
Jan Friso Groote
Marieke Huisman (Eds.)

LN
CS

 1
34

87

Formal Methods
for Industrial
Critical Systems
27th International Conference, FMICS 2022
Warsaw, Poland, September 14–15, 2022
Proceedings

Lecture Notes in Computer Science 13487

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Jan Friso Groote ·Marieke Huisman (Eds.)

Formal Methods
for Industrial
Critical Systems
27th International Conference, FMICS 2022
Warsaw, Poland, September 14–15, 2022
Proceedings

Editors
Jan Friso Groote
Eindhoven University of Technology
Eindhoven, The Netherlands

Marieke Huisman
University of Twente
Enschede, The Netherlands

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-15007-4 ISBN 978-3-031-15008-1 (eBook)
https://doi.org/10.1007/978-3-031-15008-1

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-2196-6587
https://orcid.org/0000-0003-4467-072X
https://doi.org/10.1007/978-3-031-15008-1

Preface

The International Conference on Formal Methods in Industrial Critical Systems
(FMICS), organized by ERCIM, is the key conference at the intersection of industrial
applications and formal methods. The aim of the FMICS series is to provide a forum for
researchers who are interested in the development and application of formal methods in
industry. FMICS brings together scientists and engineers who are active in the area of
formal methods and interested in exchanging their experiences in the industrial usage
of these methods. FMICS also strives to promote research and development for the
improvement of formal methods and tools for industrial applications.

This volume contains the papers presented at the 27th International Conference
on Formal Methods in Industrial Critical Systems (FMICS 2022), which was held
during September 14–15, 2022. The symposium took place in the beautiful capital
of Poland, Warsaw, but could also be attended online. The conference was organized
under the umbrella of CONFEST, alongside with the 33rd International Conference
on Concurrency Theory (CONCUR 2022), the 19th International Conference on
Quantitative Evaluation of Systems (QEST 2022), and the 20th International Conference
on Formal Modeling and Analysis of Timed Systems (FORMATS 2022).

FMICS 2022 received 22 paper submissions. We selected a total of 13 papers for
presentation during the conference and inclusion in these proceedings, resulting in an
overall acceptance rate of 59%.

The submissions were reviewed by an international Program Committee (PC) of 28
members from a mix of universities, industry, and research institutes. All submissions
went through a rigorous single-blind review process overseen by the ProgramCommittee
Chairs. Each submission received three review reports and was actively and thoroughly
discussed by the PC.

The programofCONFEST2022 included twoFMICS invited keynotes. One bySven
Schewe from Liverpool University about reinforcement learning with guarantees, and
one by Bas Luttik from Eindhoven University of Technology about railway innovations
via formal modeling and verification.

We are grateful to all involved in FMICS 2022. We thank the authors for submitting
and presenting their work at FMICS 2022 and the PC members and sub-reviewers for
their accurate and timely reviewing. We also thank the invited speakers, session chairs,
and attendees, all of whom contributed to making the conference a success. We are
also grateful to the providers of the EasyChair system, which was used to manage the
submissions, to Springer for sponsoring the Best Paper Award and for publishing the
proceedings, and to the Steering Committee of FMICS for their trust and support. We
thank the General Chair of CONFEST, Sławek Lasota, for providing the logistics that
enabled and facilitated the organization of FMICS 2022.

July 2022 Jan Friso Groote
Marieke Huisman

Organization

Program Committee

Erika Ábrahám RWTH Aachen University, Germany
Maurice ter Beek ISTI-CNR, Italy
Simon Bliudze Inria, France
Rafael C. Cardoso University of Aberdeen, UK
Milan Češka Brno University of Technology, Czech Republic
Hubert Garavel Inria, France
Jan Friso Groote (Chair) Eindhoven University of Technology, The Netherlands
Ernst Moritz Hahn University of Twente, The Netherlands
Paula Herber University of Münster, Germany
Marieke Huisman (Chair) University of Twente, The Netherlands
Peter Höfner Australian National University, Australia
Nikolai Kosmatov CEA List, Université Paris-Saclay and Thales, France
Alfons Laarman Leiden University, The Netherlands
Peter Gorm Larsen Aarhus University, Denmark
István Majzik Budapest University of Technology and Economics,

Hungary
Rosemary Monahan Maynooth University, Ireland
Thomas Neele Eindhoven University of Technology, The Netherlands
Wytse Oortwijn TNO-ESI, The Netherlands
Paweł Parys University of Warsaw, Poland
Wojciech Penczek Institute of Computer Science, Polish Academy of

Sciences, Poland
Jaco van de Pol Aarhus University, Denmark
Marco Roveri University of Trento, Italy
Kristin Yvonne Rozier Iowa State University, USA
Cristina Seceleanu Mälardalen University, Sweden
Martina Seidl Johannes Kepler University Linz, Austria
Jiri Srba Aalborg University, Denmark
Alexander J. Summers University of British Columbia, Canada
Ashutosh Trivedi University of Colorado Boulder, USA
Elena Troubitsyna KTH, Sweden
Naijun Zhan Institute of Software, Chinese Academy of Sciences,

China

viii Organization

Additional Reviewers

Backeman, Peter
Franken, Tom
Gora, Paweł
Grosen, Thomas Møller
Iwanicki, Konrad
Jin, Xiangyu
Kurkowski, Mirosław

Longuet, Delphine
Oda, Tomohiro
Schubert, Aleksy
Sidoruk, Teofil
Szekeres, Dániel
Wang, Qiang
Xu, Runqing

Contents

Invited Keynote Talks

Reinforcement Learning with Guarantees that Hold for Ever 3
Ernst Moritz Hahn, Mateo Perez, Sven Schewe, Fabio Somenzi,
Ashutosh Trivedi, and Dominik Wojtczak

Supporting Railway Innovations with Formal Modelling and Verification 8
Bas Luttik

Certification

Formal Monotony Analysis of Neural Networks with Mixed Inputs:
An Asset for Certification . 15
Guillaume Vidot, Mélanie Ducoffe, Christophe Gabreau, Ileana Ober,
and Iulian Ober

Generating Domain-Specific Interactive Validation Documents 32
Fabian Vu, Christopher Happe, and Michael Leuschel

Deductive Verification of Smart Contracts with Dafny . 50
Franck Cassez, Joanne Fuller, and Horacio Mijail Antón Quiles

Industrial Use Cases

Towards Reusable Formal Models for Custom Real-Time Operating
Systems . 69
Julius Adelt, Julian Gebker, and Paula Herber

Formal Verification of an Industrial UML-like Model using mCRL2 86
Anna Stramaglia and Jeroen J. A. Keiren

Chemical Case Studies in KeYmaera X . 103
Rose Bohrer

Analysing Capacity Bottlenecks in Rail Infrastructure by Episode Mining 121
Philipp Berger, Wiebke Lenze, Thomas Noll, Simon Schotten,
Thorsten Büker, Mario Fietze, and Bastian Kogel

x Contents

Testing and Monitoring

Test Suite Augmentation for Reconfigurable PLC Software in the Internet
of Production . 137
Marco Grochowski, Marcus Völker, and Stefan Kowalewski

Monitoring of Spatio-Temporal Properties with Nonlinear SAT Solvers 155
André de Matos Pedro, Tomás Silva, Tiago Sequeira, João Lourenço,
João Costa Seco, and Carla Ferreira

Model-Based Testing of Internet of Things Protocols . 172
Xavier Manuel van Dommelen, Machiel van der Bijl, and Andy Pimentel

Methodology

Formally Verifying Decompositions of Stochastic Specifications 193
Anton Hampus and Mattias Nyberg

Verification of Behavior Trees using Linear Constrained Horn Clauses 211
Thomas Henn, Marcus Völker, Stefan Kowalewski, Minh Trinh,
Oliver Petrovic, and Christian Brecher

A Multi-level Methodology for Behavioral Comparison
of Software-Intensive Systems . 226
Dennis Hendriks, Arjan van der Meer, and Wytse Oortwijn

Author Index . 245

Invited Keynote Talks

Reinforcement Learning with Guarantees
that Hold for Ever

Ernst Moritz Hahn1 , Mateo Perez2 , Sven Schewe3(B) , Fabio Somenzi2 ,
Ashutosh Trivedi2 , and Dominik Wojtczak3

1 University of Twente, Enschede, The Netherlands
2 University of Colorado Boulder, Boulder, USA

3 University of Liverpool, Liverpool, UK

sven.schewe@liverpool.ac.uk

Abstract. Reinforcement learning is a successful explore-and-exploit
approach, where a controller tries to learn how to navigate an unknown
environment. The principle approach is for an intelligent agent to learn
how to maximise expected rewards. But what happens if the objective
refers to non-terminating systems? We can obviously not wait until an
infinite amount of time has passed, assess the success, and update. But
what can we do? This talk will tell.

1 Learning from Rewards

Model free reinforcement learning (RL) [16,19] refers to a class of algorithms,
where an intelligent agent (sometimes many, but we stick with basic case)
receives rewards. Such rewards serve as feedback; they can be received after ter-
mination, after a fixed period of time, or after every action. Reaping high rewards
reinforces a given behaviour of the agent (hence the name), while behaviour that
leads to low rewards is avoided.

What makes RL algorithms popular is their flexibility and generality. They
can work without being provided with a model of the environment dynamics
and can handle probabilistic environment behaviour – that is, Markov decision
processes (MDP) are their natural domain.

The goal of an agent in its interaction with its environment is to learn an opti-
mal strategy, which describes how she chooses actions in a way that maximises
the expected value of the overall reward, usually the total or discounted sum of
individual rewards or a single reward at the end of a finite run. Discounted and
average rewards are typical of infinite horizon problems.

This work is supported in part by the National Science Foundation (NSF) grant CCF-
2009022 and by NSF CAREER award CCF-2146563, and by the Engineering and
Physical Science Research Council through grant EP/V026887/1. This project has
received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreements No 864075 (CAESAR) and 956123 (FOCETA).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. F. Groote and M. Huisman (Eds.): FMICS 2022, LNCS 13487, pp. 3–7, 2022.
https://doi.org/10.1007/978-3-031-15008-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15008-1_1&domain=pdf
http://orcid.org/0000-0002-9348-7684
http://orcid.org/0000-0003-4220-3212
http://orcid.org/0000-0002-9093-9518
http://orcid.org/0000-0002-2085-2003
http://orcid.org/0000-0001-9346-0126
http://orcid.org/0000-0001-5560-0546
https://doi.org/10.1007/978-3-031-15008-1_1

4 E. M. Hahn et al.

The strategy of an agent describes what she does in each situation. Average,
total, and discounted rewards usually lead to memoryless strategies, but strate-
gies can take the history (i.e., the previous interaction with the environment)
into account.

2 Learning with ω-Regular Objectives

Standard approaches to RL face natural difficulties when considering ω-regular
properties [13,17] that, for example, occur when specifications in linear time
temporal logic (LTL) [12] are used.

This is because the reward for an overall run of a system is binary (does/does
not satisfy the specification), and its binary value cannot be determined after a
finite prefix.

So, how can we learn in this case?
We suggest a layered approach, which consists of the following:

1. Translate the property into a formal acceptor, like a Büchi [2] or parity
automaton, such that maximising the likelihood of winning on the syntactic
product with the MDP is good enough for maximising the chance of satisfying
the property [3,7,18].

2. Translate the formal acceptor into a reachability objective, such that max-
imising the chance of reaching a goal state leads to maximising the chance of
acceptance [4].

3. Wrap this reward structure into a standard RL approach [16].

2.1 Good-for-MDP Automata

Finding the right type of automata has two major ingredients:

1. a limited level of nondeterminism, such that the resulting automaton is good
for MDPs (see below) and

2. a simple acceptance mechanism.

The first ingredient is a technical requirement. Formally(-sh), an automaton
is good-for-MDPs if, for all finite MDPs, its syntactic product MDP (which
is the syntactic product of the finite MDP with the automaton) has the same
likelihood to satisfy the acceptance condition as an optimal control of the MDP
has to satisfy the objective [4].

In this syntactic product, the agent has more to do: she has to resolve the
nondeterminism of the automaton as well as the choices of the original MDP.

Broadly speaking, this limits the type of nondeterminism the automaton
can use: normally, an automaton can use unlimited look-ahead to resolve its
nondeterministic choices, but this automaton has to take into account where the
randomness of the MDP can take it. Moreover, it needs to react to almost all
cases perfectly.

This is reminiscent of good-for-games automata [10], but they need to be
able to deal with all (not merely almost all) interactions with their environment.

Reinforcement Learning with Guarantees that Hold for Ever 5

The relaxation to almost all allows for more automata. Indeed, one of the main
differences between good-for-games and good-for-MDPs automata is that non-
deterministic Büchi automata can always be used for the latter, while the former
requires more complex acceptance mechanisms.

This brings us back to the second ingredient: a simple acceptance mechanism.
This is a practical requirement rather than a technical necessity. It is due to the
much higher cost of the further translation of complex acceptance mechanisms
[8].

Standard translations to limit deterministic automata [7,18] produce nonde-
terministic Büchi automata that are good-for-MDPs [6], but it is equally simple
to produce other good-for-MDP automata with attractive alternative properties,
like never offering more than two choices [6].

After learning, the automaton states (and structure) turn into a finite state
memory.

2.2 From GFM Büchi Automata to Reachability and RL

A parameterised translation from good-for-MDPs automata to rewards proves
to be quite simple: for a given parameter λ ∈]0, 1[, whenever one passes an
accepting state (or transition), go to an accepting sink with probability λ, and
continue with a probability of 1 − λ.

It is easy to see that the chance of reaching the accepting sink is at least the
chance of satisfying the Büchi objective. But it also holds that, when λ goes to
0, the chance of reaching the accepting sink converges to the chance of satisfying
the Büchi objective, and that optimal strategies for the reachability goal are
stable, and optimal for the Büchi objective, for all sufficiently small values of λ.

This reachability objective can then be handled with standard RL techniques.
We have used Q-learning, which would normally wrap the reachability objective
into a discounted payoff objective to guarantee contraction.

3 Related Work

Reinforcement learning for ω-regular objectives has first been applied using
deterministic Rabin automata [11,14]. While there are small examples where
this method does not produce optimal results [4], they have paved the way for
further exploration.

The translation through reachability [4] has been complemented by an inte-
grated approach to discounted payoff that uses different discount factors for
accepting and non-accepting transitions [1]. This can be mimicked by replacing
the reduction to reachability by replacing the transition to an accepting sink
by obtaining a reward while discounting the rest of the game with a factor of
1 − λ, while not discounting otherwise. Wrapping this approach into another
discount scheme for RL (in order to guarantee contraction) leads to the same
set of different discount factors [5].

6 E. M. Hahn et al.

Suitable limit deterministic automata have been replaced by good-for-MDP
automata [6]. While current approaches to obtain them from general nondeter-
ministic Büchi automata hinge on breakpoint constructions, it is also possible
(but expensive: PSPACE hard and in EXPTIME) to check whether or not an
nondeterministic Büchi automaton is already good-for-MDPs [15].

The learning approach extends to Markov games [8], which need good-for-
games automata [10], and thus parity objectives. While using games as such
does not seem to be problematic, handling more powerful acceptance conditions
comes at a cost, broadly speaking by using the small parameter λ in different
powers.

Being able to handle games also paves the way for using alternating automata
(so long as they are good-for-MDPs) for ordinary MDPs, which has proven to
allow for efficient translations from deterministic Streett to alternating Büchi
automata that are good-for-MDPs, while their translation to nondeterministic
Büchi automata (GFM or not) is expensive [9].

References

1. Bozkurt, A.K., Wang, Y., Zavlanos, M.M., Pajic, M.: Control synthesis from lin-
ear temporal logic specifications using model-free reinforcement learning. In: 2020
IEEE International Conference on Robotics and Automation, ICRA 2020, Paris,
France, May 31–August 31, 2020, pp. 10349–10355. IEEE (2020). https://doi.org/
10.1109/ICRA40945.2020.9196796

2. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Pro-
ceedings of the International Congress on Logic, Methodology, and Philosophy
of Science, 1960, Berkeley, California, USA, pp. 1–11. Stanford University Press
(1962)

3. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J.
ACM 42(4), 857–907 (1995)

4. Hahn, E.M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A., Wojtczak, D.: Omega-
regular objectives in model-free reinforcement learning. In: Vojnar, T., Zhang,
L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 395–412. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17462-0 27

5. Hahn, E.M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A., Wojtczak, D.: Faithful
and Effective Reward Schemes for Model-Free Reinforcement Learning of Omega-
Regular Objectives. In: Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol.
12302, pp. 108–124. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
59152-6 6

6. Hahn, E.M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A., Wojtczak, D.: Good-
for-MDPS automata for probabilistic analysis and reinforcement learning. In: Tools
and Algorithms for the Construction and Analysis of Systems, pp. 306–323 (2020)

7. Hahn, E.M., Li, G., Schewe, S., Turrini, A., Zhang, L.: Lazy probabilistic model
checking without determinisation. In: Proceedings of the 26th Conference on Con-
currency Theory (CONCUR 2015), September 1–4, Madrid. LIPIcs, vol. 42, pp.
354–367. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany (2015)

8. Trivedi, A., Wojtczak, D.: Model-free reinforcement learning for stochastic parity
games. In: Konnov, I., Kovács, L. (eds.) 31st International Conference on Con-
currency Theory, CONCUR 2020, 1–4 September 2020, Vienna, Austria (Virtual
Conference). LIPIcs, vol. 171, pp. 21:1–21:16. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2020)

https://doi.org/10.1109/ICRA40945.2020.9196796
https://doi.org/10.1109/ICRA40945.2020.9196796
https://doi.org/10.1007/978-3-030-17462-0_27
https://doi.org/10.1007/978-3-030-59152-6_6
https://doi.org/10.1007/978-3-030-59152-6_6

Reinforcement Learning with Guarantees that Hold for Ever 7

9. Hahn, E.M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A., Wojtczak, D.: Model-
free reinforcement learning for branching Markov decision processes. In: Silva, A.,
Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12760, pp. 651–673. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-81688-9 30

10. Henzinger, T.A., Piterman, N.: Solving games without determinization. In: Ésik,
Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 395–410. Springer, Heidelberg (2006).
https://doi.org/10.1007/11874683 26

11. Hiromoto, M., Ushio, T.: Learning an optimal control policy for a Markov deci-
sion process under linear temporal logic specifications. In: Symposium Series on
Computational Intelligence, pp. 548–555, December 2015

12. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems
Specification. Springer, New York (1991). https://doi.org/10.1007/978-1-4612-
0931-7

13. Perrin, D., Pin, J.É.: Infinite Words: Automata, Semigroups. Logic and Games.
Elsevier, Amsterdam (2004)

14. Sadigh, D., Kim, E., Coogan, S., Sastry, S.S., Seshia, S.A.: A learning based app-
roach to control synthesis of Markov decision processes for linear temporal logic
specifications. In: IEEE Conference on Decision and Control (CDC), pp. 1091–
1096, December 2014

15. Schewe, S., Tang, Q., Zhanabekova, T.: Deciding what is good-for-MDPS. CoRR
abs/2202.07629 (2022), https://arxiv.org/abs/2202.07629

16. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 2nd edn.
MIT Press, London (2018)

17. Thomas, W.: Handbook of Theoretical Computer Science, Chap. Automata on
Infinite Objects, pp. 133–191. The MIT Press/Elsevier, London (1990)

18. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state pro-
grams. In: 26th Annual Symposium on Foundations of Computer Science, Port-
land, Oregon, USA, 21–23 October 1985. pp. 327–338. IEEE Computer Society
(1985)

19. Wiering, M., van Otterlo, M. (eds.): Reinforcement Learning: State of the Art.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27645-3

https://doi.org/10.1007/978-3-030-81688-9_30
https://doi.org/10.1007/11874683_26
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/978-1-4612-0931-7
https://arxiv.org/abs/2202.07629
https://doi.org/10.1007/978-3-642-27645-3

Supporting Railway Innovations
with Formal Modelling and Verification

Bas Luttik(B)

Eindhoven University of Technology, Eindhoven, The Netherlands

s.p.luttik@tue.nl

It is a continuing challenge for European railway infrastructure managers to
increase the capacity of the dense European railway network and to achieve cost
reductions at the same time. Innovations developed to that effect rely heavily on
digital technology. To cope with the ensued complexity, railway infrastructure
managers are starting to appreciate more and more the use of formal mod-
elling and verification techniques to support the development of these digital
innovations. In my presentation I will discuss our contributions to two ongo-
ing innovations in the railway domain: EULYNX and ERTMS/ETCS Hybrid
Level 3.

EULYNX

The goal of the EULYNX1 undertaking is to develop digital standardised inter-
faces between interlockings and trackside equipment (signals, points, level cross-
ings, etc.). It is crucial that the standard is unambiguous, that it ensures all
relevant safety requirements, and that compliance to the standard can be tested
thoroughly. To this end, the FormaSig project2—a collaboration between railway
infrastructure managers DB Netz and ProRail, Eindhoven University of Technol-
ogy and the University of Twente—supports EULYNX with formal verification
and model-based test technology.

The EULYNX standardised interfaces are defined using SysML internal block
diagrams and state machine diagrams. The approach of the FormaSig project is
to derive from these SysML models a formal model in the process specification
language mCRL2 [10]. The mCRL2 toolset3 then offers model-checking facilities
to formally analyse the correctness of the interface model with respect to high-
level requirements [6]. Moreover, since the semantics of an mCRL2 model is a
labelled transition system, it also facilitates automated model-based testing of
compliance of implementations to the standard in accordance with formal testing
theory [13].

In a first case study, we have manually derived an mCRL2 model from the
SysML models specifying the EULYNX Point interface [4]. A formal analysis of

1 https://www.eulynx.eu.
2 https://fsa.win.tue.nl/formasig/.
3 https://www.mcrl2.org.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. F. Groote and M. Huisman (Eds.): FMICS 2022, LNCS 13487, pp. 8–11, 2022.
https://doi.org/10.1007/978-3-031-15008-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15008-1_2&domain=pdf
http://orcid.org/0000-0001-6710-8436
https://www.eulynx.eu
https://fsa.win.tue.nl/formasig/
https://www.mcrl2.org
https://doi.org/10.1007/978-3-031-15008-1_2

Supporting Railway Innovations with Modelling and Verification 9

the model using the mCRL2 toolset revealed a deadlock caused by event buffers
overflowing and a discrepancy in the interaction of the EULYNX standard with
the underlying communication protocol. We also performed some preliminary
model-based testing experiments using JTorX [2] to automatically generate tests
from the mCRL2 model, running those tests on a simulator of the EULYNX
interface. The case study showed the feasibility of our approach.

Our next step was to automate the translation of EULYNX SysML models to
mCRL2. The precise semantic interpretation of the SysML models developed in
EULYNX, however, is not fixed. To achieve maximal flexibility in our analysis, we
have therefore set up the translation from SysML to mCRL2 such that it can be
easily modified. At its core is a generic formalisation of the semantics of SysML
state machines in the expressive mCRL2 language [3]. The automated translation
interprets the SysML internal block diagrams, and renders the SysML model as a
data object within the mCRL2 specification of SysML state-machine semantics.
The translation framework, with an application to the EULYNX Point interface,
is described in [5].

We are currently using the framework to analyse other EULYNX interfaces
(level crossing, light signal, train detection). We observe that these other inter-
faces yield mCRL2 models with significantly larger state spaces. So we are inves-
tigating how we can use compositional state-space generation techniques [12]
and symbolic model checking [11] recently developed for mCRL2. Also, we are
experimenting with alternative semantic interpretations of the SysML models;
the flexible set-up of the translation framework now pays off, because it allows us
to experiment with variations of the state-machine semantics without changing
the translation tool itself.

ERTMS/ETCS HL3

Level 3 of ERTMS/ETCS4, the European standardised command and signalling
system, introduces the concept of virtual block. Trains communicate their exact
positions on the track to the trackside system through a radio connection, and
the system computes movement authorities for trains ensuring that two trains
never simultaneously occupy the same virtual block. This approach obviates the
need for expensive train detection hardware. Moreover, since virtual blocks can
be arbitrarily small, or even move along with the train, a capacity increase of
the network is realised.

Transitioning to such a radically new train separation concept on the dense
European railway network is an enormous challenge, because it requires the
entire railway network and trains (passenger and freight) to be equipped with
the enabling technology. To smoothen the transition, railway infrastructure
managers are developing a hybrid version of ERTMS/ETCS Level 3 (HL3). It
describes a train separation mechanism based on virtual blocks that is integrated
with a traditional train detection system with train detection hardware.

4 https://ertms.be/workgroups/level3.

https://ertms.be/workgroups/level3

10 B. Luttik

The HL3 principles facilitate a partitioning of hardware protected track sec-
tions into so-called virtual subsections. Multiple suitably equipped trains can
then be admitted on the same track section simultaneously, ensuring that they
are never simultaneously occupying the same virtual subsection. For trains with-
out the required equipment, the system still provides the traditional train sep-
aration mechanism. An added benefit of HL3 is that, by making use of the
installed train detection hardware, it can recover from a failing radio communi-
cation between train and trackside.

There has been ample attention for the HL3 principles from the formal meth-
ods research community since version 1A of the principles [8] served as the ABZ
2018 case study (see [7] and references therein). At FMICS 2018 we reported
on a formal analysis of the principles using mCRL2 [1]. That first version of
our mCRL2 model formalised the core the principles; it ignored the influence of
various timers that should prevent the system from qualifying a situation as haz-
ardous too quickly. Since our presentation at FMICS 2018, we have updated the
mCRL2 model to reflect version 1D of the principles [9], and also incorporated
the behaviour of the timers. Our various analyses exposed potentially danger-
ous scenarios, especially also related to the behaviour of timers, and resulted in
recommendations for improvement of the HL3 principles that were taken into
account in subsequent versions. ProRail is using our mCRL2 model to simulate
HL3 scenarios.

Acknowledgements. The contributions to EULYNX have been made in collabo-
ration with Mark Bouwman from Eindhoven University of Technology and Arend
Rensink, Mariëlle Stoelinga and Djurre van der Wal from the University of Twente; the
research was funded by ProRail and DB Netz. The contributions to ERTMS/ETCS
Hybrid Level 3 have been made in collaboration with Maarten Bartholomeus from
ProRail and Rick Erkens and Tim Willemse from Eindhoven University of Technol-
ogy; the research was partially funded by ProRail. The vision presented here does not
necessarily reflect the strategy of DB Netz or ProRail.

References

1. Bartholomeus, M., Luttik, B., Willemse, T.: Modelling and analysing ERTMS
hybrid level 3 with the mCRL2 toolset. In: Howar, F., Barnat, J. (eds.) FMICS
2018. LNCS, vol. 11119, pp. 98–114. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-00244-2 7

2. Belinfante, A.: JTorX: a tool for on-line model-driven test derivation and execution.
In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 266–270.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12002-2 21

3. Bouwman, M., Luttik, B., van der Wal, D.: A formalisation of SysML state
machines in mCRL2. In: Peters, K., Willemse, T.A.C. (eds.) FORTE 2021. LNCS,
vol. 12719, pp. 42–59. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
78089-0 3

https://doi.org/10.1007/978-3-030-00244-2_7
https://doi.org/10.1007/978-3-030-00244-2_7
https://doi.org/10.1007/978-3-642-12002-2_21
https://doi.org/10.1007/978-3-030-78089-0_3
https://doi.org/10.1007/978-3-030-78089-0_3

Supporting Railway Innovations with Modelling and Verification 11

4. Bouwman, M., van der Wal, D., Luttik, B., Stoelinga, M., Rensink, A.: What is the
point: formal analysis and test generation for a railway standard. In: Baraldi, P., di
Maio, F., Zio, E. (eds.) Proceedings of ESREL 2020 and PSAM 15. Research Pub-
lishing, Singapore (2020). http://www.rpsonline.com.sg/proceedings/esrel2020/
html/4410.xml

5. Bouwman, M., van der Wal, D., Luttik, B., Stoelinga, M., Rensink, A.: A case in
point: verification and testing of a EULYNX interface. Formal Aspects Comput.
(2022). https://doi.org/10.1145/3528207

6. Bunte, O., et al.: The mCRL2 toolset for analysing concurrent systems. In: Vojnar,
T., Zhang, L. (eds.) TACAS 2019, Part II. LNCS, vol. 11428, pp. 21–39. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17465-1 2

7. Butler, M.J., Hoang, T.S., Raschke, A., Reichl, K.: Introduction to special section
on the ABZ 2018 case study: Hybrid ERTMS/ETCS level 3. Int. J. Softw. Tools
Technol. Transf. 22(3), 249–255 (2020)

8. EEIG ERTMS Users Group: Hybrid ERTMS/ETCS Level 3, ref: 16E045, Version:
1A, Date: 14/07/2017

9. EEIG ERTMS Users Group: Hybrid ERTMS/ETCS Level 3, ref: 16E042, Version:
1D, Date: 15/10/2020

10. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Sys-
tems. MIT Press, Cambridge (2014). http://mitpress.mit.edu/books/modeling-
and-analysis-communicating-systems

11. Laveaux, M., Wesselink, W., Willemse, T.A.C.: On-the-fly solving for symbolic
parity games. In: Fisman, D., Rosu, G. (eds.) TACAS 2022. LNCS, vol. 13244, pp.
137–155. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99527-0 8

12. Laveaux, M., Willemse, T.A.C.: Decomposing monolithic processes in a process
algebra with multi-actions. In: Lange, J., Mavridou, A., Safina, L., Scalas, A. (eds.)
Proceedings 14th Interaction and Concurrency Experience, ICE 2021, 18 June
2021. EPTCS, vol. 347, pp. 57–76 (2021). https://doi.org/10.4204/EPTCS.347.4

13. Tretmans, J.: Model based testing with labelled transition systems. In: Hierons,
R.M., Bowen, J.P., Harman, M. (eds.) Formal Methods and Testing. LNCS, vol.
4949, pp. 1–38. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78917-8 1

http://www.rpsonline.com.sg/proceedings/esrel2020/html/4410.xml
http://www.rpsonline.com.sg/proceedings/esrel2020/html/4410.xml
https://doi.org/10.1145/3528207
https://doi.org/10.1007/978-3-030-17465-1_2
http://mitpress.mit.edu/books/modeling-and-analysis-communicating-systems
http://mitpress.mit.edu/books/modeling-and-analysis-communicating-systems
https://doi.org/10.1007/978-3-030-99527-0_8
https://doi.org/10.4204/EPTCS.347.4
https://doi.org/10.1007/978-3-540-78917-8_1
https://doi.org/10.1007/978-3-540-78917-8_1

Certification

Formal Monotony Analysis of Neural
Networks with Mixed Inputs: An Asset

for Certification

Guillaume Vidot1,2(B) , Mélanie Ducoffe1 , Christophe Gabreau1,
Ileana Ober2, and Iulian Ober3

1 Airbus Opération S.A.S, Toulouse, France
{eric-guillaume.vidot,melanie.ducoffe,christophe.gabreau}@airbus.com
2 University of Toulouse, Institut de Recherche en Informatique de Toulouse,

Toulouse, France
{eric.vidot,ileana.ober}@irit.fr

3 ISAE-SUPAERO, University of Toulouse, Toulouse, France
iulian.ober@isae-supaero.fr

Abstract. The use of ML technology to design safety-critical systems
requires a complete understanding of the neural network’s properties.
Among the relevant properties in an industrial context, the verification of
partial monotony may become mandatory. This paper proposes a method
to evaluate the monotony property using a Mixed Integer Linear Program-
ming (MILP) solver. Contrary to the existing literature, this monotony
analysis provides a lower and upper bound of the space volume where the
property does not hold, that we denote “Non-Monotonic Space Coverage”.
This work has several advantages: (i) our formulation of the monotony
property works on discrete inputs, (ii) the iterative nature of our algo-
rithm allows for refining the analysis as needed, and (iii) from an industrial
point of view, the results of this evaluation are valuable to the aeronautical
domain where it can support the certification demonstration. We applied
this method to an avionic case study (braking distance estimation using
a neural network) where the verification of the monotony property is of
paramount interest from a safety perspective.

Keywords: Neural network verification · Monotony · Certification ·
Formal Methods

1 Introduction

Over the last years, neural networks have become increasingly popular and a refer-
ence method for solving a broad set of problems, such as computer vision, pattern
recognition, obstacle detection, time series analysis, or natural language process-
ing. Their usage in safety-critical embedded systems (e.g., automotive, aviation) is
also becoming increasingly appealing. The aeronautical domain is known to be one
of the more stringent. Indeed, products are ruled by binding regulation require-
ments to guarantee that the aircraft will safely operate in foreseeable operating
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. F. Groote and M. Huisman (Eds.): FMICS 2022, LNCS 13487, pp. 15–31, 2022.
https://doi.org/10.1007/978-3-031-15008-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15008-1_3&domain=pdf
http://orcid.org/0000-0002-4367-457X
http://orcid.org/0000-0001-8440-8764
http://orcid.org/0000-0001-9057-1883
https://doi.org/10.1007/978-3-031-15008-1_3

16 G. Vidot et al.

and environmental conditions. At the end of 2021, the European Union Aviation
Safety Agency (EASA) released the first issue of a concept paper [5] to anticipate
any application for AI-based products: it contains a first set of technical objectives
and organization provisions that EASA anticipates as necessary for the approval of
Level 1 AI applications (‘assistance to human’) and guidance material which could
be used to comply with those objectives.

Among all the properties required to certify AI-based systems, robustness is
of paramount importance and is a widely studied property in the machine learn-
ing and verification communities [2,14,16,18,21,23,24,27–29,31,32]. Although
robustness is a critical property for classification tasks, we see the emergence
of safety-related properties for regression tasks in many industries. For exam-
ple, numerical models have been developed to approximate physical phenomena
inherent to their systems [1]. As these models are based on physical equations,
whose relevancy is asserted by scientific experts, their qualification is carried out
without any issue. However, since their computational costs and running time
prevent us from embedding them on board, the use of these numerical models
in the aeronautical field remains mainly limited to the development and design
phase of the aircraft. Thanks to the current success of deep neural networks,
previous works have already investigated neural network-based surrogates for
approximating numerical models [12,22]. Those surrogates come with additional
safety properties linked to induced physics. One of them is the monotony which
is motivated by the fact that monotonic functions are ubiquitous in most physics
phenomena. For instance, one should expect that the estimate of a braking dis-
tance should be a monotonic function with respect to specific parameters such
as the state of the brakes (nominal or degraded) or the state of the runway (dry
or wet). Another case where monotony is relevant is in DNNs used for control.
Today, state-of-the-art methods for enforcing partial monotony assume that if
the property is not respected on the whole operational domain of the ML-based
function, this puts at risk its certification (i.e., its compliance determination to
certification requirements) and, therefore, its industrialization. We believe that
this risk can be covered, especially for models that, in the future, would also be
penalized for being too loose given the reference function. We propose an itera-
tive method that measures and identifies the part of the domain for which the
monotony property is violated, which can be used to demonstrate conformity to
certification requirements.

2 Certification Preamble

As stated before, to certify a product, the following principle shall apply to the
systems composing that product: each system performs its intended function
and safely operates in foreseeable operating and environmental conditions. It
means that even if the system performs a function with poor performance (this
is obviously not desirable from an industrial viewpoint), it can be certifiable if
the product’s safety is guaranteed in the usage domain. Once that is said, a
primordial principle emerges: the safety is to be considered at the system level,

Formal Monotony Analysis of Neural Networks with Mixed Inputs 17

Fig. 1. Typical runtime assurance architecture proposed by NASA [20]

meaning that even if a specific algorithm is not robust in some areas of its input
space, then the system can remain certifiable if one can demonstrate that any
unsafe behavior is prevented or mitigated. One possible mitigation of this risk is
the use of runtime assurance illustrated in Fig. 1 extracted from the NASA paper
[20], which ensures the system’s safety by the design of redundant control system
architecture, where a certifiable function takes over the function not certifiable
with traditional approaches when unsafe context is detected. This mitigation
is relevant regardless of the technology used during the system development.
Coming back to the specific context of ML-based development, the ability to
formally define the areas of the input space where the safety properties of the
model are not preserved can be a powerful asset in the compliance determination
to certification requirements. The use of formal methods can save significant
testing efforts while preserving the safe behavior of the function.

3 Related Work

In recent years, assessing the robustness of neural networks has been tackled
with formal verification (i.e., sound algorithms demonstrating whether a prop-
erty holds or not). Verifying properties on a neural network is challenging because
neural networks are non-convex functions with many non-linearities, with hun-
dreds to millions of parameters. Even if the type of architecture studied is
restricted to piecewise-linear networks, it is known that this problem is already
NP-hard [29]. There has been tremendous progress in the field of verification,
from robustness proof of networks trained on MNIST to scaling up to CIFAR
10 and even TinyImagenet. These successes are particularly due to the collab-
oration of different communities that made it possible to formulate and tackle
the robustness problem from different perspectives. Without being exhaustive,
we can cite the methods that rely on Lipschitz-based optimization [32,33], input
refinement [27] and semi-definite relaxations [21].

So far, the verification community has mainly tackled robustness verification
from adversarial robustness [26] to computing the reachable set of a network
[30] despite a few other properties that are highly relevant for the industry.
Among those properties, partial monotony under specific inputs appears to be
a key property, especially for regression tasks. Indeed, the need for monotony
appeared in various contexts such as surrogate modeling [11], economics [6],

18 G. Vidot et al.

fairness [13], or interpretability [19] and is thus a highly desirable feature in
the industry. Previous works proposed to enforce the monotony property during
the design; In [9], they relied on heuristics regularizers to promote monotony,
whose main drawback lies in the absence of guarantees and therefore will require
verification as a post-processing step. On the other side, [7] and [15] adopted
hand-designed monotonic architectures, which may harden the training and not
perform well in practice. Lastly, up to our knowledge, previous works mainly
considered monotony under continuous inputs, while many industrial use-cases
have monotony constraints on discrete inputs. One notable exception is the fair-
ness verification in [25] that can be applied on both a discrete or a continuous
input and holds similarity with monotony verification.

When it comes to continuous inputs, monotony is equivalent to verifying a
property on the gradients on the whole domain. Indeed the sign of the gradient
component corresponding to monotonous inputs should always be positive or
negative. However, for a neural network with discrete inputs, the gradient sign
condition is not necessary for the monotony to hold, even when the gradient can
be computed by extending the input domain to reals. For piece-wise linear neural
networks such as ReLU networks, we can base verification on the very definition
of monotony (Definition 1), which can be cast as solving a mixed-integer linear
programming problem. This method is complementary to the literature using
the gradient condition and can verify monotony over discrete inputs.

Verifying the monotony is recognized to be more challenging than robustness
since it is a global property on the whole domain rather than a local neighbor-
hood [15]. However, we argue that applying partial monotony over the whole
domain, which may affect the performance and put at risk the product’s release,
is a very drastic approach. Indeed, in an industrial context, it is necessary to
balance quality and safety, especially as the systems will be constrained by other
specifications than just monotony, such as accuracy. The solution we propose is
a partitioning scheme that splits the operational domain into areas where the
monotony property is respected and areas where it is (partially) violated; in the
latter, the neural network’s behavior could be mitigated. This possibility has
been considered on a collision detection use case in [4] and studied at a higher
level for the certification of a system before an ML component [17].

4 Monotony Analysis

In this section, we define the concept of partial monotony with respect to a set
of inputs. Let V be a (finite) set of input features. For each feature v ∈ V we
denote D(v) the domain in which v ranges. Hence, let X = ×v∈V D(v) be the
input space, Y be the output space and f :X→Y be the neural network. Note
that the features are generally of two types (V = Vd � Vc):

– v ∈ Vd are features whose domain D(v) is discrete (e.g., a finite set of labels
or categorical values)

– v ∈ Vc are features whose domain D(v) is a real interval

Formal Monotony Analysis of Neural Networks with Mixed Inputs 19

Fig. 2. Purpose of the algorithm through Example 1. In x1 the runway is dry and in
x2 the runway is wet. The left plot represents f(x1) − f(x2) where only the positive
values are displayed (monotony property violated). The two plots on the right are the
projection of these points on the plane composed of feature 1 and 2.

In this work, we are interested in monotony properties, which supposes that the
set Y has an order relation denoted �; usually, Y ⊆ R and � is one of the usual
orders (≤, ≥). The monotony property will be relative to a subset of discrete
features, α⊆Vd for which a partial order is defined on ×v∈α D(v), also denoted
� without risk of confusion. For x∈X, let us denote x↓α the projection of x onto
the dimensions in α, and ᾱ = V\α.

Definition 1. Monotony Property
A function f is monotone with respect to an order � on the output domain Y
and to a subset of discrete features α ⊆ Vd endowed with a partial order defined
on ×v∈α D(v) also denoted � (without risk of confusion) if and only if

∀(x1, x2) ∈ X2 : x1 ↓ᾱ = x2 ↓ᾱ ∧ x1 ↓α � x2 ↓α =⇒ f(x1) � f(x2)

4.1 Goal of the Analysis

Our analysis aims to identify the sub-spaces where the monotony does not hold
using a MILP solver. Example 1 describes a toy example (a simplified version of
the case study in Sect. 5) that we will use to explain the main concepts.

Example 1. Setup: Let f be a neural network estimating the braking distance of
an aircraft based on its speed, its weight and the runway’s state (dry or wet).
Property: for the same speed and weight (x1↓ᾱ = x2↓ᾱ), the braking distance on a
wet runway must be higher than on a dry one (x1↓α � x2↓α =⇒ f(x1)� f(x2)).
Goal: Identify and quantify the input areas where the property does not hold.

If we plot f(x1) − f(x2) versus the speed and the weight, the Definition 1
holds if and only if all the values are negative. The 3D plot in Fig. 2 shows a sketch
of this example when the monotony property partially holds, i.e. f(x1) − f(x2)
is partially positive. To ease the visualization we only draw the positive values.
The crosshatched area in the 2D plots are projections of the positive values
of the curve on the plane representing the speed and the weight features and

20 G. Vidot et al.

Fig. 3. Based on Fig. 2: representation of Ω and Ω considering Example 1 (Color figure
online)

models the area where the monotony property is not respected, namely the Non-
Monotonic Space Coverage denoted as ω. The rightmost 2D plot shows what we
expect from our analysis on Example 1: identifying and estimating ω. To estimate
ω, we partition the space (grid in Fig. 2) and then the monotony property is
checked on each sub-spaces. The dark red area represents the identified sub-space
where monotony issues occur, i.e., an over-approximation of ω. In addition, our
approach provides a lower and upper bound of the size of ω relative to the whole
input domain, respectively denoted as Ω and Ω (See Fig. 3).

Our approach can distinguish the sub-spaces where the monotony property
does not hold (dark red area in Fig. 3) from the ones where it partially holds
(orange area in Fig. 3). Hence, the lower bound is the dark red area, while the
upper bound is the dark red and orange areas. The benefit of having a lower and
upper bound, instead of just an overestimation, is to be able to assess whether
our estimation is precise: large gaps between the upper and lower bound may
reveal that our bounds are not representative of ω. The iterative nature of our
approach overcomes this problem: we refine our space, which leads to a finer grid
for the Fig. 3 and run again the MILP solver where the property partially holds
to have a most accurate estimation of ω.

4.2 MILP Formulation

Neural Network Encoding. Let f : X → Y be a neural network composed of n
layers with ReLU activations. The layer 0 corresponds to the input layer while the
layer n to the output one. We use the MILP formulation proposed by [3], which uses
the big-M method [8] to encode the ReLU activation. By convention, the notations
in bold denote the MILP variables, and those not in bold denote constants. For
1 ≤ i ≤ (n − 1), let Ci be the conjunction of constraints for the layer i:

Ci � x̂i = W ixi−1 + bi (1)

∧ xi ≤ x̂i + M i(1 − ai) ∧ xi ≥ x̂i (2)

∧ xi ≤ M i · ai ∧ xi ≥ 0 (3)

∧ ai ∈ {0, 1}|xi| (4)

Formal Monotony Analysis of Neural Networks with Mixed Inputs 21

where x̂i and xi are the vector of neuron values at the layer i before and after the
ReLU activation respectively. M i is a large valid upper bound s.t. −M i ≤ x̂i and
xi ≤ M i [3]. Wi and bi are, respectively, the weights and bias at the layer i, and
ai is a binary vector that represents whether the neurons are activated or not.
The Eq. (1) is the constraint for the affine transformation and the Eqs. (2)–(4)
are the constraints encoding the ReLU activation. For the output layer n, there
is no ReLU activation, then we have:

Cn � x̂n = Wnxn−1 + bn (5)

It remains to encode the constraints of the input layer, which enforce the
lower and upper bounds of the domain of the input features. Our analysis relies
on a partition of the input space X, thus the encoding of the input layer will
depend on it: let P be a partition of X, p ∈ P be a subset of X represented
by a set of linear constraints (also denoted p). Hence, the neural network f is
encoded as the conjunction of the constraints defined for each layer and p which
is constraining the input layer:

Cf (p) � p ∧
(

n∧
i=1

Ci

)
∧ Cn (6)

Monotony Property Encoding. Following Definition 1, we must encode f
twice in MILP: Cf

1 and Cf
2 . Similarly to the encoding of the input space’s

constraints, we encode the monotony property regarding the partition P. So,
let pi, pj ∈ P2 be two sub-spaces of X such that ∃x1, x2 ∈ pi×pj , x1↓ᾱ =
x2↓ᾱ ∧ x1 ≺ x2. Then, we have:

Cmon(pi, pj) �
(
x0
1↓ᾱ = x0

2↓ᾱ ∧ x0
1↓α � x0

2↓α

)
∧

(
Cf

1 (pi) ∧ Cf
2 (pj)

)
∧

(
x̂n
1 ≤ x̂n

2

)
(7)

C¬mon(pi, pj) �
(
x0
1↓ᾱ = x0

2↓ᾱ ∧ x0
1↓α � x0

2↓α

)
∧

(
Cf

1 (pi) ∧ Cf
2 (pj)

)
∧

(
x̂n
1 ≥ x̂n

2 + ε

)
(8)

The MILP solver may output either SAT, UNSAT or TIMEOUT. For (7) and (8),
TIMEOUT means that the time limit is reached. Cmon checks whether the neural
network f is monotonic:

– SAT: there is an assignment for x0
1,x

0
2 ∈ pi ×pj which respects the monotony.

– UNSAT: the monotony is violated on the entire sub-space pi × pj .

C¬mon checks whether the neural network is not monotonic:

– SAT: there is an assignment for x0
1,x

0
2 ∈ pi × pj which violates the monotony.

– UNSAT: the monotony is respected on the complete sub-space pi × pj .

To avoid having SAT for C¬mon when x̂n
1 = x̂n

2 , we introduce the ε term (Eq. 8).
To determine for each sub-space pi × pj whether the monotony property

holds, partially holds, or does not hold (see Fig. 3), we must solve successively
C¬mon and Cmon (see Sect. 4.3 for more detail).

22 G. Vidot et al.

Algorithm 1. Monotony analysis refinement
Require: T : the number of iteration of the procedure
1: P1 ← {(pi, pj) ∈ P2 | ∃(x1, x2) ∈ pi × pj , x1 ≺ x2 and x1↓ᾱ = x2↓ᾱ}
2: Ω0 ← 0 and ̂P0 ← P1

3: Ω ← [], P¬mon ← ∅, and P
partially mon ← ∅

4: for t from 1 to T do
5: ̂Pt ← ̂Pt−1 ∧ Pt

6: (P¬mon
t , P partially mon

t) ← F(̂Pt)

7: Ωt ← Ωt−1 +
|P ¬mon

t |
|Pt| and Ωt ← Ωt +

|Ppartially mon
t |

|Pt| {See Fig. 4}
8: Ω ← Ω + (Ωt, Ωt)

9: P
¬mon ← P

¬mon ∪ P¬mon
t and P

partially mon ← P partially mon
t

10: ̂Pt ← P partially mon
t

11: Pt+1 ← partition(Pt)
12: end for
13: return Ω, P¬mon and Ppartially mon

4.3 Verification Procedure

As explained in Sect. 4.1, our verification procedure implies the partition of the
space and the verification of each sub-space. In Algorithm 1 the monotony prop-
erty is iteratively analyzed regarding a partition while refining this partition in
the zone of interest to sharpen the analysis. Algorithm 2 details the verification
run at each iteration.

Algorithm 1. The monotony is defined on the space X2; however, we define
earlier the partition P of X. Hence to verify the monotony on the complete space,
i.e. X2, we need to go through all the sub-spaces i.e. pi × pj , ∀(pi, pj) ∈ P2.
However, it may happen that the monotony does not apply to the sub-space
(pi, pj) because there are no comparable elements within the sub-space: P1, in
Line 1, contains all and only the (pi, pj) including comparable elements. We
denote the elements of P1 and more generally, Pt, “monotony scenario”.

We propose an iterative procedure where at each iteration we use, in Line 6,
F(·) (see Algorithm 2) to retrieve P¬mon

t and P partially mon
t . Then, we compute in

Line 7 the metrics Ωt and Ωt for the iteration t, which respectively lower-bounds
and upper-bounds ω; ω is the exact ratio of the space where f is not monotonic,
which corresponds to the ratio of monotony scenarios where f is not monotonic.
In Line 11, we refine the partition of the space for the next iteration: partition
is the function that takes the current partition of the space and returns a finer
partition; we suppose that all elements in the partition have the same size. Note
that Pt gets finer and finer through the iterations: the more we refine, the more
elements Pt will have. We highlight that in Line 5, the operator ∧ applies the
intersection between each subset of P̂t−1 and Pt where Pt is a finer partition
of the space than P̂t−1. It allows to get the elements of interest (P̂t−1) in the
right level of details (Pt). For the first iteration, we run F(·) on all the elements
(initialization of P̂0 to P). However, we only need to refine the sub-spaces where
the monotony property is partially respected for the other iterations. Finally,

Formal Monotony Analysis of Neural Networks with Mixed Inputs 23

Fig. 4. Run of Algorithm 1 on Example 1 with the detailed computation of Ωt and
Ωt. The crosshatched area represents the sub-space the algorithm strives to estimate.
(Color figure online)

the algorithm returns the lower and upper bounds of each iteration and all the
sub-spaces where the monotony property does not hold or partially holds.

In Fig. 4 we run Algorithm 1 on Example 11: α contains the runway’s state,
we partition X on α and we have a unique (pi, pj) in P1; in pi the runway
is dry and in pj wet. Then, the two axes represent features of ᾱ (speed and
weight) and the squares, the partition of the space. The crosshatched surface
is the exact sub-space where the monotony property does not hold. The orange
squares means that the monotony property partially holds, the dark red squares
means it does not hold, and the light green squares means it holds. Through the
iteration, we refine the partition (smaller squares) while running the verification
only for the smaller squares (in solid lines) coming from a bigger orange square
(in Line 5; P̂t−1 is the orange square of iteration 2 and Pt is the small squares
of iteration 3).

Algorithm 2. The verification function F(P) aims to analyze the monotony of
f regarding P a subset of P2 which gathers the sub-spaces where the monotony
property must be checked. Intuitively, the partition P and thus P can be seen as
the level of details of the monotony analysis. Indeed, a finer partition P results
in smaller sub-spaces in P ; hence a more detailed analysis.

Then, from Lines 4 to 12, we identify in which sub-spaces pi × pj the neural
network f partially respects or does not respect the monotony property and
sort them in P partially mon and P¬mon. In Lines 4 and 5, solve(·) refers to
any off-the-shelf MILP solver taking as input a MILP problem. Table 1 shows
the interpretation of the monotony of f within the sub-space regarding every
truth values of the conditions of Lines 4 and 5. Note that we arrive in Line 11
when the condition of Line 4 is False, and we jump to the next sub-space (or
monotony scenario) because the monotony property holds for the current sub-
space pi ×pj . Finally, we return the two sets gathering the sub-spaces where the
monotony property does not hold and where it partially holds.

1 Note that we simplify the crosshatched area’s shape in order to know the omega
value for the explanation.

24 G. Vidot et al.

Algorithm 2. F(P) −→ Monotony analysis of P ⊆ P2

Require: P ⊆ P2 gathers the sub-spaces that need to be verified.
1: P¬mon ← ∅
2: P partially mon ← ∅
3: for all (pi, pj) ∈ P do
4: if solve(C¬mon(pi, pj)) is SAT then
5: if solve(Cmon(pi, pj)) is SAT then
6: P partially mon ← P partially mon ∪ {(pi, pj)}
7: else
8: P¬mon ← P¬mon ∪ {(pi, pj)}
9: end if

10: else
11: Continue to the next (pi, pj) {Monotonic on the whole domain pi × pj}
12: end if
13: end for
14: return P¬mon and P partially mon {{P¬mon ∪ P partially mon} ⊆ P}

Table 1. State of the monotony property regarding the condition of Lines 4 and 5

Case Line 4 C¬mon Line 5 Cmon Monotony property on pi × pj

1 True SAT True SAT partially holds

2 True SAT False UNSAT does not hold

3 False UNSAT - - holds

Non-monotonic Space Coverage. Ωt and Ωt are defined as the ratio of sub-
spaces (monotony scenarios) where f has monotony issue over the total number
sub-spaces in Pt (contains all the monotony scenarios):

Definition 2. Lower bound and upper bound of ω

Ωt = Ωt−1 +
|P¬mon

t |
|Pt| (9) Ωt = Ωt +

∣∣∣P partially mon
t

∣∣∣
|Pt| (10)

On the one hand, Ωt takes into account only the sub-spaces where the monotony
property holds not; hence, it lower-bounds ω. On the other hand, Ωt considers the
sub-spaces where the monotony property holds not and partially holds; hence,
it upper-bounds ω. Figure 4 details the computation of these metrics along with
the iteration: at each iteration, the lower bound Ωt is represented by all the dark
red squares and the upper bound Ωt by all the dark red and orange squares.

Example 2. Computation of Ωt and Ωt considering Example 1.

Iteration 1. We consider the entire space. Hence, we only have one sub-space
where we assess the monotony property (|Pt| = 1). There is no dark red square,
i.e. sub-space where the monotony property does not hold, which means that
|P¬mon

1 | = 0, then Ω1 = 0. We have one orange square: in this sub-space, the
monotony property partially holds, then |P partially mon

1 | = 1 and Ω1 = 1.

Formal Monotony Analysis of Neural Networks with Mixed Inputs 25

Iteration 2. We partition the space in 4 smaller sub-spaces (|Pt| = 4) and run
again the verification on each sub-space. We proceed similarly as previously for
the computation of Ω2 and Ω2. We have 3 dark red squares (|P¬mon

2 | = 3) and 1
orange square (|P partially mon

2 | = 1): Ω2 = Ω1 + 3
4 = 0.75 and Ω2 = Ω2 + 1

4 = 1.

Iteration 3. We refine the partition of the previous step, and we end up with 16
sub-spaces. However, we only run the verification on the sub-spaces coming from
an orange square (Lines 5 of Algorithm 1), i.e. , a sub-spaces where f is partially
monotonic. We have Ω3 = 3

4 + 1
16 = 0.8125 and Ω3 = 3

4 + 1
16 + 2

16 = 0.9375.

The Proposition 1 shows that the lower and upper bounds are tighter over
the iterations: the more iterations we run, the closer to ω we are.

Proposition 1. For any t ≥ 1, we have

Ωt−1 ≤ Ωt (11) and Ωt ≤ Ωt−1 (12)

Proof. For Eq. 11, from the facts that

Ω0 = 0 and
|P¬mon

t |
|Pt| ≥ 0 and Ωt = Ωt−1 +

|P¬mon
t |
|Pt| ,

we can deduce Ωt−1 ≤ Ωt.
Then, to prove Eq. 12, we need first to state some invariant: for the compu-

tation of Ωt (Algorithm 1, Line 7) we have,

(
P partially mon

t ∪ P¬mon
t

)
⊆ P̂t (13)

Based on Eq. (13), we have:
∣
∣
∣P

partially mon
t ∪ P¬mon

t

∣
∣
∣ ≤

∣
∣
∣P̂t

∣
∣
∣

≤
∣
∣
∣P

partially mon
t−1

∣
∣
∣ ∗ |Pt|

|Pt−1|
By construction of ̂Pt
which is a finer partition of

P
partially mon
t−1

Ωt−1 +

∣
∣
∣P

partially mon
t ∪ P¬mon

t

∣
∣
∣

|Pt|
≤ Ωt−1 +

∣
∣
∣P

partially mon
t−1

∣
∣
∣

|Pt−1|
We divide both side of the
inequality by

∣

∣

∣

̂Pt

∣

∣

∣ and add

Ωt−1

Ωt−1 +
|P¬mon

t |
|Pt|

+

∣
∣
∣P

partially mon
t

∣
∣
∣

|Pt|
≤ Ωt−1 P

partially mon
t ∩P

¬mon
t = ∅

Ωt +

∣
∣
∣P

partially mon
t

∣
∣
∣

|Pt|
≤ Ωt−1

Ωt ≤ Ωt−1

5 Case Study: Braking Distance Estimation

5.1 Description of the Case Study

Our case study comes from the aeronautical industry. It is an R&D project
consisting in training a neural network to estimate the braking distance of an

26 G. Vidot et al.

Fig. 5. Representation of the position of the four brakes on an aircraft denoted by
bi ∈ {N, A, E, B, R}. For example, we have NN-NN when all the brakes are in the
normal state. Then if the state of one of the left brakes becomes Altered, we have NA-
NN. Note that NA-NN≡AN-NN due to the choice of the representation of the brakes.

aircraft based on physical information. The R&D team provides us with a trained
feedforward neural network composed of 2 layers (30 and 29 neurons on the
first and second layers, respectively) and ReLU activation functions. There are
15 input features, including 13 discrete and 2 continuous. Among the discrete
features, ten describe the state of the brakes. The aircraft has 4 brakes, and
each brake has 5 possible modes: Normal (N), Altered (A), Emergency (E),
Burst (B), and Released (R). Then, the network has 2 features for each mode:
(i) the total number of brakes in a given mode (referred to as “symmetric”) and
(ii) the difference between the number of brakes on the left and right side of a
given mode (referred to as “asymmetric”). From this information, we can find
back the states of the pairs of brakes on the left and right sides of the aircraft
(see Fig. 5), although the state of each individual brake cannot be retrieved.
For clarity and since we have the equivalence between both notations, we will
describe the state of the brakes using the form “b1b2-b3b4”.

To show how to handle simultaneously several input features within the
monotony property, we focus on the one involving the state of the brakes. We
can textually express the monotony property as follows:

When the brakes’ state deteriorates, the braking distance should increase.

To perform the monotony analysis, we need to define what deteriorates means
formally. Relying on the system expert’s knowledge, the following partial order
applies to the different modes of the brake:

N ≺b A ≺b E ≺b B ≺b R (14)

where bi ≺b bj means that the state bj is more deteriorated than the state bi.
We can easily extend the partial order �b on one brake to the state of an aircraft’s
brakes composed of 4 brakes. Let S1 = (b1, b2, b3, b4) and S2 = (b′

1, b
′
2, b

′
3, b

′
4) be

two states of an aircraft’s brakes, we have

S1 ≺ S2 ⇐⇒ ∀bi, b
′
i∈S1×S2, bi �b b′

i and ∃bi, b
′
i∈S1×S2 bi ≺b b′

i (15)

Formal Monotony Analysis of Neural Networks with Mixed Inputs 27

It means that S2 is deteriorated compared to S1 if and only if for all brakes in
S2, the brake’s mode in S2 is at most as good as its counterpart in S1 and there
exists a brake in S2 whose mode is strictly worse than its counterpart in S1.

5.2 Experimentation

Setup. Let V be the set of 15 input features described above, X = ×v∈V D(v) be
the input space, Y = R

+ be the output space, and f : X �→ Y be the neural net-
work estimating the braking distance of an aircraft. We consider the monotony
property as formulated in Definition 1. As stated earlier, we are dealing with the
monotony with respect to the brakes’ space. Hence, α ⊆ V is made up of the ten
features describing the state of the brakes and the partial order � on ×v∈α D(v)
is as defined in Eq. (15). We take advantage of the discrete nature of the brakes’
features: a natural partition P is to enumerate all the possible values for the ten
brakes features. We have |P| = 225.

Monotony Analysis. We run Algorithm 1 for 5 iterations with the setup
described above. The algorithm is explained in Sect. 4.3. Here we only focus on
the partitions used for the analysis and the refinement strategy which are specific
to the case study. Additionally, we will see how to capitalize on the data available
at each iteration to perform some space exploration. P1 is setup using P, and �;
it represents the brakes’ sub-space. Then our partition’s refining strategy is to
start with the remaining discrete features (second iteration) and then consider
the continuous features (the last three iterations). For the discrete features, the
partitioning consists in enumerating the possible values, while for the continuous
features, it consists of a uniform partition (finer through the iterations). To
illustrate the impact of the refinement on the level of details of the analysis,
we detail the total number of sub-spaces in each partition Pt: |P1| = 10800,
|P2| = 259200, |P3| = 6480000, |P4| = 25920000 and |P5| = 103680000.

Based on the partition and the outcomes of F(·), the algorithm yields at
each iteration the metrics Ωt and Ωt. Nonetheless, for our case study, we put
in place visualization means (see Fig. 6). However, the relevant visualizations
helping space exploration are case-dependent, so we do not propose any generic
way to do it. Firstly, it might be relevant to visualize the sub-space composed
of the features on which the partial order � is defined, i.e. α corresponding
to the brakes’ space. It is modeled as a graph where the nodes are the brakes’
states (the elements of P), and the edges are the transitions between the states
modeled by the partial order ≺ (the elements of P1) and with the outcomes
of the first iteration, we can highlight (dashed line in Fig. 6) the transitions
which violate the monotony property (in Fig. 6, we plot only a sub-graph as
an example). Then, to include the information of the formal verification of the
following iteration in the space visualization, we plot some features versus the
difference of distances f(x1)−f(x2) and visualize in which sub-spaces monotony
issue occurs. These visualizations are helpful for exploration purposes after the
analysis for the expert of the system (e.g., if the expert can identify some place
of interest within the space and wants to know what happens there).

28 G. Vidot et al.

Fig. 6. Example of visualization of features in α (left) and ᾱ (right).

Table 2. Values of Ω and Ω bounding the percentage of the space where the monotony
property is violated.

Metrics It.1 It.2 It.3 It.4 It.5

Ωt 11.57% 4.11% 1.95% 1.72% 1.61%

Ωt 0.03% 0.45% 1.12% 1.29% 1.39%

Metrics: Non-monotonic Space Coverage. At each iteration, we compute
Ωt and Ωt, which bound the ratio of the space where f violates the monotony
property (i.e. ω). The results are summarised in Table 2. In Fig. 7, we can clearly
see the convergence of Ωt and Ωt. At the first iteration, we can explain the
notable gap between Ω1 and Ω1 by the coarse partitioning of the space. That is
why, Ω1 is large (numerous sub-spaces where the monotony property is partially
respected) and Ω1 small (only few sub-spaces where the monotony property
does not hold). We can notice a significant drop of Ωt compared to the rise of
Ωt: there are more sub-spaces where the monotony property holds than not.
Eventually the algorithm yields a narrow gap between the bounds; we obtain at
the fifth iteration: 1.39% ≤ ω ≤ 1.61%. The stopping criterion of the algorithm
may depends on various things such that the system’s requirements (e.g. bounds
precision, max value to not cross for Ω or min value to reach for Ω).

Through these five steps, we analyze the monotony of f considering finer and
finer partition of the space; we obtain: (i) metrics bounding the percentage of the
space where the neural network is non-monotonic and (ii) the identification of
the sub-spaces where the monotony issue occurs thanks to the formal verification
on each elements of the partitions.

We run our experiments on MacBook Pro 8 core 2,3 GHz Intel Core i9 with 32
Gb of RAM. The MILP solver used is Gurobi 9 [10] and our monotony analysis
took less than 10 h.

Formal Monotony Analysis of Neural Networks with Mixed Inputs 29

Fig. 7. Evolution of Ωt and Ωt

6 Conclusion

This work develops an iterative method to assess the monotony of a neural net-
work using a MILP solver. The monotony property defined is suited for discrete
features. This iterative method allows for lower and upper bounding the space
where the neural network does not hold the property and formally identifies
these areas. This is a step further in the demonstration that neural networks
can preserve important function properties and therefore in the capability to
embed the ML technology in an aeronautical safety-critical system.

We applied this method on an aeronautical case study that consists in esti-
mating the braking distance of an aircraft using a neural network mixing discrete
and continuous inputs. We managed to quantify the percentage of the space
where the neural network does not preserve the monotony property and to iden-
tify formally each sub-space where it occurs. In addition, we showed that we
can capitalize on the available data to visualize the sub-spaces for helping the
braking function’s experts in processing the results of the algorithm.

Note that this work leaves room for some optimizations, such as using tighter
big-M values in Eq. 2–3, or using asymmetric bounds, computed by incomplete
methods such as [23,31]. To the best of our knowledge, the scalability of complete
method remains a challenge in the verification community and is mainly used
with “shallow” neural networks. Thus, this method is mainly useful for small to
medium networks used as surrogates or for control.

As an extension of this work, we plan to estimate the integral under the curve
of f(x1)− f(x2) in the sub-spaces where the monotony is violated by leveraging
our definition of the monotony property. This would give a key indicator on the
level of violation of the monotony property that could support the performance
of the training phase. Another perspective would be to extend this work to
continuous features by using the formulation of the monotony based on the
gradient.

30 G. Vidot et al.

References

1. Biannic, J., Hardier, G., Roos, C., Seren, C., Verdier, L.: Surrogate models for
aircraft flight control: some off-line and embedded applications. Aerospace Lab
(12), 1 (2016)

2. Carlini, N., Wagner, D.A.: Towards evaluating the robustness of neural networks.
In: IEEE SP, pp. 39–57. IEEE Computer Society (2017)

3. Cheng, C.-H., Nührenberg, G., Ruess, H.: Maximum resilience of artificial neural
networks. In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol.
10482, pp. 251–268. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68167-2 18

4. Damour, M., et al.: Towards certification of a reduced footprint ACAS-Xu system: a
hybrid ML-based solution. In: Habli, I., Sujan, M., Bitsch, F. (eds.) SAFECOMP
2021. LNCS, vol. 12852, pp. 34–48. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-83903-1 3

5. EASA: Concept paper first usable guidance for level 1 machine learning applica-
tions (2021). https://www.easa.europa.eu/downloads/134357/en

6. Feelders, A.J.: Prior knowledge in economic applications of data mining. In: Zighed,
D.A., Komorowski, J., Żytkow, J. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp.
395–400. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45372-5 42

7. Gauffriau, A., Malgouyres, F., Ducoffe, M.: Overestimation learning with guaran-
tees. arXiv preprint arXiv:2101.11717 (2021)

8. Grossmann, I.E.: Review of nonlinear mixed-integer and disjunctive programming
techniques. Optim. Eng. 3(3), 227–252 (2002)

9. Gupta, A., Shukla, N., Marla, L., Kolbeinsson, A., Yellepeddi, K.: How to incor-
porate monotonicity in deep networks while preserving flexibility? arXiv preprint
arXiv:1909.10662 (2019)

10. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2022). https://
www.gurobi.com

11. Hao, J., Ye, W., Jia, L., Wang, G., Allen, J.: Building surrogate models for engi-
neering problems by integrating limited simulation data and monotonic engineering
knowledge. Adv. Eng. Inform. 49, 101342 (2021)

12. Jian, Z.D., Chang, H.J., Hsu, T.S., Wang, D.W.: Learning from simulated world
- surrogates construction with deep neural network. In: SIMULTECH 2017: Pro-
ceedings of the 7th International Conference on Simulation and Modeling Method-
ologies, Technologies and Applications. SCITEPRESS (2017)

13. Karpf, J.: Inductive modelling in law: example based expert systems in admin-
istrative law. In: Proceedings of the 3rd International Conference on Artificial
Intelligence and Law, pp. 297–306 (1991)

14. Katz, G., et al.: The marabou framework for verification and analysis of deep
neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 26

15. Liu, X., Han, X., Zhang, N., Liu, Q.: Certified monotonic neural networks. Adv.
Neural. Inf. Process. Syst. 33, 15427–15438 (2020)

16. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. In: ICLR. OpenReview.net (2018)

17. Mamalet, F., et al.: White paper machine learning in certified systems. IRT Saint
Exupéry - ANITI (2021)

18. Müller, M.N., Makarchuk, G., Singh, G., Püschel, M., Vechev, M.: PRIMA: general
and precise neural network certification via scalable convex hull approximations.
Proc. ACM Program. Lang. 6(POPL), 1–33 (2022)

https://doi.org/10.1007/978-3-319-68167-2_18
https://doi.org/10.1007/978-3-319-68167-2_18
https://doi.org/10.1007/978-3-030-83903-1_3
https://doi.org/10.1007/978-3-030-83903-1_3
https://www.easa.europa.eu/downloads/134357/en
https://doi.org/10.1007/3-540-45372-5_42
http://arxiv.org/abs/2101.11717
http://arxiv.org/abs/1909.10662
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1007/978-3-030-25540-4_26

Formal Monotony Analysis of Neural Networks with Mixed Inputs 31

19. Nguyen, A.P., Mart́ınez, M.R.: Mononet: towards interpretable models by learning
monotonic features. arXiv preprint arXiv:1909.13611 (2019)

20. Peterson, E., DeVore, M., Cooper, J., Carr, G.: Run time assurance as an alter-
nate concept to contemporary development assurance processes. NASA/CR-2020-
220586 (2020)

21. Raghunathan, A., Steinhardt, J., Liang, P.S.: Semidefinite relaxations for certifying
robustness to adversarial examples. In: Advances in Neural Information Processing
Systems, pp. 10877–10887 (2018)

22. Sudakov, O., Koroteev, D., Belozerov, B., Burnaev, E.: Artificial neural network
surrogate modeling of oil reservoir: a case study. In: Lu, H., Tang, H., Wang, Z.
(eds.) ISNN 2019. LNCS, vol. 11555, pp. 232–241. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-22808-8 24

23. Tjeng, V., Xiao, K.Y., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. In: ICLR (2019)

24. Tsuzuku, Y., Sato, I., Sugiyama, M.: Lipschitz-margin training: scalable certifica-
tion of perturbation invariance for deep neural networks. In: NeurIPS, pp. 6542–
6551 (2018)

25. Urban, C., Christakis, M., Wüstholz, V., Zhang, F.: Perfectly parallel fairness
certification of neural networks. Proc. ACM Program. Lang. 4(OOPSLA), 1–30
(2020)

26. Urban, C., Miné, A.: A review of formal methods applied to machine learning.
arXiv preprint arXiv:2104.02466 (2021)

27. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of
neural networks using symbolic intervals. In: 27th USENIX Security Symposium
(USENIX Security 2018), Baltimore, MD, pp. 1599–1614. USENIX Association,
August 2018

28. Wang, S., et al.: Beta-CROWN: efficient bound propagation with per-neuron split
constraints for neural network robustness verification. In: Advances in Neural Infor-
mation Processing Systems (2021)

29. Weng, T.W., et al.: Towards fast computation of certified robustness for ReLU
networks. arXiv preprint arXiv:1804.09699 (2018)

30. Xiang, W., Tran, H.D., Johnson, T.T.: Output reachable set estimation and ver-
ification for multilayer neural networks. IEEE Trans. Neural Netw. Learn. Syst.
29(11), 5777–5783 (2018)

31. Xu, K., et al.: Automatic perturbation analysis for scalable certified robustness
and beyond. In: NeurIPS (2020)

32. Zhang, H., Weng, T.W., Chen, P.Y., Hsieh, C.J., Daniel, L.: Efficient neural net-
work robustness certification with general activation functions. In: Advances in
Neural Information Processing Systems, pp. 4939–4948 (2018)

33. Zhang, H., Zhang, P., Hsieh, C.J.: Recurjac: an efficient recursive algorithm for
bounding jacobian matrix of neural networks and its applications. In: Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 5757–5764 (2019)

http://arxiv.org/abs/1909.13611
https://doi.org/10.1007/978-3-030-22808-8_24
https://doi.org/10.1007/978-3-030-22808-8_24
http://arxiv.org/abs/2104.02466
http://arxiv.org/abs/1804.09699

Generating Domain-Specific Interactive
Validation Documents

Fabian Vu(B) , Christopher Happe, and Michael Leuschel

Institut für Informatik, Universität Düsseldorf, Universitätsstr. 1,
40225 Düsseldorf, Germany

{fabian.vu,leuschel}@uni-duesseldorf.de

Abstract. In state-of-the-art approaches, requirements are gradually
encoded into the model, with each modeling step being verified . Once
the modeling and verification process has finished, code generation is
usually applied to generate the final product. Finally, the generated
code is validated, e.g., by executing tests, or running simulations. At
this point, stakeholders and domain experts are actively incorporated
into the development process. Especially in industrial applications, vali-
dation is as important as verification. Thus, it is important to integrate
the stakeholders’ and the domain experts’ feedback as early as possi-
ble. In this work, we propose two approaches to tackle this: (1) a static
export of an animation trace into a single HTML file, and (2) a dynamic
export of a classical B model to an interactive HTML document, both
with a domain-specific visualization. For the second approach, we extend
the high-level code generator B2Program by JavaScript, and integrate
VisB visualizations. An important aspect here is to ease communication
between modelers and domain experts, which is achieved by implement-
ing features to share animated traces, and giving feedback to each other.

1 Introduction and Motivation

Verification checks the software for bugs, tackling the question “Are we build-
ing the software correctly?” [17]. Just as important is validation, which checks
whether the stakeholders’ requirements are fulfilled and thus tackling the ques-
tion “Are we building the right software?” [17].

An important aspect of validation is the dialogue between modelers and
stakeholders or domain experts. The latter are usually not familiar with the for-
mal method and notation, while the modeler only has limited knowledge about
the domain. Animation and visualization of scenarios is an important enabling
technology: a domain expert can grasp the behavior of a model by looking at
visualizations, without having to understand the underlying mathematical nota-
tion. Even for modelers, visualization is important; some errors are immediately

This research is part of the IVOIRE project funded by the “Deutsche Forschungsge-
meinschaft” (DFG) and the Austrian Science Fund (FWF); grant # I 4744-N. Sect. 3
is part of the KI-LOK project funded by the “Bundesministerium für Wirtschaft und
Energie”; grant # 19/21007E.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. F. Groote and M. Huisman (Eds.): FMICS 2022, LNCS 13487, pp. 32–49, 2022.
https://doi.org/10.1007/978-3-031-15008-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15008-1_4&domain=pdf
http://orcid.org/0000-0003-2556-5553
http://orcid.org/0000-0002-4595-1518
https://doi.org/10.1007/978-3-031-15008-1_4

Generating Domain-Specific Interactive Validation Documents 33

obvious in a visual rendering, while they can remain hidden within the mathe-
matical, textual counterpart.

In this paper, we tackle one further hurdle that domain experts or stakehold-
ers face: in addition to lacking knowledge and experience with formal notations,
they typically also lack the knowledge to drive the particular tool, or possibly
even install it. In this article we propose two solutions to this:

– a static export of an animation trace into a single HTML file, that can be sent
by email and rendered in any current browser. This export is available for all
models supported by ProB [23], and enables the user to navigate within the
trace.

– a dynamic export of a classical B model (and optionally pre-configured
traces), to an HTML document which can also be rendered in a current
browser. This export uses the high-level B code generator B2Program [35]
which is extended by JavaScript. While not applicable to all models, the
export is completely dynamic: a user can freely navigate the model’s state
space, not just one pre-configured trace.

First, we present validation workflow in Sect. 2. Section 3 describes the static
export of an animation trace into a single HTML file. In Sect. 4, we describe
a dynamic export of a classical B model (including a VisB visualization) to
an interactive HTML document. Section 5 demonstrates how this work improves
validation of requirements by domain experts, and communication between mod-
elers and domain experts. Finally, we compare our work with related work in
Sect. 6, and conclude in Sect. 7.

Background. ProB [23] is an animator, constraint solver, and model checker
for formal methods, such as B, Event-B, Z, TLA+, CSP, and Alloy. ProB2-UI
[3] is a JavaFX-based graphical user interface which has been developed on top
of ProB. Two features of ProB2-UI are especially relevant for this work: the
persistent storage and replay of traces, and VisB.

VisB [38] is a tool to create interactive visualizations of formal models using
SVG images and a glue file. The VisB glue file defines the main SVG image, as
well as observers and click listeners which link the graphical elements with the
model’s state. Using VisB, a user can view the model’s current state graphically,
and execute operations by clicking on visual elements. Many features have been
added in response to feedback from academic and industrial uses since VisB’s
original publication [38]. New features include iterators for groups of related SVG
objects, multiple click events for SVG objects, dynamic SVG object creation,
and SVG class manipulation for hovers. Furthermore, VisB’s core has been re-
implemented in Prolog and integrated into ProB’s core. Thus, VisB can now
be used from ProB’s command-line interface directly (without ProB2-UI [3]).

B2Program [35] is a code generator for high-level B models, which targets
Java, C++, Python, Rust, and also TypeScript/JavaScript now. Unlike other B
code generators, the model does not have to be refined to an implementable sub-
set of B, called B0. This enables code generation from a formal B model at vari-
ous abstraction levels for validation and demonstration purposes. B2Program

34 F. Vu et al.

is implemented using the StringTemplate [29] engine which allows targeting
multiple languages with a single code generator. This is achieved by mapping
each construct to a template which is rendered to the target code.

2 Validation Workflow

Figure 1 shows a typical formal methods workflow: A system or software is mod-
eled step-by-step until all requirements are encoded. Furthermore, the model is
refined until reaching an implementable subset of the modeling language (e.g. B0
in the B method). Each development step of the model is verified by provers such
as AtelierB [7], or by model checkers such as ProB. After finishing the mod-
eling process, a low-level code generator (e.g. an AtelierB B0 code generator)
is applied to generate the final program from a verified model.

Fig. 1. Typical Formal Methods Workflow

In our opinion, software is often validated too late during the development
process, possibly after generating the final code. Figure 2 describes the approach
followed by this work: We extend the high-level B code generator B2Program
[35] by JavaScript generation and supporting VisB [38] visualizations. In partic-
ular, an HTML document is generated, supporting early-stage validation (e.g.
running scenarios) by a domain expert. As result, domain experts are integrated
into the development process at an early stage.

Fig. 2. Workflow: Code Generation for Validation

Generating Domain-Specific Interactive Validation Documents 35

While Fig. 2 is also feasible with existing animators like ProB, our app-
roach enables communication via “interactive validation documents”, where the
model’s formal aspects are hidden and no formal methods tool has to be installed
by the domain expert.

Fig. 3. Static VisB Export of Trace from Railway Domain

3 Static VisB HTML Export

In this section, we present another new feature of VisB to export a trace as
a standalone HTML file containing the visualization of the entire trace. This
approach is supported by all formalisms in ProB. The trace can either be con-
structed interactively in the animator or automatically by model checking or
simulation. The HTML file enables the user to navigate the trace, and inspect
the visualization of each state in the trace, without installing ProB. The model’s
variables and constant values are also accessible. Furthermore, the trace can be

36 F. Vu et al.

replayed automatically at different speeds. An example export can be seen in
Fig. 3.1

This feature has been used for the communication of modelers with domain
experts, e.g., in follow-on projects of the ETCS Hybrid Level 3 [15].

When exporting the trace to an HTML file, a JavaScript function is generated
for each state, hard-coding the SVG objects’ changed attributes. Listing 2 shows
parts of the function that is generated for the state shown in Fig. 3. Focusing
on the VisB item for the SVG object occupied ttd polygon (see Listing 1),
one can see its hard-coded value for the state. When a domain expert steps
through the trace, the visualization is updated according to the current state by
executing the corresponding function. Figure 3 also contains meta-information.
Thus, a stored HTML trace is also a standalone snapshot of the model. One can
later compare the stored visualization and variables with the current model.

1 {

2 "id":"occupied_ttd_polygon",

3 "attr":"points",

4 "value":"svg_set_polygon(OCC_TE ,100.0/ real(TrackElementNumber +1) ,100.0 ,2.0)"

5 }

Listing 1. VisB Item for Occupied Section on Track

1 function visualise14(stepNr) {

2 setAttr("visb_debug_messages","text","Step "+stepNr+"/7, State ID: 14");

3 setAttr("occupied_ttd_polygon","points","0.0,0 0.0 ,2.0

4 42.30769230769231 ,2.0 42.30769230769231 ,0 100.0 ,0");

5 ...

6 highlightRow(stepNr);

7 }

Listing 2. JavaScript Function for Visualizing a Particular State in Figure 3

4 Dynamic HTML Export: Code Generation to HTML
and JavaScript

Instead of generating a static HTML file consisting of a single trace, we now
present a second approach which allows a domain expert to interact with the
model. This approach is only supported for (a subset of) classical B. In this
section, we describe how interactive HTML documents are generated technically.
As state values are computed in JavaScript dynamically, a domain expert can
explore alternate paths, and not just the exported one.

Figure 4 shows the infrastructure for code generation to HTML and
JavaScript. In addition to the B model, B2Program also expects the VisB
glue file and the associated SVG visualization as input. To support JavaScript,
we extend B2Program by TypeScript as described in our previous work [35].
Here, we decided not to generate JavaScript directly, but to generate TypeScript

1 A more complex one is available at https://www3.hhu.de/stups/models/visb/
train 4 POR mch.html.

https://www3.hhu.de/stups/models/visb/train_4_POR_mch.html
https://www3.hhu.de/stups/models/visb/train_4_POR_mch.html

Generating Domain-Specific Interactive Validation Documents 37

Fig. 4. Code Generation from B Model and VisB to HTML and JavaScript

code as an intermediate step, which is then transpiled to JavaScript. As Type-
Script supports stricter typing, it is easier to debug during development, and
to detect errors at compile time. Following the steps described in [35], we first
implement TypeScript templates, and the B data types in TypeScript.

Listing 3 shows a TypeScript template which is used for code generation from
INITIALISATION. For code generation, B2Program’s current implementation
could be used directly without extending the code in B2Program. Using the
StringTemplate engine in B2Program, this applies to almost all constructs.
The main effort was to implement the B data types including the B operators in
TypeScript. Listing 4 shows an example of code generation of INITIALISATION
tl cars := red; tl peds := red to TypeScript.

In addition to TypeScript templates, we also implemented HTML templates
from which the graphical user interface (GUI) is generated. B2Program also
generates a controller for the GUI and the translated B model. The controller’s
task is to execute operations in the translated model, and to update the GUI
based on the model’s current state.

1 initialization(properties , values , body) ::= <<

2 constructor () {

3 <properties; separator="\n">

4 <values >

5 <body >

6 }

7 >>

Listing 3. TypeScript Template for INITIALISATION

1 constructor () {

2 this.tl_cars = new colors(enum_colors.red);

3 this.tl_peds = new colors(enum_colors.red);

4 }

Listing 4. Generated TypeScript Code from INITIALISATION in Traffic Light

38 F. Vu et al.

Fig. 5. Traffic Light Web GUI

4.1 Graphical User Interface

Figure 5 shows the GUI that is generated from a formal model which is now
explained in detail.2 The GUI is inspired by ProB2-UI [3] and consists of its
main views.

VisB View. On the left-hand side, one can see the domain-specific VisB visu-
alization. Its features include (1) graphical representation based on the model’s
current state, and (2) interaction with the model, i.e., executing an operation
by clicking on a graphical object.

Listing 5 shows a VisB item defining an observer on the model’s state. Here,
the SVG object peds red should be filled red when the variable tl peds is
equal to red, otherwise black. As described in Sect. 3, values for the graphi-
cal objects’ appearances are hard-coded in the static HTML export. To allow
interactive animation, the visualization has to be updated based on the current
state dynamically. For this purpose, the B expression is translated to JavaScript,
and is thus evaluated at runtime (and not statically hard-coded as described in
Sect. 3). The generated for Listing 5 is shown in Listing 6.

1 {

2 "id":"peds_red",

3 "attr":"fill",

4 "value":"IF tl_peds = red THEN \"red\" ELSE \" black\" END"

5 }

Listing 5. Example of VisB Item

1 _svg_vars["peds_red"] = document.getElementById("traffic_light")

2 .contentDocument.getElementById("peds_red")

3 _svg_vars["peds_red"]. setAttribute("fill",

4 (_machine._get_tl_peds ().equal(new colors(enum_colors.red)).booleanValue() ?

5 new BString("red") :

6 new BString("black")).getValue());

Listing 6. Code Generation from Listing 5 to JavaScript

2 The example is also available at https://www3.hhu.de/stups/models/visb/
TrafficLight/TrafficLight.html.

https://www3.hhu.de/stups/models/visb/TrafficLight/TrafficLight.html
https://www3.hhu.de/stups/models/visb/TrafficLight/TrafficLight.html

Generating Domain-Specific Interactive Validation Documents 39

1 _svg_events["peds_red"] = document.getElementById("traffic_light")

2 .contentDocument.getElementById("peds_red");

3 _svg_events["peds_red"]. onclick = function () {

4 transition = _machine["_tr_peds_r"]();

5 ... // Check whether transition is feasible

6 var parameters = [];

7 var returnValue = _machine.peds_r (... parameters);

8 }

Listing 7. Code Generation from {"id":"peds red", "event":"peds r"} to
JavaScript

For VisB events, B2Program generates a click listener on the SVG object
which checks whether the corresponding B event is enabled, and executes it
afterward. This makes it possible to interact with the model by clicking on
the graphical element. {"id":"peds red", "event":"peds r"} defines a click
event on peds red, triggering the peds r event. The generated code is shown in
Listing 7.

Other Views. The HTML document also contains views to execute operations
(operations view), to show the currently animated trace (history view), to store
animated traces (scenario view), and to view the model’s state in mathemati-
cal notations (state view). Although mathematical notations are difficult for a
domain expert to understand, it is still important to debug the model. Code
generation for executing an operation via the operations view, and displaying
the state textually is analogous to the VisB observers is done similar to the
VisB events and VisB observers respectively. There are also buttons to import,
and export an animated trace represented in ProB2-UI’s format. In Sect. 5, we
demonstrate how this improves communication between modelers and domain
experts.

4.2 Applicability of JavaScript Code Generation

Another important aspect is the applicability of JavaScript code generation.
Here, we focus on the limitations and the performance.

Limitations. As the JavaScript code generator is based on B2Program, it
shares the same restrictions that are discussed in [34,35].

For quantified constructs, B2Program only accepts models where the
bounded variables are constrained by the first predicates: For bounded vari-
ables a1 . . . an constrained by a predicate P , the first n conjuncts of P must
constrain the bounded variables in the exact order they are defined. This allows
assigning a value to a bounded variable directly, and iterating over a set to con-
strain this variable. B2Program also forbids set operations on infinite sets, or
storing them in variables.

Using B2Program for simulation, non-deterministic constructs such as ANY,
CHOICE, and non-deterministic assignments are translated by B2Program, only
choosing one execution path [35]. Regarding this work, traces executing oper-
ations with those constructs can not be animated precisely. B2Program only

40 F. Vu et al.

allows top-level PRE and SELECT as non-determinism [34] for model checking.
Inner guards, e.g., inner SELECTs cause problems when calculating enabled tran-
sitions (discussed in [34]). Regarding this work, a superset of actually possible
transitions is shown to the user; those inner guards are checked when the user
tries to execute the operation.

In conclusion, some models must be rewritten according to these rules; still,
there are also models where it is not possible. So, B2Program can be used at
an early development stage; but especially at a very early stage, some models
are too high-level for B2Program. One must then refine the model further to
enable B2Program for validation, or use the static export from Sect. 3. Note
that B2Program supports a significantly larger subset than B0 code generators.

Performance. In the previous work [35], we already compared Java and C++
code generation with ProB. To achieve a good performance, we implement the
B data types BSet and BRelation using persistent data structures (similar to
Java and C++, see [35]). For JavaScript we use the Immutable3 library, which
also makes use of structural sharing [2].

We have benchmarked the models from [35] for ProB4 and Java5 again
and compared with JavaScript6. As explained in [35], those selected models
range from small to very large ones, covering various performance aspects. Each
benchmark is run five times on an ASUS Vivobook 14 (R465JA-EK278T, 8 GB
RAM, 1.2 GHz Intel i3 processor with two cores), and afterward, the median
runtime is taken. The results are shown in Table 1.

Table 1 shows that the JavaScript benchmarks also outperform ProB. Train
and Sieve are models with many set operations where JavaScript is less than
one magnitude faster than ProB. For other benchmarks, JavaScript is also two
or three magnitudes faster than ProB. JavaScript and Java benchmarks are
usually in the same order of magnitude. Although JavaScript is an interpreted
language, our new backend for B2Program performs very well; it seems that
the JIT compiler in NodeJS can optimize efficiently.

Note, however, that Table 1 are benchmarks for simulation or trace-replay,
not for animation, i.e., we measure the performance of executing the model on
long-running paths where operations parameters are provided explicitly. In ani-
mation, the tools need to compute all enabled transitions and present them to
the user. In this use case, ProB with its constraint-solving capability can be
much faster than B2Program (discussed in [34]). For example, for the auto-
motive case study in Sect. 5, ProB can be up to three orders of magnitude
faster at computing all enabled transitions presented to the user. Still, for all
the case studies, the performance of B2Program was sufficient for interactive
exploration.

3 https://immutable-js.com/.
4 ProB CLI Release Version 1.1.1.
5 OpenJDK 64-Bit Server VM (build 25.332-b03, mixed mode).
6 NodeJS 17.6.0.

https://immutable-js.com/

Generating Domain-Specific Interactive Validation Documents 41

Table 1. Simulation Runtimes (ProB and Generated Java and JavaScript Code) in
Seconds with Number of Operation Calls (op calls), Speed-Up Relative to ProB

Lift ProB Java JavaScript

(2 × 109 op calls) Runtime > 1200 9.25 21.38

Speed-up 1 > 129.73 > 56.13

Traffic ProB Java JavaScript

Light Runtime > 1200 3.6 63.82

(1.8 × 109 op calls) Speed-up 1 > 333.33 > 18.8

Sieve ProB Java JavaScript

(1 op call, Runtime 69.62 6.37 28.31

primes until 2 Million) Speed-up 1 10.93 2.46

Scheduler ProB Java JavaScript

(9.6 × 109 op calls) Runtime > 1200 6.01 5.42

Speed-up 1 > 199.67 > 221.4

sort m2 ProB Java JavaScript

data1000 [30] Runtime 11.79 0.96 0.28

(500 × 103 op calls) Speed-up 1 12.28 42.11

CAN Bus ProB Java JavaScript

(J. Colley, Runtime 242.12 3.69 3.49

15 × 106 op calls) Speed-up 1 65.62 69.38

Train [1] ProB Java JavaScript

(940 × 103 op calls) Runtime 67.94 6.14 9.49

Speed-up 1 11.07 7.16

Cruise ProB Java JavaScript

Controller Runtime > 1200 8.99 19.50

(136.1 × 106 op calls) Speed-up 1 > 133.48 > 61.54

5 Case Studies

This section demonstrates how this work (1) makes it possible for a domain expert
to validate requirements, and (2) improves communication between the modelers
and the domain experts. We will study two case studies: a pitman controller from
the automotive domain [24], and a landing gear from the aerospace domain [20].

Pitman Controller. Based on the specification by Houdek and Raschke [16], we
use the pitman controller model by Leuschel et al. [24]. This model encodes a
subset of requirements from the specification which contains the key ignition,
the pitman controller, the blinking lights, and the hazard warning lights.

In the following, we focus on sequence 7 which is given in the specification
[16]. Sequence 7 validates the turn indicator’s and the hazard light’s behaviors.
In particular, events for tip blinking, direction blinking, and the hazard warning
lights are executed, and the desired behavior is checked afterward.

Figure 6a shows parts of sequence 7 from [16] after animation by a modeler
in ProB2-UI. The sequence’s feasibility in the model has already been shown
by Leuschel et al. in [24]. Based on this sequence, we outline how our approach
helps to improve communication between modelers and domain experts.

42 F. Vu et al.

Fig. 6. Parts of Sequence 7 in History Views

Fig. 7. Domain-Specific Visualization of States after Executing (a)–(f) in Fig. 6b

Generating Domain-Specific Interactive Validation Documents 43

To ensure that the modeler has not misunderstood the requirements, he or
she can then export the trace to a domain expert, who could load this trace
into the generated HTML document (see Fig. 6b). The domain expert can then
inspect whether the correct behavior was indeed implemented by the modeler.

A critical point in the sequence is to validate that “if the warning light is
activated, any tip-blinking will be ignored or stopped if it was started before.”
(requirement ELS-13 in [16]) This part of the animation is shown in Fig. 6b.
With help of the domain-specific visualization (see Fig. 7), the domain expert
can easily approve that the desired behavior has indeed been implemented. Fur-
thermore, the dynamic export allows a domain expert to inspect alternate paths
with the same behavior, to establish a stronger guarantee.

Landing Gear. The landing gear model [20] by Ladenberger et al. is modeled
based on the specification by Boniol [5]. For the demonstration, we use the
refinement level which includes gears, doors, handle, switch, and electro-valves.
To be able to use B2Program, we have manually translated the Event-B model
to classical B. Figure 8 shows parts of the generated GUI from the landing gear
model which contains the VisB view and the history view. The domain-specific
VisB view shows a hydraulic circuit consisting of the handle, the switch, and
the electro-valves.

Fig. 8. Retraction Sequence with Hydraulic Circuit as Domain-Specific Visualization

44 F. Vu et al.

Fig. 9. Retraction Sequence with
Gears and Doors as Domain-Specific
Visualization

Using the operations view (which we
omitted here due to space reasons), a
domain expert, e.g., an engineer can ani-
mate traces representing desired require-
ments. In this example, the domain expert
has animated the retraction sequence from
the specification. This trace can then
be exported for ProB2-UI, to be used
by a modeler. It can also be converted
for use by another domain expert more
focused on other aspects of the model.
For instance, Fig. 9 shows an alternate
domain-specific visualization with gears
and doors. The second domain expert can
import the trace created from Fig. 8. Thus, our approach does not only improve
communication between modelers and domain experts, but also between domain
experts from different perspectives.

6 Related Work

In the following, we compare this work with existing tools that integrate domain
experts in the software development process.

Requirements. Automatic translation of natural language requirements makes
it possible to involve domain experts more directly in the validation process.
An example is the requirements language FRETish [14] supported by the tool
FRET [13]. Using FRET, the domain expert can write FRETish requirements in
natural language which are translated to linear temporal logic (LTL). To further
improve communication between modeler and domain expert, FRET supports
visualizing and simulating the underlying LTL formulas. A similar approach is
followed by the tool SPEAR [8]. In contrast, our work does not yet enable the
domain expert to directly validate formal properties. Instead, the domain expert
can run scenarios for certain properties, and inspect the behavior in a domain-
specific visualization.

Other works support writing high-level domain-specific scenarios for execu-
tion on a formal model, e.g., Gherkin and Cucumber for Event-B to run sce-
narios using the ProB animator [9,32]. This allows a domain expert to write
scenarios in natural language, execute them, and check the behavior afterward.
As the base of communication, modelers and domain experts must agree on
the events’ meaning in natural language. Furthermore, the AValLa language
was introduced to write domain-specific scenarios in ASMs, and run them using
AsmetaV [6]. Another ASM tool is ASM2C++ which translates ASMs to C++,
and AValLa scenarios to BDD code targeting the generated C++ code [4].
In contrast, our work does also not yet support natural language to write sce-
narios. Instead, the domain expert can create scenarios by interacting with the

Generating Domain-Specific Interactive Validation Documents 45

domain-specific VisB visualization. So, our base of communication is the VisB
visualization, and the import/export of scenarios.

Documentation. ProB Jupyter [12] implements interaction with formal models
(in B, Event-B, TLA+, etc.) in Jupyter notebooks via ProB. It also supports
generating HTML, LATEX, and PDF documents from the Jupyter notebooks.
This way, it is also possible to validate requirements in ProB Jupyter, and to
generate documentation with explanatory texts. However, ProB Jupyter does
not yet support VisB domain-specific visualizations (only an older less flexible
visualization technique [25]). In future, we would thus like to integrate VisB
into [12], as an alternative to the static export in Sect. 3.

The LATEX mode [22] of ProB can be used to produce LATEX documents,
and to generate documentation with explanatory texts, visualizations and tables.
Again, it does not support VisB and domain-specific visualizations have to be
created via LATEX.

Visualizations. This work has already outlined how important (domain-specific)
visualizations are to validate a formal model.

There are more visualization tools for the B method like BMotionWeb [18],
BMotionStudio [19], AnimB7, Brama [31], and the animation function [25] in
ProB. A detailed comparison between these tools and VisB is described in
[38]. In our approach, the domain expert does not need any expertise in dealing
with formal models and tools. However, since the dynamic export is based on
B2Program, only a subset of the B language is supported.

Stakeholders often describe state diagrams to formulate desired behavior pat-
terns. State space projection was introduced by Ladenberger and Leuschel [21] to
validate such diagrams. Our approach does not take state diagrams into account
yet; this could be tackled in the future.

PVSio-Web [37] is a tool for visualizing PVS models and creating prototypes,
especially human-machine interfaces. This enables the user to assemble an inter-
active visualization for the model. In our approach, VisB visualizations are cre-
ated manually, i.e., by creating an SVG image in an editor such as Inkspace, and
by writing the VisB glue file. There are also tools to create prototypes for VDM-
SL models [27,28]. Similar to our work, those works also allow domain-specific
visualization, animation, and recording scenarios. In addition to validation by
users and domain experts, the VDM-SL tools also incorporate UI designers as
stakeholders.

Simulators. JeB [26] supports animation, simulation and visualization by gen-
erating HTML with JavaScript from an Event-B model. The user can encode
functions by hand to enable execution of complex models. To ensure the relia-
bility of the simulated traces, JeB’s approach introduced the notion of fidelity.

In our approach, it is also possible to write additional code by hand. Com-
pared to JeB, B2Program supports importing/exporting of traces. JeB trans-

7 http://wiki.event-b.org/index.php/AnimB.

http://wiki.event-b.org/index.php/AnimB

46 F. Vu et al.

lates Event-B models to JavaScript constructs which are then run by an inter-
preter. In contrast, B2Program translates B models nearly one-to-one to Type-
Script classes.

Other techniques like co-simulation and timed probabilistic simulation are
supported by tools such as INTO-CPS [33] and SimB [36]. In ProB2-UI, SimB
can be used together with VisB. Simulation scenarios can thus be exported (cf.
Sect. 3) to a domain expert. Another simulation tool is AsmetaS [10] which is
part of the Asmeta toolset [11].

7 Conclusion and Future Work

In this work, we presented two solutions to improve the communication between
modelers and domain experts by creating “interactive validation documents”:
(1) a (mostly) static export of a trace to an HTML file, (2) and a fully dynamic
export of a classical B machine to an HTML document. While the static export
works for all formalisms in ProB, the dynamic export only works for classical
B machines supported by B2Program. The static export is suitable to analyse
one scenario or trace, and allows the user to step through the saved trace and
inspect the various states of the trace. In contrast, the dynamic export is suitable
when domain experts have to animate traces, e.g., to modify existing traces, or
to validate entire requirements.

Both approaches use domain-specific visualizations to help a domain
expert reason about the formal model. For the dynamic export we extended
B2Program to generate HTML and JavaScript code while incorporating VisB
visualizations. This makes it possible to interact with the model and check its
behavior without knowledge of the modeling language and its tools. Communi-
cation between modelers and domain experts is eased by features for importing
and exporting scenarios. Overall, this work enables to involve domain experts in
the development and validation process more actively. Those aspects have been
demonstrated by two case studies: a light system model from the automotive
domain, and a landing gear case study from the aerospace domain. Furthermore,
we discussed the limitations of the dynamic export and analyzed the performance
of the generated JavaScript from B2Program.

B2Program is available at:

https://github.com/favu100/b2program

Case studies are available at:

https://gitlab.cs.uni-duesseldorf.de/general/stups/visb-visualisation-
examples/-/tree/master/B2Program

In the future, we would like to allow writing additional text in natural lan-
guage (e.g. requirement or explanatory text) for each executed operation of a
trace. This would further ease communication between domain experts.

Acknowledgements. We would like to thank anonymous reviewers for their con-
structive feedback.

https://github.com/favu100/b2program
https://gitlab.cs.uni-duesseldorf.de/general/stups/visb-visualisation-examples/-/tree/master/B2Program
https://gitlab.cs.uni-duesseldorf.de/general/stups/visb-visualisation-examples/-/tree/master/B2Program

Generating Domain-Specific Interactive Validation Documents 47

References

1. Abrial, J., Hoare, A.: The B-Book: Assigning Programs to Meanings. Cambridge
University Press, Cambridge (2005)

2. Bagwell, P.: Ideal Hash Trees. Es Grands Champs, 1195 (2001)
3. Bendisposto, J., et al.: ProB2-UI: a java-based user interface for ProB. In: Lluch

Lafuente, A., Mavridou, A. (eds.) FMICS 2021. LNCS, vol. 12863, pp. 193–201.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85248-1 12

4. Bonfanti, S., Gargantini, A., Mashkoor, A.: Design and validation of a C++ code
generator from abstract state machines specifications. J. Softw. Evol. Process
32(2), e2205 (2020)

5. Boniol, F., Wiels, V.: The landing gear system case study. In: Boniol, F., Wiels, V.,
Ait Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. CCIS, vol. 433, pp. 1–18. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-07512-9 1

6. Carioni, A., Gargantini, A., Riccobene, E., Scandurra, P.: A scenario-based vali-
dation language for ASMs. In: Börger, E., Butler, M., Bowen, J.P., Boca, P. (eds.)
ABZ 2008. LNCS, vol. 5238, pp. 71–84. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-87603-8 7

7. ClearSy. Atelier B, User and Reference Manuals. Aix-en-Provence, France (2016).
http://www.atelierb.eu/

8. Fifarek, A.W., Wagner, L.G., Hoffman, J.A., Rodes, B.D., Aiello, M.A., Davis,
J.A.: SpeAR v2.0: formalized past LTL specification and analysis of requirements.
In: Barrett, C., Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp.
420–426. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57288-8 30

9. Fischer, T., Dghyam, D.: Formal model validation through acceptance tests. In:
Collart-Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.) RSSRail 2019. LNCS,
vol. 11495, pp. 159–169. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-18744-6 10

10. Gargantini, A., Riccobene, E., Scandurra, P.: A metamodel-based simulator for
ASMs. In: Proceedings ASM Workshop (2007)

11. Gargantini, A., Riccobene, E., Scandurra, P.: Model-driven language engineering:
the ASMETA case study. In: Proceedings ICSEA, pp. 373–378 (2008)

12. Geleßus, D., Leuschel, M.: ProB and Jupyter for logic, set theory, theoretical com-
puter science and formal methods. In: Raschke, A., Méry, D., Houdek, F. (eds.)
ABZ 2020. LNCS, vol. 12071, pp. 248–254. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-48077-6 19

13. Giannakopoulou, D., Pressburger, T., Mavridou, A., Schumann, J.: Generation of
formal requirements from structured natural language. In: Madhavji, N., Pasquale,
L., Ferrari, A., Gnesi, S. (eds.) REFSQ 2020. LNCS, vol. 12045, pp. 19–35. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-44429-7 2

14. Giannakopoulou, D., Pressburger, T., Mavridou, A., Schumann, J.: Automated
formalization of structured natural language requirements. Inf. Softw. Technol.
137, 106590 (2021)

15. Hansen, D., et al.: Validation and real-life demonstration of ETCS hybrid level 3
principles using a formal B model. Int. J. Softw. Tools Technol. Transfer 22(3),
315–332 (2020). https://doi.org/10.1007/s10009-020-00551-6

16. Houdek, F., Raschke, A.: Adaptive Exterior Light and Speed Control System
(2019). https://abz2020.uni-ulm.de/case-study

https://doi.org/10.1007/978-3-030-85248-1_12
https://doi.org/10.1007/978-3-319-07512-9_1
https://doi.org/10.1007/978-3-540-87603-8_7
https://doi.org/10.1007/978-3-540-87603-8_7
http://www.atelierb.eu/
https://doi.org/10.1007/978-3-319-57288-8_30
https://doi.org/10.1007/978-3-030-18744-6_10
https://doi.org/10.1007/978-3-030-18744-6_10
https://doi.org/10.1007/978-3-030-48077-6_19
https://doi.org/10.1007/978-3-030-48077-6_19
https://doi.org/10.1007/978-3-030-44429-7_2
https://doi.org/10.1007/s10009-020-00551-6
https://abz2020.uni-ulm.de/case-study

48 F. Vu et al.

17. Institute of Electrical and Electronics Engineers. IEEE Standard Computer Dic-
tionary: A Compilation of IEEE Standard Computer Glossaries (1991)

18. Ladenberger, L.: Rapid creation of interactive formal prototypes for validat-
ing safety-critical systems. Ph.D. thesis, Universitäts-und Landesbibliothek der
Heinrich-Heine-Universität Düsseldorf (2016)

19. Ladenberger, L., Bendisposto, J., Leuschel, M.: Visualising event-B models with B-
motion studio. In: Alpuente, M., Cook, B., Joubert, C. (eds.) FMICS 2009. LNCS,
vol. 5825, pp. 202–204. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-04570-7 17

20. Ladenberger, L., Hansen, D., Wiegard, H., Bendisposto, J., Leuschel, M.: Valida-
tion of the ABZ landing gear system using ProB. Int. J. Softw. Tools Technol.
Transfer 19(2), 187–203 (2015). https://doi.org/10.1007/s10009-015-0395-9

21. Ladenberger, L., Leuschel, M.: Mastering the visualization of larger state spaces
with projection diagrams. In: Butler, M., Conchon, S., Zäıdi, F. (eds.) ICFEM
2015. LNCS, vol. 9407, pp. 153–169. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-25423-4 10

22. Leuschel, M.: Formal model-based constraint solving and document generation. In:
Ribeiro, L., Lecomte, T. (eds.) SBMF 2016. LNCS, vol. 10090, pp. 3–20. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-49815-7 1

23. Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45236-2 46

24. Leuschel, M., Mutz, M., Werth, M.: Modelling and validating an automotive system
in classical B and event-B. In: Raschke, A., Méry, D., Houdek, F. (eds.) ABZ 2020.
LNCS, vol. 12071, pp. 335–350. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-48077-6 27

25. Leuschel, M., Samia, M., Bendisposto, J.: Easy graphical animation and formula
visualisation for teaching B. The B Method: from Research to Teaching, pp. 17–32
(2008)

26. Mashkoor, A., Yang, F., Jacquot, J.-P.: Refinement-based validation of event-B
specifications. Softw. Syst. Model. 16(3), 789–808 (2016). https://doi.org/10.1007/
s10270-016-0514-4

27. Oda, T., Akari, K., Yamamoto, Y., Nakakoji, K., Chang, H.-M., Larsen, P.: Spec-
ifying abstract user interface in VDM-SL. In: Proceedings International Overture
Workshop, pp. 5–20 (2021)

28. Oda, T., Yamamoto, Y., Nakakoji, K., Araki, K., Larsen, P.: VDM animation for a
wider range of stakeholders. In: Proceedings Overture Workshop, pp. 18–32 (2015)

29. Parr, T.: StringTemplate Website (2013). http://www.stringtemplate.org/.
Accessed 05 July 2022

30. Rivera, V., Cataño, N., Wahls, T., Rueda, C.: Code generation for event-B. STTT
19(1), 31–52 (2017)

31. Servat, T.: BRAMA: a new graphic animation tool for B models. In: Julliand, J.,
Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 274–276. Springer, Heidel-
berg (2006). https://doi.org/10.1007/11955757 28

32. Snook, C., Hoang, T.S., Dghaym, D., Fathabadi, A.S., Butler, M.: Domain-specific
scenarios for refinement-based methods. J. Syst. Architect. 112, 101833 (2021)

33. Thule, C., Lausdahl, K., Gomes, C., Meisl, G., Larsen, P.G.: Maestro: the INTO-
CPS co-simulation framework. Simul. Model. Pract. Theory 92, 45–61 (2019)

34. Vu, F., Brandt, D., Leuschel, M.: Model checking B models via high-level code
generation. In: Proceedings ICFEM (2022, to appear)

https://doi.org/10.1007/978-3-642-04570-7_17
https://doi.org/10.1007/978-3-642-04570-7_17
https://doi.org/10.1007/s10009-015-0395-9
https://doi.org/10.1007/978-3-319-25423-4_10
https://doi.org/10.1007/978-3-319-25423-4_10
https://doi.org/10.1007/978-3-319-49815-7_1
https://doi.org/10.1007/978-3-540-45236-2_46
https://doi.org/10.1007/978-3-030-48077-6_27
https://doi.org/10.1007/978-3-030-48077-6_27
https://doi.org/10.1007/s10270-016-0514-4
https://doi.org/10.1007/s10270-016-0514-4
http://www.stringtemplate.org/
https://doi.org/10.1007/11955757_28

Generating Domain-Specific Interactive Validation Documents 49

35. Vu, F., Hansen, D., Körner, P., Leuschel, M.: A multi-target code generator for
high-level B. In: Ahrendt, W., Tapia Tarifa, S.L. (eds.) IFM 2019. LNCS, vol.
11918, pp. 456–473. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
34968-4 25

36. Vu, F., Leuschel, M., Mashkoor, A.: Validation of formal models by timed proba-
bilistic simulation. In: Raschke, A., Méry, D. (eds.) ABZ 2021. LNCS, vol. 12709,
pp. 81–96. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77543-8 6

37. Watson, N., Reeves, S., Masci, P.: Integrating user design and formal models within
PVSio-web. In: Proceedings Workshop Formal Integrated Development Environ-
ment, pp. 95–104 (2018)

38. Werth, M., Leuschel, M.: VisB: a lightweight tool to visualize formal models with
SVG graphics. In: Raschke, A., Méry, D., Houdek, F. (eds.) ABZ 2020. LNCS, vol.
12071, pp. 260–265. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
48077-6 21

https://doi.org/10.1007/978-3-030-34968-4_25
https://doi.org/10.1007/978-3-030-34968-4_25
https://doi.org/10.1007/978-3-030-77543-8_6
https://doi.org/10.1007/978-3-030-48077-6_21
https://doi.org/10.1007/978-3-030-48077-6_21

Deductive Verification of Smart Contracts
with Dafny

Franck Cassez(B) , Joanne Fuller, and Horacio Mijail Antón Quiles

ConsenSys, New York, USA
{franck.cassez,joanne.fuller,horacio.mijail}@consensys.net

Abstract. We present a methodology to develop verified smart con-
tracts. We write smart contracts, their specifications and implemen-
tations in the verification-friendly language Dafny. In our methodol-
ogy the ability to write specifications, implementations and to reason
about correctness is a primary concern. We propose a simple, concise yet
powerful solution to reasoning about contracts that have external calls.
This includes arbitrary re-entrancy which is a major source of bugs and
attacks in smart contracts. Although we do not yet have a compiler from
Dafny to EVM bytecode, the results we obtain on the Dafny code can
reasonably be assumed to hold on Solidity code: the translation of the
Dafny code to Solidity is straightforward. As a result our approach can
readily be used to develop and deploy safer contracts.

1 Introduction

The Ethereum network provides the infrastructure to implement a decen-
tralised distributed ledger. At the core of the network is the Ethereum Virtual
Machine [29] (EVM) which can execute programs written in EVM bytecode.
This remarkable feature means that transactions that update the ledger are not
limited to assets’ transfers but may involve complex business logic that can be
executed programmatically by programs called smart contracts.

Smart Contracts are Critical Systems. Smart contracts are programs and
may contain bugs. For example, in some executions, a counter may over/un-
derflow, an array dereference may be outside the range of the indices of the
array. These runtime errors are vulnerabilities that can be exploited by mali-
cious actors to attack the network: the result is usually a huge loss of assets,
being either stolen or locked forever. There are several examples of smart con-
tract vulnerabilities that have been exploited in the past: in 2016, a re-entrance
vulnerability in the Decentralised Autonomous Organisation (DAO) smart con-
tract was exploited to steal more than USD50 Million [13]. The total value netted
from DeFi hacks in the first four months of 2022 [8], $1.57 billion, has already
surpassed the amount netted in all of 2021, $1.55 billion.

Beyond runtime errors, some bugs may compromise the business logic of
a contract: an implementation may contain subtle errors that make it deviate

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. F. Groote and M. Huisman (Eds.): FMICS 2022, LNCS 13487, pp. 50–66, 2022.
https://doi.org/10.1007/978-3-031-15008-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15008-1_5&domain=pdf
http://orcid.org/0000-0002-4317-5025
https://doi.org/10.1007/978-3-031-15008-1_5

Deductive Verification of Smart Contracts with Dafny 51

from the initial intended specifications (e.g., adding one to a counter instead of
subtracting one).

The presence of bugs in smart contracts is exacerbated by the fact that the
EVM bytecode of the contract is recorded in the immutable ledger and cannot
be updated. The EVM bytecode of a contract is available in the ledger, and
sometimes the corresponding source code (e.g., in Solidity [11], the most popular
language to write smart contracts) is available too, although not stored in the
ledger. Even if the source code is not available, the bytecode can be decompiled
which makes it a target of choice for attackers. Overall smart contracts have all
the features of safety critical systems and this calls for dedicated techniques and
tools to ensure they are reliable and bug-free.

Smart Contracts are Hard to Verify. Ensuring that a smart contract is
bug-free and correctly implements a given business logic is hard. Among the
difficulties that software engineers face in the development process of smart
contracts are:

– The most popular languages Solidity, Vyper [27] (and in the early develop-
ment stage its offspring Fe [12]) to write smart contracts have cumbersome
features. For instance there is a default fallback function that is executed
when a contract is called to execute a function that is not in its interface.
Some features like the composition of function modifiers have an ambigu-
ous semantics [31] and developing a formal semantics of Solidity is still a
challenge [19]. There are defensive mechanisms (reverting the effects of a
transaction, enforce termination with gas consumption) that aim to provide
some safety. However, these mechanisms neither prevent runtime errors nor
guarantee functional correctness of a contract.

– Most of the languages (e.g., Solidity, Vyper for Ethereum) used to develop
smart contracts are not verification-friendly. It is hard to express safety (and
functional correctness properties) within the language itself. Proving proper-
ties of a contract usually requires learning another specification language to
write specifications and then embed the source code into this specification
language.

– Smart contracts operate in an adversarial environment. For instance, a con-
tract can call other contracts that are untrusted, and that can even call back
into the first contract. This can result in subtle vulnerabilities like re-entrancy,
which are caused by other contracts.

Our Contribution. We present a methodology to develop verified smart con-
tracts. First, we write smart contracts, their specifications and implementations
in the verification-friendly language Dafny. This is in contrast to most of the
verification approaches for smart contracts that build on top of existing lan-
guages like Solidity or Vyper and require annotations or translations from one
language to another. In our methodology the ability to write specifications,
implementations and to reason about correctness is a primary concern. Sec-
ond, we use a minimal number of contract-specific primitives: those offered at
the EVM level. This has the advantage of reducing the complexity of compil-
ing a high-level language like Dafny to EVM bytecode. Third, we propose a

52 F. Cassez et al.

simple, concise yet powerful solution to reasoning about contracts that have
external calls. This includes arbitrary re-entrancy which is a major source of
bugs and attacks in smart contracts. To summarise, our methodology comprises
3 main steps: 1) reason about the contract in isolation, closed contract, Sect. 2;
2) take into account possible exceptions, Sect. 3.1; 3) take into account arbitrary
external calls, Sect. 3.2. Although we do not yet have a compiler from Dafny to
EVM bytecode, the results we obtain on the Dafny code can reasonably be
assumed to hold on Solidity code: the translation of the Dafny code in Solidity
is straightforward. As a result our approach can readily be used to develop and
deploy safer contracts.

Related Work. Due to the critical nature of smart contracts, there is a huge
body of work and tools to test or verify them. Some of the related work targets
highly critical contracts, like the deposit smart contracts [7,22,23], including the
verification of the EVM bytecode.

More generally there are several techniques and tools1 e.g., [2,3,9,14,15,30],
for auditing and analysing smart contracts written in Solidity [11] or EVM byte-
code, but they offer limited capabilities to verify complex functional requirements
or do not take into account the possibility of re-entrant calls.

Most of the techniques [1,4,10,16,18,20,26,28] for the verification of smart
contracts using high-level code implement a translation from Solidity (or Michel-
son for other chains) to some automated provers like Why3, F∗, or proof assis-
tants like Isabelle/HOL, Coq.

The work that is closest to our approach is [5]. In [5] a principled solution
to check smart contracts with re-entrancy is proposed and based on instrument-
ing the code. Our solution (Sect. 3.2) is arguably simpler. Another difference is
that [5] does not use the gas resource and is restricted to safety properties. Our
approach includes the proof of termination using the fact that each computation
has a bounded (though potentially arbitrary large) amount of resources. Mod-
elling the gas consumption is instrumental in the solution we propose in Sect. 3.2
as it enables us to prove termination and to reason by well-founded induction
on contracts with external calls.

2 Verification of Closed Smart Contracts

In this section, we introduce our methodology in the ideal case where the code of
a smart contract is closed. By closed, we mean that there are no calls to functions
outside (e.g., an external library or another smart contract) of the contract itself.

An Abstract View of the EVM. The Ethereum platform provides a global
computer called the Ethereum Virtual Machine, EVM, to execute smart con-
tracts.

In essence, smart contracts are similar to classes/objects in OO programming
languages: they can be created/destructed, they have a non-volatile state, and
they offer some functions (interface) to modify their state. Smart contracts are
1 https://github.com/leonardoalt/ethereum formal verification overview.

https://github.com/leonardoalt/ethereum_formal_verification_overview

Deductive Verification of Smart Contracts with Dafny 53

usually written in high-level languages like Solidity or Vyper and compiled into
low-level EVM bytecode. The EVM bytecode of a contract is recorded in the
ledger and is immutable. The state of the contract can be modified by executing
some of its functions and successive states’ changes are recorded in the ledger.

Transactions and Accounts. Participants in the Ethereum network interact
by submitting transactions. Transactions can be simple ETH (Ethereum’s native
cryptocurrency) transfer requests or requests to execute some code in a smart
contract. The initiator of a transaction must bound the resources they are will-
ing to use by providing a maximum amount of gas maxG. In the EVM, each
instruction consumes a given (positive) amount of gas. The execution of a trans-
action runs until it (normally) ends or until it runs out of gas. Before running a
computation, the initiator agrees on a gas price, gp, i.e., how much one gas unit
is worth in ETH. At the end of the computation, if there is gl gas units left,2

the initiator is charged with (maxG− gl) × gp ETH. To implement this type of
bookkeeping, the initiator must have an account, the balance of which is larger
than the maximum fee of maxG × gp ETH, before executing the transaction.

There are two types of accounts in Ethereum: a user account which is asso-
ciated with a physical owner; and a contract account which is associated with
a piece of code stored in the ledger. Both have a balance, stored in the ledger,
which is the amount of ETH associated with the account. An account is uniquely
identified by its (160-bit) address.

Execution of a Transaction. The execution of a transaction involving a con-
tract account can be thought of as a message call : an account m sends a message
to a contract account c to execute one of its functions f(·) with parameters x;
this call is denoted c.f(x). The call can originate from a user account or from a
contract account. When executing c.f(x) some information about the caller m
is available such has m’s account’s address and the maximum amount of gas m
is willing to pay for the execution of c.f(x). The caller m can also transfer some
ETH to c at the beginning of the transaction. The general form of a transaction
initiated by m and involving a contract c is written:

m → v, g, c.f(x)

where m is the initiator of the transaction, v the amount of ETH to be trans-
ferred to c before executing f(x), and g the maximum amount of gas m is willing
to pay to execute c.f(x). To reason about the correctness of smart contracts in a
high-level language (not EVM bytecode), we use some features that are guided
by the EVM semantics:

– the values of m, v, g in a transaction are fixed; this means that we can write
a transaction as a standard method call of the form c.f(x,msg, g) where
msg = (m, v) by just adding these values as (read-only) parameters to
the original function f . We specify all the contracts’ functions in this form
c.f(x,msg, g). In msg, m is the message sender, msg.sender, v the message
value, msg.value.

2 The EVM tracks the amount of gas left relative to the maximum.

54 F. Cassez et al.

– The only requirement on the gas consumption is that every function consumes
at least one unit of gas, and similar for every iteration of a loop. We use the
gas value to reason about termination, and we do not take into account the
actual gas cost that only makes sense on the EVM bytecode.

Specification with Dafny. To mechanically and formally verify smart con-
tracts, we use the verification-friendly language Dafny [17]. Dafny natively
supports Hoare style specification in the form of pre- and post-conditions, as well
as writing proofs as programs, and offers both imperative, object-oriented and
functional programming styles. The Dafny verification engine checks that the
methods satisfy their pre- and post-conditions specifications and also checks for
the runtime errors like over/underflows. The result of a verification can be either
“no errors” – all the methods satisfy their specifications –, “possible violation”
of a specification – this may come with a counter-example – or the verification
can time out. The form of verification implemented in Dafny is deductive as
the verifier does not try to synthesise a proof but rather checks that a program
adheres to its specification using the available hints. The hints can range from
bounds on integer values to more complex lemmas. We refer the reader to [17]
for a more detailed introduction to the language and its implementation.

To model the concepts (transaction, accounts) introduced so far, we provide
some data types and an Account trait, Listing A.1. A trait is similar to an
interface in Java. It can be mixed in a class or in another trait to add some
specific capabilities. The trait Account provides two members: the balance of
the account and its type3 (contract or non-contract which is equivalent to user).
For example, a user account can be created as an instance of the UserAccount
class, line 16. A contract account is created by mixing in the Account trait and
by setting the type of the contract accordingly: for instance, the Token contract,
Listing A.2, mixes in Account providing the balance and isContract members.
For high-level reasoning purposes it is enough to define a type Address as a
synonym for Account.

Example: A Simplified Token Contract. We now show how to use our
methodology to specify, implement and reason about a simple contract: a sim-
plified Token contract. This contract implements a cryptocurrency: tokens can
be minted and transferred between accounts. The contract’s functionalities are:

– the contract’s creator (an account) can mint new tokens at any time and
immediately assign them to an account. This is provided by the mint function;

– tokens can be sent from an account from to another to provided the sender’s
(from) balance allows it. This is provided by the transfer function.

The complete Dafny code (specification and implementation) for the Token
contract is given in Listing A.2:

– the contract is written as a class and has a constructor that initialises the
values of the state variables;

3 In this paper we do not use any specific features related to the type of an account.

Deductive Verification of Smart Contracts with Dafny 55

Listing A.1. Datatypes and Account Trait in Dafny.

1 /** A message. */
2 datatype Msg = Msg(sender: Account , value: uint256)
3
4 type Address = Account
5
6 /** Provide an Account. */
7 trait Account {
8 /** Balance of the account. */
9 var balance : uint256

10
11 /** Type of account. */
12 const isContract: bool
13 }
14
15 /** A user account. */
16 class UserAccount extends Account {
17
18 constructor(initialBal: uint256)
19 ensures balance == initialBal
20 {
21 balance := initialBal;
22 isContract := false;
23 }
24 }

– each method has a specification in the standard form of predicates: the pre-
conditions, requires, and the post-condition, ensures;

– the Token contract has a global invariant, Ginv(). The global invariant must
be maintained by each method call. To ensure that this is the case, Ginv() is
added to the pre- and post-conditions of each method4 (inductive invariant);

– the contract is instrumented with ghost variables, and possibly ghost func-
tions and proofs. Ghost members are only used in proofs and do not need
to be executable. Moreover, a ghost variable cannot be used to determine
the behaviour of non-ghost methods for example in the condition of an if
statement;

– the sum(m) function is not provided but computes the sum of the values in
the map m;

– each method consumes at least one unit of gas and returns the gas left after
when it completes.

The Token contract has two non-volatile state variables: minter and balances.
The minter is the creator of the instance of the contract (constructor) and is
a constant, which enforces it can be written to only once. Initially no tokens
have been minted and the map that records the balances (in Token, not ETH) is
empty (line 20). In this specification the creator of the contract is free to deposit
some ETH into the contract account. Note that we can also specify Solidity-like
attributes: for instance, payable is a Solidity attribute that can be assigned
to a function to allow a contract to receive ETH via a call to this function. If
a function is not payable, ETH cannot be deposited in the contract via this
function. In our setting we can simply add a pre-condition: msg.value == 0
(Listing A.2, line 36).

4 For the constructor it is only required to hold after the constructor code is executed.

56 F. Cassez et al.

The global invariant of the contract (line 9) states that the total amount of
tokens is assigned to the accounts in balances. The ghost variable totalAmount
keeps track of the number of minted tokens. The transfer method (line 32)
requires that the source account is in the balances map whereas the target
account may not be in yet. In the latter case it is added to the map. Note that
the initiator must be the source account (msg.sender == from, line 36).

Verification of the Simplified Token Contract. The Dafny verification
engine can check whether implementations satisfy their pre-/post-conditions. In
the case of the Token contract, Dafny reports “no errors” which means that:

– there are no runtime errors in our program. For instance the two requirements
balances[from] >= amount (line 34) and balances[to] as nat + amount
as nat <= MAX UINT256 guarantee that the result of the operation is an
uint256 and there is no over/underflows at lines 50, 51. The update of a map
m is written m[k := v] and results in a map m′ such that m′[w] = m[w], k �= w
and m′[k] = v (lines 50, 51, 72).

– The global invariant GInv() must be preserved by each method call: if it holds
at the beginning of the execution of a method, it also holds at the end. This
global invariant must also hold after the constructor has completed. If Dafny
confirms GInv() holds everywhere, we can conclude that GInv() holds after
any finite number of calls to either mint or transfer.

– There are some other pre- and post-conditions that are in the specifications.
For example, the old keyword refers to the value of a variable at the beginning
of the method and line 41 states that the balance of the from account has
been decreased by amount.

The specification of the Token contract presented in this section assumes
the pre-conditions hold for each message (method) call. In practice, this has
to be ensured at runtime: it is impossible to force an initiator to submit a
transaction that satisfies the pre-conditions of a method. However, this is a
reasonable assumption as in case the pre-conditions do not hold, we can simply
abort the execution. This kind of behaviour is supported by the EVM semantics
where it is possible to return a status of a computation and abort (similar to an
exception) the execution of the function and revert its effects on the contract’s
state. Another more serious simplification of the Token contract is that there is
no external call to another contract’s method. It turns out that external calls
can be problematic in smart contracts and are the source of several attacks.

Deductive Verification of Smart Contracts with Dafny 57

Listing A.2. A Simple Token Contract in Dafny.

1 class Token extends Account {
2
3 const minter: Address // minter cannot be updated after creation
4 var balances : map<Address , uint256 >
5
6 ghost var totalAmount: nat
7
8 /** Contract invariant. */
9 predicate GInv()

10 reads this `totalAmount , this `balances
11 {
12 totalAmount == sum(balances)
13 }
14
15 /** Initialise contract. */
16 constructor(msg: Msg)
17 ensures GInv()
18 ensures balance == msg.value && minter == msg.sender
19 {
20 isContract , minter , balances , balance := true , msg.sender , map[], msg.value;
21 totalAmount := 0;
22 }
23
24 /**
25 * @param from Source Address.
26 * @param to Target Address.
27 * @param amount The amount to be transfered from `from ` to `to `.
28 * @param msg The `msg ` value.
29 * @param gas The gas allocated to the execution.
30 * @returns The gas left after executing the call.
31 */
32 method transfer(from:Address ,to:Address ,
33 amount:uint256 ,msg:Msg ,gas: nat) returns (g:nat)
34 requires from in balances && balances[from] >= amount && msg.sender == from
35 requires gas >= 1
36 requires msg.sender == from && msg.value == 0;
37 requires to !in balances ||
38 balances[to] as nat + amount as nat <= MAX_UINT256
39 requires GInv()
40 ensures GInv()
41 ensures from in balances && balances[from] >= old(balances[from]) - amount
42 ensures to in balances
43 ensures to != from ==> balances[to] >= amount
44 decreases gas
45 modifies this
46 {
47 balance := balance + msg.value;
48 var newAmount: uint256 := balances[from] - amount ;
49 balances :=
50 balances[to := (if to in balances then balances[to] else 0) + amount];
51 balances := balances[from := newAmount];
52 }
53
54 /**
55 * @param to Target Address.
56 * @param amount The amount to receiving the newly minted tokens
57 * @param msg The `msg ` value.
58 * @param gas The gas allocated to the execution.
59 * @returns The gas left after executing the call.
60 */
61 method mint(to:Address ,amount: uint256 ,msg:Msg ,gas:nat) returns (g:nat)
62 requires msg.sender == minter
63 requires gas >= 1
64 requires to !in balances ||
65 balances[to] as nat + amount as nat <= MAX_UINT256
66 requires GInv()
67 ensures totalAmount == old(totalAmount) + amount as nat
68 ensures GInv()
69 modifies this `balances , this `totalAmount
70 {
71 balances :=
72 balances[to := (if to in balances then balances[to] else 0) + amount];
73 // The total amount increases.
74 totalAmount := totalAmount + amount as nat;
75 g := gas - 1;
76 }
77 }

58 F. Cassez et al.

In the next section we show how to reason about smart contracts under
adversarial conditions: exceptions and external calls.

3 Verification Under Adversarial Conditions

In this section we show how to take into account adversarial conditions: in the
first section we describe how to move pre-conditions into runtime checks and
enrich our specifications to precisely account for when a function call should
revert. In the second part we propose a general mechanism to capture the possible
adversarial effects of external calls.

3.1 Aborting a Computation

As mentioned before we cannot enforce the initiator of a transaction to satisfy
any pre-conditions when calling a method in a smart contract. However, a simple
way to handle exceptional cases is to explicitly check that some conditions are
satisfied before executing the actual body of a method, and if it is not the case to
abort the computation. In the EVM semantics this is known as a revert operation
that restores the state of the contract before the transaction. The EVM has a
special opcode, Revert to return the status of a failed computation.

In the previous section, we used pre-conditions to write the specification
of the methods. We can automatically push these pre-conditions into runtime
checks at the beginning of each method. To take into account the possibility of
exceptions in a clean way, we lift the return values of each method to capture
the status of a computation using a standard return generic type of the form
datatype Try<T> = Revert | Success(v: T). If a computation is successful,
the value v of type T is returned and boxed in the Success constructor, otherwise
Revert is returned.5

The implementation of the methods6 mint and transfer can be lifted using
the return datatype Try<T> as in Listing A.3, line 1. This datatype allows for
the return of arbitrary values of type T and as a special case when no value is
returned, we can set T = Unit the type inhabited by a single value.

The new code (Listing A.3) introduces the following features:

– the conditions under the first if statements of mint and transfer (respec-
tively at lines 22 and 47) are the negation of the conjunction of all the pre-
conditions that are in Listing A.2.

– The pre-condition GInv() remains in the code. It is not a runtime check but
a property of the contract that has to be preserved. This invariant is not part
of the executable code.

– In this example of a closed contract we can characterise exactly when the
transaction should revert (r.T? is true if and only if r is of type T). For
instance the post-condition at line 7 precisely defines the conditions under
which the method should not abort.

5 Revert is sometimes called Failure and can return a string error message.
6 The constructor has no pre-condition, so we can assume it always succeeds.

Deductive Verification of Smart Contracts with Dafny 59

– The post-conditions at lines 15 and 40 ensures that the state of the contract
(balances) is unchanged.

Dafny returns “no errors” for this program, and we can conclude that the global
invariant is always satisfied after any number of calls to mint or transfer. The
code for each method does not enforce any pre-condition on the caller and can
be translated into runtime checks at the EVM bytecode level.

Listing A.3. The Token Contract with Revert.

1 datatype Try<T> = Revert () | Success(v: T)

2
3 method transfer(from:Address ,to:Address ,amount:uint256 ,msg:Msg ,gas:nat)

4 returns (g: nat , r: Try<()>)

5
6 requires GInv()

7 ensures // if r is of type Success

8 r.Success? <==>

9 (from in old(balances)

10 && old(balances[from]) >= amount

11 && msg.sender == from

12 && gas >= 1

13 && (to !in old(balances)||old(balances[to]) as nat + amount as nat<=MAX_UINT256))

14 /** State is unchanged on an revert. */

15 ensures r.Revert? ==> balances == old(balances)

16 ensures g == 0 || g <= gas - 1

17 ensures GInv()

18
19 decreases gas

20 modifies this

21 {

22 if !(from in balances && balances[from]>=amount && msg.sender ==from && gas>=1

23 && (to !in balances || balances[to] as nat + amount as nat<=MAX_UINT256)) {

24 return (if gas >= 1 then gas - 1 else 0), Revert ();

25 }

26 var newAmount := balances[from] - amount;

27 balances := balances[to := (if to in balances then balances[to] else 0) + amount];

28 balances := balances[from := newAmount];

29 g, r := gas - 1, Success (());

30 }

31
32 method mint(to:Address ,amount:uint256 ,msg:Msg ,gas:nat) returns (g:nat ,r: Try<()>)

33 requires GInv()

34 ensures r.Success? ==> totalAmount == old(totalAmount) + amount as nat

35 ensures r.Revert? <==>

36 !(msg.sender == minter && gas >= 1 &&

37 (to !in old(balances)||

38 old(balances[to]) as nat + amount as nat<=MAX_UINT256))

39 // state unchanged on a revert.

40 ensures r.Revert? ==> balances == old(balances)

41 ensures g == 0 || g <= gas - 1

42 ensures GInv()

43
44 modifies this `balances , this `totalAmount
45 decreases gas

46 {

47 if !(msg.sender == minter && gas >= 1 &&

48 (to !in balances || balances[to] as nat + amount as nat<=MAX_UINT256)) {

49 return (if gas >= 1 then gas - 1 else 0), Revert ();

50 }

51 balances := balances[to := (if to in balances then balances[to] else 0) + amount];

52 // The total amount increases.

53 totalAmount := totalAmount + amount as nat;

54 g, r := gas - 1, Success (());

55 }

3.2 Reasoning with Arbitrary External Calls

We now turn our attention to smart contracts that have external calls. The
semantics of the EVM imposes the following restrictions on the mutations of

60 F. Cassez et al.

Listing A.4. The Token Contract with a Notification.

method transfer (...) returns (g: nat , r: Try<()>)
...
{

...
balances := balances[to := (if to in balances then balances[to] else 0) + amount];
balances := balances[from := newAmount];
// External call to contract `to `.
// If we notify before updating balances , a re -entrant call may drain the contract
// of its tokens.
g, status := to.notify(from , amount , gas - 1);
...

}

state variables for contracts: the state variables of a contract c can only be
updated by a call to a method7 in c. In other words another contract c′ �= c
cannot write the state variables of c.

Assume that when we transfer some tokens to a contract via the transfer
method, we also notify the receiver. The corresponding new code for transfer is
given in Listing A.4. If the method notify in contract to does not perform any
external call itself, the segment to.notify(·) cannot modify the state variables
of the Token contract, and the Token contract invariant GInv() is preserved.
We may not have access to the code of notify(·) and may be unable to check
whether this is the case.

If notify can call another contract it may result in unexpected consequences.
For instance if the external call to the method to.notify(·) occurs before the
update of balances[from], to.notify may itself call (and collude with) from
and call from to do the same transfer again. As a result many transfers will
be performed (as long as some gas is left) and tokens will be created without
a proper call to mint. The result is that the number of minted tokens does
not correspond anymore to the number of tokens allocated to accounts, and
the global invariant Ginv() does not hold anymore after transfer. This type
of issue is commonly known as the re-entrancy problem. This vulnerability was
exploited in the past in the so-called DAO-exploit [13].

There are several solutions to mitigate the re-entrancy problem. A simple
solution is to require that calls to external contracts occur only as the last
instruction in a method (Check-Effect-Interaction pattern [6]). This is a syntactic
sufficient condition to ensure that every update on a contract’s state occurs
before any external calls. This enforces re-entrant calls to happen sequentially.
A semantic approach for taking into external calls is proposed in [5] and rely
on identifying segments of the code with external calls and adding some local
variables to capture the effects of a call and reason about it.

We propose a similar but hopefully simpler technique8 to model external calls
and their effects. Similar to [5] we do not aim to identify re-entrant calls but we
want to include and model the effect of possible external (including re-entrant)
calls and check whether the contract invariant can be violated or not. For the
7 We assume that all methods are public.
8 It can be implemented directly in Dafny with no need for extra devices.

Deductive Verification of Smart Contracts with Dafny 61

sake of simplicity we describe our solution to this problem on the to.notify(·)
example, Listing A.4, and make the following (EVM enforced) assumptions on
to.notify(·):
– it always terminates and returns the gas left and the status of the call (revert

or success),
– it consumes at least one unit of gas,
– it may itself make arbitrary external calls including callbacks to transfer

and mint in the Token contract. As a result there can be complex nested
calls to transfer and mint.

Our solution abstracts the call to to.notify(·) into a generic externalCall.
The new code for the transfer method is given in Listing A.5. We model
the effect of the external call to.notify(·) (line 17) by a call to the
externalCall(·) method.

The idea is that externalCall(·) is going to generate all possible re-entrant
calls including nested calls to transfer. To do so, we introduce some non-
determinism to allow an external call to callback transfer and mint. This
occurs at lines 51 and 57. Note that the parameters (from, to, amount, msg)
of the re-entrant calls are randomly chosen using the havoc<T>() method that
returns an arbitrary value of type T.

The code of externalCall works as follows:

– non-deterministically pick k and use it to decide whether a re-entrant call
occurs or not (lines 42–58). There are three options, and we use k mod 3
to select among them. If k mod 3 = 0 (and there is enough gas left), a re-
entrant call to transfer occurs. If k mod 3 = 1 a re-entrant call to mint
occurs. Otherwise, (k mod 3 = 2), no re-entrant call occurs.

– finally (lines 61–69), we non-deterministically pick a boolean variable b to
decide whether a new external call occurs.

We do not provide a formal proof that this captures all the possible re-entrant
calls9, but rather illustrate that it models several cases. First, externalCall
can simulate an arbitrary sequence mint∗ of calls to mint. This is obtained
by selecting successive values of k such that k mod 3 = 1 and then selecting
b = true. For instance, the sequence of values k = 1, b = true, k = 1, b = true,
k = 2, b = false simulates two reentrant calls to mint, i.e., mint.mint. As the
gas value is also a parameter of all the methods and can be arbitrarily large, this
model can generate all the sequences of calls in mint∗. Second, externalCall
can also simulate nested transfer/mint calls. For instance, the sequence of
values k = 0, b = true, k = 1, b = false, simulates two reentrant calls to
transfer with a nested call to mint. Third, nested calls to transfer can also
be generated by externalCall. The sequence of values k = 0, b = true, k = 0,
b = false simulates two nested re-entrant calls to transfer.

The re-entrant calls can be executed with arbitrary inputs and thus the input
parameters are havoced i.e., non-deterministically chosen and externalCall can
9 This is beyond the scope of this paper.

62 F. Cassez et al.

Listing A.5. The Token Contract with External Calls.

1 method transfer(from:Address ,to:Address ,amount:uint256 ,msg:Msg ,gas:nat)

2 returns (g:nat ,r:Try<()>)

3
4 ... // Ensures and requires same as Listing A.3

5 {

6 if !(from in balances && balances[from]>=amount && msg.sender ==from && gas>=1

7 && (to !in balances || balances[to] as nat + amount as nat <= MAX_UINT256)) {

8 return (if gas >= 1 then gas - 1 else 0), Revert ();

9 }

10 var newAmount := balances[from] - amount;

11 balances := balances[to := (if to in balances then balances[to] else 0) + amount];

12 balances := balances[from := newAmount];

13 // If we swap the line above and the externalCall ,

14 // we cannot prove invariance of GInv()

15 // At this location GInv() must hold which puts a restriction

16 // on where external call can occur.

17 var g1 , r1 := externalCall(gas - 1); // to.notify(from , amount);

18 assert g1 == 0 || g1 <= gas - 1;

19 // We can choose to propagate or not the failure of external call.

20 // Here choose not to.

21 g, r := (if g1 >= 1 then g1 - 1 else 0), Success (());

22 }

23
24 /**

25 * Simulate an external call with possible re -entrant calls.

26 *

27 * @param gas The gas allocated to this call.

28 * @returns The gas left after execution of the call and the status of the call.

29 *

30 * @note The state variables of the contract can only be modified by

31 * calls to mint and transfer.

32 */

33 method externalCall(gas: nat) returns (g: nat , r: Try<()>)

34 requires GInv()

35 ensures GInv()

36 ensures g == 0 || g <= gas - 1

37 modifies this

38 decreases gas

39 {

40 g := gas;

41 // Havoc `k` to introduce non -determinism.

42 var k: nat := havoc ();

43 // Depending on the value of k % 3,

44 // re -entrant call or not or another external call.

45 if k % 3 == 0 && g >= 1 {

46 // re-entrant call to transfer.

47 var from: Address := havoc ();

48 var to: Address := havoc ();

49 var amount: uint256 := havoc ();

50 var msg: Msg := havoc ();

51 g, r := transfer(from , to, amount , msg , g - 1);

52 } else if k % 3 == 1 && g >= 1 {

53 // re-entrant call to mint.

54 var to: Address := havoc ();

55 var amount: uint256 := havoc ();

56 var msg: Msg := havoc ();

57 g, r := mint(to , amount , msg , g - 1);

58 }

59 // k % 3 == 2, no re -entrant call.

60 // Possible new external call

61 var b:bool := havoc ();

62 if b && g >= 1 {

63 // external call makes an external call.

64 g, r := externalCall(g - 1);

65 } else {

66 // external call does not make another external call.

67 g := if gas >= 1 then gas - 1 else 0;

68 r := havoc ();

69 }

70 }

71
72 /** Havoc a given type. */

73 method {: extern} havoc <T>() returns (a: T)

Deductive Verification of Smart Contracts with Dafny 63

generate an arbitrary number of external and re-entrant calls including nested
calls to transfer and mint.

The key ingredient that allows us to reason and prove correctness is the gas
value. We require that gas strictly decreases (line 38) after each recursive call.
This is stated in Dafny with the decreases clause. Dafny checks that the
value of the gas parameter strictly decreases on mutually recursive calls.

Our objective is now to prove, using this model of external calls, that the
global invariant GInv() of the contract is always satisfied. This seems to be a
complex task as our model includes an arbitrary and unbounded number of pos-
sibly nested external calls. The result is a mutually recursive program: transfer
can call externalCall and externalCall can call transfer or externalCall.
However, the property that the gas value strictly decreases on every call enables
us to reason by induction. As the gas decreases on each new call, the induction is
well-founded. And Dafny can indeed prove that the global invariant GInv() is
preserved by all the methods including an arbitrary number of possibly re-entrant
externalCalls. Our solution provides a way to model the effects of external calls
abstractly but conservatively while still being able to prove properties in modular
manner in an adversarial environment modelled by externalCall. Compared
to other approaches we also guarantee termination because we take into account
the minimum amount of gas that computations take.

Note that externalCall has the pre-condition GInv(). This means that in
transfer the predicate GInv() must be true before the call to externalCall.
This amounts to having restrictions on where external calls can occur. However,
without any knowledge of what external calls can do, this seems to be a reason-
able restriction. For instance, if the external call has a callback to mint we can
only prove the preservation of the invariant Ginv() if it holds before the call
to mint. Of course if we have more information about an external call, e.g., we
know it does not call back, we can also take it into account with our model: we
can adjust externalCall to reflect this knowledge.

In our example, if we swap the lines 12 and 17 (Listing A.5), Dafny cannot
verify that GInv() is preserved by transfer. The reason is that the invariant
Ginv() does not hold before the external call.

To the best of our knowledge this solution is the first that does not require
any specific reasoning device or extension to prove properties of smart con-
tracts under adversarial conditions, but can be encoded directly in a verification-
friendly language.

Running Dafny and Reproducing the Verification Results. The code
used in this paper omits some functions and proofs hints (like sum) and may not
be directly verifiable with Dafny. The interested reader is invited to check out
the code in the repository https://github.com/ConsenSys/dafny-sc-fmics to get
the full version of our contracts. The repository contains the code of the Token
contract, a simplified auction contract and instructions how to reproduce the
Dafny verification results.

The auction contract demonstrates that global invariants (GInv() in Token)
are not limited to specifying state properties but can also capture two-state

https://github.com/ConsenSys/dafny-sc-fmics

64 F. Cassez et al.

or multi-state properties. This can be achieved by adding ghost history vari-
ables using sequences. This type of specifications is expressive enough to encode
some standard temporal logic properties on sequences of states of a contract,
e.g., “Once the variable ended is set to true, it remains true for ever” in the
simplified auction contract.

In our experiments, Dafny can handle complex specifications and the con-
tracts we have verified are checked with Dafny within seconds on a standard
laptop (MacBook Pro). The performance does not seem to be an issue at that
stage, and if it would become an issue, there are several avenues to mitigate
it: Dafny supports modular verification, so we can break down our code into
smaller methods; Dafny has built-in strategies to manipulate the verification
conditions and break them into simpler ones that can be checked independently.

4 Conclusion

We have proposed a methodology to model and reason about (Ethereum) smart
contracts using the verification-friendly language Dafny. The main features
of our approach are: i) we encode the specifications and implementations of
contracts directly in Dafny with no need for any language extensions; ii) we
take into account the possibility of failures and (arbitrary number of) external
calls; iii) we specify the main properties of a contract using contract global
invariants and prove these properties in a modular manner by a conservative
abstraction of external calls with no need to know the code of externally called
contracts.

To the best of our knowledge, our abstract model of the effect of external
calls is new and the associated proof technique (mutually recursive method calls)
is readily supported by Dafny which makes it easy to implement.

We have tested our methodology on several contracts (e.g., Token, Simple
Auction, Bank) and we believe that this technique can be used to verify larger
contracts. Indeed, we can take advantage of the modular proof approach (based
on pre- and post-conditions) supported by Dafny to design scalable proofs.

Our current work aims to automate the methodology we have presented by
automatically generating the different versions of a given contract (closed, revert,
external calls) from a simple source contract.

The approach we have presented is general and not exclusive to Dafny, and
our methodology can be implemented within other verification-friendly lan-
guages like Why3 [20], Whiley [25], or proof assistants like Isabelle/HOL [21]
or Coq [24].

References

1. Ahrendt, W., Bubel, R.: Functional verification of smart contracts via strong data
integrity. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12478, pp.
9–24. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61467-6 2

https://doi.org/10.1007/978-3-030-61467-6_2

Deductive Verification of Smart Contracts with Dafny 65

2. Alt, L., Reitwiessner, C.: SMT-based verification of solidity smart contracts. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11247, pp. 376–388.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03427-6 28

3. Amani, S., Bégel, M., Bortin, M., Staples, M.: Towards verifying ethereum smart
contract bytecode in Isabelle/HOL. In: Andronick, J., Felty, A.P. (eds.) 7th ACM
SIGPLAN International Conference on Certified Programs and Proofs, CPP 2018,
pp. 66–77. ACM (2018). https://doi.org/10.1145/3167084

4. Bhargavan, K., et al.: Formal verification of smart contracts. In: PLAS@CCS 2016.
pp. 91–96. ACM (2016). https://doi.org/10.1145/2993600.2993611

5. Bräm, C., Eilers, M., Müller, P., Sierra, R., Summers, A.J.: Rich specifications
for ethereum smart contract verification. Proc. ACM Program. Lang.5(OOPSLA),
1–30 (2021). https://doi.org/10.1145/3485523

6. Britten, D., Sjöberg, V., Reeves, S.: Using coq to enforce the checks-effects-
interactions pattern in DeepSea smart contracts. In: Bernardo, B., Marmsoler,
D. (eds.) 3rd International Workshop on Formal Methods for Blockchains,
FMBC@CAV 2021. OASIcs, vol. 95, pp. 3:1–3:8. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2021). https://doi.org/10.4230/OASIcs.FMBC.2021.3

7. Cassez, F.: Verification of the Incremental Merkle Tree Algorithm with Dafny. In:
Huisman, M., Păsăreanu, C., Zhan, N. (eds.) FM 2021. LNCS, vol. 13047, pp.
445–462. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90870-6 24

8. Choo, L.: Crypto is crumbling, and DeFi hacks are getting worse. https://www.
protocol.com/fintech/defi-hacks-web3

9. ConsenSys Diligence: Mythx, https://mythx.io/
10. Dharanikota, S., Mukherjee, S., Bhardwaj, C., Rastogi, A., Lal, A.: Celestial: a

smart contracts verification framework. In: Formal Methods in Computer Aided
Design, FMCAD 2021, New Haven, CT, USA, pp. 133–142. IEEE (2021). https://
doi.org/10.34727/2021/isbn.978-3-85448-046-4 22

11. Ethereum Foundation: Solidity documentation (2022). https://docs.soliditylang.
org/en/v0.8.14/

12. Fe Team: Fe: an emerging smart contract language for the Ethereum blockchain
(2022). https://github.com/ethereum/fe

13. Güçlütürk, O.G.: The DAO hack explained: unfortunate take-off of smart
contracts (2018). https://ogucluturk.medium.com/the-dao-hack-explained-
unfortunate-take-off-of-smart-contracts-2bd8c8db3562

14. Hajdu, Á., Jovanović, D.: solc-verify: a modular verifier for solidity smart con-
tracts. In: Chakraborty, S., Navas, J.A. (eds.) VSTTE 2019. LNCS, vol. 12031, pp.
161–179. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41600-3 11

15. Hajdu, Á., Jovanovic, D., Ciocarlie, G.F.: Formal specification and verification of
Solidity contracts with events (short paper). In: Bernardo, B., Marmsoler, D. (eds.)
2nd Workshop on Formal Methods for Blockchains, FMBC@CAV 2020. OASIcs,
vol. 84, pp. 2:1–2:9. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020).
https://doi.org/10.4230/OASIcs.FMBC.2020.2

16. da Horta, L.P.A., Reis, J.S., de Sousa, S.M., Pereira, M.: A tool for proving Michel-
son smart contracts in WHY3. In: IEEE International Conference on Blockchain,
Blockchain 2020. Rhodes, Greece, pp. 409–414. IEEE (2020). https://doi.org/10.
1109/Blockchain50366.2020.00059

17. Leino, K.R.M.: Accessible software verification with Dafny. IEEE Softw. 34(6),
94–97 (2017). https://doi.org/10.1109/MS.2017.4121212

https://doi.org/10.1007/978-3-030-03427-6_28
https://doi.org/10.1145/3167084
https://doi.org/10.1145/2993600.2993611
https://doi.org/10.1145/3485523
https://doi.org/10.4230/OASIcs.FMBC.2021.3
https://doi.org/10.1007/978-3-030-90870-6_24
https://www.protocol.com/fintech/defi-hacks-web3
https://www.protocol.com/fintech/defi-hacks-web3
https://mythx.io/
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_22
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_22
https://docs.soliditylang.org/en/v0.8.14/
https://docs.soliditylang.org/en/v0.8.14/
https://github.com/ethereum/fe
https://ogucluturk.medium.com/the-dao-hack-explained-unfortunate-take-off-of-smart-contracts-2bd8c8db3562
https://ogucluturk.medium.com/the-dao-hack-explained-unfortunate-take-off-of-smart-contracts-2bd8c8db3562
https://doi.org/10.1007/978-3-030-41600-3_11
https://doi.org/10.4230/OASIcs.FMBC.2020.2
https://doi.org/10.1109/Blockchain50366.2020.00059
https://doi.org/10.1109/Blockchain50366.2020.00059
https://doi.org/10.1109/MS.2017.4121212

66 F. Cassez et al.

18. Marescotti, M., Otoni, R., Alt, L., Eugster, P., Hyvärinen, A.E.J., Sharygina, N.:
Accurate smart contract verification through direct modelling. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12478, pp. 178–194. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-61467-6 12

19. Marmsoler, D., Brucker, A.D.: A denotational semantics of solidity
in isabelle/HOL. In: Calinescu, R., Păsăreanu, C.S. (eds.) SEFM 2021. LNCS,
vol. 13085, pp. 403–422. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-92124-8 23

20. Nehäı, Z., Bobot, F.: Deductive proof of industrial smart contracts using why3.
In: Sekerinski, E., et al. (eds.) FM 2019. LNCS, vol. 12232, pp. 299–311. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-54994-7 22

21. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, LNCS, vol. 2283. Springer Heidelberg (2002). https://doi.
org/10.1007/3-540-45949-9

22. Park, D., Zhang, Y.: Formal verification of the incremental Merkle tree algo-
rithm (2020). https://github.com/runtimeverification/verified-smart-contracts/
blob/master/deposit/formal-incremental-merkle-tree-algorithm.pdf

23. Park, D., Zhang, Y., Rosu, G.: End-to-end formal verification of ethereum 2.0
deposit smart contract. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol.
12224, pp. 151–164. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
53288-8 8

24. Paulin-Mohring, C.: Introduction to the coq proof-assistant for practical software
verification. In: Meyer, B., Nordio, M. (eds.) LASER 2011. LNCS, vol. 7682, pp.
45–95. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35746-6 3

25. Pearce, D.J., Utting, M., Groves, L.: An introduction to software verification with
whiley. In: Bowen, J.P., Liu, Z., Zhang, Z. (eds.) SETSS 2018. LNCS, vol. 11430,
pp. 1–37. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17601-3 1

26. Schiffl, J., Ahrendt, W., Beckert, B., Bubel, R.: Formal analysis of smart contracts:
applying the KeY system. In: Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R.,
Ulbrich, M. (eds.) Deductive Software Verification: Future Perspectives. LNCS,
vol. 12345, pp. 204–218. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64354-6 8

27. Vyper Team: Documentation (2020). https://vyper.readthedocs.io/en/stable/
28. Wesley, S., Christakis, M., Navas, J.A., Trefler, R., Wüstholz, V., Gurfinkel, A.:

Verifying solidity smart contracts via communication abstraction in SmartACE.
In: Finkbeiner, B., Wies, T. (eds.) VMCAI 2022. LNCS, vol. 13182, pp. 425–449.
Springer, Cham (2022). https://doi.org/10.1007/978-3-030-94583-1 21

29. Wood, D.: Ethereum: a secure decentralised generalised transaction ledger (2022).
https://ethereum.github.io/yellowpaper/paper.pdf

30. Wüstholz, V., Christakis, M.: Harvey: A Greybox Fuzzer for Smart Contracts, pp.
1398–1409. Association for Computing Machinery, New York (2020). https://doi.
org/10.1145/3368089.3417064

31. Zakrzewski, J.: Towards verification of Ethereum smart contracts: a formalization
of core of solidity. In: Piskac, R., Rümmer, P. (eds.) VSTTE 2018. LNCS, vol.
11294, pp. 229–247. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03592-1 13

https://doi.org/10.1007/978-3-030-61467-6_12
https://doi.org/10.1007/978-3-030-92124-8_23
https://doi.org/10.1007/978-3-030-92124-8_23
https://doi.org/10.1007/978-3-030-54994-7_22
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://github.com/runtimeverification/verified-smart-contracts/blob/master/deposit/formal-incremental-merkle-tree-algorithm.pdf
https://github.com/runtimeverification/verified-smart-contracts/blob/master/deposit/formal-incremental-merkle-tree-algorithm.pdf
https://doi.org/10.1007/978-3-030-53288-8_8
https://doi.org/10.1007/978-3-030-53288-8_8
https://doi.org/10.1007/978-3-642-35746-6_3
https://doi.org/10.1007/978-3-030-17601-3_1
https://doi.org/10.1007/978-3-030-64354-6_8
https://doi.org/10.1007/978-3-030-64354-6_8
https://vyper.readthedocs.io/en/stable/
https://doi.org/10.1007/978-3-030-94583-1_21
https://ethereum.github.io/yellowpaper/paper.pdf
https://doi.org/10.1145/3368089.3417064
https://doi.org/10.1145/3368089.3417064
https://doi.org/10.1007/978-3-030-03592-1_13
https://doi.org/10.1007/978-3-030-03592-1_13

Industrial Use Cases

Towards Reusable Formal Models
for Custom Real-Time Operating Systems

Julius Adelt(B), Julian Gebker, and Paula Herber(B)

University of Münster, Einsteinstr. 62, 48149 Münster, Germany
{julius.adelt,paula.herber}@uni-muenster.de

Abstract. In embedded systems, the execution semantics of the real-
time operating system (RTOS), which is responsible for scheduling and
timely execution of concurrent processes, is crucial for the correctness of
the overall system. However, existing approaches for the formal verifica-
tion of embedded systems typically abstract from the RTOS completely,
or provide a detailed and synthesizable formal model of the RTOS. While
the former may lead to unsafe systems, the latter is not compatible with
industrial design processes. In this paper, we present an approach for
reusable abstract formal models that can be configured for custom RTOS.
Our key idea is to formally capture common execution mechanisms of
RTOS like preemptive scheduling and event synchronization abstractly in
configurable timed automata models. These abstract formal models can
be configured for a concrete custom RTOS, and they can be combined
into a formal system model together with a concrete application. Our
reusable models significantly reduce the manual effort of defining a formal
model that captures concurrency and real-time behavior together with
the functionality of an application. The resulting formal model enables
analysis, verification, and graphical simulation. We validate our app-
roach by formalizing and analyzing a rescue robot application running
the custom open source RTOS EV3RT.

Keywords: Real-time Systems · Formal Verification · Reusability

1 Introduction

In the embedded systems industry, many companies use their own custom real-
time operating system (RTOS). The RTOS schedules concurrent processes, takes
care of process interactions and shared resources, and is thus crucial for the syn-
chronization and timing behavior. To ensure the correctness of embedded sys-
tems, it is vital to correctly capture and analyze concurrency and time. Exist-
ing approaches for the formal verification of embedded systems, however, either
abstract from the underlying RTOS completely (e.g. CPAchecker [6], Frama-C
[9]) or they provide a fully formalized and verified RTOS (e.g. Sel4 [15]). While
the former abstracts from the influence of the RTOS on concurrent, timing-
dependent applications completely, the latter requires extremely high manual
effort and expertise, as a new formalization is needed for each custom RTOS.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. F. Groote and M. Huisman (Eds.): FMICS 2022, LNCS 13487, pp. 69–85, 2022.
https://doi.org/10.1007/978-3-031-15008-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15008-1_6&domain=pdf
https://doi.org/10.1007/978-3-031-15008-1_6

70 J. Adelt et al.

In this paper, we propose reusable abstract formal models that can be con-
figured for custom RTOS. Our key idea is to formally capture common execu-
tion mechanisms of RTOS abstractly in configurable timed automata models. To
achieve this, we abstractly formalize preemptive and non-preemptive execution,
priority-based scheduling, general task management, event synchronizations, and
sensor APIs. For a given custom RTOS, the designer can use our configurable
timed automata models to build a formal model that defines the execution seman-
tics of key RTOS components like the scheduler and tasks. Furthermore, if the
designer defines a mapping from system calls to abstract execution mechanisms
(e.g. task activations or event notifications), a given real-time application can be
combined into a formal model together with the RTOS components. The result-
ing model captures the concurrent and real-time dependent behavior as well as the
functionality of the application precisely, but abstracts from the implementation
details of the custom RTOS. It can be analyzed and verified using existing tools
for graphical simulation, formal verification, and timing analysis.

As a first step to validate the applicability of our approach, we have for-
malized and analyzed a search and rescue robot application running the custom
open source RTOS EV3RT. To formalize this custom RTOS, we have configured
our reusable abstract timed automata models with an appropriate scheduling
strategy and mapped system calls to abstract execution mechanisms. We have
manually translated the task implementations for our case study. The automa-
tion remains subject for future work. We have exploited Uppaal’s simulation
and graphical animation of counter-examples to validate the system’s function-
ality and the task interactions on the resulting formal model without executing
it on the real robot hardware. For a simplified model, we have analyzed and
verified crucial safety and timing properties using the Uppaal model checker.

2 Preliminaries

In this section, we introduce preliminaries for the remainder of this paper, namely
core components of real-time operating systems and Uppaal timed automata.

2.1 Core Components of Real-Time Operating Systems

There exists a large variety of custom RTOS. However, many of them follow cer-
tain standards, like OSEK/VDX [17] (in the automotive domain) or TOPPERS
[20]. These standards informally define kernel objects, e.g., tasks, events, and
resources, and their interactions. In the following, we briefly introduce kernel
objects that can commonly be found in any RTOS implementation.

Tasks. Tasks are typically the main execution unit in RTOS. While the instruc-
tions within each task are sequentially executed, tasks are concurrently started
and may interleave each other. A key responsibility of an RTOS is to sched-
ule tasks, i.e., to decide which task should be executed. To manage tasks and
their states, many real-time systems use a task-control block (TCB) model. It is

Towards Reusable Formal Models for Custom RTOS 71

one of the most popular methods to manage different numbers of tasks and
is compatible with any specific scheduling strategy. The TCB model specifies
that each task of a given real-time system is linked with a data structure called
task-control block containing at least a program counter, an identifier, register
contents, a status (or state), and a priority if provided [16]. Most RTOS follow
a task state scheme that is similar to the OSEK/VDX standard as shown in
Fig. 1a [17]. Tasks typically start in a suspended state and become ready after
activation. After system initialization, the task with the highest priority starts
running. The running task may terminate its execution and become suspended
again, it may wait for an event or a resource and become waiting, or it may
be preempted by the scheduler if a task with a higher priority or some priori-
tized execution unit becomes ready. Tasks are released from a waiting state if,
for example, a resource becomes available or an event occurs. Note that other
RTOS standards use slightly different terms, e.g., blocked instead of waiting in
TOPPERS compatible systems or pending instead of ready in VxWorks.

Handlers and Interrupt Subroutines. In addition to tasks, RTOS typically sup-
port prioritized execution units, e.g., interrupt subroutines or cyclic handlers.
These prioritized execution units are typically not preemptable, i.e., they are
executed from the beginning to the end whenever they become ready due to an
external event (in case of interrupt subroutines) or the expiration of a periodic
delay (in case of cyclic handlers). In this paper, we focus on cyclic handlers.

Events. In most embedded systems, tasks are either executed periodically (e.g.,
using cyclic handlers) or they are triggered by events. Most RTOS support events
by providing mechanisms to notify an event, wait for an event and to release
tasks that are waiting for an event. Often, bit patterns are used to wait for mul-
tiple events at the same time. Notifying tasks can then set bits that correspond
to specific events within the bit pattern, while tasks that are waiting for one or
more events define a corresponding bit mask on the bit pattern.

Scheduler. The scheduler is a system program within a real-time system speci-
fying the execution order of execution units. In this paper, we assume a single
processor system, so only one execution unit can be executed at a time. Sched-
ulers can implement different scheduling strategies, for example, round-robin,
first-come-first-served (FCFS), preemptive-priority or a mixture of these meth-
ods [16]. Most RTOS use preemptive and priority based scheduling.

2.2 Uppaal Timed Automata

Timed Automata [2] are a timed extension of the classical finite state automata.
A notion of time is introduced by real-valued clocks, which are used in clock con-
straints to model time-dependent behavior. Concurrent processes are modelled
by networks of timed automata, which are executed with interleaving semantics
and synchronize on channels. Formally, the semantics of timed automata and
networks of timed automata are given by [5] as follows:

72 J. Adelt et al.

Fig. 1. Task States and Timed Automata Example

Definition 1 (Operational Semantics of a Timed Automaton). A timed
automaton (TA) is a tuple (L, l0, C,A,E, I), where

– L is a set of locations,
– l0 ∈ L is the initial location,
– C is a set of clock variables,
– A is a set of actions,
– E ⊆ L × A × B(C) × 2C × L is a set of edges, where B(C) denotes a set of

clock constraints
– I : L → B(C) assigns invariants to locations.

We write l
a,g,r→ l′ for (l, a, g, r, l′) ∈ E. The semantics of a TA is defined as a

transition system (S, s0,→), where S ⊆ L × R
|C|
≥0 is a set of states, s0 = (l0, u0)

the initial state, and →⊆ S × (R≥0 ∪ A) × S the transition relation. A clock
valuation is a function u : C → R≥0 that maps a non-negative real value to each
clock, u ∈ I denotes that a clock valuation satisfies an invariant, and u′ = [r �→
0]u denotes a clock valuation where all clocks from the clock set r are reset to
zero. A semantic step of a timed automaton can either be a time step (1) or a
discrete transition (2) along an edge in the graphical representation:

(1) (l, u) d→ (l, u + d) iff ∀d′ : 0 ≤ d′ ≤ d ⇒ u + d′ ∈ I(l)
(2) (l, u) a→ (l′, u′) iff l

a,g,r→ l′ such that u ∈ g ∧ u′ = [r �→ 0]u ∧ u′ ∈ I(l′)

Definition 2 (Semantics of a Network of Timed Automata). A net-
work of timed automata (NTA) consists of n timed automata Ai = (Li, l0,i,
C,A,Ei, Ii). The semantics of NTA is defined by a transition system (S, s0,→).
Each state s ∈ S is a tuple (l̄, u), where l̄ is a location vector and u is a clock
valuation. S = (L1 × . . . × Ln) × R

|C|
≥0 denotes the set of states, s0 = (l̄0, u0)

the initial state, and → ⊆ S × S the transition relation. Furthermore, τ denotes
an internal action, c!, c? sending resp. receiving an event on channel c, and g
denotes a clock guard. I(l̄) denotes the conjunction of all invariants Ii(li). A
semantic step can be either a time step (1), an independent step of a single
automaton (2), or a synchronization between two automata (3):

(1) (l̄, u) → (l̄, u + d) iff ∀d′ : 0 ≤ d′ ≤ d ⇒ u + d′ ∈ I(l̄)

Towards Reusable Formal Models for Custom RTOS 73

(2) (l̄, u) → (l̄[l′i/li], u′) iff li
τgr→ l′i such that u ∈ g∧u′ = [r �→ 0]u∧u′ ∈ I(l̄[l′i/li])

(3) (l̄, u) → (l̄[l′j/lj , l
′
i/li], u′) iff li

c?gi,ri−→ l′i ∧ lj
c!gj ,rj−→ l′j

such that u ∈ (gi ∧ gj) ∧ u′ = [ri ∪ rj �→ 0]u ∧ u′ ∈ I(l̄′)

Uppaal [3–5] is a tool set for the modeling, simulation, animation and verifi-
cation of NTA. The Uppaal model checker enables the verification of temporal
properties expressed in a subset of CTL. The simulator can be used to visualize
counterexamples produced by the model checker. The Uppaal modeling lan-
guage extends TA by introducing bounded integer variables, C-like functions,
binary and broadcast channels, and urgent and committed location. TA are
modeled as a set of locations, connected by edges. Invariants can be assigned
to locations and enforce that the location is left before they would be violated.
Edges may be labeled with selections, guards, synchronizations and updates.
Selections can be used to non-deterministically select a value from a given range.
Updates are used to reset clocks and to manipulate the data space, where C is
used as a host language. Processes synchronize by sending and receiving events
through channels. Sending and receiving via a channel c is denoted by c! and c?,
respectively. Binary channels are used to synchronize one sender with a single
receiver. A synchronization pair is chosen non-deterministically if more than one
is enabled. Broadcast channels are used to synchronize one sender with an arbi-
trary number of receivers. Urgent and committed locations are used to model
locations where no time may pass. Leaving a committed location has priority
over leaving non-committed locations.

An example Uppaal TA is shown in Fig. 1b. The initial location is denoted
by ©◦ , and request? and ack! (in light blue) denote synchronizations on chan-
nels. The clock variable x is first set to zero (in blue) and then used in two clock
constraints: the invariant x <= maxtime (in pink) denotes that the correspond-
ing location must be left before x becomes greater than maxtime, and the guard
x >= mintime (in green) enables the corresponding edge at mintime. The value
is computed using a C function f(a). The symbols ©∪ and ©c depict urgent and
committed locations.

3 Related Work

There exists a variety of sophisticated verification tools for software verification,
for example the CPAchecker [6], Frama-C [9], or VerCors [7]. These tools enable
the automated or semi-automated formal verification of sequential or concurrent
software. However, they abstract from the underlying RTOS as well as the timing
behavior completely, yielding imprecise results if processes mainly interact via
events or are heavily timing-dependant. Other approaches provide a complete
formal RTOS model [15,18], derive an RTOS from a given formal model [19],
or compile RTOS source code into an RTOS model to check conformance of a
real-time operating system according to specific standards [8]. However, these
approaches are not easily transferable to existing RTOS implementations.

74 J. Adelt et al.

There also exist several approaches to verify OSEK/VDX compliant systems.
In [23], the authors present a TA model of a multitasking application running
under a real-time operating system compliant with an OSEK/VDX standard.
They have successfully verified timed and logical properties of the proposed
model with the Uppaal model checker. In particular, they demonstrate that
the timing analysis is more precise than a classical scheduling theory. However,
they solely consider non-preemptive scheduling, the model is not reusable for
custom RTOS, and they do not provide reusable abstractions of general RTOS
components. In [14], the authors present a CSP model of an OSEK/VDX RTOS
kernel and verify various properties such as deadlock freedom. However, the
application is not considered, and execution units with a higher precedence such
as interrupt or cyclic handlers are disregarded. In [22], the authors present a
formalization of the OSEK standard in Event-B and then verify RTOS imple-
mentations against the formalization. However, they again do not consider the
application. In [10], the authors present an approach for the automatic verifi-
cation of application-tailored OSEK kernels. Their key idea is to automatically
compute an OS-application interaction graph from a given configuration and
then to verify that it conforms to the standard. By generating the state transi-
tion graph statically, they avoid the state space explosion caused by thread inter-
leaving. However, they disregard the concrete application and thus can neither
verify properties of the application itself nor analyze its timing behavior. There
exists a broad body of work for verifying schedulability using timed automata
and extensions, e.g., [1,12]. These approaches typically provide detailed models
of scheduling strategies and tasks, but do not consider additional typical ele-
ments in RTOS, like events, or sensor information. Most closely related to our
work are the approaches presented in [24–26]. There, the authors construct an
abstract model of an OSEK/VDX RTOS kernel, combine it with a translation
of a given application, and then verify the resulting overall model with an SMT-
based approach in [25] and with the SPIN model checker in [24,26]. This work
successfully demonstrates that real-time applications can be verified if the right
abstractions are chosen. However, time and the inclusion of external information,
like sensor data, is not considered. Most importantly, they also neither discuss
possible generalizations nor the reusability of their formalization.

4 Reusable Formal Models for Custom RTOS

Our key idea to reduce the effort of the formalization of systems that use a
custom RTOS is to provide reusable abstract models for standard RTOS con-
cepts and components. To achieve this, we combine the abstract formal model
of RTOS components with a transformation for application level implementa-
tions of tasks and handlers. The resulting overall formal model can be used
to analyze concurrency, synchronization and timing behavior. Furthermore, it
gives us access to existing analysis, verification, and simulation tools. Our over-
all approach is depicted in Fig. 2. The overarching goal is to analyze and verify
real time applications. Those typically consist of (preemptable) tasks and (non-
preemptable) handlers. The real time application is executed by a custom RTOS,

Towards Reusable Formal Models for Custom RTOS 75

Fig. 2. Formalization with Reusable Abstract TA Models

which provides a scheduler and manages events, time and shared resources. To
ease the formalization of systems that use a custom RTOS, we provide reusable
abstract TA models of core RTOS components. Two key components are a con-
figurable scheduler model and a generic task model. The configurable scheduler
model provides a general scheme to schedule preemptive and non-preemptive
execution units based on the task and handler information (e.g., identifier and
priorities). It can be configured to a custom RTOS by implementing specific
scheduling strategies. The generic task model provides a generic model for the
state of a task, which is compatible with most RTOS implementations, including
OSEK, TOPPERS, VxWorks, and FreeRTOS compliant implementations. Our
reusable models define abstract interaction schemes for the interplay between
RTOS components and the application, such as preemption, time, and event han-
dling. By customizing our reusable abstract TA models for a given custom RTOS
implementation, an abstract RTOS formalization can be derived, which formally
models central RTOS components like the scheduler. For the analysis of a given
real-time application, the abstract formal RTOS model is then combined with
a formalization of the application itself. The application code, i.e., the imple-
mentation of tasks and handlers, can potentially be automatically transformed
into TA representations using existing transformations [13]. Our reusable formal
models of abstract interaction schemes provide the necessary extensions for the
interactions with the formal RTOS model, i.e., a preemption scheme, an event
mechanism that enables us to transform system calls like wait functions or event
notifications, and timing behavior that is, for example, implemented using sleep
functions. The resulting TA model can be used for timing analysis, formal verifi-
cation and graphical simulation. In particular, the Uppaal tool suite provides a
powerful environment for graphical animation, simulation, model checking, and
extensions for statistical model checking and test generation.

76 J. Adelt et al.

Fig. 3. Generic Task Model

In the following, we present our reusable TA models for tasks, cyclic han-
dlers, events and timing behavior, and a configurable scheduler model. We briefly
discuss how sensor inputs and communication can be abstractly modeled.

4.1 Formalization of Tasks

We model each task with two TA: one models the process states and controls
the execution (task head), the other one contains the task implementation (task
body). For the task head, we define a reusable TA template as shown in Fig. 3a.
One location models each task state. We switch between these locations using
synchronizations on channels. These channels are parameterized with the task
id. This means that the task template needs to be included into a model only
once and can be instantiated for all tasks. The task starts in the location SUS-
PENDED. It may be activated by the system initialization (which is also modeled
as an automaton) at start-up or by other tasks. If a task is activated, its id and
priority are inserted into the scheduler queue (add task()). If the scheduler starts
a task, a local clock x is reset to zero to model its execution time. In the RUN-
NING state, we continuously trigger statements of the task body with a next
synchronization. The next synchronization controls the execution of the task
body: within the body, each program statement is guarded with this synchro-
nization, such that the next statement can only be executed if the task is still in
its RUNNING state. In addition, we use the next synchronization to model real-
time behavior. The next statement can only be executed if at least the best case
execution time (bcet) has expired and must be executed at the latest when the
worst-case execution time (wcet) elapses. The bcet and wcet can be provided as
a global over-approximation of the execution times per statement for each task,
or tailored to each statement by manipulating the global variables bcet and wcet
at runtime. The execution of the task can be terminated by the task itself by

Towards Reusable Formal Models for Custom RTOS 77

Fig. 4. Cyclic Handler Templates

calling a termination function, modeled as a synchronization on exitT. It is then
removed from the scheduler queue and becomes SUSPENDED. If a task waits
for an event, a resource, or a given amount of time by using some kind of wait
or sleep function, the task switches from RUNNING to WAITING, and the task
is set to waiting in its task control block. The task becomes READY again if it
is released by the corresponding event, resource, or if the time expires. Finally,
task preemption is modeled by a synchronization preempt, which is used by the
scheduler to switch the currently active task from RUNNING to READY if a
task with a higher priority becomes ready for execution. External events or cyclic
handlers may also preempt the currently running task, as they have precedence
over all tasks. Note that the task-specific variables bcet and wcet are bound to
global variables in the system declaration. With that, they can be initialized and
manipulated at runtime specifically for each task.

As the task body just contains sequentially executing statements, we assume
that the function executed within the task can be transformed into an equivalent
TA using existing method transformation techniques [13]. To model the interac-
tions with the task head, we add the activation at the initial location as shown
in Fig. 3b and guard each transition with a next synchronization to model the
timing behavior and to ensure that execution only continues is the task is still
running. The task may terminate by synchronizing on exitT.

By providing general formalizations for typical task states, best and worst
case execution times, and preemption, our task templates are reusable for a large
number of custom RTOS, including all that are OSEK/VDX compatible.

4.2 Formalization of Cyclic Handlers

As an illustrative example for the formalization of non-preemptable, prioritized
handlers, we define reusable TA templates for cyclic handlers. Similar to tasks,
we model cyclic handlers with two TA: a reusable TA template for modeling

78 J. Adelt et al.

states and controlling the execution (cyclic handler head), and a second automa-
ton that captures the implementation (cyclic handler body). Figure 4a shows the
cyclic handler head template. Cyclic handlers are activated with system initial-
ization (init system). They may have an initial offset (activation), which delays
their first execution. To model offset and periodicity, we use a clock variable c.
After initialization, the cyclic handler waits until c reaches its activation time.
Then it switches into the READY state. With this transition, its id is inserted
into the scheduler queue (add handler()). Because cyclic handlers have higher
precedence than non-periodic tasks, an activation directly leads to the preemp-
tion of the currently running task (preempt). At the transition to the READY
state, c is reset. In the READY state, the cyclic handler waits to be executed
by the scheduler (handler execute), and then switches to RUNNING. In the
RUNNING state, the process defined in the cyclic handler body is executed.
Real-time behavior is modeled similar to tasks by synchronising the execution
of program statements with a h next channel and an over-approximation of the
execution times per statement with global worst-case (h wcet) and best-case
(h bcet) execution times. Similar to the execution times of tasks, h wcet and
h bcet can be manipulated at runtime for each handler. When the execution of
the body finishes (handler finished), the handler is removed from the scheduler
queue (remove handler()) and the state switches to the NOT RUNNING state.
When the period of the cyclic handler expires, the cyclic handler switches back
to the READY state, c is reset, the handler is again added to the scheduler
queue (add handler()) and the currently running task is preempted.

The formalization of the cyclic handler body works similar to that of a
task and is illustrated in Fig. 4b. Each program statement is synchronized with
the head via the h next channel. Both the scheduler and the handler head are
informed about completion of the body’s execution by a synchronization on the
broadcast channel handler finished.

4.3 Events and Timing Behavior

To support events, RTOS typically provide functions to set or notify events and
to wait for events. We propose to translate these functions together with the
task or handler body where they are called into the necessary updates and syn-
chronizations as illustrated in Fig. 5. Triggering an event usually involves setting
some bit pattern, as shown in Fig. 5a. Tasks that wait for an event switch into
their WAITING state using a synchronization on an urgent broadcast channel
wait, as shown in Fig. 5b. The wait signal is also sent to the scheduler to trig-
ger rescheduling, as the currently running task is now blocked. To ensure that
rescheduling is performed with priority, we send signals that trigger rescheduling
from a committed location. Then, the task waits for a bit pattern (represent-
ing the occurrence of one or more events) specified with the wait function call.
If the relevant events are set in the bit pattern, the task synchronizes on the
urgent channel release, which results in switching from WAITING to READY.
If the released task has a higher priority than the currently running task, the
scheduler is informed that it might need to reschedule via an urgent broadcast

Towards Reusable Formal Models for Custom RTOS 79

Fig. 5. Events and Timing Behavior

channel, which ensures that no time may pass. If the scheduler misses the signal
reschedule, it is currently not running a task and will reschedule anyway.

The wait-release mechanism can also be used to model timing behavior. Most
RTOS provide some kind of sleep function, which take a timing delay as param-
eter and switch the calling task to the WAITING state for the given amount of
time. We can transform these kind of functions into a timed wait as shown in
Fig. 5c. It uses the same sequence of wait, release, and reschedule, but now does
not wait for an event but for the given delay by setting a local clock x to zero
and then waiting until x is equal to the given delay.

4.4 Configurable Formal Scheduler Model

Figure 6 shows our TA template for a configurable scheduler. It is reusable for
all custom RTOS that support separate execution modes for tasks and prior-
itized non-preemptive execution units such as interrupt subroutine or cyclic
handlers. The scheduler manages task and handler information in separate
queues, which can be used to determine whether some handler or task is ready
for execution (handler ready(), task ready()), and to determine the handler or
task with the highest priority (next handler id(), next task id()). The functions
next handler id() and next task id() can be used to implement custom schedul-
ing strategies that are compliant with the overall preemptive, priority-based
execution scheme.

After system initialization, the scheduler first checks whether a handler is
ready for execution. If this is the case, the handler with the highest priority
(next handler id()) is activated by synchronizing on handler execute. As han-
dlers may not be preempted, the scheduler then just waits for the handler
to signal termination via the handler finished channel. If further handlers are
ready for execution, they are then executed in the order of precedence provided
by next handler id(). Only if no handler is ready anymore, tasks are executed.
To this end, the scheduler activates the task with the highest priority via the

80 J. Adelt et al.

Fig. 6. Configurable Scheduler Model

channel start and stores its task id in the local variable c task id. While the task
is running, it may voluntarily give up control by termination (exitT) or by wait-
ing for an event or time (wait). In addition, it may be preempted by a handler
becoming ready for execution, or by tasks with a higher priority. To capture the
latter, we synchronize on reschedule whenever the task with the highest priority
has changed. This may happen due to tasks waking up after a timed delay or due
to an event notification. If this happens, we preempt the currently running task
and reschedule. We use a committed location to ensure that preemption, which
is considered to be essential for rescheduling, has priority over other enabled
transitions (such that reschedule and preempt are always executed together).

4.5 Modeling Sensor Inputs and Communication

Processes can read in new sensor values during execution by synchronising on
the get value channel, as shown, for example, in the exemplary body of the cyclic
handler in Fig. 4. To generate new sensor inputs, we propose the reusable TA
model in Fig. 7. The template consists of a single location with a self-loop tran-
sition. If a process synchronizes via the get value channel with the SENSOR ID
the variable for the sensor value is updated with a non-deterministically chosen
value from the sensor range (using a non-deterministic selection in Uppaal).

More sophisticated external inputs, e.g., messages that are received via Blue-
tooth, can be explicitly modeled by providing the corresponding TA, e.g., an
automaton that sends messages. The necessary blocking or non-blocking send
and receive functions can be modeled using the wait pattern defined above, where
a successful reception releases the receiving process for blocking calls.

5 Case Study: Search and Rescue Robots

To evaluate our approach, we have used our reusable formal models to abstractly
capture the execution semantics of the custom RTOS EV3RT and manually

Towards Reusable Formal Models for Custom RTOS 81

Fig. 7. Abstract Sensor Model

Fig. 8. Search and Rescue Robot Application

translated an application that implements a search and rescue robot for LEGO
Mindstorms into Uppaal. EV3RT is a real-time operating system based soft-
ware platform to develop real-time applications for the LEGO R© Mindstorms
EV3. It uses the TOPPERS/HRP2 kernel, which provides features such as pre-
emptive multitasking and memory protection [11]. The kernel also offers kernel
objects, such as tasks, cyclic handlers, eventflags and data queues to simplify
the development of real-time applications [21].

The search and rescue robot application was developed as part of a student’s
project. Multiple EV3 robots are tasked with locating and evacuating objects out
of a danger zone and into a rescue area. A server assigns search and evacuation
routes to the robots. The robots communicate with the server via Bluetooth,
detect obstacles with an infrared sensor, the border of the experiment table with
a color sensor, and objects that should be evacuated with a pixy camera. The
structure of the EV3RT application is shown in Fig. 8b. Each robot program
consists of four tasks - a global main task, a motor control task and two tasks
for reading and writing Bluetooth packages. Note that lower prio values indi-
cate higher priorities. Three cyclic handlers periodically read from the color and
infrared sensors and the pixy cam. Another cyclic handler periodically checks
whether the robot is moving. An event flag is used to alert the motor control task
to several events, namely that the robot stopped, that it has reached the map
border or that the infrared sensor has detected a possible imminent collision.

With our reusable formal models, it was straight-forward to translate the
rescue robot application into Uppaal timed automata. The resulting model is

82 J. Adelt et al.

Table 1. Verified properties for the search and rescue robots.

Property Result

E♦ mainTaskBody.GOAL RECV �
E♦ mainTaskBody.GET GOAL �
E♦ mainTaskBody.GRIPPED �
E♦ mainTaskBody.GO DELIVER �
E♦ mainTaskBody.DELIVERED �
E♦ status = S HOME �
A� ¬deadlock �
A� ∀ ti ∈ Tasks : ti.RUNNING → ¬(∃ tj ∈ Tasks : ti.id �= tj .id ∧ tj .RUNNING) �
A� ∀ ti, tj ∈ Tasks : ti.RUNNING ∧ tj .READY ∧ tj .prio < ti.prio → tj .cREADY ≤ 0 �
A� ∀ ti ∈ Tasks : ti.RUNNING → ¬(∃ hj ∈ Handlers : hj .READY ∨ hj .RUNNING) �
A� ∀ hi ∈ Handlers : hi.RUNNING → hi.c ≤ hi.period �
∀ ti ∈ Tasks : A♦ ti.RUNNING �

available at https://github.com/EmbSys-WWU. In line with the EV3RT imple-
mentation, we have configured our scheduler model such that only the task
with the highest priority is executed and an FCFS strategy is chosen for equal
priorities. We have transformed task and cyclic handler bodies manually to
Uppaal TA using our reusable formalization of activation, preemption, and wait
function calls by mapping the general concepts to the EV3RT-specific system
calls, e.g., act tsk() to the channel activate, exit tsk() to the channel exitT,
set flg() to a transition that sets the bit pattern of the given event, wai flg()
to the wait-release mechanism, clr flg() to a transition that resets the bit pat-
tern, and ev3 infrared sensor get distance() to get value[IR SENSOR]. We
have modeled sensor inputs with the sensor template shown in Fig. 7. We have
abstracted from the server by manually defining a TA that generates Bluetooth
messages. We have also abstracted from most functional variables, i.e., the posi-
tion of the robot, the navigation and PID controller, and the specific sensor
values. For the latter, we only distinguish two values for each sensor (i.e., obsta-
cle/border/object detected or not detected). In summary, the resulting formal
model abstracts from data, but precisely captures concurrency, synchronizations,
timing, and the reaction to external events. These are typically particularly hard
to test and debug, while many errors arise from faulty task integration, misun-
derstandings of the scheduling semantics, and timing issues.

With the formal TA model, we were able to simulate possible sequences of
events and actions, without the necessity to execute the software on the real
hardware, which is very tedious, error-prone, and time consuming. In contrast
to the real execution, which is not only slow but also very difficult to debug,
we were able to manually trace possible executions and interleavings between
tasks and handlers, with timing and state information. The graphical animation
proved to be extremely helpful for this manual validation process.

https://github.com/EmbSys-WWU

Towards Reusable Formal Models for Custom RTOS 83

We have used the Uppaal model checker to verify the reachability proper-
ties shown in the upper part of Table 1, namely that the possible sequences of
events and actions include sequences where the robot receives a goal, moves to
the goal, grips an object, delivers it to the rescue zone, completes the delivery,
and returns to its home position. Although our formal model abstracts from
most data variables, it contains the process interactions and their (approximate)
timing. Thus, the state space is too large to be fully explored. Still, to validate
our formal model of the scheduler and process and handler interactions, we have
built a simplified model where no messages are sent to the system (i.e., the
Bluetooth message generator is switched off). For this simplified model, we have
verified the safety properties shown in lower part of Table 1. These show that the
scheduler behaves as intended, i.e. that it never deadlocks, that only one task
is running at a time, that tasks are executed according to their priorities, that
only one handler is running at a time, that cyclic handlers are always executed
within the specified cycle, and that all tasks are eventually executed.

6 Conclusion

In this paper, we have presented an approach to reduce the manual effort for the
formalization of real-time applications that are developed with custom RTOS.
Our key idea is to provide reusable formal models and abstractions. We have pre-
sented TA templates that provide a configurable scheduler model, a generic task
model that can control the execution of preemptable tasks, and a cyclic handler
model that periodically executes non-preemptable handlers. Other handlers (e.g.
interrupt handlers) can analogously be modeled by replacing the periodic trigger
with an external event. In addition, we provide reusable formalizations of typical
interaction schemes, in particular the notification of events, waiting for events,
and waiting for time. For a given custom RTOS, the reusable models can be con-
figured such that key RTOS components can be transformed into an abstract
formal model. For a given real-time application, those can then be combined
into a formal system model by transforming task and handler implementations
with the help of the reusable formalizations of typical interaction schemes (e.g.,
for wait and sleep function calls). The resulting overall model can be analyzed,
formally verified, and graphically simulated using the Uppaal tool suite.

As a first step to validate the applicability of our approach, we have config-
ured our reusable formal models for the custom open source RTOS EV3RT and
then manually translated a search & rescue robot implementation into a for-
mal Uppaal TA model. We have used the resulting formal model to manually
analyze the concurrency and real-time behavior, and to automatically verify a
number of crucial properties for a simplified system that abstracts from data.
In particular, the manual analysis within the animated simulation as well as the
graphical animation of counter-examples have proven to be extremely helpful,
as the execution on the real hardware is error-prone, time consuming and con-
currency and synchronization issues are very hard to debug. The properties we
have verified with the Uppaal model checker on the abstract system are crucial
for correct concurrent and timed behavior.

84 J. Adelt et al.

In future work, we plan to validate our approach with other custom RTOS.
Furthermore, we plan to automate the transformation process by providing a
transformation engine that should be configurable for various custom RTOS.

References

1. Abdeddäım, Y., Maler, O.: Preemptive job-shop scheduling using stopwatch
automata. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280,
pp. 113–126. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46002-
0 9

2. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126,
183–235 (1994)

3. Behrmann, G., David, A., Larsen, K.G.: A tutorial on UPPAAL. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30080-9 7

4. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL — a tool
suite for automatic verification of real-time systems. In: Alur, R., Henzinger, T.A.,
Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 232–243. Springer, Heidelberg
(1996). https://doi.org/10.1007/BFb0020949

5. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27755-2 3

6. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1 16

7. Blom, S., Darabi, S., Huisman, M., Oortwijn, W.: The VerCors tool set: verification
of parallel and concurrent software. In: Polikarpova, N., Schneider, S. (eds.) IFM
2017. LNCS, vol. 10510, pp. 102–110. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66845-1 7

8. Béchennec, J.L., Roux, O.H., Tigori, T.: Formal model-based conformance verifi-
cation of an OSEK/VDX compliant RTOS. In: 2018 5th International Conference
on Control, Decision and Information Technologies (CoDIT), pp. 628–634 (2018).
https://doi.org/10.1109/CoDIT.2018.8394813

9. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-C. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012.
LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33826-7 16

10. Deifel, H.P., Göttlinger, M., Milius, S., Schröder, L., Dietrich, C., Lohmann, D.:
Automatic verification of application-tailored OSEK kernels. In: IEEE (2017)

11. EV3RT Project: EV3RT (2019). https://ev3rt-git.github.io/about/
12. Han, P., Zhai, Z., Nielsen, B., Nyman, U.: Model-based optimization of ARINC-653

partition scheduling. Int. J. Softw. Tools Technol. Transf. 23(5), 721–740 (2021)
13. Herber, P., Fellmuth, J., Glesner, S.: Model checking systemc designs using timed

automata. In: IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis, CODES+ISSS 2008, pp. 131–136. ACM (2008).
https://doi.org/10.1145/1450135.1450166

https://doi.org/10.1007/3-540-46002-0_9
https://doi.org/10.1007/3-540-46002-0_9
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/BFb0020949
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1109/CoDIT.2018.8394813
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://ev3rt-git.github.io/about/
https://doi.org/10.1145/1450135.1450166

Towards Reusable Formal Models for Custom RTOS 85

14. Huang, Y., Zhao, Y., Zhu, L., Li, Q., Zhu, H., Shi, J.: Modeling and verifying the
code-level OSEK/VDX operating system with CSP. In: 2011 Fifth International
Conference on Theoretical Aspects of Software Engineering, pp. 142–149. IEEE
(2011)

15. Klein, G., et al.: sel4: formal verification of an OS kernel. In: ACM SIGOPS 22nd
Symposium on Operating Systems Principles, SOSP 2009. ACM (2009). https://
doi.org/10.1145/1629575.1629596

16. Laplante, P.A., et al.: Real-Time Systems Design And Analysis. Wiley, New York
(2004)

17. OSEK: ISO 17356–3:2005 Road vehicles - Open interface for embedded automotive
applications - Part 3: OSEK/VDX Operating System (OS). International Organi-
zation for Standardization (2005)

18. Shi, J., He, J., Zhu, H., Fang, H., Huang, Y., Zhang, X.: ORIENTAIS: Formal
verified OSEK/VDX real-time operating system. In: 2012 IEEE 17th International
Conference on Engineering of Complex Computer Systems. pp. 293–301. IEEE
(2012)

19. Tigori, K.T.G., Béchennec, J.L., Faucou, S., Roux, O.H.: Formal model-based syn-
thesis of application-specific static rtos. ACM Trans. Embed. Comput. Syst. 16(4),
1–25 (017). https://doi.org/10.1145/3015777

20. TOPPERS Project: Toyohashi open platform for embedded real-time systems.
https://www.toppers.jp/en/project.html

21. TRON: µITRON4.0 Specification (2007). https://www.tron.org/wp-content/
themes/dp-magjam/pdf/specifications/en US/TEF024-S001-04.03.00 en.pdf.
Accessed 02 Sep 2021

22. Vu, D.H., Chiba, Y., Yatake, K., Aoki, T.: Verifying OSEK/VDX OS design using
its formal specification. In: 2016 10th International Symposium on Theoretical
Aspects of Software Engineering (TASE), pp. 81–88. IEEE (2016)

23. Waszniowski, L., Hanzálek, Z.: Formal verification of multitasking applications
based on timed automata model. Real-Time Syst. 38(1), 39–65 (2008)

24. Zhang, H., Aoki, T., Chiba, Y.: Verifying OSEK/VDX applications: a
sequentialization-based model checking approach. IEICE Trans. Inf. Sys. 98(10),
1765–1776 (2015)

25. Zhang, H., Aoki, T., Lin, H.H., Zhang, M., Chiba, Y., Yatake, K.: SMT-based
bounded model checking for OSEK/VDX applications. In: 2013 20th Asia-Pacific
Software Engineering Conference (APSEC), vol. 1, pp. 307–314. IEEE (2013)

26. Zhang, H., Li, G., Cheng, Z., Xue, J.: Verifying OSEK/VDX automotive appli-
cations: a spin-based model checking approach. Softw. Test. Verif. Reliab. 28(3),
e1662 (2018)

https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/3015777
https://www.toppers.jp/en/project.html
https://www.tron.org/wp-content/themes/dp-magjam/pdf/specifications/en_US/TEF024-S001-04.03.00_en.pdf
https://www.tron.org/wp-content/themes/dp-magjam/pdf/specifications/en_US/TEF024-S001-04.03.00_en.pdf

Formal Verification of an Industrial
UML-like Model using mCRL2

Anna Stramaglia(B) and Jeroen J. A. Keiren

Eindhoven University of Technology, Eindhoven, The Netherlands
{a.stramaglia,j.j.a.keiren}@tue.nl

Abstract. Low-code development platforms are gaining popularity.
Essentially, such platforms allow to shift from coding to graphical model-
ing, helping to improve quality and reduce development time. The Cordis
SUITE is a low-code development platform that adopts the Unified Mod-
eling Language (UML) to design complex machine-control applications.
In this paper we introduce Cordis models and their semantics. To enable
formal verification, we define an automatic translation of Cordis mod-
els to the process algebraic specification language mCRL2. As a proof of
concept, we describe requirements of the control software of an industrial
cylinder model developed by Cordis, and show how these can be verified
using model checking. We show that our verification approach is effective
to uncover subtle issues in the industrial model and its implementation.

1 Introduction

Abstract models are commonly used during the design phase of software. For
example, class diagrams are used to describe the structure of a software sys-
tem, and behavioral models describe the possible executions. Model checking
can be used to verify that such behavioral models satisfy their requirements.
While model checking is a promising technique, its industrial applications are
still limited. There are several reasons for this. Among others, it is considered
tedious to create a detailed behavioral model prior to implementing the system.
Furthermore, model checking tools primarily use low-level, academic languages
that require specific expertise not typically acquired by engineers in industry.

Low-code development platforms (LCDPs) [20] are gaining popularity. Such
platforms focus on increasing the level of abstraction of software development,
shifting from coding to graphical modeling, and generating code from these low-
code models. LCDPs allow addressing both issues described above. First of all,
the detailed behavioral model is now created during specification of the system.
Second, if their semantics are well-understood, the models can be automatically
translated to the languages used by state-of-the-art model checkers.

The Cordis SUITE1 is an LCDP for machine-control applications, based on
graphic Model-Driven Software Engineering. Its development environment is the
Cordis Modeler, which uses Altova UModel2 as front-end for drawing the models.
1 https://www.cordis-suite.com.
2 https://www.altova.com.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. F. Groote and M. Huisman (Eds.): FMICS 2022, LNCS 13487, pp. 86–102, 2022.
https://doi.org/10.1007/978-3-031-15008-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15008-1_7&domain=pdf
http://orcid.org/0000-0002-5772-9527
https://www.cordis-suite.com
https://www.altova.com
https://doi.org/10.1007/978-3-031-15008-1_7

Formal Verification of an Industrial UML-like Model using mCRL2 87

Cordis models are described in a rich language that uses an extension of UML [16]
class diagrams and state machine diagrams for describing the static structure and
behavior, respectively. Additionally, it includes a large fragment of Structured
Text [12]. Source code for Programmable Logic Controllers (PLCs) or the .NET
platform can be generated directly from the models. Hence, the resulting imple-
mentation is consistent with the corresponding Cordis model. Cordis, the company
developing this LCDP, has shown an interest in extending the Cordis SUITE with
model checking capabilities.

Our contributions are as follows. We describe the structure and semantics of
Cordis models, and automatically translate these to mCRL2 [9] to enable model
checking. The use of mCRL2 is motivated by the availability of its tool set [2]
with powerful verification tools such as simulation, model checking and the ver-
ification of first-order modal μ-calculus formulae [8]. We illustrate the feasibility
of modeling and verification of Cordis models using a pneumatic cylinder. We
specify, informally and formally, two typical requirements of the cylinder and
verify whether they are satisfied by the model. One of the requirements is not
satisfied by the cylinder model. We analyze its counterexample and identify a
subtle issue in the model. The issue is reproducible in the implementation. A fix
of the issue, now distributed by Cordis, is described and verified.

Related Work. A large amount of work has been done in the application of
formal verification to industrial domains. Most of this work focuses on specific
domains, such as railway infrastructure management [1,10,21] and medical appli-
cations [13,17,22]. Closer to our research are works on modeling and verification
of control software, such as CERN’s FSM language [11], which uses a strict
hierarchical architecture of finite state machines for a specific machine control
application, and OIL, developed and used by Canon Production Printing, which
has a strong focus on separation of concerns [3].

Modeling languages such as SysML and UML can be used to model systems
from any domain. The verification of state machine diagrams in these languages
has been studied extensively, see, e.g., [1,6,14,15,19,23,24]. UML state machine
diagrams are, e.g., transformed to Petri nets [15]. Others transform various
UML behavioral diagrams into a single transition system for the model checker
NuSMV [5]. The work closest to ours focuses on the verification of SysML state
machines in the railway industrial domain [1]. Like in our work, state machines
are assigned a formal semantics, and translated to mCRL2 for formal verifica-
tion. Their semantics and execution model focuses on distributed execution of
state machines communicating via queues, whereas our work focuses on a strictly
sequential execution with communication via shared variables.

Outline. In Sect. 2 we introduce Cordis models. The cylinder model is described
in Sect. 3. In Sect. 4 we describe the mCRL2 specification of Cordis models, the
requirements of the cylinder model, and the results of its verification. Discussion
and conclusions are presented in Sect. 5 and Sect. 6, respectively.

88 A. Stramaglia and J. J. A. Keiren

2 Cordis Models

The Cordis SUITE is a collection of tools for developing, testing and deploying
system control software, with a focus on machine control. We consider three
of these tools. The Cordis Modeler is an LCDP for creating machine-control
applications. It uses an extension of the Unified Modeling Language (UML)
such that every Cordis model describes the structure and behavior of a machine
using class diagrams and state machine diagrams, respectively. Additionally, it
can check for design errors, and generate source code for Programmable Logic
Controllers (PLCs) or the .NET platform. The Cordis Machine Control Server
(MCS) loads model information from the modeler, and connects to the PLC
in order to exchange state information and data with the running system. The
Cordis Machine Control Dashboard (MCD) is a Human-Machine Interface used
to show live system data and live state machine diagrams when the PLC is
running, providing real-time and historical information about the execution.

2.1 Class Diagrams

Fig. 1. Cylinder class

In this paper we illustrate the syntax and
semantics of Cordis models, and their ver-
ification, using the concrete example of a
pneumatic cylinder. The static structure of
a Cordis model is described by its class
diagram. The class diagram of the pneu-
matic cylinder is described in Example 1.
Pneumatic cylinders are commonly used
in factory automation systems for clamp-
ing, ejecting and lifting, and in industrial
processes for materials handling and pack-
aging. A pneumatic cylinder consists of a
cylinder barrel with a piston that moves
back and forth by means of compressed air
controlled by electrically controlled valves.

Example 1. The cylinder we consider
moves the piston between the zero posi-
tion (completely retracted) and the end
position (extended). Its class diagram con-
sists of a single class, shown in Fig. 1.
Classes can be tagged with stereotypes
<<Machine>> and <<MachinePart>>,
respectively, denoting the machine con-
trolled by the system and a component of
it. For the sake of simplicity, we consider
the cylinder in isolation, but it typically is
a machine part in a larger machine. A class

Formal Verification of an Industrial UML-like Model using mCRL2 89

has properties, variables stored in the class, and operations, both tagged with
Cordis-specific stereotypes describing their role in the system.

Stereotypes <<Input>> and <<Output>> describe variables used to inter-
face with the environment, typically the hardware. Inputs iZeroPosSensor and
iEndPosSensor detect whether the cylinder is at its zero or end position, respec-
tively.The outputsoValveMoveToZeroPos andoValveMoveToEndPos are used to
actuate the valves. Stereotypes <<InputSignal>> and <<OutputSignal >>
are used to define shared variables to communicate between objects within the
model, input signals are read by the cylinder and output signals are written by
the cylinder. Stereotypes such as <<Observer>>, <<Var>>, <<Setting>>
and <<Message>> are less important for the verification and ignored in this
paper, see [25] for a more detailed explanation. Class operations, with stereo-
type <<Cmd>>, are commands issued (asynchronously) to the class, by the envi-
ronment or another component. Commands TOGGLE, MOVE_TO_ZERO_POSITION,
MOVE_TO_END_POSITION, and EmergencyStop are self-explanatory. Command
CONDITIONING can be used to force (re)initialization of the cylinder.

2.2 State Machine Diagrams

Structure. The behavior of an object is defined using a hierarchy of state machine
diagrams. Cordis state machine diagrams are similar to those defined in standard
UML [16], with some Cordis specific details.

At the highest level, a state machine diagram consists of top-level state
machines. A (top-level) state machine consists of a hierarchy of states and pseudo-
states, whose types are mostly taken from standard UML, connected by transi-
tions. A state can be a reference to a subdiagram or to a substatemachine. The key
difference between these is whether they are executed as part of the diagram that
references it (subdiagram) or separately (substatemachine). When a transition to
a substatemachine is taken, control is transferred to the substatemachine.

Transitions have a source and target state, and can optionally be labeled by
guards and actions. For a transition without guard, the guard is assumed to be
true if the source of the transition is an initial state or an exit node, or the target
of the transition is a choice node. If the source is a choice node, the empty guard
is treated as else. Otherwise, the empty guard is assumed to be false.

Example 2. Consider the top-level state machine Main of the cylinder from our
running example, shown in Fig. 2. From the initial state of Main, denoted by •,
substatemachine Disabled is reached. This substatemachine has a number of
states used to model different ways out of it (see Figs. 4 and 5). For instance,
if Disabled determines that the cylinder is in its zero position it reaches state
CondInZero, hence, guard [State(Disabled.Conditioning.CondInZero)]

evaluates to true and state machine Main takes the transition to In_Zero_Pos.

Cordis models can contain prestates and poststates to model behavior that
must be executed every time an object is allowed to execute a step, regardless of
its current state. Pre- and poststates can either appear inside a state machine,

90 A. Stramaglia and J. J. A. Keiren

Fig. 2. State machine Main.

or at the top-level of the state machine diagram. The behavior of multiple pre-
and poststates is always combined into a single pre- or poststate by taking the
sequential composition of all pre- and poststates in a predefined order.

The poststate of the cylinder model updates output signals oInEndPosition,
oInZeroPosition and oEnabled to reflect the cylinder’s current position.

Semantics. Cordis models are executed using a cyclic execution model. In each
cycle all objects execute in a predetermined order defined in the class diagram.

The order of execution within an object is depicted as an activity diagram
in Fig. 3a. First the inputs are read. This essentially caches the current values
of the inputs, input signals and the currently active command in local variables.
To facilitate reasoning about the behavior of subsystems in isolation during ver-
ification, we also consider input signals and commands as free variables. Second,
the (combined) prestate of the object is executed. If a new command was sent to
the object, the guard condition is evaluated to determine whether the command
can be accepted. If the guard condition is true, the command action is executed,
otherwise the reject action is executed; these are defined in Structured Text by
the user. The command ready condition determines whether, at the end of the
current cycle, the command has been fully processed and can be removed from
the interface. If this condition is false, the command will remain on the interface;
if it is not overwritten by a new command, in the next cycle only the command
ready condition is reevaluated. Since a single command can be evaluated per

Formal Verification of an Industrial UML-like Model using mCRL2 91

Fig. 3. Order of execution of (a) one object, and (b) a state machine within the object.

cycle, if a new command is issued it overwrites the previous one. After the com-
mand has executed, all state machines in the object execute in a predetermined
order, in turns. Finally, the poststate is executed and the outputs are written.

Figure 3b depicts the execution of a single state machine. First, the do behav-
ior of the current active state is executed. Second, if a transition is enabled in
the current configuration, one such transition is executed. If multiple transitions
are enabled, one is selected as follows: if the source state of one enabled transi-
tion contains the source state of another enabled transition, the transition from
the outermost state is executed; transitions to other states take priority over
self-loop transitions; otherwise the first transition from a predetermined order
is executed.3 If a transition was executed, the current state is changed and the
behavior of the transition and the entry behavior of the target state are executed.
If no transition is executed, the current state is unchanged.

3 Cylinder

We now describe the behavior of the cylinder model introduced in Sect. 2.
State machine Main, in Example 2, refers to substatemachines Disabled,

MovingToZeroPosition, MovingToEndPosition, and it contains subdiagrams
InZeroPosition and InEndPosition. We next elaborate on the details relevant
for the verification, described in Sect. 4.2. For a full model description, see [25].

3 Currently, the implementation chooses the order of creation.

92 A. Stramaglia and J. J. A. Keiren

Fig. 4. Substatemachine Disabled

Disabled. From the initial state of Disabled, shown in Fig. 4, if command
EmergencyStop was accepted, the system moves to subdiagram Emergency

Stop, otherwise the system moves directly to Wait_For_Conditioning. Subdia-
gram Conditioning of Disabled, shown in Fig. 5, determines, based on the cur-
rent values of the input signals, inputs and outputs, which state in Main reflects
the current situation of the cylinder using a cascade of choice nodes. The cascade of
choice nodes can be interpreted as an if ... else if ... else ... conditional.
The states without outgoing transitions are used from state machine Main to deter-
mine the appropriate exit from Disabled.

Fig. 5. State machine diagram Conditioning

Formal Verification of an Industrial UML-like Model using mCRL2 93

MovingToZero- MovingToEndPosition and InZero- InEndPosition. The two
substatemachines MovingToEndPosition and MovingToZeroPosition are
symmetric, and describe the behavior of the cylinder when it is moving to the end
position or to the zero position, respectively. Subdiagrams InEndPosition and
InZeroPosition are also symmetric, and describe the behavior of the cylinder
when it is completely extended or retracted, respectively.

4 Model Checking Cordis Models Using mCRL2

We enable formal verification of Cordis models through an automatic translation
of the Cordis semantics to the modeling language mCRL2 [9]. The language is
based on process algebra with data. Its associated tool set [2] can be used for
modeling, validating and verifying systems. Although mCRL2 allows specifying
communicating, parallel processes, the formalization of the semantics of Cordis
models we present in this work only uses sequential processes. In the following
subsections we describe our translation to mCRL2, see Sect. 4.1, and the for-
malization of a number of properties, see Sect. 4.2. We again use the model of a
pneumatic cylinder (see Example 1) as a running example.

4.1 Translation to mCRL2

The mCRL2 specification of Cordis models consists of a sequence of several
processes that model the behavior of the system. Essentially, each execution
step shown in Fig. 3 is represented by a process in the mCRL2 specification.

The basic building block in a process is an action, such as a, b, that can be
parameterized with data, e.g., a(0), b(false). When p and q are processes, the
sequential composition p.q denotes the process in which first p is executed and
upon termination, q is executed. The alternative composition, or choice, p + q

denotes that either p or q is executed. Recursive processes can be defined by
writing process equations of the form P = q, where P is the name of the process,
and q is a process expression in which named processes are referred to.

In the mCRL2 specification of Cordis models, all processes are parameterized
with the current configuration of the system, i.e., the current states of all state
machines, and the current values of all class properties and operations. In what
follows we sometimes omit (part of) the parameters, and write ... instead. Each
state machine in the model is identified uniquely by a nonnegative index.

Example 3. For the cylinder example discussed in this paper, the process describ-
ing the top-level of the system is as follows.
P_main(state_machine: Nat, s1: List(State), ..., cmd2: Command, cmd2_ready: Bool,

cmd2_accepted: Bool, behaviors: List(Int), ...,

M2’ToggleToZeroPosition: Bool, M2’iZeroPosSensor: Bool,

M2’iEndPosSensor: Bool, M2’oValveMoveToZeroPos: Bool,

M2’oValveMoveToEndPos: Bool, M2’iCompressedAirOK: Bool,

M2’iZeroPosSensorConnected: Bool, M2’iEndPosSensorConnected: Bool,

M2’iResetOutputsOnEStop: Bool, M2’iForceEnablingToZeroPos: Bool,

M2’iForceEnablingToEndPos: Bool, M2’oInZeroPosition: Bool,

M2’oInEndPosition: Bool, M2’oEnabled: Bool, ...) = P_set_inputs();

94 A. Stramaglia and J. J. A. Keiren

The parameter state_machine tracks the state machine that is currently exe-
cuting. The current configuration of the system is tracked by, for every top-
level state machine, a list of states s1, containing the currently active states.
States are defined using sort State = struct State_(state:Nat, entry:

List(behavior), cont:List(behavior)) that is, unique identifier,state, and
entry and continuous behavior, entry and cont. For every machinepart, indexed
by an integer i, the command currently on the interface (along with some addi-
tional information) is kept in cmdi. Also class properties are stored as parameters.
The machinepart Cylinder has index 2 and, e.g., input iEndPosSensor is stored
as M2’iEndPosSensor, where M2 refers to machinepart 2.

We next focus on the most relevant parts of the mCRL2 specification follow-
ing the Cordis semantics execution. See [25] for a more detailed description.

At the beginning of each cycle, the values of the inputs are received by the
system. As the inputs are not controlled by the system, we model these by
receiving arbitrary values of the domain of the inputs.

Example 4. For the cylinder model this is formalized as follows.
P_set_inputs(..., M2’iZeroPosSensor: Bool, M2’iEndPosSensor: Bool, ...) =

sum M2’iZeroPosSensor’, M2’iEndPosSensor’: Bool
. inputs(M2’iZeroPosSensor’, M2’iEndPosSensor’)

. P_set_free_input_signals(M2’iZeroPosSensor = M2’iZeroPosSensor’,
M2’iEndPosSensor = M2’iEndPosSensor’);

In this equation P_set_inputs is a parameterized process which represents the
reception of the <<Input>> parameters. The sum denotes a generalized alterna-
tive composition that generates the choice between all four combinations of the
input parameters. Subsequently, P_set_free_input_signals is called, where
the new values of the inputs are assigned to the process parameters.

The process P_set_free_input_signals is similar to P_set_inputs, it
allows setting arbitrary values to the input signals. This process in turn calls
P_set_free_commands, which cycles through all machineparts to model com-
mands that are issued by the environment. Issuing commands is modeled by a
non-deterministic choice over all commands of the machinepart. Commands are
indexed by an integer i. If no new command is issued this is indicated by action
no_freecmd. If command i is issued this is indicated by action freecmd(i).

Once all external inputs to the system have been established, the cyclic execu-
tion of machineparts is performed. In the case of the cylinder, only machinepart
2 needs to execute. First, the prestate is executed (which is empty in case of the
cylinder). Subsequently, the command on the interface is executed.

Example 5. In the cylinder model, command MOVE_TO_ZERO_POSITION has
index 6, and it is executed using the following code.
P_command_6(..., s1: List(State), ..., cmd2: Command,

cmd2_ready: Bool, cmd2_accepted: Bool, ...) =
(isCommand2_MOVE_TO_ZERO_POSITION(cmd2) && !cmd2_accepted)

-> command(6, true)
. P_command_6_exec(behaviors = accept(cmd2), cmd2_accepted = true,

cmd2_ready = S79 in s1 || S103 in s1 || S89 in s1 || S93 in s1)
+ (isCommand2_MOVE_TO_ZERO_POSITION(cmd2) && cmd2_accepted)

-> chk_ready . P_statemachines_M2(cmd2_ready = ...);

Formal Verification of an Industrial UML-like Model using mCRL2 95

When a command is issued, cmd2_accepted is currently false. If the command
guard evaluates to true, the second argument of the action command is true;
otherwise it is set to false. If the command is accepted, the command accept
behavior is listed for execution, indicated by behaviors = accept(cmd2); if
the command is rejected, reject(cmd2) is assigned instead. If the command
was accepted in a previous cycle, cmd2_accepted is true, and action chk_ready

is reported. In both cases, the command ready condition is evaluated in the
assignment to cmd2_ready. Here it is true if the state machine is currently in
one of four states. If the command was just accepted, the corresponding behavior
is executed in P_command_6_exec, otherwise no transition behavior is executed.

Subsequently, the state machines execute. There is a separate process for
each top-level state machine. In the cylinder, the corresponding process for
Main is P_statemachines_S1. This cycles through all state machines in order,
and allows each state machine to take a transition. Transitions are defined
by sort Transition = struct Transition_(source:List(State), dest:

List(State), behavior:List(behavior)), that is, its source states, its target
states, and the behavior to execute if it is taken. The state machine process offers
a non-deterministic choice over all transitions in the state machines.

Example 6. We give an example of one transition in the process of the cylinder.
The other transitions are similar.
P_transitions_S1(state_machine: Nat, s1: List(State),...) =

...

+ (state_machine == 1 && (head(source(t100)) in s1)

&& (!M2’iCompressedAirOK || isCommand2_EmergencyStop(cmd2) && cmd2_accepted))

-> trans(100)

.P_execute_behaviors_S1(behaviors = behavior(t100) ++ entry(head(dest(t100))),

s1 = dest(t100) ++ remove_prefix(s1, rhead(source(t100))), ...)

+ ...

In this excerpt, t100 refers to the transition with source state Main.Enabled

and target state Main.Disabled.InitialState in Fig. 2, guarded by [NOT

InpSignal(iCompressedAirOK) OR CmdChk(EmergencyStop)].
The summand consists of a guard which says that state machine Main is exe-

cuting, i.e., state_machine == 1, and source state Main.Enabled is part of
the current configuration, i.e., (head(source(t100)) in s1). Furthermore, it
checks if command EmergencyStop was accepted using isCommand2_Emergency
Stop(cmd2) && cmd2_accepted.4 In case the condition is satisfied, the action
trans(100) is executed and P_execute_behaviors_S1 is called in order to
execute the behaviors labelling the transition (if any), behavior(t100), as
well as the entry behavior of the target state, entry(head(dest(t100))).
The next state that is reached in the state machine is dest(t100) ++

remove_prefix (s1, rhead(source(t100))), where dest(t100) is the con-
figuration reached after taking t100, and remove_prefix(s1, rhead(source

(t100))) removes all the states that are left by taking t100 from the configura-
tion. Following the priority rules, transitions that have lower priority include the
negation of the guards of all transitions with higher priority in their condition.

4 Note that in mCRL2, && (conjunction) binds stronger than || (disjunction).

96 A. Stramaglia and J. J. A. Keiren

After all state machines have executed one transition and the corresponding
behavior, the poststate is executed. A pre- or poststate consists of Structured
Text code that is translated to a sequence of mCRL2 processes. The poststate
execution amounts to executing the corresponding processes.

For the poststate of the cylinder, this is modeled as follows.
P_poststate_M2(..., behaviors: List(Int), ...) =

(behaviors == []) -> post_done.P_remove_command_M2()
+ (behaviors != [] && head(behaviors) == 3)
-> post(3).P_3(behaviors = tail(behaviors));

In P_3 the process parameters are updated, reflecting the poststate assignments.
After this, P_poststate_M2 is reentered and transition post_done is taken,

and if a command was on the interface and the command ready condition was
true, it is removed from the interface and the process parameters for it are reset
to their default value. Execution subsequently repeats from the beginning.

4.2 Formal Verification of Requirements

One of the primary goals of formalizing Cordis models using mCRL2 is to enable
the formal verification of requirements. In this section, we first describe the
requirements. Subsequently we discuss their formalization.

Requirements. In total, we have formulated 12 requirements for the cylinder,
and formalized and verified them. Due to space limitations, in this section we
describe one safety requirement and one liveness requirement. For details of the
remaining requirements the reader is referred to [25].

The requirements we consider are the following two:

1. Invariantly, if one of the output signals oInEndPosition or oInZeroPosi-

tion is true, also output signal oEnabled is true.
2. Whenever output signal oEnabled is false and input signal iCompressed-

AirOK is true, inevitably output signal oEnabled becomes true unless com-
mand CONDITIONING is accepted.

Formalization of Requirements Using the Modal μ-calculus. We describe require-
ments using the first order modal μ-calculus [8]. This is a very expressive tem-
poral logic that extends the μ-calculus with data.

In general, the requirements we are interested in refer to the interfaces of the
machine parts, that is, their inputs, input signals, commands, output signals, and
outputs. The first three are set explicitly in the translation. The output signals and
outputs are only available implicitly, thus, in order to expose their values, we have
extended the translation with self-loops. For this, we use actions such as state_
M2’oInEndPosition(true), where state indicates this is a stateloop, M2 refers
to the machinepart, oInEndPosition is the name of the output, and true is its
current value. Similarly, we expose the current state of the system.

This is used to formalize the first requirement as follows.
[true*](<state_M2’oInEndPosition(true)||state_M2’oInZeroPosition(true)>true

=> <state_M2’oEnabled(true)>true)

Formal Verification of an Industrial UML-like Model using mCRL2 97

This formula should be read as follows. First, [true*] represents all
sequences consisting of zero or more actions. After each such sequence
the remainder of the formula should hold. For the remainder, note that
formula <a>true holds in every state with an outgoing a transition. If
we write the action formula a || b inside a modality, this matches the
set of actions containing a, b; essentially, || here denotes the union
of the sets of action represented by a and b, which are the singleton
sets containing a and b, respectively. Hence, <state_M2’oInEndPosition

(true)||state_M2’oInZeroPosition(true)>true holds in every state that
has an outgoing transition labeled state_M2’oInEndPosition(true) or
state_M2’oInZeroPosition(true). In each such state, the formula requires
that also <state_M2’oEnabled(true)>true holds, i.e., the state has an out-
going transition labeled state_M2’oEnabled(true). We refer to [9] for a more
extensive introduction to the first order μ-calculus.

The second requirement is formalized as follows.
nu X(enabled: Bool = false, compressedAirOk: Bool = false) .

(forall e: Bool . <state_M2’oEnabled(e)>true =>

((forall c: Bool . [exists a2, a3, a4, a5, a6: Bool .

free_input_signals(c, a2, a3, a4, a5, a6)]X(e,c)) &&

[!exists a1, a2, a3, a4, a5, a6: Bool .

free_input_signals(a1, a2, a3, a4, a5, a6)]X(e,compressedAirOk))) &&

(forall e: Bool . [state_M2’oEnabled(e)]false =>

((forall c: Bool . [exists a2, a3, a4, a5, a6: Bool .

free_input_signals(c, a2, a3, a4, a5, a6)]X(enabled,c)) &&

[!exists a1, a2, a3, a4, a5, a6: Bool .

free_input_signals(a1, a2, a3, a4, a5, a6)]X(enabled,compressedAirOk))) &&

(val(!enabled && compressedAirOk) =>

mu X . [!((exists a2, a3, a4, a5, a6: Bool .

free_input_signals(false, a2, a3, a4, a5, a6)) ||

command(9, true) ||

(exists b: Bool . state_M2’oValveMoveToZeroPos(b) ||

state_M2’oValveMoveToEndPos(b) ||

state_M2’oInZeroPosition(b) ||

state_M2’oInEndPosition(b) ||

state_M2’oEnabled(b)) ||

(exists i: Nat, l: List(Nat) . states(i, l))

)]X || <state_M2’oEnabled(true)>true)

This formula uses a greatest fixed point (nu) and a least fixed point (mu). The
greatest fixed point is parameterized by two Boolean variables, enabled and
compressedAirOk, that keep track of whether oEnabled or iCompressedAir

Ok have become true, respectively. In order to keep track of these values,
we distinguish two cases. If a transition state_M2’oEnabled(e) is enabled,
denoted by forall e: Bool. <state_M2’oEnabled(e)>true, we check if an
action free_input_signals is enabled. If so, we determine the value assigned
to iCompressedAirOk using forall c: Bool . [exists a2, a3, a4, a5,

a6: Bool .free_input_signals(c, a2, a3, a4, a5, a6)]X(e,c)). We
use exists inside the modality to represent generalised union, and match any
value for the rest of the input signals. We update enabled to the value observed
by the self-loop, and compressedAirOk to the value set in free_input_signals.
If free_input_signals is not enabled, only compressedAirOk is updated. The
case where state_M2’oEnabled(e) is not enabled is handled in a similar way.

98 A. Stramaglia and J. J. A. Keiren

Now, if enabled is false, and compressedAirOk is true, the least fixed point
subformula needs to hold. To interpret this formula, we first note that formula
mu Y . [!a]Y || true captures that inevitably a state is reached where
a b transition is enabled, unless an a transition happens. So, in principle, the
following formula denotes that, as long as iCompressedAirOk does not become
false, represented by the first argument to free_input_signals, and com-
mand CONDITIONING is not accepted, represented by command(9, true), then
we inevitably end up in a state where oEnabled is true.
mu Y . [!((exists a2, a3, a4, a5, a6: Bool .

free_input_signals(false, a2, a3, a4, a5, a6)) ||
command(9, true))]Y ||

<state_M2’oEnabled(true)>true)

However, as we extended the model with self-loops, by taking such self-loops we
trivially end up in an infinite sequence on which no state where oEnabled holds
is reached. We therefore need to exclude paths through these self-loops.5

4.3 Results

We have verified the two properties from Sect. 4.2, as well as 10 additional
requirements. For our experiments we have used Cordis Modeler version
3.14.1630. 7156 and mCRL2 tool set Release 202106.0. The cylinder model
described and studied in this paper is relatively simple, its state space after
reduction has 3049 states and 18736 transitions. This is reflected by the verifi-
cation time: each of the properties can be verified in less than 5 s. Property 2
is false, and all of the other requirements are satisfied by the model. In case a
property does not hold, the mCRL2 tool set offers a subset of the labeled tran-
sition system that underlies the cylinder specification as a counterexample that
contains sufficient information to prove that the property is violated [26]. In the
next section, we discuss the counterexample to property 2 in detail.

5 Discussion

The counterexample of requirement 2 has 39 states and 39 transitions. It is a
transitions sequence that leads to a cycle on which iCompressedAirOK remains
true and command CONDITIONING is never accepted, but oEnabled remains false,
shown in Fig. 6. The counterexample follows the execution model of Sect. 2.2. In
each cycle the state machines are executed in the predetermined order: Main,
MovingToZeroPosition, MovingToEndPosition and Disabled.

For the sake of readability, in Fig. 6, the actions which are not essential to
describe the trace are labeled with τ ; a sequence of τ transitions is denoted by
a dotted arrow labeled τ . We denote true and false as tt and ff, respectively.

5 We here rely on the fact that the additional information is only exposed through
self-loop transitions. This avoids the need for introducing an additional greatest fixed
point.

Formal Verification of an Industrial UML-like Model using mCRL2 99

The execution starts from the state with an unlabeled arrow pointing to it; in
the first cycle, state Main.Disabled.Wait_For_Conditioning is reached via
trans(207). In the second cycle, iCompressedAirOK is set to true, command
CONDITIONING is accepted, indicated by command(9 , tt), and, with trans(174)
state Main.Disabled.Conditioning.InitialState is reached.

The third cycle starts in the loop, moving in counterclockwise direction. In
this cycle (and subsequent) iCompressedAirOK remains true, no new command
is issued, but action chk ready expresses that command CONDITIONING is still
on the interface. It follows that the self-transition in Fig. 4, trans(175), from
state Main.Disabled.Conditioning to state Main.Disabled.Conditioning

.InitialState, is taken. Subsequent cycles behave identically and state Main

.Disabled.Conditioning.InitialState is infinitely often re-entered.

Fig. 6. Counterexample found verifying property 2

Reproducing the Counterexample. By loading the executing PLC code in the
debugger provided by the PLC vendor and stepping through it, we can reproduce
the exact behavior of the counterexample. This increases the confidence in the
correctness of the translation to mCRL2, and proves that the counterexample
contains ample information to be efficiently reproduced in the running system.

Root Cause Analysis and Solution. The system is able to loop in the self-transition
from and to subdiagram Conditioning, in Fig. 4, because of two reasons: (1) in
Cordis models, the outermost enabled transition gets priority over more deeply
nested transitions, this is inherited from the semantics; and (2) the command con-
tinuously remains active on the interface. We focus our analysis on the latter.
Command CONDITIONING has guard condition State(Main.Disabled), com-
mand ready condition NOT State(Main.Disabled), and no accept and reject
actions. Thus, command CONDITIONING is accepted if the system currently is in

100 A. Stramaglia and J. J. A. Keiren

state machine Disabled, and the command is ready if the system leaves Disabled.
In the counterexample, when command CONDITIONING is accepted, we are in state
machine Disabled, the command ready condition is false, and the self-loop on
Conditioning has higher priority than the transitions in Fig. 5.

Based on the analysis, we observe that command CONDITIONING behaves
like a trigger that always remains high. The solution to avoid this behavior is
to modify the command ready condition from NOT State(Main.Disabled) to
true. This way, the command will only act as one single trigger to enter state
machine conditioning: when issued and accepted, command CONDITIONING stays
active on the interface for exactly one cycle. The change does not affect the rel-
evant behavior of the cylinder model. Changing the cylinder model accordingly,
and re-verifying the requirements shows that also requirement 2 holds.

6 Concluding Remarks

In this paper we have discussed the semantics of Cordis models, an extension
of standard UML used for modeling complex machine-control applications, in
order to enable the verification of these models. Even though Cordis models
are not primarily designed for formal verification, we were able to characterize
and implement an automatic translation to mCRL2. As a proof of concept we
have verified the behavior of an industrial cylinder model against a number
of requirements. Furthermore, we have shown that the verification process is
effective to find bugs, and that these can be reproduced in the actual system.

There are some aspects to the formalization and verification process that
we do not explicitly report in this paper. In particular, using earlier versions
of the Cordis modeler and the mCRL2 translation, we have uncovered inconsis-
tencies between the implementation of the models and the mCRL2 translation.
Addressing those has resulted in modifications to both the semantics in the
Cordis modeler and the mCRL2 translation. In order to understand and debug
such issues, both having clear counterexamples in mCRL2, and the ability to
step through the PLC code using a debugger have proven indispensable.

Future Work. Cordis models of complete industrial systems usually consist of
multiple interacting objects. To this end, the translator from Cordis models to
mCRL2 has been extended to deal with multiple component systems. We are
currently expanding our work to deal with such complex models. In particu-
lar, we are investigating the use of symbolic model checking techniques [4] to
deal with large state spaces. Furthermore, compositional model checking [18]
could help in the verification of large models by incrementally generating state
spaces of subsystems, reducing them, and combining them into larger subsys-
tems, prior to verification. We are investigating improvements to static analysis
tools to optimize mCRL2 models [7], and static analysis techniques such as dead
variable analysis for Cordis models, reducing state space sizes. Finally, in our
collaboration with Cordis, we are integrating model checking into the Cordis
SUITE.

Formal Verification of an Industrial UML-like Model using mCRL2 101

Acknowledgements. This work was supported partially by the MACHINAIDE
project (ITEA3, No. 18030) and through EU regional development funding in the
context of the OP-Zuid program (No. 02541). We thank Wieger Wesselink and Yousra
Hafidi for contributions to the development of the mCRL2 translation, and Cordis
Automation B.V. for their feedback on earlier versions of this paper.

References

1. Bouwman, M., Luttik, B., van der Wal, D.: A formalisation of SysML state
machines in mCRL2. In: Peters, K., Willemse, T.A.C. (eds.) FORTE 2021. LNCS,
vol. 12719, pp. 42–59. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
78089-0 3

2. Bunte, O., et al.: The mCRL2 toolset for analysing concurrent systems. In: Vojnar,
T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 21–39. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17465-1 2

3. Bunte, O., Gool, L.C.M., Willemse, T.A.C.: Formal verification of OIL component
specifications using mCRL2. In: ter Beek, M.H., Ničković, D. (eds.) FMICS 2020.
LNCS, vol. 12327, pp. 231–251. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-58298-2 10

4. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. Inf. Comput. 98(2), 142–170 (1992). https://doi.
org/10.1016/0890-5401(92)90017-A

5. Cimatti, A., et al.: NuSMV 2: an OpenSource tool for symbolic model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 29

6. Dubrovin, J., Junttila, T.: Symbolic model checking of hierarchical UML state
machines. In: 2008 8th International Conference on Application of Concurrency
to System Design, pp. 108–117. ISSN: 1550–4808 (2008). https://doi.org/10.1109/
ACSD.2008.4574602

7. Groote, J.F., Lisser, B.: Computer assisted manipulation of algebraic process speci-
fications. ACM SIGPLAN Notices 37(12), 98–107 (2002). https://doi.org/10.1145/
636517.636531

8. Groote, J.F., Mateescu, R.: Verification of temporal properties of processes in a
setting with data. In: Haeberer, A.M. (ed.) AMAST 1999. LNCS, vol. 1548, pp.
74–90. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49253-4 8

9. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Sys-
tems. MIT Press, Cambridge (2014). https://mitpress.mit.edu/books/modeling-
and-analysis-communicating-systems

10. Hansen, H.H., Ketema, J., Luttik, B., Mousavi, M.R., van de Pol, J.: Towards
model checking executable UML specifications in mCRL2. Innov. Syst. Softw. Eng.
6(1–2), 83–90 (2010). https://doi.org/10.1007/s11334-009-0116-1

11. Hwong, Y.L., Keiren, J.J.A., Kusters, V.J.J., Leemans, S., Willemse, T.A.C.: For-
malising and analysing the control software of the compact muon solenoid exper-
iment at the large hadron collider. Sci. Comput. Program. 78(12), 2435–2452
(2013). https://doi.org/10.1016/j.scico.2012.11.009

12. John, K.H., Tiegelkamp, M.: The programming languages of IEC 61131–3. In:
John, K.H., Tiegelkamp, M. (eds.) IEC 61131–3: Programming Industrial Automa-
tion Systems: Concepts and Programming Languages, Requirements for Program-
ming Systems, Decision-Making Aids, pp. 99–205. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-12015-2 4

https://doi.org/10.1007/978-3-030-78089-0_3
https://doi.org/10.1007/978-3-030-78089-0_3
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/978-3-030-58298-2_10
https://doi.org/10.1007/978-3-030-58298-2_10
https://doi.org/10.1016/0890-5401(92)90017-A
https://doi.org/10.1016/0890-5401(92)90017-A
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1109/ACSD.2008.4574602
https://doi.org/10.1109/ACSD.2008.4574602
https://doi.org/10.1145/636517.636531
https://doi.org/10.1145/636517.636531
https://doi.org/10.1007/3-540-49253-4_8
https://mitpress.mit.edu/books/modeling-and-analysis-communicating-systems
https://mitpress.mit.edu/books/modeling-and-analysis-communicating-systems
https://doi.org/10.1007/s11334-009-0116-1
https://doi.org/10.1016/j.scico.2012.11.009
https://doi.org/10.1007/978-3-642-12015-2_4

102 A. Stramaglia and J. J. A. Keiren

13. Keiren, J.J.A., Klabbers, M.D.: Modelling and verifying IEEE Std. 11073–20601
session setup using mCRL2. Electron. Commun. EASST 53 (2013). https://doi.
org/10.14279/tuj.eceasst.53.793

14. Liu, S., et al.: A formal semantics for complete UML state machines with com-
munications. In: Johnsen, E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940, pp.
331–346. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38613-
8 23

15. Lyazidi, A., Mouline, S.: Formal verification of UML state machine diagrams
using petri nets. In: Atig, M.F., Schwarzmann, A.A. (eds.) NETYS 2019. LNCS,
vol. 11704, pp. 67–74. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
31277-0 5

16. Object Management Group: OMG Unified Modelling Language (UML). Technical
report Version 2.5.1 (2017). https://www.omg.org/spec/UML/2.5.1/PDF

17. Pore, A., et al.: Safe reinforcement learning using formal verification for tissue
retraction in autonomous robotic-assisted surgery. In: 2021 IEEE/RSJ IROS, pp.
4025–4031 (2021). https://doi.org/10.1109/IROS51168.2021.9636175. ISSN: 2153-
0866

18. de Putter, S., Wijs, A.: Compositional model checking is lively. In: Proença, J.,
Lumpe, M. (eds.) FACS 2017. LNCS, vol. 10487, pp. 117–136. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-68034-7 7

19. Rodŕıguez, R.J., Fredlund, L.Å., Herranz, Á., Mariño, J.: Execution and verifica-
tion of UML state machines with erlang. In: Giannakopoulou, D., Salaün, G. (eds.)
SEFM 2014. LNCS, vol. 8702, pp. 284–289. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-10431-7 22

20. Sahay, A., Indamutsa, A., Ruscio, D.D., Pierantonio, A.: Supporting the under-
standing and comparison of low-code development platforms. In: 2020 46th
Euromicro Conference on SEAA, pp. 171–178 (2020). https://doi.org/10.1109/
SEAA51224.2020.00036

21. Salunkhe, S., Berglehner, R., Rasheeq, A.: Automatic transformation of SysML
model to event-B model for railway CCS application. In: Raschke, A., Méry, D.
(eds.) Rigorous State-Based Methods. LNCS, vol. 12709, pp. 143–149. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-77543-8 14

22. Santone, A., et al.: Radiomic features for prostate cancer grade detection through
formal verification. La radiologia medica 126(5), 688–697 (2021). https://doi.org/
10.1007/s11547-020-01314-8

23. Santos, L.B.R., Júnior, V.A.S., Vijaykumar, N.L.: Transformation of UML behav-
ioral diagrams to support software model checking. In: FESCA 2014. EPTCS, vol.
147, pp. 133–142 (2014). https://doi.org/10.4204/EPTCS.147.10, arXiv: 1404.0855

24. Schäfer, T., Knapp, A., Merz, S.: Model checking UML state machines and
collaborations. ENTCS 55(3), 357–369 (2001). https://doi.org/10.1016/S1571-
0661(04)00262-2

25. Stramaglia, A., Keiren, J.J.A.: Formal verification of an industrial UML-like model
using mCRL2 (extended version) (2022). arXiv: 2205.08146

26. Wesselink, W., Willemse, T.A.C.: Evidence extraction from parameterised Boolean
equation systems. In: Benzmüller, C., Otten, J. (eds.) proceedings of ARQNL 2018
affiliated with IJCAR 2018, Oxford, UK, 18 July 2018. CEUR, vol. 2095, pp. 86–
100. CEUR-WS.org (2018). http://ceur-ws.org/Vol-2095/paper6.pdf

https://doi.org/10.14279/tuj.eceasst.53.793
https://doi.org/10.14279/tuj.eceasst.53.793
https://doi.org/10.1007/978-3-642-38613-8_23
https://doi.org/10.1007/978-3-642-38613-8_23
https://doi.org/10.1007/978-3-030-31277-0_5
https://doi.org/10.1007/978-3-030-31277-0_5
https://www.omg.org/spec/UML/2.5.1/PDF
https://doi.org/10.1109/IROS51168.2021.9636175
https://doi.org/10.1007/978-3-319-68034-7_7
https://doi.org/10.1007/978-3-319-10431-7_22
https://doi.org/10.1007/978-3-319-10431-7_22
https://doi.org/10.1109/SEAA51224.2020.00036
https://doi.org/10.1109/SEAA51224.2020.00036
https://doi.org/10.1007/978-3-030-77543-8_14
https://doi.org/10.1007/s11547-020-01314-8
https://doi.org/10.1007/s11547-020-01314-8
https://doi.org/10.4204/EPTCS.147.10
http://arxiv.org/abs/1404.0855
https://doi.org/10.1016/S1571-0661(04)00262-2
https://doi.org/10.1016/S1571-0661(04)00262-2
http://arxiv.org/abs/2205.08146
http://ceur-ws.org/Vol-2095/paper6.pdf

Chemical Case Studies in KeYmaera X

Rose Bohrer(B)

Worcester Polytechnic Institute, Worcester, MA 01609, USA

rbohrer@wpi.edu

Abstract. Safety-critical chemical processes are well-studied in the for-
mal methods literature, including hybrid systems models which com-
bine discrete and continuous dynamics. This paper is the first to use
a theorem-prover to verify hybrid chemical models: the KeYmaera X
prover for differential dynamic logic. KeYmaera X provides parametric
results that hold for a whole range of parameter values, non-linear phys-
ical dynamics, and a small trusted computing base.

We tell a general story about KeYmaera X: recent advances in auto-
mated reasoning about safety and liveness for differential equations have
enabled elegant proofs about reaction dynamics.

Keywords: Hybrid Systems · Theorem Proving · Chemical Reactor

1 Introduction

Classical results on safe and optimal control [18] of chemical reactions [40] are
the conceptual foundation for industrial chemical processes. Formal methods for
chemical reactors are well-studied [4,20,25,30,36], but even textbook cases [18]
lack high fidelity models (e.g., nonlinear dynamics and wide ranges of parameter
values). We study textbook cases; these inform the study of practical cases.

We study (1) model-predictive control of an irreversible reaction (Sect. 3.1)
and (2) an uncontrolled reversible reaction (Sect. 3.2) in KeYmaera X [16], a
theorem-prover for differential dynamic logic (dL) [34]. See Sect. 4 for tradeoffs.

Both reactions contain challenges suitable as verification benchmarks: (1)
nonlinear dynamics interacting with model-predictive controllers, and (2) the-
orems that test current tools’ abilities regarding asymptotic properties, e.g.,
stability [27] or persistence [39]. Though reaction (2) is continuous, continuous
reasoning is essential to hybrid. We find that new stability [41], variant [41], and
Darboux polynomial [35] tools in KeYmaera X simplify our proofs.

2 Background

In KeYmaera X, correctness properties are stated and proved in differential
dynamic logic (dL) [34], where hybrid systems are written in hybrid program
notation. We discuss dL, then KeYmaera X usage.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. F. Groote and M. Huisman (Eds.): FMICS 2022, LNCS 13487, pp. 103–120, 2022.
https://doi.org/10.1007/978-3-031-15008-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15008-1_8&domain=pdf
http://orcid.org/0000-0001-5201-9895
https://doi.org/10.1007/978-3-031-15008-1_8

104 R. Bohrer

2.1 Differential Dynamic Logic

We introduce dL syntax and semantics; see literature [34] for details. Semantics
are state-based: state ω maps variables x to real numbers ω(x) : R. The syntax
consists of terms (with a numeric meaning in each state), hybrid programs (which
nondeterministically change the state when run), and formulas (which are true
or false in each state). Terms are real-valued polynomials. Hybrid programs and
formulas may contain each other. We use standard notation, e.g., B ::= C | D
means every B is either a C or a D.

Definition 1 (Hybrid Programs). Hybrid programs α, β are defined by:

α, β ::= ?P | x := e | {x′ = f(x)&Q} | α ∪ β | α;β | α∗

Hybrid programs are defined by their runs: from a starting state, what final
states are reachable? Hybrid programs can have one run (deterministic), many
runs (nondeterministic), or zero runs (early termination). Programs ?P and
{x′ = f&Q} contain formulas P and Q; see Definition 2 for more about formulas.

The test program ?P never modifies the state; if formula P is true, then ?P
ends in the current state, but if P is false, then ?P has no final states, repre-
senting execution failure. Deterministic assignment x := e updates the state by
storing the current value of term e in variable x. Ordinary differential equation
systems (ODEs) are the defining feature of hybrid programs: ODEs composed
with discrete operations model hybrid systems. ODE {x′ = f(x)&Q} evolves in
continuous time with x′ = f(x), where f(x) is a term. The duration of evo-
lution is nondeterministic. If an evolution domain constraint Q is provided, Q
is tested continuously, and evolution must stop before Q ever becomes false.
Choices α ∪ β nondeterministically run either α or β, as opposed to running
both. Composition α;β runs α, then β in the resulting state(s). Duration of
loops α∗ is nondeterministically-chosen but finite: zero, one, or many repetitions
can occur. We also use if(P){α}else{β}, which reduces to choices and tests.

Definition 2 (Formulas). There are many formulas P,Q in dL. We only use:

P,Q ::= · · · | e ≥ ẽ | ¬P | P ∧ Q | P → Q | [α]P | 〈α〉P
Formulas represent true/false questions about the state ω. Comparison e ≥ ẽ
is true whenever the value of e is at least that of ẽ in a given state. All other
comparisons e > ẽ, e = ẽ, e �= ẽ, e ≤ ẽ, e < ẽ are definable using e ≥ ẽ and other
logical connectives, so we use them freely. Negation ¬P is true when P is false.
Conjunction P ∧ Q is true when both P and Q are. Implication P → Q is true
when P ’s truth would imply Q’s truth.

The defining formulas of dL, [α]P and 〈α〉P, are respectively true in state ω
if every or some run of α starting from state ω ends in a state where P is true.
For many programs α, including all in this paper, all runs equates to all time.

KeYmaera X proves truth in every state, called validity.

Chemical Case Studies in KeYmaera X 105

We use standard notation for axioms and proof rules. Each rule has a hor-
izontal line and means: if all premise formulas above the line are valid, so is
the conclusion formula below. Rules can use schema variables (e.g., P, α) for
arbitrary programs or formulas, respectively. For example, the loop rule

loop
P → J J → [α]J J → Q

P → [α∗]Q

means for all P,Q, J, α that if premises P → J, J → [α]J, and J → Q are all
valid, so is P → [α∗]Q. Formula J is proved true for all iterations, thus we call
J the loop invariant. This proven loop invariant should not be confused with
use of the word invariant in hybrid automata to mean an assumed constraint
on ODE evolution. We call such constraints evolution domain constraints.

2.2 KeYmaera X

Fig. 1. KeYmaera X. Clicking highlighted
symbol does a step. Last rule is shown at
bottom. Top shows suggestions.

We discuss the KeYmaera X [28]
user interface (Fig. 1). KeYmaera X
is an interactive, tactical prover: users
interactively pick proof techniques at
each step. Each technique is imple-
mented as a tactic [15] program. Tac-
tics range from propositional rules
(e.g., conjunction and implication)
to complex search procedures. The
default (auto) procedure tries many
methods, solving many simple prob-
lems automatically. User effort varies
much between proofs. We will discuss
how automation reduces effort. Tac-
tics help with rigor: complex methods
reduce to simple, trusted steps.

3 Results

We contribute case studies on two classic kinds of chemical reactions. The first is
an irreversible reaction in a well-mixed adiabatic batch reactor. The second case
study is a reversible reaction between two compounds, i.e., where the output
can react again and form the input. We chose these examples because they are
classic [38]. Both case studies emphasize recent advances in KeYmaera X proof
automation, which simplified proofs. Where limitations remain, we discuss them.

3.1 Controlled Irreversible Reactions

We formalize a classic scenario: an irreversible, exothermic reaction in an adi-
abatic, well-mixed batch reactor. Irreversible [38, §2.1] means the reaction is

106 R. Bohrer

one-way: outputs do not react to create inputs. Adiabatic [38, §2.14] means heat
does not leave or enter the reactor. Well-mixed [38, §2.12] means the reaction
occurs evenly in space throughout the reactor. In this basic synthesis reaction,
two (first-order) reactants react to form a third, plus heat (A+B −→ C +heat).

The case study contains four models, each with proof. The first shows con-
servation of energy, validating that adiabatic reactors are closed systems. The
remaining three models add a model-predictive bang-bang controller [18], which
predicts future behavior according to the model, then applies an all-or-nothing
control action. It is proved that the control ensures a safety property: overheat-
ing is prevented. We use this standard control approach in order to focus on
the continuous reaction dynamics. The driving difference between the last three
models is their increasingly complex reaction dynamics, which mandate increas-
ingly complex controls and proofs. In the second model, the reaction rate is
constant. In the third model, the rate is linear in temperature, thus exponential
in time. In the final model, the rate is proportional to the product of temperature
and each concentration, with resulting dynamics beyond a simple exponential,
yet still approximate. Approximate results are the best that can be expected for
non-linear dynamics. We discuss why, including verification challenges.

Each model approximates textbook [38, Eq. 2.93] reaction dynamics, where
the reaction rate is proportional to the product of concentrations of each reactant
A and B multiplied by a coefficient. Recall that the concentration of a reactant in
a mixture is the quantity of that reactant per unit quantity of the mixture. The
rate equation is rate = kAB where k is an exponential given by the Arrhenius
equation [38, Eq. 5.1]. That is, k(T) = k0e

−E/RT where T is temperature, R is
the ideal gas constant, E is the reaction’s activation energy and k0 a constant.

Analysis of the reaction rate dynamics is nontrivial: rate is a product of three
continuously-changing quantities, resulting in a non-linear ODE. Moreover, k(T)
is exponential in T , resulting in a non-polynomial ODE. KeYmaera X handles
non-linear ODEs well, but is restricted to polynomial ODEs, as is standard. We
thus reach our first limitation: to ensure a polynomial ODE, we approximate
the temperature dependence as linear. This assumption is reasonable because
polynomial ODEs are a standard assumption, and our nonlinear dynamics are
still more precise than prior models [20,25,30,36,45]. Our second limitation is
that the reactants are first-order, so their influence on rate is linear. We do so
because such reactions are common and lead to elegant equations. KeYmaera X
supports polynomials of any degree, so we expect the approach to work for
higher-order reactions, so long as the order is fixed. Limitations aside, the results
are fully parametric, e.g., the results can be applied to any first-order reactants
in any amount by plugging in new coefficients and concentrations.

Energy Conservation. The basic dL model for energy conservation is pre-
sented in Fig. 2. Energy conservation is interesting in its own right, because
it implies the system is closed. This helps support our claim that the model
is adiabatic: heat energy does not leave nor enter. The variables A,B, and C
stand for the current concentration of each reactant present in the reactor.

Chemical Case Studies in KeYmaera X 107

Fig. 2. Conservation-of-energy for uncontrolled irreversible reaction, constant heating

Reactor temperature is written T. In our analysis, we decompose energy into
kinetic (heat) and potential (chemical) energy: E ≡ KE + U. Potential energy
U ≡ min(A/kA,B/kB) kT is the product of the amount (concentration) of C
remaining to be produced (the reaction ends when either A or B is exhausted)
with the heat released per unit amount (C). That is, we model C as if it pos-
sesses no potential energy, since we are interested only in energies relevant to the
current reaction. We model the reaction rate as Ts A0 B0 kra + krb, which makes
two intentional simplifications. First, we use approximate current concentrations
A,B with initial concentrations A0,B0. Secondly, we simplify the temperature
factor to Ts, which is a constant even as temperature T changes, thus the influ-
ence of heat is static throughout the reaction. We determine the reaction rate as
a product of the concentration factor and temperature factor. For generality, the
coefficients kra, krb let the rate be any linear function of the product. Formula
const specifies signs of constants.

The ode indicates that all concentrations A,B,C and the reactor temperature
T all change proportional to the reaction rate; A and B are lost as C and heat
are gained. Coefficients kA, kB , kC , kT indicate the rates at which each changes,
which may depend respectively on the stoichiometric coefficients of the reaction
or how strongly exothermic it is.

Finally, the theorem statement (P → [α]Q) states that under the simple
constant assumptions, energy is conserved because at all times the current energy
E remains equal to its initial value E0. We now describe the KeYmaera X proof.

Proof. The default proof procedure of KeYmaera X (Sect. 2.2) proves the the-
orem automatically with differential invariants [34, Lem. 11.3], demonstrating
the capabilities of this standard dL rule. We present the (relevant case of the)
differential invariant [34, Lem. 11.3] rule

DI
Q → [x′ := f(x)](e)′ = (ẽ)′

e = ẽ → [{x′ = f(x)&Q}]e = ẽ

which shows e = ẽ is true throughout an ODE if it holds initially and dif-
ferentials are equal throughout. We prove E0 = E thus: E0 is constant, so
proving E′ = 0 throughout suffices. Expanding the definition of E yields
(E)′ = (T + min(A/kA,B/kB) kT)′ = rate kT + min((A)′/kA, (B)′/kB) kT =
rate kT + min(−rate kA/kA,−rate kB/kB) kT = rate kT + min(−rate,−rate) kT =
(rate− rate) kT = 0. Due to KeYmaera X’s automation, the entire proof is auto-
matic.

108 R. Bohrer

On-Off Reactions. This model keeps the basic heating dynamics but adds
bang-bang control. Figure 3 describes the model in full. Parts unchanged from
Fig. 2 are grayed out to aid comparison. The impact of this theorem is that the
reactor is provably safe under idealistic assumptions, i.e., when concentrations
and temperatures change very little or have little impact on reaction rate.

Fig. 3. Safety for irreversible reaction with bang-bang control, constant heating

The greatest change is the addition of a time-triggered controller: the system
now repeats in a loop, with the controller guaranteed to run at least every ε > 0
time units. The controller (ctrl) is model-predictive because it predicts whether
it would be dangerous to keep the reaction running for ε time: if the remaining
temperature buffer Tmax − T is no more than the temperature change that
could occur after reacting for time ε, it would be unsafe to keep reacting. If so,
the reaction shuts off (isOn := 0), else it turns on (isOn := 1). Note isOn is an
indicator variable; its only possible values are 0 and 1. Specifically, the controller
linearly predicts the maximum temperature change as ε rate kR and shuts off if
the safe temperature would be exceeded. Importantly, this approach predicts
unsafe events before they occur and shuts off before the damage is done. Either
way, the timer t is reset to 0.

The ode is updated so that each reaction equation is multiplied by isOn,
causing no physical changes to occur when the reactor is turned off. This model
is best-suited for situations where it is possible to quickly halt a reaction. The
ode gains an evolution domain constraint, which serves to restrict its duration
of evolution: an ODE may evolve only while the constraint remains true. Our
constraint serves two purposes. Firstly, t ≤ ε implements time-triggering: if each
iteration takes at most ε time, there is at most ε delay between control cycles.
Secondly, the constraints A ≥ 0 ∧ B ≥ 0 ∧ C ≥ 0 model the assumption of
nonnegative concentrations. For example, the reaction ends if A or B reach zero.

Finally, the updated theorem statement (P → [α]Q) is now a safety state-
ment, stating that the reactor never exceeds its maximum safe temperature.

Proof. As the model now contains a loop, the proof uses loop invariant reason-
ing in addition to differential invariant reasoning, both distinct concepts from
evolution domain constraints. We prove that the safety condition T ≤ Tmax is a
loop invariant, meaning it holds before and after every loop repetition. We use
the standard loop rule from Sect. 2.1.

Chemical Case Studies in KeYmaera X 109

Already, a lemma arises in the ODE proof. Certain differential invariant
proofs can only succeed by first proving lemmas, called differential cut formulas,
which are then available as assumptions in the invariant proof. Specifically, we
prove the cut Tmax −T > (ε−t) rate kT, meaning the remaining safe temperature
gap exceeds the projected temperature change during the remaining time. The
cut proves automatically by the differential invariant rule, from which the loop
invariant, then safety condition, follow by automatic proof.

Fixed Exponents. For the next model, the first fundamental change is that
we update the definition of rate to use the current temperature, so that the
reaction rate evolves exponentially over time. Because dynamic reaction rates
are an increase in complexity, we simplify other aspects of the reaction rate
formula by dropping kra and krb. The remaining changes follow from that one:
amts is a helper definition for definitions such as taylor+(x, t), which is an upper
bound on temperature over time, constructed as a Taylor series approximation.
Taylor series bring a fundamentally new proof approach for more complicated
dynamics: exponential dynamics need approximations in dL. Taylor series are
a flexible approximation: if precision were unsatisfactory, the degree could be
increased. However, this Taylor bound is only provably an upper bound on a
limited time interval which happens to be 1/(2 amts), which we thus take as our
upper limit on ε. In practice, we hypothesize that the time limit is artificial: time
could be expressed in any desired units, increasing the interval. The constants are
updated to include assumptions on initial values of amounts and the controller
is updated to use the Taylor approximation. The ode is updated to explicitly
assume nonnegative temperature, which is a safe assumption since our goal is to
avoid high, not low, temperatures. This new result shows safety with idealized
modeling of concentrations under more realistic heating assumptions (Fig. 4).

Fig. 4. Safety for irreversible reaction with bang-bang control, fixed-exponent heating

Proof. The loop invariant is unchanged. We add several differential cuts; order
matters since each one can serve as an assumption in following proofs: i) t ≥
0 just means time is nonnegative, ii) A0 B0 TkT ≥ 0 ensures forward (or 0)
reaction rate, and iii) taylor+(Told, t)−T ≥ 0 bounds temperature T above with
taylor+() in terms of old temperature Told. The final cut requires advanced proof
techniques because term taylor+(Told, t) − T decreases; differential invariants

110 R. Bohrer

alone are provably [32, Thm 6.1] insufficient for such terms. KeYmaera X can
solve this goal with the following high-level rule that uses Darboux polynomial
(inequality) reasoning [35, Corr. 3.2]:

dbx�
Q → (p)′ ≥ g p

p � 0 → [{x′ = f(x)&Q}]p � 0

Here, both instances of � are replaced uniformly with one of > or ≥ . Note (e)′

is shorthand for the Lie derivative of p, with all variables of form x′ replaced by
their corresponding f(x). The polynomial p is called a Darboux polynomial if the
premise holds, then polynomial g is called its cofactor. It is natural to ask what
power is gained by the addition of this proof rule. Certainly, it is stronger than
differential invariant reasoning (which would require Q → (p)′ ≥ 0) because g p
is allowed to be negative. Yet its full usefulness goes deeper, as the rule serves
as a basis for differential radical invariant reasoning which is provably complete
for semianalytic invariants [35, Thm. 4.5], a large class of invariants.

KeYmaera X’s built-in invariant generator can search for Darboux polyno-
mials, but it did not find a suitable polynomial for our example, so we found
one manually by algebra. Using the definition of the ODE, we solved for a poly-
nomial that satisfies the proof goal, in this case: g ≡ A0 B0 kT. After choosing a
suitable Darboux polynomial, the remaining proof goals completed using KeY-
maera X’s default proof method. Further applications of Taylor approximations
are discussed in Sect. 4.

Dynamic Exponents. Even our final controlled model (Fig. 5) makes some
important simplifying assumptions. Note that our model makes the impact of
temperature on reaction rate a linear one, whereas the true Arrhenius equa-
tion [38, Eq. 5.1] implies an exponential effect on reaction rate. Linear functions
can locally approximate exponential ones, but exponentials remain of future
interest. Despite these limitations, the final model is important because it shows
safety with both nontrivial heating and concentration dynamics.

The core change in the final model is a more advanced reaction rate dynamics,
where the reaction rate dynamically changes in response to the concentration
of each reactant. Definitions amts and ε are updated for the same reason. The
timestep ε now changes dynamically: as the reaction proceeds, the acceptable
delay increases, thus becoming easier to satisfy. It simplifies the analysis to have
ε change only at each loop iteration rather than continuously, so we introduce
variables A1,B1 to stand for the values of A,B at the start of each ODE evolution.
The changes to the model are modest, but the dynamic changes are notable:
the reaction rate is now a product of three changing variables, no longer an
exponential with a fixed base. Likewise, additional proof steps will be required to
account for changing concentrations, but the core proof approach is unchanged.

Proof. In this proof, the reaction rate changes as the concentration of each reac-
tant changes, so we strengthen the loop invariant to capture the status of the
reactant concentrations: 0 ≤ T ∧ T ≤ Tmax ∧ A ≤ A0 ∧ B ≤ B0. The differential

Chemical Case Studies in KeYmaera X 111

Fig. 5. Safety for irreversible reaction with bang-bang control, advanced heating

cuts are similar to before, with an additional lemma that the concentrations of
the first two reactants do not increase: A ≤ A1 ∧ A1 ≤ A0 ∧ B ≤ B1 ∧ B1 ≤ B0.
The differential cut for the Taylor series is unchanged, and the same Darboux
polynomial g ≡ A0 B0 kT suffices.

3.2 Uncontrolled Reversible Reactions

We study reversible reactions. We consider a textbook scenario where two reac-
tants A and B can each react to form the other (A � B). To our knowledge,
we provide the first computer-checked proofs for the asymptotic behavior of this
classic, widely-used textbook scenario. Specifically, our final model shows per-
sistence [39], a relative of stability: the system eventually gets arbitrarily close
to its equilibrium state, then stays close forever. We build up to this result with
lemmas: the system is always moving (nonstrictly) toward equilibrium and can
arbitrarily approach equilibrium in finite, bounded time. To complete the story,
we show that although the equilibrium can always be arbitrarily approximated,
it can never be reached exactly.

Pure Reactant Decreases. We consider a scenario starting with pure reactant
A, which then becomes a mixture. We show the current amount of A never
exceeds the initial amount, which is intuitive by conservation of mass. The lemma
might be of practical use directly, e.g., to verify that a container never overflows,
but we mainly use it as a lemma for persistence. Here, the two reactants are
named A and B, with initial values A = A0 > 0 and B = 0. Reactants A and B
are engaged in a reversible reaction where A converts to B at forward rate kF and
B converts to A at reverse rate kR. It is well-known [38, Ch. 3] that the system
asymptotically approaches an equilibrium state, called a dynamic equilibrium,

Fig. 6. Concentration of A is nonincreasing during reversible reaction.

112 R. Bohrer

in which the forward and reverse reactions perfectly cancel out. We define ode
using a classic textbook model of a reversible reaction, which does not model
heat: the reaction rates are based solely on concentrations and constants.

Proof. This proof completes automatically: the automatic prover successfully
reasons by differential invariant.

Equilibrium Avoidance. We show that the amounts of the reactants never
exactly reach the equilibrium. Though not directly used in the persistence proof,
we prove this because it is a fundamental property in its own right which tacitly
influences how a chemical plant is designed and operated. An operator would
never wait for perfect equilibrium to occur, only for the system to get close to
equilibrium, because perfect equilibrium (provably) never occurs.

The initial condition and ODE are unchanged, only the postcondition
changes, which mandates a new proof approach. To state the new postcondi-
tion, we define the amounts of A present at the equilibrium (Ã). The above
definition of Ã can be found by solving for equilibrium (A′ = 0 ∧ B′ = 0) in ode
subject to conservation of mass (A + B = A0) (Fig. 7).

Fig. 7. Equilibrium is never reached during reversible reaction.

Proof. A simple change in postcondition creates a major increase in proof com-
plexity, because we now wish to show a lower bound instead of an upper bound.
We use multiple differential cuts, one of which uses Darboux reasoning.

– A−A0 (kR/(kF + kR)) > 0 means A’s rate of change is always in the direction
of the equilibrium

– A + B = A0 is conservation of mass
– A > 0 ∧ B ≥ 0 means we never have a negative amount of either reactant,

the first being positive. This requires a Darboux argument with polynomial
−(kF + kR) because the amount of the first reactant does decrease with time.

Once these cuts have been proven, automation suffices to finish the proof.

Equilibrium Approach. We show that we get arbitrarily close to the equilib-
rium, given sufficient time. For every positive epsilon (ε > 0), there exists a time
when we get that close to the equilibrium. The assumption changes slightly; the
theorem statement changes more: we prove a diamond modality 〈ode〉A ≤ Ã + ε
because we want to show we eventually approach the equilibrium. The practical
impact of this result is that if an engineer desires an almost-perfect equilibrium,
that can be attained, but the cost is time.

Chemical Case Studies in KeYmaera X 113

Fig. 8. Equilibrium is approached during reversible reaction.

Proof. Previous proofs highlighted advances in proof automation for box prop-
erties of ODEs; this proof relies on advances in proof automation for diamond
properties of ODEs. The differential variant rule is the diamond counterpart
to differential invariant reasoning for box properties. The differential variant
principle [41, Corr. 24] says: if a progress bound d > 0 on derivative (p)′ holds
everywhere outside the goal region (¬(p � 0)), then we reach the goal eventually:

dV
∃
�

∃d > 0∀x(¬(p � 0) → (p)′ ≥ d)
〈{x′ = f(x)}〉p � 0

where � stands uniformly for either > or ≥, where d is a fresh variable, and where
x′ = f(x) provably has a global solution (i.e., for all time). In the premise, (p)′

is shorthand for the Lie derivative of p, with all variables of form x′ replaced by
their corresponding f(x).

The key insight behind our proof is that the rate of progress is proportional to
our current displacement from the equilibrium. Since we seek to get the displace-
ment within some ε, we can assume without loss of generality that the current
displacement is at least ε, giving a bound d on the progress rate: d = ε (kF + kR).
This progress rate also confirms standard intuitions about the system dynamics:
higher rates of progress are made when far away from the equilibrium and when
reaction rates are high.

Persistence. Persistence means there exists a point after which we forever
remain within ε of the equilibrium. Persistence is of practical importance because
it shows both that the system can get arbitrarily close to equilibrium and that
the system stays that way indefinitely. In short, this result is important from a
control perspective because it shows the system is well-controlled, even without
a controller. As a theorem-proving case study, persistence is an excellent com-
prehensive test case because it combines boxes and diamonds. Only the theorem
statement need be updated; all other definitions are unchanged (Fig. 9):

Fig. 9. Reversible reaction is persistent.

114 R. Bohrer

Proof. We combine proof techniques, first showing we eventually approach the
equilibrium (variant reasoning, as in Fig. 8), then showing the concentration of
A stays near the equilibrium (invariant reasoning, as in Fig. 6).

A major strength of logic is compositionality : complex proofs are but com-
binations of simple parts. For example, our dL proof of form pre → 〈α〉[α]P
(call this formula D for short) can be divided into a variant proof and invari-
ant proof, respectively proofs of some formulas of form B ≡ pre → 〈α〉A and
C ≡ const ∧ A → [α]P for some A. At a high level, KeYmaera X lived up to its
compositionality promise, but at a low level, there is always room for improve-
ment. The differential variant rule only allows inequalities as postconditions, but
C expects const ∧ A. We bridge this gap using the mond rule and Kd2 axiom:

Kd2 [α]P → 〈α〉Q → 〈α〉(P ∧ Q)
mond

P Q

〈α〉P 〈α〉Q

Invariants prove C. Applying mond on C yields 〈α〉(const ∧ A) → 〈α〉[α]P . Prove
the left side by Kd2. Its first premise holds by vacuity because const is constant;
its second is by lemma B, which holds by a variant argument. The result is D,
as desired.

Lessons for KeYmaera X Development. To our knowledge, the limitation to
inequalities in differential variants is not fundamental, but incidental to KeY-
maera X’s implementation. We recommend that the developers relax this lim-
itation. More generally, we found ourselves manually proving properties of the
form const → 〈α〉const where α does not modify free variables of const. Such
formulas only hold when α has a run (i.e., 〈α〉true holds), thus are nontrivial to
automate, yet still deserve attention because they are common. The mond rule
and Kd2 axiom were key to our proof, but are only visible on the UI when the
user searches for them by name. We recommend that the developers provide
visibility, either through the UI or through example proofs.

Tactics in KeYmaera X seek to enable concise proof scripts, so it is desirable
to automate counting the size of proof scripts and underlying proof terms. To
our knowledge, KeYmaera X’s current support for size counting is experimental.
We recommend that the developers promote size counting to a stable feature.
Our proof scripts ranged from 3 to 41 proof steps, and experience suggests that
a tactic-free proof would likely be much longer. This is consistent with results
from the literature, where tens of lines of tactics may correspond to >200, 000
steps [8, §4.1]. Our slowest proof completed in 8 s on a modern workstation.
Model complexity and proof-checking time were not directly related: some simple
models ran slower than complex ones because simple models support the highest
level of automation, but highly-automated proofs check more slowly than highly-
interactive proofs.

In short, theorem-proving case studies are not only important because they
demonstrate the benefits of new automation, but because they discover directions
for future development.

Chemical Case Studies in KeYmaera X 115

4 Related Work

Related work includes hybrid systems verification, reactor design, and reaction
kinetics. We begin with theorem-proving approaches to verification, specifically.

Hybrid Systems Theorem Proving. Specialized hybrid systems provers [16,44]
provide a high degree of generality (parametricity, nonlinearity, unbounded time)
and rigor, while making efforts to mitigate the high degree of user effort typical of
theorem-proving. For example, generality in our case study means many different
reactions and reactors are supported by modifying parameter values, with no
new proof effort. Rigor is not merely of theoretical interest: in many hybrid
systems reasoning techniques which do not share our rigorous logical foundations,
many soundness edge cases have recently been identified [41, Tab. 1]. Soundness
violations are unacceptable in verification.

We use the KeYmaera X [16] prover for its exceptional rigor: its axioms have
been proved sound in a theorem-prover [7] and it soundly derives its advanced
proof methods [35] [41, Tab. 1] from sound axioms.

Hybrid Hoare Logic (HHL) [22,44] is another notable hybrid systems logic;
an HHL case study similar to ours could be interesting future work. HHL Prover
and KeYmaera X both base their ODE invariant automation on the same core
algorithm [23], so this aspect of automation is likely comparable in both.

Other Logical Approaches. We are aware of only one prior logical proof [45] of
a chemical process with nontrivial hybrid dynamics. Unlike ours, it is not in
a theorem-prover and does not address persistence nor reactions, but rather a
mixing process. General-purpose theorem-provers [1,12,26,37] have formalized
hybrid systems, including stability [26,37], but not applied them to reactions.

Reachability. Model-checkers using reachability analysis [2,9,11,14] are hybrid
theorem-provers’ main competitors. They increase automation, but have restric-
tions in generality. We discuss this tradeoff, which led us to use theorem-proving.

Foremost, KeYmaera X supports persistence. To our knowledge, persistence
is not among the specific classes (e.g., safety and reach-avoid correctness) of
properties supported in any model-checker. Logic allows mixing existential and
universal properties freely, supporting broad classes of properties.

Secondly, model-checkers use compact regions, i.e., variables have finite
bounds. In contrast, KeYmaera X allows non-compact parametric results.
This enables arbitrarily large reaction and heating rates, timesteps, and tank
capacities.

Thirdly, we use multi-affine ODEs. Many model-checkers support multi-
affine ODEs [2,5,9,11], but struggle with scalability, compared to affine sys-
tems [3,14]. Our small-scale results potentially enable future scalability: multi-
affine component-based proofs scale to hundreds of variables [6], an order of
magnitude beyond nonlinear ODE benchmarks [5,9,11].

Theorem-provers benefit from strong correctness arguments. KeYmaera X’s
trusted computing base is an order of magnitude smaller than self-reported

116 R. Bohrer

counts of popular model-checkers [16] and its axioms have a machine-checked
soundness proof [7]. Correctness is not merely a theoretical concern. Sound-
ness bugs in Flow* and dReach have been identified post-release [31]. Prede-
cessors of techniques used in this paper had known soundness bugs [41, Table
1]. The model-checking community has acknowledged these concerns. Ariadne
developers [10] have specifically cited the correctness benefits of theorem-proving
for reachability. Developers of SpaceEx, PHAVer, HyTech, Lyse, and VNODE-
LP [13,29] have cited implementation correctness concerns for reachability anal-
ysis. KeYmaera X is typically preferred over paper proofs, because paper proofs
would employ invariant and variant techniques with comparable complexity to
our own, but sacrifice automatic detection of proof errors, which are common.

Theorem-proving’s downside is the requirement for interactive proofs by
users. Automation discussed herein only assists, not eliminates, interaction. In
contrast, push-button automation is common for model-checkers. Due to these
nontrivial tradeoffs, both theorem-proving and model-checking remain essential.

Stability and Persistence. Hybrid system stability is well-studied both inside [26,
37,42] and outside [21,24,27] theorem-provers, with persistence also studied [39].
Lyapunov functions have shown stability of a chemical reaction on paper, but
not in a prover [19]. Stability and its relatives in KeYmaera X specifically are a
new topic [42]; ours is the first application-focused study in KeYmaera X.

Chemical Engineering. The chemical engineering results we formalized are classi-
cal; our innovation is the rigor and generality (parametricity, non-linearity) with
which we formalize them in KeYmaera X. Standard textbooks provided kinetics
for well-mixed adiabatic batch reactors [38, Eq. 2.93], uncontrolled reversible
reactions [38, Ch. 3], and the Arrhenius equation [38, Eq. 5.1]. Standard control
theory textbooks introduce model-predictive control and bang-bang control [18].

Although basic models of reactors are widely-used in formal methods, ours
is the first in a theorem-prover. It additionally overcomes others’ limitations:

– Previous chemical proofs ignored persistence and reactors [45]
– Optimal scheduling [36] and safety proofs [25] only used state machines
– A verified plant design used simple piecewise-constant dynamics [20]
– CEGAR verification of tanks [30] ignored reactors

Industrial usage of formal methods typically prioritizes optimal control and
optimization of plant configuration, accepts approximations as a tradeoff for
nonlinearity, and cites scalability to networks of reactions and changes in param-
eter values as common issues [43]. This paper provides a parametric model
that supports nonlinear dynamics through approximation, and formally proves
the approximation correct against nonlinear dynamics. Because dL is amenable
to constrained optimization for control [17] and efficient verification of com-
pound systems by decomposition into reusable components [6], it is expected
that the dL-based approach can be extended to overcome the aforementioned
industrial challenges in future work. If successful, the benefits to the chemical
industry would include increased confidence in software correctness and potential

Chemical Case Studies in KeYmaera X 117

improvements in scalability and efficiency of parameter changes, when designing
plants and controllers. Maximal realism would require direct access to industrial
designs, but our proofs already demonstrate that improvements in ODE real-
ism can often be accommodated with modest changes to invariants. For models
beyond ODEs, such as PDE models of non-uniform heat transfer, differential
games can be explored because they can express Hamilton-Jacobi-like PDEs [33].
Though industrial users do not frequently cite concerns regarding formalization
of correctness proofs [43], they still stand to benefit from such guarantees because
constructing chemical plants is expensive, making design mistakes costly.

5 Conclusion

We used the KeYmaera X theorem prover for differential dynamic logic to for-
malize two case studies: a batch reactor and a reversible reaction, each of which
consisted of four models and their proofs. This work served two purposes:

– To our knowledge, we provided the first proof in a theorem prover of these
classic chemical engineering results.

– We demonstrated how recent advances in KeYmaera X’s automation, such as
its implementation of invariant checking, Darboux reasoning, and differential
variants, contribute to the proofs.

There are two directions of future work which could promote industrial
impact. A component-based approach could compose the models and proofs
for individual reactions into complete reaction networks or chemical plants. Pre-
vious proofs suggest a component-based approach could scale to hundreds of
variables [6], indicating potential to improve upon the scalability of competing
approaches [43]. Secondly, a black-box approach [8] incorporating constrained
optimization [17] could make our work useful for realistic industrial controllers,
which may involve components too complex for current white-box verification
techniques. Our model could be used at runtime to check whether a complex
controller’s control decision is within a safe range; if not, our simple controller
can be used as a safe fallback.

Acknowledgements. We thank the reviewers and Yong Kiam Tan for careful read-
ings and feedback. We thank Therese Smith, Andrew Teixeira, and Grier Wallace for
helpful discussions.

References

1. Ábrahám-Mumm, E., Steffen, M., Hannemann, U.: Verification of hybrid systems:
formalization and proof rules in PVS. In: ICECCS. IEEE (2001)

2. Althoff, M., Grebenyuk, D., Kochdumper, N.: Implementation of Taylor models in
CORA 2018. In: ARCH. EPiC Series in Computing, vol. 54. EasyChair (2018)

3. Bak, S., Tran, H., Johnson, T.T.: Numerical verification of affine systems with up
to a billion dimensions. In: HSCC. ACM (2019)

118 R. Bohrer

4. Bauer, N., Kowalewski, S., Sand, G., Löhl, T.: A case study: multi product batch
plant for the demonstration of control and scheduling problems. In: ADPM (2000)

5. Benvenuti, L., Bresolin, D., Collins, P., Ferrari, A., Geretti, L., Villa, T.: Assume-
guarantee verification of nonlinear hybrid systems with Ariadne. Intl. J. Robust
Nonlinear Control 24(4), 699–724 (2014)

6. Bohrer, R., Luo, A., Chuang, X.A., Platzer, A.: CoasterX: a case study in
component-driven hybrid systems proof automation. In: ADHS. Elsevier (2018)

7. Bohrer, R., Rahli, V., Vukotic, I., Völp, M., Platzer, A.: Formally verified differ-
ential dynamic logic. In: CPP. ACM (2017)

8. Bohrer, R., Tan, Y.K., Mitsch, S., Myreen, M.O., Platzer, A.: VeriPhy: verified
controller executables from verified cyber-physical system models. In: PLDI. ACM
(2018)

9. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 18

10. Collins, P., Niqui, M., Revol, N.: A Taylor function calculus for hybrid system
analysis: validation in Coq. In: NSV (2010)

11. Duggirala, P.S., Potok, M., Mitra, S., Viswanathan, M.: C2E2: a tool for verifying
annotated hybrid systems. In: HSCC. ACM (2015)

12. Dupont, G., Ameur, Y.A., Singh, N.K., Pantel, M.: Event-B hybridation: a
proof and refinement-based framework for modelling hybrid systems. ACM Trans.
Embed. Comput. Syst. 20(4), 1–37 (2021)

13. Frehse, G., Giacobbe, M., Henzinger, T.A.: Space-time interpolants. In: Chockler,
H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 468–486. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 25

14. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 30

15. Fulton, N., Mitsch, S., Bohrer, B., Platzer, A.: Bellerophon: tactical theorem prov-
ing for hybrid systems. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) ITP 2017. LNCS,
vol. 10499, pp. 207–224. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66107-0 14

16. Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an
axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp,
A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 527–538. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21401-6 36

17. Fulton, N., Platzer, A.: Verifiably safe off-model reinforcement learning. In: Vojnar,
T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 413–430. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17462-0 28

18. Glad, T., Ljung, L.: Control Theory. CRC Press, Boca Raton (2018)
19. Hangos, K.M.: Engineering model reduction and entropy-based Lyapunov functions

in chemical reaction kinetics. Entropy 12(4), 772–797 (2010)
20. Hassapis, G., Kotini, I., Doulgeri, Z.: Validation of a SFC software specification by

using hybrid automata. IFAC Proc. 31(15), 107–112 (1998)
21. Koutsoukos, X.D., He, K.X., Lemmon, M.D., Antsaklis, P.J.: Timed Petri nets in

hybrid systems: stability and supervisory control. Discrete Event Dyn. Syst. 8,
137–173 (1998). https://doi.org/10.1023/A:1008293802713

22. Liu, J., et al.: A calculus for hybrid CSP. In: Ueda, K. (ed.) APLAS 2010. LNCS,
vol. 6461, pp. 1–15. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17164-2 1

https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-319-96145-3_25
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-319-66107-0_14
https://doi.org/10.1007/978-3-319-66107-0_14
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/978-3-030-17462-0_28
https://doi.org/10.1023/A:1008293802713
https://doi.org/10.1007/978-3-642-17164-2_1
https://doi.org/10.1007/978-3-642-17164-2_1

Chemical Case Studies in KeYmaera X 119

23. Liu, J., Zhan, N., Zhao, H.: Computing semi-algebraic invariants for polynomial
dynamical systems. In: EMSOFT. ACM (2011)

24. Lozano, R., Fantoni, I., Block, D.J.: Stabilization of the inverted pendulum around
its homoclinic orbit. Syst. Control Lett. 40(3), 197–204 (2000)

25. Lukoschus, B.: Compositional verification of industrial control systems: methods
and case studies. Ph.D. thesis, Christian-Albrechts Universität Kiel (2004)

26. Mitra, S., Chandy, K.M.: A formalized theory for verifying stability and con-
vergence of automata in PVS. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.)
TPHOLs 2008. LNCS, vol. 5170, pp. 230–245. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-71067-7 20

27. Mitra, S., Liberzon, D.: Stability of hybrid automata with average dwell time: an
invariant approach. In: CDC. IEEE (2004)

28. Mitsch, S., Platzer, A.: The KeYmaera X proof IDE: concepts on usability in
hybrid systems theorem proving. In: FIDE. EPTCS, vol. 240 (2016)

29. Nedialkov, N.S.: Implementing a rigorous ODE solver through literate program-
ming. In: Rauh, A., Auer, E. (eds.) Modeling, Design, and Simulation of Systems
with Uncertainties. MATHENGIN, vol. 3, pp. 3–19. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-15956-5 1

30. Nellen, J., Ábrahám, E., Wolters, B.: A CEGAR tool for the reachability analysis of
PLC-controlled plants using hybrid automata. In: Bouabana-Tebibel, T., Rubin,
S.H. (eds.) Formalisms for Reuse and Systems Integration. AISC, vol. 346, pp.
55–78. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16577-6 3

31. Nguyen, L.V., Schilling, C., Bogomolov, S., Johnson, T.T.: Runtime verification
for hybrid analysis tools. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS,
vol. 9333, pp. 281–286. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
23820-3 19

32. Platzer, A.: The structure of differential invariants and differential cut elimination.
Log. Meth. Comput. Sci. (2012)

33. Platzer, A.: Differential hybrid games. ACM Trans. Comput. Log. 18(3), 1–44
(2017)

34. Platzer, A.: Logical Foundations of Cyber-Physical Systems. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-63588-0

35. Platzer, A., Tan, Y.K.: Differential equation invariance axiomatization. J. ACM
67(1), 1–66 (2020)

36. Potočnik, B., Bemporad, A., Torrisi, F.D., Mušič, G., Zupančič, B.: Hybrid mod-
elling and optimal control of a multiproduct batch plant. Control. Eng. Pract.
12(9), 1127–1137 (2004)

37. Rouhling, D.: A formal proof in Coq of a control function for the inverted pendu-
lum. In: CPP. ACM (2018)

38. Schmidt, L.D.: The Engineering of Chemical Reactions. Oxford University Press,
Oxford (1998)

39. Sogokon, A., Jackson, P.B., Johnson, T.T.: Verifying safety and persistence prop-
erties of hybrid systems using flowpipes and continuous invariants. In: Barrett, C.,
Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 194–211. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-57288-8 14

40. Stephanopoulos, G.: Chemical Process Control: An Introduction to Theory and
Practice. Prentice-Hall, Hoboken (1984)

41. Tan, Y.K., Platzer, A.: An axiomatic approach to existence and liveness for dif-
ferential equations. Formal Aspects Comput. 33, 461–518 (2021). https://doi.org/
10.1007/s00165-020-00525-0

https://doi.org/10.1007/978-3-540-71067-7_20
https://doi.org/10.1007/978-3-540-71067-7_20
https://doi.org/10.1007/978-3-642-15956-5_1
https://doi.org/10.1007/978-3-319-16577-6_3
https://doi.org/10.1007/978-3-319-23820-3_19
https://doi.org/10.1007/978-3-319-23820-3_19
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1007/978-3-319-57288-8_14
https://doi.org/10.1007/s00165-020-00525-0
https://doi.org/10.1007/s00165-020-00525-0

120 R. Bohrer

42. Tan, Y.K., Platzer, A.: Deductive stability proofs for ordinary differential equa-
tions. In: TACAS 2021. LNCS, vol. 12652, pp. 181–199. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-72013-1 10

43. Tsay, C., Pattison, R.C., Piana, M.R., Baldea, M.: A survey of optimal process
design capabilities and practices in the chemical and petrochemical industries.
Comput. Chem. Eng. 112, 180–189 (2018)

44. Wang, S., Zhan, N., Zou, L.: An improved HHL prover: an interactive theorem
prover for hybrid systems. In: Butler, M., Conchon, S., Zäıdi, F. (eds.) ICFEM
2015. LNCS, vol. 9407, pp. 382–399. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-25423-4 25

45. Qiwen, X., Weidong, H.: Hierarchical design of a chemical concentration con-
trol system. In: Alur, R., Henzinger, T.A., Sontag, E.D. (eds.) HS 1995. LNCS,
vol. 1066, pp. 270–281. Springer, Heidelberg (1996). https://doi.org/10.1007/
BFb0020952

https://doi.org/10.1007/978-3-030-72013-1_10
https://doi.org/10.1007/978-3-319-25423-4_25
https://doi.org/10.1007/978-3-319-25423-4_25
https://doi.org/10.1007/BFb0020952
https://doi.org/10.1007/BFb0020952

Analysing Capacity Bottlenecks in Rail
Infrastructure by Episode Mining

Philipp Berger1 , Wiebke Lenze2 , Thomas Noll1(B) , Simon Schotten3,
Thorsten Büker3, Mario Fietze4, and Bastian Kogel2

1 Software Modeling and Verification Group, RWTH Aachen University,
Aachen, Germany

{Berger,Noll}@cs.rwth-aachen.de
2 Institute of Transport Science, RWTH Aachen University, Aachen, Germany

{Lenze,Kogel}@via.rwth-aachen.de
3 quattron management consulting GmbH, Aachen, Germany

{Simon.Schotten,Thorsten.Bueker}@quattron.com
4 German Centre for Rail Traffic Research, Dresden, Germany

FietzeM@dzsf.bund.de

Abstract. We introduce a methodology to identify and analyse capac-
ity bottlenecks in railway networks. It is based on operational data that
has been recorded in real operation. In a first step, network areas that
exhibit frequent and significant train delays are determined. Next, the
actual causes of such delays are investigated by analysing interdepen-
dences between train runs and by distinguishing between primary and
secondary delays. This is achieved by employing episode mining tech-
niques to enable the systematic identification of temporal patterns that
occur frequently in the data about train runs.

Keywords: Train delays · Capacity bottlenecks · Episode mining

1 Introduction

Since most rail networks are already heavily utilised in many sections, further
increase in passenger and freight transportation will raise the infrastructure
usage and the number of bottlenecks even more. These challenges need to be
addressed by, e.g., using the existing infrastructure more efficiently and expand-
ing the network appropriately. That is why knowledge about the location of the
most critical areas of the network and the related causes of delays is essential.

To gain such knowledge, the German Centre for Rail Traffic Research1 has
commissioned a project to identify, analyse and dissolve such bottlenecks auto-
matically. This paper concentrates on the second step, presenting the methods
developed to investigate the propagation of delays.

1 https://www.dzsf.bund.de/.

Funded by the German Centre for Rail Traffic Research.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. F. Groote and M. Huisman (Eds.): FMICS 2022, LNCS 13487, pp. 121–133, 2022.
https://doi.org/10.1007/978-3-031-15008-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15008-1_9&domain=pdf
http://orcid.org/0000-0002-3942-3217
http://orcid.org/0000-0002-7234-5951
http://orcid.org/0000-0002-1865-1798
https://www.dzsf.bund.de/
https://doi.org/10.1007/978-3-031-15008-1_9

122 P. Berger et al.

Our approach is based on historical railway traffic data, which records trains
moving in the railway system in real operation over longer periods of time. The
aim is to identify the actual causes of disruptions by identifying interdepen-
dences between (delayed) train runs, with the goal of distinguishing primary
and secondary delays. To this aim, we employ episode mining [6], a data-driven
technique which enables the analysis of temporal patterns that frequently occur
in a given time-stamped event sequence.

The remainder of this paper is organised as follows. We continue in Sect. 2
with giving an overview of related work. In Sect. 3, we describe the systematic
evaluation of operational data of train runs with the goal of identifying capacity
bottlenecks, which are locations (i.e., stations or sections) of the network where
trains frequently suffer an increase in delay. The most critical bottlenecks are
then analysed using the episode mining methods as explained in Sect. 4. The
outcome of this evaluation is described in Sect. 5, and the paper ends with some
conclusions in Sect. 6.

2 Related Work

The application of data and process mining methods to real railway traffic data
seems a natural choice. Surprisingly, comparatively few research efforts have been
undertaken to develop appropriate techniques. The work that is presumably
closest to ours is described in [1], where also a mining algorithm for frequent
episodes is employed to analyse knock-on delays in the Belgian railway system.
However, Cule et al. only consider trains passing a single spatial reference point,
which does not allow to investigate the propagation of delays over larger parts
of the network.

The problem of automatically identifying systematic dependences between
train delays is also addressed in [2]. Flier et al. develop efficient algorithms to
detect two of the most important types of dependences in real-world railway
delay data, namely dependences due to resource conflicts and due to maintained
connections. Once such dependences are found in the input data, they are more
closely examined by statistical methods in a subsequent step.

Another application of (process) mining techniques, but with a different
objective, is presented in [5]. The work by Mannhardt et al. is based on railway
traffic control logs that register precise information about the actual scheduling
of trains at a station. Process mining is used with this data to investigate the
quality of ad-hoc decisions that are taken by railway dispatchers in reaction to
unplanned events. This allows to explore and to evaluate scheduling strategies
for dealing with unexpected disruptions.

Yet another application is the exploratory analysis of train re-routings in
Belgium based on discovered process models [3]. The method developed by
Janssenswillen et al. is able to identify areas in the railway network where trains
have a higher tendency to diverge from their actually allocated route, which
provides a starting point to improve the planning of capacity usage.

Analysing Capacity Bottlenecks in Rail Infrastructure by Episode Mining 123

3 Identification of Capacity Bottlenecks

As relevant background information for the episode mining technique developed
in the following, this section summarises the method to identify capacity bottle-
necks which has been elaborated in [4] and [8].

3.1 Method

Bottlenecks are identified based on delay information of trains. Our method
counts the occurrence of delays at one location (“delay event”) and weights
delay increases based on a train’s initial delay. An emergence of a delay for a
punctual train is weighted higher compared to already heavily delayed trains.
Delays are classified using six categories as shown in Fig. 1.

Fig. 1. Delay categories defined by delay times (in seconds) [4]

Due to different category widths, delay increases lead to category changes
more or less quickly. Such category changes are counted in order to identify bot-
tlenecks. To avoid delays to be balanced by delay reductions of other trains, only
changes into higher categories are considered. Moreover, changes from category
0 to category 1 represent changes for premature trains that do not cause bot-
tlenecks and are therefore not included. Trains with delays in category 5 highly
deviate from their scheduled time slot, which also makes them unsuitable for the
identification of bottlenecks. The delay increases and category changes that are
measured can be weighted, with more category changes entailing higher weights.
We recommend weighting them according to generally accepted priorities of the
affected train type, assigning e.g. high weighting factors to long-distance passen-
ger trains. Details can be found in [4].

3.2 Results

Using the method presented, bottlenecks and their severity are calculated for an
investigation area such as (a part of) a rail network. We have applied the method
to the German rail network, which consists of about 10 000 locations. With its
40 000 train runs per day, the total amount of measured events is about 900 000
for both arrivals and departures per day (not every location is served every day,
for example access points for industry). Since there is a regular major change
of the timetable in December and since different timetables are employed at
weekends, all business days between January 2nd and November 30th of a year
are considered, resulting in a total amount of measured events of more than 410
million.

124 P. Berger et al.

The method’s result is a list of railway lines and stations sorted by their sig-
nificance concerning the network’s performance. Lines and stations with highest
significance are identified as bottlenecks. Such bottlenecks are characterised by
large delay increases and delay propagations.

4 Analysing Delay Propagations

The approach described in the following is based on the list of (critical) bottle-
necks as determined in Sect. 3, together with the relevant input data.

4.1 Goals and Overview

Our goal is to identify the actual causes of delays by analysing interdependences
between train runs and by distinguishing between primary and secondary delays.
The former refer to delays that are not caused by interaction with other trains
but are due to disruptions such as technical malfunctions or additional time
required by passengers for changing trains. The latter result from other trains
being delayed. Possible reasons are the blocking of a railway section by another
train or a connecting train having to wait for another train. Thus, secondary
delays are delays that are propagated between train runs. In order to enable
the development of approaches to resolve bottlenecks, primary delays will be
categorised in a later phase of the project to distinguish between technical and
organisational causes. This, however, is mostly manual work which is outside the
scope of this paper.

Obviously, the problem to be solved requires the systematic analysis of tem-
poral patterns that occur frequently in the data about train runs. To this aim, we
employ a technique called episode mining that supports such tasks and that has
successfully been applied to similar problems before [1]. In a nutshell, episodes
represent summary information about temporal constellations that often occur in
(time-stamped) input event data. In our setting, they are employed to answer the
following central question: Which trains are frequently together delayed? Episode
mining algorithms are based on certain numeric parameters that serve to give
quantitative characterisations of the following aspects:

– What does delayed mean?
We introduce a parameter D which specifies the minimal delay that is con-
sidered to be critical. Episode mining only takes those train runs into account
whose delay in the considered network location is at least D. A typical value
is D = 3min.

– What does together mean?
We introduce a parameter W which specifies the length of the sliding window
that is moved stepwise over the (temporally ordered) input event data. Thus,
a common appearance of two or more train runs is only considered to be
temporally connected (and thus included in an episode) when they occur
within the temporal distance as specified by W . A typical value is W =
30 min.

Analysing Capacity Bottlenecks in Rail Infrastructure by Episode Mining 125

– What does frequently mean?
We introduce a parameter T which specifies the frequency threshold as an
absolute value. It allows to distinguish between sporadic and statistically
significant temporal patterns by defining the minimal number of occurrences
of an episode in the input data. In other words, after the actual mining phase
an episode is disregarded if its occurrence frequency is below T .

In contrast to the first two parameters, the interpretation of T is context
specific. It depends on both the length of the event sampling period and the
window parameter W . This is due to the fact that the length W of the slid-
ing window has strong impact on both the size and the frequency of matching
episodes. On the one side, enlarging W means that (also) larger episodes are
found since more train runs are considered to be in temporal connection. On
the other side, this also increases the occurrence frequency of episodes: As the
window is moved stepwise over the input data, two or more train runs whose
temporal distance falls below W are considered multiple times. More precisely,
the smaller the distance in relation to W , the stronger the episode frequency is
increased. A concrete example illustrating these connections will follow later.

4.2 Episode Mining

We will now explain the episode mining technique in detail, providing both
formalisations and illustrative examples. Let us start with the formal definition
of episodes.

Definition 1 (Episode)

– Let E be a non-empty, finite set of events.
– An event occurrence (e, t) ∈ E × N consists of an event e ∈ E and a time

stamp t ∈ N.
– An episode is a partial order P = (E,→), i.e., → ⊆ E × E is reflexive,

transitive and anti-symmetric. The size of P is given by |E|, i.e., the number
of events.

– An episode P1 = (E1,→1) is called a sub-episode of another episode P2 =
(E2,→2) if E1 ⊆ E2 and →1 ⊆ →2. Correspondingly, P2 is called a super-
episode of P1 in this case. This relation is denoted by P1 � P2.

In this paper, episodes are usually represented by directed acyclic graphs
(DAGs) whose vertices correspond to events and where the transitive closure of
the edges determines the ordering relation. Note that the distinction between
sub- and super-episodes refers to the level of preciseness of episodes: If P1 � P2

and P1 �= P2, then P2 contains more events or temporally orders more events
than P1, which actually means that P2 gives more precise information about a
temporal pattern than P1.

Example 1. In our application, events correspond to train runs that are delayed
in a certain network location, and time stamps indicate the time of arrival (or
departure). Figure 2 shows (the DAG representation of) an example episode. It
can be interpreted as follows:

126 P. Berger et al.

– Trains 1, 5, 7, 12 and 42 are “often” delayed together.
– In “many” cases, train 1 arrives before 5 and 42 as well as both 5 and 42

before 12.
– No (frequent) order occurs neither between trains 5 and 42 nor between 7

and other trains.

As we will see in the following, these qualitative descriptions are made precise
by means of the numeric parameters that have been introduced before.

Fig. 2. An episode showing frequently occurring temporal orders between trains

The episode mining algorithm that is employed in our analysis is described in
[9]. It operates on sequences of event occurrences (i.e., time-stamped events). As
seen in the previous example, in our setting an event corresponds to the arrival
(or departure) of a train with a delay of at least D at a certain network bot-
tleneck (identified as described in Sect. 3). To derive the corresponding episode
information, a sliding window of length W is moved stepwise over the input
sequence, and the corresponding episode information is collected. The follow-
ing definition states which episodes are recorded for the events in the currently
considered section of the input data stream.

Definition 2 (Matching episode)

– Let ((e1, t1), . . . , (en, tn)) ∈ (E ×N)∗ be an ordered sequence of time-stamped
events, i.e., ei �= ej for i �= j and t1 < . . . < tn.

– A section of duration W is a sub-sequence S = ((ek, tk), . . . , (el, tl)) such that
tl − tk ≤ W and (l = n or else tl+1 − tk > W).

– Let P = ({ek, . . . , el},→) be the corresponding (maximal) episode, that is,
ei → ej iff i ≤ j. Then every sub-episode of P (including P itself) matches
S.

As we will see later, during episode mining it is important that not only
maximal matching episodes but also their (proper) sub-episodes are taken into
account. This is due to the fact that when moving the sliding window over the
input sequence, the number of matching occurrences of each episode (the so-
called support value) is computed, and all episodes with differing support values
will be taken into account.

Let us illustrate the computation of support values by means of a toy exam-
ple. A detailed explanation of the algorithm can be found in [9]. As explained
before, it operates on a sequence of time-stamped events which is obtained from
the data base of train runs by applying the following input transformation:

Analysing Capacity Bottlenecks in Rail Infrastructure by Episode Mining 127

1. remove all runs with delay < D,
2. filter to the network location of interest, and
3. project to the time of arrival (TOA) and the train identifier.

Example 2. Let us assume that the input transformation yields the sequence
of train arrivals shown in Fig. 3a, which are aggregated into three lines A, B,
and C. Observe that it consists of three temporally contiguous blocks (TOA
12:00–12:02, 12:20–12:22, 12:30–12:32) with larger gaps in between. Performing
an episode analysis with a window size of W = 2min (and a step size of 1min)
yields the result given in Fig. 3b.2

Here, episodes 1–3 match all three blocks (and thus have a support value of
3), whereas 4 and 5 match the first and the third block and 6 and 7 only the
second block.

Fig. 3. Episode analysis

Obviously, the analysis is quite complex as the number of (possible) episodes
increases exponentially with the number of events. Therefore, an important goal
is to reduce the number of results as much as possible. The first step is to remove
episodes that are redundant in the sense that they are accompanied by a proper
super-episode with the same support value. In this case, the sub-episode can be
removed without any loss of information as the super-episode is, on the one hand,
more precise and, on the other hand, covers all situations matched by the sub-
episode (as their support values coincide). The following definition introduces
the notion of closedness to characterise non-redundant episodes.

Definition 3 (Closed episode). Let {P1, . . . , Pn} be a set of episodes with
support values s : {P1, . . . , Pn} → N. For i ∈ {1, . . . , n}, Pi is called closed if
there exists no j ∈ {1, . . . , n} \ {i} such that Pi � Pj and s(Pi) = s(Pj).

2 Actually, the analysis also returns sub-episodes of smaller size, e.g., when the slid-
ing window overlaps with the beginning or the end of a block. We omit those for
simplicity.

128 P. Berger et al.

Example 3. With regard to the previous example, we make the following obser-
vations:

– (A,B,C) is a proper sub-episode of all other episodes. Since, e.g., (A → B,C)
has the same support, episode 1 is not closed.

– (A → B,C) and (A → C,B) only have (A → B → C) and (A → C → B),
respectively, as proper super-episodes, which both have less support. There-
fore, episodes 2 and 3 are closed.

– (A,B → C) and (A,C → B) respectively have (A → B → C) and (A → C →
B) as proper super-episodes with the same support. Therefore, episodes 4 and
6 are not closed.

– (A → B → C) and (A → C → B) have no proper super-episode, making
episodes 5 and 7 closed by definition.

As an intermediate result, we obtain a list of closed episodes together with
their frequency distribution (support). In the next step, we filter out “outliers”
by applying the threshold parameter T .

Example 4. By imposing threshold parameter T = 3 on the four closed episodes
found in the previous example, we obtain only those closed episodes that match
every block, which are (A → B,C) and (A → C,B). This result can be inter-
preted as follows:

– Trains A, B and C are frequently delayed together.
– Train A always arrives before both B and C (since otherwise also (A,B,C)

were a closed episode).
– Train A (locally) causes the delay (since A is never preceded by any other

train).

While the meaning of the delay parameter D and of the window size parame-
ter W are directly understandable, the interpretation of the threshold parameter
T is less intuitive and more context dependent. Its definition depends on both
W and on the sampling period that is chosen for the input and yields an abso-
lute value. The following example might illustrate this: Let us assume for a
window size W = 1800 s and a step size of 1 s that train B arrives 50 s after
train A. This single instance already yields a support of 1800 − 50 = 1750 for
(sub-)episode (A → B). This value gets closer to 1800 if the distance between
the trains decreases. On the other hand, increasing the distance reduces the sup-
port. In the extreme case, it becomes one if window size and distance coincide
(as demonstrated in Example 2). In other words, the support value correlates
with the temporal vicinity of (delayed) trains, which is clearly a desirable effect.
Thus, if an overall support of, say, 40 000 was computed by episode mining and
if both trains run once per day, then we can deduce that this arrival pattern
occurred on at least

⌈
40 000
1800

⌉
= 23 days. A reasonable choice of the threshold

parameter T has to take all this context information into account.

Analysing Capacity Bottlenecks in Rail Infrastructure by Episode Mining 129

4.3 Algorithm and Implementation

As explained before, the principle of episode mining is to move a sliding window
over the event data of a network location and to count the temporal patterns as
they are matched. However, since the number of possible sub-episodes increases
exponentially with the number of train runs occurring in the window, this simple
approach does not scale. Instead, the algorithm employed in our project, which
is described in [9], picks up the idea of operating on closed episodes, as described
in the previous subsection. However, as we have also seen, it is not possible to
define a unique episode closure based on support values because an episode may
have several closed super-episodes.

To tackle this problem, so-called strict episodes are introduced, which enable
a unique definition of a closure operator. After efficiently computing strict closed
episodes, the closed episodes that we are actually interested in can be obtained
by means of a post-processing step. This algorithm has been implemented by
N. Tatti in the open-source Closed Episodes Miner tool, which is available online3

and whose code is used in our implementation.

4.4 Adaptations

In order to take the special needs of our railway project into account, the generic
episode mining algorithm needs to be adapted. Since we wanted to avoid any
modification of the complex implementation itself, we enriched it by additional
data pre- and post-processing steps. These are briefly described in the following.

– Restriction to total (i.e., linearly ordered) episodes: The mining algorithm
described in the previous section identifies both total and non-total episodes.
For the purpose of bottleneck analysis, however, the former are better suited
as they allow to directly identify chains of dependences. Therefore, in the
current version of our analysis, we simply remove all non-total episodes from
the result. Note, however, that this does not mean that delayed trains are
always ordered in the same way. If they occur in varying orders on several
days, corresponding total episodes with different support values are generated.

– Restriction to episodes in which the subsequent trains suffer an increase in
delay in the respective location: As explained before, our analyses only con-
siders trains whose delay exceeds a predefined delay threshold D. In order to
distinguish between primary and secondary delays, it is necessary to identify
the first location where two (or more) trains interact. This means that two
(or more) delayed trains following each other should not be captured at every
location of their common route but only at the position where the delay is
actually propagated. Therefore as an additional restriction we require that
all trains in an episode except for the first one suffer an increase in delay
of at least 30 s, which turned out to be a reasonable choice of this threshold
parameter.

3 https://version.helsinki.fi/dacs/2010-closed-episodes-miner.

https://version.helsinki.fi/dacs/2010-closed-episodes-miner

130 P. Berger et al.

Unfortunately, this additional restriction cannot be directly configured in the
mining algorithm. Instead, all events that satisfy the delay-increase require-
ment are duplicated and are marked in a way which allows to filter redundant
events after the mining phase.

Moreover, the following optimisations are applied in order to reduce the num-
ber of events that can occur in the sliding window. This is particularly neces-
sary for locations that are heavily charged, resulting in temporally dense event
streams.

– Arrival vs. departure times: Since delay propagations can occur both in the
inflow and outflow of a network location, both arrival and departure times
need to be considered in the analysis. This means that episodes can indicate all
four possible combinations of dependences between arrivals and departures.
In particular, they can be recorded between arrival and departure of the same
train. Such dependences, however, are irrelevant and are therefore ignored.
Moreover, the following pre-processing steps are applied to further reduce the
number of time-stamped events to be considered:

• If the difference between two time stamps of the same train is below a
certain threshold (here: 15 s), both are combined into one event, which
removed roughly 33% of events. This, in particular, applies to a non-
stopping transit of a train.

• If two time stamps of the same train directly follow each other without
intervening time stamps of other trains, they are combined into one event
if their distance does not exceed a threshold of 5min, which removes
roughly 15% of events.

Both threshold values turned out to yield a good compromise between the
reduction effect on the one hand and the precision of analysis on the other
hand.

– Independent investigation of driving directions for train stops (i.e., non-
crossing locations): In stopping points without switches, conflicts can only
occur between trains passing into the same direction. Opposite directions can
therefore be evaluated independently of each other.

– Exclusion of suburban trains: In major train stations, suburban trains are
excluded from the analysis. On the one hand, this is necessary since otherwise
the amount of input data exceeds our computation capacities. On the other
hand, suburban trains are usually running on separate tracks in major stations
such that interactions between suburban and other kinds of trains are limited.

– Evaluation of train lines: In situations where trains are operated in regular
intervals, interactions cannot only be identified between train runs but also
between train lines (cf. Example 2). Aggregating runs into lines has the pos-
itive effect of increasing the number of related events, which facilitates the
identification of temporal patterns in the overall data. However, the assign-
ment of train lines to train numbers is non-trivial as they are not properly
documented in the input data, and as they can change over the year. Even
worse, line numbers for freight trains are not at all schematised but vary
daily.

Analysing Capacity Bottlenecks in Rail Infrastructure by Episode Mining 131

To meet these challenges, different methods are applied to introduce line
identifiers for passenger and freight trains. The former are based on the tar-
get arrival and departure times of trains, assuming one-hour intervals as the
prevalent scheduling schema. To deal with the latter, the identification of lines
is based on train paths, that is, predefined slots in the scheduling schema that
are allocated to freight trains.

5 Evaluation Results

In this project, episode mining techniques have proven to be useful for analysing
the propagation of delays in railway networks. They allow to derive interactions
between train runs by observing temporal patterns between time-stamped events
without requiring detailed knowledge about the technical infrastructure at the
considered location. Thus they yield results that can hardly be achieved on a
network-wide scale using other (non-automated) methods. More concretely, run-
ning episode mining on a data set with approx. 10 000 locations and altogether
93 million events (remaining after filtering a total amount of 410 million events
by the mentioned criteria) roughly takes 6 h.

It also turned out, however, that the interpretation of pattern frequencies,
i.e., support values for episodes, is not straightforward. For example, with a
non-optimised scheduling of trains using a large signal headway, support values
are typically lower than after optimisation, even if the same delay times are
propagated. This is due to the fact that in the optimised case, trains follow each
other in shorter distances, leading to more frequent occurrences of episodes in
the sliding window. Similar observations apply to the comparison of different
locations in the network.

To facilitate the interpretation of analysis results, diagrams such as the one
shown in Fig. 4 can be helpful. It has been produced using the OpenTimeTable
Tool [7] and illustrates the propagation of a delay between two trains (1 followed
by 2) running from station A (left) to B (right). The vertical axis represents time
(progressing downwards), while the horizontal axis gives the position of a train at
the respective point in time. The planned scheduling of train 1 and 2 according
to the timetable is indicated in green and blue thin solid lines, respectively. The
green bars visualise a number of actual runs over a longer period of time, with
the corresponding medians given by dashed lines. The increasing gap between
the solid and the dashed lines indicates the progressive deviation of both trains
from their planned schedule The diagram thus clearly demonstrates that the
increasing delay of the first train also causes the second train to gain delays.

132 P. Berger et al.

Fig. 4. Visualisation of a delay propagation between two trains (vertical axis: time,
horizontal axis: position) (Color figure online)

6 Conclusions and Outlook

In this paper, we investigated systematic methods to identify and, in particu-
lar, to analyse capacity bottlenecks in railway networks. The approach that we
applied in the latter step is based on episode mining, a data-driven technique
which enables the systematic analysis of temporal patterns that occur frequently
in time-stamped event data. In our setting, this provides systematic information
about train runs that have been recorded in real operation, especially in network
locations that have earlier been classified as capacity bottlenecks. By analysing
interdependences between such train runs, episode mining allows to distinguish
between primary and secondary delays.

Current project work concentrates on appropriate approaches to resolve bot-
tlenecks. To this aim, primary delays will be categorised to distinguish between
technical and organisational causes. Even though some statistical data about
such causes is available from the operational data base, additional manual effort
will be required to obtain a consistent classification. Finally, the overall method
will be implemented by means of a prototypical software tool.

References

1. Cule, B., Goethals, B., Tassenoy, S., Verboven, S.: Mining train delays. In: Gama, J.,
Bradley, E., Hollmén, J. (eds.) IDA 2011. LNCS, vol. 7014, pp. 113–124. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-24800-9 13

2. Flier, H., Gelashvili, R., Graffagnino, T., Nunkesser, M.: Mining railway delay
dependencies in large-scale real-world delay data. In: Ahuja, R.K., Möhring, R.H.,
Zaroliagis, C.D. (eds.) Robust and Online Large-Scale Optimization. LNCS, vol.
5868, pp. 354–368. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
05465-5 15

3. Janssenswillen, G., Depaire, B., Verboven, S.: Detecting train reroutings with pro-
cess mining. EURO J. Transp. Logist. 7(1), 1–24 (2017). https://doi.org/10.1007/
s13676-017-0105-8

https://doi.org/10.1007/978-3-642-24800-9_13
https://doi.org/10.1007/978-3-642-05465-5_15
https://doi.org/10.1007/978-3-642-05465-5_15
https://doi.org/10.1007/s13676-017-0105-8
https://doi.org/10.1007/s13676-017-0105-8

Analysing Capacity Bottlenecks in Rail Infrastructure by Episode Mining 133

4. Lenze, W., et al.: Identification of bottlenecks in rail infrastructure. Accepted for
Presentation at 5th International Conference on Railway Technology (RAILWAYS
2022). https://www.railwaysconference.com

5. Mannhardt, F., Landmark, A.D.: Mining railway traffic control logs. Transp. Res.
Procedia 37, 227–234 (2019). https://doi.org/10.1016/j.trpro.2018.12.187

6. Mannila, H., Toivonen, H., Inkeri Verkamo, A.: Discovery of frequent episodes in
event sequences. Data Min. Knowl. Discov. 1, 259–289 (1997). https://doi.org/10.
1023/A:1009748302351

7. Nash, A., Ullius, M.: Optimizing railway timetables with OpenTimeTable. In: Com-
puters in Railways IX, pp. 637–646. WIT Press (2004). https://www.witpress.com/
elibrary/wit-transactions-on-the-built-environment/74/12093

8. Schotten, S., et al.: Einblick DZSF-Projekt Identifikation von Kapazitätsengpässen.
Eisenbahntechnische Rundschau 5, 2–6 (2022)

9. Tatti, N., Cule, B.: Mining closed strict episodes. Data Min. Knowl. Discov. 25,
34–66 (2012). https://doi.org/10.1007/s10618-011-0232-z

https://www.railwaysconference.com
https://doi.org/10.1016/j.trpro.2018.12.187
https://doi.org/10.1023/A:1009748302351
https://doi.org/10.1023/A:1009748302351
https://www.witpress.com/elibrary/wit-transactions-on-the-built-environment/74/12093
https://www.witpress.com/elibrary/wit-transactions-on-the-built-environment/74/12093
https://doi.org/10.1007/s10618-011-0232-z

Testing and Monitoring

Test Suite Augmentation
for Reconfigurable PLC Software
in the Internet of Production

Marco Grochowski(B) , Marcus Völker , and Stefan Kowalewski

Embedded Software, RWTH Aachen University, Aachen, Germany
{grochowski,voelker,kowalewski}@embedded.rwth-aachen.de

Abstract. Regression testing is an established technique used to attest
the correctness of reconfigurations to PLC software. After such a recon-
figuration, a test suite might not be adequate to ensure the absence of
regressions, requiring the derivation of new test cases to uncover poten-
tial regressions. This paper presents a combination of state-of-the-art
symbolic execution algorithms for test suite augmentation, an indispens-
able part of regression testing. Test generation is guided towards the
changed behavior using a technique known as four-way forking. The old
and new PLC software are executed in the same symbolic execution
instance to account for the effects of the reconfiguration and increase the
chances of generating difference-revealing test cases. The prototypical
implementation is evaluated using domain-specific benchmarks such as
the PLCopen Safety library and the Pick and Place Unit, exposing the
limitations in applicability and effectiveness of the used techniques for
safeguarding PLC software subject to frequent reconfigurations as found
in cyber-physical production systems.

Keywords: Regression testing · Test suite augmentation · Symbolic
execution · Programmable logic controllers · Internet of Production

1 Introduction

Transformability, a property resulting from the flexibility and mechanical recon-
figurability of a cyber-physical production system (CPPS), is one of the primary
enablers to cope with changing intrinsic and extrinsic demands and is a necessary
prerequisite to guarantee the ability to compete with other companies [9]. An
overview of the life cycle and value chain of a CPPS is given in Fig. 1. In contrast
to a conventional production system, a CPPS is subject to a high degree of recon-
figurability during its life cycle. This highly agile manufacturing paradigm leads
to an increase in complexity as the insights gained during production turns into
data that controls the production process. Due to the heterogeneity and emer-
gent behavior of CPPS, unwanted regressions might accompany those reconfig-
urations and take their toll on the functional safety and reliability of software
components [6]. In the context of static reconfigurations where the entire CPPS
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. F. Groote and M. Huisman (Eds.): FMICS 2022, LNCS 13487, pp. 137–154, 2022.
https://doi.org/10.1007/978-3-031-15008-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15008-1_10&domain=pdf
http://orcid.org/0000-0003-2964-6799
http://orcid.org/0000-0001-7348-0146
http://orcid.org/0000-0001-9397-2009
https://doi.org/10.1007/978-3-031-15008-1_10

138 M. Grochowski et al.

Fig. 1. Juxtaposition of the life cycle and value chain of cyber-physical production
systems (Figure adapted from illustration in [19]).

is stopped and analyzed during maintenance, short downtimes are crucial, and
we argue that lightweight verification techniques such as testing are suitable to
assess the CPPS’s correctness quickly. Consequently, the goal is to reduce the
lead-time after a reconfiguration to the CPPS has occurred by reducing the time
it takes to test the reconfigured programmable logic controller’s (PLC) software
throughout the ramp-up phase during maintenance as depicted in Fig. 1.

Regression Testing. Regarding the reconfigurations to PLC software, they
manifest themselves in the form of the addition of new functionality, the modi-
fication of already existing functionality, or the removal of functionality, which
most often also requires adaptations to the test suite. As the manual creation of
difference-revealing test cases requires enormous effort and expertise, automated
techniques are desirable. One prominent set of such automated techniques that
tackles test suite maintenance is termed regression testing. Figure 2 illustrates
the process of regression testing and test suite augmentation after a syntactic
reconfiguration. Consider the test suite TP

all for a PLC program P before a recon-
figuration with which the reconfigured PLC program P ′ should be tested. There
are two primary reasons why re-executing the whole test suite is infeasible. The
first one is that the test suite might be too large and require too much time while
not focusing on the parts of the software affected by the reconfiguration. The
other aspect is that the test suite might not even test the changed behavior of P ′.
In this sense, test suite augmentation is necessary and an important complemen-
tary technique to traditional regression testing techniques [21,23]. Dealing with
reconfigurations to the PLC software and its effect on the test suite is a two-step
approach during test suite maintenance. First, one has to assess if the test suite
TP
all is still adequate enough for testing P ′. Standard measures for adequacy are

whether the test suite is homogeneous with regards to the program paths, for
instance, line or branch coverage. Nonetheless, one has to keep in mind that
coverage alone does not quantify the capability of a test suite to reveal regres-
sions. If the test suite is not homogeneous with regards to the failure [20], i.e.,
it structurally covers the reconfigured program path but does not propagate a
divergence to the output, it will not reveal the regression after a faulty syntactic

Test Suite Augmentation for Reconfigurable PLC Software in the IoP 139

Fig. 2. Application of regression testing techniques and test suite augmentation after
a syntactic reconfiguration.

reconfiguration. Second, the reconfigurations in P ′ need to be identified, and the
test case generation algorithm has to be guided to cover the potentially recon-
figured behavior. As regressions are only observable for inputs that expose a
behavioral difference, we use a concept coined as four-way forking [10] to guide
the test case generation into parts of the software affected by a reconfiguration.
As the identification of the reconfiguration is a challenging problem, we resort
to manual software annotations to explicitly denote the reconfigured parts from
one version to another.

Syntactic Reconfiguration. The syntactic reconfiguration mentioned in Fig. 2
follows the concept presented in [10], where a change(old,new)macro was used to
characterize the effect of the reconfiguration. The first argument of this macro rep-
resents the expression from the PLC software before the reconfiguration, and the
second argument represents the expression of the PLC software after the reconfig-
uration. As a result, the manifestation of reconfigurations to PLC software stated
earlier, i.e., the addition of new functionality, e.g., adding an extra assignment
x := change(x, 1);, the modification of already existing functionality, e.g., chang-
ing the right-hand side of an assignment x := y + change(1, 2);, or the deletion of
functionality, e.g. removal of straightline code if(change(true, false)) . . . code . . .
can be expressed succinctly with the change(old,new) macro. This way of anno-
tating the expressions of reconfigured parts of the software has a significant benefit
as it keeps the correspondence between both versions intact and was therefore cho-
sen for analyzing the semantic effects of the implication introduced by the recon-
figurations.

1.1 Limitations and Contributions

A premise resulting from the introduction is the existence of syntactically change-
annotated PLC programs given as input to our framework. To further narrow the

140 M. Grochowski et al.

scope of this contribution, the peculiarities of PLCs have to be considered. A PLC
is subject to cyclic execution resulting in non-termination. Still, every execution
through one cycle terminates and hence can be analyzed. The programming lan-
guages for PLCs forbid recursive calls, i.e., the call-flow graph is acyclic [8]. Fur-
thermore, our framework does not support the use of arrays or pointers yet. Never-
theless, statically allocatedmemory can bemodeled by flattening the arrays.While
the prototypical framework is able to analyze loops other than the naturally occur-
ring execution cycle of the PLC program, these loops are not explicitly handled and
analysis might be intractable. As some of the benchmarks use the timer capabilities
of the IEC 61131-3 standard [8], we use an over-approximating representation of
timers from [1], which non-deterministically models the internal decision variable
measuring the passing of time. Last but not least, control tasks are usually dis-
tributed in the context of Industry 4.0, yet most often still coordinated centrally.
Instead of having a single PLC that controls the various actuators in the CPPS,
multiple PLCs exist, one for each control task and one overarching, coordinating
PLC. Despite that, we model the distributed control task as one, compositional,
classic PLC program, in which the other control tasks are incorporated as func-
tion blocks and executed on one single PLC controller (cf. Sect. 4). This neglects
the influences of different times and latencies introduced due to the communica-
tion between each controlling PLC. We assume that the sequential modeling using
a single PLC is a feasible abstraction of several distributed PLCs running in par-
allel, realizing the same control task, because the business logic is implemented by
a single, coordinating PLC, which processes the messages of the other distributed
PLCs sequentially in all circumstances. To this end,

– we improve the scalability of an existing Dynamic Symbolic Execution (DSE)
algorithm for PLC software,

– we evaluate the feasibility of DSE and the concept of four-way forking for test
suite augmentation of reconfigured PLC software on benchmarks of varying
difficulty and compare it to previous results.

2 Related Work

Symbolic execution is one of the primary techniques for software testing and
resulted in the development of numerous language-agnostic analysis tools in the
past [3]. Previous work has investigated the applicability of DSE in test suite
generation for PLC software [4]. The results were promising but have not been
applied to tackle the problem of test suite augmentation after a reconfigura-
tion. In contrast to [4], the concolic and compositional DART algorithm, also
known as SMART [5], explores the program execution tree depth-first on a per
path basis allowing for the use of summaries. However, we currently refrain from
summarization due to our conflicting merging strategy. An approach that aids
regression testing with static change-impact analysis is called directed incremen-
tal SE (DiSE) [22]. The rationale behind this is that static analysis avoids the
problems of undecidability of whether there exists an input that is difference-
revealing against the reconfigured program by over-approximating the semantic
properties using syntactic dependencies such as control- and data dependencies.

Test Suite Augmentation for Reconfigurable PLC Software in the IoP 141

The results from the static analysis are used to guide symbolic execution by
exploring only paths that can reach parts of the software affected by the recon-
figuration. This approach, however, has two severe disadvantages. We argue that
these slices give only conservative estimates and are often too imprecise, reducing
opportunities for information reuse from the prior analysis of the reconfigured
PLC software. Furthermore, DiSE only explores one execution path through the
impacted parts of the software, and besides reachability, there is no guidance in
the direction of real divergences. This lead us to the choice of Shadow Symbolic
Execution (SSE) [10] for test suite augmentation. SSE uses a seeded exploration
with a test case that touches the presumable patch, or in our terminology, the
reconfiguration. The novelty of SSE is that it executes the old (presumed buggy)
and new (presumed patched) program within the same SE instance. Therefore,
it allows the algorithm not to re-execute potentially expensive path prefixes,
which provides several opportunities to prune and prioritize paths and simplify
constraints. Despite this, the reconfigurations are touched by a test case that
dictates the context in which the potential reconfiguration is reached and hence
limits the generalization. Furthermore, both programs need to be merged into a
change-annotated, unified version.

Verification and Testing in the PLC Domain. Regarding the safeguard-
ing of reconfigurations in the PLC domain several techniques on various levels
have emerged in the past years. TestIas [24] is a tool for model-based verifica-
tion of reconfigurations to distributed automation systems. It works on a higher
level than PLC software, i.e., trying to prove the correctness of a reconfigura-
tion affecting the functional perspective of services in a CPPS. Prioritization
for regression testing of reconfigured PLC software with regards to system tests
was evaluated in [17]. It optimizes the regression testing process of CPPS after a
reconfiguration, however, it is unable to generate difference-revealing test cases.
Another interesting approach poses the modular regression verification of the
VerifAps library which was successfully applied to the Pick and Place Unit
(PPU) case study in [18]. Modular regression verification requires the specifica-
tion of relational regression verification contracts allowing for the decomposition
of the verification task resulting in efficient solving, yet being far from a push-
button technology.

3 Methodology

An overview of our prototypical test suite augmentation (TSA) framework is
given in Fig. 3 and explained throughout this section. TSA can be considered
as a development time technique, in which the developer manually annotates
the desired changes and is able to assess their implications on the observable
behavior of the PLC software. The input to the program analysis framework is a
manually change-annotated PLC program in structured text (ST), one of the five
IEC 61131 programming languages [8], using the change(old,new) annotation
macro introduced in Sect. 1. Before going in-depth with the core TSA algorithm,
we briefly describe our intermediate representation of the PLC software.

142 M. Grochowski et al.

Fig. 3. Overview of the prototypical TSA framework.

3.1 Intermediate Representation

A PLC program can consist of several program organization units (POUs), which
provide an interface definition of the input, local, and output variables, and a
body containing the actual instructions that operate on this interface. The IEC
61131 standard [8] distinguishes between three types of POUs, namely functions,
function blocks, and programs. A program represents the main entry, whereas
function blocks and functions represent stateful and stateless procedures, respec-
tively. At cycle entry, new input values are read from the environment and
written to the input variables. During the execution of the cycle, the program
operates on a copy of these input variables and internal state variables. The
state variables also comprise output variables written to the PLC’s output at
the cycle exit. While new values are assigned to input variables in each cycle,
the internal state variables retain their values. During the parsing and compiling
of the input program, function blocks are lowered to regular procedures operat-
ing on references of their variables. As a result, parameterized calls to function
blocks are modeled as parameterless calls preceded and succeeded by a sequence
of input and output assignments in the respective caller, which do not modify
the state explicitly but rather transfer the flow of control between procedures.
For this purpose, we have chosen a goto-based intermediate representation (IR)
to represent a subset of the ST language [8] in form of a so-called control-flow
graph (CFG) [2]. We model the PLC program as a pair P = (G,G), where G ∈ G
is the CFG of the program POU, and G is a set of CFGs representing nested
function blocks occurring in the program. The instructions supported by this IR
are defined over variables x ∈ X, Boolean and arithmetic expressions e as usual

I ::= assign(x, e) | ite(e,goto b�1 ,goto b�2) | call G′ | return | cycle .

Unlike in typical goto-based IRs, we introduced a cycle instruction, explicitly
denoting the end of the execution cycle. Given the terminology, we will dive into
the baseline symbolic execution framework used for generating the test cases
which is reused during the application of SSE.

Test Suite Augmentation for Reconfigurable PLC Software in the IoP 143

3.2 Bounded Symbolic Execution

Our implementation of the Bounded Symbolic Execution (BSE) for TSA is com-
posed of three components: an execution context, an executor, and an exploration
strategy. An execution context q = (c, �, f, ρ, σ, π) consists of a cycle c, a label �
referring to a vertex b� of a CFG G, a frame stack f , a concrete store ρ, which asso-
ciates variables with concrete values, a symbolic store σ, which associates variables
with symbolic values, and a path constraint π. The frame stack f holds triples
(Gcallee , scope, �caller), where Gcallee denotes the CFG of the callee, scope is the
scope in which the call occurred, and �caller denotes the intra-procedural label of
the caller at which the execution should resume after returning from the callee.
The BSE algorithm is given in Algorithm 1 and explained in the following. It is also
commonly known as compositional SE in literature [3] augmented with parame-
terizable local and global termination criterias.

Exploration Strategy. We decided for a cycle-based, depth-first exploration
strategy similar to [4] with parameterizable timeout, coverage, and cycle bounds.
As the cyclic execution of PLC programs significantly increases the computation
time of symbolic execution, we adjusted the termination criteria in line 2 to con-
sider a configurable cycle exploration bound. The priority queue Q is sorted heuris-
tically by prioritizing execution contexts with a lower cycle count, resulting in
the exploration of all feasible execution paths through one execution cycle before
continuing with the next cycle. Furthermore, candidate execution contexts with a
deeper path length and a concretely executable store are prioritized over execution
contexts with a shallower path length. This enables the depth-first exploration to
simulate a breadth-first exploration through one cycle and generates concise test
cases with no unnecessary executed cycles. When encountering the end of the cycle
during execution (cf. line 25), the cycle counter is increased and new concrete input
valuations and fresh symbolic variables are derived.

Assignments, Branches andCalls. The semantic effects of the instructions on
the respective stores are captured via an evaluation function eval. For an assign-
ment assign(x, e), the concrete and symbolic store are updated via ρ ← ρ[x �→
evalρ(e)] and σ[x �→ evalσ(e)], respectively, as illustrated in line 10. The bracket
notation [] denotes the usual replacement for the specified variable in the store.
Whenever an ite(e,goto �1,goto �2) instruction is encountered, the path con-
straint is updated symbolically depending on the result of the branch expressions
concrete evaluation (cf. line 12). In case the expression evaluates to true, execu-
tion is continued in the positive branch and a test case is derived if this label is
yet uncovered. We also check if the other path is feasible under the current path
constraint and fork the execution context with the concrete valuation of the model
(cf. lines 15–19). As mentioned in the beginning of Sect. 3.1, call and return effects
are lowered to input and output assignments during compilation. Therefore, the
call and return instruction modify the frame stack and update the control-flow
accordingly.

144 M. Grochowski et al.

Algorithm 1: Bounded Symbolic Execution
Input : Program P = (G, G), CFG G = (X,Xin , (B, E), b�e , b�x)
Output : Test Suite T

1 Q ← {(0, �e, ∅, ρ�e , σ�e , true)}; M ← ∅
2 while

(
Q �= ∅ ∨ M �= ∅

)
∧ ¬terminationCriteriaMet do

3 if Q = ∅ then Q.push(merge(M))
4 q ← (c, �, f, ρ, σ, π) ← Q.pop()
5 if reachedMergePoint(q) then
6 M.push(q)
7 else
8 switch instructionAt(�) do
9 case assign(x, e) do

10 Q.push
(
(c, � + 1, f, ρ[x �→ evalρ(e)], σ[x �→ evalσ(e)], π)

)

11 case ite(e,goto �1,goto �2) do
12 if evalρ(e) then
13 q1 ← (c, �1, f, ρ1, σ1, π ∧ evalσ(e)); Q.push(q1)
14 if ¬covered(�1) then T.deriveTestCase(q1)
15 if tryFork(π ∧ evalσ(¬e)) then
16 ρ2 ← model(π ∧ evalσ(¬e)))
17 q2 ← (c, �2, f, ρ2, σ, π ∧ evalσ(¬e)); Q.push(q2)
18 if ¬covered(�2) then T.deriveTestCase(q2)

19 end

20 else // analogous, omitted for brevity

21 case call G′ do
22 f.push(G′, getScope(G), �Gr); Q.push

(
(c, �G′

e
, f, ρ, σ, π)

)

23 case return do
24 (, , �Gr) ← f.pop(); Q.push

(
(c, �Gr , f, ρ, σ, π)

)

25 case cycle do

26
Q.push

(
(c + 1, �e, f,ρ[x ∈ Xin | x �→ random()],

σ[x ∈ Xin | x �→ xfresh], π)
)

27 end

28 end

29 end
30 return T

Merge Strategy. Execution contexts are merged at all possible points where
the control-flow joins with respect to realizable paths as opposed to merging at the
cycle end as in [4]. During execution, we check whether the current context reached
an interprocedural realizable merge point (cf. line 5) and add it to the merge queue
M for further processing.

Unreachable Branches. The detection of unreachable branches is an essential
task to avoid the encoding of infeasible paths when applying symbolic execution.
As our static analysis (SA) is currently not capable of abstract interpretation, we
leveraged the algorithms from Crab1 to build a value set analysis calculating the

1 https://github.com/seahorn/crab.

https://github.com/seahorn/crab

Test Suite Augmentation for Reconfigurable PLC Software in the IoP 145

possible values for each variable at each label of our CFGs. Using this information,
we can statically deduce whether a branch is reachable or not. While being a power-
ful tool it is apparent that the SAof Crab is not tailored to the domain of PLC soft-
ware. To express our IR in a form such thatCrab is able to analyze it, it passes sev-
eral code transformation pipelines including basic block encoding, three-address
code, call-transformation and static single assignment which severely bloats up
the CFG representation. In order to get precise information the expensive boxes
domain was chosen [7]. The boxes domain is sensitive to the number of “splits” on
each variable which come, among other things, from joins and Boolean operations.
Unfortunately, the benchmarks in Sect. 4 “split” a lot due to the cyclic dependency
between variables and the state-machine like behavior. Therefore, to still be able
to reuse at least some information from the SA, we decided for a trade-off between
precision and run time by tuning the behavior of the boxes domain to convexify
after a certain amount of disjunctions resulting in imprecise but still usable results.

3.3 Shadow Symbolic Execution

Intuitively, two things are needed for TSA after a reconfiguration: (1) the test
cases must reach potentially affected areas along different, relevant paths (spe-
cific chains of data- and control-dependencies), and (2) test cases must account
for the state of the PLC software and the effects of the reconfigurations, i.e., be
difference-revealing. An interesting research question in this context is whether the
concept of four-way forking stemming from the SSE [10] algorithm is applicable to
the PLC domain using the change(old, new) macros (cf. Sect. 1) to apply TSA
for reconfigurable PLC software. In general, it can be intractable, because outputs
are potentially difference-revealing after k cycles (depending on the internal state)
and hence the analysis runs out of memory before the difference is reached. In gen-
eral, deriving difference-revealing test cases in the style of SSE [10] is a two-step
application of SE algorithms (cf. Fig. 3) and is presented in detail in Algorithm2. In
line 1 ofAlgorithm2 the test suite of the version before the reconfiguration is reused
and executed on the change-annotated PLC program to determine which test cases
“touch” the change. Prior to execution, in case the interface has changed due to the

Algorithm 2: Test Suite Augmentation using SSE [10]
Input : Program P = (G, G), CFG G = (X,Xin , (B, E), b�e , b�x), Test Suite

T
Output : Difference revealing test cases Tdifference-revealing

1 Tchange-traversing ← collectChangeTraversingTestCases(G, T)

2 foreach t ∈ Tchange-traversing do // Phase 1 - SSE

3 {(q0, t
′
0), . . . , (qm, t′

m)} := Qdivergent.push(findDivergentContexts(t))
4 end
5 foreach (q, t′) ∈ Qdivergent do // Phase 2 - BSE

6 Tdivergent.push(performBoundedExecution(q, t
′))

7 end
8 Tdifference-revealing ← checkForOutputDifferences(Tdivergent)

146 M. Grochowski et al.

reconfiguration, the test case does not contain valuations for all variables. There-
fore, we augment the test case with additional valuations using the 0-default ini-
tialization for BOOL and INT as defined in IEC61131-3, false and 0, respectively.
Each executed test case is further augmented with additional information such as
the execution history and state valuations reaching the end of the cycles of the old
program version. As a test case can “touch” multiple change-annotated labels, we
consider only the test cases that cover as much information as possible with regards
to the respective change-annotated label. This reduces the amount of test cases
needed for consideration in the first phase without losing expressiveness, as test
cases spanning along multiple cycles with the same prefix are prioritized. When
functionality is added depending on newly introduced input variables, the prior
test suite is unable to cover these labels, hence we keep track of labels that were
change-annotated but not “touched” by any test case.

FindingDivergent Contexts. Before continuing with the explanation of Algo-
rithm 2, we present how divergent contexts are found during symbolic execution.
Algorithm 3 uses the concept of four-way forking to determine whether the execu-
tion of a test case leads to potential divergent behavior or not. It is driven by the
concrete input valuations of the corresponding test case (cf. line 1) and the aug-
mented BSE is concolically executed on a per cycle basis using a single execution
context, hence no merging. In general, the algorithm is similar to the one presented
in Algorithm 1. We adapted the handling of branches to support the four-way fork-
ing and introduced additional data structures for storing the shadow expressions in
the context, here hidden behind the concrete and symbolic store. As change anno-
tations may occur in any instruction (or expression) we use the notion of symbolic
change shadows and check whether such a change shadow influences the behavior
of the current execution path. In case a branch is encountered during the concolic
execution of the test case, we recursively check if the expression contains a symbolic
change shadow (cf. line 7). If the current branch expression contains no shadow
expression, we continue the execution as illustrated in Algorithm 1 in the lines 12–
20. In case the branch expression contains a shadow expression, it might lead to
divergent behavior. In order to check whether the current test case takes different
paths in the old and the new version of the code, we first evaluate it under the con-
crete store of the divergent context resolving all shadow expressions (cf. line 8). If
the valuations of the expression in the old and the new context do not coincide, the
test case exposes truly divergent behavior which might trigger difference-revealing
outputs. At this point, the execution stops and the divergent context is added to
the queue to be explored in the second phase. If the valuations are equal, there still
might be potential divergent behavior. First, we encode the expression using the
old and the new symbolic valuations and then check in lines 14–17 whether poten-
tial divergent behavior exists. For this purpose, we explore subsequently whether
there exist concrete valuations that may diverge and derive a test case as a wit-
ness. The forked divergent context is added to the divergent context queue and
the execution continues with either following the true or the false branch try-
ing to propagate the execution context to a deeper nested potentially divergent

Test Suite Augmentation for Reconfigurable PLC Software in the IoP 147

Algorithm 3: findDivergentContexts – BSE with four-way forking [10]
Input : CFG G = (X,Xin , (B, E), b�e , b�x), Test Case t
Output : Divergent Contexts Qdivergent

1 foreach ct ∈ t do
2 q ← (c, �, f, ρct

input , σ, π)

3 while c = ct do
4 switch instructionAt(�) do
5 // other cases analogous to BSE, omitted for brevity

6 case ite(e,goto �1,goto �2) do
7 if containsShadowExpression(evalσ(e)) then

8 (vold, vnew) ← evalshadow
ρ (e)

9 if vold �= vnew then // divergent behavior

10 Qdivergent.push
(
(q, t)

)

11 return Qdivergent

12 else // potential divergent behavior

13 (ϕold, ϕnew) ← evalshadow
σ (e)

14 if tryDivergentFork(π ∧ ¬ϕold ∧ ϕnew) then
15 Qdivergent.push

(
(qforked, deriveTestCase(qforked))

)

16 end
17 if tryDivergentFork(π ∧ ϕold ∧ ¬ϕnew) then
18 Qdivergent.push

(
(qforked, deriveTestCase(qforked))

)

19 end
20 if vold then
21 q ← (c, �1, f, ρ, σ, π ∧ ϕold ∧ ϕnew);
22 else
23 q ← (c, �2, f, ρ, σ, π ∧ ¬ϕold ∧ ¬ϕnew);
24 end

25 end

26 else // analogous to BSE, omitted for brevity

27 end

28 end

29 end

30 end
31 return Qdivergent

context. On termination, i.e., either when a divergent context is found or when all
the concrete input valuations for each cycle of this test case have been executed,
the algorithm returns the set of divergent contexts and continues with the next
test case.

PropagatingDivergent Contexts. The second phase of Algorithm 2 performs
a seeded BSE (cf. Algorithm 1) for each found divergent context in the first phase.
The divergent context and test case passed as parameters in line 6 represent either
a diverging concrete execution or were generated because of a potential, possi-
ble divergence at the four-way fork in the first phase. This phase runs until the

148 M. Grochowski et al.

termination criteria is met and tries to generate as many test cases as possible.
These test cases cover paths originating from a divergence and hence may expose
differences in the outputs between the old and the new version of the reconfigured
PLC program. In line 8 of Algorithm 2 the derived divergent test cases are checked
for output differences. The execution of modified instructions does not mean that
they are necessarily difference-revealing because the subdomains do not need to
be homogeneous with regards to the failure [20]. Hence to determine whether a
test case exposes an externally observable difference, the outputs on the test case
in the new version are compared to the outputs on the test case in the old ver-
sion. If the outputs differ on a per cycle basis, the test case is added to the set of
difference-revealing test cases and requires further examination by the developer.

4 Evaluation

The evaluation was conducted on an Intel(R) Core(TM) i5-6600K CPU @
3.50 GHz desktop with 16 GB of RAM running openSUSE Leap 15.3. For SMT-
solving, we utilized the high-performance automated theorem prover Z3 by
Microsoft [13]. The benchmarks evaluated with Arcade.PLC were also run with
the same evaluation setup. The code of our contribution and the correspond-
ing benchmarks are available for download at https://github.com/embedded-
software-laboratory/TSA-FMICS22.

In the following, we first present the achieved performance improvements for
the BSE as our TSA implementation heavily relies on it before presenting the
results of the TSA algorithm on a few selected benchmarks.

PLCopen Safety Suite. The benchmark consists of a set of safety-related PLC
programs provided by the PLCopen organization [15]. The results are listed in
Table 1 and show for each evaluated function block the lines of code (LOC), the
coverage values as well as the runtimes of the implementation of a merge-based
test generation algorithm in Arcade.PLC [4] in comparison to the results of
our contribution. Because both tools use different IRs, the number of reachable
branches is omitted. The timeout (TO) was set to 10 min. For the detection of
unreachable branches, Arcade.PLC uses a values-set analysis, however, we did
not add the time to the results. Instead, we ran both programs with this addi-
tional pre-computed information to only focus on the performance of the DSE
algorithms. The SAmanual refers to the use of Crab and manual annotation for
truly unreachable branches which were over-approximated due to the convexifica-
tion of the disjunctions (cf. Sect. 3). As far as the function blocks are concerned,
both approaches perform equally well. As all blocks follow the same general struc-
ture, the LOC can be seen as a reference for giving a rough estimate on what one
would expect time wise from the analysis. A significant difference between both
approaches is the amount of test cases generated. While Arcade.PLC generates
concise test cases for every branch, our contribution tries to avoid redundancies due
to shorter test cases being included in longer test cases, hence generating less test
cases overall. This is neither a benefit nor a disadvantage and could be obtained

https://github.com/embedded-software-laboratory/TSA-FMICS22
https://github.com/embedded-software-laboratory/TSA-FMICS22

Test Suite Augmentation for Reconfigurable PLC Software in the IoP 149

by a static postprocessing on the test suite generated by Arcade.PLC. Do note
thatArcade.PLC does not dump any test cases in case it runs into a TO due to a
technical limitation. The programs on the bottom half are bigger in the sense that
they are composed of multiple function blocks from the top with additional logic
and were analyzed without manual SA annotation. As more and more calling con-
texts are available it becomes apparent that delaying the merging until the end of
the cycle performs way worse than merging on all realizable paths when the oppor-
tunity emerges. Most notably, the performance degenerates on blocks which make
heavy use of timer and edge trigger function blocks because only specific paths can
reach deeper behavior.

Table 1. Comparison of branch coverage and runtimes for the test generation of the
PLCopen Safety library, ordered alphabetically.

Function Block /

Program

Arcade.PLC + SA Contribution + SAmanual

LOC cov. [%] T [#] time [s] cov. [%] T [#] time [s]

Antivalent 136 100 61 0.74 100 23 0.37

EDM 229 100 134 5.22 100 62 3.49

Emergency Stop 127 100 66 0.45 100 27 0.33

Enable Switch 133 100 71 1.13 100 32 1.28

Equivalent 133 100 62 0.86 100 26 0.59

ESPE 127 100 66 0.42 100 27 0.31

Guard Locking 148 100 80 1.01 100 37 0.87

Guard Monitoring 174 100 82 1.45 100 34 1.12

Mode Selector 239 100 70 5.20 100 30 1.08

Muting Seq 262 97.5 - TO 100 53 49.6

Out Control 121 100 67 0.77 100 31 0.61

Safe Stop 157 100 73 3.52 100 32 0.59

Safely Limit Speed 175 100 91 9.90 100 41 1.38

Safety Request 191 100 88 1.29 100 40 1.01

Testable Safety Sensor 291 100 147 16.93 100 68 17.08

Two Hand Control Type II 126 100 83 0.85 100 38 0.73

Two Hand Control Type III 184 100 107 1.63 100 46 0.95

DiagnosticsConcept 537 65.49 - TO 91.00 104 TO

Muting 1119 51.24 - TO 80.23 196 TO

SafeMotion 1061 38.15 - TO 73.71 156 TO

SafeMotionIO 811 53.50 - TO 71.65 106 TO

TwoHandControl 608 58.79 - TO 86.34 131 TO

Pick and Place Unit (PPU). The benchmark consists of a total of 15 scenar-
ios for the PPU of an open-source bench-scale manufacturing system2. While it is

2 https://www.mw.tum.de/ais/forschung/demonstratoren/ppu/.

https://www.mw.tum.de/ais/forschung/demonstratoren/ppu/

150 M. Grochowski et al.

limited in size and complexity, this trade-off between problem complexity and eval-
uation effort does not harm the expressiveness of the benchmark. In this evalua-
tion,we focused on the first four scenarios and translated them from theirPLCopen
XML representation to ST using theVerifAps library3. The Scenario 0 consists
of a stack, crane and a ramp of which the latter is only mechanical. The recon-
figuration Scenario {0 → 1} aims to increase the ramp’s capacity. This recon-
figuration does not affect the software as the ramp is a purely mechanical com-
ponent. As a response to changing customer requirements, the reconfiguration
Scenario {0 → 2} enables the PPU to handle both plastic and metallic work-
pieces. For this purpose, an induction sensor is introduced which changes the out-
put behavior of the stack component. The behavior of the crane is untouched.
The third reconfiguration Scenario {2 → 3} introduces the stamping function-
ality of metallic workpieces. This impacts the behavior of the crane as workpieces
need to be stamped before being transported to the ramp. The results of the test
suite generation using BSE without SA results are shown in Table 2. The PPU
has more complex behavior in comparison to the PLCopen safety suite, which is
also reflected in the required time/termination criteria for the test case generation.
A comparison with Arcade.PLC was omitted as it was not able to analyze the
benchmarks.

Table 2. Results of the test suite generation using BSE for selected PPU scenarios.

PPU
Scenario

Contribution

LOC cov. [%] T [#] time [s] cycle [#]

Scenario 0 412 88.97 45 169.82 25

Scenario 1 412 88.97 45 170.12 25

Scenario 2 459 89.61 55 274.19 25

Scenario 3 768 91.67 102 1198.08 25

Table 3 shows the results of the TSA for the manually change-annotated recon-
figured PLC programs.

Table 3. Results of the TSA using Algorithm 2 for selected reconfiguration scenarios of
the PPU.

PPU
Evolution

�ca [#]/

�u [#]
Tca [#]

Phase 1 Phase 2
Tdiff [#]

Qdiv [#] t [s] Tdiv [#] t [s]

Scenario {0 → 1} 0/0 0 0 0 0 0 0

Scenario {0 → 2} 12/1 45 2 1.77 52 54.99 23

Scenario {2 → 3} 50/21 55 21 19.49 1269 3423.94 1269

3 https://github.com/VerifAPS/verifaps-lib.

https://github.com/VerifAPS/verifaps-lib

Test Suite Augmentation for Reconfigurable PLC Software in the IoP 151

The first column of Table 3 denotes the analyzed reconfiguration scenario. The
second column contrasts how many change-annotated labels �ca in the recon-
figured program exists and how many of those change-annotated labels remain
untouched �u by the test suite of the prior version. This ratio gives an estimate on
how suited the previous test suite is to find divergences. The third column denotes
the number of test cases Tca in the previous test suite which exercise any number
of change-annotated labels �ca in the change-annotated PLC program. One has to
keep in mind that the generated test cases are succinct with regards to the required
number of cycles to reach a specific branch (in case of branch coverage). Due to the
cyclic nature of the PLC software, test cases which cover deeper nested branches,
i.e., branches reachable after a certain amount of cycles, can share a partial prefix
with test cases covering already some of the branches on these paths. This is a nat-
ural limitation of the SSE approach for cyclic programs resulting in an increased
analysis time for phase 1 and phase 2. The fourth column denotes the number of
derived divergent contexts and the time it took to complete phase 1 for each rep-
resentative test case. The fifth column denotes the number of divergent test cases
generated from propagating the divergent contextes during BSE using the corre-
sponding triggering test cases as a seed for the concolic execution and the time
it took to complete phase 2. The sixth column denotes the number of difference-
revealing test cases found by checking the observable behavior of the old and the
new version of the program on the divergent test cases.

5 Conclusion

The state of the art for TSA is dominated by DSE techniques [3]. We implemented
a baseline BSE improving scalability issues prevalent in prior work [4] due to infre-
quent merging and inefficient storing of the execution contexts. On top of this base-
line, we implemented the concept of four-way forking from SSE [10] and evaluated
the feasibility of this technique on a manually instrumented regression benchmark.
The number of untouched change-annotated labels in the benchmark of Table 3
show the limitation of the SSE approach when trying to analyze reconfigurations
that introduce new functionality and modify the interfaces of the POUs. As SSE
is driven by concrete inputs from an existing test suite, hitting a change is triv-
ially necessary to exercise it. This also means that important divergences can be
missed as it strongly depends on the quality of the initial inputs. There has been
work that investigated a full exploration of the four-way fork, not only to a prede-
fined bound, but the experiments have shown that it is intractable in general [14] –
it does not scale well. Another downside of the SSE approach in the domain of PLC
software lies in the search for additional divergent behaviors. Starting a BSE run
from the divergence in the new version leads to the coverage of locations that would
have been covered with a more succinct prefix. Due to the cyclic nature, the path
prefix of the divergence prevents the coverage of the prior branches – however, it is
undecidable in general whether this is redundant or not as it would require a proce-
dure to check before the execution, whether that path is difference-revealing or not.

152 M. Grochowski et al.

To conclude, SSE can be used to generate difference-revealing test cases that are
suitable for augmentation of the test suite after a reconfiguration. However, it cer-
tainly requires further techniques to reduce the amount of generated difference-
revealing test cases to benefit the developer during reconfiguration.

Outlook. In future work, we would like to improve our baseline BSE and evalu-
ate more sophisticated merging strategies [16] or the incorporation of incremental
solving [12]. While merging may prevent an exponential growth of symbolic exe-
cution contexts and can boost the efficiency [11], the reuse of summaries alleviates
the analysis by not doing redundant work for paths through the program we have
already seen during execution [12]. However, summarization and merging are con-
flicting techniques as checking whether a summary is applicable or not is based on
concrete values, a piece of information we would lose through a merge. It remains
unclear how to benefit the most from merging and summarization.

Acknowledgements. Funded by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) under Germany’s Excellence Strategy – EXC-2023 Internet
of Production – 390621612.

References

1. Adiego, B.F., Darvas, D., Viñuela, E.B., Tournier, J.C., Suárez, V.M.G., Blech,
J.O.: Modelling and formal verification of timing aspects in large plc programs.
IFAC Proc. 47(3), 3333–3339 (2014). https://doi.org/10.3182/20140824-6-ZA-
1003.01279. 19th IFAC World Congress

2. Allen, F.E.: Control flow analysis. In: Northcote, R.S. (ed.) Proceedings of a Sym-
posium on Compiler Optimization, Urbana-Champaign, Illinois, USA, 27–28 July
1970, pp. 1–19. ACM (1970). https://doi.org/10.1145/800028.808479

3. Baldoni, R., Coppa, E., D’Elia, D.C., Demetrescu, C., Finocchi, I.: A survey of sym-
bolic execution techniques. ACM Comput. Surv. 51(3), 50:1-50:39 (2018). https://
doi.org/10.1145/3182657

4. Bohlender, D., Simon, H., Friedrich, N., Kowalewski, S., Hauck-Stattelmann, S.:
Concolic test generation for PLC programs using coverage metrics. In: Cassandras,
C.G., Giua, A., Li, Z. (eds.) 13th International Workshop on Discrete Event Sys-
tems, WODES 2016, Xi’an, China, 30 May – 1 June 2016, pp. 432–437. IEEE (2016).
https://doi.org/10.1109/WODES.2016.7497884

5. Godefroid, P.: Compositional dynamic test generation. In: Hofmann, M., Felleisen,
M. (eds.) Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2007, Nice, France, 17–19 January 2007,
pp. 47–54. ACM (2007). https://doi.org/10.1145/1190216.1190226

6. Grochowski, M., et al.: Formale methoden für rekonfigurierbare cyber-physische sys-
teme in der produktion. at-Automatisierungstechnik 68(1), 3–14 (2020). https://
doi.org/10.1515/auto-2019-0115

7. Gurfinkel, A., Chaki, S.: Boxes: a symbolic abstract domain of boxes. In: Cousot,
R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 287–303. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15769-1 18

https://doi.org/10.3182/20140824-6-ZA-1003.01279
https://doi.org/10.3182/20140824-6-ZA-1003.01279
https://doi.org/10.1145/800028.808479
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657
https://doi.org/10.1109/WODES.2016.7497884
https://doi.org/10.1145/1190216.1190226
https://doi.org/10.1515/auto-2019-0115
https://doi.org/10.1515/auto-2019-0115
https://doi.org/10.1007/978-3-642-15769-1_18

Test Suite Augmentation for Reconfigurable PLC Software in the IoP 153

8. International Electrotechnical Commission: IEC 61131-3:2013 Programmable con-
trollers - Part 3: Programming languages. IEC International Standard IEC 61131-
3:2013 (2013). https://webstore.iec.ch/publication/4552

9. Jeschke, S., Brecher, C., Song, H., Rawat, D.B. (eds.): Industrial Internet of Things.
SSWT, Springer, Cham (2017). https://doi.org/10.1007/978-3-319-42559-7

10. Kuchta, T., Palikareva, H., Cadar, C.: Shadow symbolic execution for testing soft-
ware patches. ACM Trans. Softw. Eng. Methodol. 27(3), 10:1-10:32 (2018). https://
doi.org/10.1145/3208952

11. Kuznetsov, V., Kinder, J., Bucur, S., Candea, G.: Efficient state merging in sym-
bolic execution. In: Proceedings of the 33rd ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2012, pp. 193–204. Associa-
tion for Computing Machinery, New York (2012). https://doi.org/10.1145/2254064.
2254088

12. Lin, Y., Miller, T., Søndergaard, H.: Compositional symbolic execution: Incremen-
tal solving revisited. In: Potanin, A., Murphy, G.C., Reeves, S., Dietrich, J. (eds.)
23rd Asia-Pacific Software Engineering Conference, APSEC 2016, Hamilton, New
Zealand, 6–9 December 2016, pp. 273–280. IEEE Computer Society (2016). https://
doi.org/10.1109/APSEC.2016.046

13. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

14. Noller, Y., Nguyen, H.L., Tang, M., Kehrer, T., Grunske, L.: Complete shadow sym-
bolic execution with java pathfinder. ACM SIGSOFT Softw. Eng. Notes 44(4), 15–
16 (2019). https://doi.org/10.1145/3364452.33644558

15. PLCopen - Technical Committee 5: Safety software, technical specification, part 1:
Concepts and function blocks. Technical report, PLCopen (2020). https://plcopen.
org/system/files/downloads/plcopen safety part 1 version 2.01.pdf

16. Sen, K., Necula, G., Gong, L., Choi, W.: MultiSE: multi-path symbolic execution
using value summaries. In: Proceedings of the 2015 10th Joint Meeting on Founda-
tions of Software Engineering, ESEC/FSE 2015, pp. 842–853. Association for Com-
puting Machinery, New York (2015). https://doi.org/10.1145/2786805.2786830

17. Ulewicz, S., Vogel-Heuser, B.: Industrially applicable system regression test priori-
tization in production automation. IEEE Trans Autom. Sci. Eng. 15(4), 1839–1851
(2018). https://doi.org/10.1109/TASE.2018.2810280

18. Weigl, A., Ulbrich, M., Lentzsch, D.: Modular regression verification for reactive
systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020, Part II. LNCS, vol. 12477,
pp. 25–43. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61470-6 3

19. Weyrich, M., Zeller, A.: Testen von industrie-4.0-systemen - wie vernetzte sys-
teme und industrie 4.0 unser verständnis von systemtest und qualitätssicherung
ändern (2016). https://www.ias.uni-stuttgart.de/dokumente/vortraege/2016-01-
26 Industrie40 Duesseldorf v12final.pdf

20. Weyuker, E.J., Jeng, B.: Analyzing partition testing strategies. IEEE Trans. Softw.
Eng. 17(7), 703–711 (1991). https://doi.org/10.1109/32.83906

21. Xu, Z., Kim, Y., Kim, M., Cohen, M.B., Rothermel, G.: Directed test suite augmen-
tation: an empirical investigation. Softw. Test. Verif. Reliab. 25(2), 77–114 (2015).
https://doi.org/10.1002/stvr.1562

22. Yang, G., Person, S., Rungta, N., Khurshid, S.: Directed incremental symbolic exe-
cution. ACM Trans. Softw. Eng. Methodol. 24(1), 3:1-3:42 (2014). https://doi.org/
10.1145/2629536

https://webstore.iec.ch/publication/4552
https://doi.org/10.1007/978-3-319-42559-7
https://doi.org/10.1145/3208952
https://doi.org/10.1145/3208952
https://doi.org/10.1145/2254064.2254088
https://doi.org/10.1145/2254064.2254088
https://doi.org/10.1109/APSEC.2016.046
https://doi.org/10.1109/APSEC.2016.046
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/3364452.33644558
https://plcopen.org/system/files/downloads/plcopen_safety_part_1_version_2.01.pdf
https://plcopen.org/system/files/downloads/plcopen_safety_part_1_version_2.01.pdf
https://doi.org/10.1145/2786805.2786830
https://doi.org/10.1109/TASE.2018.2810280
https://doi.org/10.1007/978-3-030-61470-6_3
https://www.ias.uni-stuttgart.de/dokumente/vortraege/2016-01-26_Industrie40_Duesseldorf_v12final.pdf
https://www.ias.uni-stuttgart.de/dokumente/vortraege/2016-01-26_Industrie40_Duesseldorf_v12final.pdf
https://doi.org/10.1109/32.83906
https://doi.org/10.1002/stvr.1562
https://doi.org/10.1145/2629536
https://doi.org/10.1145/2629536

154 M. Grochowski et al.

23. Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization:
a survey. Softw. Test. Verif. Reliab. 22(2), 67–120 (2012). https://doi.org/10.1002/
stv.430

24. Zeller, A., Jazdi, N., Weyrich, M.: Functional verification of distributed automation
systems. Int. J. Adv. Manufact. Technol. 105(9), 3991–4004 (2019). https://doi.org/
10.1007/s00170-019-03791-2

https://doi.org/10.1002/stv.430
https://doi.org/10.1002/stv.430
https://doi.org/10.1007/s00170-019-03791-2
https://doi.org/10.1007/s00170-019-03791-2

Monitoring of Spatio-Temporal
Properties with Nonlinear SAT Solvers

André de Matos Pedro1(B) , Tomás Silva1,2, Tiago Sequeira1,
João Lourenço2, João Costa Seco2, and Carla Ferreira2

1 VORTEX-CoLab, Vila Nova de Gaia, Portugal
andre.pedro@vortex-colab.com

2 NOVA-LINCS, NOVA University Lisbon, Lisbon, Portugal

Abstract. The automotive industry is increasingly dependent on com-
puting systems with variable levels of critical requirements. The ver-
ification and validation methods for these systems are now leverag-
ing complex AI methods, for which the decision algorithms introduce
non-determinism, especially in autonomous driving. This paper presents
a runtime verification technique agnostic to the target system, which
focuses on monitoring spatio-temporal properties that abstract the evo-
lution of objects’ behavior in their spatial and temporal flow. First, a
formalization of three known traffic rules (from the Vienna convention on
road traffic) is presented, where a spatio-temporal logic fragment is used.
Then, these logical expressions are translated to a monitoring model writ-
ten in the first-order logic, where they will be processed by a non-linear
satisfiability solver. Finally, the translation allows the solver to check the
validity of the encoded properties according to an instance of a specific
traffic scenario (a trace). The results obtained from our tool that auto-
matically generates a monitor from a formula show that our approach is
feasible for online monitoring in a real-world environment.

1 Introduction

Autonomous Driving System (ADS) is a field of study that belongs to the Cyber-
Physical Systems (CPSs) domain, partially seen as safety-critical systems due
to the high impact that a hazard can have [27]. Correctness and validation of
an ADS are crucial, as any error or malfunction of the system may lead to loss
of life, environmental damage, or financial impact on trust and reputation [22].
Challenges on the verification and validation methodologies for these systems are
being introduced by sub-symbolic AI methods, for which the decision algorithms
are known to introduce non-determinism [2,6,7,15].

Runtime Verification (RV) is a lightweight verification method commonly
used in safety-critical systems [16,19,30] performed during runtime, which offers
the possibility to act whenever a fault is observed. In RV, a formal requirement
is used to automatically generate a monitor that checks if the target system
is compliant with it. In this paper, we are interested in formally representing
how ADSs interact with the environment, hence, we use Linear Temporal Logic
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. F. Groote and M. Huisman (Eds.): FMICS 2022, LNCS 13487, pp. 155–171, 2022.
https://doi.org/10.1007/978-3-031-15008-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15008-1_11&domain=pdf
http://orcid.org/0000-0001-9452-0995
https://doi.org/10.1007/978-3-031-15008-1_11

156 A. de Matos Pedro et al.

(LTL), a tool widely used in RV [16], to describe the evolution over time, and
Modal Metric Spaces (MS), which allows us to formally reason about the sur-
rounding space of the system [18]. By combining these two logical frameworks,
we enable a full description of the ADS in space at all time instants.

The traffic safety rules that driving systems, and more specifically ADS, are
subjected to, usually specify temporal and spatial features. The spatio-temporal
languages (e.g., [12,14,20]) provide the adequate formalization and fulfillment
of the ADS requirements [24], which are specified over time and space. In the
present work, we consider the safety requirements of an ADS to be expressed by
sets of spatial constraints along a discrete linear time frame.

This paper proposes an RV approach that can deal with different autonomous
systems and focus on the monitoring of their spatio-temporal properties. These
properties are safety requirements that represent road safety constraints over
objects that are specified by their distances or topological relations. From a
macro perspective, Fig. 1 schematizes our architecture, where the relations
between simulator, monitor and vehicle can be seen. The simulator implements
the scenario described using ASAM standard [11] and the Ego vehicle imple-
ments the set of requirements. Then the Monitor Block that runs a solver checks
whether the requirement is met and draws a verdict. Step 1 starts with the for-
malization of the requirements. From a micro perspective, the verification of a
LTL combined with a fragment of MS (LTL × MS) [12] formula consists on the
construction of a monitoring model and a decision procedure. Given a trace (step
4) that comes from the ADS, the decision procedure inside the Monitor Block
answers whether a trace satisfies the monitoring model (step 5) and draws a
verdict (step 6). As shown in Fig. 1, the scenario (step 3) and the corresponding
formalized traffic rules (step 2) are given as input to the Translation and Model
Construction, where the translation to a set of first order language of the real
numbers (FOLR) constraints is done. This engine creates a monitoring model
in FOLR, which is interpreted by the non-linear satisfiability solver that is pro-
vided by the SMT solver Z3 [8] and runs inside the Monitor Block. Parallel to
the monitoring model, a trace at runtime feeds the Monitor Block, and a Trace
Encoder is provided to encode it to FOLR. So, the monitor block can produce a
verdict based on a trace that came from the ADS, a scenario, and a requirement.

Problem Statement. Consider monitoring the behaviour of an ADS, while driving
at an urban intersection, that must comply with road safety rules defined by the
international Vienna convention [24]. The present work focuses on presenting a
logic fragment, expressive enough to describe a specific set of road traffic rules.
Thanks to this fragment we were able to build an inline monitor that verifies
if these legal requirements [24] are being met. In simple terms the road safety
requirement ‘the car shall stop when it reaches a stop sign and then carries on
when the path is clear ’ is a spatio-temporal property. When encoded as a FOLR

formula, nonlinear SAT solvers are able to verify its satisfiability.

Paper Contributions. First, we present a formalization of three traffic rules,
taken from the Vienna convention [24] using LTL × MS, and applied to the

Monitoring of Spatio-Temporal Properties 157

Fig. 1. Ego vehicle spatio-temporal monitoring architecture.

context of these three traffic rules, the construction of the traffic T-shaped junction
scenario. Second, we encoded these rules written in LTL × MS and our scenario in
FOLR, the language interpretable by the SMT solver Z3 [8]. Then, to encapsulate
the encoding, our tool automatically generates runtime monitor blocks that can
verify whether the requirements check in the simulated environment. Finally, we
show evidence of the feasibility and scalability of online monitoring.

Paper Structure. Section 2 introduces some important concepts and definitions of
the LTL × MS language. Section 3 presents the formalization of three road traffic
rules in terms of LTL × MS and a T-shaped traffic junction, where the aforemen-
tioned rules are applicable. Moreover, the scenario is abstracted to FOLR and
the trace is introduced as well as its encoding to FOLR. Section 4 introduces the
monitor generation approach, while Sect. 5 shows the feasibility of the monitor
approach. Finally, Sects. 6 and 7 present the related work and draw conclusions
and directions for future work, respectively.

2 Preliminaries

The combination of temporal logic with spatial logic has been exhaustively
explored [1,12,13,23]. LTL is a propositional discrete linear temporal logic, ade-
quate for model checking of reactive systems and RV [19]. The time flow in LTL
is a set of points that are strictly ordered by the precedence relation < [10],
and is restricted to the usage of propositions and how they are sequenced. Fur-
thermore, LTL has the temporal operators ‘Until’, αUω—α has to hold until ω
becomes true—and ‘Since’, αSω—α has been true since ω was true.

Regarding the spatial logic, Kuts et al. [18] introduced MS, which includes
the bounded distance operators: ∃=a, ∃<a, ∃>a, and ∃a. As an example, Fig. 2
gives a visual description of ∃≤ap1 and ∃≤a (p1 � p2) in a metric space, where
p1, p2 are spatial variables, expanded by a units. Wolter and Zakharyaschev [33]
presented a restricted version named MS≤,< that just considers the operators
∃≤,<. Marco et al. [1, p. 545] showed that the satisfiability and the computa-
tional complexity of the combination of LTL with MS≤ is decidable. However,
despite the expressiveness of LTL × MS, decision procedures for spatio-temporal

158 A. de Matos Pedro et al.

Fig. 2. Examples of distance term operators on a metric space D.

languages are scarce [14]. As far as we know, in this paper we introduce the first
decision procedure for LTL × MS.

Definition 1 (LTL × MS - Syntax). The terms and formulas are inductively
defined by

� :: = p | � | �1 � �2 | �1 � �2 | ∃≤a� | �1U �2 (terms)
ϕ :: = �1 � �2 | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 U ϕ2 | ϕ1 S ϕ2, (formulas)

where p ∈ P is a spatial variable (or proposition), a is a rational number (dis-
tance), and P a nonempty set of variables. U and U stand for the binary opera-
tor ‘Until’ for terms and formulas, respectively. While S is the ‘Since’ operator.
Moreover, ρ is denoted as an instance of � and φ as an instance of ϕ.

Definition 2 (LTL × MS - Terms Semantics). A metric temporal model
is a pair of the form M = (D,N) [1], where D = (Δ, d) is a metric space, Δ
represents a nonempty set of points that reproduce the entire universe, d is a
function of the form Δ × Δ describing the distance between every two points
in Δ, satisfying the axioms identity of indiscernibles, symmetry and triangle
inequality [17]. The valuation N is a map associating each spatial variable p and
time instant n to a set N(p, n) ⊆ Δ. The valuation can be inductively extended
to arbitrary LTL × MS terms such as

N(�, n) = Δ − N(�, n),
N(�1 � �2, n) = N(�1, n) ∩ N(�2, n),

N(∃≤a�, n) = {x ∈ Δ | there exists a y ∈ N(�, n) such that d(x, y) ≤ a},

N(�1U �2, n) =
⋃

m>n

⎛

⎝N (�2,m) ∩
⋂

k∈]n,m[

N (�1, k)

⎞

⎠

The shorthands ‘Eventually’ . , ‘Always’ ., and ‘Next’ . are defined using U ,
. � ≡ U �, .� ≡ .�, and . � ≡ ⊥U �, where and ⊥ denote the universe and
the empty set. . is the next operator and its semantics is N(., n) = N(�, n+1),
while . stands for the eventually operator with N(. , n) =

⋃
m>n N(�,m), and

. means the always operator where N(., n) =
⋂

m>n N(�,m).

Monitoring of Spatio-Temporal Properties 159

Definition 3 (LTL × MS - Formulas Semantics [12]). An LTL × MS for-
mula ϕ is said satisfiable if there exists a model M such that (M, n) |= ϕ for
some time point n ∈ N. M is equipped with the following properties

(M, n) |= �1 � �2 iff N(�1, n) ⊆ N(�2, n),
(M, n) |= ¬ϕ iff (M, n) �|= ϕ,

(M, n) |= ϕ1 ∧ ϕ2 iff (M, n) |= ϕ1 and (M, n) |= ϕ2,

(M, n) |= ϕ1 U ϕ2 iff there is a m > n such that (M,m) |= ϕ2 and
(M, k) |= ϕ1 for all k ∈ (n,m),

(M, n) |= ϕ1 S ϕ2 iff there is a m < n such that (M,m) |= ϕ2 and
(M, k) |= ϕ1 for all k ∈ (n,m).

Regarding temporal modalities, stands for ‘Eventually’, for ‘Always’
and for ‘Next’, which can be defined using U : ϕ ≡ U ϕ, ϕ ≡ ¬ ¬ϕ
and ϕ ≡ ⊥ U ϕ. When talking about past, the connectors are defined in an
analogous way using S. Thus, ϕ ≡ S ϕ for ‘Once’, ϕ ≡ ¬ ¬ϕ for ‘His-
torically’ and ϕ ≡ ⊥ S ϕ for ‘Yesterday’. Note that the traditional universal
modalities ∀ and ∃ are expressible in our language. ∀� can be seen as an abbre-
viation for � � and ∃� for ¬(� � ⊥). Along our work we will use the symbol
:= to denote ‘is defined’. Also, to construct complex formulas we introduce four
spatial patterns over terms ρ1, ρ2, where the atomic formula �1 = �2 stands for
(�1 � �2) ∧ (�2 � �1), as follows:

DC (ρ1, ρ2) := ρ1 � ρ2 = ⊥, (disconnected)
EQ (ρ1, ρ2) := (ρ1 � ρ2) ∧ (ρ2 � ρ1), (equally connected)

O (ρ1, ρ2) := ¬(DC (ρ1, ρ2)
) ∧ ¬(ρ1 � ρ2) ∧ ¬(ρ2 � ρ1), (overlapped)

I (ρ1, ρ2) := (ρ1 � ρ2) ∧ ¬(ρ2 � ρ1). (included)

Encoding Language FOLR

The FOLR denotes the first-order logic defined over the structure (R, <,
+,×, 1, 0) that consists of the set of all well-formed sentences of first-order logic
that involve quantifiers and logical combinations of polynomial expressions over
real variables. The first-order language FOLR forms the set L, and P means the
set of real variables in FOLR.

3 Running Example

The concrete traffic scenario studied throughout this work is depicted in Fig. 3a.
It consists of a T-shaped junction where the vehicle C, from a one-way road,
approaches the intersection where faces a stop sign in order to enter a bi-
directional road. In this road there is a tram going one way in its rails named
as Tram and a car going the other way identified as C′. In the junction of these
roads there is a box junction that, according to the Vienna convention on road

160 A. de Matos Pedro et al.

Fig. 3. Running Example: An urban T-shaped junction scenario.

traffic, is an area where it is prohibited to stop. In addition, there is a pedestrian
zebra crossing in the bi-directional road. It is also possible to see three different
solid lines noted as T1 (red), T2 (orange), and T3 (green) that represent the
reference trajectories the vehicles may take in this specific use case.

The goal of this running example is to provide validation for complex Ego
vehicles. To this end, we start by introducing the formalization of the traffic
rules in LTL × MS, the encoding of the traffic scenario, and later the trace
definition and encoding. Note that a scenario describes static objects while a
trace describes dynamic objects that live within a scenario. Objects are entities
such as pedestrians, cyclists, vehicles, trajectories, or horizontal/vertical traffic
signs (e.g., crosswalk, stop sign).

Informally, an Ego vehicle shall follow a reference trajectory when at a cross
region with a safety-margin of at least one meter. In LTL × MS, we write

(
O
(
T1,∃≤1C

))
, (1)

where T1 corresponds to the reference trajectory, and C to the Ego vehicle. The
model in Fig. 3b does not satisfy (1) since the oscillation of the Ego vehicle along
the reference trajectory T1 is above the accepted threshold of one meter.

3.1 Formalization of Road Traffic Rules with LTL × MS

According to the Vienna convention [24], road traffic rules describe the way in
which pedestrians and vehicles should behave in a street environment. Without
loss of generality, we identify three specific rules of interest to describe in LTL
× MS language. These rules translate general autonomous driving system safety
requirements to check a given scenario.

Rule 1 (vehicle safety-margin). To simplify the presentation, this rule is
divided into two parts: (a) a vehicle should maintain a safety-margin relative to
the walkways (based on article 13 [24]) while following its trajectory, and (b) a
vehicle should maintain a safety-margin from the vehicle in front of it. In LTL
× MS, the (a) part of this rule can be described by

¬
(
O
(
RL,∃≤1C

))
, (2)

Monitoring of Spatio-Temporal Properties 161

where RL means the road limits. Informally, it reads as the vehicle C should
maintain a safety-margin of at least one meter (∃≤1C) between the car and the
road limit, while following its predefined trajectory. Moreover (2) can be written
in terms of temporal connectors and predicates, by expanding O and , we arrive
to the following expression:

¬
[
 U

(
¬(RL � (∃≤1C) = ⊥) ∧ ¬(RL � ∃≤1C

) ∧ ¬((∃≤1C) � RL
))]

. (3)

The safety-margin (b) of at least two meters between two vehicles, can be
expressed as:

¬ (
O
(∃≤2C′,∃≤2C

))
, (4)

where C′ corresponds to an external car. The overall rule is the conjunction of
formulas (2) and (4). The second term of the conjunction is transformed in

¬
[
 U

(
¬(∃≤2C′ � ∃≤2C = ⊥)∧ ¬(∃≤2C′ � ∃≤2C

)∧ ¬(∃≤2C � ∃≤2C′))].
(5)

Rule 2 (stop-on-forbidden areas). A vehicle should not stop on top of (a)
a box junction, based on the Portuguese road marks M17b and article 18 of the
Vienna convention; (b) a crosswalk, based on article 23 al.3 [24]; (c) tram rails,
based on article 23 al.3 [24].

Regarding part (a), it is mandatory that a vehicle must never stop on top of
a box junction, that is, from instant n, when the vehicle overlaps the delimited
region, at n + 1 it cannot be in the exact same position as it was in the previous
moment. Writing in LTL × MS we have:

(
I (C,BJ) ∨ O (C,BJ) → ¬EQ (C, . C)

)
, (6)

where BJ corresponds to the box junction. The previous implication is extended
by using the logical equivalence ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2. First we expand . and
operators,

 U
[
¬
(
I (C,BJ) ∨ O (C,BJ)

)
∨ ¬EQ (C,⊥UC)

]
,

then the predicates O, EQ and I,

 U
[((¬(C � BJ)∨BJ � C

)∧ ((C � BJ = ⊥)∨C � BJ∨BJ � C
))

∨ ¬(C � ⊥UC∧ ⊥UC � C
)]

. (7)

This rule is now ready for the monitor generation. Parts (b) and (c) have an
analogous encoding but with crosswalk and tramway regions, respectively.

Rule 3 (stop-sign). According to the road traffic laws, a vehicle shall stop at
a stop sign within a maximum distance of one meter. In LTL × MS, this rule
can be described in a compact form by

[(
O
(
S,∃≤1C

)∧ ¬ EQ (C, . C)
)

→
(
EQ (C, . C) ∧ DC (S, . C)

)]
, (8)

162 A. de Matos Pedro et al.

Fig. 4. Scenario encoding as spatial variables T1, T2, T3, RL, BJ, Z and SL.

where S is the location of the stop sign. Starting by the expansion of ., . , ,
, O, EQ, DC, and operators, we have

 U
[
(
S � ∃≤1C = ⊥)∨ ¬ (S � ∃≤1C

)∨ ¬ (∃≤1C � S
)

∨
(

 S
(
C � (⊥UC) ∧ (⊥UC) � C

))

∨
(

 U
(

(C � (⊥UC) ∧ (⊥UC) � C) ∧ (S � (UC) = ⊥)
))]

. (9)

The derived expressions (3), (5), (7) and (9) of the three considered rules are
ready to be used as input to the monitor generation algorithm presented later.
Let us proceed with the scenario and trace encoding of our running example.

3.2 Scenario and Trace Encoding (Static and Dynamic Objects)

Figure 4 shows the encoding for each static object present in the model of Fig. 3b,
which is based on region restrictions represented as inequalities. The trajectories
and road limits are described by line segments which can be expressed as sets
of linear and non-linear polynomials. The box junction and the crosswalk are
defined by bounding boxes.

The objects present in our running example are divided into two categories:
static objects, as road limits, crosswalk, box junction, etc.; and objects that
can behave dynamically over time, such as vehicles, trams or pedestrians. For
these latter elements, there is a need of a continuous trace to keep track of their
position at every time step. At all instants, the trace is sent from the simulator
in the form of a tree data structure, and it is translated into formulas written in
FOLR (see Fig. 4). In practice, the scenario and trace are transformed in such
way that a satisfiability solver can interpret them. Let us turn our attention to
trace definition and encoding.

Definition 4 (Infinite Trace). An infinite trace forms the set AN0 = {σ :
N0 �→ A}, where (σ0, σ1, σ2, . . .) defines a sequence of symbols.

Monitoring of Spatio-Temporal Properties 163

For the sake of simplicity, we will use the function add : S × L �→ B to add
constraints to the set h (hash map), and find : S �→ L to return the constraint
with a given index (string). These functions are not effect-free. Also, the next :
AN0 �→ AN0 function over the sequence of symbols with type AN0 is defined
by next ((Cons(h, t)) := t(), and now : AN0 �→ A by now(Cons(h, t)) := h.
These functions get the next sequence of symbols and the current symbol in the
sequence, respectively. An A symbol has a list of objects, and set A[O] is a list
of AO objects (see the JSON trace in Fig. 5). For the sake of simplicity, we also
define the dual of “next” as prev : AN0 �→ AN0 .

In general terms, the trace encoding consists on the construction of the func-
tion eval : P �→ L that is defined by eval(p) := find p, which evaluates a spatial
variable to an expression in FOLR. To encode a symbol from a trace, we have
to pick the symbol from the trace and produce the set of inequality constraints
that defines their objects. Figure 5 presents the definition of the enc function
and other auxiliary functions, where the enc function gets as input a symbol and
produces the constraints with an index to the set h. Also, the function encode
constructs the set of constraints for a given finite trace. To encode infinite traces,
we have to infinitely iterate over trace symbols and produce the inequalities in
an incremental way. Instead of defining a new encoding function, we make use
the next and prev functions in the next section.

Without loss of generality, let us see a circle as a ball, and a bounding box as
a rectangle or square in the two-dimensional Euclidean space. Note that other
geometric shapes can be translated but are out of the scope of our running
example. The obj : id �→ L function generates the objects as constraints defining
circles and bounding boxes with free variables, and id ∈ {circle, bbox}. It
defines, as follows:

obj(s) :=

⎧
⎪⎨

⎪⎩

(x4 − x1)2 + (x5 − x2)2 < x32, if s = circle

(x1 − x3/2) ≤ x5∧ x5 ≤ (x1 + x3/2)∧
(x2 − x4/2) ≤ x6∧ x6 ≤ (x2 + x4/2),

if s = bbox
.

Let us now see how the resultant expressions can use the variables binder
let. The evaluation of the expression let ((x1 1) (x2 2) (x3 3)). obj circle
results in (x1 − 1)2 + (x2 − 2)2 < 32, where x1 and x2 are the remaining
free variables. Then, we can bind these variables with a quantifier such as
∀x, y. let (x1 1) (x2 2) (x3 3). obj(circle), where (1, 2) is the center point
of the circle, and 3 the radius. This will be the way we replace free variables.

4 Monitoring Model Construction

As input our algorithm receives an LTL × MS property that represents a require-
ment under analysis and produces a model in FOLR. Every term ρ ∈ T (the set
of all words of �) is translated by the recursive function conv� : T �→ L into
FOLR (see Fig. 6). The dist : R × T �→ L function applies the Property 1 that
says that any formula containing distance operators has an equivalent formula
where the distance operators are just applied to the propositions.

164 A. de Matos Pedro et al.

Fig. 5. Functional definition and example of a trace in JSON format.

Property 1 (Distance Operator). Let ρ be a term, V the set of free variables in
ρ, and e a rational number. For any ρ and e, the distance operator ∃≤eρ has an
equivalent expression with every free variable a ∈ V such that ∃≤ea.

The next� : T �→ L function also has a similar property to distance operators
but instead of distance it assigns to each proposition the successor (a nested
of next operators just on propositions). To conclude conv� conversion function
over terms, the unfold : T×T �→ L function generates a bounded instance of the
infinite sequence

n∨

i=1

⎡

⎣
i∧

j=1

⎛

⎝.︸ ︷︷ ︸
j times

ρ1

⎞

⎠ ∧︸ ︷︷ ︸
j times

ρ2

⎤

⎦ ,

where ρ1, ρ2 ∈ � are the input terms. Let us now move our attention to formulas.
Every formula φ in F (the set of all words of ϕ) is translated by the func-

tion convϕ : F �→ L (again in Fig. 6). The expression ∀(x, y, ·).(conv�(ρ1) →
conv�(ρ2)) binds all the remaining free variables of the resulting expression
in FOLR. For instance, ∀(x, y).x < y. The function nextϕ : F �→ L generates

Monitoring of Spatio-Temporal Properties 165

Fig. 6. Conversion functions conv�(ρ) and convϕ(φ).

formula φ from the next instance, while previousϕ : F �→ L generates formula φ
from the previous instance. Function unfoldX : F × F �→ L generates a bounded
instance of the infinite sequence

n∨

i=1

⎡

⎣
i∧

j=1

⎛

⎝X . . .X︸ ︷︷ ︸
j times

ρ1

⎞

⎠ ∧ X . . . X︸ ︷︷ ︸
j times

ρ2

⎤

⎦

where φ1, φ2 ∈ ϕ are the input formulas. Funtion unfoldU : F×F �→ L is defined
by unfoldX when X = , while unfoldS : F × F �→ L by unfoldX when X = .

Trace Inlining. Since formulas and terms converts into incomplete FOLR

expressions, the formalization of the trace completes the encoding. The trace
encoding consists essentially on the construction of the function eval that has
ben already defined. This function replaces spatial variables with expressions in
FOLR. Note that the trace is a valuation and assigns constraints to the expres-
sions in FOLR. encode has been already defined while inline : L × L �→ L

includes the trace in the monitoring model. Note that this inlining is a binding
of every free variable of convϕ(φ) in encode(trc, n). The first argument receives
the monitoring model, and the second argument receives the mapping of the
spatial variables to the constraints in FOLR (given by the hash map). Let trc be
a trace of length n, and φ a formula in LTL × MS.. The inlining is defined by

inline(convϕ(φ), encode(trc, n)).

The process concludes by inlining the finite trace in the monitoring model.

166 A. de Matos Pedro et al.

Partial Incremental Evaluation – Without Unfolding Temporal Oper-
ators. To improve algorithm efficiency, scalability, and support infinite traces
we decided to construct a modified version of the previous algorithm without
using the unfolding of temporal operators (functions U and S). We perform this
on the assumption that temporal terms are bounded. The temporal part is then
processed incrementally using incremental evaluation (push and pop operators)
on the non-linear satisfiability solver. The s acts as a state such as true t, false
f or unknown u. For this evaluation, we consider the known temporal patterns

φ̂, φ̂,
(
φ̂
1

→ φ̂
2

)
,

(
φ̂
1

→ ¬ φ̂
2

)
,

(
φ̂
1
∧ φ̂

2

)
, and

(
φ̂
1
∧ ¬φ̂

2

)
.

Past temporal operators are unrolled for infinite traces and incrementally
evaluated for infinite traces (unknown last element). The evali(φ) has the truth
value false or unknown, while evali(φ) has the truth value true or unknown,
and evali(

(
φ1 → φ2

)
) has the same truth value of evali(φ).

One could expect to construct the function evali(φ,Σ, s) defined by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

solve
(
convi

ϕ(φ), enc(Σ)
)

if φ = φ̂

and
[
evali

(
φ̂
1
, Σ, s

)
, evali

(
φ1, Σ, s

)]
if φ = φ̂

1
∧φ1

implies
[
evali

(
φ1, Σ, s

)
, evali

(
φ2, Σ, s

)]
if φ = φ1 → φ2

ite
[
s = u, evali

(
φ, next(Σ), c�

(
s, evali(φ1, next(Σ), u)

))
, f
]

if φ = φ1

ite
[
s = u, evali

(
φ, next(Σ), c⊥

(
s, evali(φ1, next(Σ), u)

))
, t
]

if φ = φ1

ite
[
s = u, evali

(
φ, prev(Σ), c⊥

(
s, evali(φ1, prev(Σ), u)

))
, t
]

if φ = φ1

where φ ∈ ϕ a formula, φ̂ a formula without temporal operators, Σ is a infi-
nite trace with next, prev operators, and s ∈ S a symbol. S denotes the set
{t, f, u}, ite : {t, f} × {t, f} × {t, f} �→ {t, f} defines the if-then-else function, and :
{t, f}×{t, f} �→ {t, f} implements the conjunction, implies : {t, f}×{t, f} �→ {t, f}
implements the implication, c� : S× {t, f} �→ S converts the pair (u, f) to f and
u otherwise, and c⊥ : S×{t, f} �→ S converts the pair (u, t) to t and u otherwise.

Property 2 (Spatial Isolation on � terms). A spatial variable a ∈ P is free of
modifiers for any term.

From Property 2, terms have no free variables and no assumptions have to
be given for the incremental evaluation, the reason why it simplifies implies and
and functions in the incremental evaluation function evali. A spatial variable
maintains its form regardless of where it is evaluated. Function solve : L× L �→
{t, f} solves an expression in FOLR assuming another expression in FOLR. Note
that temporal operator vanish and is not incrementally evaluated.

Monitoring of Spatio-Temporal Properties 167

Table 1. Table displaying the evaluation results. The first column indicates the con-
sidered rules. The last two columns, unroll and incremental methods, show the time
(in seconds) and the memory (in Megabytes) used by the solver, the overall runtime
the monitor takes to execute (RT) and frames per second (FPS).

Unroll Incremental

E
m
p
ir
ic
a
l

Rule(‖�‖, ‖ϕ‖) Σ(‖Σ‖)
Solver

RT FPS
Solver

RT FPS
Time Mem Time Mem

1.a (2,2) e1(13) 1.14 4.49 1.19 5.58 0.26 2.87 0.42 19.12

1.a (2,2) e2(13) 0.07 4.05 0.13 65 0.03 2.86 0.04 185.71

1.b (1,1) e3(13) 0.02 3.03 0.05 185.71 0.12 2.75 0.26 34.21

1.b (1,1) e4(13) 0.05 3.06 0.09 92.86 0.08 2.45 0.17 56

2.a (1,3) e5(13) 0.18 3.53 0.23 31.71 0.17 2.83 0.33 26

2.a (1,3) e6(13) 0.16 3.51 0.21 35.14 0.09 2.85 0.17 53.85

2.b (1,3) e7(13) 0.25 3.53 0.29 24.07 0.17 2.80 0.34 27.45

3. (3,6) e8(14) 0.50 6.98 1.05 9.03 0.07 5.40 0.26 39.39

3. (3,6) e9(13) 1.29 7.06 1.71 4.33 0.10 5.45 0.28 36.84

3. (3,6) e10(15) 1.11 7.45 1.64 5.45 0.11 5.44 0.46 22.81

Average 0.48 4.67 0.66 45.9 0.12 3.57 0.27 50.1

S
im

u
la
to

r

1.a (2,2) s1(243) 73.82 18.48 74.29 1.64 2.38 2.91 3.18 43.71

1.a (2,2) s2(157) 0.34 5.78 0.46 196.25 0.79 2.89 1.08 83.96

1.a (2,2) s3(146) 0.28 6.37 0.44 202.78 0.51 2.89 0.74 116.8

1.b (1,1) s1(243) 0.15 5.14 0.45 405 0.70 2.79 1.52 109.46

1.b (1,1) s4(311) 0.40 5.19 0.64 299.04 0.97 2.85 1.75 114.34

2.a (1,3) s1(243) 6.73 7.95 7.09 17.58 1.19 2.86 2.07 74.54

2.a (1,3) s5(369) 12.99 7.66 13.72 13.82 2.37 2.90 3.96 58.29

2.a (1,3) s6(198) 8.11 7.83 8.69 11.79 0.46 2.85 0.80 157.14

3. (3,6) s4(311) 396.40 110.23 413.11 0.38 10.83 7.80 23.71 9

3. (3,6) s5(369) 951.87 117.48 1029.76 0.19 9.90 8.31 27.27 9.93

3. (3,6) s6(198) 1044.16 124.92 1090.95 0.09 12.25 8.52 26.57 5.1

Average 226.84 37.91 239.96 104.4 3.85 4.32 8.42 71.1

5 Empirical Evaluation

The monitor runs in parallel to the ADS under test having no direct impact on
the system itself, as seen in Fig. 1. The system evolves around the simulation
of a specific scenario, that feeds ADS with its observations. The system reacts
to observation and produces actions for the agents running on the simulator in
an endless loop. The monitor receives the observations from the simulator as a
trace to check a property and generates a verdict indicating if its satisfied.

The traces and scenario were evaluated on a i5-8365U CPU running Linux
5.10.11. Traces are provided by a simulated T-shaped junction scenario in the
CARLA 0.9.13 autonomous driving simulator [9]. Scalability is an aspect to
keep in mind since the size of a trace matters for monitoring performance, there-
fore, we test each property with different trace sizes to understand how different
methods perform. When performing the empirical evaluation (hand-built sample

168 A. de Matos Pedro et al.

traces to validate the tool – e1–e10), the Unroll method is slower than the Incre-
mental method in average, with exception of rule 1.b, where the Unroll is slightly
better, with a higher memory consumption (see Table 1). However, the biggest
difference are the rules 1.a and 3, where the Incremental method is clearly better
than the Unroll. These rules impact the highest average in the time (0.48 s) and
memory spent (4.67 MB) by the solver, as well as the RT (0.66 s) and low FPS
values (45.9) of the Unroll, in comparison with the Incremental method.

The behavior described previously also applies when it comes to the Sim-
ulator evaluation (traces got from simulation environment – s1–s6). Yet, the
differences are more pronounced. In the worst case scenario (rule 3), the time
spent by the solver in the Unroll method is approximately 85 times slower than
the solver in Incremental method, 1044.16 s and 12.25 s, respectively. Moreover,
the memory usage is considerably higher in Unroll (in average 37.91 MB) than
in Incremental (in average 4.32 MB) method.

When observing the average value of the incremental method (higher than
60), this value means that our approach is able to comfortably work with mod-
ern cameras with an acquisition rate of 60 Hz. ADSs cameras have lower fram-
erates. Our performance measurements are also prone to different resolutions
as our approach does not depend of the size of the image matrix. To summa-
rize, the data displayed in Table 1 shows a clear advantage of Incremental over
Unroll method. The tool and documentation for artifact evaluation can be found
in https://github.com/anmaped/stem-binaries.git.

6 Related Work

When talking about autonomous vehicles, these systems are subjected to the
local traffic laws and is a crucial problem to solve, as pointed out by Henry
Prakken [26]. He studied if the Dutch traffic law, with its exceptions, conflicts,
and commonsense knowledge, can be implemented in fully autonomous vehicles
and present three approaches to design AVs in compliance with traffic rules.
Cristian-Ioan Vasile et al. [32] formalized a minimum-violation plan of an AV by
using a fragment of LTL. Moreover, they used the logic fragment to specify the
behavior and incorporate it in the motion planner algorithm.

Alternatively, the AV as a system ideally has to self-check whether the
autonomous part obeys the traffic rules. Based on signal temporal logic (STL),
Nikos Aréchiga [4] proposed a step forward in this direction. He enabled the
automatic synthesis of runtime monitors, similar to what we presented in this
work, but without considering space as a first-class citizen. Also, he defined a set
of contracts to ensure that the overall system will not have collisions if followed
by all traffic participants. Cardoso et al. [7] suggests verification by contracts as
a powerful tool to handle complex systems such as AVs.

Similar to our work, Xu and Li [34] introduced a spatial logic to check collision
avoidance properties. They do not consider the evolution in time of the traffic
junction with its actors and do not produce any verdict. Another work that
resembles ours is [29], where they encode STL to a mixed-integer programming

https://github.com/anmaped/stem-binaries.git

Monitoring of Spatio-Temporal Properties 169

solver, allowing the monitoring of AV failures in an urban scenario in real-time.
In our work, we encode our LTL × MS expression to FOLR as well, but traffic
rules are not formalized in STL as we do with our temporal language.

Several works focus on the formalization of traffic rules. For example, [5] uses
Defeasible Deontic Logic to handle exceptions and resolve conflicts in overtak-
ing Australian traffic rules. In terms of temporal logic, the research presented
in [3,21,28], addressed several traffic scenarios, such as highways and junctions.
Schwammberger and Alves [31] proposed a spatio-temporal language similar to
the one in our work to formalize three road crossing rules in the UK and empha-
sizes the need for a Digital Highway Code for AVs, but the decision procedure is
missing. Pek et al. [25] writes overtaking rules as non-linear arithmetic expres-
sions and uses real-world data and simulations to validate their method.

7 Conclusion and Future Work

Even with smarter techniques, unfolding the U and S operators is computation-
ally expensive and proves infeasible in practical terms. Incremental evaluation
of infinite traces at run-time reduces the burden of checking spatial constraints,
since unbounded time is a bottleneck when solving time constraints with a sat-
isfiability solver. In our approach, the temporal sequences are checked partially
at runtime and the spatial part using exclusively the satisfiability solver.

Our empirical evaluation shows good evidence of the scalability of our incre-
mental evaluation method by running symbols of arbitrary sequences with more
70 symbols or ‘frames’ per second. To emphasize it, a conventional CPU (one
core) could monitor a trace from a camera with a total acquisition rate greater
than 60 Hz which we tested by setting up our running example on the CARLA
autonomous driving simulator. Our approach also takes advantage of multiple
cores as we could split the objects in the environment into different instances,
the Ego vehicle and the surrounding objects.

One way to optimize our tool, is to configure the solver to use the most
suitable tactic, tailoring it even more for the models we intend to verify. Another
way, is to increase the number of surrounding objects and use predictive distance-
based techniques based on geometric projections to allow the monitor to skip
symbols of a sequence and decrease CPU utilization.

Acknowledgments. This work was partially supported by the European Regional
Development Fund (ERDF) through the Competitiveness and Internationalization
Operational Program (COMPETE 2020) of Portugal 2020 [Project STEROID with
number 069989 (POCI-01-0247-FEDER-069989)]. This work was also partially sup-
ported by FCT/MCTES grant UIDB/04516/2020.

References

1. Aiello, M., Pratt-Hartmann, I., van Benthem, J.: Handbook of Spatial Logics.
Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-5587-4

https://doi.org/10.1007/978-1-4020-5587-4

170 A. de Matos Pedro et al.

2. Akintunde, M.E., Botoeva, E., Kouvaros, P., Lomuscio, A.: Formal verification of
neural agents in non-deterministic environments. Auton. Agents Multi-Agent Syst.
36(1), 1–36 (2021). https://doi.org/10.1007/s10458-021-09529-3

3. Alves, G.V., Dennis, L.A., Fisher, M.: A double-level model checking approach
for an agent-based autonomous vehicle and road junction regulations. J. Sens.
Actuator Netw. 10(3), 41 (2021)

4. Aréchiga, N.: Specifying safety of autonomous vehicles in signal temporal logic.
In: 2019 IEEE Intelligent Vehicles Symposium, IV 2019, Paris, France, 9–12 June
2019, pp. 58–63. IEEE (2019)

5. Bhuiyan, H., Governatori, G., Bond, A., Demmel, S., Badiul Islam, M., Rakotoni-
rainy, A.: Traffic rules encoding using defeasible deontic logic. In: JURIX 2020,
Brno, Czech Republic, December 2020, volume 334 of Frontiers in Artificial Intel-
ligence and Applications, pp. 3–12. IOS Press (2020)

6. Borg, M., et al.: Safely entering the deep: a review of verification and validation for
machine learning and a challenge elicitation in the automotive industry. J. Autom.
Softw. Eng 1, 12 (2018)

7. Cardoso, R., et al.: A review of verification and validation for space autonomous
systems. Curr. Robot. Rep. 2, 09 (2021)

8. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

9. Dosovitskiy, A., Ros, G., Codevilla, F., López, A.M., Koltun, V.: CARLA: an
open urban driving simulator. In: CoRL 2017, Mountain View, California, USA,
November 2017, Proceedings, volume 78 of Machine Learning Research, pp. 1–16.
PMLR (2017)

10. Allen Emerson, E.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook
of Theoretical Computer Science, Volume B: Formal Models and Semantics, pp.
995–1072. Elsevier and MIT Press, London (1990)

11. Association for Standardisation of Automation and Measuring Systems. https://
www.asam.net/standards/. Accessed 11 Apr 2022

12. Gabelaia, D., Kontchakov, R., Kurucz, A., Wolter, F., Zakharyaschev, M.: Com-
bining spatial and temporal logics: expressiveness vs. complexity. J. Artif. Intell.
Res. 23, 167–243 (2005)

13. Gerevini, A., Nebel, B.: Qualitative spatio-temporal reasoning with RCC-8 and
Allen’s interval calculus: computational complexity. In: ECAI’2002, Lyon, France,
July 2002. Proceedings, pp. 312–316. IOS Press (2002)

14. Haghighi, I., Jones, A., Kong, Z., Bartocci, E., Grosu, R., Belta, C.: SpaTeLl: a
novel spatial-temporal logic and its applications to networked systems: a novel
spatial-temporal logic and its applications to networked systems. In: HSCC 2015,
Seattle, WA, USA, April 2015. Proceedings, pp. 189–198. ACM (2015)

15. Huang, X., et al.: A survey of safety and trustworthiness of deep neural networks:
verification, testing, adversarial attack and defence, and interpretability. Comput.
Sci. Rev. 37, 100270 (2020)

16. Kane, A.: Runtime monitoring for safety-critical embedded systems. Ph.D. thesis,
Carnegie Mellon University, Pittsburgh (2015)

17. Kurucz, A., Wolter, F., Zakharyaschev, M.: Modal logics for metric spaces: open
problems. In: We Will Show Them! Essays in Honour of Dov Gabbay, Vol. 2, pp.
193–108. College Publications (2005)

18. Kutz, O., Wolter, F., Sturm, H., Suzuki, N.-Y., Zakharyaschev, M.: Logics of metric
spaces. ACM Trans. Com. Log. 4(2), 260–294 (2003)

https://doi.org/10.1007/s10458-021-09529-3
https://doi.org/10.1007/978-3-540-78800-3_24
https://www.asam.net/standards/
https://www.asam.net/standards/

Monitoring of Spatio-Temporal Properties 171

19. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Logic Alge-
braic Program. 78(5), 293–303 (2009)

20. Li, T., STSL: a novel spatio-temporal specification language for cyber-physical
systems. In: QRS 2020, pp. 309–319. IEEE (2020)

21. Maierhofer, S., Rettinger, A., Charlotte Mayer, E., Althoff, M.: Formalization of
interstate traffic rules in temporal logic. In: 2020 IEEE Intelligent Vehicles Sym-
posium (IV), pp. 752–759. IEEE (2020)

22. Mehmed, A.: Runtime monitoring for safe automated driving systems. Ph.D. thesis,
Mälardalen University (2020)

23. Muller, P.: A qualitative theory of motion based on spatio-temporal primitives. In:
KR1998, Trento, June 1998, pp. 131–143. Morgan Kaufmann (1998)

24. United Nations. Vienna convention on road traffic (1968). https://unece.org/
DAM/trans/conventn/Conv road traffic EN.pdf. Accessed 11 Apr 2022

25. Pek, C., Zahn, P., Althoff, M.: Verifying the safety of lane change maneuvers of
self-driving vehicles based on formalized traffic rules. In: 2017 IEEE Intelligent
Vehicles Symposium (IV), pp. 1477–1483 (2017)

26. Prakken, H.: On the problem of making autonomous vehicles conform to traffic
law. Artif. Intell. Law 25(3), 341–363 (2017). https://doi.org/10.1007/s10506-017-
9210-0

27. Riedmaier, S., Ponn, T., Ludwig, D., Schick, B., Diermeyer, F.: Survey on scenario-
based safety assessment of automated vehicles. IEEE Access 8, 87456–87477 (2020)

28. Rizald, A., et al.: Formalising and monitoring traffic rules for autonomous vehi-
cles in Isabelle/HOL. In: Polikarpova, N., Schneider, S. (eds.) IFM 2017. LNCS,
vol. 10510, pp. 50–66. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66845-1 4

29. Sahin, Y.M., Quirynen, R., Di Cairano, S.: Autonomous vehicle decision-making
and monitoring based on signal temporal logic and mixed-integer programming.
In: 2020 American Control Conference (ACC), pp. 454–459 (2020)

30. Sánchez, C., et al.: A survey of challenges for runtime verification from advanced
application domains (beyond software). Formal Methods Syst. Des. 54, 279–335
(2019). https://doi.org/10.1007/s10703-019-00337-w

31. Schwammberger, M., Alves, G.V.: Extending urban multi-lane spatial logic to for-
malise road junction rules. In: FMAS 2021, Virtual, October 2021. Proceedings,
volume 348 of EPTCS, pp. 1–19 (2021)

32. Vasile, C.-I., Tumova, J., Karaman, S., Belta, C., Rus, D.: Minimum-violation
scLTL motion planning for mobility-on-demand. In: ICRA 2017, pp. 1481–1488
(2017)

33. Wolter, F., Zakharyaschev, M.: Reasoning about distances. In: Gottlob, G., Walsh,
T. (eds.) IJCAI 2003, Acapulco, Mexico, 9–15 August 2003. Proceedings, pp. 1275–
1282. Morgan Kaufmann (2003)

34. Xu, B., Li, Q.: A spatial logic for modeling and verification of collision-free con-
trol of vehicles. In: ICECCS 2016, Dubai, United Arab Emirates, November 2016.
Proceedings, pp. 33–42. IEEE Computer Society (2016)

https://unece.org/DAM/trans/conventn/Conv_road_traffic_EN.pdf
https://unece.org/DAM/trans/conventn/Conv_road_traffic_EN.pdf
https://doi.org/10.1007/s10506-017-9210-0
https://doi.org/10.1007/s10506-017-9210-0
https://doi.org/10.1007/978-3-319-66845-1_4
https://doi.org/10.1007/978-3-319-66845-1_4
https://doi.org/10.1007/s10703-019-00337-w

Model-Based Testing of Internet
of Things Protocols

Xavier Manuel van Dommelen1,2(B) , Machiel van der Bijl2,
and Andy Pimentel1

1 University of Amsterdam, Amsterdam, The Netherlands
xavier vd@outlook.com

2 Axini, Amsterdam, The Netherlands

https://www.axini.com

Abstract. Internet of Things (IoT) is a popular term to describe sys-
tems/devices that connect and interact with each other through a net-
work, e.g., the Internet. These devices communicate with each other
via a communication protocol, such as Zigbee or Bluetooth Low Energy
(BLE), the subject of this paper. Communication protocols are notori-
ously hard to implement correctly and a large set of test-cases is needed
to check for conformance to the standard. Many of us have encountered
communication problems in practice, such as random mobile phone dis-
connects, difficulty obtaining a Bluetooth connection, etc. In this paper,
we research the application of industry strength Model-Based Testing
(MBT) within the IoT domain. This technique contributes to higher
quality specifications and more efficient and more thorough conformance
testing. We show how we can model part of the BLE protocol specifi-
cation using the Axini Modeling Platform (AMP). Based on the model,
AMP is then able to automatically test the conformance of a BLE device.
With this approach, we found specification flaws in the official BLE spec-
ifications as well as conformance errors on a certified BLE system.

Keywords: Model-Based Testing · Internet of Things ·
Communication Protocol · Bluetooth Low Energy · Embedded Systems

1 Introduction

The term Internet of Things (IoT) has become well known. IoT generally refers
to everyday objects that have obtained the ability to connect and interact with
each other through a network [33]. Over the years, the number of these IoT
devices has grown tremendously, reaching an approximate amount of 9.9 billion
devices in 2021 [17]. Along with this growth, new IoT devices are being developed
that often implement the same widely accepted communication protocols [2].
Examples are Bluetooth Low Energy [6] and Zigbee [11]. It is important that
these protocols are implemented correctly. When the implementations deviate
from the specification, the functionality to interact with other systems using the
same communication protocol could be affected.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. F. Groote and M. Huisman (Eds.): FMICS 2022, LNCS 13487, pp. 172–189, 2022.
https://doi.org/10.1007/978-3-031-15008-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15008-1_12&domain=pdf
http://orcid.org/0000-0002-9333-3917
https://doi.org/10.1007/978-3-031-15008-1_12

Model-Based Testing of Internet of Things Protocols 173

Currently, manufacturers face several challenges that prevent them from
extensively testing the communication protocols in their IoT devices [7]. For this
reason, research has started looking into different testing approaches to overcome
these challenges. One of these approaches is Model-Based Testing (MBT) [8].

Research on MBT for IoT protocol testing looks mainly into proof of concepts
and investigates individual challenges [1,16,29]. As a result, it is difficult to
evaluate to what extent MBT is capable of resolving the problems in this domain.
Such an evaluation is needed to compare testing approaches to determine which
one is the most optimal, in particular in an industrial setting. For this reason,
our research tries to investigate which challenges industrial strength model-based
testing is able to resolve and what other influences this approach brings.

1.1 Related Work

IoT can be seen as cyber physical systems. Model-based testing is an interest-
ing technique that has shown its merits in modeling and testing cyber physical
systems [30,31].

Our work focuses on testing protocol conformance through MBT on IoT
systems, but there is related work that researches other aspects. The work of
Yoneyama et al. [34] uses MBT to test the robustness of the COAP protocol by
modeling network faults. Additionally, the work of Aziz et al. [3] demonstrates
that by formally modeling the MQ Telemetry Transport protocol, an IoT proto-
col, and analyzing the result, they can evaluate the correctness of the protocol.
These papers differ from our work by concentrating on testing the protocol itself
instead of testing the conformance of the implemented protocol. Malik et al. [22]
use MBT as a tool to demonstrate that we can automatically test IoT protocols
on systems remotely. In their work, they briefly describe why they make use of
MBT but their main topic is the framework for remotely testing IoT systems
and their protocols. The case study of Tappler et al. [29] shows how models
for a model-based testing approach can be automatically created through active
automated learning. Furthermore, this work demonstrates that by using their
automatically generated models they are capable of finding implementation mis-
takes that go against the MQTT communication protocol specifications. Ahmad
et al. [1] investigate the possibility to use a model-based testing approach to test
IoT systems in their entirety. In addition to just testing the system, they discuss
a framework that enables sharing models between developers as a service. While
the focus of these papers is to obtain a proof of concept with a specific goal in
mind, our work differs by highlighting the implications of using MBT in the IoT
domain in an industrial setting.

Finally, the work of Inçki et al. [16] presents a model-based testing imple-
mentation in which they could perform interoperability tests to evaluate the IoT
communication protocol COAP. However, they do not present any experiments
that make use of their presented approach. Consequently, we are not able to
evaluate the benefits or disadvantages of using MBT in contrast to our work.
Furthermore, they do not give an in-depth explanation and reflection on the
implications of using model-based testing.

174 X. M. van Dommelen et al.

1.2 Contributions

Our research focuses on the application of MBT with a commercial tool on
a non-trivial part of the industrial BLE protocol. We describe which implica-
tions MBT could have on the IoT protocol testing domain based on practical
experience. Furthermore, we discuss how the specifications of a widely used IoT
communication protocol, Bluetooth Low Energy, can be translated into a for-
mal model. Based on this experience, we discuss which obstacles are likely to be
encountered and how they can be overcome when translating an IoT protocal.
In this process, we highlight several flaws in the official Bluetooth Low Energy
specifications version 4.2 [6], showing that MBT is a method to improve specifi-
cations. Finally, by applying our proof of concept to test a certified BLE system,
we show that certain assumptions about MBT also hold in practice. And we find
implementation errors in the process.

2 Preliminaries

2.1 Internet of Things

IoT refers to everyday objects that have obtained the ability to connect and
interact with each other through a network [33]. According to Elnashar [10], the
challenges related to IoT fall into two categories: challenges relating to unlicensed
networks that aim for short-range communication and challenges relating to
cellular licensed networks.

This document focuses on the short-range communication category, because
this category contains significantly more manufacturers [10,15,26]. This means
that to ensure interoperability between IoT systems more parties require a suf-
ficient testing environment. Additionally, IoT systems from this category gener-
ally use the same communication protocols [2,32]. As a result, a generic testing
environment becomes more important since this would benefit all the different
manufacturers.

One of the popular communication protocols in the IoT domain is the Blue-
tooth Low Energy (BLE) protocol [2]. This protocol is known for its low power
consumption, low setup time, and supporting star network topology with unlim-
ited number of nodes. BLE systems can receive a certificate indicating that their
system conforms to the BLE specifications when they pass a list of unit tests
defined by the organisation behind BLE, Bluetooth SIG1.

2.2 Model-Based Testing

Software testing verifies that a software system implements its requirements.
Such a verification can be done in four steps [18,20,30]: specification interpre-
tation, test creation, test execution, and test result evaluation. Model-Based
Testing (MBT) is a method that can automate all of these steps except for the

1 https://www.bluetooth.com/.

https://www.bluetooth.com/

Model-Based Testing of Internet of Things Protocols 175

specification interpretation step by using a formal model defining the require-
ments/specifications [8,31]. The model describes the behavior of the System
Under Test (SUT) in terms of how the inputs and outputs of the SUT relate,
and uses this formal definition to generate and execute test cases to evaluate the
correctness of the SUT. A testing environment using MBT generally requires
three key technologies [8]: Modeling Language, Test Generation, and a Sup-
porting Infrastructure. Figure 1 gives an overview of the components which we
discuss below.

Fig. 1. Model-Based Testing pipeline [18]

Modeling Formalism. There are several modeling formalisms that can be
used in MBT [31], for example Finite State Machine (FSM), Labeled Transi-
tion System (LTS) [30], Unified Modeling Language (UML) [4], and Symbolic
Transition System (STS) [12]. FSMs and LTSs are often used for MBT [31]. To
describe a SUT using an LTS, a set of states and transitions are defined. The
transitions are used to reflect the correct behavior between the different states
in which the SUT could be. Finally, a Symbolic Transition System (STS) is an
extension to an LTS that introduces the concept of data to the models. This
addition of data is relevant since it allows us to prevent a state-space explosion
when dealing with data structures [12].

Test Case Generation. Based on a formal model an algorithm can generate
test cases automatically. Using this approach, a large number of test cases can be
generated. Due to time-constraints it is not always possible to execute all of these
test cases, therefore we need test criteria [24,27] to limit the number of generated
tests. Test cases consist of two ingredients: stimuli which represents inputs to
the SUT and a set of allowed responses which represent possible outputs from
the SUT. Once a test case is generated, stimuli will be passed on to the SUT
and observed outputs are presented to the testing environment. The MBT tool
checks if the observed responses are defined in the model. If this is the case,
the test case will pass otherwise it will fail. For the assignment of verdicts a
correctness notion between the model and the SUT, a so called conformance
relation, is important. The conformance relation that we use is the input-output
conformance, IOCO theory [30] which also uses STSs [13].

176 X. M. van Dommelen et al.

In order to automatically execute test cases we need some supporting infras-
tructure. The connection to the SUT is often implementation specific, in our
case BLE. The connection to the MBT tooling is often standardized.

2.3 Axini Modeling Platform (AMP)

For our research we use the Axini Modeling Platform. Axini is a product com-
pany that specializes in modeling and model-based testing. AMP is an industry
strength MBT tool that is used in Finance, Rail and High-tech. It is based on
the IOCO theory and research from Tretmans [30].

AMP uses a modeling language called the Axini Modeling Language (AML).
This language is inspired by ProMeLa, the language of the Spin model
checker [21]. The semantics of the language is expressed in STS. The reason
we choose AMP is: the modeling language is suited to model cyber physical sys-
tems, AMP is a proven industry grade platform (10+ years) that can handle big
industrial systems and models with big state spaces. Examples are safety-critical
rail systems, pension and insurance systems and cyber-physical systems.

3 MBT in the Context of IoT

3.1 IoT Testing Challenges

Looking at existing literature, we see that one of the overarching challenges for
the industry to make fully conformant BLE devices, is that it costs too many
resources to obtain and maintain an extensive test-suite [7,19,23,29]. First, the
protocols from this domain change regularly [19,28]. As a result, testing envi-
ronments need to be updated frequently and thus require significant mainte-
nance [35]. Another obstacle is the large number of test cases necessary to test
for conformance. IoT protocols, such as BLE, contain a wide range of different
potential configurations. Optimally, a tester would test all combinations to test
for conformance. However, with conventional manual methods, this becomes too
expensive [7,19]. Finally, the quickly changing protocols also require backwards
compatibility. Manufacturers are required to test against systems implementing
older supported protocol versions.

3.2 Positioning MBT in IoT

MBT holds several benefits over traditional testing techniques. One benefit is
that the resulting testing environment can quickly respond to changing speci-
fications [24,31]. Changes made within the model are easier to maintain than
manually changing individual low-level test cases when requirements change.
Because frequently changing specifications are a problem, MBT would give a
benefit over traditional testing methods that do not use an abstract representa-
tion within this domain.

Another benefit is that MBT results in arguably better tests compared to the
manually created tests [5,31]. Pretschner [25] presents this with a different angle.

Model-Based Testing of Internet of Things Protocols 177

He mentions that the resulting tests cases are not necessarily of higher quality
but that the higher quantity is the cause for a better testing environment. This
higher number of test cases results in a higher coverage. In the IoT context,
because it is difficult to obtain high coverage, this is a desired trait. MBT makes
this possible through its high level of automation.

For MBT to reach this high level of automation, a model is required before
testing can begin. The creation of such models is a non-trivial process, result-
ing in an additional potentially time-consuming step [5,9,24]. Consequently, it
potentially takes longer before testing can begin compared to other methods
that do not require this step. The modeling step also brings benefits. Because
a modeler needs to critically think about the specifications for the creation of
the model, this increases the chance of finding specification flaws [24,31]. This is
specifically relevant in the IoT domain, where different manufacturers all need
to follow the same specifications. Additionally, because manufacturers need to
follow the same specifications, one model should suffice to supply every manu-
facturer with an extensive testing environment.

Based on the literature, we believe that MBT can form a solution to overcome
the problems in the IoT testing domain if the previously discussed assumptions
hold.

4 The AMP MBT Environment to Test BLE IoT Systems

To evaluate the assumptions from the previous section we require an MBT envi-
ronment that can test the conformance of BLE devices. In this section, we dis-
cuss our design decisions, experience, and findings when implementing such an
environment on the AMP platform.

4.1 SUT

For our experiment, we decided to model and test systems that implement the
BLE specifications version 4.2 [6] from the official Bluetooth organization: Blue-
tooth SIG2. This version was chosen because a system running this version was
easily accessible for experiments. Based on our experience we believe that the
resulting process would be similar to other protocol versions.

One can access a Bluetooth Controller’s capabilities through the Host Con-
troller Interface (HCI) [6]. This interface functions as an API to perform specific
actions on the different lower-level software layers on a Bluetooth system. We
use this to test the conformance of the BLE protocol on a system.

The specifications of BLE describe the protocol using different layers. Each of
these layers has its requirements and provides specific functionality. For the scope
of our research, we decided to model the Link Layer. This layer describes the
steps that two systems implementing the BLE protocol should take to obtain and
sustain a connection. If a manufacturer makes a mistake in the implementation of
this layer, it can directly influence the interoperability. Because interoperability
is an important factor for IoT systems, we decided to model this specific layer.
2 https://www.bluetooth.com/.

https://www.bluetooth.com/

178 X. M. van Dommelen et al.

4.2 Model Creation

We will use a representation of the Link Layer’s behavior, see Fig. 2, to highlight
which parts we implemented within our model. The states within this figure that
are accessible within our model are marked green.

Fig. 2. State diagram of the Link Layer state machine on the Low Energy Controller
according to the Bluetooth Core Specification version 4.2 [6] (Color figure online)

Due to time constraints, we decided not to model the Connection state,
marked orange. Being able to also test this behavior would extend our work
such that we could also directly evaluate interoperability between systems. We
leave this to future work. Given the experience with the scale of models in AMP
we do not expect any problems with such an extension. Finally, a full version of
our obtained model can be requested by contacting Axini.

Model Overview. For the creation of our model, we used the state machine
from Fig. 2 as our starting point. We decided to use the same states within our
model and search through the specifications to look for the corresponding HCI
commands for the basic transitions.

Using the HCI command descriptions as a foundation, we concluded that the
following HCI commands would be most applicable to reflect the state transi-
tions:

– HCI LE Set Advertise Enable. Handles the transitions between the StandBy
and Advertising state.

– HCI LE Set Scan Enable. Handles the transitions between the StandBy and
Scan state.

– HCI LE Create Connection. Handles the transition from the StandBy to the
Initiating State.

– HCI LE Create Connection Cancel. Handles the transition from the Initiat-
ing state to the StandBy state.

Model-Based Testing of Internet of Things Protocols 179

To model the different configurations, we selected the configuration options
for the Scanning and Advertising state. The model represents this using transi-
tions that go towards the same state after successfully changing the state con-
figurations. The HCI commands that resemble these transitions are:

– HCI LE Set Advertising Parameters
– HCI LE Set Scan Parameters

4.3 AML Model Example

Given the scope of this paper it goes too far to introduce the entire AML mod-
eling language. Instead we treat a part of the model and we show a part of
the visualization of the model. The visualization is shown in Fig. 3. The model
uses similar states as the state machine from the BLE specification in Fig. 2:
Scanning, Advertising, Standby, Initiating.

Fig. 3. AMP model visualization State diagram of the Link Layer

To give the reader some idea of what AML looks like, we discuss a simpli-
fied model in which we can successfully enable advertising following the BLE
protocol. This model is shown in Listing 1.1.

Listing 1.1. AML model example

p roce s s (’main ’) {
s t imulus ’ h c i l e s e t a d v e r t i s e e n a b l e ’ ,

’ a dv e r t i s i n g enab l e ’ => : i n t e g e r
re sponse ’ s t a tu s ’ , ’ code ’ => : i n t e g e r

s t a t e ’ standbyState ’
r e c e i v e ’ h c i l e s e t a d v e r t i s e e n a b l e ’ ,

c on s t r a i n t : ’ a dv e r t i s i n g enab l e==1 ’
send ’ s t a tu s ’ , c on s t r a i n t : ’ code==1 ’
goto : ’ a dv e r t i s e S t a t e ’

. . .
}

180 X. M. van Dommelen et al.

In this model we define a process named ‘main’. This process has one interface
with one stimulus (input) ’hci le set advertise enable’ and one response (output)
’status’; both have an integer parameter. The process shows a state with two
actions: after the SUT receives a hci le set advertise enable stimulus with the
advertising enable parameter set to 1 it should give a status response back with
a value of 1. The test case will continue from the advertiseState and pick a
new action to test. For these tests, the stimulus parameters are solved with a
constraint solver. We use constraints to define more complex input domains to
model the other commands and different scenarios.

Model Configurations. In addition to the model that reflects BLE specifi-
cations, we added several model configuration options. A tester can use these
configurations to manage to what extent the model is used during the generation
of test cases. A list of supported configuration options is shown in Table 1.

Table 1. Model configuration options

ID Configuration Data Type Motivation

1 error paths Boolean Scenario Simulation

2 error self loop paths Boolean Assumption due to underspecification

3 error future param paths Boolean Assumption due to underspecification

4 error validation strength Integer Assumption due to underspecification

5 scan between duplicates Boolean Assumption due to underspecification

6 force link layer transitions Boolean Assumption due to underspecification

– Configuration 1 allows one to trigger transitions that would result in an error
code.

– Configuration 2 allows one to trigger transitions that could change the state
but instead would result in the same state.

– Configuration 3 allows to trigger transitions that would result in an error
because parameter values would be used that are reserved for future usage.

– Configuration 4 accepts five different strength values:
• With strength 0 all error codes are allowed when an error code is expected.
• With strength 1, only the error codes that are specifically mentioned in

the specifications need to correspond to any of the expected errors if
multiple errors could be thrown. Otherwise all error codes are accepted.

• With strength 2 we have the same situation as with strength 1 however
we apply our assumption on which error has a precedence when multiple
errors could be thrown thus only allowing only one error code.

• When strength 3 we only accept one or more of the expected errors. There
is no precedence check.

• Finally, with strength 4 we only accept the error codes with the highest
precedence according to our assumptions.

Model-Based Testing of Internet of Things Protocols 181

– Configuration 5 allows one to trigger transitions that would move between the
two possible scanning states in which Filter Duplicates is enabled or disabled.

– Configuration 6 allows one to trigger transitions that would check if tran-
sitions that would not be possible according to the link layer specification
result in the correct error code.

Motivation. While investigating the BLE specifications for the model, we found
several topics that contained underspecifications. As a result, a developer can
have different interpretations of what a correct BLE implementation would be.
For these topics, we made assumptions about what the correct behavior of the
protocol should be. However, it is also possible that a tester disagrees with
our design. To compensate, we added configuration flags that allow a tester to
configure the model such that test cases related to these assumptions will not
get generated.

Findings. During the development of the model, we encountered several obsta-
cles. The first obstacle is related to finding a point from which a tester can
start modeling using the BLE specifications. The extensive specifications make
it difficult to find a starting point. However, after finding this point, the remain-
ing modeling process became straightforward. Additionally, the creation of the
model became a time-consuming process because of the complexity of the BLE
protocol. The protocol defines actions that contain many rules and can be dif-
ferent based on the system’s state. Doing this correctly requires a tester to
fully understand the specifications and reflect this flawlessly in a model result-
ing in a time-consuming process. These findings support the assumption that
the modeling step is a time-consuming process. The authors think this could be
significantly reduced if a BLE expert is available during the modeling process.
Preferably the modeling takes place during the specification process.

After performing the modeling step, we see that the model is not our only
result. During the process, we also discovered several flaws in the official BLE
specifications. Most of these flaws are related to underspecification, but we also
found a place where the specifications were contradicting. As a result, our expe-
rience confirms the assumption that we can find specification flaws during the
modeling step and use this as a method to refine the specifications.

Limitations. We mentioned earlier that we use HCI commands to interact with
a BLE system. These commands require two types of parameters. The first type
contains parameters that together define which command should be running:
OpCode Group Field, Opcode Command Field, and the expected resulting event
code. We decided to separate these parameters from our model and put them
as constants in our adapter. As a result, we limited the model to a static set
of HCI commands that it can simulate. The second type contains parameters
that define the configuration for an HCI function. According to the specifications,
these parameters have a maximum memory size. We also followed this limitation

182 X. M. van Dommelen et al.

in our model, but as a consequence, we are unable to test outside this memory
range.

Finally, some HCI commands we simulate can generate additional event codes
in the background. In our model, we only simulate the response code behavior,
but for future work, we recommend also taking these event codes into account.

4.4 Adapter

As discussed in the background, the purpose of the adapter is to handle the com-
munication between the SUT and the testing environment, AMP. Additionally,
the adapter contains the translation logic from model labels into SUT actions
and vice versa. This translation was straightforward to implement because our
model follows the BLE specifications. However, we found that programming the
communication with the HCI layer is a rather tedious task. The reason for this is
that the documentation about programming on the HCI layer is scarce [14]. Con-
sequently, the adapter step, which is supposed to be relatively small compared
to modeling, became a more time-consuming process than expected. In the end,
we decided to go with a Python implementation for the adapter. This adapter
uses the PyBluez library3 to communicate with the HCI of a BLE system.

5 Testing BLE Using AMP

By using AMP with the described model and adapter from Sect. 4, we can test
any BLE system that implements BLE version 4.2. In this section, we describe
how we test such a system, an Intel Dual Band Wireless-AC 8265 [Bluetooth
adapter]. This SUT has received a certificate4 from the official Bluetooth SIG
organization indicating that they have correctly implemented BLE version 4.2.

To evaluate our approach and the SUT, we perform two experiments. The
first experiment tests if we can find conformance errors using the platform. The
second experiment looks into our found underspecifications that can potentially
lead to implementation assumptions.

5.1 Assumption

A fundamental assumption we make for our experiments is that the test platform
does not contain errors. In other words, we assume that the model, adapter, and
testing environment (AMP) are all implemented correctly. Using this assump-
tion, we can conclude that the found mistakes are caused by the SUT and not by
potential flaws in one of these components. Our thorough analysis of the findings
support this assumption.

3 https://github.com/pybluez/pybluez.
4 https://launchstudio.bluetooth.com/ListingDetails/3524.

https://github.com/pybluez/pybluez
https://launchstudio.bluetooth.com/ListingDetails/3524

Model-Based Testing of Internet of Things Protocols 183

5.2 Test Generation Configurations

Using our model-based testing platform, we can generate test cases to test a
given SUT. The size of the test cases are configured by the tester and influence
how much of the model can be traversed during one test-case. Additionally, a
tester can set the number of test cases that during a test run are generated.
Similar to the first configuration, this configuration influences the test coverage
that can be obtained.

For our experiments, we wanted to obtain a model coverage of 100% to at
least test each transition once. Through manual experiments, we found that this
coverage can be achieved within a test case by setting the size to 30. Additionally,
we decided to set the number of test cases that are generated during one test
run to 20. We found this number to be enough for our goal to demonstrate that
we can find conformance errors.

5.3 Conformance Experiment

In this experiment, we test the SUT using the previously discussed test genera-
tion configurations. Additionally, in Sect. 4.3, we discussed model configurations
to enable and disable some of our assumptions regarding what the correct imple-
mentation should be. Because we do not want to leave room for discussion after
we would find a conformance mistake, we decided to disable all configurations
regarding assumptions.

Results. Running the testing environment with the previously described con-
figurations, we obtain the results that are displayed in Fig. 4.

The results from Fig. 4 show us that we can obtain a Transition Coverage of
100%. Furthermore, the results show us that we can automatically find 19 test
cases where the SUT does not conform to our model. If we would categorize our
failed test cases based on which behavior deviates from the specifications, we
obtain the categorization as shown in Table 2.

Table 2. Overview of the failed test cases and their cause using results from the
Conformance Experiment

Test-case ID State Label Expected Output

2,4,5,7,15,17,18,20 Scan setAdvertisingParams 0 18 (invalid parameters)

3,11,13,14 StandBy setScanParams 0 18 (invalid parameters)

8,19 StandBy createConnection 0 18 (invalid parameters)

9,12 StandBy setAdvertisingParams 0 18 (invalid parameters)

10 Advertise setScanParams 0 18 (invalid parameters)

16 StandBy createConnection 0 13 (limited resources)

184 X. M. van Dommelen et al.

Fig. 4. Screenshot of AMP showing a partial overview of the resulting test cases and
their evaluations using the configurations as discussed for the Conformance Experiment

This overview shows that we can find 6 different conformance mistakes based
on the specifications. Furthermore, we see that most failed cases are caused by
inaccurate error responses when using valid parameters.

Nonetheless, some of these error categories may be caused by the same under-
lying problem. As a result, this overview might show more errors than the SUT
contains. However, the fact remains that we can find conformance flaws in a
certified BLE system by applying a state-of-the-art MBT tool.

5.4 Model Assumption Experiment

For this experiment, we want to investigate our found underspecifications. By
running our testing environment, while enforcing all of our assumptions through
the model configurations, we can investigate if the SUT’s implementation is dif-
ferent from our definition of a correct implementation. If we find implementation
differences, we can confirm that manufacturers have different interpretations of
what the correct behavior is when following the BLE specifications. Such findings
can support the idea that our found underspecifications are a problem.

Results. Running the testing environment using our enforced assumptions on
the SUT resulted in the test-run overview shown in Fig. 5.

First, these results show that enforcing our assumption configurations results
in a Transition Coverage of 59.49%. Consequently, our test run does not cover
the entire model. However, within this test run, we can still find behavior on
the SUT that deviates from our assumptions. Table 3 shows an overview of the
related conformance errors.

Model-Based Testing of Internet of Things Protocols 185

Fig. 5. Screenshot of AMP showing a partial overview of the resulting test cases and
their evaluations using the configurations as discussed for the Model Assumption Exper-
iment

Table 3. Categorised implementation errors related to different underspecification
assumptions using the configurations as discussed for the Model Assumption Experi-
ment

Assumption Configuration Number of Failed Test Case(s)

error self loop paths 6

error future param paths 13

error validation strength 0

scan between duplicates 1

force link layer transitions 0

Based on this categorization, we can confirm that the SUT behaves differ-
ently regarding three of our specification assumptions. As a result, our approach
can highlight three topics within the specification that could lead to different
implementations due to underspecification.

6 Discussion

The conformance experiment from Subsect. 5.3 shows us that we can find con-
formance flaws in a certified BLE system. This suggests that MBT can test more
thoroughly than the testing environment that was used for the BLE certifica-
tion of the SUT. This means that MBT can assist in obtaining more extensive
testing environments and thus can assist in improving conformance and finally
interoperability on IoT systems. Additionally, because our experiment showed
that we can test BLE systems, a similar approach can be used to also test other
communication protocols within the IoT domain.

186 X. M. van Dommelen et al.

One of the potential benefits discussed in Sect. 3 is that MBT can be used to
refine the specifications of a tested system. During the assumption experiment
from Subsect. 5.4, we show that specification flaws can be discovered during the
creation step of the model. This suggests that the assumption that MBT can
help refine the specifications also holds for BLE. Consequently, we can assume
that this will also hold for other IoT communication protocols. As a result,
MBT can become a method to refine the different communication protocol spec-
ifications. Such refinements will improve the overall interoperability within the
domain because different manufacturers will be able to obtain more conformant
implementations.

Based on our results, we decided to get in touch with Bluetooth SIG to
highlight our results. We sent an e-mail after crosschecking if these flaws also
remained in the latest, 5.2, specifications. As of writing this paper, we have not
received a response.

Furthermore, we discussed our approach and findings with the creator of
Bluetooth, Dr. Ir. Jaap C. Haartsen. In this meeting, he highlighted the current
problems in the IoT Bluetooth domain. He mentioned that interoperability with
machines from other manufacturers is a challenge for IoT manufacturers. In this
context, it would be interesting to extend our work to the higher software layers
that apply the BLE protocol.

7 Conclusion

It is crucial for IoT systems that the communications protocols such as BLE con-
form to the protocol’s specifications. In our research, we have shown that manu-
facturers struggle to obtain testing environments that can test the specification
conformance of their systems. Our experiments confirmed this by demonstrating
that we can find conformance flaws in a certified BLE system using our proposed
MBT environment. Additionally, we showed that we can find weaknesses in the
official BLE specification by using MBT. Correcting these flaws will allow dif-
ferent manufacturers to create implementations that are more conformant and
thus will assist in ensuring interoperability. Finally, based on these findings, we
believe that MBT can be a solution within the IoT protocol testing domain using
existing MBT tools such as AMP.

7.1 Future Work

Our work focuses on researching the possibilities of MBT to test IoT protocols.
However, our research does not perform a comparison study with other testing
methods for this domain. The next step would be to compare this method to
other testing methods and discuss what method would be the most optimal for
this domain. Another direction that research could look into is testing the inter-
operability between IoT systems. This direction would be interesting because

Model-Based Testing of Internet of Things Protocols 187

our work assumes that conformance errors will result in interoperability issues
but does not test it directly. Finally, because our testing environment was able
to find conformance errors on a certified BLE system, it becomes interesting to
research if such errors also occur on more systems in the market.

References

1. Ahmad, A., Bouquet, F., Fourneret, E., Le Gall, F., Legeard, B.: Model-based
testing as a service for IoT platforms. In: Margaria, T., Steffen, B. (eds.) ISoLA
2016. LNCS, vol. 9953, pp. 727–742. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-47169-3 55

2. Al-Sarawi, S., Anbar, M., Alieyan, K., Alzubaidi, M.: Internet of things (IoT)
communication protocols. In: 2017 8th International Conference on Information
Technology (ICIT), pp. 685–690. IEEE (2017)

3. Aziz, B.: A formal model and analysis of an IoT protocol. Ad Hoc Netw. 36, 49–57
(2016)

4. Bernard, E., et al.: Model-based testing from UML models. INFORMATIK 2006-
Informatik für Menschen-Band 2, Beiträge der 36. Jahrestagung der Gesellschaft
für Informatik eV (GI) (2006)

5. Binder, R.V., Legeard, B., Kramer, A.: Model-based testing: where does it stand?
Commun. ACM 58(2), 52–56 (2015)

6. Bluetooth SIG: Core specification 4.2 (2014). https://www.bluetooth.com/
specifications/specs/core-specification-4-2/. Accessed 28 June 2021

7. Bures, M., Cerny, T., Ahmed, B.S.: Internet of things: current challenges in the
quality assurance and testing methods. In: Kim, K.J., Baek, N. (eds.) ICISA 2018.
LNEE, vol. 514, pp. 625–634. Springer, Singapore (2019). https://doi.org/10.1007/
978-981-13-1056-0 61

8. Dalal, S.R., et al.: Model-based testing in practice. In: Proceedings of the 21st
International Conference on Software Engineering, pp. 285–294 (1999)

9. Dias Neto, A.C., Subramanyan, R., Vieira, M., Travassos, G.H.: A survey on model-
based testing approaches: a systematic review. In: Proceedings of the 1st ACM
International Workshop on Empirical Assessment of Software Engineering Lan-
guages and Technologies: Held in Conjunction with the 22nd IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE) 2007, pp. 31–36
(2007)

10. Elnashar, A.: IoT evolution towards a super-connected world. arXiv preprint
arXiv:1907.02589 (2019)

11. Ergen, S.C.: ZigBee/IEEE 802.15.4 summary. UC Berkeley, 10 September 2004
12. Frantzen, L., Tretmans, J., Willemse, T.A.C.: Test generation based on symbolic

specifications. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395,
pp. 1–15. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31848-
4 1

13. Frantzen, L., Tretmans, J., Willemse, T.A.C.: A symbolic framework for model-
based testing. In: Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES/RV
-2006. LNCS, vol. 4262, pp. 40–54. Springer, Heidelberg (2006). https://doi.org/
10.1007/11940197 3

14. Huang, A.S., Rudolph, L.: Bluetooth Essentials for Programmers. Cambridge Uni-
versity Press, Cambridge (2007)

https://doi.org/10.1007/978-3-319-47169-3_55
https://doi.org/10.1007/978-3-319-47169-3_55
https://www.bluetooth.com/specifications/specs/core-specification-4-2/
https://www.bluetooth.com/specifications/specs/core-specification-4-2/
https://doi.org/10.1007/978-981-13-1056-0_61
https://doi.org/10.1007/978-981-13-1056-0_61
http://arxiv.org/abs/1907.02589
https://doi.org/10.1007/978-3-540-31848-4_1
https://doi.org/10.1007/978-3-540-31848-4_1
https://doi.org/10.1007/11940197_3
https://doi.org/10.1007/11940197_3

188 X. M. van Dommelen et al.

15. Hwang, J., Aziz, A., Sung, N., Ahmad, A., Le Gall, F., Song, J.: AUTOCON-IoT:
automated and scalable online conformance testing for IoT applications. IEEE
Access 8, 43111–43121 (2020)

16. Incki, K., Ari, I.: Observing interoperability of IoT systems through model-based
testing. In: Fortino, G., et al. (eds.) InterIoT/SaSeIoT -2017. LNICST, vol. 242,
pp. 60–66. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93797-7 8

17. Statista Inc.: Internet of things (IoT) active device connections installed base
worldwide from 2015 to 2025* (2020). https://www.statista.com/statistics/
1101442/iot-number-of-connected-devices-worldwide/

18. Janssen, S.: Transforming source code into symbolic transition systems for practical
model-based testing (2017)

19. Kim, H., et al.: IoT-TaaS: towards a prospective IoT testing framework. IEEE
Access 6, 15480–15493 (2018)

20. Koopman, P., Alimarine, A., Tretmans, J., Plasmeijer, R.: Gast: generic auto-
mated software testing. In: Peña, R., Arts, T. (eds.) IFL 2002. LNCS, vol. 2670,
pp. 84–100. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44854-3 6

21. Krichen, M., Tripakis, S.: Black-box conformance testing for real-time systems. In:
Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 109–126. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24732-6 8

22. Malik, B.H., et al.: IoT testing-as-a-service: a new dimension of automation. Int.
J. Adv. Comput. Sci. Appl. 10(5) (2019)

23. Marinissen, E.J., et al.: IoT: source of test challenges. In: 2016 21th IEEE European
Test Symposium (ETS), pp. 1–10. IEEE (2016)

24. Pretschner, A.: Model-based testing in practice. In: Fitzgerald, J., Hayes, I.J.,
Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp. 537–541. Springer, Heidelberg
(2005). https://doi.org/10.1007/11526841 37

25. Pretschner, A., et al.: One evaluation of model-based testing and its automation.
In: Proceedings of the 27th International Conference on Software Engineering, pp.
392–401 (2005)

26. Saleem, J., Hammoudeh, M., Raza, U., Adebisi, B., Ande, R.: IoT standardisation:
challenges, perspectives and solution. In: Proceedings of the 2nd International Con-
ference on Future Networks and Distributed Systems, pp. 1–9 (2018)

27. Schieferdecker, I.: Model-based testing. IEEE Softw. 29(1), 14 (2012)
28. Taivalsaari, A., Mikkonen, T.: A roadmap to the programmable world: software

challenges in the IoT era. IEEE Softw. 34(1), 72–80 (2017)
29. Tappler, M., Aichernig, B.K., Bloem, R.: Model-based testing IoT communication

via active automata learning. In: 2017 IEEE International Conference on Software
Testing, Verification and Validation (ICST), pp. 276–287. IEEE (2017)

30. Tretmans, J.: Model based testing with labelled transition systems. In: Hierons,
R.M., Bowen, J.P., Harman, M. (eds.) Formal Methods and Testing. LNCS, vol.
4949, pp. 1–38. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78917-8 1

31. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing
approaches. Softw. Test. Verif. Reliab. 22(5), 297–312 (2012)

32. Vorakulpipat, C., Rattanalerdnusorn, E., Thaenkaew, P., Hai, H.D.: Recent chal-
lenges, trends, and concerns related to IoT security: an evolutionary study. In: 2018
20th International Conference on Advanced Communication Technology (ICACT),
pp. 405–410. IEEE (2018)

33. Xia, F., Yang, L.T., Wang, L., Vinel, A.: Internet of things. Int. J. Commun. Syst.
25(9), 1101 (2012)

https://doi.org/10.1007/978-3-319-93797-7_8
https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/
https://doi.org/10.1007/3-540-44854-3_6
https://doi.org/10.1007/978-3-540-24732-6_8
https://doi.org/10.1007/11526841_37
https://doi.org/10.1007/978-3-540-78917-8_1
https://doi.org/10.1007/978-3-540-78917-8_1

Model-Based Testing of Internet of Things Protocols 189

34. Yoneyama, J., Artho, C., Tanabe, Y., Hagiya, M.: Model-based network fault
injection for IoT protocols. In: Proceedings of the 14th International Confer-
ence on Evaluation of Novel Approaches to Software Engineering, pp. 201–209.
SCITEPRESS-Science and Technology Publications, Lda (2019)

35. Ziegler, S., Fdida, S., Viho, C., Watteyne, T.: F-interop – online platform of interop-
erability and performance tests for the internet of things. In: Mitton, N., Chaouchi,
H., Noel, T., Watteyne, T., Gabillon, A., Capolsini, P. (eds.) InterIoT/SaSeIoT -
2016. LNICST, vol. 190, pp. 49–55. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-52727-7 7

https://doi.org/10.1007/978-3-319-52727-7_7
https://doi.org/10.1007/978-3-319-52727-7_7

Methodology

Formally Verifying Decompositions
of Stochastic Specifications

Anton Hampus1(B) and Mattias Nyberg1,2(B)

1 KTH Royal Institute of Technology, Stockholm, Sweden
ahampus@kth.se

2 Scania, Södertälje, Sweden

mattias.nyberg@scania.com

Abstract. According to the principles of compositional verification, ver-
ifying that lower-level components satisfy their specification will ensure
that the whole system satisfies its top-level specification. The key step is
to ensure that the lower-level specifications constitute a correct decom-
position of the top-level specification. In a non-stochastic context, such
decomposition can be analyzed using techniques of theorem proving. In
industrial applications, especially for safety-critical systems, specifica-
tions are often of stochastic nature, for example giving a bound on the
probability that system failure will occur before a given time. A decompo-
sition of such a specification requires techniques beyond traditional the-
orem proving. The first contribution of the paper is a theoretical frame-
work that allows the representation of, and reasoning about, stochastic
and timed behavior of systems as well as specifications for such behav-
iors. The framework is based on traces that describe the continuous-
time evolution of a system, and specifications are formulated using timed
automata combined with probabilistic acceptance conditions. The second
contribution is a novel approach to verifying decomposition of such spec-
ifications by reducing the problem to checking emptiness of the solution
space for a system of linear inequalities.

Keywords: Specification Theory · Refinement · Contracts

1 Introduction

The principle of compositional verification [33] has been proposed as a solu-
tion to verify large complex systems built up by smaller components. The key
idea is to verify that: (1) each component implements its specification, and (2)
the composition of these component specifications refines the top-level system
specification. This will then ensure that the whole system implements its top-
level specification. The key difficulty is (2), which can also be expressed as to
ensure that the component specifications constitute a correct decomposition of
the top-level specification.

Supported by Vinnova FFI through the SafeDim project.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. F. Groote and M. Huisman (Eds.): FMICS 2022, LNCS 13487, pp. 193–210, 2022.
https://doi.org/10.1007/978-3-031-15008-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15008-1_13&domain=pdf
http://orcid.org/0000-0002-3939-3919
https://doi.org/10.1007/978-3-031-15008-1_13

194 A. Hampus and M. Nyberg

Although decomposition of specifications is in general difficult, its importance
is stressed by its role in recent industrial standards such as ISO 26262 [20]
and ISO 21434 [19]. In these standards, specifications in the form of safety and
cyber-security requirements are decomposed into lower-level specifications. The
standards also require these decompositions to be correct and complete.

In the present paper, we consider general cyber-physical systems, and have
therefore chosen a representation based on continuous time. Based upon logic
and various extensions to include time, a number of frameworks are available
to express specifications and to verify refinement between specifications, e.g.
[10,27,30,35]. A limitation with these frameworks is that they do not consider
probabilistic or stochastic behaviors. On the other hand, from an industrial
standpoint, the ability to include stochastics is fundamentally important since
the exact purpose of many specifications, especially within safety, is to set limits
on the probability of undesired events to occur within certain time intervals.

In order to allow the study of stochastic specifications, the present paper pro-
poses, as its first contribution, a novel framework covering: syntax and semantics
of stochastic specifications, and composition and refinement of such specifica-
tions. To support the industrial applicability of the framework, as the second
contribution, the paper proposes also an algorithm for the analysis of whether a
composition of stochastic specifications refines another stochastic specification.

The approach taken in the paper is that behaviors of components and sys-
tems are characterized by traces and probability measures over sets of traces.
Rather than being expressed explicitly, behaviors are used as an abstract tool for
defining the semantics of specifications, as sets of behaviors. The syntax of spec-
ifications bears a resemblance to CSL [4,5,17] but views specifications generally
as a probabilistic extension to assume-guarantee contracts [7,26,37]. In such a
specification, denoted P<p(A,G), both the assumption A and the guarantee G
of the contract is represented by a deterministic timed automaton responding
to traces. The specification states that, given that the environment satisfies the
assumption, the probability that the guarantee is satisfied shall be less than p.

The literature contains some other proposed frameworks for defining stochas-
tic specifications and verifying properties such as refinement, e.g. [8,13,14,16,
21,22,24,29,34]. However, in contrast to all of these previous works, the present
paper uses continuous time and considers component behaviors purely in terms
of traces—no particular modeling formalism for generating the traces is assumed.

The paper is organized as follows. Section 2 uses an example to illustrate the
problem and sketch the proposed solution. Section 3 and 4 describe the proposed
framework and algorithm. Section 5 applies the framework and the algorithm
to an extended version of the example studied in Sect. 2. Finally, Sect. 6 and 7
present related work and conclusions.

2 Problem Illustration

Consider a two-component system consisting of a main and backup power source.
The idea is that whenever there is a main power failure, the backup is activated.

Formally Verifying Decompositions of Stochastic Specifications 195

The purpose of the backup is to prolong the duration of power output by the
system. However, in order for the backup to correctly do this, it needs to first be
charged by the main power source for a certain amount of time. Furthermore,
even if charged, there is a probability that it will fail prematurely. An example
of such a system is depicted in Fig. 1 and 2. In these diagrams, main power
failure occurs exponentially with rate 1

20 (per hour), while the backup component

Fig. 1. Possible main power compo-
nent

Fig. 2. Possible backup component

Fig. 3. Failed backup activation Fig. 4. Successful backup activation

Fig. 5. Main power specification Fig. 6. Backup specification

Fig. 7. Top-level specification

196 A. Hampus and M. Nyberg

responds to this failure probabilistically. More precisely, when main power failure
occurs, the backup is activated with 85% probability if it has finished charging
and 0% probability otherwise. This fact is represented in Fig. 2 by the edges
labeled failure. The required charging time for this specific backup is 2 h. Once
turned on, the backup will output power also for 2 h, until entering a discharged
state.

Assume the top-level specification to be: “the system shall output power
continuously during the first 7 h with over 50% probability”. Instead of merely
verifying that the system composed of the components in Fig. 1 and 2 imple-
ments the top-level specification, we want to formulate two component specifi-
cations and verify that any system composed of a main and backup implement-
ing its component specification is sure to implement the top-level specification.
As our attempt for doing so, let the main power source specification be: “main
power failure shall occur before 6 h with at most 30% probability”. Meanwhile,
the backup specification will be an assume-guarantee contract: “assuming main
power failure occurs after at least 3 h, then with at least 80% probability, the
backup shall output power continuously for at least 2 h starting at this time”.
Note that, since the main power specification only concerns the first 6 h, it does
not refine the top-level specification by itself and needs to be supplemented by
the backup specification to extend this time interval.

As a sketch of what refinement means, we first observe that the outcomes,
i.e. the traces, of the components are generated stochastically. Figure 3 and 4
show two possible traces of a main and backup power source. In both traces,
main power failure occurs at exactly 3 h. However, backup power activation fails
in Fig. 3 while succeeding in Fig. 4. Once activated, it manages to prolong power
output by 2 h, resulting in the system continuously outputting power for 5 h
instead of 3, as would be the case without the backup.

We can view these traces as samples drawn from some underlying probability
distribution. For example, the main power trace might be drawn from the pro-
cess of Fig. 1 and the backup trace from Fig. 2. Such an underlying probability
distribution is referred to as a behavior. As a result, specifying the two compo-
nents corresponds to specifying two sets of behaviors; thus, we must translate
the natural language specifications to sets of “allowed” probability distributions.

Figure 5 depicts the specification for the main power source in terms of the
behaviors it contains, represented by the gray region. The convention used here
is that a behavior, represented by the cumulative distribution function (CDF) of
the time to failure, implements the specification if it lies completely within the
gray region. Note that the region extends to positive infinity along the horizontal
axis. To better understand this graphical representation of the specification, an
example behavior, drawn as a CDF, is included inside the region. Note that this
CDF in fact represents the behavior generated by the process of Fig. 1, following
the exponential distribution exp(1

20).
The backup specification is depicted in Fig. 6 using a similar approach. How-

ever, this region does not represent a set of failure CDFs, but instead a set of
success probabilities, given as functions of the time when main power failure

Formally Verifying Decompositions of Stochastic Specifications 197

occurs. Here, success means that the backup is able to output power for at least
2 h. The example behavior shown within the region corresponds to a backup
power source that needs 2 h to charge, and, once charged, has a success rate of
85% regardless of when main power fails. Note that whenever the assumption
is unfulfilled, nothing is required of the backup. That is, within the first 3 h, all
success rates from 0% to 100% are allowed.

Lastly, the top-level specification is depicted in Fig. 7, showing a region of
allowed failure CDFs of total power output, ignoring whether the main or backup
is responsible for outputting it. The question now is this: does the composition of
the two component specifications refine the top-level specification? The purpose
of the rest of the paper is to formalise these notions of traces, behaviors, and
specifications, and to provide an algorithm for verifying refinement.

3 A Theory for Specifying Stochastic Behavior

3.1 Traces and Behaviors

A behavior is meant to represent the possible executions, or traces, of a com-
ponent, as well as how likely they are. In short, we represent a trace as an
assignment of values to variables at each point in time, and a behavior as a
distribution over traces. We will also extend behaviors to incorporate input as
well as output, calling them input/output behaviors.

We consider a universal set of variables X = {x1, x2, . . . , xn}, n ≥ 1, each
xi ∈ X ranging over a non-empty countable set Vxi

of values. Given a non-empty
set of variables E ⊆ X, a valuation for E is a function ν : E → ⋃

xi∈X Vxi

associating each xi ∈ E with a value in its range Vxi
. The set of all possible

valuations for a non-empty set E ⊆ X is denoted val(E).

Definition 1 (Trace). Given a non-empty set of variables E ⊆ X, a trace over
E is a right-continuous function θ : R≥0 → val(E) defined on the timeline. ��

Let tr(E) denote the set of all possible traces over E. By convention, let
tr(∅) = ∅, i.e. the set of all possible traces over the empty set of variables is ∅.

Definition 2 (Behavior). Given a non-empty set of variables E ⊆ X, a
behavior over E is a probability measure defined on a sigma algebra on the
set tr(E). ��
Let beh(E) denote the set of all possible behaviors over a non-empty E ⊆ X.

We will now extend behaviors into input-output behaviors, which intuitively
have control over output variables while being dependent on input variables.

Definition 3 (Input/Output Behavior). Given two disjoint sets of variables
I ⊆ X and O ⊆ X, where O is non-empty, an input/output behavior from I
to O is a function β : tr(I) → beh(O) such that for any pair of traces θ1, θ2 ∈
tr(I), the behaviors β(θ1) and β(θ2) share the same sigma algebra denoted σβ.

��

198 A. Hampus and M. Nyberg

Given a possibly empty I ⊆ X and a non-empty O ⊆ X, let beh(I,O) denote
the set of all possible input/output behaviors from I to O. Furthermore, for an
input/output behavior β from I to O, let in(β) and out(β) denote the sets I
and O of input and output variables, respectively. From now on, “input/output”
will often be abbreviated as I/O.

Example 1. Consider I = ∅ and O = {x}. Then an I/O behavior from I to O is
a function β : ∅ → beh({x}). Thus, the I/O behavior from I to O reduces to a
behavior over {x}, i.e. β ∈ beh({x}).

Composition of Behaviors. When composing two behaviors β1 and β2, for
the sake of simplicity, we restrict ourselves to the case where β1 has no input, and
its output is exactly the input of β2, i.e. in(β1) = ∅ and out(β1) = in(β2). The
implication of this is that composing β1 with β2 results in yet another behavior
without input. The composition of β1 and β2, denoted β1‖β2, is the I/O behavior
from in(β1) = ∅ to out(β1) ∪ out(β2) formed as follows.

We assume that β2(·)(Θ2), for any fixed Θ2, is a measurable function from
the measurable space (out(β1), σβ1) to the measurable space ([0, 1],B([0, 1])).
Then according to [32] (Thm. 5.8.1 and Thm. 2.4.3), β1‖β2(·) defined as
β1‖β2(Θ1 ×Θ2) =

∫
Θ1

β2(θ1)(Θ2)β1(dθ1) is a probability of Θ1 ×Θ2 ∈ σβ1 ×σβ2

and its unique extension a probability measure on the product sigma algebra
σβ1 × σβ2 . This result is the basis for the following definition.

Definition 4 (Composition of I/O Behaviors). Let β1 and β2 be two I/O
behaviors such that in(β1) = ∅, in(β2) = out(β1), and β2(·)(Θ2) is a measurable
function from (out(β1), σβ1) to ([0, 1],B([0, 1])). The composition of β1 and β2,
denoted β1‖β2, is an I/O behavior from ∅ to out(β1)∪out(β2), i.e. a probability
measure

β1‖β2 ∈ beh(out(β1) ∪ out(β2)) ,

defined by

β1‖β2(Θ1 × Θ2) =
∫

Θ1

β2(θ1)(Θ2)β1(dθ1)

and its unique extension, and defined on σβ1 × σβ2 . ��
Note that according to this definition, we only obtain a measure on the sigma

algebra σβ1 ×σβ2 . As a consequence, we assume that any subset of tr(out(β1))×
tr(in(β2)) that we want to measure the probability of, and that is not an element
of σβ1 × σβ2 , can be approximated to arbitrary precision by some element in
σβ1 ×σβ2 . Note further that the output of the composition β1‖β2 simply becomes
the union of β1 and β2 and it is presumed that in(β2) = out(β1) and in(β1) = ∅.
Clearly, a less restrictive definition can be created, but for the sake of simplicity,
these generalizations are left out of scope of the current paper.

Formally Verifying Decompositions of Stochastic Specifications 199

3.2 Specifications

In short, we view a specification simply as the set of behaviors that implement it.
A specification refines another if each behavior implementing it also implements
the other. This is captured by the following three definitions.

Definition 5 (Specification). Given two disjoint sets of variables I ⊆ X and
O ⊆ X such that O is non-empty, a specification Σ from I to O is a subset of
the I/O behaviors beh(I,O), i.e. Σ ⊆ beh(I,O). ��
Definition 6 (Implements). An I/O behavior β from I to O implements a
specification Σ from I to O if β ∈ Σ. ��
Definition 7 (Refines). A specification Σ1 from I to O refines a specification
Σ2 from I to O if Σ1 ⊆ Σ2. ��

Given a possibly empty set I ⊆ X and non-empty set O ⊆ X, let spec(I,O)
denote the set of all possible specifications from I to O. Given a specification Σ,
in(Σ) and out(Σ) are defined in a similar manner as with I/O behaviors.

Note that, according to Definition 4, β1‖β2 is only defined for cases where
in(β1) = ∅, in(β2) = out(β1), and β2(·)(Θ2) is a measurable function from
(out(β1), σβ1) to ([0, 1],B([0, 1])). Behaviors fulfilling these conditions will be
called compatible.

In analogy with the notion of compatible behaviors, we say that two specifica-
tions Σ1 and Σ2 are compatible if each β1 ∈ Σ1 is compatible with each β2 ∈ Σ2.
Note that a prerequisite for this is that in(Σ1) = ∅ and in(Σ2) = out(Σ1).

Definition 8 (Parallel Composition of Specifications). Given two com-
patible specifications Σ1 and Σ2, the parallel composition of Σ1 and Σ2, denoted
Σ1‖Σ2, is the specification Σ1‖Σ2 = {β1‖β2 | β1 ∈ Σ1, β2 ∈ Σ2}. ��
The essence of this definition is that we can take any pair β1 ∈ Σ1 and β2 ∈ Σ2,
and be sure that β1‖β2 ∈ Σ1‖Σ2.

3.3 Trace Automata

The specification language presented in this paper, as well as its semantics and
the verification method, are based on timed automata, as introduced by Alur
and Dill [2,3]. The following definitions follow closely this literature, except that
traces are assumed as input, rather than timed words, to fit the current setting.

Let a clock be a variable ranging over the entire timeline R≥0. We will often
use the notation νC for a valuation over clocks, as opposed to ν, which is used
for a valuation over variables in X. For t ∈ R≥0, let νC + t denote the clock
valuation {c �→ νC(c) + t | c ∈ C}. Given a set C = {c1, . . . , cm} of clocks, a
clock constraint δ on C is defined inductively by the grammar

δ ::= c < k | c ≥ k | δ ∧ δ,

200 A. Hampus and M. Nyberg

where c ranges over clocks C and k ranges over constant real numbers R. A
clock valuation νC for C is said to satisfy a clock constraint δ on C if δ[c1 �→
νC(c1), . . . , cm �→ νC(cm)] evaluates to true. Given a set C of clocks, let Δ(C)
denote the set of all possible clock constraints on C.

Definition 9 (Timed Automaton). A timed automaton is a tuple A = 〈V,L,
l0, C,→, F 〉 where V is a countable alphabet, L is a countable set of locations,
l0 ∈ L is a start location, C is a countable set of clocks, → ⊆ L×V ×2C×Δ(C)×L
is a transition relation, and F ⊆ L is a set of accepting locations. ��

For a timed automaton A = 〈V,L, l0, C,→, F 〉, we denote by VA, LA, l0A ,
CA, →A, and FA the elements V , L, l0, C, →, and F , respectively. A timed
automaton is said to be deterministic if, for each pair of distinct transitions
originating from the same location and sharing the same alphabet symbol, there
exists no clock valuation satisfying both clock constraints.

In what follows, only a special class of timed automata, called trace automata,
will be considered. These are characterized by the fact that their alphabets
consist of variable valuations, resulting in the ability to read traces as input.
This leads us to use the letter ν to denote an input symbol.

Given a timed automaton A = 〈V,L, l0, C,→, F 〉, locations l, l′ ∈ L, clock
valuations νC , ν′

C for C, and an alphabet symbol ν ∈ V , we will denote
by (l, νC) ν−→A (l′, ν′

C) the logical statement that → contains a transition
〈l, ν, r, δ, l′〉 with r = {c1, . . . , cm} such that νC satisfies δ and ν′

C = νC [c1 �→
0, . . . , cm �→ 0].

In order to give a concise and well-defined semantics for trace automata, we
require that only a finite number of transitions are possible within 0 time. This
fact is captured in the following definition.

Definition 10 (Trace Automaton). Given a non-empty set E ⊆ X of vari-
ables, a deterministic timed automaton A = 〈V,L, l0, C,→, F 〉 is a trace automa-
ton for E if V = val(E) and, for each l ∈ L and νC ∈ val(C), there exists no
infinite sequence (l, νC) ν−→A (l1, νC1)

ν−→A (l2, νC2)
ν−→A ��

Note from Definition 10 that the condition about infinite transition sequences
applies both to loops, including self loops, as well as to infinite location spaces
with an infinite number of transitions. For instance, trace automata never allow
self loops 〈l, ν, r, δ, l〉 in which the set r of clocks to reset is empty.

The semantics of a trace automaton A = 〈V,L, l0, C,→, F 〉 for a non-empty
E is defined as follows. Consider a trace θ ∈ tr(E) to be given. A configuration
is a tuple μi = (li, νCi

, ti) ∈ L × val(C) × R≥0, containing a location, clock
configuration and time value. Initially, μ0 = (l0, 0̄, 0), where 0̄ denotes the clock
valuation {c �→ 0 | c ∈ C}. Inductively, consider a configuration μi = (li, νCi

, ti)
and the smallest time increment t+ causing the automaton to transition. That is,
t+ = min{t ∈ R≥0 | ∃〈li, θ(ti + t), r, δ, l′i〉 ∈ → . νCi

+ t satisfies δ}. The successor
of μi becomes μi+1 = (li+1, νCi+1 , ti+1) such that ti+1 = ti + t+ and there exists

a maximal transition sequence (li, νCi
+ t+)

θ(ti+1)−−−−→ . . .
θ(ti+1)−−−−→ (li+1, νCi+1).

Formally Verifying Decompositions of Stochastic Specifications 201

Note that the sequence μ0, μ1, . . . generated in this way is unique since A is
deterministic. Thus, we can define the execution of A on θ, denoted A(θ), as
this sequence μ0, μ1, Let furthermore A(θ)|L denote the sequence l0, l1, . . .
of locations visited along the execution.

Definition 11 (Path). Given a set E ⊆ X of variables, a trace automaton
A = 〈V,L, l0, C,→, F 〉 for E, and a location sequence π ∈ L∗, the sequence π is
a path of A if there exists a trace θ ∈ tr(E) such that π = A(θ)|L. ��

Given a trace automaton A for E, the set of all possible paths of A is denoted
paths(A). Furthermore, given an infinite path l0, l1, . . . of A, the limit limi→∞ li
exists if and only if there exists an index a ∈ N such that for each b ≥ a, lb = la.
For finite paths l0, l1, . . . , lk, we use the convention that limi→∞ li = lk. If for
each trace θ ∈ tr(E) the path A(θ)|L = l0, l1, . . . has a limit limi→∞ li, then A
is said to be terminating.

Henceforth, we will only consider terminating trace automata. This is done
both for the sake of simplicity and to provide a refinement verification algorithm
that is guaranteed to terminate. Note that terminating automata still allow
us to express safety properties over infinite traces, such as “the system shall
never crash”. Furthermore, although some types of liveness properties are not
possible to express, such as “at all times, each request shall be followed by an
answer”, we can still express liveness properties such as “the system eventually
finishes”, or liveness within bounded time, such as “during the system lifetime of
10,000 h, each request shall be followed by an answer”. Let AE denote the set of
all terminating trace automata for any non-empty set of variables E ⊆ X, and
let A∅ = ∅ by convention. For a path π = l0, l1, . . . of an automaton A ∈ AE ,
let last(π) denote the last visited location limi→∞ li. We also extend last(·) to
executions, so that if ω is an execution, then last(ω) = last(ω|L). Furthermore,
if π is a path of A ∈ AE , then ΘA(π) will denote the set of all traces θ ∈ tr(E)
corresponding to π, i.e. the set {θ ∈ tr(E) | A(θ)|L = π}. As an extension, if Π
is a set of paths of A, then ΘA(Π) = {ΘA(π) | π ∈ Π}. Given trace automata
A1 ∈ AE1 and A2 ∈ AE2 , the composition of A1 and A2, denoted A1‖A2, is the
trace automaton giving their joint execution. More precisely, A1‖A2 ∈ AE1∪E2

such that LA1‖A2 = LA1 ×LA2 , l0A1‖A2
= (l0A1

, l0A2
), and CA1‖A2 = CA1 ∪CA2 .

The transition relation →A1‖A2 is constructed by determining, for each joint
location in LA1×LA2 and individual transition in →A1 ∪ →A2 , the joint reaction
of both component automata arising from each possible valuation for E1 ∪ E2

and clock valuation for C1 ∪ C2 coherent with the transition. For more details,
see [18]. Given a joint location l = (l1, l2) ∈ LA1‖A2 , we denote by l|A1 and l|A2

the individual locations l1 and l2, respectively.

3.4 Probabilistic Automaton Contracts

For specifying I/O behaviors in practice, we will use a contract-based approach.
A contract consists of an assumption and a guarantee together with a probabil-
ity bound. Intuitively, an I/O behavior implements a contract if, for each input

202 A. Hampus and M. Nyberg

trace satisfying the assumption, the probability over all output traces satisfying
the guarantee respects the probability bound. Both the assumption and guar-
antee are specified using terminating trace automata. For convenience, we will
also allow a special non-assumption � that carries the meaning of always being
satisfied. We use the convention that composing any automaton A with � results
in A itself, so that A‖� = �‖A = A.

The choice of using automata for specifying system properties is motivated
by their flexibility—while temporal logics offer their own advantages, it may be
difficult, or even impossible, to specify some complex systems using them [9]. In
general, it is always possible to construct some automaton corresponding to a
given temporal logic formula.

Definition 12 (Accepts). Given a non-empty set E ⊆ X of variables, an
automaton A ∈ AE, and a trace θ ∈ tr(E), A accepts θ if last(A(θ)) ∈ F . ��

We also extend the notion of acceptance to the non-assumption �, so that �
is considered to accept each possible trace θ ∈ ⋃

E⊆X tr(E). For an automaton
A ∈ AE ∪ {�}, let acc(A) denote the set of all traces that A accepts.

Definition 13 (Probabilistic Automaton Contract). Given a set of vari-
ables I ⊆ X, a non-empty set of variables O ⊆ X disjoint from I, an assumption
A ∈ AI ∪ {�}, a guarantee G ∈ AI∪O, a probability value p ∈ [0, 1] and a com-
parison operator � ∈ {<,≤,≥, >}, a formula φ = P�� p(A,G) is a probabilistic
automaton contract (PAC) from I to O. ��

Once again, in(φ) and out(φ) are defined for PACs φ in a similar manner as
for I/O behaviors and specifications. For a PAC φ = P�� p(A,G), we will denote
its assumption A, guarantee G, probability value p and comparison operator �
by Aφ, Gφ, pφ, and �φ, respectively.

To understand trace composition in the following definition of PAC inter-
pretation, consider two traces θ1 and θ2 over disjoint sets of variables E1 and
E2, respectively. The composition of θ1 and θ2 is the trace θ1 ‖ θ2 : R≥0 →
val(E1 ∪ E2) such that (θ1‖θ2)(t)(x) equals θ1(t)(x) if x ∈ E1 and θ2(t)(x) if
x ∈ E2.

In the next definition of PAC interpretation, given a set O ⊆ X of variables,
we will make use of a particular σ-algebra σO that, for each automaton A ∈ AO

and each path π ∈ paths(A), contains the set ΘA(π).

Definition 14 (PAC Interpretation). Given a set of variables I ⊆ X, a
non-empty set of variables O ⊆ X, and a PAC φ = P�� p(A,G) from I to O, the
interpretation of φ, written �φ�, is the specification, i.e. the set of I/O behaviors
from I to O, with σ-algebra σO such that for each β ∈ �φ�, it holds:

1. in the case I = ∅, β()(acc(G)) � p,
2. in the case I �= ∅, for each trace θI ∈ tr(I), if θI ∈ acc(A), then β(θI)({θO ∈

tr(O) | θI‖θO ∈ acc(G)}) � p. ��

Formally Verifying Decompositions of Stochastic Specifications 203

Note that the choice of σO guarantees the values β()(acc(G)) and
β(θI)({θO ∈ tr(O) | θI ‖θO ∈ acc(G)}) in the above definition to be defined.
For a PAC φ = P�� p(A,G), we denote by φc the PAC P��c p(A,G) in which the
comparison operator has been complemented. For instance, the complement of
< is ≥. The PAC φc is called the complement of φ.

Of course, one could imagine the possibility of creating more complex, even
nested, contract-based formulae following a recursively defined grammar. For
instance, combining PACs using negation, conjunction and disjunction as well
as defining an until operator and nesting PACs within PACs. Although this
possibility is interesting, it lies outside the scope of the present paper. Instead,
as will be introduced in the next definition, we will work with composite PACs,
which consist of multiple PACs and represent their parallel composition. As with
composition of behaviors and specifications, in the next definition, we consider
only the case of in(φ1) = ∅ and in(φ2) = out(φ1).

Definition 15 (Composite Probabilistic Automaton Contract). Given
two PACs φ1 and φ2 with compatible interpretations, the term φ1‖φ2 is a com-
posite probabilistic automaton contract (cPAC) with interpretation �φ1‖φ2� =
�φ1�‖�φ2�. Inductively, if φ1 is a PAC or cPAC and φ2 is a PAC or cPAC such
that �φ1� and �φ2� are compatible, then the term φ1‖φ2 is a cPAC. ��

The notation in(φ) and out(φ) is extended also to cPACs φ, and the notions
of implement and refine are extended to PACs and cPACs by defining that: β
implements φ if β ∈ �φ�, and φ1 refines φ2 if �φ1� ⊆ �φ2�.

4 Verification of Refinement

A common technique for formal verification found throughout literature is to
formulate specifications using automata and then solve the language inclusion
problem using automata theory [9,23]. This is also the foundation for the method
developed in this paper, except here, languages are sets of I/O behaviors instead
of strings. The intuition for verifying that a composition φ = φ1 ‖ . . . ‖ φk of
component specifications refines a top-level specification φ̂ is as follows. We want
to verify that the set �φ� is a subset of �φ̂�. The strategy is to check emptiness of
the specification �φ�∩ �φ̂c�. To do so, we will compose all automata found in the
two specifications and map each joint path to the assumptions and guarantees
that it satisfies. From this, a set of linear inequalities can be generated, each
representing a conditional probability of a guarantee given an assumption. If
this system of inequalities has no solutions, it means that no valid probability
measure can possibly exist in �φ� ∩ �φ̂c�, thereby proving emptiness. The last
step can be calculated using e.g. the simplex method [11,28].

Although this method is a semi-decision procedure, i.e. is not guaranteed to
return true if refinement holds and false otherwise, it is sound in the sense
that refinement does indeed hold whenever the algorithm returns true.

To verify refinement, the restrictions imposed on the specifications are as
follows. While the component specification φ can be either a single PAC or a

204 A. Hampus and M. Nyberg

cPAC consisting of multiple PACs φ1, . . . , φm, the top-level specification φ̂ must
be a single PAC. Moreover, we require that in(φ) = in(φ̂) = ∅ and out(φ) =
out(φ̂) �= ∅. Each �φi

must be one of ≤ or ≥, and �
̂φ must be either < or >.

Lastly, given that φ is the PAC or cPAC φ = φ1‖. . .‖φm for some m ≥ 1 and
denoting A = Aφ1 ‖ Gφ1 ‖ . . .‖ Aφm

‖ Gφm
‖ A

̂φ ‖ G
̂φ, we assume that paths(A) is

finite and can be found in finite time. This should be the case for many industrial
applications, for instance when the number of transitions is finite.

The algorithm works as follows. Let φ = φ1 ‖ . . .‖ φm, m ≥ 1, be a PAC
or cPAC and φ̂ be a PAC. The problem is to decide whether φ refines φ̂. We
construct the composition A = Aφ1 ‖ Gφ1 ‖ . . .‖ Aφm

‖ Gφm
‖ A

̂φ ‖ G
̂φ and, from

that, a system of linear inequalities as follows. For each φi ∈ {φ1, . . . , φm}, let
{π1, . . . , πq} be the set of paths of A accepted by the assumption Aφi

and let
{πj1 , . . . , πjs

} ⊆ {π1, . . . , πq} be the set of paths of A accepted by both the
guarantee Gφi

and assumption Aφi
. Then we add an inequality

πj1 + · · · + πjs

π1 + · · · + πq
�φi

pφi
.

Do the same for φ̂ except with �
̂φc substituted for �

̂φ. To ensure that the
probabilities sum to 1, add the equality 1 =

∑
π∈paths(A) π. Lastly, if the solution

space for this system of inequalities is empty, we conclude that φ refines φ̂.
Pseudocode for this procedure is presented in Algorithm 1. Here, the variable

ineqs stores the set of linear inequalities, which is incrementally updated to
contain the inequality generated from each conditional probability.

Algorithm 1. Verify that a PAC or cPAC refines a PAC.
1: function Refines(φ1‖ . . .‖φm, ̂φ)
2: A = Aφ1 ‖Gφ1 ‖ . . .‖Aφm ‖Gφm ‖A

̂φ‖G
̂φ

3: ineqs ←
{

1 =
∑

π∈paths(A) π
}

4: for φ ∈ {φ1, . . . , φm, ̂φc} do
5: ΠA ← {π ∈ paths(A) | last(π)|Aφ ∈ FAφ}
6: ΠG ← {π ∈ paths(A) | last(π)|Gφ ∈ FGφ}
7: ΠG∧A ← ΠG ∩ ΠA

8: ineqs ← ineqs ∪
{(

∑

π∈ΠG∧A π
)

/
(

∑

π∈ΠA π
)

��φ pφ

}

9: end for
10: return true if the solution space for ineqs is empty; unknown otherwise
11: end function

Due to the assumption of finitely many paths, the algorithm will terminate
in finite time. However, time complexity depends on operations for enumerat-
ing these paths. Therefore, practical implementations call for efficient search
algorithms and data structures for this. The following theorem states that Algo-
rithm 1 is sound. The proof is given in the report [18].

Formally Verifying Decompositions of Stochastic Specifications 205

Theorem 1. A PAC or cPAC φ1 ‖ . . . ‖ φm refines a PAC φ̂ if the procedure
Refines(φ1‖ . . .‖φm, φ̂) given by Algorithm 1 returns true. ��

5 Case Study

Recall the two-component system from Sect. 2 consisting of a main and backup
power source. The purpose of this section is to solve the refinement verification
problem for the specifications presented there, using the algorithm from Sect. 4.

Once again, the natural language top-level specification is: “the system shall
output power continuously during the first 7 h with over 50% probability”. To
represent this specification, we can define the PAC

ok preφ̂ = P>0.5

(
�,

)
.

{pM �→ 0, pB �→ 0}
cM < 7

Here, the non-assumption is used together with a guarantee automaton over
the considered variables pM and pB , denoting main power and backup power,
respectively. Each variable is boolean, where 1 corresponds to power output and
0 corresponds to no power output. The guarantee accepts all traces for which the
location ok is never left. Looking at the only outgoing transition, this captures
the traces such that there exists no time before 7 h with neither main nor backup
power. The probability bound put on the guarantee is > 0.5.

Likewise, the natural language specification for the main power source is
stated as: “main power failure shall occur before 6 h with at most 30% probabil-
ity”, and for the backup power source as: “assuming main power failure occurs
after at least 3 h, then with at least 80% probability, the backup shall output
power continuously for at least 2 h starting at this time”. These natural language
specifications can be represented by the two PACs

ok preφM = P≥0.7

(
�,

)
,

{pM �→ 0}
cM < 6

wait

fail

ok

)
,T

F

U ,φB = P≥0.8

({pM �→ 0, pB �→ 1}
cB := 0

{pB �→ 0}
cB < 2

{pM �→ 0, pB �→ 0}

{pM �→ 0}
cM ≥ 3

{pM �→ 0}
cM < 3

respectively. Because an assumption is present in the natural language backup
specification, the PAC φB must include a corresponding assumption automa-
ton. Here, the assumption location U denotes undecided, T denotes true and F
denotes false. The assumption automaton accepts traces in which main power
failure occurs at some time after 3 h. Meanwhile, the guarantee waits for this
occurrence, after which failure to turn on the backup results in entering the fail
location; otherwise the ok location is entered. Now, in order for the guarantee
to accept the trace, backup power must be held for at least 2 h. After that, the
accepting location ok can never be left.

206 A. Hampus and M. Nyberg

Following Algorithm 1, we first construct the composition A = A
̂φ ‖ G

̂φ ‖
AφM

‖GφM
‖AφB

‖GφB
. The resulting automaton is shown in Fig. 8, where only

the reachable part is included. Next to each location, there is a tuple giving the
initials of the corresponding component automaton locations, where e.g. (p,p,f,f)
refers to locations pre, pre, F, and fail of G

̂φ, GφM
, AφB

, and GφB
, respectively.

Dashed arrows denote transitions on the valuation {pM �→ 0, pB �→ 1} in which
the backup correctly responds to main power failure. Solid lines originating from
location a denote transitions on the valuation {pM �→ 0, pB �→ 0} in which none
of the power sources output power, and solid lines originating from any other
location denote transitions on valuations in which the backup does not output
power, i.e. both {pM �→ 0, pB �→ 0} and {pM �→ 1, pB �→ 0}. Lastly, note that the
clock constraints of transitions sharing the same source location and valuation
are disjoint, so that e.g. cM < 6 is shorthand for cM < 6 ∧ ¬(cM < 3).

Fig. 8. The composition A = A
̂φ‖Ĝφ‖AφM‖GφM‖AφB‖GφB

Identifying the paths ending in accepting locations of each automaton results
in the sets ΠA

̂φ
= ΠAφM

= paths(A) = {a, ab, ac, acb, ae, aed, aef, af, ag, ah,

ahg, ahi, ai}, ΠG
̂φ
∧A

̂φ
= {a, ac, ae, aed, ah, ahi}, ΠGφM

∧AφM
= {a, ag, ah, ahg,

ahi, ai}, ΠAφB
= {ae, aed, aef, ag, ah, ahg, ahi, ai}, and ΠGφB

∧AφB
= {ae, ah}.

This results in the following system of linear inequalities:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a + ag + ah + ahg + ahi + ai ≥ 0.7

ae + ah

ae + aed + aef + ag + ah + ahg + ahi + ai
≥ 0.8

a + ac + ae + aed + ah + ahi ≤ 0.5

a + ab + ac + acb + ae + aed + aef + af + ag + ah + ahg + ahi + ai = 1 .

Running a linear optimization solver, e.g. [1], on this instance shows that the
solution space is empty. Thus, we have verified that the composition of φM and
φB refines φ̂. Or, in other words, combining any main power source and any
backup power source implementing its corresponding specification will surely
implement the top-level specification.

Formally Verifying Decompositions of Stochastic Specifications 207

6 Related Work

A related field is the area of model checking. In contrast to the present paper,
which treats refinement of specifications, the goal of model checking is to verify
that a given model implements a given specification, see e.g. [25,31].

The literature contains various proposed specification theories for stochastic
systems, supporting for instance constraint Markov chains [8], abstract proba-
bilistic automata [14], interactive Markov chains [16], and a variety of proba-
bilistic transition systems [21,22,24,34]. In the contract context, Nuzzo et al.
[29] present a specification theory for probabilistic assume-guarantee contracts.
While these previous theories are based on discrete time, the present paper gives
explicit support for continuous time. Also in the continuous setting, simulation
and bisimulation have been studied for continuous-time Markov chains (CTMCs)
[6]. However, this theory assumes that systems follow a particular stochastic pro-
cess. Similarly, the rest of the papers above assume a particular formalism or
system structure, in contrast to the purely trace-based approach of the present
paper. The contract theory of [13] is also trace-based, but in discrete time.

Both automata and temporal logics can be used for specifying properties
of systems. For specifying stochastic systems in continuous time, Continuous
Stochastic Logic (CSL) is commonly used [17]. The extension CSLTA allows
specifying properties through single-clock automata and has been used for model
checking CTMCs [15]. A specification theory allowing compositional reasoning
has been developed for timed I/O automata [12]; however, this framework gives
no explicit support for probabilities. In a discrete-time setting, temporal oper-
ators defined by finite automata are included in a temporal logic presented by
[36], and in an extension to computation tree logic, called ECTL [9].

7 Conclusions

In industrial applications, especially for safety-critical systems, specifications
are often of stochastic nature, for example giving a bound on the probability
that system failure will occur before a given time. A decomposition of such a
specification requires techniques beyond traditional theorem proving.

As presented in Sect. 3, the first contribution of the paper is a theoretical
framework that allows the representation of, and reasoning about, stochastic and
continuous-time behaviors of systems as well as specifications for such behaviors.
The main goal has been to provide a framework that can handle reasoning of
refinement between specifications in the form of assume-guarantee contracts.
This is needed to support compositional verification, which in turn is a key
solution to specify and verify large-scale complex systems. A main goal has
also been to approach the problem from a general perspective, leading to our
choice of representing behaviors of components as probability measures on sets
of traces. The second contribution, presented in Sect. 4, is an algorithm for
the verification of stochastic specification refinement by reducing the problem to
checking emptiness of the solution space for a system of linear inequalities. Future

208 A. Hampus and M. Nyberg

work includes investigating more efficient implementations of the algorithm, e.g.
by replacing explicit path enumeration, and experimental evaluation using larger
and more realistic case studies motivated by industry.

References

1. Linear optimization. https://online-optimizer.appspot.com. Accessed 27 May 2022
2. Alur, R., Dill, D.: Automata for modeling real-time systems. In: Paterson, M.S.

(ed.) ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990).
https://doi.org/10.1007/BFb0032042

3. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2),
183–235 (1994)

4. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Verifying continuous time Markov
chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–
276. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61474-5 75

5. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continuous-time
Markov chains. ACM Trans. Comput. Logic (TOCL) 1(1), 162–170 (2000)

6. Baier, C., Katoen, J.P., Hermanns, H., Wolf, V.: Comparative branching-time
semantics for Markov chains. Inf. Comput. 200(2), 149–214 (2005)

7. Benveniste, A., Caillaud, B., Ferrari, A., Mangeruca, L., Passerone, R., Sofronis, C.:
Multiple viewpoint contract-based specification and design. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007. LNCS, vol. 5382, pp.
200–225. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92188-
2 9

8. Caillaud, B., Delahaye, B., Larsen, K.G., Legay, A., Pedersen, M.L., Wasowski,
A.: Compositional design methodology with constraint Markov chains. In: 2010
Seventh International Conference on the Quantitative Evaluation of Systems, pp.
123–132. IEEE (2010)

9. Clarke, E.M., Grumberg, O., Kurshan, R.P.: A synthesis of two approaches for ver-
ifying finite state concurrent systems. In: Meyer, A.R., Taitslin, M.A. (eds.) Logic
at Botik 1989. LNCS, vol. 363, pp. 81–90. Springer, Heidelberg (1989). https://
doi.org/10.1007/3-540-51237-3 7

10. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-C. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012.
LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33826-7 16

11. Dantzig, G.B.: Origins of the simplex method. In: A History of Scientific Comput-
ing, pp. 141–151 (1990)

12. David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: Timed I/O
automata: a complete specification theory for real-time systems. In: Proceedings
of the 13th ACM International Conference on Hybrid Systems: Computation and
Control, pp. 91–100 (2010)

13. Delahaye, B., Caillaud, B., Legay, A.: Probabilistic contracts: a compositional
reasoning methodology for the design of systems with stochastic and/or non-
deterministic aspects. Form. Methods Syst. Des. 38(1), 1–32 (2011)

14. Delahaye, B., et al.: Abstract probabilistic automata. In: Jhala, R., Schmidt, D.
(eds.) VMCAI 2011. LNCS, vol. 6538, pp. 324–339. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-18275-4 23

https://online-optimizer.appspot.com
https://doi.org/10.1007/BFb0032042
https://doi.org/10.1007/3-540-61474-5_75
https://doi.org/10.1007/978-3-540-92188-2_9
https://doi.org/10.1007/978-3-540-92188-2_9
https://doi.org/10.1007/3-540-51237-3_7
https://doi.org/10.1007/3-540-51237-3_7
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-18275-4_23

Formally Verifying Decompositions of Stochastic Specifications 209

15. Donatelli, S., Haddad, S., Sproston, J.: Model checking timed and stochastic prop-
erties with CSL∧{TA}. IEEE Trans. Softw. Eng. 35(2), 224–240 (2008)

16. Gössler, G., Xu, D.N., Girault, A.: Probabilistic contracts for component-based
design. Form. Methods Syst. Des. 41(2), 211–231 (2012)

17. Grunske, L.: Specification patterns for probabilistic quality properties. In: 2008
ACM/IEEE 30th International Conference on Software Engineering, pp. 31–40.
IEEE (2008)

18. Hampus, A., Nyberg, M.: Formally verifying decompositions of stochastic specifi-
cations (with proofs). Technical report (2022). http://urn.kb.se/resolve?urn=urn:
nbn:se:kth:diva-315290. oai:DiVA.org:kth-315290

19. ISO 21434: Road vehicles - Cybersecurity engineering (2021)
20. ISO 26262: Road vehicles - Functional safety (2018)
21. Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes.

In: Proceedings 1991 Sixth Annual IEEE Symposium on Logic in Computer Sci-
ence, pp. 266–267. IEEE Computer Society (1991)

22. Jonsson, B., Yi, W.: Testing preorders for probabilistic processes can be charac-
terized by simulations. Theoret. Comput. Sci. 282(1), 33–51 (2002)

23. Kern, C., Greenstreet, M.R.: Formal verification in hardware design: a survey.
ACM Trans. Des. Autom. Electron. Syst. (TODAES) 4(2), 123–193 (1999)

24. Lanotte, R., Maggiolo-Schettini, A., Troina, A.: Parametric probabilistic transition
systems for system design and analysis. Formal Aspects Comput. 19(1), 93–109
(2007)

25. Mereacre, A., Katoen, J.P., Han, T., Chen, T.: Model checking of continuous-time
Markov chains against timed automata specifications. Log. Methods Comput. Sci.
7 (2011)

26. Meyer, B.: Applying ‘design by contract’. Computer 25(10), 40–51 (1992)
27. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,

Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

28. Nash, J.C.: The (Dantzig) simplex method for linear programming. Comput. Sci.
Eng. 2(1), 29–31 (2000)

29. Nuzzo, P., Li, J., Sangiovanni-Vincentelli, A.L., Xi, Y., Li, D.: Stochastic assume-
guarantee contracts for cyber-physical system design. ACM Trans. Embed. Com-
put. Syst. (TECS) 18(1), 1–26 (2019)

30. Nyberg, M., Westman, J., Gurov, D.: Formally proving compositionality in indus-
trial systems with informal specifications. In: Margaria, T., Steffen, B. (eds.) ISoLA
2020. LNCS, vol. 12478, pp. 348–365. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-61467-6 22

31. Paolieri, M., Horváth, A., Vicario, E.: Probabilistic model checking of regenerative
concurrent systems. IEEE Trans. Software Eng. 42(2), 153–169 (2015)

32. Resnick, S.: A Probability Path. Birkhäuser Boston (2019)
33. Roever, W.-P.: The need for compositional proof systems: a survey. In: de Roever,

W.-P., Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS, vol. 1536, pp.
1–22. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49213-5 1

34. Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. In: Jon-
sson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 481–496. Springer,
Heidelberg (1994). https://doi.org/10.1007/978-3-540-48654-1 35

35. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C.,
Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-71067-7 6

http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-315290
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-315290
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-030-61467-6_22
https://doi.org/10.1007/978-3-030-61467-6_22
https://doi.org/10.1007/3-540-49213-5_1
https://doi.org/10.1007/978-3-540-48654-1_35
https://doi.org/10.1007/978-3-540-71067-7_6

210 A. Hampus and M. Nyberg

36. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inf. Comput.
115(1), 1–37 (1994)

37. Westman, J., Nyberg, M.: Conditions of contracts for separating responsibilities in
heterogeneous systems. Form. Methods Syst. Des. 52(2), 147–192 (2017). https://
doi.org/10.1007/s10703-017-0294-7

https://doi.org/10.1007/s10703-017-0294-7
https://doi.org/10.1007/s10703-017-0294-7

Verification of Behavior Trees using
Linear Constrained Horn Clauses

Thomas Henn1(B) , Marcus Völker1 , Stefan Kowalewski1 , Minh Trinh2 ,
Oliver Petrovic2 , and Christian Brecher2

1 Informatik 11 - Embedded Software, RWTH Aachen University, Aachen, Germany
{henn,voelker,kowalewski}@embedded.rwth-aachen.de

2 Laboratory for Machine Tools and Production Engineering, RWTH Aachen
University, Aachen, Germany

{m.trinh,o.petrovic,c.brecher}@wzl.rwth-aachen.de

Abstract. In the field of industrial production the usage of Behav-
ior Trees sparks interest due to their modularity and flexibility. Con-
sidering Behavior Trees are used in a safety-critical domain, there is
increased interest for methods to verify a Behavior Tree’s safety. Cur-
rent approaches for Behavior Trees are only semi-automatic since they
require manually added low-level details about the action’s behavior.

In this paper, we describe an automatic verification method for safety
properties on Behavior Trees using Linear Constrained Horn Clauses
(LCHCs). Our approach encodes all components of the verification task
as CHCs, that is, the structure and semantics of the Behavior Tree, the
implemented actions in the leaf nodes and the safety property itself.
These clauses are then solved by a state-of-the-art SMT solver, leading
to an efficient algorithm for Behavior Tree verification, which we eval-
uate by comparing our method against a general purpose verification
framework.

Keywords: behavior tree · formal verification · constrained horn
clauses · software safety

1 Introduction

Behavior Trees describe the executions of agents and systems. One of the major
advantages is their modularity [10]. Complex tasks are composed of simpler
tasks, without further knowledge about the implementation of the simple tasks,
since all nodes share a common interface. This advantage and the visualization
of Behavior Trees (e.g., see Fig. 1) contribute to their popularity and helps to
design, develop, and test Behavior Trees. At first, Behavior Trees were used
to characterize the behavior of non-player characters (NPCs) in video games

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. F. Groote and M. Huisman (Eds.): FMICS 2022, LNCS 13487, pp. 211–225, 2022.
https://doi.org/10.1007/978-3-031-15008-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15008-1_14&domain=pdf
http://orcid.org/0000-0002-3090-1243
http://orcid.org/0000-0001-7348-0146
http://orcid.org/0000-0001-9397-2009
http://orcid.org/0000-0002-2611-5995
http://orcid.org/0000-0002-4861-1332
http://orcid.org/0000-0002-8049-3364
https://doi.org/10.1007/978-3-031-15008-1_14

212 T. Henn et al.

[14]. Since then, other communities, like the robotics [5,6,12,13] and artificial
intelligence communities [9,11], have used Behavior Trees to model their agents.

This usage of Behavior Trees in safety-critical environments leads to an
increasing interest in the application of formal methods on Behavior Trees.
However, the clear and intuitive graphical representation of Behavior Trees is
achieved by defining the control flow implicitly. Therefore, execution paths can
easily be overlooked.

Previous work focuses mostly on defining a clear syntax and semantics, since
no common standard, for representing Behavior Trees, exists [2–4]. A first app-
roach to verify Behavior Trees looks promising, but still needs additional input
in form of logical formulas from the user about the low-level behavior [1].

In this paper, our contribution is the demonstration of a viable approach
for an automatic (i.e., no further input about the Behavior Tree is required)
verification of Behavior Trees. Our approach is based on a logical encoding
of the Behavior Tree’s semantics. We utilize Linear Constrained Horn Clauses
(LCHCs), because solving LCHCs has been proven to be efficient [7] and their
successful usage in software verification has been presented in [8,9].

The paper is structured as follows: Sect. 2 shows the current state-of-the-
art concerning the verification and analysis of Behavior Trees. In Sect. 3, we
introduce the notion of a Behavior Tree and Constrained Horn Clauses. In Sect. 4,
we present the encoding of Behavior Trees using CHCs. The presented approach
is then evaluated on several verification tasks and compared to a general purpose
verification framework in Sect. 5. We finish with a summary and outlook in
Sect. 6.

2 Related Works

In several other works, alternative encodings of Behavior Trees which could
be used for verification purposes, are presented. In [2], the authors show how
Behavior Trees can be encoded as Communicating Sequential Processes (CSP).
The motivation behind this work is to provide a more precise formalization for
Behavior Trees since there is no standardized formalism or rigorous semantics
for Behavior Trees. CSPs are no intended to be used as a control architecture
but is suited for verifying and specifying concurrent systems. To use the CSP
formalism for verification purposes was left for future work.

Another approach which encodes Behavior Trees in a description logic is
presented in [3]. The shown encoding in description logic could be utilized for
a runtime verification that checks whether a proper action is executed. The
extension of the approach was left for future work as well as the verification
whether a given Behavior Tree is guaranteed to execute successfully.

In [21] another approach for runtime monitoring is presented. Behavior Trees
are translated into a communication channel system. The, in the paper, intro-
duced Behavior Trees only model a subset of the “classical” Behavior Trees since
parallel nodes are omitted. Also the environment is not part of the formal model
and therefore the properties can only be analyzed in a simulation or in a real
world scenario.

Verification of Behavior Trees using Linear Constrained Horn Clauses 213

The authors of [4] present an correct-by-construction approach. Linear Tem-
poral Logic (LTL) formulas are used to define the correct behavior which the
synthesized Behavior Tree has to exhibit. The approach does not allow the ver-
ification of already existing Behavior Trees.

In [1] a verification approach is presented which is based on the transforma-
tion of (sub-)trees to a collection of LTL formulas. These constructed LTL for-
mulas, representing the semantics of the Behavior Tree, are then checked against
properties encoded as other LTL formulas. The need of LTL formulas, given by
the user, which describe the semantics of the action and condition nodes, prevent
an automatic usage of the verification algorithm. The necessary level of detail
differs from property to property and should be adapted for every verification
run.

3 Preliminaries

In Sect. 3.1, we introduce the structure as well as the semantics of behaviour
trees. Afterwards, we give a short introduction to Constrained Horn Clauses in
Sect. 3.2.

Fig. 1. Example behavior tree with collision and obstacle detection.

214 T. Henn et al.

3.1 Behavior Trees

A Behavior Tree, as depicted in Fig. 1, is a directed acyclic graph with a distin-
guished root node [10]. It describes the control flow between the possible actions.
All nodes in a Behavior Tree have the same interface when it comes to the exe-
cution. A node starts its execution when it receives a tick. Each node returns one
of the following three statuses: SUCCESS, FAILURE and RUNNING. The status indi-
cates that the subtree performed its task successfully, unsuccessfully or that the
task is still in execution, respectively. The possibility, to return RUNNING, shows
that Behavior Trees are not an extension of (hierarchical) finite state machines
since a Behavior Tree does not stay in a node until the execution is complete.
The whole tree is executed by ticking the root node. Usually, this is done in an
infinite cycle, i.e. the root node is ticked again as soon as it returns SUCCESS,
RUNNING or FAILURE.

The leaves encode actions (drawn as a box) and conditions (drawn as a
ellipse). Condition nodes only return SUCCESS or FAILURE and check the condi-
tion of the system, described by the Behavior Tree, or the environment. They
also have no side effects (i.e. do not alter variables or the state of the system).
Ticking an action node corresponds to a function call which triggers the action to
be performed. If the execution of the action is not finished, RUNNING is returned.
Otherwise the successful or failed execution is reported to the parent node.

The inner nodes, also called composite nodes, of a Behavior Tree are respon-
sible for the control flow. Based on the returned status of their subtrees, they
decide which subtrees to tick next or to return a status to their parent. The
children of an inner nodes are ordered from left to right (i.e. the first child
is depicted as the leftmost child). A sequence node (represented by →) exe-
cutes is children consecutively. When a sequence node is ticked it propagates
the tick to the first child. If a child returns SUCCESS the next child is ticked. If
the child is the last one the sequence node returns SUCCESS instead since the
whole sequence was executed successfully. Whenever a child returns FAILURE
or RUNNING the sequence node stops ticking the other child nodes and returns
FAILURE or RUNNING, respectively.

Complementary to the sequence node is the selector node (represented by
?). A selector node also executes its children from left to right, but stops the
ticking of other child nodes whenever a child returns SUCCESS or RUNNING and
returns the same value to its parent. If a child returns FAILURE the next child in
order is ticked or FAILURE is returned from the selector node if the child is the
last one. Selector and sequence node have the same behavior; only the roles of
SUCCESS and FAILURE are switched.

The third type of composite node is the parallel node (represented by ⇒). A
parallel node executes its children in parallel and returns a value based on the
accumulated return values of its children. Parallel nodes are parametrized with
a variable m ∈ N which is less than or equal to the number of children. SUCCESS
is returned when at least m children finished their execution with SUCCESS. If
n − m + 1 children returned FAILURE the parallel node returns FAILURE. In all
other cases RUNNING is returned.

Verification of Behavior Trees using Linear Constrained Horn Clauses 215

Behavior Trees composed of these node types are sometimes called clas-
sic Behavior Trees. In practice there are custom nodes and extensions since
no standard exists. The idea, that sequences do not necessarily start from the
beginning, but from a child which returned RUNNING, is incorporated in sequence
with memory nodes (represented by →m). These nodes behaves similar to the
regular sequence nodes except that if the last value returned was RUNNING, the
corresponding child is ticked instead of the first child when the sequence with
memory node is ticked again. The same extension exists for selector nodes which
are called selector with memory (represented by ?m).

The BT in Fig. 1 corresponds to assembly robot which performs at task
(DoWork) if no collisions & obstacles are detected and a target is selected.

3.2 Constrained Horn Clauses

Constrained Horn Clauses (CHCs) are a structure for clauses from a first-order
logic [8]. Given sets of predicates P, functions F , and variables V a Constrained
Horn Clause is defined as formula of the following structure:

∀V.p1(
−→
X1) ∧ · · · ∧ pk(

−→
Xk) ∧ ϕ → h(

−→
X), k ≥ 0 (1)

where p are predicates,
−→
Xi ⊆ V are subsets of variables, ϕ is a quantifier-free

formula over X and F , and h can be either a predicate or a quantifier-free
formula. A Constrained Horn Clause is called linear if k ≤ 1.

A set of CHCs is satisfiable when there exist an interpretation of all predicates
such that all implications hold. Since all variables are universal quantified, we
omit the quantifier and in the style of logic programming languages we replace
∧ by comma and reverse the implication:

h(
−→
X) ← p1(

−→
X1), · · · ,pk(

−→
Xk), ϕ (2)

4 Encoding of Behavior Trees

In this section, we present our approach how the Behavior Trees semantics can
be encoded in linear Constrained Horn Clauses. Section 4.1 explains the general
idea and introduces a common interface and some auxiliary definitions to simplify
further explanations. The following sections propose how every node type can
be encoded using only the knowledge of their direct children which creates a
logical representation of the Behavior Tree which is as modular and flexible as
the Behavior Tree itself. After we presented the encoding of the Behavior Tree,
we show how safety properties and the environment is transformed in linear Horn
Clauses in Sect. 4.9 and 4.10 respectively.

4.1 Idea

The approach of encoding procedures with Constrained Horn Clauses, presented
in [8,9], is based on creating uninterpreted predicates which corresponds to pro-
gram locations. The SMT solver finds an over-approximation of variable valua-
tions which are valid at these specific program locations. E.g., the interpretation

216 T. Henn et al.

of a predicate loc1 with x > 0 characterizes all states at location loc1 where x is
positive.

To identify the different nodes, which could have the same type, we assign
an index i ∈ N to each node where the root node always has the index 0. The
number of children of node i is denoted with ni and the index of the j-th child
of node i is the result of the auxiliary function child(i, j). The parameterized
threshold for parallel node i is given as mi.

We also introduce two vectors of variables X and X ′ where X is a vector con-
taining all program variables as well as all variables introduced by our encoding.
X ′ is a primed copy of the vector X which is used to distinguish variables before
and after some changes. E.g., the formula y′ = y + 1 encodes the increment of
the variable y by 1.

For every node i, we add the following predicates: tick i(X), successi(X),
failurei(X) and running i(X). These predicates represent the states when a node
is ticked and when the node returns SUCCESS, FAILURE or RUNNING.

Since these four predicates exist for all nodes and the behavior of the com-
posite nodes only depends on the return value of their children, we can use these
predicates as a means to encode the semantics with CHCs.

4.2 Action Node

As mentioned before, an action node corresponds to a function in a program.
These functions are represented as Control Flow Automata (CFA) which are
directed graphs. The nodes (in the CFA) are called locations and the edges
correspond to the instructions which are performed in order to move from one
location to the next location. We omit a detailed definition of CFAs since more
information can be found in the literature [20]. These CFA have four designated
locations for the entry and exit. One entry location l0 and one for each return
value and exit location named lsuccess, lrunning, lfailure.

In [20] is shown how CFAs can be encoded using Constrained Horn Clauses.
We use presented approach for the encoding of CFAs: e.g., the clause li(X ′) ←
x′ = x + 1, lj(X) encodes the transition from location j to location i which is
the labeled with x = x + 1.

The predicates used for the location representation need to be connected
with the predicates for the action node. The semantics of an action node i are
encoded by the following clauses:

l0(X) ← tick i(X)
successi(X ′) ← lsuccess(X)
running i(X

′) ← lrunning(X)
failurei(X

′) ← lfailure(X)

Intuitively, the first clause states that if the action node i is ticked with the
variables X the execution continues at the initial location of the corresponding

Verification of Behavior Trees using Linear Constrained Horn Clauses 217

CFA. The remaining clauses propagate the state reaching one of the exit location
of the CFA to the predicates of the BT.

In order to model asynchronous function calls to external libraries, we allow
the use of nondeterministic values. This method is also used for modeling the
environment which is explained in Sect. 4.10.

4.3 Condition Node

Condition nodes are represented by functions in the same way as action nodes.
Therefore, they can be encoded in the same way as in Sect. 4.2 and we can
construct predicates and clauses for the CFA of condition node i. Note, that we
only have two exit locations for condition nodes, since condition nodes never
return RUNNING.

The clauses for encoding a condition node i are the following:

l0(X) ← tick i(X)
successi(X ′) ← lsuccess(X)
running i(X

′) ← lrunning(X), false
failurei(X

′) ← lfailure(X)

The boolean condition false encodes that lr(X) is not reachable.

4.4 Sequence Node

Clause 3 encodes the propagation of a tick from a sequence node i to its first
child.

tick child(i,1)(X) ← tick i(X) (3)

When a child returns FAILURE or RUNNING the value is propagated to the parent
of the sequence node. Since the sequence stops its execution independent from
the child node which returns FAILURE or RUNNING, we use a clause for each child
to propagate the return value, as shown in clauses 4 and 5.

failurei(X) ← failurechild(i,j)(X) ∀1 ≤ j ≤ ni (4)

running i(X) ← runningchild(i,j)(X) ∀1 ≤ j ≤ ni (5)

The successful execution of a child triggers the tick of the next child in the
sequence which is encoded in the set of clauses 6. Only if the last child returns
SUCCESS the value is propagated to the parent of the sequence node (see clause
7).

tickchild(i,j+1)(X) ← successchild(i,j)(X) ∀1 ≤ j < ni (6)
successi(X) ← successchild(i,ni)(X) (7)

218 T. Henn et al.

The clauses generated for node 1 from Fig. 1 are shown in the following
enumeration. Since the control flow is determined directly by the return values,
there is no modification of variables.

tick2(X) ← tick1(X)
tick3(X) ← success2(X)

running1(X) ← running2(X)
failure1(X) ← failure2(X)
success1(X) ← success3(X)
running3(X) ← running3(X)
failure3(X) ← failure3(X)

4.5 Sequence Node with Memory

A sequence node with memory needs to keep track which of its children needs to
be ticked when the sequence node itself is ticked next time. We introduce a fresh
variable nexti for every sequence node i with memory to store the information.
The variable is initialized with the index of the first child to ensure that the first
time the sequence node with memory is ticked, it starts from the beginning.

Since every child can return RUNNING, we encode the propagation of the tick
with clauses 8. In contrast to clause 3, the propagation of the tick is no longer
unconditional, but we enforce that the value of the variable next i is the same as
the index of the child being ticked.

tick child(i,j)(X) ← tick i(X),next i = j ∀1 ≤ j ≤ ni (8)

The value of next i must be set whenever a child returns RUNNING. In clauses 9
the value is changed. To prevent that other variables change their values, we
use another auxiliary function id which ensures that variables keep their value
if they are elements of the passed set.

running i(X
′) ←runningchild(i,j)(X),next ′

i = j,

id(X\{next i}) ∀1 ≤ j ≤ ni (9)

The clauses for FAILURE and SUCCESS must be adapted as well. The clauses 10
for the FAILURE cases are similar to the clauses 9 for RUNNING. They differ in the
index which is assigned to next i. For the clauses concerning the SUCCESS case,
only the last one, clause 12, must be adapted in order to reset the variable next i.
The clauses 11 are identical to the ones for sequence nodes without memory, since
they trigger the tick of the next child.

Verification of Behavior Trees using Linear Constrained Horn Clauses 219

failurei(X
′) ← failurechild(i,j)(X),

next i = child(i, 1),
id(X\{next i}) ∀1 ≤ j ≤ ni (10)

tick child(i,j+1)(X) ← successchild(i,j)(X) ∀1 ≤ j < ni (11)
successi(X ′) ← successchild(i,ni)(X),

next i = child(i, 1), id(X\{next i}) (12)

4.6 Selector Node

The selector node is complementary to the sequence node, as explained in
Sect. 3.1. The Constrained Horn Clauses needed to encode the semantics for
a selector node, with or without memory, are similar to the clauses for sequence
nodes. We use the same clauses but switch the occurrences of SUCCESS and
FAILURE in the Constrained Horn Clauses. The exact formalization is trivial and
omitted in this paper.

4.7 Parallel Node

Verifying programs with concurrency and modelling interleaving semantics is
challenging when using linear Constrained Horn Clauses. It also creates more
complex and larger models which in turn impacts the time needed for verification.
Often the precise modeling of concurrency is not necessary, depending on the
properties which are to be verified. Therefore, we assume that it is sufficient to
model the execution of a parallel node’s children as atomic.

Similar to the encoding of sequence nodes with memory, we introduce new
fresh variables to keep track of the execution status of the parallel node i.
cnt successi, cnt running i and cnt failurei are new integer variables which are
used to store the amount of returned SUCCESS, RUNNING and FAILURE values.
Also for every child j, we add a boolean variable executed j to memorize whether
a child has been executed and in order to prevent that a child is ticked more
than once.

For every parallel node i, we introduce a new predicate intermediatei(X)
which represents all states before and after children of the parallel node are
executed. The following formulas representing the different conditions when the
parallel node stops executing and return either SUCCESS, FAILURE or RUNNING.
The formula continuei evaluates to true when none of the the conditions are
fulfilled.

220 T. Henn et al.

cond successi := cnt successi ≥ mi

cond failurei := cnt failurei ≥ ni − mi + 1
cond running i := (cnt failurei+

cnt running i ≥ ni − mi + 1)
∧ (cnt successi + cnt running i ≥ mi)

continuei := ¬(cond successi ∧ cond failurei
∧ cond running i)

While propagating the tick to the predicate intermediatei(X), the newly
introduced variables are initialized. The counter variables are set to 0 while the
executed flag for the children is set to false. The other variables keep their values
and for the sake of readability we omitted the argument for the id function.

intermediatei(X ′) ← tick i(X), cnt success ′
i = 0,

cnt running ′
i = 0, cnt failure ′

i = 0,
ni∧

j=1

executed ′
child(i,j) = false, id(. . .)

From the intermediate predicate the tick is propagated to the children, when
the executed flag is still false and none of the return conditions for the parallel
node holds.

tickchild(i,j)(X) ← intermediatei(X), executed i = false,

continuei ∀1 ≤ j ≤ ni

In the following, we only present clauses when a child returns SUCCESS, clause 13,
and when the parallel node returns SUCCESS, clause 14. The clauses for RUNNING
and FAILURE are analogous. In case the child execution ends successfully, the
counter cnt success is incremented by one and the executed flag is set to true
in order to prevent that from the intermediate predicate the tick of the child is
again reachable.

intermediate(X ′)i ← successchild(i,j)(X),
executed ′

child(i,h) = true,

cnt success ′
i = cnt successi + 1,

id(...) ∀1 ≤ j ≤ ni (13)

Clause 14 encodes that once the success condition is fulfilled, the result is
propagated to the parent.

successi(X) ← intermediatei(X), cond success (14)

Verification of Behavior Trees using Linear Constrained Horn Clauses 221

4.8 Root Node

The root node with index 0 can be any arbitrary node type, but there are some
additional clauses which model the initialization, clause 15, and the repeatedly
ticking, clauses 16.

The variables used in the action nodes as well as the variables we introduced
for the encoding must be initialized. The initialization can be interpreted as
a sequence of assignment to variables. These assignments can be encoded in a
formula init .

tick0(X) ← init (15)

The complete Behavior Tree is usually ticked repeatedly. A Behavior Tree
is only ticked again, when it is not currently executing. Therefore, clauses 16
encode a tick, after the root node finished its execution

tick0(X) ← success0(X)
tick0(X) ← running0(X)
tick0(X) ← failure0(X) (16)

4.9 Safety Property

In the previous sections, we presented how behaviour trees can be encoded using
linear Constrained Horn Clauses. In this section, we present how to encode the
safety properties of interest. Safety properties are equivalent to the reachability
problem. Here, we show how additional clauses can be used to assert a condition
over the Behavior Trees’ variables. Given the safety condition safe(X), clause
17 encodes whether the safety property holds at every tick of the root node.
This encoding of invariants is not limited to the root node’s tick predicate. Any
introduced predicate can be used, depending on where in the Behavior Tree the
property should hold.

true ← tick0(X),¬safe(X) (17)

A possible safety property for the example behavior tree in Fig. 1 is that the
robot is executing the action node DoWork if no collision or obstacle is detected.

If adding clause 17 leads to the SMT solver not finding a satisfying interpre-
tation, the Behavior Tree fulfills the safety property since there exists no variable
valuation which holds at the tick of the root node and is unsafe.

4.10 Environment

In many use cases, the system described by the Behavior Tree interacts with
its environment. As in Fig. 1 the environment can be modeled as an subtree
and is connected via a parallel node with the Behavior Tree of the system.
To model the environment adequately, it is necessary to allow nondeterminism

222 T. Henn et al.

since some events only occur randomly or do not follow specific steps. In order
to accommodate this, we added the possibility of assigning a random value to a
variable.

p2(X ′) ← id(X\{y}), p1(X) (18)

Clause 18 illustrates the idea of modeling nondeterminism. Predicate p2 is reach-
able from predicate p1 where all variables except variable y retain their value. In
the Horn Clause, y′ is unconstrained and therefore can take any nondeterministic
value.

5 Experiments

We implemented the linear encoding in our verification tool ArcadeBT which
is a spin-off from ArcadePLC [19], a verification tool for Programmable Logic
Controller programs. ArcadeBT is written in C++ and uses the open source
SMT solver Z3 [16] in version 4.8.15. In this version Z3 uses the Spacer algo-
rithm [17] to solve Constrained Horn Clauses.

Since, to the best of our knowledge, no publicly available verification tool,
which targets safety properties of Behavior Trees, exists, we compare our imple-
mentation against the general purpose verification framework SeaHorn [15]. It
analyzes C programs by encoding the semantics in Constrained Horn Clauses
which are then solved using Z3. In this section, we show the performance
improvements, gained by exploiting the structure of Behavior Trees and the
direct encoding of the semantics in Constrained Horn Clauses in contrast to
transforming the Behavior Tree to a C program which is then analyzed by a gen-
eral purpose verification framework which uses a similar encoding in Constrained
Horn Clauses, and the same SMT solver Z3.

Our implementation currently does not contain a counterexample genera-
tor, as Z3 does not store the necessary information during the execution to
reconstruct a counterexample. In the future, it should be possible to extract a
counterexample from the derivation tree [18].

5.1 Benchmark

We used 39, from us created, different Behavior Trees for our benchmark. Each
verification tasks consists of one or more safety properties. In these 39 tasks, there
are 26 satisfiable tasks and 13 unsatisfiable tasks. The size of the verification
tasks ranges from small (less than 5 nodes) to medium size Behavior Trees with
18 nodes.

Although our experiments with Behavior Trees containing parallel nodes
show similar performance, we excluded them for reasons of fairness, since the
simplified semantic could not be easily represented in C code which is the input
for the SeaHorn framework. The generated C code does not use arrays, exter-
nal header files, pointer arithmetic or dynamic memory allocation which would
create are more challenging verification task.

Verification of Behavior Trees using Linear Constrained Horn Clauses 223

All benchmarks were executed on a Linux 5.10 computer with 2 GHz, 16 GB
memory and a timeout of 10 s. The implementation and the tasks can be found
on GitHub1.

Fig. 2. Time spent by Arcade and Seahorn on verification of each task.

5.2 Discussion

Figure 2 illustrates the time needed for ArcadeBT and Seahorn to solve the 39
tasks. Each data point represents one of the verification tasks. The solid diagonal
line splits the coordinate system into an area where ArcadeBT performs better
(above the line) and where Seahorn performs better (below the line). Since
both projects only share the SMT solver Z3 as a shared component, the time is
measured for the complete execution of the respective verification tool.

In most cases ArcadeBT is 2 to 3 times faster than Seahorn and it does
not matter whether the safety property is satisfiable or unsatisfiable. Both tools
have 6 tasks where the time limit is reached and they do not return an answer. In
four cases both tools cannot find an answer. The reason is likely a shortcoming in
Z3 which in some cases has difficulties finding linear invariants for the predicates.
The other two cases in which SeaHorn needs more than 10 s, are the only tasks
which contains the modulo operator in at least one arithmetic expression. Since
ArcadeBT can solve both tasks in reasonable time, it is very likely that this
is due to a minor bug in SeaHorn. On the other hand, the two tasks where
ArcadeBT needs more than 10 s, are not very different from other tasks which
can be solved. A possible explanation is that these are also cases where Z3 has
difficulties in finding linear invariants. Seahorn may be able to find the solution
since it does not only use SMT solving, but also code optimization techniques
and static analysis (e.g., value set analysis) which might simplify the Constrained
Horn Clauses given to the SMT solver.
1 https://github.com/embedded-software-laboratory/ArcadeBT.

https://github.com/embedded-software-laboratory/ArcadeBT

224 T. Henn et al.

6 Conclusion and Outlook

Behavior Trees are models which can visualize complex systems clearly. We
showed that the not explicitly visible control flow can lead to overlooked bugs
and that a verification approach based on linear Constrained Horn Clauses is
able to find them. We also showed that an encoding utilizing the Behavior Tree
structure is also faster than a general purpose verification framework.

Properties, which need a more precise modelling of concurrency than our
atomic approach, are not supported yet. Also, multiple occurrences of the same
action node leads to a redundant modeling since for every node new predicates
are introduced. An extension of our presented encoding to handle interleaving
semantics and model action nodes in a compositional way, leading to less redun-
dancy, is left for future work.

Acknowledgements. Funded by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) under Germany’s Excellence Strategy – EXC-2023 Internet
of Production – 390621612.

References

1. Biggar, O., Zamani, M.: A framework for formal verification of behavior trees with
linear temporal logic. IEEE Robot. Autom. Lett. 5(2), 2341–2348 (2020). https://
doi.org/10.1109/LRA.2020.2970634

2. Colvin, R., Hayes, I.: A semantics for behavior trees using CSP with specification
commands. Sci. Comput. Program. 76, 891–914 (2011). https://doi.org/10.1016/
j.scico.2010.11.007

3. Klöckner, A.: Interfacing behavior trees with the world using description logic. In:
AIAA Guidance, Navigation, and Control Conference (2013). https://doi.org/10.
2514/6.2013-4636

4. Colledanchise, M., Murray, R.M., Ögren, P.: Synthesis of correct-by-construction
behavior trees. In: 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 6039–6046 (2017). https://doi.org/10.1109/IROS.2017.
8206502

5. Klöckner, A.: Behavior Trees for UAV Mission Management (2013)
6. Ogren, P.: Increasing Modularity of UAV Control Systems using Computer Game

Behavior Trees (2012). https://doi.org/10.2514/6.2012-4458
7. Beyer, D.: Software verification and verifiable witnesses. In: Baier, C., Tinelli, C.

(eds.) TACAS 2015. LNCS, vol. 9035, pp. 401–416. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0 31

8. Bjørner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn clause solvers for
program verification. In: Beklemishev, L.D., Blass, A., Dershowitz, N., Finkbeiner,
B., Schulte, W. (eds.) Fields of Logic and Computation II. LNCS, vol. 9300, pp.
24–51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23534-9 2

9. Komuravelli, A., Bjorner, N., Gurfinkel, A., Mcmillan, K.: Compositional verifica-
tion of procedural programs using horn clauses over integers and arrays, pp. 89–96
(2015). https://doi.org/10.1109/FMCAD.2015.7542257

10. Colledanchise, M., Ögren, P.: Behavior Trees in Robotics and AI: An Introduction.
arXiv abs/1709.00084 (2017)

https://doi.org/10.1109/LRA.2020.2970634
https://doi.org/10.1109/LRA.2020.2970634
https://doi.org/10.1016/j.scico.2010.11.007
https://doi.org/10.1016/j.scico.2010.11.007
https://doi.org/10.2514/6.2013-4636
https://doi.org/10.2514/6.2013-4636
https://doi.org/10.1109/IROS.2017.8206502
https://doi.org/10.1109/IROS.2017.8206502
https://doi.org/10.2514/6.2012-4458
https://doi.org/10.1007/978-3-662-46681-0_31
https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1109/FMCAD.2015.7542257

Verification of Behavior Trees using Linear Constrained Horn Clauses 225

11. Colledanchise, M., Parasuraman, R., Ogren, P.: Learning of behavior trees for
autonomous agents. IEEE Trans. Comput. Intell. AI Games 11, 183–189 (2018).
https://doi.org/10.1109/TG.2018.2816806

12. Coronado, E., Mastrogiovanni, F., Venture, G.: Development of Intelligent Behav-
iors for Social Robots via User-Friendly and Modular Programming Tools, pp.
62–68 (2018). https://doi.org/10.1109/ARSO.2018.8625839

13. Colledanchise, M., Natale, L.: Improving the Parallel Execution of Behavior Trees,
pp. 7103–7110 (2018). https://doi.org/10.1109/IROS.2018.8593504

14. Isla, D.: Handling complexity in the halo 2 AI. In: Game Developers Conference
(2005)

15. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verification
framework. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206,
pp. 343–361. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-
4 20

16. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

17. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive
programs. In: CAV (2014)

18. Paulson, L.C.: The foundation of a generic theorem prover. J. Autom. Reason. 5,
363–397 (1989)

19. Biallas, S., Frey, G., Kowalewski, S., Schlich, B., Soliman, D.: Formale Verifikation
von Sicherheits-Funktionsbausteinen der PLCopen auf Modell- und Code-Ebene.
Tagungsband Entwicklung und Betrieb komplexer Automatisierungssysteme. EKA
(2010)

20. Bohlender, D., Kowalewski, S.: Compositional verification of PLC software using
horn clauses and mode abstraction. IFAC-PapersOnLine 51, 428–433 (2018)

21. Colledanchise, M., Cicala, G., Domenichelli, D.E., Natale, L., Tacchella, A.: For-
malizing the execution context of behavior trees for runtime verification of delib-
erative policies. In: IROS (2021)

https://doi.org/10.1109/TG.2018.2816806
https://doi.org/10.1109/ARSO.2018.8625839
https://doi.org/10.1109/IROS.2018.8593504
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-540-78800-3_24

A Multi-level Methodology for Behavioral
Comparison of Software-Intensive

Systems

Dennis Hendriks1,2(B), Arjan van der Meer1,3, and Wytse Oortwijn1

1 ESI (TNO), Eindhoven, The Netherlands
dennis.hendriks@tno.nl

2 Radboud University, Nijmegen, The Netherlands
dennis.hendriks@ru.nl

3 Capgemini Engineering, Eindhoven, The Netherlands

Abstract. Software-intensive systems constantly evolve. To prevent
software changes from unintentionally introducing costly system defects,
it is important to understand their impact to reduce risk. However, it is in
practice nearly impossible to foresee the full impact of software changes
when dealing with huge industrial systems with many configurations and
usage scenarios. To assist developers with change impact analysis we
introduce a novel multi-level methodology for behavioral comparison of
software-intensive systems. Our fully automated methodology is based on
comparing state machine models of software behavior. We combine exist-
ing complementary comparison methods into a novel approach, guiding
users step by step through relevant differences by gradually zooming in
on more and more details. We empirically evaluate our work through a
qualitative exploratory field study, showing its practical value using mul-
tiple case studies at ASML, a leading company in developing lithography
systems. Our method shows great potential for preventing regressions in
system behavior for software changes.

Keywords: Cyber-Physical Systems · Software Behavior · State
Machines · Behavioral Comparison · Change Impact Analysis

1 Introduction

Software-intensive systems, e.g., cyber-physical systems, become more and more
complex. They often employ a component-based software architecture to manage
their complexity. Over the years such systems continuously evolve by adding new
features and addressing defects, more and more layers are built on top of each
other [11], and components that are not well-maintained become legacy [13,19].

Changing the software is often considered risky as any change can potentially
break a system. If a software change leads to a system defect, then the impact

This research is carried out as part of the Transposition project under the responsibility
of ESI (TNO) in co-operation with ASML. The research activities are supported by
the Netherlands Ministry of Economic Affairs and TKI-HTSM.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. F. Groote and M. Huisman (Eds.): FMICS 2022, LNCS 13487, pp. 226–243, 2022.
https://doi.org/10.1007/978-3-031-15008-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15008-1_15&domain=pdf
https://doi.org/10.1007/978-3-031-15008-1_15

A Multi-level Methodology for Behavioral Comparison 227

can be tremendous due to system downtime and productivity loss [19]. This may
even lead to software engineers becoming afraid to make changes for which they
cannot properly foresee the impact on (other parts of) the system.

To reduce the risks, it is essential to understand the impact of software
changes. However, for large complex industrial code bases consisting of tens of
millions of lines of code, no single person has the complete overview. This makes
it difficult to understand the impact of software changes on the overall system
functionality [4]. This is especially true when the system can behave differently
for different configurations and usage scenarios [29].

It is thus important that: 1) software developers understand how the system
currently behaves for different configurations and usage scenarios, and 2) they
understand how software changes impact that system behavior.

To address these needs, in this paper we introduce a novel multi-level method-
ology for behavioral comparison of (large) software-intensive systems. The power
of our methodology is that it quickly guides users to relevant differences. This
avoids the laborious and error-prone practice of looking into many thousands of
lines of code, or plough through gigabytes of execution logs. Our method is fully
automated, making it possible to consider huge (sub-)systems, for which due to
their sheer size it is practically impossible to compare their behavior manually.

Our methodology is based on comparing state machine models rather than
source code or execution logs, which makes it generally applicable. State
machines can compactly and intuitively represent system behavior as a collection
of software function calls and the order in which they are called. Such models
are general and can be obtained by any means of model learning or construction.

Methods to compare state machines can be divided into two classes that
complement each other [28]. Language-based methods compare state machines in
terms of their allowed sequences of function calls, while structure-based methods
compare them in terms of their states and transitions.

However, two important things are missing in the literature: 1) a single auto-
mated method integrating these individual methods to allow large-scale indus-
trial application, and 2) an approach to inspect the resulting differences at vari-
ous levels of detail, and step by step zoom in on relevant differences, to manage
the complexity of huge systems. Our methodology tackles both these challenges.

Our methodology takes any number of sets of state machines representing
software behavior of, e.g., different software versions, different configurations or
different usage scenarios. We automatically compare the provided sets by com-
paring the languages and structures of their state-machine models. The com-
parison results can be inspected at six levels of abstraction, ranging from very
high-level differences to very detailed ones. Users are guided through the differ-
ences in a step by step fashion tailored to allow them to zoom in on relevant
behavioral differences, wasting no time on irrelevant ones.

We empirically evaluate the practical potential of our methodology through a
qualitative exploratory field study [18,23]. Using multiple case studies at ASML,
a leading company in developing lithography systems, we demonstrate that our
approach can be applied to large industrial (sub-)systems, provides developers

228 D. Hendriks et al.

and architects insight into their behavioral differences, and allows them to find
unintended regressions. The company wants to broadly adopt our work.

The remainder of this paper is organized as follows. In Sect. 2 we intro-
duce the concepts, definitions and methods on which we build our methodology.
Section 3 introduces our methodology, both conceptually and formally. We eval-
uate our methodology in Sect. 4, before concluding in Sect. 5.

2 Background

2.1 Software Behavior

Programming languages typically have a notion of function, procedure or method.
The behavior of software implemented in such languages can then be seen as all
the calls to or invocations of these functions, and the constraints on the order
in which they may be called.

Large systems often employ a component-based software architecture to man-
age their complexity. The many components are independent units of develop-
ment and deployment, encapsulate functionality and allow for re-use [14,24,27].
Functions may then be called internally within a component and to communicate
between components connected via interfaces, e.g., remote procedure calls.

2.2 State Machines

We consider software behavior in terms of sequences of discrete events, e.g., the
start and end of function calls. We define an alphabet Σ to be a finite set of
events of interest. A trace t ∈ Σ∗ represents a single finite execution, with ∗
the Kleene star. The length of t is denoted by |t| and its i-th event by ti for
1 ≤ i ≤ |t|. An execution log is a set of observed traces, and can for instance be
obtained by explicit logging or through sniffing tools.

A state machine or automaton compactly and intuitively represents multi-
ple executions. We define a Non-deterministic Finite Automaton (NFA) A =
(S,Σ,Δ, I, F) as a 5-tuple, with S a finite set of states, Σ a finite set of events
(the alphabet), Δ ⊆ S × Σ × S a set of transitions, I ⊆ S a set of initial states,
and F ⊆ S a set of accepting states. Deterministic Finite Automata (DFAs) are
a sub-class of NFAs allowing for each source state and event only a single target
state. An NFA can be determinized to a DFA [25].

A trace t ∈ Σ∗ is accepted by an NFA A = (S,Σ,Δ, I, F) iff there exists a
sequence (s0, t1, s1), (s1, t2, s2), ... , (s|t|−1, t|t|, s|t|) ∈ Δ∗ with s0 ∈ I and s|t| ∈ F .
Traces that are not accepted are rejected. The language L(A) of an NFA A is the
set of all its accepted traces, i.e., L(A) = {t ∈ Σ∗ |A accepts t}. The behavior
presence predicate B(A) indicates whether A has any behavior, i.e., B(A) =
(L(A) �= ∅). State machines can be minimized to a representation with the least
number of states possible, while still accepting the same language [8,16]. Given
two NFAs A1 and A2, union and intersection are defined as operations that
reflect the effect on their resulting languages, i.e., L(A1 ∪ A2) = L(A1) ∪ L(A2)
and L(A1 ∩ A2) = L(A1) ∩ L(A2), respectively [20].

A Multi-level Methodology for Behavioral Comparison 229

A (minimal) state machine can be obtained from an execution log through
model learning, e.g., using state machine learning algorithms [3,6,7,12] or through
active automata learning [6,9]. Their details are beyond the scope of this paper.

2.3 State Machine Comparison

State machines can be compared in various ways. Walkinshaw and Bogdanov [28]
differentiate two perspectives: language-based and structure-based comparisons.

The language perspective considers to which extend the languages of state
machines overlap. Two state machines A1, A2 are language equivalent (=L) iff
they accept exactly the same language, i.e., A1 =L A2 ⇔ L(A1) = L(A2). A
state machine A1 is related by language inclusion (≤L) to state machine A2 iff
the language of A1 is included in that of A2, i.e., A1 ≤L A2 ⇔ L(A1) ⊆ L(A2).
Various other types of well-known binary equivalence and inclusion relations
exist [26], as well as non-binary ones such as precision and recall [21,28]. We
use language equivalence and inclusion as these are commonly used in automata
theory, are sufficient to capture the order of function calls, and can be eas-
ily explained even to engineers without a formal background. For finite state
machines these relations can be computed on their finite structures [2].

Language-based comparison considers the externally observable behavior of
state machines. Complementary to it, structure-based comparison considers the
overlap of their internal representations in terms of states and transitions.

Walkinshaw and Bogdanov define the LTSDiff algorithm [28] that takes two
state machines and computes a diff state machine: a compact representation of
their differences. Figure 1 shows an example. A diff state machine is a regular
state machine with its states and transitions annotated to represent difference
information, i.e., ‘unchanged’ (black), ‘added’ (green) and ‘removed’ (red).

The algorithm has three steps: 1) Compute similarity scores for all possible
pair-wise combinations of states from the two NFAs being compared. A local
score considers only the overlap in directly connected incoming and outgoing
transitions of the states. It is extended to a global score by recursively considering
all context, using an attenuation factor to ensure closer-by context counts more
towards the score than further away context. 2) Use the scores to heuristically
compute a matching between states of the two NFAs based on landmarks, a
percentage of the highest scoring pairs that score at least some factor better
than any other pairs, with a fallback to the initial states. The most obviously
equivalent state pairs are matched first and these are then used to match the
surrounding areas, rejecting any remaining conflicting state pairs. The next-best

Fig. 1. Source and target NFAs and their structural differences as a diff NFA.

230 D. Hendriks et al.

remaining state pair is then selected and matched, etc., until no state pairs are
left to consider. 3) Use the matching to compute the diff state machine.

The LTSDiff algorithm has the advantage that it does not require states to be
reachable from initial states, does not require state machines to be deterministic
or minimal, does not rely on state labels, and that it produces relatively small
diffs in practice, unlike some other approaches [10,15,17,22].

For a more extensive overview of alternative approaches to compare state
machine languages and structures, see the work of Walkinshaw and Bogdanov [28].

3 Behavioral Comparison Methodology

The language and structure-based state machine comparison approaches are
complementary. However, to the best of our knowledge there is no work that
fully exploits the complementary nature of these approaches, to provide intu-
itive insights into the behavioral impact of changes for industrial-scale software-
intensive systems. Our methodology takes advantage of their complementary
nature in a novel way, to allow handling the complexity of such scale.

As input our methodology takes any number of model sets representing, e.g.,
different software versions, configurations or usage scenarios. They contain state
machines that represent behaviors of a number of entities representing, e.g.,
software functions or components. Formally, let E be a finite set of (behavioral)
entities and N the set of all NFAs. A model set S ∈ E → N is a complete map-
ping of entities to models (NFAs). An incomplete mapping can be made complete
using (∅, ∅, ∅, ∅, ∅) as NFA for unmapped entities. As input our methodology takes
a finite entities set E and a finite set of model sets S = {S1, ..., Sn} ⊆ E → N .

Fig. 2. The input state machines for the running example, for entities E1 through E4

(rows) and model sets S1 through S4 (columns). S4(E4) = (∅, ∅, ∅, ∅, ∅).

A Multi-level Methodology for Behavioral Comparison 231

Fig. 3. Methodology overview: six levels of detail to inspect comparison results.

Figure 2 shows the model sets that we use as a running example. For model
set S4 (e.g., configuration 4) there is no model for entity E4 (e.g., function 4).
If these models were obtained through model learning on execution logs, no
behavior was observed for function 4 using configuration 4.

Our methodology compares the state machines of all input model sets. The
results are represented at six levels of abstraction (Fig. 3). The first three levels
focus on model sets and the last three on individual (models of) entities within
them. For both model sets and models, the first level considers different behav-
ioral variants, the second level relates the variants, and the third level elaborates
on variant differences. Users are guided step by step through the levels, by grad-
ually zooming in on more details, letting them focus on relevant differences.
Levels 1–5 contain information from the language perspective (L), while levels 5
and 6 contain information from the structural perspective (S). Next, we further
elaborate on each of the six levels.

3.1 Level 1: Model Set Variants

Level 1 provides the highest level overview. It shows whether model sets have the
same behavior, i.e., their entity models are language equivalent. Two model sets
Si, Sj ∈ S have the same behavior, denoted Si =L Sj , iff ∀e∈E Si(e) =L Sj(e).

We compare model sets against each other and determine unique model set
behavior variants. Variants are formally defined to be equivalence classes of S

under =L, so that S/=L is the set of all variants. For presentational clarity we
enumerate and refer to different variants of S in alphabetical order: A, B, etc.
We choose a structural representative for each behavioral equivalence class.

Figure 4a shows the level 1 result for our running example. Model sets S1

and S2 have the same behavior for all four functions and thus get variant A,
even though their models for E4 are structurally different. Model sets S3 and S4

get variants B and C as they differ from the other model sets (and each other).
Level 1 thus provides a very high level overview of which model sets have

the same or different behavior, and how few or many variants there are. We can
see whether this matches our expectations. Depending on the use case, we may
be satisfied already after looking at these results. For instance, if we want to
know whether different configurations have the same behavior, and if they all
have the same variant, we can already conclude that there are no differences in
their behavior. If we do go to the other levels, we can ignore model set S2 as

232 D. Hendriks et al.

it has the same behavior as S1. In fact, from the language perspective we can
focus on (representatives of) model set variants, each representing one or more
models with the same behavior, rather than on individual model sets. Finally,
in Fig. 4a variants are colored using shades of blue like a heat map. In case of
many model sets this may reveal patterns, as we will see in Sect. 4.

3.2 Level 2: Model Set Variant Relations

Level 1 provides us with model set variants that each have different behavior.
Level 2 provides more details. It considers whether the behavior of one model
set variant is completely included in the behavior of another variant, i.e., it
has less behavior. Formally, for two model sets Si, Sj ∈ S, Si is related to Sj

by language inclusion, denoted Si ≤L Sj , iff ∀e∈E Si(e) ≤L Sj(e). Given that
all model set variants have different behavior, Si thus has less behavior for at
least one entity. Partially ordered set (S/=L,≤L) can be extended into a finite
lattice by computing unions (as supremum) and intersections (as infimum) of
representatives of model set variants until a fixed point is reached. The union or
intersection of two model sets constitutes the per-entity pairwise combination of
their entity models, using state machine union or intersection, respectively.

Fig. 4. Behavioral comparison methodology output for the running example: complete
levels 1–4, level 5 for E2, and level 6 for E2 variants B → C.

A Multi-level Methodology for Behavioral Comparison 233

Figure 4b shows the level 2 lattice for our running example. The variants
from level 1 are indicated by ellipses containing the variant and number of
entity models that have behavior. The extra variants computed to complete
the lattice are indicated by diamonds. Arrows indicate inclusion relations, e.g.,
the behavior of variant D is included in that of variants A and B (and E, I
and G, by transitivity). The arrows are labeled with the number of entities
with different present behavior (e.g., ˜1) and the number of entities with newly
present behavior (e.g., +1). Formally, for model set variants Si, Sj and Si ≤L Sj ,
these are computed by |{e ∈ E |B(Si(e)) ∧ B(Sj(e)) ∧ Si(e) �=L Sj(e)}| and
|{e ∈ E | ¬B(Si(e)) ∧ B(Sj(e))}|, respectively.

Level 2 provides information on which variants have more or less behavior
than other variants, whether variants are closely related (direct arrow) or less
closely related (via several arrows), and it has quantitative information on the
models within the model sets by means of the labels on the arrows. As for level 1,
we can check whether this conforms to our expectations, or not. For instance, if
we compare two software versions and we only added new functionality (e.g., new
entities), we would reasonably expect the behavior of the old software version to
be included in that of the new software version, and we can check whether that
is indeed the case. If this is all that we want to know, we can stop here and we
do not need to proceed to level 3.

3.3 Level 3: Model Set Variant Differences

Level 2 shows us the quantitative differences between model sets via the arrow
labels. However, some model set variants are not directly related by an inclusion
arrow (e.g., variants A and B). The number of entities with different behavior
between them cannot be determined from the lattice, as simply summing labels
(e.g., ˜1, +1) could count the same entity multiple times. Level 3 provides more
details, showing the number of entities with different behavior between all input
model sets. That is, for model sets Si, Sj ∈ S it shows |{e ∈ E |Si(e) �=L Sj(e)}|.

Figure 4c shows the level 3 matrix for our running example. Rows and
columns are labeled with the input model sets. Cells indicate the number of
entities with different behavior. As language (in)equality is a symmetric and
reflexive relation, only the upper-right part of the matrix is filled, and the diag-
onal is labeled with ‘=’ symbols. As expected, model sets S1 and S2 have zero
entities with different behavior, as they have the same model set variant. Model
sets S1 (variant A) and S4 (variant C) have three entities with different behavior.

Level 3 provides more detailed quantitative information. It shows not just
whether model sets are different, and how many model sets have differences,
but also how different they are. The diagonal is colored gray as it is not rele-
vant. Numbered cells are colored like a heat map based on a gradient from green
(no entities with differences) via yellow and orange to red (most entities with
differences). In case of many model sets this may again reveal patterns. Simi-
larly to the previous levels, we can check whether all information matches our
expectations, and whether we want to proceed to level 4, or not.

234 D. Hendriks et al.

3.4 Level 4: Model Variants

Levels 1–3 focus on model sets. Level 4 zooms in even further and considers the
(entity) models within the model sets. Similar to how level 1 identifies model set
variants, level 4 identifies model variants for each entity. Formally, for an entity
e ∈ E, let Se = {S(e) |S ∈ S}. We consider equivalence classes Se/=L for each
e ∈ E and enumerate and represent them in alphabetical order: A, B, etc. Note
that variants are determined per entity and thus variant A of one entity does
not necessarily have the same behavior as variant A of another entity.

Figure 4d shows the level 4 matrix for our running example. The cells indicate
the behavior variant of the model for the corresponding entity (row) in the
corresponding model set (column).

Level 4 is the first level to provide details on which entities differ between
model sets. This provides a high level overview of the behavior variants for entity
models, similar to how level 1 provides it for model sets. We can see the variants,
how many there are, for which models sets, and whether this is expected or not.
Depending on the use case, we may again stop at this level if it answers our
questions, e.g., in case of checking for regressions if each entity has only a single
behavior variant. Otherwise, we can reduce the number of entities to consider for
subsequent levels, e.g., skip the ones without regressions (only a single variant,
no differences). Furthermore, we may then focus only on unique entity model
variants instead of all individual entity models. Finally, the matrix cells are
again colored using shades of blue like a heat map. Models without behavior are
indicated as a red cell labeled ‘−’ to make them stand out. Here too, in case of
many model sets this may reveal patterns.

3.5 Level 5: Model Variant Relations

Level 5 shows relations between entity model variants of level 4, similar to how
level 2 shows relations between model set variants of level 1. Formally, for an
entity e ∈ E we have a partially ordered set (Se/=L,≤L), which we extend to a
finite lattice using unions and intersections, similar to level 2.

Figure 4e shows the level 5 lattice for our running example, for entity E2.
We use a representative model for each entity model variant (set of equivalent
models). The node shapes and arrows are as in level 2. The node labels now
indicate the number of transitions of the model, and the arrow labels indicate
the number of added (e.g., +7) and removed transitions (e.g., -1). These are based
on the structural comparison that we use and will explain further for level 6. In
our example, the behavior of variant B is included in the behavior of variant C.

Level 5 provides information on which entity model variants have more or less
behavior, how closely they are related, and the amount of changes between them.
As for previous levels, we can check whether this conforms to our expectations,
or not. We can also use it to decide what to inspect in more detail in level 6.

A Multi-level Methodology for Behavioral Comparison 235

3.6 Level 6: Model Variant Differences

Level 6 is the last level. It shows all structural differences between two entity
model variants of level 5 as a diff NFA, computed with the LTSDiff algorithm.

Figure 4f shows the level 6 diff NFA for our running example, for variants B
and C of entity E2. Variant C (from model set S4) has two extra transitions in
its state machine, and this is clearly visible as two green arrows in this figure.

Level 6 provides the most detailed behavioral differences. Diff NFAs show
differences in terms of states and transitions within models. As with the other
levels, we can check whether this matches our expectations, or not.

4 Evaluation

We perform an empirical evaluation of our methodology through an exploratory
field study [18,23]. To gain some first evidence of both its practical potential
and its ability to handle large systems, we perform two case studies at ASML.
The first case study provides some preliminary evidence of our methodology’s
practical value by finding a regression. The second case study shows that our
methodology can be applied to a large industrial system, providing insights
into its behavior. We have completely automated our approach, in a (for now)
company-internal prototype tool.

ASML develops photolithography systems for the semiconductor industry.
These systems process wafers (thin circular slices of silicon) in batches (lots).
Multiple circuits (dies) are produced on a single wafer. After the wafer’s height
profile is measured, a light source exposes the chip pattern onto a wafer through
a projection mask (a reticle). A reticle may contain a full-sized pattern (full
field) or a smaller one (narrow field). Computational lithography software uses
the measurements to compensate for nano-scale imperfections during exposure.

In this section the start of function call f is denoted as f↑ and its end as f↓.

4.1 Case Study 1: Legacy Component Technology Migration

For the first case study, we look at a relatively small computational lithography
component, developed and maintained by two engineers. It is internally imple-
mented using legacy end-of-life technology and is migrated to new technology,
without changes to its external interface. The engineers thus expect to see the
same external behavior in communications with the other components, and we
apply our approach to see whether this is indeed the case.

We observe six executions, using three different test sets for both the legacy
and new implementations. The integration test set contains integration tests. The
overruling and verification test sets both test different configuration options and
functionality of the component. Each test set contains multiple tests. For rea-
sons of confidentiality we do not explain them in more detail. For each observed
execution, we obtain an execution log capturing the component’s runtime com-
munications with other components. The log for each execution is split into

236 D. Hendriks et al.

separate logs for each of the functions in the component’s external interface.
Using model learning [7], we obtain six model sets (one for each execution), with
11 interface functions of the component as entities. The model sets together con-
tain 46 models with behavior, with 2 to 578 states per model, and a sum total
of 1,330 states. We run our tool, which takes about 3.38 hours on a standard
laptop, mostly spent on executing LTSDiff, and discuss the results per level.

Fig. 5. First results for case study 1: complete level 1, level 4 for the integration test
set, and level 6 with variants A vs B for functions ‘apply’ and ‘prepare’.

Level 1 (Fig. 5a): Only for integration there are differences in behavior
between the legacy and new implementations. As the other two test sets show
no differences, they do not need further inspection. Given that we then have
only two model sets left, we skip levels 2 and 3, and proceed directly to level 4.

Level 4 (Fig. 5b): We see the 11 functions, anonymized for confidentiality
reasons, and their behavioral variants. Only 6 out of 11 entities show differences
in behavior, to be inspected in more detail. Given that they all have only two
variants per entity, we skip level 5 and proceed directly to level 6.

Level 6 (Figs. 5c and 5d): Figure 5c shows the diff NFA for function ‘apply’
(abbreviated to ‘a’), for variant A to variant B. The figure shows that the new
implementation involves only the start and end of this function. The legacy
implementation has more behavior, as within the ‘apply’ function it has 30 calls
(with returns) to a ‘log’ function. In the figure, only the first and last of these
calls (with their returns) are shown, and the remaining sequence of 56 transi-
tions, representing 28 calls and their returns, is abbreviated to ‘[56]’. Figure 5d
shows the diff NFA for function ‘prepare’ (abbreviated to ‘p’), for variant A to
variant B. For reasons of confidentiality and presentational clarity again several
sequences of transitions are abbreviated. Here, the figure shows that the legacy
implementation invokes the ‘log’ function 4 and 32 times, indicated as ‘[8]’ and
‘[64]’, respectively, while the new implementation does not.

Having inspected the differences for only two entities, it appears that all ‘log’
function calls are missing in the new implementation. The component engineers

A Multi-level Methodology for Behavioral Comparison 237

confirmed that indeed for the new implementation the component was not yet
hooked up to the logging framework. Our approach clearly shows this regression.

To look for other differences in behavior, we remove all ‘log’ function calls
and returns from the models of the legacy implementation. To do so, we rename
all ‘log’ function call and return events to ε and apply weak-language normal-
ization [20]. We run our tool again, which now only takes a mere 19 seconds.

Level 1 (Fig. 6): Looking at the new results for level 1, we immediately see
that there are no more observed differences in behavior for the legacy and new
implementations, for all three test sets. We do not see any further regressions in
behavior, and we thus do not have to go to further levels.

Fig. 6. New results for
case study 1: level 1.

Given that the engineers consider this component
to have quite a good test set with adequate coverage,
our approach is applied as an extra safety net that
complements traditional testing, akin to differential
testing [4]. As any change in the (order of) commu-
nications with other components will show up in our
models and comparisons, it is like having assertions
for all external communications. Both engineers find
this valuable. They would like to apply our method-
ology also for larger and more complex technology
migrations, where they foresee even more value.

The full version [5] of this paper includes a comparison and analysis of the
behaviors of the different test sets, highlighting the value of levels 2 and 5.

4.2 Case Study 2: System Behavior Matching Recipe

For the second case study, we investigate how recipes containing information on
the number of wafers and used reticles relate to the system behavior. ASML’s
customers can specify their own recipes to configure their lithography systems
for their purposes, e.g., to create CPU or memory chips. The software running on
the systems will exhibit different behavior for different recipes, and thus software
behavior offers a lens to look at system behavior.

Figure 7 shows the recipes that we consider for this case study. For reasons
of confidentiality, we do not explain the origin of these recipes and we consider
only the details relevant for this case study. There are six lots, each with their
own recipe. Lots 1 and 2 have five wafers each and the other lots have 15 wafers
each. There are two reticles, X and Y. For lot 1, reticle X is used 96 times, one
for each die. Lot 5 uses both reticles. Exposure can be done using full field or
narrow field, where narrow field leads to more exposures (125 rather than 96).

Fig. 7. Case study 2: recipes for the different lots.

238 D. Hendriks et al.

We consider the behavior of the exposure sub-system, i.e., 32 software com-
ponents involved in the high-level exposure control. Observing the system exe-
cution for about an hour as it initializes and processes lots, we obtain a single
execution log capturing all observed inter-component communications. This log
is split into multiple logs, one for each of the 85 exposures (one per wafer and for
lot 5 twice per wafer as it uses two reticles). The exposure logs are further split
into separate logs for each of the components, containing only their interactions
with the other components. Using model learning [7], we obtain 85 model sets
(one per exposure), containing models of the 32 components (entities). Model
sets may lack a certain component model if that component did not interact
with other components during the corresponding exposure. Figure 8 shows the
sizes of the input models in number of states. The 85 model sets together contain
2,386 models with behavior, with 2 to 7,070 states per model, and a sum total
of 495,505 states, making this a large case study.

We run our tool, skipping levels 2 and 5 as they are less relevant for this case
study. For LTSDiff, local instead of global scoring is used when state machines
with more than 100 states are involved, sacrificing accuracy for performance.
Running the tool takes about 1.23 hours. We discuss the results per level.

Level 1 (Fig. 9): We discuss multiple observations based on patterns that
are visible in level 1. Different gradient colors are used for presentational clarity.

a) First exposure of a lot : For lots 1 – 4, the main behavior variant is variant B.
The first exposures of these lots however all have different behavior (A, D).

b) Changes during a lot : For lots 2 – 4 we also see different behavior for some
exposures later during the lot (C, E).

Fig. 8. Case study 2: sizes of the input models with behavior.

A Multi-level Methodology for Behavioral Comparison 239

Fig. 9. Results for case study 2: level 1.

c) Reticle swaps: All exposures of lots 5 (F – L) have behavior different than the
other lots (A – E, M – O). Lot 5 is the only lot where two reticles are used
per wafer, and thus reticles must be swapped regularly. To minimize the
number of swaps, the system uses an ‘XYYX’ pattern for every two wafers
(first wafer reticle ‘X’, first wafer reticle ‘Y’, second wafer reticle ‘Y’, second
wafer reticle ‘X’). These patterns of four exposures are clearly visible in the
model set variants (J – G – H – I, K – G – H – I).

d) Full field vs narrow field : The difference between lots 1 and 3 compared to
lot 6 is the use of full vs narrow field. The behavior for lots 1 and 3 (A – C)
and lot 6 (M – O) differ, but they have similar structure (mostly the same
variant, first exposure and some exposures during the lot are different).

For brevity, we only zoom in on the first exposure of a lot differences in
further levels, and therefore only consider parts of the views for those levels. For
a discussion of the other differences, see the full version [5] of this paper.

Level 3 (Fig. 10a): For lots 1 – 3, we mainly see regular behavior (dark green,
0 components with different behavior). For the first exposures of these lots we
do see differences (yellow lines, 2 components with different behavior).

Level 4 (Fig. 10b): The two components with differences for the first expo-
sures of lots 1 – 3 are components C1 and C21.

Level 6 (Fig. 10c): We inspect level 6 for variants A and B of component C21.
Figure 10c shows a part of the diff state machine, with ‘l’ a logging function, ‘i’
a function to get some information, and ‘q’ a query function. For confidentiality
reasons we do not explain the functions in more detail. The upper and lower
paths indicate that both versions can skip the calls to ‘q’. The only difference
is that variant A (first wafer, in red) calls ‘i’ before calling ‘q’, while variant B
(other wafers, in green) does not. The company’s domain experts are well aware
of such ‘first wafer effects’.

240 D. Hendriks et al.

Fig. 10. Results for case study 2: partial results for levels 3, 4 and 6. The component
names have been anonymized for confidentiality reasons.

A Multi-level Methodology for Behavioral Comparison 241

The system behavior differs between wafers, and by going through the levels
of our methodology we obtain progressive insights into these behavioral differ-
ences. While the input contains a large number of state machines, with an even
larger number of states, our methodology allows engineers to step by step zoom
in on parts of this behavior, thus making it suitable to analyze this large system.

5 Conclusions and Future Work

We contribute a novel multi-level methodology for behavioral comparison of
software-intensive systems. It integrates multiple existing complementary meth-
ods to automatically compare the behavior of state machines. Our methodology
takes advantage of their complementary nature in a novel way, using six levels
with progressive detail to handle the complexity of large industrial systems.

Our qualitative exploratory field study suggests that our approach allows one
to inspect the behavioral differences of large systems, and that it has practical
value for getting insight into system behavior for various configurations and
scenarios, and preventing regressions. However, a more rigorous and quantitative
evaluation of our methodology is still needed.

Our work is generically applicable as it works on state machines, which are
widely used and understood in both computer science and industry. We plan to
research the generality of our approach by also applying it at other companies
with software-intensive systems that have suitable state machine models [1], and
make the company-internal prototype tool publicly available.

Other future work includes extensions beyond comparing NFAs to consider
also Extended Finite Automata and Timed Automata as input to our approach,
and adding actionable insights beyond merely behavioral differences to further
support change impact analysis. Our methodology could also be applied to dif-
ferent use cases such as diagnosis of unstable tests and field issues.

Acknowledgments. The authors would like to thank ASML for making this work
possible and for supporting it.

References

1. Bera, D., Schuts, M., Hooman, J., Kurtev, I.: Reverse engineering models of soft-
ware interfaces. Comput. Sci. Inf. Syst. 18(3), 657–686 (2021). https://doi.org/10.
2298/CSIS200131013B

2. Cleaveland, R., Sokolsky, O.: Equivalence and Preorder checking for finite-state
systems. In: Handbook of Process Algebra, pp. 391–424 (2001). https://doi.org/
10.1016/B978-044482830-9/50024-2

3. Gold, E.M.: Language identification in the limit. Inf. Control 10(5), 447–474
(1967). https://doi.org/10.1016/S0019-9958(67)91165-5

4. Gulzar, M.A., Zhu, Y., Han, X.: Perception and practices of differential testing. In:
2019 IEEE/ACM 41st International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP), pp. 71–80. IEEE (2019). https://doi.org/10.
1109/ICSE-SEIP.2019.00016

https://doi.org/10.2298/CSIS200131013B
https://doi.org/10.2298/CSIS200131013B
https://doi.org/10.1016/B978-044482830-9/50024-2
https://doi.org/10.1016/B978-044482830-9/50024-2
https://doi.org/10.1016/S0019-9958(67)91165-5
https://doi.org/10.1109/ICSE-SEIP.2019.00016
https://doi.org/10.1109/ICSE-SEIP.2019.00016

242 D. Hendriks et al.

5. Hendriks, D., van der Meer, A., Oortwijn, W.: A multi-level methodology for behav-
ioral comparison of software-intensive systems. arxiv (2022). https://doi.org/10.
48550/arxiv.2205.08201

6. De la Higuera, C.: Grammatical Inference: Learning Automata and Gram-
mars. Cambridge University Press, New York (2010). https://doi.org/10.1017/
CBO9781139194655

7. Hooimeijer, B., Geilen, M., Groote, J.F., Hendriks, D., Schiffelers, R.: Construc-
tive Model Inference: model learning for component-based software architectures.
In: Proceedings of the 17th International Conference on Software Technologies -
ICSOFT, pp. 146–158 (2022). https://doi.org/10.5220/0011145700003266

8. Hopcroft, J.: An n log n algorithm for minimizing states in a finite automaton. In:
Theory of Machines and Computations, pp. 189–196. Elsevier (1971). https://doi.
org/10.1016/B978-0-12-417750-5.50022-1

9. Howar, F., Steffen, B.: Active automata learning in practice. In: Bennaceur, A.,
Hähnle, R., Meinke, K. (eds.) Machine Learning for Dynamic Software Analysis:
Potentials and Limits. LNCS, vol. 11026, pp. 123–148. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96562-8 5

10. Kelter, U., Schmidt, M.: Comparing state machines. In: Proceedings of the 2008
International Workshop on Comparison and Versioning of Software Models, pp.
1–6 (2008). https://doi.org/10.1145/1370152.1370154

11. Klusener, S., Mooij, A., Ketema, J., Van Wezep, H.: Reducing code duplication by
identifying fresh domain abstractions. In: 2018 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pp. 569–578. IEEE (2018). https://
doi.org/10.1109/ICSME.2018.00020

12. Lang, K.J., Pearlmutter, B.A., Price, R.A.: Results of the Abbadingo one DFA
learning competition and a new evidence-driven state merging algorithm. In:
Honavar, V., Slutzki, G. (eds.) ICGI 1998. LNCS, vol. 1433, pp. 1–12. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054059

13. Lehman, M.M.: Programs, life cycles, and laws of software evolution. Proc. IEEE
68(9), 1060–1076 (1980). https://doi.org/10.1109/PROC.1980.11805

14. McIlroy, M.D., Buxton, J., Naur, P., Randell, B.: Mass produced software compo-
nents. In: Proceedings of the 1st International Conference on Software Engineering,
Garmisch Partenkirchen, Germany, pp. 88–98 (1968)

15. Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., Zave, P.: Matching and
merging of Statecharts specifications. In: 29th International Conference on Software
Engineering (ICSE 2007), pp. 54–64. IEEE (2007). https://doi.org/10.1109/ICSE.
2007.50

16. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput.
16(6), 973–989 (1987). https://doi.org/10.1137/0216062

17. Quante, J., Koschke, R.: Dynamic protocol recovery. In: 14th Working Conference
on Reverse Engineering (WCRE 2007), pp. 219–228. IEEE (2007). https://doi.org/
10.1109/WCRE.2007.24

18. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Emp. Softw. Eng. 14(2), 131–164 (2009). https://doi.org/
10.1007/s10664-008-9102-8

19. Schuts, M., Hooman, J., Vaandrager, F.: Refactoring of legacy software using model
learning and equivalence checking: an industrial experience report. In: Ábrahám,
E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 311–325. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-33693-0 20

20. Sipser, M.: Introduction to the Theory of Computation. Cengage Learning, 3rd
edn. Cengage, Boston (2013)

https://doi.org/10.48550/arxiv.2205.08201
https://doi.org/10.48550/arxiv.2205.08201
https://doi.org/10.1017/CBO9781139194655
https://doi.org/10.1017/CBO9781139194655
https://doi.org/10.5220/0011145700003266
https://doi.org/10.1016/B978-0-12-417750-5.50022-1
https://doi.org/10.1016/B978-0-12-417750-5.50022-1
https://doi.org/10.1007/978-3-319-96562-8_5
https://doi.org/10.1145/1370152.1370154
https://doi.org/10.1109/ICSME.2018.00020
https://doi.org/10.1109/ICSME.2018.00020
https://doi.org/10.1007/BFb0054059
https://doi.org/10.1109/PROC.1980.11805
https://doi.org/10.1109/ICSE.2007.50
https://doi.org/10.1109/ICSE.2007.50
https://doi.org/10.1137/0216062
https://doi.org/10.1109/WCRE.2007.24
https://doi.org/10.1109/WCRE.2007.24
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/978-3-319-33693-0_20

A Multi-level Methodology for Behavioral Comparison 243

21. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for
classification tasks. Inf. Process. Manag. 45(4), 427–437 (2009). https://doi.org/
10.1016/j.ipm.2009.03.002

22. Sokolsky, O., Kannan, S., Lee, I.: Simulation-based graph similarity. In: Hermanns,
H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 426–440. Springer, Hei-
delberg (2006). https://doi.org/10.1007/11691372 28

23. Storey, M.-A., Ernst, N.A., Williams, C., Kalliamvakou, E.: The who, what, how
of software engineering research: a socio-technical framework. Emp. Softw. Eng.
25(5), 4097–4129 (2020). https://doi.org/10.1007/s10664-020-09858-z

24. Szyperski, C., Gruntz, D., Murer, S.: Component Software: Beyond Object-
Oriented Programming. 2nd edn. Pearson Education, Upper Saddle River (2002)

25. Van Glabbeek, R., Ploeger, B.: Five Determinisation Algorithms. In: Ibarra, O.H.,
Ravikumar, B. (eds.) CIAA 2008. LNCS, vol. 5148, pp. 161–170. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-70844-5 17

26. Van Glabbeek, R.J.: The linear time — branching time spectrum II. In: Best,
E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-57208-2 6

27. Vitharana, P.: Risks and challenges of component-based software developmen.
Commun. ACM 46(8), 67–72 (2003). https://doi.org/10.1145/859670.859671

28. Walkinshaw, N., Bogdanov, K.: Automated comparison of state-based software
models in terms of their language and structure. ACM Trans. Softw. Eng.
Methodol. 22(2), 1–37 (2013). https://doi.org/10.1145/2430545.2430549

29. Yang, N., Cuijper, P., Schiffelers, R., Lukkien, J., Serebrenik, A.: An interview
study of how developers use execution logs in embedded software engineering. In:
2021 IEEE/ACM 43rd International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP), pp. 61–70. IEEE (2021). https://doi.org/10.
1109/ICSE-SEIP52600.2021.00015

https://doi.org/10.1016/j.ipm.2009.03.002
https://doi.org/10.1016/j.ipm.2009.03.002
https://doi.org/10.1007/11691372_28
https://doi.org/10.1007/s10664-020-09858-z
https://doi.org/10.1007/978-3-540-70844-5_17
https://doi.org/10.1007/3-540-57208-2_6
https://doi.org/10.1145/859670.859671
https://doi.org/10.1145/2430545.2430549
https://doi.org/10.1109/ICSE-SEIP52600.2021.00015
https://doi.org/10.1109/ICSE-SEIP52600.2021.00015

Author Index

Adelt, Julius 69

Berger, Philipp 121
Bijl, Machiel van der 172
Bohrer, Rose 103
Brecher, Christian 211
Büker, Thorsten 121

Cassez, Franck 50
Costa Seco, João 155

Ducoffe, Mélanie 15
Dommelen, Xavier Manuel van 172

Ferreira, Carla 155
Fietze, Mario 121
Fuller, Joanne 50

Gabreau, Christophe 15
Gebker, Julian 69
Grochowski, Marco 137

Hahn, Ernst Moritz 3
Hampus, Anton 193
Happe, Christopher 32
Hendriks, Dennis 226
Henn, Thomas 211
Herber, Paula 69

Keiren, Jeroen J. A. 86
Kogel, Bastian 121
Kowalewski, Stefan 137, 211

Lenze, Wiebke 121
Leuschel, Michael 32

Lourenço, João 155
Luttik, Bas 8

Matos Pedro, André de 155
Meer, Arjan van der 226

Noll, Thomas 121
Nyberg, Mattias 193

Ober, Ileana 15
Ober, Iulian 15
Oortwijn, Wytse 226

Perez, Mateo 3
Petrovic, Oliver 211
Pimentel, Andy 172

Quiles, Horacio Mijail Antón 50

Schewe, Sven 3
Schotten, Simon 121
Sequeira, Tiago 155
Silva, Tomás 155
Somenzi, Fabio 3
Stramaglia, Anna 86

Trinh, Minh 211
Trivedi, Ashutosh 3

Vidot, Guillaume 15
Völker, Marcus 137, 211
Vu, Fabian 32

Wojtczak, Dominik 3

	 Preface
	 Organization
	 Contents
	Invited Keynote Talks
	Reinforcement Learning with Guarantees that Hold for Ever
	1 Learning from Rewards
	2 Learning with -Regular Objectives
	2.1 Good-for-MDP Automata
	2.2 From GFM Büchi Automata to Reachability and RL

	3 Related Work
	References

	Supporting Railway Innovations with Formal Modelling and Verification
	References

	Certification
	Formal Monotony Analysis of Neural Networks with Mixed Inputs: An Asset for Certification
	1 Introduction
	2 Certification Preamble
	3 Related Work
	4 Monotony Analysis
	4.1 Goal of the Analysis
	4.2 MILP Formulation
	4.3 Verification Procedure

	5 Case Study: Braking Distance Estimation
	5.1 Description of the Case Study
	5.2 Experimentation

	6 Conclusion
	References

	Generating Domain-Specific Interactive Validation Documents
	1 Introduction and Motivation
	2 Validation Workflow
	3 Static VisB HTML Export
	4 Dynamic HTML Export: Code Generation to HTML and JavaScript
	4.1 Graphical User Interface
	4.2 Applicability of JavaScript Code Generation

	5 Case Studies
	6 Related Work
	7 Conclusion and Future Work
	References

	Deductive Verification of Smart Contracts with Dafny
	1 Introduction
	2 Verification of Closed Smart Contracts
	3 Verification Under Adversarial Conditions
	3.1 Aborting a Computation
	3.2 Reasoning with Arbitrary External Calls

	4 Conclusion
	References

	Industrial Use Cases
	Towards Reusable Formal Models for Custom Real-Time Operating Systems
	1 Introduction
	2 Preliminaries
	2.1 Core Components of Real-Time Operating Systems
	2.2 Uppaal Timed Automata

	3 Related Work
	4 Reusable Formal Models for Custom RTOS
	4.1 Formalization of Tasks
	4.2 Formalization of Cyclic Handlers
	4.3 Events and Timing Behavior
	4.4 Configurable Formal Scheduler Model
	4.5 Modeling Sensor Inputs and Communication

	5 Case Study: Search and Rescue Robots
	6 Conclusion
	References

	Formal Verification of an Industrial UML-like Model using mCRL2
	1 Introduction
	2 Cordis Models
	2.1 Class Diagrams
	2.2 State Machine Diagrams

	3 Cylinder
	4 Model Checking Cordis Models Using mCRL2
	4.1 Translation to mCRL2
	4.2 Formal Verification of Requirements
	4.3 Results

	5 Discussion
	6 Concluding Remarks
	References

	Chemical Case Studies in KeYmaera X
	1 Introduction
	2 Background
	2.1 Differential Dynamic Logic
	2.2 KeYmaera X

	3 Results
	3.1 Controlled Irreversible Reactions
	3.2 Uncontrolled Reversible Reactions

	4 Related Work
	5 Conclusion
	References

	Analysing Capacity Bottlenecks in Rail Infrastructure by Episode Mining
	1 Introduction
	2 Related Work
	3 Identification of Capacity Bottlenecks
	3.1 Method
	3.2 Results

	4 Analysing Delay Propagations
	4.1 Goals and Overview
	4.2 Episode Mining
	4.3 Algorithm and Implementation
	4.4 Adaptations

	5 Evaluation Results
	6 Conclusions and Outlook
	References

	Testing and Monitoring
	Test Suite Augmentation for Reconfigurable PLC Software in the Internet of Production
	1 Introduction
	1.1 Limitations and Contributions

	2 Related Work
	3 Methodology
	3.1 Intermediate Representation
	3.2 Bounded Symbolic Execution
	3.3 Shadow Symbolic Execution

	4 Evaluation
	5 Conclusion
	References

	Monitoring of Spatio-Temporal Properties with Nonlinear SAT Solvers
	1 Introduction
	2 Preliminaries
	3 Running Example
	3.1 Formalization of Road Traffic Rules with LTL MS
	3.2 Scenario and Trace Encoding (Static and Dynamic Objects)

	4 Monitoring Model Construction
	5 Empirical Evaluation
	6 Related Work
	7 Conclusion and Future Work
	References

	Model-Based Testing of Internet of Things Protocols
	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 Preliminaries
	2.1 Internet of Things
	2.2 Model-Based Testing
	2.3 Axini Modeling Platform (AMP)

	3 MBT in the Context of IoT
	3.1 IoT Testing Challenges
	3.2 Positioning MBT in IoT

	4 The AMP MBT Environment to Test BLE IoT Systems
	4.1 SUT
	4.2 Model Creation
	4.3 AML Model Example
	4.4 Adapter

	5 Testing BLE Using AMP
	5.1 Assumption
	5.2 Test Generation Configurations
	5.3 Conformance Experiment
	5.4 Model Assumption Experiment

	6 Discussion
	7 Conclusion
	7.1 Future Work

	References

	Methodology
	Formally Verifying Decompositions of Stochastic Specifications
	1 Introduction
	2 Problem Illustration
	3 A Theory for Specifying Stochastic Behavior
	3.1 Traces and Behaviors
	3.2 Specifications
	3.3 Trace Automata
	3.4 Probabilistic Automaton Contracts

	4 Verification of Refinement
	5 Case Study
	6 Related Work
	7 Conclusions
	References

	Verification of Behavior Trees using Linear Constrained Horn Clauses
	1 Introduction
	2 Related Works
	3 Preliminaries
	3.1 Behavior Trees
	3.2 Constrained Horn Clauses

	4 Encoding of Behavior Trees
	4.1 Idea
	4.2 Action Node
	4.3 Condition Node
	4.4 Sequence Node
	4.5 Sequence Node with Memory
	4.6 Selector Node
	4.7 Parallel Node
	4.8 Root Node
	4.9 Safety Property
	4.10 Environment

	5 Experiments
	5.1 Benchmark
	5.2 Discussion

	6 Conclusion and Outlook
	References

	A Multi-level Methodology for Behavioral Comparison of Software-Intensive Systems
	1 Introduction
	2 Background
	2.1 Software Behavior
	2.2 State Machines
	2.3 State Machine Comparison

	3 Behavioral Comparison Methodology
	3.1 Level 1: Model Set Variants
	3.2 Level 2: Model Set Variant Relations
	3.3 Level 3: Model Set Variant Differences
	3.4 Level 4: Model Variants
	3.5 Level 5: Model Variant Relations
	3.6 Level 6: Model Variant Differences

	4 Evaluation
	4.1 Case Study 1: Legacy Component Technology Migration
	4.2 Case Study 2: System Behavior Matching Recipe

	5 Conclusions and Future Work
	References

	Author Index

