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Abstract Soil is under pressure due to climate change. Higher temperature is
increasing decomposition and mineralization of the soil organic matter (SOM),
thus reducing soil organic carbon, which is the blood of the soil. Furthermore, rise
in temperature is causing changes in soil moisture. In addition, elevated concentra-
tion of carbon dioxide (CO2) could cause higher activity of soil microbes, thus
breaking SOM at a faster rate and releasing more CO2. Similarly, the production of
methane (CH4) will be more in future if current traditional agricultural practices
would be carried out at the same pace. Thus, it is clear that warming is a responsible
factor of higher greenhouse gas (GHGs) emissions from soil. Hence, in this chapter,
we are proposing different techniques, which could be used to keep the carbon
underground, thus making soil as sink, not the source. Carbon (C) sequestration is
low-hanging fruit nowadays, being used to improve SOM. However, understanding
or quantification of soil health is important to design adaptation and mitigation
strategies to climate change. Modern day tools, such as remote sensing and model-
ing, can be used to quantify the health status of soil, as mentioned in this chapter.
Similarly, knowledge of soil physical processes (e.g., hydrologic dynamics, energy
dynamics, and overwinter dynamics) is utmost important to get good returns from
the soil. Thus, the Green-Ampt approach, Darcy law, and moving multifront (MMF)
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were discussed in this chapter. Similarly, the approaches used by the different
process-based models in their soil modules were elaborated. At the end of this
chapter, the practical application of remote sensing and modeling was given at
different spatiotemporal scale. Finally, it can be concluded that multiple adaptation
and mitigation strategies should be used to improve SOM, which can further help to
achieve sustainable development goals (SDGs), the blueprint to achieve a sustain-
able future for all.
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3.1 Soils and Climate Change

Soil is the loose surface material that covers the land, and it is the basic resource
needed for the survival of living organisms. It contains organic and inorganic
material. It is a living treasurer under our feet. Soil is a mixture of mineral matter,
water, air, and organic matter as shown in Fig. 3.1. It is the natural medium which
nourishes and supports plants. Soil is the end product of decomposition of the parent
material. This weathering of the parent material is dependent upon climate, topog-
raphy, and organisms like flora, fauna, and human. Hence, soil differs in texture,
structure, color, physical, chemical, and biological properties. Soil is an important
component of land and ecosystems, and it also determines the social and economic
conditions of the region. Soil is the second largest store or sink of carbon after ocean,
and to mitigate climate change, it is essential to improve soil organic matter (SOM)
through different land management’s techniques. The relationship between soil and
climate change has been well described by the European Environmental Agency
(Fig. 3.2). Similarly, soil management can play an important role in climate change
adaptation and mitigation (Fig. 3.3). Improving carbon (C) in soil will help to protect

Fig. 3.1 Composition by
volume of soil
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Fig. 3.2 Soil and climate change. (Source: European Environmental Agency (EEA))

Fig. 3.3 Unlocking potentials of soil to mitigate and adapt to climate change. (Source: FAO)



soil from degradation, increases water holding capacity (WHC) of the soil, promotes
microbial growth, and ensures food security. C-sequestration is the transfer of
atmospheric CO2 into different global pools (e.g., oceanic/pedologic/biotic and
geological strata) to reduce the increase of CO2 in the atmosphere. It is a very
important technique which can help to maintain the concentration of carbon dioxide
(CO2) in the atmosphere, as concentration of CO2 is increasing at a rapid pace. It has
been increased from 280 ppm (1850) to 417 ppm (2022). This higher CO2 concen-
tration resulted to the increased surface temperature (1.5–5.8 �C) (IPCC 2001, 2014).
C-sequestration have two basic methods, i.e., (i) direct (immediate binding at the
source) and (ii) indirect (fixation of CO2 by photosynthesis or its binding in a soil
environment). Agriculture can play a significant role in C-sequestration. It is possi-
ble through agroforestry, soil mulching, residue incorporation, application of
biochar, proper fertilization, intercropping, crop rotation, and growing of cover
crops, which can further improve soil health by preventing soil degradation. Mattila
et al. (2022) conducted a farmer participatory research to explore how farmers
consider carbon (C) sequestration (low-hanging fruit). Farmers were given training
about the basics of C-farming and C-farming plans to improve C-stocks in the field.
The study suggested the use of remote sensing, modeling, and soil sampling as an
integrated approach to verify the C storage in the field (Diaz-Gonzalez et al. 2022).
C-sequestration is an important climate change mitigation approach. Therefore,
C-farming was promoted to reduce climate change impact (Paustian et al. 2019).
Lal (2008) suggested that reduction in atmospheric CO2 loading is possible through
biological, chemical, and technological options. Biological pumping, a
C-sequestration technique in which CO2 is injected below the ground surface to
form carbonates, has so many benefits, which can enhance ecosystem services (e.g.,
improving soil quality and health, enhancing biodiversity, improving ground water
quality, and increasing use efficiency of agronomic inputs), and ensures food
security. Furthermore, C-sequestration reduces greenhouse effect (Kowalska et al.
2020; Lal 2005, 2008). Amundson and Biardeau (2018) reported that annual
increase in atmospheric CO2 can be halted if soil carbon could be increased by
0.4% on a yearly basis. Hence, soil C- sequestration is an important mitigation tool.
Paustian et al. (2019) reported C-sequestration as an effective CO2 removal strategy.
Different management practices as elaborated in Table 3.1 could be opted to
minimize the impact of climate change from soil.
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3.2 Understanding Soil

Understanding of soil is very important to design adaptation and mitigation strate-
gies to climate change as mentioned above. Knowledge of soil physical processes is
utmost important to get good returns from soil. Soil physical processes include
(i) hydrologic dynamics (infiltration, runoff, macropore flow, chemical transport,
water table and tile flow, redistribution), (ii) energy dynamics (potential evapotrans-
piration, soil heat transport and temperatures, energy balance), and (iii) overwinter



S. No Benefits References

3 Climate Change and Process-Based Soil Modeling 77

Table 3.1 Management practices to increase soil C-sequestration and CO2 removals

Management
practices

1. Crop rotations
and cover
cropping

Higher C-sequester and economic
returns
Mitigating climate change
Improvement in the soil quality
Decrease CO2 emission
Improvement in soil temperature,
moisture, and total aboveground
biomass
Reduces erosion and nitrogen
leaching, fix atmospheric nitrogen
and improves soil health
Mitigation of CO2 emissions

Chahal et al. (2020), Smith
et al. (2008), Abdollahi and
Munkholm (2014), Nguyen and
Kravchenko (2021), Kaye and
Quemada (2017) and Rigon and
Calonego (2020)

2. Composting Reduces emissions of greenhouse
gases (GHGs)

Favoino and Hogg (2008)

3. Manuring Reduction in GHGs emissions Dalgaard et al. (2011)

4. No tillage, zero
tillage

Mitigate GHG emissions
Viable greenhouse gas mitigation
strategy
Lower GHGs fluxes
Application of DAYCENT model
in the estimation of GHGs
Minimizing emissions of GHGs
Preservation of soil organic carbon

Ogle et al. (2019), Krauss et al.
(2017), Forte et al. (2017),
Rafique et al. (2014),
Mangalassery et al. (2014) and
Haddaway et al. (2017)

5. Cultivation of
perennial
grasses and
legumes

Higher soil C storage
Reduced N2O emissions
Suppress weed invasion
Reduced use of inorganic fertilizer
Lowering of C-footprint

Yang et al. (2019), Liu et al.
(2016) and Gan et al. (2014)

6. Plantation of
deep-rooted
crops

Improved soil carbon budget
Reduced emissions of CO2

Improves soil structure
Improves water and nutrient
retention

Jansson et al. (2021) and Kell
(2011)

7. Rewetting
organic soils

Lowering CO2 and N2O emissions Wilson et al. (2016) and
Paustian et al. (2016)

8. Grazing land
management

Lowers atmospheric CO2 emis-
sions and surface temperature
Improvement of soil carbon stocks

Mayer et al. (2018) and Conant
et al. (2017)

9. Biochar
application

Reduced N2O emissions
Improved soil water holding
capacity
Suppression of soil CO2 emissions
Variable response in CO2 produc-
tion
Soil greenhouse gas (GHG) fluxes
remained variable in response to
different biochar application

Martin et al. (2015), Conant
et al. (2017), Spokas and
Reicosky (2009) and He et al.
(2017)

10. Plant-soil
interactions

Restoration of degraded soil Maiti and Ghosh (2020)



dynamics (simplistic snow accumulation and melt process). Infiltration of water into
a layered soil could be monitored by the Green-Ampt approach, which requires
saturated hydraulic conductivity KS and wetting-front suction SWF of each soil layer
(Green and Ampt 1911). It is a mechanistic model for infiltration under ponded
conditions with well-defined wetting front. The following equation elaborates
parameters in the Green-Ampt infiltration model:
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V ¼ KS
Swf þ HO þ ZWFð Þ

ZWF

where SWF ¼ integral of relative unsaturated hydraulic conductivity K(h)/Ks, known
or derived from soil-water retention curve, θ(h) and θ ¼ volumetric soil water
content, and h ¼ soil-water pressure head (�ive soil-water suction). Due to air
entrapment, field-saturated θs is about 0.90 and effective Ks is approximately Ks/2.
Further description about Green-Ampt infiltration model has been shown in Fig. 3.4.

Water penetration from the ground into the soil is governed by the soil surface
condition, vegetation cover, soil properties, hydraulic conductivity, and antecedent

Fig. 3.4 Green-Ampt
infiltration model. (Source:
Kale and Sahoo 2011)
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soil moisture. Generally, it has four zones (i) saturated, (ii) transmission, (iii)
wetting, and (iv) wetting front. The rate at which water enters the soil is called
infiltration rate, represented as f(t), while cumulative infiltration (F(t)) is the accu-
mulated depth of water infiltrating during given time period. The Green-Ampt
infiltration model (GAIM) assumes saturated piston-type flow into the dry soil
(flow is modeled as the displacement of a single sharp wetting front into a dry
soil). The front sharply separates in two regions, i.e., (i) fully saturated region
(above) and (ii) very dry region (Below). The wetting front move downward due
to gravity and capillary suction (Fig. 3.5). The GAIM is a single front model as it is
based on the movement of a single front (Zf(t)) as shown in Fig. 3.5. The GAIM
divides the soil into two zones as shown in Fig. 3.5.

3 Climate Change and Process-Based Soil Modeling 79

Fig. 3.5 Green-Ampt
piston flow. (Source with
permission via Rightslink:
Alastal and Ababou 2019)

Darcy law could be used to describes water flux (q). For example, in case of
two-layered soil as shown in Fig. 3.6, water flux for the first layer (q1) and second
layer could be monitored by the following equations:

Water flux for the 1st layer q1ð Þ Volume per unit area per unit timeð

¼ Hydraulic conductivity of 1st layer K1ð Þ � Hydraulic gradient ΔH1ð Þ
L1 Thickness of 1st layerð

¼ K1
HA � HB

L1

∴
q1L1
K1

� HA ¼ �HB

∴� q1L1
K1

þ HA ¼ HB
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Þ
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Fig. 3.6 Darcy law for
layered soils

q2

k1

q1

C

Layer 2

B

A

Layer 1

k2

HB ¼ HA � q1L1
K1

Water flux for the 2nd layer q2ð Þ Volume per unit area per unit timeð

¼ Hydraulic conductivity of 1st layer K2ð Þ � Hydraulic gradient ΔH2ð Þ
L2 Thickness of 2nd layerð

¼ K2
HB � HC

L2

∴q2 ¼ K2

L2
HB � Hcð Þ

Putting the value ofHB from the first layer into second-layered equation generates
the following equation:

q2 ¼ K2

L2
HA � q1L1

K1
� Hc

� �

For a steady state system, flux will be:

q1 ¼ q2 ¼ q

Hence,



ð Þ ¼ ¼
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q ¼ K2

L2
HA � qL1

K1
� Hc

� �

After rearrangement, equation will be:

qL2
K2

þ qL1
K1

¼ HA � HC

q
L2
K2

þ L1
K1

� �
¼ HA � HC

Hence, Dracy’s law for layered soil will be:

q ¼ HA � HC
L2
K2

þ L1
K1

Let L lenght of the given soil layerð Þ
K Hysraulic conductivity of the soil layer Hydraulic resistance Rh

Then

q ¼ HA � HC

Rh1 þ Rh2
¼ ΔH

Rh1 þ Rh2
¼

Alastal and Ababou (2019) developed and tested moving multifront (MMF) to
solve the Richards equation (Fig. 3.7). The root uptake part of the sink term W(z,t)
could be evaluated by using the approach of Nimah and Hanks (1973). Evapotrans-
piration is generally monitored by using the Penman-Montieth or Shuttleworth and
Wallace methods.

Fig. 3.7 Moving multifront
(MMF) model. (Source with
permission via Rightslink:
Alastal and Ababou 2019)
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3.3 Soil Modules in Different Models

3.3.1 AquaCrop

AquaCrop is a FAO model, and it uses soil water balance, soil water movement, and
soil profile characteristic modules. The functioning of soil water module in
AquaCrop is elaborated in Fig. 3.8. AquaCrop derives soil texture, organic matter,
soil compaction, and stoniness by using hydraulic properties calculator developed by
the USDA and Washington State University (https://hrsl.ba.ars.usda.gov/soilwater/
Index.htm).

3.3.2 Agricultural Production Systems sIMulator
(APSIM)_Soil Module

The APSIM is an internationally well-known model (https://www.apsim.info/). The
APSIM soil module has multiple components, i.e., (i) erosion, (ii) fertilizer, (iii)

Fig. 3.8 Description of soil module in AquaCrop

https://hrsl.ba.ars.usda.gov/soilwater/Index.htm
https://hrsl.ba.ars.usda.gov/soilwater/Index.htm
https://www.apsim.info/


irrigation, (iv) map, (v) SoilN, (vi) SoilP, (vii), SoilTemp, (viii), SoilWat (ix), solute,
(x) surface, (xi) SurfaceOM, (xii) SWIM, (xiii) SWIM3, and (xiv) WaterSuppl. The
APSIM soil module is diagrammatically presented in Fig. . Both C and N
dynamics has been described by SoilN module as elaborated in Fig. , where3.10

3.9
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Fig. 3.9 Diagrammatic representation of the APSIM soil module. (Source: APSIM)
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SOM is divided into two pools (Hum and Biom). Labile, soil microbial biomass, and
microbial products are represented by “biom” pool, while the rest of the SOM
comprises “hum.” The flow between different pools is quantified in terms of C,
while N flows depend upon C:N ratio of receiving pool. The “ini file” is used to
specified C:N for “biom,” while for “hum” it comes from the soil as an input.
Decomposition in these two pools were calculated as first-order processes with a
rate constant being modified by soil moisture and temperature in the layer. The
CERES_Maize approach was used to represent fresh organic matter pool (fom),
while C:N factor determines “fom” rate of decomposition (Jones 1986). Mineral N is
determined though balance between decomposition and immobilization. At initial-
ization, “hum” and “biom” C amount is calculated using soil inputs. The following
equations will represent total, organic C, inert C, biom_C, and hum_C at
initialization:

84 M. Ahmed et al.

Fig. 3.10 Transformation
in the APSIM_soilN
module. (Source: APSIM)

Total C Fresh organic matter FOM C Orgnaic carbon OC

Organic Carbon Kg ha�1
� � ¼ biom Cþ hum C

inert _ C Finert OC(Kg ha�1)

biom C ¼ Fbiom � hum C� inert Cð Þ

since

hum C ¼ OC� biom C

Thus, biom_C equation will be:

biom C ¼ Fbiom � OC� inert Cð Þð
1 Fbiom

hum C ¼ OC� biom C



�
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�
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Soil temperature in the APSIM_Soil module is calculated using the Williams
(1984) approach as applied in the EPIC (erosion-productivity impact calculator)
model. The following equations were used in the EPIC model:

T Z, tð Þ ¼ T þ AM
2

exp
�Z
DD

� �
cos

2π
365

t � 200ð Þ � Z
DD

�

where Z ¼ depth from the soil surface (mm), t¼ time (days), T¼ average annual air
temperature (�C), AM ¼ annual amplitude in daily average temperature (�C), and
DD ¼ damping depth for the soil (mm). However, this equation provides the same
value for soil temperature as is for air temperature. Hence, to use air temperature as a
driver for the soil temperature, the new equation developed was:

TGIDA ¼ 1� ABð Þ T max þ T min

2

� �
1� RA

800

� �
þ T max

RA
800

þ ABð Þ
� TGIDA�1ð Þ . . . . . . . . .

where TG ¼ soil surface temperature (oC), AB ¼ surface albedo, Tmax ¼ maximum
daily air temperature, Tmin ¼ minimum daily air temperature, and RA ¼ daily solar
radiation.

The final equation for calculating soil temperature at any depth is:

T Z, tð Þ ¼ T þ AM
2

cos
2π
365

t � 200ð Þ þ TG� T O, tð Þ
��

e�Z=DD

Decomposition of SOM pools in the APSIM_Soil module was calculated using
the following equations:

fom decomposition ¼ Fpool Carbohydate, cellulose or lignin fractionð
� decay rate rdð Þfor a give fraction rdcarb, rdcell, rdlign

�
� Soil water factor � Soil tempearture factor � C

: N factor

biom decomposition ¼ biom � rdbiom � Soil water factor
� Soil temperature factor

hum decomposition ¼ hum� inert Cð Þ � rdhum � Soil water factor
� Soil temperature factor

The factors affecting individual decay rates are shown in Fig. 3.11. Nitrification is
an APSIM_Soil module which is calculated using the Michaelis-Menton kinetics.
The following equations have been used to determine the nitrification rate:

Potential rate ¼ Nitrificationpot mg N=kg soil=dayð Þ � NH4 ppmð Þ
NH4 ppmð Þ þ NH4 at half pot ppmð Þ
�



Þ

�
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Fig. 3.11 Factors affecting SOM decay rates. (Source: APSIM)

Nitrification rate ¼ Potential rate
� min water factor, temperature factor, pH factorð

Factors, i.e., soil water, temperature, and pH, affecting the nitrification rate of
ammonium, are shown in Fig. 3.12. Nitrous oxide (N2O) emission from nitrification
is calculated using the following equation:

N2O ¼ K2� Rnit

where Rnit ¼ rate of nitrification ((kg N ha�1 day�1) and range of values as were
used for K2 (Li 2000). Denitrification in APSIM_Soil module was taken from
CERES-Maize V1, which uses the following equations:

Denitrification rate ¼ 0:0006� NO3 � Active Cppm � water factor
� temperature factor

where

Active Cppm ¼ 0:0031� hum Cppm þ FOM Cppm
� þ 24:5

Factors affecting denitrification of nitrate is shown in Fig. 3.13. Further details of
all other components in APSIM_Soil module are available on https://www.apsim.
info/documentation/model-documentation/soil-modules-documentation/

https://www.apsim.info/documentation/model-documentation/soil-modules-documentation/
https://www.apsim.info/documentation/model-documentation/soil-modules-documentation/
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Fig. 3.12 Factors affecting nitrification rate of ammonium. (Source: APSIM)

Fig. 3.13 Factors affecting denitrification. (Source: APSIM)

3.3.3 Decision Support System for Agrotechnology Transfer
(DSSAT)_Soil Module

The simulation of the dynamics of soil in DSSAT is possible through different soil
modules. These include soil water, inorganic soil N, soil P, and soil K modules.
DSSAT also has soil organic matter modules with two options: (i) CERES-Godwin
soil organic matter module and (ii) CENTURY (Parton) soil organic matter module.
Furthermore, DSSAT has GHG emission modules, i.e., CERES denitrification,
DayCent denitrification, N-gas emissions, and methane emissions. The DSSAT_soil



¼

�	

module can also simulate dynamic soil properties as well as flood N dynamics.
Further detail is available at https://dssat.net/models-overview/components/soil-
module/
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3.3.4 CropSyst_Soil

CropSyst simulates soil water budgets (precipitation, irrigation, runoff, interception,
water infiltration, water redistribution in the soil profile), nutrients budgets (N and
P), and C cycling on daily as well as hourly time step. Soil water fluxes in CropSyst
is determined by a simple cascading approach or by a finite difference approach.
Evapotranspiration in CropSyst can be calculated by three approaches, i.e.,
(i) Penman-Monteith model (ii) Priestley-Taylor model, and (iii) simpler implemen-
tation of the Priestley-Taylor, which considers only air temperature (Stöckle et al.
2003).

3.3.4.1 CropSyst Carbon/Nitrogen Model

This portion of the carbon/nitrogen model only includes the description of decay and
mineralization of organic residues (crop, manure, etc.) incorporated into soil layers
and dead roots. Surface residues are treated in a separate module using a slightly
different approach. The pools included in the model are given in Table 3.2, all of
them with units of kg m�2 ground area and with specified carbon/nitrogen ratios,
except for residues whose ratio depends on their specific nitrogen content. The
separate set of pools are defined for each soil layer. Figure 3.1 depicts the relations
and exchanges of carbon (and nitrogen indirectly) among pools. Decomposition of
organic residues and organic matter follows first-order kinetics with the following
decomposition constants (day�1).

A significant fraction of the carbon resulting from the decomposition of the
different pools is lost as CO2, and the rest is transferred to other pools (Fig. 3.14)
according to the following carbon distribution fractions, where FX->Y represents the
fraction of carbon transferred from pool X to pool Y (Badini et al. 2007).

FR!CO2 0:55

FR!MB ¼ 1� FR!CO2

FMB!CO2 ¼ Minimum 0:55ð Þ, 0:85� 0:68 FSilt þ Fclay

� ���

where FSilt and FClay are the soil silt and clay fractions, respectively.

FMB!P ¼ 0:003þ 0:032 FClay

https://dssat.net/models-overview/components/soil-module/
https://dssat.net/models-overview/components/soil-module/
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Table 3.2 Description of different pools in the CropSyst carbon/nitrogen model

Acronym Description Carbon/nitrogen ratio
R Organic residue Variable

MB Microbial biomass 10

LA Labile active soil organic matter 10

MA Metastable active soil organic matter 10

P Passive soil organic matter 10

Pool Notation Value
R KR 0.02

MB KMB 0.02 [1–0.75(FSilt+FClay)]

LA KLA 0.01

MA KMA 0.00055

P KP 0.000019

Incorporated
Residues and

Roots

Passive SOM

Metastable Active
SOM

Labile Active
SOM

FMB -> LA

FMB -> CO2

FP -> CO2

KR

KMA

KP

KLA

FMA ->MB

FPMB ->P

FNPMB ->P

FP -> MB

FMA -> P

FR -> CO2

Microbial
Biomass

KMB

FMB ->MA

FLA -> CO2 FMA -> CO2

FLA ->MB

FLA -> P

Fig. 3.14 CropSyst conceptual carbon flow model. (Source with permission: Badini et al. 2007)

FMB!LA ¼ 1� FMB!CO2 � FMB!Pð ÞFNPSV
FMB!MA ¼ 1� FMB!CO2 � FMB!Pð Þ 1� FNPSVð Þ



� �� 	
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where FNPSV is the fraction of non-protected soil volume, which is zero or low for
consolidated and undisturbed soil layers and higher for layers recently disturbed by
tillage.

FLA!CO2 ¼ FMA!CO2 ¼ FP!CO2 ¼ 0:55

FLA!P ¼ FMA!P ¼ Maximum 0:0ð Þ, 0:003� 0:009FClay

FLA!MB ¼ 1� FLA!CO2 � FLA!P

FMA!MB ¼ 1� FMA!CO2 � FMA!P

FP!MB ¼ 1� FP!CO2ð Þ

The carbon transferred among pools also determines the nitrogen transfer, which
is equal to the amount of nitrogen required to preserve the carbon/nitrogen ratio of
the receiving pools. In this process, if the amount of nitrogen released by the
decomposing pool is greater than the amount of nitrogen required by the receiving
pools, mineral nitrogen in the form of ammonium is released to the soil layer
(mineralization). If the opposite is true, ammonium (first source) and nitrate (sec-
ondary source) from the soil layer is taken up for microbial consumption (immobi-
lization). If no sufficient mineral nitrogen is available in the soil to supply the
microbial demand, the decomposition is reduced in all pools requiring immobiliza-
tion proportionally to the fraction of immobilization demand not satisfied. The initial
amount of carbon allocated to each soil organic matter (SOM) pool in Fig. 3.14
depends on the organic matter content of the soil layer, expressed in kg carbon per
square meter ground area. The total amount of carbon initially present in the soil
layer is apportioned to each pool as mentioned in Table 3.3.

3.3.5 STTCS (Simulateur mulTIdisciplinaire Pour les
Cultures Standard)

STICS is a model developed by INRA (France), now called as INRAE (Brisson et al.
2003). Soil surface can modify the water and heat balances in STICS, and it is linked

Table 3.3 Total amount of carbon in different pools

Pool Fraction

Microbial biomass 0.02

Labile active
SOM

(1 – Microbial biomass fraction – passive SOM fraction) physically
non-protected soil volume

Metastable active
SOM

(1 – Microbial biomass fraction – passive SOM fraction) physically
protected soil volume

Passive SOM Minimum (0.5, 0.3 + 0.4 FClay) for grasslands
Minimum (0.5, 0.4 + 0.2 FClay) for croplands

Source: Badini et al. (2007)



with the albedo of soil in dry state. Runoff coefficients determines the runoff
proportion above a threshold in the presence of plants or mulch. Water balance in
STICS is computed by using precipitation, irrigation, and reference evapotranspira-
tion. Bulk density, field capacity, and wilting point was assumed constant in each
soil horizon. The whole soil profile in STICS was characterized by five horizons of
different depth. Beer’s law is applied to calculate potential evaporation. N balance in
STICS is calculated through N mineralization that originates from the three pools of
organic matter (OM), i.e., (i) humified OM, (ii) microbial biomass (BIOM), and (iii)
crop residues (RES) (Fig. 3.15). Denitrification (the gaseous loss) was calculated by
using the NEMIS model (Hénault and Germon 2000). Nitrogen absorption is linked
to crop requirements and supply from soil root system. Crop requirements was
connected with the upper envelop of N dilution curves as reported by Lemaire and
Gastal (1997). Soil N supply is equal to two fluxes, i.e. (i) transport flux (NO3

�1

transport via convection and diffusion from soil to closet root) and (ii) sink flux
(active absorption by the root). In case of legumes, symbiotic fixation option is
available that maintains N nutrition at the critical N level, and it depends on nodule
activity, NO3

�1 presence, water stress, anoxia, and temperature. Soil temperature in
STICS is calculated by using the model of McCann et al. (1991), which considers
daily crop temperature and its amplitude (Brisson et al. 1998, 2003).
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Fig. 3.15 C and N fluxes in
STICS. (Source with
permission: Brisson et al.
2003)

3.3.6 Erosion Productivity Impact Calculator (EPIC)

The EPIC model was developed by Williams (1984) to quantify the relationship
between erosion and productivity. It is one of the comprehensive cropping system
models developed initially (Williams et al. 1989; Williams 1990, 1995; Rosenberg
et al. 1992; Stockle et al. 1992). The extended version of EPIC is APEX (Agricul-
tural Policy/Environmental eXtender) developed by Texas A&M University (Jones
et al. 2021; Gassman et al. 2009). Izaurralde et al. (2012) elaborated the development
and application of EPIC in C-cycle, GHG mitigation. The EPIC model can simulate
more than 100 crops, and it uses the Seligman and Keulen (1980) approach to
calculate N transformations and dynamics. Afterward, soil organic carbon was
calculated using a fixed fraction of soil organic N and C:N ratio of 10. This gives
realistic picture of soil C dynamics and fluxes of C. However, EPIC performance to
simulate long-term C dynamics was not up to mark as compared to other models, i.e.,
CENTURY, DNDC (DeNitrification DeComposition), ecosys, RothC, SOCRATES
(Soil Organic Carbon Reserves And Transformations in agro-EcoSystems) used in



the study conducted in Canada (Izaurralde et al. 2001). Hence, for improvement in
EPIC, C-dynamics was needed, as elaborated by Jones et al. (2021). The C and N in
SOM are distributed among the three pools as shown in Fig. 3.16 Furthermore, C
balance in ecosystem prospective is given in Fig. 3.17, as EPIC generally gives C
only in plant material, but with this modification, EPIC can describe C cycling at an
ecosystem scale (Jones et al. 2021).
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Fig. 3.16 EPIC soil C and N pools with their flows. (Source with permission: Jones et al. 2021)

3.3.7 WOrld FOod Studies Crop Simulation Model
(WOFOST)

WOFOST is a mechanistic, dynamic simulation model, which can simulate the
production of annual crops (van Diepen et al. 1989; de Wit et al. 2019) in response
to different managements and climate change. The WOFOST_Soil module includes
soil water balance using tipping bucket and SWAP (soil-water-atmosphere-plant)
approach. SWAP uses the Richards equation to simulate the flow of water and
solutes among different layers (Kroes et al. 2009). WOFOST has also been
connected through the BioMA framework to simulate soil water balance (Donatelli
et al. 2010). WOFOST has the potential to be used in precision agriculture and smart
farming.
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Fig. 3.17 EPIC ecosystem C balance. (Source with permission: Jones et al. 2021)

3.3.8 DNDC (DeNitrification DeComposition)

DNDC is a mathematical model that has been used in the study of management and
climate change impacts on agriculture. DNDC has the potential to simulate dynam-
ics (production, consumption, and transport) of nitrous oxide from different sources
in agricultural systems (Gilhespy et al. 2014). Initially, DNDC (1–7) has three
submodels, i.e., (i) denitrification (ii), decomposition (three soil organic carbon
pools), and (iii) Soil_Climate_thermal hydraulic flux (Li et al. 1992). However, in
DNDC_7.1, an additional empirical plant growth submodel was added; thus, it has
four submodels. DNDC has so many further versions (e.g., PnET-N-DNDC, DNDC
v. 8.0, Crop-DNDC, DNDC v. 8.2, Wetland-DNDC, UK-DNDC, DNDC v. 8.5,
Forest-DNDC, NZ-DNDC, Forest-DNDC-Tropica, EFEM-DNDC, BE-DNDC,
DNDC v. 9.0, DNDC-Europe, DNDC-Rice, and Mobile-DNDC), which was built
to answer multiple questions of different scenarios. Smith et al. (2010) suggested
improvement in the DNDCv9.3. estimation of soil evaporation. Manure-DNDC can
quantify the manure life cycle on farms, and DNDCv.9.5 is the latest updated
version, which can quantify hydrological features and GHGs estimation (Zhang
and Niu 2016). Fluxes of GHGs among soil, plant, and atmosphere that elaborate
DNDC mechanisms are shown in Fig. 3.18. Li et al. (2019) conducted a study to
suggest improvement in the DNDC simulation of ammonia (NH3) volatilization.
They suggested major modifications in the source code. These include pedo-transfer
functions in soil hydraulic parameters to simulate soil moisture, temperature effect
on ammonium bicarbonate decomposition, and soil texture effect on NH3 volatili-
zation (Fig. 3.19).
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Fig. 3.18 Diagrammatic representation of DNDC showing carbon dioxide (CO2), nitrous oxide
(N2O), and methane (CH4) fluxes in forest/arable soil. (Source with permission: Zhang and Niu
2016)

Fig. 3.19 Ammonia (NH3) volatilization in DNDC. (Source with permission: Li et al. 2019)

3.4 Monitoring Soil Through Remote Sensing

Soil quality has been deteriorated due to intensive agriculture, and it poses big
challenge to ensure food security. Traditional and modern soil quality assessment
tools for data collection and processing can offer good opportunities to improve soil



health through different managements (Jung et al. 2021; Ge et al. 2011; Campbell
et al. 2022; Bretreger et al. 2022; Angelopoulou et al. 2019). Artificial intelligence
techniques provide useful information to farmers to decide treatments as per need.
Generally, soil is assessed before the sowing of crop to select accurate management
practices. But soil quality cannot be determined directly, and it can only be estimated
by a wide range of quality indicators/indices. Traditional indicators to assess soil
quality are (i) physical, (ii) chemical, and (iii) biological. Remote sensing is a
powerful tool, which can be used to build different types of soil quality indicators
based on soil nutrients and SOC contents (Fig. 3.20). However, to process data from
remote sensing systems, different machine learning techniques are used. It includes
supervised learning methods, i.e., random forest, support vector regression, artificial
neural network, bagging decision tree, Bayesian models, boosted regression trees,
cubist model, regression tree, regression kriging, random forest regression, partial
least squares, k-nearest neighbor, generalized linear model, and deep learning (Diaz-
Gonzalez et al. 2022; Harrington 2012; Loureiro et al. 2019; Bhatnagar and Gohain
2020).

3 Climate Change and Process-Based Soil Modeling 95

Fig. 3.20 Application of remote sensing and machine learning in soil quality assessments. (Source
with permission: Diaz-Gonzalez et al. 2022)

3.5 Models Applications

Climate change is negatively affecting the crop productivity and food security due to
its direct or indirect effect on different soil processes. Thus, adaptation options are
needed to address the issue of climate change. The AquaCrop model was used by
Alvar-Beltrán et al. (2021) to study the impact of climate change on the major crops
(What and Sugarcane) of Pakistan, which is fifth in number due to the occurrence of



extreme weather events. The study suggested that policy makers should act swiftly
with solid adaptation options to cope with the changing environmental conditions in
Pakistan. Bird et al. (2016) studied the relationship of future yield (2040–2070)
variability with soil texture and climate models using AquaCrop to develop possible
adaptation strategies. Results showed that yield was reduced by 64% on clay loams
while it was increased by 8% on sandy loams and 26% on sandy clay loams soils.
They suggested change in plant date and mulching as sustainable adaptation options
to reduce crop losses. AquaCrop and DRAINMOD-S were used in a paddy field to
simulate salt concentration. Both models were able to simulate soil salinity with
good accuracy; thus, they can be used to manage salinity at field scale (Pourgholam-
Amiji et al. 2021). Water and fertilizer management is important to get good crop
yield and higher nitrogen use efficiency. Hence, Wu et al. (2022) developed a
framework to simulate evapotranspiration under water and N stress in modified
version of AquaCrop. The accurate performance of AquaCrop has shown that it
can be used as a robust tool to develop precise managements for arid areas.
Optimization of irrigation scheduling requires knowledge of crop and soil, which
is possible through a decision support system. The AquaCrop and MOPECO models
were used by Martínez-Romero et al. (2021) to optimize irrigation for barley crop.
The results showed that both models were complementary to simulate gross irriga-
tion water depths to attain the potential crop yield (e.g., 310 mm is required by barley
to give potential yield). Rahimikhoob et al. (2021) applied AquaCrop a semiquan-
titative approach to simulate crop response to N stress using the critical
N-concentration idea. Results depicted that direct simulation by using crop N status
is a good option to improve soil fertility management. Biochar is a climate-friendly
practice that can ensure food security by preventing water stress and fertilizer
overuse. The AquaCrop model was used by Huang et al. (2022) to optimize the
integrated strategies that involves irrigation, N, and biochar regimes. Results showed
that AquaCrop simulated treatments impacts on crop yield with good accuracy.
Hence, it can be used as a reliable tool for the optimization of field management,
e.g., addition of fertilizer, biochar, and irrigation. Adeboye et al. (2019) evaluated
AquaCrop to simulate soil water storage and water productivity of soybean. The
model has shown low performance in simulating evapotranspiration and water
productivity that needs to be fixed for dryland agriculture. AquaCrop-OSPy was
proposed as an open source to be used to bridge the gap between research and
practice (Kelly and Foster 2021). Groundnut is crop of dryland regions; hence, its
simulation is tricky. Chibarabada et al. (2020) tested AquaCrop to simulate evapo-
transpiration, crop canopy cover, biomass, and yield under water stress conditions.
Overall, the model shown good performance under water stress conditions, but it
should be further tested under different soils and climates. Han et al. (2020)
suggested that performance of crop models could be improved by upscaling the
approach through remote sensing, as it can generate spatial distribution of crop
parameters.
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Soil organic carbon (SOC) is an important C pool, which can minimize atmo-
spheric CO2 concentration if managed properly. Wan et al. (2011) used the RothC
model to study the impact of climate change on SOC stock. Results depicted that



SOC will decrease at higher rate in future if adaptation options, such as adding
organic matter in soil through residues management and manure applications, will
not be opted quickly. Furthermore, SOC could be increased by applying conserva-
tion agriculture practices, intercropping, cover cropping, and mixed farming.
Lychuk et al. (2021) used the EPIC model to assess the losses of NO3-N and labile
P under changing climate, three levels of agricultural inputs (organic, reduced, and
high), and three levels of cropping diversity (low, diversified annual crops, mixture
of annual and perennial crops). Results showed that climate change resulted to the
increase losses of NO3-N, which can be mitigated by increasing cropping diversity
as suggested in this work. LPJ-GUESS (Lund-Potsdam-Jena General Ecosystem
Simulator) was used by Ma et al. (2022) to assess the impacts of agricultural
managements on soil C stocks, nitrogen loss, and crop production. Conservation
agriculture practices, i.e., no tillage, cover crop, residue, and manure application,
have shown positive effect on SOC, while loss of N was also minimum under these
practices. A hydro-biogeochemical model (SWAT-DayCent) was used to investigate
the effect of climate warming and root zone soil water contents on SOC. Three
Representative Concentration Pathways (RCP2.6, 4.5, and 8.5) and five global
climate models were used in this study. The results showed that SOC will decrease
in future due to higher warming but higher soil water content could depress SOC
losses (Zhao et al. 2021).
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Climate change will negatively affect SOM dynamics, soil organisms, and soil
properties, but warmer conditions could lead to the higher availability of soil N due
to higher mineralization rate. Hence, soil management particularly N application will
be governed by future climate change (Jat et al. 2018). SOC dynamics is the core of
interlinked environmental problems. However, its management is a mystery due to
its complex relationship with N availability, moisture, and temperature. Srivastava
et al. (2017) reviewed soil C dynamics under changing climate and suggested that
soil may act as a potential C sink if managed properly (e.g., management of soil
inorganic N pools and its proper linkage with microbial processes). Climate change
mitigation is the implementation of efforts to halt or reverse climate change through
behavior, technological, and management strategies (Fig. 3.21). With practical on
ground mitigation practices, soil can play a role to reduce CO2 emissions. It can be a
carbon sink instead of the source (Lal 2004; Paustian et al. 2016). On the other hand,
the adaptation is to achieve higher resilience toward extreme climatic events. It is
possible through different managements as shown in Figure 3.21, which can
improve SOC. This higher SOC will help to retain more water and could produce
crops even under drought. Sustainable development goals (SDGs), which are the
blueprint to achieve a sustainable future for all, could be achieved through improving
SOC. The benefit of improvement of SOC to achieve SDGs is elaborated in
Fig. 3.22. Mitigation and adaptation both offer solutions to climate change, and
they are directly and indirectly related to SDGs. However, they are not always
complementary as sometimes they can be independent from each other. Balanced
fertilization is the key adaptation strategy, which can sustain SOC on long term
basis. Mohanty et al. (2020) simulated C-sequestration potential of balanced fertil-
ization (N and farmyard manure) in soybean-wheat cropping system using the



43-year long-term experimental dataset. The APSIM results showed that improved
N and FYM management had the potential to increase SOC. Chaki et al. (2022)
evaluated the APSIM potential to simulate conservation and conventional tillage
practices in rice-wheat system. Results showed that the model was able to capture the
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Fig. 3.21 Management strategies (Suggested and dissuaded) for the improvement of soil health
and their impacts on climate change adaptation, mitigation, and food productivity/security



effect of tillage, residue, N application, and cropping system; thus, it can be a good
tool for designing the adaptation and mitigation options to climate change. Further-
more, the APSIM model was used evaluate the potential of conservation agriculture
to mitigate climate change in water-scarce region Tunisia. Results depicted that
mulching (residue retention) is more effective than conservation tillage under semi-
arid and subhumid conditions. It can increase crop yield, WUE, and SOC as well as
would help in the prevention of erosion (Bahri et al. 2019). Singh et al. (2022)
compared the simulated potential of DRAINMOD-DSSAT and RZWQM2 to sim-
ulate the effects of management practices (N application rates and timings) on NO3-
N losses and crop yield. Results showed that both models provided the same
conclusion for the N management strategy. Similarly, DSSAT was used as a
valuable tool to suggest conservation agriculture as a potential way to adapt to
climate change (Ngwira et al. 2014). Since process-based models are a good tool
to design adaptation practices to climate change and, hence, to use them in real sense
and to have true field picture, these models should be properly calibrated using
different upscaling strategies (Chen et al. 2021).
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Fig. 3.22 Relationship between SOC and SDGs

3.6 Conclusion

Climate change is posing a major threat to food security through soil degradation.
Since soil is the largest source of C, then it is necessary to conserve and improve
SOM through its judicious use and management. Soil heath improvement will help
to combat soil degradation, address food security, and mitigate climate change.
Understanding and quantification of soil health through modern tools (e.g., remote



sensing and modeling) are utmost important to design adaptation and mitigation
strategies. Different adaptation and mitigation strategies are already available, which
should be used to improve SOM. These includes reforestation, use of conservation
tillage, intercropping, residue management, cover cropping, application of compost
and biochar, balanced use of inorganic and organic fertilizer, and adoption of climate
smart agriculture. However, these interventions need to be implemented properly
through their dissemination to the real stakeholders, i.e., policy makers and farmers.
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