
Test Suite Augmentation
for Reconfigurable PLC Software
in the Internet of Production

Marco Grochowski(B) , Marcus Völker , and Stefan Kowalewski

Embedded Software, RWTH Aachen University, Aachen, Germany
{grochowski,voelker,kowalewski}@embedded.rwth-aachen.de

Abstract. Regression testing is an established technique used to attest
the correctness of reconfigurations to PLC software. After such a recon-
figuration, a test suite might not be adequate to ensure the absence of
regressions, requiring the derivation of new test cases to uncover poten-
tial regressions. This paper presents a combination of state-of-the-art
symbolic execution algorithms for test suite augmentation, an indispens-
able part of regression testing. Test generation is guided towards the
changed behavior using a technique known as four-way forking. The old
and new PLC software are executed in the same symbolic execution
instance to account for the effects of the reconfiguration and increase the
chances of generating difference-revealing test cases. The prototypical
implementation is evaluated using domain-specific benchmarks such as
the PLCopen Safety library and the Pick and Place Unit, exposing the
limitations in applicability and effectiveness of the used techniques for
safeguarding PLC software subject to frequent reconfigurations as found
in cyber-physical production systems.

Keywords: Regression testing · Test suite augmentation · Symbolic
execution · Programmable logic controllers · Internet of Production

1 Introduction

Transformability, a property resulting from the flexibility and mechanical recon-
figurability of a cyber-physical production system (CPPS), is one of the primary
enablers to cope with changing intrinsic and extrinsic demands and is a necessary
prerequisite to guarantee the ability to compete with other companies [9]. An
overview of the life cycle and value chain of a CPPS is given in Fig. 1. In contrast
to a conventional production system, a CPPS is subject to a high degree of recon-
figurability during its life cycle. This highly agile manufacturing paradigm leads
to an increase in complexity as the insights gained during production turns into
data that controls the production process. Due to the heterogeneity and emer-
gent behavior of CPPS, unwanted regressions might accompany those reconfig-
urations and take their toll on the functional safety and reliability of software
components [6]. In the context of static reconfigurations where the entire CPPS
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. F. Groote and M. Huisman (Eds.): FMICS 2022, LNCS 13487, pp. 137–154, 2022.
https://doi.org/10.1007/978-3-031-15008-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15008-1_10&domain=pdf
http://orcid.org/0000-0003-2964-6799
http://orcid.org/0000-0001-7348-0146
http://orcid.org/0000-0001-9397-2009
https://doi.org/10.1007/978-3-031-15008-1_10

138 M. Grochowski et al.

Fig. 1. Juxtaposition of the life cycle and value chain of cyber-physical production
systems (Figure adapted from illustration in [19]).

is stopped and analyzed during maintenance, short downtimes are crucial, and
we argue that lightweight verification techniques such as testing are suitable to
assess the CPPS’s correctness quickly. Consequently, the goal is to reduce the
lead-time after a reconfiguration to the CPPS has occurred by reducing the time
it takes to test the reconfigured programmable logic controller’s (PLC) software
throughout the ramp-up phase during maintenance as depicted in Fig. 1.

Regression Testing. Regarding the reconfigurations to PLC software, they
manifest themselves in the form of the addition of new functionality, the modi-
fication of already existing functionality, or the removal of functionality, which
most often also requires adaptations to the test suite. As the manual creation of
difference-revealing test cases requires enormous effort and expertise, automated
techniques are desirable. One prominent set of such automated techniques that
tackles test suite maintenance is termed regression testing. Figure 2 illustrates
the process of regression testing and test suite augmentation after a syntactic
reconfiguration. Consider the test suite TP

all for a PLC program P before a recon-
figuration with which the reconfigured PLC program P ′ should be tested. There
are two primary reasons why re-executing the whole test suite is infeasible. The
first one is that the test suite might be too large and require too much time while
not focusing on the parts of the software affected by the reconfiguration. The
other aspect is that the test suite might not even test the changed behavior of P ′.
In this sense, test suite augmentation is necessary and an important complemen-
tary technique to traditional regression testing techniques [21,23]. Dealing with
reconfigurations to the PLC software and its effect on the test suite is a two-step
approach during test suite maintenance. First, one has to assess if the test suite
TP
all is still adequate enough for testing P ′. Standard measures for adequacy are

whether the test suite is homogeneous with regards to the program paths, for
instance, line or branch coverage. Nonetheless, one has to keep in mind that
coverage alone does not quantify the capability of a test suite to reveal regres-
sions. If the test suite is not homogeneous with regards to the failure [20], i.e.,
it structurally covers the reconfigured program path but does not propagate a
divergence to the output, it will not reveal the regression after a faulty syntactic

Test Suite Augmentation for Reconfigurable PLC Software in the IoP 139

Fig. 2. Application of regression testing techniques and test suite augmentation after
a syntactic reconfiguration.

reconfiguration. Second, the reconfigurations in P ′ need to be identified, and the
test case generation algorithm has to be guided to cover the potentially recon-
figured behavior. As regressions are only observable for inputs that expose a
behavioral difference, we use a concept coined as four-way forking [10] to guide
the test case generation into parts of the software affected by a reconfiguration.
As the identification of the reconfiguration is a challenging problem, we resort
to manual software annotations to explicitly denote the reconfigured parts from
one version to another.

Syntactic Reconfiguration. The syntactic reconfiguration mentioned in Fig. 2
follows the concept presented in [10], where a change(old,new)macro was used to
characterize the effect of the reconfiguration. The first argument of this macro rep-
resents the expression from the PLC software before the reconfiguration, and the
second argument represents the expression of the PLC software after the reconfig-
uration. As a result, the manifestation of reconfigurations to PLC software stated
earlier, i.e., the addition of new functionality, e.g., adding an extra assignment
x := change(x, 1);, the modification of already existing functionality, e.g., chang-
ing the right-hand side of an assignment x := y + change(1, 2);, or the deletion of
functionality, e.g. removal of straightline code if(change(true, false)) . . . code . . .
can be expressed succinctly with the change(old,new) macro. This way of anno-
tating the expressions of reconfigured parts of the software has a significant benefit
as it keeps the correspondence between both versions intact and was therefore cho-
sen for analyzing the semantic effects of the implication introduced by the recon-
figurations.

1.1 Limitations and Contributions

A premise resulting from the introduction is the existence of syntactically change-
annotated PLC programs given as input to our framework. To further narrow the

140 M. Grochowski et al.

scope of this contribution, the peculiarities of PLCs have to be considered. A PLC
is subject to cyclic execution resulting in non-termination. Still, every execution
through one cycle terminates and hence can be analyzed. The programming lan-
guages for PLCs forbid recursive calls, i.e., the call-flow graph is acyclic [8]. Fur-
thermore, our framework does not support the use of arrays or pointers yet. Never-
theless, statically allocatedmemory can bemodeled by flattening the arrays.While
the prototypical framework is able to analyze loops other than the naturally occur-
ring execution cycle of the PLC program, these loops are not explicitly handled and
analysis might be intractable. As some of the benchmarks use the timer capabilities
of the IEC 61131-3 standard [8], we use an over-approximating representation of
timers from [1], which non-deterministically models the internal decision variable
measuring the passing of time. Last but not least, control tasks are usually dis-
tributed in the context of Industry 4.0, yet most often still coordinated centrally.
Instead of having a single PLC that controls the various actuators in the CPPS,
multiple PLCs exist, one for each control task and one overarching, coordinating
PLC. Despite that, we model the distributed control task as one, compositional,
classic PLC program, in which the other control tasks are incorporated as func-
tion blocks and executed on one single PLC controller (cf. Sect. 4). This neglects
the influences of different times and latencies introduced due to the communica-
tion between each controlling PLC. We assume that the sequential modeling using
a single PLC is a feasible abstraction of several distributed PLCs running in par-
allel, realizing the same control task, because the business logic is implemented by
a single, coordinating PLC, which processes the messages of the other distributed
PLCs sequentially in all circumstances. To this end,

– we improve the scalability of an existing Dynamic Symbolic Execution (DSE)
algorithm for PLC software,

– we evaluate the feasibility of DSE and the concept of four-way forking for test
suite augmentation of reconfigured PLC software on benchmarks of varying
difficulty and compare it to previous results.

2 Related Work

Symbolic execution is one of the primary techniques for software testing and
resulted in the development of numerous language-agnostic analysis tools in the
past [3]. Previous work has investigated the applicability of DSE in test suite
generation for PLC software [4]. The results were promising but have not been
applied to tackle the problem of test suite augmentation after a reconfigura-
tion. In contrast to [4], the concolic and compositional DART algorithm, also
known as SMART [5], explores the program execution tree depth-first on a per
path basis allowing for the use of summaries. However, we currently refrain from
summarization due to our conflicting merging strategy. An approach that aids
regression testing with static change-impact analysis is called directed incremen-
tal SE (DiSE) [22]. The rationale behind this is that static analysis avoids the
problems of undecidability of whether there exists an input that is difference-
revealing against the reconfigured program by over-approximating the semantic
properties using syntactic dependencies such as control- and data dependencies.

Test Suite Augmentation for Reconfigurable PLC Software in the IoP 141

The results from the static analysis are used to guide symbolic execution by
exploring only paths that can reach parts of the software affected by the recon-
figuration. This approach, however, has two severe disadvantages. We argue that
these slices give only conservative estimates and are often too imprecise, reducing
opportunities for information reuse from the prior analysis of the reconfigured
PLC software. Furthermore, DiSE only explores one execution path through the
impacted parts of the software, and besides reachability, there is no guidance in
the direction of real divergences. This lead us to the choice of Shadow Symbolic
Execution (SSE) [10] for test suite augmentation. SSE uses a seeded exploration
with a test case that touches the presumable patch, or in our terminology, the
reconfiguration. The novelty of SSE is that it executes the old (presumed buggy)
and new (presumed patched) program within the same SE instance. Therefore,
it allows the algorithm not to re-execute potentially expensive path prefixes,
which provides several opportunities to prune and prioritize paths and simplify
constraints. Despite this, the reconfigurations are touched by a test case that
dictates the context in which the potential reconfiguration is reached and hence
limits the generalization. Furthermore, both programs need to be merged into a
change-annotated, unified version.

Verification and Testing in the PLC Domain. Regarding the safeguard-
ing of reconfigurations in the PLC domain several techniques on various levels
have emerged in the past years. TestIas [24] is a tool for model-based verifica-
tion of reconfigurations to distributed automation systems. It works on a higher
level than PLC software, i.e., trying to prove the correctness of a reconfigura-
tion affecting the functional perspective of services in a CPPS. Prioritization
for regression testing of reconfigured PLC software with regards to system tests
was evaluated in [17]. It optimizes the regression testing process of CPPS after a
reconfiguration, however, it is unable to generate difference-revealing test cases.
Another interesting approach poses the modular regression verification of the
VerifAps library which was successfully applied to the Pick and Place Unit
(PPU) case study in [18]. Modular regression verification requires the specifica-
tion of relational regression verification contracts allowing for the decomposition
of the verification task resulting in efficient solving, yet being far from a push-
button technology.

3 Methodology

An overview of our prototypical test suite augmentation (TSA) framework is
given in Fig. 3 and explained throughout this section. TSA can be considered
as a development time technique, in which the developer manually annotates
the desired changes and is able to assess their implications on the observable
behavior of the PLC software. The input to the program analysis framework is a
manually change-annotated PLC program in structured text (ST), one of the five
IEC 61131 programming languages [8], using the change(old,new) annotation
macro introduced in Sect. 1. Before going in-depth with the core TSA algorithm,
we briefly describe our intermediate representation of the PLC software.

142 M. Grochowski et al.

Fig. 3. Overview of the prototypical TSA framework.

3.1 Intermediate Representation

A PLC program can consist of several program organization units (POUs), which
provide an interface definition of the input, local, and output variables, and a
body containing the actual instructions that operate on this interface. The IEC
61131 standard [8] distinguishes between three types of POUs, namely functions,
function blocks, and programs. A program represents the main entry, whereas
function blocks and functions represent stateful and stateless procedures, respec-
tively. At cycle entry, new input values are read from the environment and
written to the input variables. During the execution of the cycle, the program
operates on a copy of these input variables and internal state variables. The
state variables also comprise output variables written to the PLC’s output at
the cycle exit. While new values are assigned to input variables in each cycle,
the internal state variables retain their values. During the parsing and compiling
of the input program, function blocks are lowered to regular procedures operat-
ing on references of their variables. As a result, parameterized calls to function
blocks are modeled as parameterless calls preceded and succeeded by a sequence
of input and output assignments in the respective caller, which do not modify
the state explicitly but rather transfer the flow of control between procedures.
For this purpose, we have chosen a goto-based intermediate representation (IR)
to represent a subset of the ST language [8] in form of a so-called control-flow
graph (CFG) [2]. We model the PLC program as a pair P = (G,G), where G ∈ G
is the CFG of the program POU, and G is a set of CFGs representing nested
function blocks occurring in the program. The instructions supported by this IR
are defined over variables x ∈ X, Boolean and arithmetic expressions e as usual

I ::= assign(x, e) | ite(e,goto b�1 ,goto b�2) | call G′ | return | cycle .

Unlike in typical goto-based IRs, we introduced a cycle instruction, explicitly
denoting the end of the execution cycle. Given the terminology, we will dive into
the baseline symbolic execution framework used for generating the test cases
which is reused during the application of SSE.

Test Suite Augmentation for Reconfigurable PLC Software in the IoP 143

3.2 Bounded Symbolic Execution

Our implementation of the Bounded Symbolic Execution (BSE) for TSA is com-
posed of three components: an execution context, an executor, and an exploration
strategy. An execution context q = (c, �, f, ρ, σ, π) consists of a cycle c, a label �
referring to a vertex b� of a CFG G, a frame stack f , a concrete store ρ, which asso-
ciates variables with concrete values, a symbolic store σ, which associates variables
with symbolic values, and a path constraint π. The frame stack f holds triples
(Gcallee , scope, �caller), where Gcallee denotes the CFG of the callee, scope is the
scope in which the call occurred, and �caller denotes the intra-procedural label of
the caller at which the execution should resume after returning from the callee.
The BSE algorithm is given in Algorithm 1 and explained in the following. It is also
commonly known as compositional SE in literature [3] augmented with parame-
terizable local and global termination criterias.

Exploration Strategy. We decided for a cycle-based, depth-first exploration
strategy similar to [4] with parameterizable timeout, coverage, and cycle bounds.
As the cyclic execution of PLC programs significantly increases the computation
time of symbolic execution, we adjusted the termination criteria in line 2 to con-
sider a configurable cycle exploration bound. The priority queue Q is sorted heuris-
tically by prioritizing execution contexts with a lower cycle count, resulting in
the exploration of all feasible execution paths through one execution cycle before
continuing with the next cycle. Furthermore, candidate execution contexts with a
deeper path length and a concretely executable store are prioritized over execution
contexts with a shallower path length. This enables the depth-first exploration to
simulate a breadth-first exploration through one cycle and generates concise test
cases with no unnecessary executed cycles. When encountering the end of the cycle
during execution (cf. line 25), the cycle counter is increased and new concrete input
valuations and fresh symbolic variables are derived.

Assignments, Branches andCalls. The semantic effects of the instructions on
the respective stores are captured via an evaluation function eval. For an assign-
ment assign(x, e), the concrete and symbolic store are updated via ρ ← ρ[x �→
evalρ(e)] and σ[x �→ evalσ(e)], respectively, as illustrated in line 10. The bracket
notation [] denotes the usual replacement for the specified variable in the store.
Whenever an ite(e,goto �1,goto �2) instruction is encountered, the path con-
straint is updated symbolically depending on the result of the branch expressions
concrete evaluation (cf. line 12). In case the expression evaluates to true, execu-
tion is continued in the positive branch and a test case is derived if this label is
yet uncovered. We also check if the other path is feasible under the current path
constraint and fork the execution context with the concrete valuation of the model
(cf. lines 15–19). As mentioned in the beginning of Sect. 3.1, call and return effects
are lowered to input and output assignments during compilation. Therefore, the
call and return instruction modify the frame stack and update the control-flow
accordingly.

144 M. Grochowski et al.

Algorithm 1: Bounded Symbolic Execution
Input : Program P = (G, G), CFG G = (X,Xin , (B, E), b�e , b�x)
Output : Test Suite T

1 Q ← {(0, �e, ∅, ρ�e , σ�e , true)}; M ← ∅
2 while

(
Q �= ∅ ∨ M �= ∅

)
∧ ¬terminationCriteriaMet do

3 if Q = ∅ then Q.push(merge(M))
4 q ← (c, �, f, ρ, σ, π) ← Q.pop()
5 if reachedMergePoint(q) then
6 M.push(q)
7 else
8 switch instructionAt(�) do
9 case assign(x, e) do

10 Q.push
(
(c, � + 1, f, ρ[x �→ evalρ(e)], σ[x �→ evalσ(e)], π)

)

11 case ite(e,goto �1,goto �2) do
12 if evalρ(e) then
13 q1 ← (c, �1, f, ρ1, σ1, π ∧ evalσ(e)); Q.push(q1)
14 if ¬covered(�1) then T.deriveTestCase(q1)
15 if tryFork(π ∧ evalσ(¬e)) then
16 ρ2 ← model(π ∧ evalσ(¬e)))
17 q2 ← (c, �2, f, ρ2, σ, π ∧ evalσ(¬e)); Q.push(q2)
18 if ¬covered(�2) then T.deriveTestCase(q2)

19 end

20 else // analogous, omitted for brevity

21 case call G′ do
22 f.push(G′, getScope(G), �Gr); Q.push

(
(c, �G′

e
, f, ρ, σ, π)

)

23 case return do
24 (, , �Gr) ← f.pop(); Q.push

(
(c, �Gr , f, ρ, σ, π)

)

25 case cycle do

26
Q.push

(
(c + 1, �e, f,ρ[x ∈ Xin | x �→ random()],

σ[x ∈ Xin | x �→ xfresh], π)
)

27 end

28 end

29 end
30 return T

Merge Strategy. Execution contexts are merged at all possible points where
the control-flow joins with respect to realizable paths as opposed to merging at the
cycle end as in [4]. During execution, we check whether the current context reached
an interprocedural realizable merge point (cf. line 5) and add it to the merge queue
M for further processing.

Unreachable Branches. The detection of unreachable branches is an essential
task to avoid the encoding of infeasible paths when applying symbolic execution.
As our static analysis (SA) is currently not capable of abstract interpretation, we
leveraged the algorithms from Crab1 to build a value set analysis calculating the

1 https://github.com/seahorn/crab.

https://github.com/seahorn/crab

Test Suite Augmentation for Reconfigurable PLC Software in the IoP 145

possible values for each variable at each label of our CFGs. Using this information,
we can statically deduce whether a branch is reachable or not. While being a power-
ful tool it is apparent that the SAof Crab is not tailored to the domain of PLC soft-
ware. To express our IR in a form such thatCrab is able to analyze it, it passes sev-
eral code transformation pipelines including basic block encoding, three-address
code, call-transformation and static single assignment which severely bloats up
the CFG representation. In order to get precise information the expensive boxes
domain was chosen [7]. The boxes domain is sensitive to the number of “splits” on
each variable which come, among other things, from joins and Boolean operations.
Unfortunately, the benchmarks in Sect. 4 “split” a lot due to the cyclic dependency
between variables and the state-machine like behavior. Therefore, to still be able
to reuse at least some information from the SA, we decided for a trade-off between
precision and run time by tuning the behavior of the boxes domain to convexify
after a certain amount of disjunctions resulting in imprecise but still usable results.

3.3 Shadow Symbolic Execution

Intuitively, two things are needed for TSA after a reconfiguration: (1) the test
cases must reach potentially affected areas along different, relevant paths (spe-
cific chains of data- and control-dependencies), and (2) test cases must account
for the state of the PLC software and the effects of the reconfigurations, i.e., be
difference-revealing. An interesting research question in this context is whether the
concept of four-way forking stemming from the SSE [10] algorithm is applicable to
the PLC domain using the change(old, new) macros (cf. Sect. 1) to apply TSA
for reconfigurable PLC software. In general, it can be intractable, because outputs
are potentially difference-revealing after k cycles (depending on the internal state)
and hence the analysis runs out of memory before the difference is reached. In gen-
eral, deriving difference-revealing test cases in the style of SSE [10] is a two-step
application of SE algorithms (cf. Fig. 3) and is presented in detail in Algorithm2. In
line 1 ofAlgorithm2 the test suite of the version before the reconfiguration is reused
and executed on the change-annotated PLC program to determine which test cases
“touch” the change. Prior to execution, in case the interface has changed due to the

Algorithm 2: Test Suite Augmentation using SSE [10]
Input : Program P = (G, G), CFG G = (X,Xin , (B, E), b�e , b�x), Test Suite

T
Output : Difference revealing test cases Tdifference-revealing

1 Tchange-traversing ← collectChangeTraversingTestCases(G, T)

2 foreach t ∈ Tchange-traversing do // Phase 1 - SSE

3 {(q0, t
′
0), . . . , (qm, t′

m)} := Qdivergent.push(findDivergentContexts(t))
4 end
5 foreach (q, t′) ∈ Qdivergent do // Phase 2 - BSE

6 Tdivergent.push(performBoundedExecution(q, t
′))

7 end
8 Tdifference-revealing ← checkForOutputDifferences(Tdivergent)

146 M. Grochowski et al.

reconfiguration, the test case does not contain valuations for all variables. There-
fore, we augment the test case with additional valuations using the 0-default ini-
tialization for BOOL and INT as defined in IEC61131-3, false and 0, respectively.
Each executed test case is further augmented with additional information such as
the execution history and state valuations reaching the end of the cycles of the old
program version. As a test case can “touch” multiple change-annotated labels, we
consider only the test cases that cover as much information as possible with regards
to the respective change-annotated label. This reduces the amount of test cases
needed for consideration in the first phase without losing expressiveness, as test
cases spanning along multiple cycles with the same prefix are prioritized. When
functionality is added depending on newly introduced input variables, the prior
test suite is unable to cover these labels, hence we keep track of labels that were
change-annotated but not “touched” by any test case.

FindingDivergent Contexts. Before continuing with the explanation of Algo-
rithm 2, we present how divergent contexts are found during symbolic execution.
Algorithm 3 uses the concept of four-way forking to determine whether the execu-
tion of a test case leads to potential divergent behavior or not. It is driven by the
concrete input valuations of the corresponding test case (cf. line 1) and the aug-
mented BSE is concolically executed on a per cycle basis using a single execution
context, hence no merging. In general, the algorithm is similar to the one presented
in Algorithm 1. We adapted the handling of branches to support the four-way fork-
ing and introduced additional data structures for storing the shadow expressions in
the context, here hidden behind the concrete and symbolic store. As change anno-
tations may occur in any instruction (or expression) we use the notion of symbolic
change shadows and check whether such a change shadow influences the behavior
of the current execution path. In case a branch is encountered during the concolic
execution of the test case, we recursively check if the expression contains a symbolic
change shadow (cf. line 7). If the current branch expression contains no shadow
expression, we continue the execution as illustrated in Algorithm 1 in the lines 12–
20. In case the branch expression contains a shadow expression, it might lead to
divergent behavior. In order to check whether the current test case takes different
paths in the old and the new version of the code, we first evaluate it under the con-
crete store of the divergent context resolving all shadow expressions (cf. line 8). If
the valuations of the expression in the old and the new context do not coincide, the
test case exposes truly divergent behavior which might trigger difference-revealing
outputs. At this point, the execution stops and the divergent context is added to
the queue to be explored in the second phase. If the valuations are equal, there still
might be potential divergent behavior. First, we encode the expression using the
old and the new symbolic valuations and then check in lines 14–17 whether poten-
tial divergent behavior exists. For this purpose, we explore subsequently whether
there exist concrete valuations that may diverge and derive a test case as a wit-
ness. The forked divergent context is added to the divergent context queue and
the execution continues with either following the true or the false branch try-
ing to propagate the execution context to a deeper nested potentially divergent

Test Suite Augmentation for Reconfigurable PLC Software in the IoP 147

Algorithm 3: findDivergentContexts – BSE with four-way forking [10]
Input : CFG G = (X,Xin , (B, E), b�e , b�x), Test Case t
Output : Divergent Contexts Qdivergent

1 foreach ct ∈ t do
2 q ← (c, �, f, ρct

input , σ, π)

3 while c = ct do
4 switch instructionAt(�) do
5 // other cases analogous to BSE, omitted for brevity

6 case ite(e,goto �1,goto �2) do
7 if containsShadowExpression(evalσ(e)) then

8 (vold, vnew) ← evalshadow
ρ (e)

9 if vold �= vnew then // divergent behavior

10 Qdivergent.push
(
(q, t)

)

11 return Qdivergent

12 else // potential divergent behavior

13 (ϕold, ϕnew) ← evalshadow
σ (e)

14 if tryDivergentFork(π ∧ ¬ϕold ∧ ϕnew) then
15 Qdivergent.push

(
(qforked, deriveTestCase(qforked))

)

16 end
17 if tryDivergentFork(π ∧ ϕold ∧ ¬ϕnew) then
18 Qdivergent.push

(
(qforked, deriveTestCase(qforked))

)

19 end
20 if vold then
21 q ← (c, �1, f, ρ, σ, π ∧ ϕold ∧ ϕnew);
22 else
23 q ← (c, �2, f, ρ, σ, π ∧ ¬ϕold ∧ ¬ϕnew);
24 end

25 end

26 else // analogous to BSE, omitted for brevity

27 end

28 end

29 end

30 end
31 return Qdivergent

context. On termination, i.e., either when a divergent context is found or when all
the concrete input valuations for each cycle of this test case have been executed,
the algorithm returns the set of divergent contexts and continues with the next
test case.

PropagatingDivergent Contexts. The second phase of Algorithm 2 performs
a seeded BSE (cf. Algorithm 1) for each found divergent context in the first phase.
The divergent context and test case passed as parameters in line 6 represent either
a diverging concrete execution or were generated because of a potential, possi-
ble divergence at the four-way fork in the first phase. This phase runs until the

148 M. Grochowski et al.

termination criteria is met and tries to generate as many test cases as possible.
These test cases cover paths originating from a divergence and hence may expose
differences in the outputs between the old and the new version of the reconfigured
PLC program. In line 8 of Algorithm 2 the derived divergent test cases are checked
for output differences. The execution of modified instructions does not mean that
they are necessarily difference-revealing because the subdomains do not need to
be homogeneous with regards to the failure [20]. Hence to determine whether a
test case exposes an externally observable difference, the outputs on the test case
in the new version are compared to the outputs on the test case in the old ver-
sion. If the outputs differ on a per cycle basis, the test case is added to the set of
difference-revealing test cases and requires further examination by the developer.

4 Evaluation

The evaluation was conducted on an Intel(R) Core(TM) i5-6600K CPU @
3.50 GHz desktop with 16 GB of RAM running openSUSE Leap 15.3. For SMT-
solving, we utilized the high-performance automated theorem prover Z3 by
Microsoft [13]. The benchmarks evaluated with Arcade.PLC were also run with
the same evaluation setup. The code of our contribution and the correspond-
ing benchmarks are available for download at https://github.com/embedded-
software-laboratory/TSA-FMICS22.

In the following, we first present the achieved performance improvements for
the BSE as our TSA implementation heavily relies on it before presenting the
results of the TSA algorithm on a few selected benchmarks.

PLCopen Safety Suite. The benchmark consists of a set of safety-related PLC
programs provided by the PLCopen organization [15]. The results are listed in
Table 1 and show for each evaluated function block the lines of code (LOC), the
coverage values as well as the runtimes of the implementation of a merge-based
test generation algorithm in Arcade.PLC [4] in comparison to the results of
our contribution. Because both tools use different IRs, the number of reachable
branches is omitted. The timeout (TO) was set to 10 min. For the detection of
unreachable branches, Arcade.PLC uses a values-set analysis, however, we did
not add the time to the results. Instead, we ran both programs with this addi-
tional pre-computed information to only focus on the performance of the DSE
algorithms. The SAmanual refers to the use of Crab and manual annotation for
truly unreachable branches which were over-approximated due to the convexifica-
tion of the disjunctions (cf. Sect. 3). As far as the function blocks are concerned,
both approaches perform equally well. As all blocks follow the same general struc-
ture, the LOC can be seen as a reference for giving a rough estimate on what one
would expect time wise from the analysis. A significant difference between both
approaches is the amount of test cases generated. While Arcade.PLC generates
concise test cases for every branch, our contribution tries to avoid redundancies due
to shorter test cases being included in longer test cases, hence generating less test
cases overall. This is neither a benefit nor a disadvantage and could be obtained

https://github.com/embedded-software-laboratory/TSA-FMICS22
https://github.com/embedded-software-laboratory/TSA-FMICS22

Test Suite Augmentation for Reconfigurable PLC Software in the IoP 149

by a static postprocessing on the test suite generated by Arcade.PLC. Do note
thatArcade.PLC does not dump any test cases in case it runs into a TO due to a
technical limitation. The programs on the bottom half are bigger in the sense that
they are composed of multiple function blocks from the top with additional logic
and were analyzed without manual SA annotation. As more and more calling con-
texts are available it becomes apparent that delaying the merging until the end of
the cycle performs way worse than merging on all realizable paths when the oppor-
tunity emerges. Most notably, the performance degenerates on blocks which make
heavy use of timer and edge trigger function blocks because only specific paths can
reach deeper behavior.

Table 1. Comparison of branch coverage and runtimes for the test generation of the
PLCopen Safety library, ordered alphabetically.

Function Block /

Program

Arcade.PLC + SA Contribution + SAmanual

LOC cov. [%] T [#] time [s] cov. [%] T [#] time [s]

Antivalent 136 100 61 0.74 100 23 0.37

EDM 229 100 134 5.22 100 62 3.49

Emergency Stop 127 100 66 0.45 100 27 0.33

Enable Switch 133 100 71 1.13 100 32 1.28

Equivalent 133 100 62 0.86 100 26 0.59

ESPE 127 100 66 0.42 100 27 0.31

Guard Locking 148 100 80 1.01 100 37 0.87

Guard Monitoring 174 100 82 1.45 100 34 1.12

Mode Selector 239 100 70 5.20 100 30 1.08

Muting Seq 262 97.5 - TO 100 53 49.6

Out Control 121 100 67 0.77 100 31 0.61

Safe Stop 157 100 73 3.52 100 32 0.59

Safely Limit Speed 175 100 91 9.90 100 41 1.38

Safety Request 191 100 88 1.29 100 40 1.01

Testable Safety Sensor 291 100 147 16.93 100 68 17.08

Two Hand Control Type II 126 100 83 0.85 100 38 0.73

Two Hand Control Type III 184 100 107 1.63 100 46 0.95

DiagnosticsConcept 537 65.49 - TO 91.00 104 TO

Muting 1119 51.24 - TO 80.23 196 TO

SafeMotion 1061 38.15 - TO 73.71 156 TO

SafeMotionIO 811 53.50 - TO 71.65 106 TO

TwoHandControl 608 58.79 - TO 86.34 131 TO

Pick and Place Unit (PPU). The benchmark consists of a total of 15 scenar-
ios for the PPU of an open-source bench-scale manufacturing system2. While it is

2 https://www.mw.tum.de/ais/forschung/demonstratoren/ppu/.

https://www.mw.tum.de/ais/forschung/demonstratoren/ppu/

150 M. Grochowski et al.

limited in size and complexity, this trade-off between problem complexity and eval-
uation effort does not harm the expressiveness of the benchmark. In this evalua-
tion,we focused on the first four scenarios and translated them from theirPLCopen
XML representation to ST using theVerifAps library3. The Scenario 0 consists
of a stack, crane and a ramp of which the latter is only mechanical. The recon-
figuration Scenario {0 → 1} aims to increase the ramp’s capacity. This recon-
figuration does not affect the software as the ramp is a purely mechanical com-
ponent. As a response to changing customer requirements, the reconfiguration
Scenario {0 → 2} enables the PPU to handle both plastic and metallic work-
pieces. For this purpose, an induction sensor is introduced which changes the out-
put behavior of the stack component. The behavior of the crane is untouched.
The third reconfiguration Scenario {2 → 3} introduces the stamping function-
ality of metallic workpieces. This impacts the behavior of the crane as workpieces
need to be stamped before being transported to the ramp. The results of the test
suite generation using BSE without SA results are shown in Table 2. The PPU
has more complex behavior in comparison to the PLCopen safety suite, which is
also reflected in the required time/termination criteria for the test case generation.
A comparison with Arcade.PLC was omitted as it was not able to analyze the
benchmarks.

Table 2. Results of the test suite generation using BSE for selected PPU scenarios.

PPU
Scenario

Contribution

LOC cov. [%] T [#] time [s] cycle [#]

Scenario 0 412 88.97 45 169.82 25

Scenario 1 412 88.97 45 170.12 25

Scenario 2 459 89.61 55 274.19 25

Scenario 3 768 91.67 102 1198.08 25

Table 3 shows the results of the TSA for the manually change-annotated recon-
figured PLC programs.

Table 3. Results of the TSA using Algorithm 2 for selected reconfiguration scenarios of
the PPU.

PPU
Evolution

�ca [#]/

�u [#]
Tca [#]

Phase 1 Phase 2
Tdiff [#]

Qdiv [#] t [s] Tdiv [#] t [s]

Scenario {0 → 1} 0/0 0 0 0 0 0 0

Scenario {0 → 2} 12/1 45 2 1.77 52 54.99 23

Scenario {2 → 3} 50/21 55 21 19.49 1269 3423.94 1269

3 https://github.com/VerifAPS/verifaps-lib.

https://github.com/VerifAPS/verifaps-lib

Test Suite Augmentation for Reconfigurable PLC Software in the IoP 151

The first column of Table 3 denotes the analyzed reconfiguration scenario. The
second column contrasts how many change-annotated labels �ca in the recon-
figured program exists and how many of those change-annotated labels remain
untouched �u by the test suite of the prior version. This ratio gives an estimate on
how suited the previous test suite is to find divergences. The third column denotes
the number of test cases Tca in the previous test suite which exercise any number
of change-annotated labels �ca in the change-annotated PLC program. One has to
keep in mind that the generated test cases are succinct with regards to the required
number of cycles to reach a specific branch (in case of branch coverage). Due to the
cyclic nature of the PLC software, test cases which cover deeper nested branches,
i.e., branches reachable after a certain amount of cycles, can share a partial prefix
with test cases covering already some of the branches on these paths. This is a nat-
ural limitation of the SSE approach for cyclic programs resulting in an increased
analysis time for phase 1 and phase 2. The fourth column denotes the number of
derived divergent contexts and the time it took to complete phase 1 for each rep-
resentative test case. The fifth column denotes the number of divergent test cases
generated from propagating the divergent contextes during BSE using the corre-
sponding triggering test cases as a seed for the concolic execution and the time
it took to complete phase 2. The sixth column denotes the number of difference-
revealing test cases found by checking the observable behavior of the old and the
new version of the program on the divergent test cases.

5 Conclusion

The state of the art for TSA is dominated by DSE techniques [3]. We implemented
a baseline BSE improving scalability issues prevalent in prior work [4] due to infre-
quent merging and inefficient storing of the execution contexts. On top of this base-
line, we implemented the concept of four-way forking from SSE [10] and evaluated
the feasibility of this technique on a manually instrumented regression benchmark.
The number of untouched change-annotated labels in the benchmark of Table 3
show the limitation of the SSE approach when trying to analyze reconfigurations
that introduce new functionality and modify the interfaces of the POUs. As SSE
is driven by concrete inputs from an existing test suite, hitting a change is triv-
ially necessary to exercise it. This also means that important divergences can be
missed as it strongly depends on the quality of the initial inputs. There has been
work that investigated a full exploration of the four-way fork, not only to a prede-
fined bound, but the experiments have shown that it is intractable in general [14] –
it does not scale well. Another downside of the SSE approach in the domain of PLC
software lies in the search for additional divergent behaviors. Starting a BSE run
from the divergence in the new version leads to the coverage of locations that would
have been covered with a more succinct prefix. Due to the cyclic nature, the path
prefix of the divergence prevents the coverage of the prior branches – however, it is
undecidable in general whether this is redundant or not as it would require a proce-
dure to check before the execution, whether that path is difference-revealing or not.

152 M. Grochowski et al.

To conclude, SSE can be used to generate difference-revealing test cases that are
suitable for augmentation of the test suite after a reconfiguration. However, it cer-
tainly requires further techniques to reduce the amount of generated difference-
revealing test cases to benefit the developer during reconfiguration.

Outlook. In future work, we would like to improve our baseline BSE and evalu-
ate more sophisticated merging strategies [16] or the incorporation of incremental
solving [12]. While merging may prevent an exponential growth of symbolic exe-
cution contexts and can boost the efficiency [11], the reuse of summaries alleviates
the analysis by not doing redundant work for paths through the program we have
already seen during execution [12]. However, summarization and merging are con-
flicting techniques as checking whether a summary is applicable or not is based on
concrete values, a piece of information we would lose through a merge. It remains
unclear how to benefit the most from merging and summarization.

Acknowledgements. Funded by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) under Germany’s Excellence Strategy – EXC-2023 Internet
of Production – 390621612.

References

1. Adiego, B.F., Darvas, D., Viñuela, E.B., Tournier, J.C., Suárez, V.M.G., Blech,
J.O.: Modelling and formal verification of timing aspects in large plc programs.
IFAC Proc. 47(3), 3333–3339 (2014). https://doi.org/10.3182/20140824-6-ZA-
1003.01279. 19th IFAC World Congress

2. Allen, F.E.: Control flow analysis. In: Northcote, R.S. (ed.) Proceedings of a Sym-
posium on Compiler Optimization, Urbana-Champaign, Illinois, USA, 27–28 July
1970, pp. 1–19. ACM (1970). https://doi.org/10.1145/800028.808479

3. Baldoni, R., Coppa, E., D’Elia, D.C., Demetrescu, C., Finocchi, I.: A survey of sym-
bolic execution techniques. ACM Comput. Surv. 51(3), 50:1-50:39 (2018). https://
doi.org/10.1145/3182657

4. Bohlender, D., Simon, H., Friedrich, N., Kowalewski, S., Hauck-Stattelmann, S.:
Concolic test generation for PLC programs using coverage metrics. In: Cassandras,
C.G., Giua, A., Li, Z. (eds.) 13th International Workshop on Discrete Event Sys-
tems, WODES 2016, Xi’an, China, 30 May – 1 June 2016, pp. 432–437. IEEE (2016).
https://doi.org/10.1109/WODES.2016.7497884

5. Godefroid, P.: Compositional dynamic test generation. In: Hofmann, M., Felleisen,
M. (eds.) Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2007, Nice, France, 17–19 January 2007,
pp. 47–54. ACM (2007). https://doi.org/10.1145/1190216.1190226

6. Grochowski, M., et al.: Formale methoden für rekonfigurierbare cyber-physische sys-
teme in der produktion. at-Automatisierungstechnik 68(1), 3–14 (2020). https://
doi.org/10.1515/auto-2019-0115

7. Gurfinkel, A., Chaki, S.: Boxes: a symbolic abstract domain of boxes. In: Cousot,
R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 287–303. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15769-1 18

https://doi.org/10.3182/20140824-6-ZA-1003.01279
https://doi.org/10.3182/20140824-6-ZA-1003.01279
https://doi.org/10.1145/800028.808479
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657
https://doi.org/10.1109/WODES.2016.7497884
https://doi.org/10.1145/1190216.1190226
https://doi.org/10.1515/auto-2019-0115
https://doi.org/10.1515/auto-2019-0115
https://doi.org/10.1007/978-3-642-15769-1_18

Test Suite Augmentation for Reconfigurable PLC Software in the IoP 153

8. International Electrotechnical Commission: IEC 61131-3:2013 Programmable con-
trollers - Part 3: Programming languages. IEC International Standard IEC 61131-
3:2013 (2013). https://webstore.iec.ch/publication/4552

9. Jeschke, S., Brecher, C., Song, H., Rawat, D.B. (eds.): Industrial Internet of Things.
SSWT, Springer, Cham (2017). https://doi.org/10.1007/978-3-319-42559-7

10. Kuchta, T., Palikareva, H., Cadar, C.: Shadow symbolic execution for testing soft-
ware patches. ACM Trans. Softw. Eng. Methodol. 27(3), 10:1-10:32 (2018). https://
doi.org/10.1145/3208952

11. Kuznetsov, V., Kinder, J., Bucur, S., Candea, G.: Efficient state merging in sym-
bolic execution. In: Proceedings of the 33rd ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2012, pp. 193–204. Associa-
tion for Computing Machinery, New York (2012). https://doi.org/10.1145/2254064.
2254088

12. Lin, Y., Miller, T., Søndergaard, H.: Compositional symbolic execution: Incremen-
tal solving revisited. In: Potanin, A., Murphy, G.C., Reeves, S., Dietrich, J. (eds.)
23rd Asia-Pacific Software Engineering Conference, APSEC 2016, Hamilton, New
Zealand, 6–9 December 2016, pp. 273–280. IEEE Computer Society (2016). https://
doi.org/10.1109/APSEC.2016.046

13. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

14. Noller, Y., Nguyen, H.L., Tang, M., Kehrer, T., Grunske, L.: Complete shadow sym-
bolic execution with java pathfinder. ACM SIGSOFT Softw. Eng. Notes 44(4), 15–
16 (2019). https://doi.org/10.1145/3364452.33644558

15. PLCopen - Technical Committee 5: Safety software, technical specification, part 1:
Concepts and function blocks. Technical report, PLCopen (2020). https://plcopen.
org/system/files/downloads/plcopen safety part 1 version 2.01.pdf

16. Sen, K., Necula, G., Gong, L., Choi, W.: MultiSE: multi-path symbolic execution
using value summaries. In: Proceedings of the 2015 10th Joint Meeting on Founda-
tions of Software Engineering, ESEC/FSE 2015, pp. 842–853. Association for Com-
puting Machinery, New York (2015). https://doi.org/10.1145/2786805.2786830

17. Ulewicz, S., Vogel-Heuser, B.: Industrially applicable system regression test priori-
tization in production automation. IEEE Trans Autom. Sci. Eng. 15(4), 1839–1851
(2018). https://doi.org/10.1109/TASE.2018.2810280

18. Weigl, A., Ulbrich, M., Lentzsch, D.: Modular regression verification for reactive
systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020, Part II. LNCS, vol. 12477,
pp. 25–43. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61470-6 3

19. Weyrich, M., Zeller, A.: Testen von industrie-4.0-systemen - wie vernetzte sys-
teme und industrie 4.0 unser verständnis von systemtest und qualitätssicherung
ändern (2016). https://www.ias.uni-stuttgart.de/dokumente/vortraege/2016-01-
26 Industrie40 Duesseldorf v12final.pdf

20. Weyuker, E.J., Jeng, B.: Analyzing partition testing strategies. IEEE Trans. Softw.
Eng. 17(7), 703–711 (1991). https://doi.org/10.1109/32.83906

21. Xu, Z., Kim, Y., Kim, M., Cohen, M.B., Rothermel, G.: Directed test suite augmen-
tation: an empirical investigation. Softw. Test. Verif. Reliab. 25(2), 77–114 (2015).
https://doi.org/10.1002/stvr.1562

22. Yang, G., Person, S., Rungta, N., Khurshid, S.: Directed incremental symbolic exe-
cution. ACM Trans. Softw. Eng. Methodol. 24(1), 3:1-3:42 (2014). https://doi.org/
10.1145/2629536

https://webstore.iec.ch/publication/4552
https://doi.org/10.1007/978-3-319-42559-7
https://doi.org/10.1145/3208952
https://doi.org/10.1145/3208952
https://doi.org/10.1145/2254064.2254088
https://doi.org/10.1145/2254064.2254088
https://doi.org/10.1109/APSEC.2016.046
https://doi.org/10.1109/APSEC.2016.046
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/3364452.33644558
https://plcopen.org/system/files/downloads/plcopen_safety_part_1_version_2.01.pdf
https://plcopen.org/system/files/downloads/plcopen_safety_part_1_version_2.01.pdf
https://doi.org/10.1145/2786805.2786830
https://doi.org/10.1109/TASE.2018.2810280
https://doi.org/10.1007/978-3-030-61470-6_3
https://www.ias.uni-stuttgart.de/dokumente/vortraege/2016-01-26_Industrie40_Duesseldorf_v12final.pdf
https://www.ias.uni-stuttgart.de/dokumente/vortraege/2016-01-26_Industrie40_Duesseldorf_v12final.pdf
https://doi.org/10.1109/32.83906
https://doi.org/10.1002/stvr.1562
https://doi.org/10.1145/2629536
https://doi.org/10.1145/2629536

154 M. Grochowski et al.

23. Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization:
a survey. Softw. Test. Verif. Reliab. 22(2), 67–120 (2012). https://doi.org/10.1002/
stv.430

24. Zeller, A., Jazdi, N., Weyrich, M.: Functional verification of distributed automation
systems. Int. J. Adv. Manufact. Technol. 105(9), 3991–4004 (2019). https://doi.org/
10.1007/s00170-019-03791-2

https://doi.org/10.1002/stv.430
https://doi.org/10.1002/stv.430
https://doi.org/10.1007/s00170-019-03791-2
https://doi.org/10.1007/s00170-019-03791-2

	Test Suite Augmentation for Reconfigurable PLC Software in the Internet of Production
	1 Introduction
	1.1 Limitations and Contributions

	2 Related Work
	3 Methodology
	3.1 Intermediate Representation
	3.2 Bounded Symbolic Execution
	3.3 Shadow Symbolic Execution

	4 Evaluation
	5 Conclusion
	References

