
Monitoring of Spatio-Temporal
Properties with Nonlinear SAT Solvers

André de Matos Pedro1(B) , Tomás Silva1,2, Tiago Sequeira1,
João Lourenço2, João Costa Seco2, and Carla Ferreira2

1 VORTEX-CoLab, Vila Nova de Gaia, Portugal
andre.pedro@vortex-colab.com

2 NOVA-LINCS, NOVA University Lisbon, Lisbon, Portugal

Abstract. The automotive industry is increasingly dependent on com-
puting systems with variable levels of critical requirements. The ver-
ification and validation methods for these systems are now leverag-
ing complex AI methods, for which the decision algorithms introduce
non-determinism, especially in autonomous driving. This paper presents
a runtime verification technique agnostic to the target system, which
focuses on monitoring spatio-temporal properties that abstract the evo-
lution of objects’ behavior in their spatial and temporal flow. First, a
formalization of three known traffic rules (from the Vienna convention on
road traffic) is presented, where a spatio-temporal logic fragment is used.
Then, these logical expressions are translated to a monitoring model writ-
ten in the first-order logic, where they will be processed by a non-linear
satisfiability solver. Finally, the translation allows the solver to check the
validity of the encoded properties according to an instance of a specific
traffic scenario (a trace). The results obtained from our tool that auto-
matically generates a monitor from a formula show that our approach is
feasible for online monitoring in a real-world environment.

1 Introduction

Autonomous Driving System (ADS) is a field of study that belongs to the Cyber-
Physical Systems (CPSs) domain, partially seen as safety-critical systems due
to the high impact that a hazard can have [27]. Correctness and validation of
an ADS are crucial, as any error or malfunction of the system may lead to loss
of life, environmental damage, or financial impact on trust and reputation [22].
Challenges on the verification and validation methodologies for these systems are
being introduced by sub-symbolic AI methods, for which the decision algorithms
are known to introduce non-determinism [2,6,7,15].

Runtime Verification (RV) is a lightweight verification method commonly
used in safety-critical systems [16,19,30] performed during runtime, which offers
the possibility to act whenever a fault is observed. In RV, a formal requirement
is used to automatically generate a monitor that checks if the target system
is compliant with it. In this paper, we are interested in formally representing
how ADSs interact with the environment, hence, we use Linear Temporal Logic
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. F. Groote and M. Huisman (Eds.): FMICS 2022, LNCS 13487, pp. 155–171, 2022.
https://doi.org/10.1007/978-3-031-15008-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15008-1_11&domain=pdf
http://orcid.org/0000-0001-9452-0995
https://doi.org/10.1007/978-3-031-15008-1_11

156 A. de Matos Pedro et al.

(LTL), a tool widely used in RV [16], to describe the evolution over time, and
Modal Metric Spaces (MS), which allows us to formally reason about the sur-
rounding space of the system [18]. By combining these two logical frameworks,
we enable a full description of the ADS in space at all time instants.

The traffic safety rules that driving systems, and more specifically ADS, are
subjected to, usually specify temporal and spatial features. The spatio-temporal
languages (e.g., [12,14,20]) provide the adequate formalization and fulfillment
of the ADS requirements [24], which are specified over time and space. In the
present work, we consider the safety requirements of an ADS to be expressed by
sets of spatial constraints along a discrete linear time frame.

This paper proposes an RV approach that can deal with different autonomous
systems and focus on the monitoring of their spatio-temporal properties. These
properties are safety requirements that represent road safety constraints over
objects that are specified by their distances or topological relations. From a
macro perspective, Fig. 1 schematizes our architecture, where the relations
between simulator, monitor and vehicle can be seen. The simulator implements
the scenario described using ASAM standard [11] and the Ego vehicle imple-
ments the set of requirements. Then the Monitor Block that runs a solver checks
whether the requirement is met and draws a verdict. Step 1 starts with the for-
malization of the requirements. From a micro perspective, the verification of a
LTL combined with a fragment of MS (LTL × MS) [12] formula consists on the
construction of a monitoring model and a decision procedure. Given a trace (step
4) that comes from the ADS, the decision procedure inside the Monitor Block
answers whether a trace satisfies the monitoring model (step 5) and draws a
verdict (step 6). As shown in Fig. 1, the scenario (step 3) and the corresponding
formalized traffic rules (step 2) are given as input to the Translation and Model
Construction, where the translation to a set of first order language of the real
numbers (FOLR) constraints is done. This engine creates a monitoring model
in FOLR, which is interpreted by the non-linear satisfiability solver that is pro-
vided by the SMT solver Z3 [8] and runs inside the Monitor Block. Parallel to
the monitoring model, a trace at runtime feeds the Monitor Block, and a Trace
Encoder is provided to encode it to FOLR. So, the monitor block can produce a
verdict based on a trace that came from the ADS, a scenario, and a requirement.

Problem Statement. Consider monitoring the behaviour of an ADS, while driving
at an urban intersection, that must comply with road safety rules defined by the
international Vienna convention [24]. The present work focuses on presenting a
logic fragment, expressive enough to describe a specific set of road traffic rules.
Thanks to this fragment we were able to build an inline monitor that verifies
if these legal requirements [24] are being met. In simple terms the road safety
requirement ‘the car shall stop when it reaches a stop sign and then carries on
when the path is clear ’ is a spatio-temporal property. When encoded as a FOLR

formula, nonlinear SAT solvers are able to verify its satisfiability.

Paper Contributions. First, we present a formalization of three traffic rules,
taken from the Vienna convention [24] using LTL × MS, and applied to the

Monitoring of Spatio-Temporal Properties 157

Fig. 1. Ego vehicle spatio-temporal monitoring architecture.

context of these three traffic rules, the construction of the traffic T-shaped junction
scenario. Second, we encoded these rules written in LTL × MS and our scenario in
FOLR, the language interpretable by the SMT solver Z3 [8]. Then, to encapsulate
the encoding, our tool automatically generates runtime monitor blocks that can
verify whether the requirements check in the simulated environment. Finally, we
show evidence of the feasibility and scalability of online monitoring.

Paper Structure. Section 2 introduces some important concepts and definitions of
the LTL × MS language. Section 3 presents the formalization of three road traffic
rules in terms of LTL × MS and a T-shaped traffic junction, where the aforemen-
tioned rules are applicable. Moreover, the scenario is abstracted to FOLR and
the trace is introduced as well as its encoding to FOLR. Section 4 introduces the
monitor generation approach, while Sect. 5 shows the feasibility of the monitor
approach. Finally, Sects. 6 and 7 present the related work and draw conclusions
and directions for future work, respectively.

2 Preliminaries

The combination of temporal logic with spatial logic has been exhaustively
explored [1,12,13,23]. LTL is a propositional discrete linear temporal logic, ade-
quate for model checking of reactive systems and RV [19]. The time flow in LTL
is a set of points that are strictly ordered by the precedence relation < [10],
and is restricted to the usage of propositions and how they are sequenced. Fur-
thermore, LTL has the temporal operators ‘Until’, αUω—α has to hold until ω
becomes true—and ‘Since’, αSω—α has been true since ω was true.

Regarding the spatial logic, Kuts et al. [18] introduced MS, which includes
the bounded distance operators: ∃=a, ∃<a, ∃>a, and ∃a. As an example, Fig. 2
gives a visual description of ∃≤ap1 and ∃≤a (p1 � p2) in a metric space, where
p1, p2 are spatial variables, expanded by a units. Wolter and Zakharyaschev [33]
presented a restricted version named MS≤,< that just considers the operators
∃≤,<. Marco et al. [1, p. 545] showed that the satisfiability and the computa-
tional complexity of the combination of LTL with MS≤ is decidable. However,
despite the expressiveness of LTL × MS, decision procedures for spatio-temporal

158 A. de Matos Pedro et al.

Fig. 2. Examples of distance term operators on a metric space D.

languages are scarce [14]. As far as we know, in this paper we introduce the first
decision procedure for LTL × MS.

Definition 1 (LTL × MS - Syntax). The terms and formulas are inductively
defined by

� :: = p | � | �1 � �2 | �1 � �2 | ∃≤a� | �1U �2 (terms)
ϕ :: = �1 � �2 | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 U ϕ2 | ϕ1 S ϕ2, (formulas)

where p ∈ P is a spatial variable (or proposition), a is a rational number (dis-
tance), and P a nonempty set of variables. U and U stand for the binary opera-
tor ‘Until’ for terms and formulas, respectively. While S is the ‘Since’ operator.
Moreover, ρ is denoted as an instance of � and φ as an instance of ϕ.

Definition 2 (LTL × MS - Terms Semantics). A metric temporal model
is a pair of the form M = (D,N) [1], where D = (Δ, d) is a metric space, Δ
represents a nonempty set of points that reproduce the entire universe, d is a
function of the form Δ × Δ describing the distance between every two points
in Δ, satisfying the axioms identity of indiscernibles, symmetry and triangle
inequality [17]. The valuation N is a map associating each spatial variable p and
time instant n to a set N(p, n) ⊆ Δ. The valuation can be inductively extended
to arbitrary LTL × MS terms such as

N(�, n) = Δ − N(�, n),
N(�1 � �2, n) = N(�1, n) ∩ N(�2, n),

N(∃≤a�, n) = {x ∈ Δ | there exists a y ∈ N(�, n) such that d(x, y) ≤ a},

N(�1U �2, n) =
⋃

m>n

⎛

⎝N (�2,m) ∩
⋂

k∈]n,m[

N (�1, k)

⎞

⎠

The shorthands ‘Eventually’ . , ‘Always’ ., and ‘Next’ . are defined using U ,
. � ≡
U �, .� ≡ .�, and . � ≡ ⊥U �, where
 and ⊥ denote the universe and
the empty set. . is the next operator and its semantics is N(., n) = N(�, n+1),
while . stands for the eventually operator with N(. , n) =

⋃
m>n N(�,m), and

. means the always operator where N(., n) =
⋂

m>n N(�,m).

Monitoring of Spatio-Temporal Properties 159

Definition 3 (LTL × MS - Formulas Semantics [12]). An LTL × MS for-
mula ϕ is said satisfiable if there exists a model M such that (M, n) |= ϕ for
some time point n ∈ N. M is equipped with the following properties

(M, n) |= �1 � �2 iff N(�1, n) ⊆ N(�2, n),
(M, n) |= ¬ϕ iff (M, n) �|= ϕ,

(M, n) |= ϕ1 ∧ ϕ2 iff (M, n) |= ϕ1 and (M, n) |= ϕ2,

(M, n) |= ϕ1 U ϕ2 iff there is a m > n such that (M,m) |= ϕ2 and
(M, k) |= ϕ1 for all k ∈ (n,m),

(M, n) |= ϕ1 S ϕ2 iff there is a m < n such that (M,m) |= ϕ2 and
(M, k) |= ϕ1 for all k ∈ (n,m).

Regarding temporal modalities, stands for ‘Eventually’, for ‘Always’
and for ‘Next’, which can be defined using U : ϕ ≡
 U ϕ, ϕ ≡ ¬ ¬ϕ
and ϕ ≡ ⊥ U ϕ. When talking about past, the connectors are defined in an
analogous way using S. Thus, ϕ ≡
 S ϕ for ‘Once’, ϕ ≡ ¬ ¬ϕ for ‘His-
torically’ and ϕ ≡ ⊥ S ϕ for ‘Yesterday’. Note that the traditional universal
modalities ∀ and ∃ are expressible in our language. ∀� can be seen as an abbre-
viation for
 � � and ∃� for ¬(� � ⊥). Along our work we will use the symbol
:= to denote ‘is defined’. Also, to construct complex formulas we introduce four
spatial patterns over terms ρ1, ρ2, where the atomic formula �1 = �2 stands for
(�1 � �2) ∧ (�2 � �1), as follows:

DC (ρ1, ρ2) := ρ1 � ρ2 = ⊥, (disconnected)
EQ (ρ1, ρ2) := (ρ1 � ρ2) ∧ (ρ2 � ρ1), (equally connected)

O (ρ1, ρ2) := ¬(DC (ρ1, ρ2)
) ∧ ¬(ρ1 � ρ2) ∧ ¬(ρ2 � ρ1), (overlapped)

I (ρ1, ρ2) := (ρ1 � ρ2) ∧ ¬(ρ2 � ρ1). (included)

Encoding Language FOLR

The FOLR denotes the first-order logic defined over the structure (R, <,
+,×, 1, 0) that consists of the set of all well-formed sentences of first-order logic
that involve quantifiers and logical combinations of polynomial expressions over
real variables. The first-order language FOLR forms the set L, and P means the
set of real variables in FOLR.

3 Running Example

The concrete traffic scenario studied throughout this work is depicted in Fig. 3a.
It consists of a T-shaped junction where the vehicle C, from a one-way road,
approaches the intersection where faces a stop sign in order to enter a bi-
directional road. In this road there is a tram going one way in its rails named
as Tram and a car going the other way identified as C′. In the junction of these
roads there is a box junction that, according to the Vienna convention on road

160 A. de Matos Pedro et al.

Fig. 3. Running Example: An urban T-shaped junction scenario.

traffic, is an area where it is prohibited to stop. In addition, there is a pedestrian
zebra crossing in the bi-directional road. It is also possible to see three different
solid lines noted as T1 (red), T2 (orange), and T3 (green) that represent the
reference trajectories the vehicles may take in this specific use case.

The goal of this running example is to provide validation for complex Ego
vehicles. To this end, we start by introducing the formalization of the traffic
rules in LTL × MS, the encoding of the traffic scenario, and later the trace
definition and encoding. Note that a scenario describes static objects while a
trace describes dynamic objects that live within a scenario. Objects are entities
such as pedestrians, cyclists, vehicles, trajectories, or horizontal/vertical traffic
signs (e.g., crosswalk, stop sign).

Informally, an Ego vehicle shall follow a reference trajectory when at a cross
region with a safety-margin of at least one meter. In LTL × MS, we write

(
O
(
T1,∃≤1C

))
, (1)

where T1 corresponds to the reference trajectory, and C to the Ego vehicle. The
model in Fig. 3b does not satisfy (1) since the oscillation of the Ego vehicle along
the reference trajectory T1 is above the accepted threshold of one meter.

3.1 Formalization of Road Traffic Rules with LTL × MS

According to the Vienna convention [24], road traffic rules describe the way in
which pedestrians and vehicles should behave in a street environment. Without
loss of generality, we identify three specific rules of interest to describe in LTL
× MS language. These rules translate general autonomous driving system safety
requirements to check a given scenario.

Rule 1 (vehicle safety-margin). To simplify the presentation, this rule is
divided into two parts: (a) a vehicle should maintain a safety-margin relative to
the walkways (based on article 13 [24]) while following its trajectory, and (b) a
vehicle should maintain a safety-margin from the vehicle in front of it. In LTL
× MS, the (a) part of this rule can be described by

¬
(
O
(
RL,∃≤1C

))
, (2)

Monitoring of Spatio-Temporal Properties 161

where RL means the road limits. Informally, it reads as the vehicle C should
maintain a safety-margin of at least one meter (∃≤1C) between the car and the
road limit, while following its predefined trajectory. Moreover (2) can be written
in terms of temporal connectors and predicates, by expanding O and , we arrive
to the following expression:

¬
[

 U

(
¬(RL � (∃≤1C) = ⊥) ∧ ¬(RL � ∃≤1C

) ∧ ¬((∃≤1C) � RL
))]

. (3)

The safety-margin (b) of at least two meters between two vehicles, can be
expressed as:

¬ (
O
(∃≤2C′,∃≤2C

))
, (4)

where C′ corresponds to an external car. The overall rule is the conjunction of
formulas (2) and (4). The second term of the conjunction is transformed in

¬
[

 U

(
¬(∃≤2C′ � ∃≤2C = ⊥)∧ ¬(∃≤2C′ � ∃≤2C

)∧ ¬(∃≤2C � ∃≤2C′))].
(5)

Rule 2 (stop-on-forbidden areas). A vehicle should not stop on top of (a)
a box junction, based on the Portuguese road marks M17b and article 18 of the
Vienna convention; (b) a crosswalk, based on article 23 al.3 [24]; (c) tram rails,
based on article 23 al.3 [24].

Regarding part (a), it is mandatory that a vehicle must never stop on top of
a box junction, that is, from instant n, when the vehicle overlaps the delimited
region, at n + 1 it cannot be in the exact same position as it was in the previous
moment. Writing in LTL × MS we have:

(
I (C,BJ) ∨ O (C,BJ) → ¬EQ (C, . C)

)
, (6)

where BJ corresponds to the box junction. The previous implication is extended
by using the logical equivalence ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2. First we expand . and
operators,

 U
[
¬
(
I (C,BJ) ∨ O (C,BJ)

)
∨ ¬EQ (C,⊥UC)

]
,

then the predicates O, EQ and I,

 U
[((¬(C � BJ)∨BJ � C

)∧ ((C � BJ = ⊥)∨C � BJ∨BJ � C
))

∨ ¬(C � ⊥UC∧ ⊥UC � C
)]

. (7)

This rule is now ready for the monitor generation. Parts (b) and (c) have an
analogous encoding but with crosswalk and tramway regions, respectively.

Rule 3 (stop-sign). According to the road traffic laws, a vehicle shall stop at
a stop sign within a maximum distance of one meter. In LTL × MS, this rule
can be described in a compact form by

[(
O
(
S,∃≤1C

)∧ ¬ EQ (C, . C)
)

→
(
EQ (C, . C) ∧ DC (S, . C)

)]
, (8)

162 A. de Matos Pedro et al.

Fig. 4. Scenario encoding as spatial variables T1, T2, T3, RL, BJ, Z and SL.

where S is the location of the stop sign. Starting by the expansion of ., . , ,
, O, EQ, DC, and operators, we have

 U
[
(
S � ∃≤1C = ⊥)∨ ¬ (S � ∃≤1C

)∨ ¬ (∃≤1C � S
)

∨
(

 S
(
C � (⊥UC) ∧ (⊥UC) � C

))

∨
(

 U
(

(C � (⊥UC) ∧ (⊥UC) � C) ∧ (S � (
UC) = ⊥)
))]

. (9)

The derived expressions (3), (5), (7) and (9) of the three considered rules are
ready to be used as input to the monitor generation algorithm presented later.
Let us proceed with the scenario and trace encoding of our running example.

3.2 Scenario and Trace Encoding (Static and Dynamic Objects)

Figure 4 shows the encoding for each static object present in the model of Fig. 3b,
which is based on region restrictions represented as inequalities. The trajectories
and road limits are described by line segments which can be expressed as sets
of linear and non-linear polynomials. The box junction and the crosswalk are
defined by bounding boxes.

The objects present in our running example are divided into two categories:
static objects, as road limits, crosswalk, box junction, etc.; and objects that
can behave dynamically over time, such as vehicles, trams or pedestrians. For
these latter elements, there is a need of a continuous trace to keep track of their
position at every time step. At all instants, the trace is sent from the simulator
in the form of a tree data structure, and it is translated into formulas written in
FOLR (see Fig. 4). In practice, the scenario and trace are transformed in such
way that a satisfiability solver can interpret them. Let us turn our attention to
trace definition and encoding.

Definition 4 (Infinite Trace). An infinite trace forms the set AN0 = {σ :
N0 �→ A}, where (σ0, σ1, σ2, . . .) defines a sequence of symbols.

Monitoring of Spatio-Temporal Properties 163

For the sake of simplicity, we will use the function add : S × L �→ B to add
constraints to the set h (hash map), and find : S �→ L to return the constraint
with a given index (string). These functions are not effect-free. Also, the next :
AN0 �→ AN0 function over the sequence of symbols with type AN0 is defined
by next ((Cons(h, t)) := t(), and now : AN0 �→ A by now(Cons(h, t)) := h.
These functions get the next sequence of symbols and the current symbol in the
sequence, respectively. An A symbol has a list of objects, and set A[O] is a list
of AO objects (see the JSON trace in Fig. 5). For the sake of simplicity, we also
define the dual of “next” as prev : AN0 �→ AN0 .

In general terms, the trace encoding consists on the construction of the func-
tion eval : P �→ L that is defined by eval(p) := find p, which evaluates a spatial
variable to an expression in FOLR. To encode a symbol from a trace, we have
to pick the symbol from the trace and produce the set of inequality constraints
that defines their objects. Figure 5 presents the definition of the enc function
and other auxiliary functions, where the enc function gets as input a symbol and
produces the constraints with an index to the set h. Also, the function encode
constructs the set of constraints for a given finite trace. To encode infinite traces,
we have to infinitely iterate over trace symbols and produce the inequalities in
an incremental way. Instead of defining a new encoding function, we make use
the next and prev functions in the next section.

Without loss of generality, let us see a circle as a ball, and a bounding box as
a rectangle or square in the two-dimensional Euclidean space. Note that other
geometric shapes can be translated but are out of the scope of our running
example. The obj : id �→ L function generates the objects as constraints defining
circles and bounding boxes with free variables, and id ∈ {circle, bbox}. It
defines, as follows:

obj(s) :=

⎧
⎪⎨

⎪⎩

(x4 − x1)2 + (x5 − x2)2 < x32, if s = circle

(x1 − x3/2) ≤ x5∧ x5 ≤ (x1 + x3/2)∧
(x2 − x4/2) ≤ x6∧ x6 ≤ (x2 + x4/2),

if s = bbox
.

Let us now see how the resultant expressions can use the variables binder
let. The evaluation of the expression let ((x1 1) (x2 2) (x3 3)). obj circle
results in (x1 − 1)2 + (x2 − 2)2 < 32, where x1 and x2 are the remaining
free variables. Then, we can bind these variables with a quantifier such as
∀x, y. let (x1 1) (x2 2) (x3 3). obj(circle), where (1, 2) is the center point
of the circle, and 3 the radius. This will be the way we replace free variables.

4 Monitoring Model Construction

As input our algorithm receives an LTL × MS property that represents a require-
ment under analysis and produces a model in FOLR. Every term ρ ∈ T (the set
of all words of �) is translated by the recursive function conv� : T �→ L into
FOLR (see Fig. 6). The dist : R × T �→ L function applies the Property 1 that
says that any formula containing distance operators has an equivalent formula
where the distance operators are just applied to the propositions.

164 A. de Matos Pedro et al.

Fig. 5. Functional definition and example of a trace in JSON format.

Property 1 (Distance Operator). Let ρ be a term, V the set of free variables in
ρ, and e a rational number. For any ρ and e, the distance operator ∃≤eρ has an
equivalent expression with every free variable a ∈ V such that ∃≤ea.

The next� : T �→ L function also has a similar property to distance operators
but instead of distance it assigns to each proposition the successor (a nested
of next operators just on propositions). To conclude conv� conversion function
over terms, the unfold : T×T �→ L function generates a bounded instance of the
infinite sequence

n∨

i=1

⎡

⎣
i∧

j=1

⎛

⎝.︸ ︷︷ ︸
j times

ρ1

⎞

⎠ ∧︸ ︷︷ ︸
j times

ρ2

⎤

⎦ ,

where ρ1, ρ2 ∈ � are the input terms. Let us now move our attention to formulas.
Every formula φ in F (the set of all words of ϕ) is translated by the func-

tion convϕ : F �→ L (again in Fig. 6). The expression ∀(x, y, ·).(conv�(ρ1) →
conv�(ρ2)) binds all the remaining free variables of the resulting expression
in FOLR. For instance, ∀(x, y).x < y. The function nextϕ : F �→ L generates

Monitoring of Spatio-Temporal Properties 165

Fig. 6. Conversion functions conv�(ρ) and convϕ(φ).

formula φ from the next instance, while previousϕ : F �→ L generates formula φ
from the previous instance. Function unfoldX : F × F �→ L generates a bounded
instance of the infinite sequence

n∨

i=1

⎡

⎣
i∧

j=1

⎛

⎝X . . .X︸ ︷︷ ︸
j times

ρ1

⎞

⎠ ∧ X . . . X︸ ︷︷ ︸
j times

ρ2

⎤

⎦

where φ1, φ2 ∈ ϕ are the input formulas. Funtion unfoldU : F×F �→ L is defined
by unfoldX when X = , while unfoldS : F × F �→ L by unfoldX when X = .

Trace Inlining. Since formulas and terms converts into incomplete FOLR

expressions, the formalization of the trace completes the encoding. The trace
encoding consists essentially on the construction of the function eval that has
ben already defined. This function replaces spatial variables with expressions in
FOLR. Note that the trace is a valuation and assigns constraints to the expres-
sions in FOLR. encode has been already defined while inline : L × L �→ L

includes the trace in the monitoring model. Note that this inlining is a binding
of every free variable of convϕ(φ) in encode(trc, n). The first argument receives
the monitoring model, and the second argument receives the mapping of the
spatial variables to the constraints in FOLR (given by the hash map). Let trc be
a trace of length n, and φ a formula in LTL × MS.. The inlining is defined by

inline(convϕ(φ), encode(trc, n)).

The process concludes by inlining the finite trace in the monitoring model.

166 A. de Matos Pedro et al.

Partial Incremental Evaluation – Without Unfolding Temporal Oper-
ators. To improve algorithm efficiency, scalability, and support infinite traces
we decided to construct a modified version of the previous algorithm without
using the unfolding of temporal operators (functions U and S). We perform this
on the assumption that temporal terms are bounded. The temporal part is then
processed incrementally using incremental evaluation (push and pop operators)
on the non-linear satisfiability solver. The s acts as a state such as true t, false
f or unknown u. For this evaluation, we consider the known temporal patterns

φ̂, φ̂,
(
φ̂
1

→ φ̂
2

)
,

(
φ̂
1

→ ¬ φ̂
2

)
,

(
φ̂
1
∧ φ̂

2

)
, and

(
φ̂
1
∧ ¬φ̂

2

)
.

Past temporal operators are unrolled for infinite traces and incrementally
evaluated for infinite traces (unknown last element). The evali(φ) has the truth
value false or unknown, while evali(φ) has the truth value true or unknown,
and evali(

(
φ1 → φ2

)
) has the same truth value of evali(φ).

One could expect to construct the function evali(φ,Σ, s) defined by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

solve
(
convi

ϕ(φ), enc(Σ)
)

if φ = φ̂

and
[
evali

(
φ̂
1
, Σ, s

)
, evali

(
φ1, Σ, s

)]
if φ = φ̂

1
∧φ1

implies
[
evali

(
φ1, Σ, s

)
, evali

(
φ2, Σ, s

)]
if φ = φ1 → φ2

ite
[
s = u, evali

(
φ, next(Σ), c�

(
s, evali(φ1, next(Σ), u)

))
, f
]

if φ = φ1

ite
[
s = u, evali

(
φ, next(Σ), c⊥

(
s, evali(φ1, next(Σ), u)

))
, t
]

if φ = φ1

ite
[
s = u, evali

(
φ, prev(Σ), c⊥

(
s, evali(φ1, prev(Σ), u)

))
, t
]

if φ = φ1

where φ ∈ ϕ a formula, φ̂ a formula without temporal operators, Σ is a infi-
nite trace with next, prev operators, and s ∈ S a symbol. S denotes the set
{t, f, u}, ite : {t, f} × {t, f} × {t, f} �→ {t, f} defines the if-then-else function, and :
{t, f}×{t, f} �→ {t, f} implements the conjunction, implies : {t, f}×{t, f} �→ {t, f}
implements the implication, c� : S× {t, f} �→ S converts the pair (u, f) to f and
u otherwise, and c⊥ : S×{t, f} �→ S converts the pair (u, t) to t and u otherwise.

Property 2 (Spatial Isolation on � terms). A spatial variable a ∈ P is free of
modifiers for any term.

From Property 2, terms have no free variables and no assumptions have to
be given for the incremental evaluation, the reason why it simplifies implies and
and functions in the incremental evaluation function evali. A spatial variable
maintains its form regardless of where it is evaluated. Function solve : L× L �→
{t, f} solves an expression in FOLR assuming another expression in FOLR. Note
that temporal operator vanish and is not incrementally evaluated.

Monitoring of Spatio-Temporal Properties 167

Table 1. Table displaying the evaluation results. The first column indicates the con-
sidered rules. The last two columns, unroll and incremental methods, show the time
(in seconds) and the memory (in Megabytes) used by the solver, the overall runtime
the monitor takes to execute (RT) and frames per second (FPS).

Unroll Incremental

E
m
p
ir
ic
a
l

Rule(‖�‖, ‖ϕ‖) Σ(‖Σ‖)
Solver

RT FPS
Solver

RT FPS
Time Mem Time Mem

1.a (2,2) e1(13) 1.14 4.49 1.19 5.58 0.26 2.87 0.42 19.12

1.a (2,2) e2(13) 0.07 4.05 0.13 65 0.03 2.86 0.04 185.71

1.b (1,1) e3(13) 0.02 3.03 0.05 185.71 0.12 2.75 0.26 34.21

1.b (1,1) e4(13) 0.05 3.06 0.09 92.86 0.08 2.45 0.17 56

2.a (1,3) e5(13) 0.18 3.53 0.23 31.71 0.17 2.83 0.33 26

2.a (1,3) e6(13) 0.16 3.51 0.21 35.14 0.09 2.85 0.17 53.85

2.b (1,3) e7(13) 0.25 3.53 0.29 24.07 0.17 2.80 0.34 27.45

3. (3,6) e8(14) 0.50 6.98 1.05 9.03 0.07 5.40 0.26 39.39

3. (3,6) e9(13) 1.29 7.06 1.71 4.33 0.10 5.45 0.28 36.84

3. (3,6) e10(15) 1.11 7.45 1.64 5.45 0.11 5.44 0.46 22.81

Average 0.48 4.67 0.66 45.9 0.12 3.57 0.27 50.1

S
im

u
la
to

r

1.a (2,2) s1(243) 73.82 18.48 74.29 1.64 2.38 2.91 3.18 43.71

1.a (2,2) s2(157) 0.34 5.78 0.46 196.25 0.79 2.89 1.08 83.96

1.a (2,2) s3(146) 0.28 6.37 0.44 202.78 0.51 2.89 0.74 116.8

1.b (1,1) s1(243) 0.15 5.14 0.45 405 0.70 2.79 1.52 109.46

1.b (1,1) s4(311) 0.40 5.19 0.64 299.04 0.97 2.85 1.75 114.34

2.a (1,3) s1(243) 6.73 7.95 7.09 17.58 1.19 2.86 2.07 74.54

2.a (1,3) s5(369) 12.99 7.66 13.72 13.82 2.37 2.90 3.96 58.29

2.a (1,3) s6(198) 8.11 7.83 8.69 11.79 0.46 2.85 0.80 157.14

3. (3,6) s4(311) 396.40 110.23 413.11 0.38 10.83 7.80 23.71 9

3. (3,6) s5(369) 951.87 117.48 1029.76 0.19 9.90 8.31 27.27 9.93

3. (3,6) s6(198) 1044.16 124.92 1090.95 0.09 12.25 8.52 26.57 5.1

Average 226.84 37.91 239.96 104.4 3.85 4.32 8.42 71.1

5 Empirical Evaluation

The monitor runs in parallel to the ADS under test having no direct impact on
the system itself, as seen in Fig. 1. The system evolves around the simulation
of a specific scenario, that feeds ADS with its observations. The system reacts
to observation and produces actions for the agents running on the simulator in
an endless loop. The monitor receives the observations from the simulator as a
trace to check a property and generates a verdict indicating if its satisfied.

The traces and scenario were evaluated on a i5-8365U CPU running Linux
5.10.11. Traces are provided by a simulated T-shaped junction scenario in the
CARLA 0.9.13 autonomous driving simulator [9]. Scalability is an aspect to
keep in mind since the size of a trace matters for monitoring performance, there-
fore, we test each property with different trace sizes to understand how different
methods perform. When performing the empirical evaluation (hand-built sample

168 A. de Matos Pedro et al.

traces to validate the tool – e1–e10), the Unroll method is slower than the Incre-
mental method in average, with exception of rule 1.b, where the Unroll is slightly
better, with a higher memory consumption (see Table 1). However, the biggest
difference are the rules 1.a and 3, where the Incremental method is clearly better
than the Unroll. These rules impact the highest average in the time (0.48 s) and
memory spent (4.67 MB) by the solver, as well as the RT (0.66 s) and low FPS
values (45.9) of the Unroll, in comparison with the Incremental method.

The behavior described previously also applies when it comes to the Sim-
ulator evaluation (traces got from simulation environment – s1–s6). Yet, the
differences are more pronounced. In the worst case scenario (rule 3), the time
spent by the solver in the Unroll method is approximately 85 times slower than
the solver in Incremental method, 1044.16 s and 12.25 s, respectively. Moreover,
the memory usage is considerably higher in Unroll (in average 37.91 MB) than
in Incremental (in average 4.32 MB) method.

When observing the average value of the incremental method (higher than
60), this value means that our approach is able to comfortably work with mod-
ern cameras with an acquisition rate of 60 Hz. ADSs cameras have lower fram-
erates. Our performance measurements are also prone to different resolutions
as our approach does not depend of the size of the image matrix. To summa-
rize, the data displayed in Table 1 shows a clear advantage of Incremental over
Unroll method. The tool and documentation for artifact evaluation can be found
in https://github.com/anmaped/stem-binaries.git.

6 Related Work

When talking about autonomous vehicles, these systems are subjected to the
local traffic laws and is a crucial problem to solve, as pointed out by Henry
Prakken [26]. He studied if the Dutch traffic law, with its exceptions, conflicts,
and commonsense knowledge, can be implemented in fully autonomous vehicles
and present three approaches to design AVs in compliance with traffic rules.
Cristian-Ioan Vasile et al. [32] formalized a minimum-violation plan of an AV by
using a fragment of LTL. Moreover, they used the logic fragment to specify the
behavior and incorporate it in the motion planner algorithm.

Alternatively, the AV as a system ideally has to self-check whether the
autonomous part obeys the traffic rules. Based on signal temporal logic (STL),
Nikos Aréchiga [4] proposed a step forward in this direction. He enabled the
automatic synthesis of runtime monitors, similar to what we presented in this
work, but without considering space as a first-class citizen. Also, he defined a set
of contracts to ensure that the overall system will not have collisions if followed
by all traffic participants. Cardoso et al. [7] suggests verification by contracts as
a powerful tool to handle complex systems such as AVs.

Similar to our work, Xu and Li [34] introduced a spatial logic to check collision
avoidance properties. They do not consider the evolution in time of the traffic
junction with its actors and do not produce any verdict. Another work that
resembles ours is [29], where they encode STL to a mixed-integer programming

https://github.com/anmaped/stem-binaries.git

Monitoring of Spatio-Temporal Properties 169

solver, allowing the monitoring of AV failures in an urban scenario in real-time.
In our work, we encode our LTL × MS expression to FOLR as well, but traffic
rules are not formalized in STL as we do with our temporal language.

Several works focus on the formalization of traffic rules. For example, [5] uses
Defeasible Deontic Logic to handle exceptions and resolve conflicts in overtak-
ing Australian traffic rules. In terms of temporal logic, the research presented
in [3,21,28], addressed several traffic scenarios, such as highways and junctions.
Schwammberger and Alves [31] proposed a spatio-temporal language similar to
the one in our work to formalize three road crossing rules in the UK and empha-
sizes the need for a Digital Highway Code for AVs, but the decision procedure is
missing. Pek et al. [25] writes overtaking rules as non-linear arithmetic expres-
sions and uses real-world data and simulations to validate their method.

7 Conclusion and Future Work

Even with smarter techniques, unfolding the U and S operators is computation-
ally expensive and proves infeasible in practical terms. Incremental evaluation
of infinite traces at run-time reduces the burden of checking spatial constraints,
since unbounded time is a bottleneck when solving time constraints with a sat-
isfiability solver. In our approach, the temporal sequences are checked partially
at runtime and the spatial part using exclusively the satisfiability solver.

Our empirical evaluation shows good evidence of the scalability of our incre-
mental evaluation method by running symbols of arbitrary sequences with more
70 symbols or ‘frames’ per second. To emphasize it, a conventional CPU (one
core) could monitor a trace from a camera with a total acquisition rate greater
than 60 Hz which we tested by setting up our running example on the CARLA
autonomous driving simulator. Our approach also takes advantage of multiple
cores as we could split the objects in the environment into different instances,
the Ego vehicle and the surrounding objects.

One way to optimize our tool, is to configure the solver to use the most
suitable tactic, tailoring it even more for the models we intend to verify. Another
way, is to increase the number of surrounding objects and use predictive distance-
based techniques based on geometric projections to allow the monitor to skip
symbols of a sequence and decrease CPU utilization.

Acknowledgments. This work was partially supported by the European Regional
Development Fund (ERDF) through the Competitiveness and Internationalization
Operational Program (COMPETE 2020) of Portugal 2020 [Project STEROID with
number 069989 (POCI-01-0247-FEDER-069989)]. This work was also partially sup-
ported by FCT/MCTES grant UIDB/04516/2020.

References

1. Aiello, M., Pratt-Hartmann, I., van Benthem, J.: Handbook of Spatial Logics.
Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-5587-4

https://doi.org/10.1007/978-1-4020-5587-4

170 A. de Matos Pedro et al.

2. Akintunde, M.E., Botoeva, E., Kouvaros, P., Lomuscio, A.: Formal verification of
neural agents in non-deterministic environments. Auton. Agents Multi-Agent Syst.
36(1), 1–36 (2021). https://doi.org/10.1007/s10458-021-09529-3

3. Alves, G.V., Dennis, L.A., Fisher, M.: A double-level model checking approach
for an agent-based autonomous vehicle and road junction regulations. J. Sens.
Actuator Netw. 10(3), 41 (2021)

4. Aréchiga, N.: Specifying safety of autonomous vehicles in signal temporal logic.
In: 2019 IEEE Intelligent Vehicles Symposium, IV 2019, Paris, France, 9–12 June
2019, pp. 58–63. IEEE (2019)

5. Bhuiyan, H., Governatori, G., Bond, A., Demmel, S., Badiul Islam, M., Rakotoni-
rainy, A.: Traffic rules encoding using defeasible deontic logic. In: JURIX 2020,
Brno, Czech Republic, December 2020, volume 334 of Frontiers in Artificial Intel-
ligence and Applications, pp. 3–12. IOS Press (2020)

6. Borg, M., et al.: Safely entering the deep: a review of verification and validation for
machine learning and a challenge elicitation in the automotive industry. J. Autom.
Softw. Eng 1, 12 (2018)

7. Cardoso, R., et al.: A review of verification and validation for space autonomous
systems. Curr. Robot. Rep. 2, 09 (2021)

8. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

9. Dosovitskiy, A., Ros, G., Codevilla, F., López, A.M., Koltun, V.: CARLA: an
open urban driving simulator. In: CoRL 2017, Mountain View, California, USA,
November 2017, Proceedings, volume 78 of Machine Learning Research, pp. 1–16.
PMLR (2017)

10. Allen Emerson, E.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook
of Theoretical Computer Science, Volume B: Formal Models and Semantics, pp.
995–1072. Elsevier and MIT Press, London (1990)

11. Association for Standardisation of Automation and Measuring Systems. https://
www.asam.net/standards/. Accessed 11 Apr 2022

12. Gabelaia, D., Kontchakov, R., Kurucz, A., Wolter, F., Zakharyaschev, M.: Com-
bining spatial and temporal logics: expressiveness vs. complexity. J. Artif. Intell.
Res. 23, 167–243 (2005)

13. Gerevini, A., Nebel, B.: Qualitative spatio-temporal reasoning with RCC-8 and
Allen’s interval calculus: computational complexity. In: ECAI’2002, Lyon, France,
July 2002. Proceedings, pp. 312–316. IOS Press (2002)

14. Haghighi, I., Jones, A., Kong, Z., Bartocci, E., Grosu, R., Belta, C.: SpaTeLl: a
novel spatial-temporal logic and its applications to networked systems: a novel
spatial-temporal logic and its applications to networked systems. In: HSCC 2015,
Seattle, WA, USA, April 2015. Proceedings, pp. 189–198. ACM (2015)

15. Huang, X., et al.: A survey of safety and trustworthiness of deep neural networks:
verification, testing, adversarial attack and defence, and interpretability. Comput.
Sci. Rev. 37, 100270 (2020)

16. Kane, A.: Runtime monitoring for safety-critical embedded systems. Ph.D. thesis,
Carnegie Mellon University, Pittsburgh (2015)

17. Kurucz, A., Wolter, F., Zakharyaschev, M.: Modal logics for metric spaces: open
problems. In: We Will Show Them! Essays in Honour of Dov Gabbay, Vol. 2, pp.
193–108. College Publications (2005)

18. Kutz, O., Wolter, F., Sturm, H., Suzuki, N.-Y., Zakharyaschev, M.: Logics of metric
spaces. ACM Trans. Com. Log. 4(2), 260–294 (2003)

https://doi.org/10.1007/s10458-021-09529-3
https://doi.org/10.1007/978-3-540-78800-3_24
https://www.asam.net/standards/
https://www.asam.net/standards/

Monitoring of Spatio-Temporal Properties 171

19. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Logic Alge-
braic Program. 78(5), 293–303 (2009)

20. Li, T., STSL: a novel spatio-temporal specification language for cyber-physical
systems. In: QRS 2020, pp. 309–319. IEEE (2020)

21. Maierhofer, S., Rettinger, A., Charlotte Mayer, E., Althoff, M.: Formalization of
interstate traffic rules in temporal logic. In: 2020 IEEE Intelligent Vehicles Sym-
posium (IV), pp. 752–759. IEEE (2020)

22. Mehmed, A.: Runtime monitoring for safe automated driving systems. Ph.D. thesis,
Mälardalen University (2020)

23. Muller, P.: A qualitative theory of motion based on spatio-temporal primitives. In:
KR1998, Trento, June 1998, pp. 131–143. Morgan Kaufmann (1998)

24. United Nations. Vienna convention on road traffic (1968). https://unece.org/
DAM/trans/conventn/Conv road traffic EN.pdf. Accessed 11 Apr 2022

25. Pek, C., Zahn, P., Althoff, M.: Verifying the safety of lane change maneuvers of
self-driving vehicles based on formalized traffic rules. In: 2017 IEEE Intelligent
Vehicles Symposium (IV), pp. 1477–1483 (2017)

26. Prakken, H.: On the problem of making autonomous vehicles conform to traffic
law. Artif. Intell. Law 25(3), 341–363 (2017). https://doi.org/10.1007/s10506-017-
9210-0

27. Riedmaier, S., Ponn, T., Ludwig, D., Schick, B., Diermeyer, F.: Survey on scenario-
based safety assessment of automated vehicles. IEEE Access 8, 87456–87477 (2020)

28. Rizald, A., et al.: Formalising and monitoring traffic rules for autonomous vehi-
cles in Isabelle/HOL. In: Polikarpova, N., Schneider, S. (eds.) IFM 2017. LNCS,
vol. 10510, pp. 50–66. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66845-1 4

29. Sahin, Y.M., Quirynen, R., Di Cairano, S.: Autonomous vehicle decision-making
and monitoring based on signal temporal logic and mixed-integer programming.
In: 2020 American Control Conference (ACC), pp. 454–459 (2020)

30. Sánchez, C., et al.: A survey of challenges for runtime verification from advanced
application domains (beyond software). Formal Methods Syst. Des. 54, 279–335
(2019). https://doi.org/10.1007/s10703-019-00337-w

31. Schwammberger, M., Alves, G.V.: Extending urban multi-lane spatial logic to for-
malise road junction rules. In: FMAS 2021, Virtual, October 2021. Proceedings,
volume 348 of EPTCS, pp. 1–19 (2021)

32. Vasile, C.-I., Tumova, J., Karaman, S., Belta, C., Rus, D.: Minimum-violation
scLTL motion planning for mobility-on-demand. In: ICRA 2017, pp. 1481–1488
(2017)

33. Wolter, F., Zakharyaschev, M.: Reasoning about distances. In: Gottlob, G., Walsh,
T. (eds.) IJCAI 2003, Acapulco, Mexico, 9–15 August 2003. Proceedings, pp. 1275–
1282. Morgan Kaufmann (2003)

34. Xu, B., Li, Q.: A spatial logic for modeling and verification of collision-free con-
trol of vehicles. In: ICECCS 2016, Dubai, United Arab Emirates, November 2016.
Proceedings, pp. 33–42. IEEE Computer Society (2016)

https://unece.org/DAM/trans/conventn/Conv_road_traffic_EN.pdf
https://unece.org/DAM/trans/conventn/Conv_road_traffic_EN.pdf
https://doi.org/10.1007/s10506-017-9210-0
https://doi.org/10.1007/s10506-017-9210-0
https://doi.org/10.1007/978-3-319-66845-1_4
https://doi.org/10.1007/978-3-319-66845-1_4
https://doi.org/10.1007/s10703-019-00337-w

	Monitoring of Spatio-Temporal Properties with Nonlinear SAT Solvers
	1 Introduction
	2 Preliminaries
	3 Running Example
	3.1 Formalization of Road Traffic Rules with LTL MS
	3.2 Scenario and Trace Encoding (Static and Dynamic Objects)

	4 Monitoring Model Construction
	5 Empirical Evaluation
	6 Related Work
	7 Conclusion and Future Work
	References

