Bohlender, D., Kowalewski, S.: Compositional verification of PLC software using
horn clauses and mode abstraction. IFAC-PapersOnLine 51, 428–433 (2018)

21. Colledanchise, M., Cicala, G., Domenichelli, D.E., Natale, L., Tacchella, A.: For-
malizing the execution context of behavior trees for runtime verification of delib-
erative policies. In: IROS (2021)

https://doi.org/10.1109/TG.2018.2816806
https://doi.org/10.1109/ARSO.2018.8625839
https://doi.org/10.1109/IROS.2018.8593504
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-540-78800-3_24

	Verification of Behavior Trees using Linear Constrained Horn Clauses
	1 Introduction
	2 Related Works
	3 Preliminaries
	3.1 Behavior Trees
	3.2 Constrained Horn Clauses

	4 Encoding of Behavior Trees
	4.1 Idea
	4.2 Action Node
	4.3 Condition Node
	4.4 Sequence Node
	4.5 Sequence Node with Memory
	4.6 Selector Node
	4.7 Parallel Node
	4.8 Root Node
	4.9 Safety Property
	4.10 Environment

	5 Experiments
	5.1 Benchmark
	5.2 Discussion

	6 Conclusion and Outlook
	References




