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Abstract. We study the dynamics of (synchronous) one-dimensional
cellular automata with cyclical boundary conditions that evolve accord-
ing to the majority rule with radius r. We introduce a notion that we term
cell stability with which we express the structure of the possible configu-
rations that could emerge in this setting. Our main finding is that apart
from the configurations of the form (0r+10∗+1r+11∗)∗, which are always
fixed-points, the other configurations that the automata could possibly
converge to, which are known to be either fixed-points or 2-cycles, have
a particular spatially periodic structure. Namely, each of these configu-
rations is of the form s∗ where s consists of O(r2) consecutive sequences
of cells with the same state, each such sequence is of length at most r,
and the total length of s is O(r2) as well. We show that an analogous
result also holds for the minority rule.

1 Introduction

Dynamic processes that evolve according to the majority rule arise in various
settings and as such have received wide attention in the past, primarily within
the context of propagation of information or influence (e.g., [7,12,17]). Here we
consider perhaps the most basic case, that of one-dimensional cellular automata,
where our focus is on analyzing the structure of the configuration space. Specif-
ically, we analyze the configuration space of one-dimensional cellular automata
with cyclical boundary conditions that evolve according to the majority rule
with radius r.

It is well-known [8,13] that these processes always converge to configurations
that correspond to cycles either of length 1 (fixed-points) or of length 2 (period-2
cycles). In particular, it is easy to verify (see, e.g., [14]) that configurations in
which each cell belongs to a consecutive sequence of at least r +1 cells with the
same state1 are fixed-points. Not much is currently understood, however, about
the structure of the other fixed-point configurations or of configurations that
correspond to cycles of length 2.
1 In this work, a state is a value in {0, 1}.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
B. Chopard et al. (Eds.): ACRI 2022, LNCS 13402, pp. 63–72, 2022.
https://doi.org/10.1007/978-3-031-14926-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14926-9_6&domain=pdf
http://orcid.org/0000-0001-6576-7200
https://doi.org/10.1007/978-3-031-14926-9_6


64 Y. Nakar and D. Ron

The reason for this gap in understanding is largely due to the fact that most
previous research has made assumptions about the mechanism producing the
initial configuration. Namely, it is usually assumed that the state of each cell in
the initial configuration is randomly chosen, independently from the other cells.
See, for instance, the theoretical analysis in [14] and the experimental results in
[15], both for one-dimensional majority cellular automata (and also the references
within Sect. 5 for examples in other models). Under such assumptions, as shown
in [14], these other configurations are indeed rarely encountered.

In this work, we tackle the problem of understanding the structure of the pos-
sible configurations without making assumptions about the mechanism behind
the generation of the initial configuration. One of our main results (stated for-
mally in Theorem 1) is that all period-2 configurations and all fixed-point con-
figurations (other than those mentioned above) have a very special structure.
Specifically, they have a “spatially” periodic structure with a period that is
quadratic in the radius r. In the course of the proof of this result, we intro-
duce several notions and prove several claims, which we believe are of interest
in their own right as they shed light on the dynamics of the majority rule in
cellular automata (and not only on the configurations they converge to).

1.1 Organization

In Sect. 2 we formally define the majority rule and other basic terms required
for the formulation of our results. Then, in Sect. 3, we introduce the notion of
cell stability and state Theorem 1, which is the main result of this paper. In
Sect. 3.1, we illustrate Theorem 1 for the special cases of r = 1, 2, 3. In Sect. 4,
we discuss some of the high-level ideas behind the proof of Theorem 1. Finally,
in Sect. 5, we review related work.

2 Preliminaries

2.1 The Majority Rule with Radius r

In all that follows, when performing operations on cells i ∈ Zn, these operations
are modulo n.

Definition 1 (cell interval). For a pair of cells i, j ∈ Zn we use [i, j] to
denote the sequence i, i + 1, . . . , j (so that it is possible that j < i), which we
refer to as a cell interval.

For an integer n, we refer to a function σ : Zn → {0, 1} as a configuration
and view σ as a (cyclic) binary string of length n.

Definition 2 (neighborhood). For a cell i ∈ Zn and an integer r, the r-
neighborhood of i, denoted Γr(i), is the cell interval [i − r, i + r]. For a set of
cells I ⊆ Zn, we let Γr(I) denote the set of cells in the union of cell intervals
[i − r, i + r] taken over all i ∈ I.
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Given a state β ∈ {0, 1}, a configuration σ : Zn → {0, 1} and a cell interval
[i, j], we denote by #β(σ[i, j]) the number of cells � ∈ [i, j] such that σ(�) = β.

Definition 3 (the majority rule). Denote by MAJr majority rule with radius
r. That is, for a configuration σ : Zn → {0, 1}, MAJr(σ) is the configuration σ′

in which for each cell i ∈ Zn,

σ′(i) =

{
0 if #0(σ[Γr(i)]) > #1(σ[Γr(i)])
1 otherwise

For each t ≥ 0, denote by MAJt
r(σ) the result of repeatedly applying the

majority rule with radius r, starting from the configuration σ. In particular,
MAJ0r(σ) = σ and MAJ1r(σ) = MAJr(σ).

2.2 Temporal and Spatial Periodicity

Eventually, for every initial configuration, the majority rule, and, in fact, any
rule, reaches a cycle: a periodic sequence of configurations. As mentioned earlier,
in the case of the majority rule, that cycle is always either a 2-cycle or a fixed-
point.

Definition 4 (fixed-point). We say that a configuration σ : Zn → {0, 1} is a
fixed-point if MAJr(σ) = σ.

Definition 5 (2-cycle). We say that a pair of distinct configurations σ, σ′ :
Zn → {0, 1} is a 2 cycle if MAJr(σ) = σ′ and MAJr(σ′) = σ.

We refer to the configurations that constitute a cycle as temporally periodic
configurations. That is,

Definition 6 (temporally periodic). We say that a configuration σ : Zn →
{0, 1} is temporally periodic if MAJ2r(σ) = σ.

Note that if a configuration σ is temporally periodic, then it is either the
case that MAJr(σ) = σ (i.e., σ is a fixed-point), or MAJr(σ) = σ′ for σ′ �= σ, in
which case σ and σ′ constitute a 2 cycle.

Definition 7 (transient). If a configuration σ : Zn → {0, 1} is not temporally
periodic, we say that σ is transient.

Definitions 4–7 are all related to the notion of temporal periodicity, i.e., peri-
odicity that occurs over time. In this paper, we relate temporal periodicity to
spatial periodicity, i.e., periodic behavior exhibited within individual configura-
tions. Formally,

Definition 8 (spatial period). We say that a configuration σ : Zn → {0, 1}
has spatial period p if p is the minimum positive integer such that for every cell
i ∈ Zn, σ(i + p) = σ(i).

Definition 9 (spatially periodic). We say that a configuration σ : Zn →
{0, 1} is spatially periodic if its spatial period p satisfies p < n.
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3 Our Main Result and the Notion of Cell Stability

In this section we state our main result, Theorem 1, whose proof can be found in
the full version of the paper [10] and some the proof’s high level ideas appear in
Sect. 4. In order to state Theorem 1, we introduce the notion of a cell’s stability
within a configuration via Definitions 10–12 (illustrated in Fig. 1).

Definition 10 (unstable). We say that a cell i ∈ Zn is unstable with respect
to a configuration σ : Zn → {0, 1} if σ(i) �= σ′′(i) where σ′′ = MAJ2r(σ).

Recall that after a finite number of steps,2 a one-dimensional cellular automa-
ton that evolves according to the majority rule, reaches either a fixed-point or
a 2 cycle. Thus, a configuration σ : Zn → {0, 1} is transient if and only if it
contains unstable cells.

As for the “stable” cells, we define two variants: strongly stable and weakly
stable.

Definition 11 (strongly stable). We say that a cell i ∈ Zn is strongly stable
with respect to a configuration σ : Zn → {0, 1} if there exists a cell interval [a, b]
of length at least r + 1 such that i ∈ [a, b] and for each j ∈ [a, b], σ(i) = σ(j).

Definition 12 (weakly stable). We say that a cell i ∈ Zn is weakly stable
with respect to a configuration σ : Zn → {0, 1} if i is not strongly stable with
respect to σ, but σ(i) = σ′′(i) where σ′′ = MAJ2r(σ).

Fig. 1. The evolution under the majority rule with r = 2. Gray squares correspond
to state-0 cells and dark squares correspond to state-1 cells. Each cell is labeled by a
letter indicating the cell’s stability, where S stands for Strongly stable, W for Weakly
stable and U for Unstable.

The crucial property of the strongly stable cells is that their states, unlike
the states of the weakly stable cells, cannot change in later configurations. In
that sense, their stability is “stronger” than that of the weakly stable cells. It
is worth noting, though, that if a cell lies within a long cell interval of weakly
stable cells, then that cell remains weakly stable, alternating between the same
pair of states, for a number of steps that depends on the cell interval length.

2 Which can be shown to be at most linear in n [10].
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Accordingly, given a configuration σ : Zn → {0, 1}, we say that a cell interval
[i, j] is strongly stable, weakly stable or unstable if all the cells in that cell interval
are, respectively, strongly stable, weakly stable or unstable.

Considering complete configurations, observe that all the configurations of
the form (0r+10∗ + 1r+11∗)∗ contain only strongly stable cells. As noted previ-
ously and explained in the characterization provided in [14], these configurations
are always fixed-points, which means that they are, in particular, also tempo-
rally periodic (with a period of 1). However, there are more forms of temporally
periodic configurations, both period-1 and period-2, that contain only weakly
stable cells and are not addressed by [14]’s characterization, as the authors of
[14] were only interested in “typical” configurations, which are not of that kind.3

Theorem 1 complements [14]’s characterization by additionally specifying
the structure of the remaining temporally periodic configurations. In addition
to temporally periodic configurations, Theorem 1 also includes a property of the
transient configurations that is related to the dynamics by which they eventually
converge.

Theorem 1. For any configuration σ : Zn → {0, 1}, exactly one of the following
must hold:

1. The configuration σ is a temporally periodic configuration and it is either the
case that:
(a) all the cells in σ are strongly stable, in which case σ is of the form

(0r+10∗ + 1r+11∗)∗), or
(b) all the cells in σ are weakly stable, in which case σ is spatially periodic

with spatial period at most 2r(r + 1).
2. The configuration σ is a transient configuration and the length of every unsta-

ble cell interval in σ is at most 2r.

In the full version [10] we show that an analog of Theorem 1 holds for the
minority rule as well, with analogous variants of cell stability.

Under the assumption that r is a constant, Theorem 1 directly yields an
output-sensitive algorithm that, given n, generates all the temporally periodic
configurations of length n. The running-time of the algorithm is linear in the
number of temporally periodic configurations.

Turning to transient configurations, recall that all transient configurations
contain unstable cells, and the evolution of the transient configurations can be
described using the notion of cell stability. Namely, the following can be shown
regarding any transient configuration σ : Zn → {0, 1} (see proofs in the full ver-
sion [10]). First, the configuration MAJr(σ) contains strictly fewer unstable cells

3 Indeed, it is shown in [14] that the probability that a randomly selected configura-
tion of length n being transient approaches 1 as n −→ ∞. As such, the additional
temporally periodic configurations that we address in this work are, in a sense, not
“typical”. We, in contrast to [14], make no assumption about the distribution of the
configuration space, and are therefore interested in understanding the structure of
all configurations, not only the “typical” ones.
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than σ. Second, if σ contains strongly stable cells, then MAJr(σ) contains even
more strongly stable cells than σ, and the automaton eventually converges to a
fixed-point of the form defined in Case (1a). Third, if there are no strongly stable
cells in σ, then there are cases in which the automaton eventually converges to
a fixed-point of the form defined in Case (1a)4 and there are also cases in which
it eventually converges to a fixed-point or to a 2 cycle of the form defined in
Case (1b)5.

3.1 Illustrating Theorem 1 for r = 1, 2, 3

To get a feel for the nature of the statement in Theorem 1, we demonstrate some
of its aspects for r = 1, 2, 3.

1. For r = 1, the temporally periodic configurations are either
(a) of the form (000∗ + 111∗)∗, or
(b) of the form (01)∗.6

2. For r = 2, the temporally periodic configurations are either
(a) of the form (0000∗ + 1111∗)∗, or
(b) of one of the following forms: (01)∗, (0011)∗, (001101)∗, (001011)∗.

3. For r = 3, the temporally periodic configurations are either
(a) of the form (00000∗ + 11111∗)∗, or
(b) of the form s∗, where s belongs to the set:7

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

01,
0011,
010011, 010110, 001110,
01011001, 10100101, 10100110, 01011100, 10010011, 00011101, 10110001,
0011001110, 1000111001

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

An interesting observation about the patterns in Case (1b) in our demon-
stration is that the number of zeros in each of them equals the number of ones.
This, in fact, holds in general, as we prove in the full version [10].

4 e.g., for r = 3, the transient configuration 001001001001001001 converges after one
step to the fixed-point configuration (0)∗.

5 e.g., for r = 4, the transient configuration 001011001011001011001011001011001011
converges after one step to the 2 cycle consisting of (111000)6 and (000111)6.

6 Also (10)∗, but since the configurations are cyclic, the patterns (01)∗ and (10)∗

correspond to equivalent sets of configurations.
7 The string s could also be the mirror or the complement of any of the specified

patterns, which we omit for the sake of conciseness. For example, since we explicitly
specified that s could be 010011, it means that s could also be 110010 (which is the
mirror of 010011) or 101100 (which is the complement of 010011), even though these
two are not explicitly specified.
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4 The Alignment Mapping (High-Level Idea)

In proving Theorem 1, we define a number of notions and establish several claims,
some of which we believe are valuable in and of themselves. We decided to focus
in this section on a high-level description of only a few of the ideas underlying
the proof of Theorem 1. The complete proof as well as the precise definitions
of the notions we introduce in order to establish the proof can be found in the
full version [10]. We have chosen to highlight the high-level idea behind one of
the key tools we utilize, which is a mapping we introduce between blocks of
consecutive configurations.

Given a configuration σ : Zn → {0, 1}, we say that a cell interval [i, j] is a
maximal homogeneous block in σ with value β ∈ {0, 1} if for every cell � ∈ [i, j],
σ(�) = β, and also σ(i − 1) = σ(j + 1) �= β if the length of [i, j] is less than n.

We refer to this mapping, defined below (and illustrated in Fig. 2), as the
alignment mapping. The alignment mapping, beyond being essential for the proof
of Theorem 1, has several features that make it useful for reasoning about the
dynamics of the majority rule, which is why we present its definition here.

Definition 13 (alignment mapping). Let σ and σ′ be a pair of configurations
satisfying MAJr(σ) = σ′. Given a block [i′, j′] in σ′, let I be the block in σ that
contains the cell i + r and let J be the block in σ that contains the cell j − r.
The alignment mapping maps the block [i′, j′] (in σ′) to the middle8 block [i, j]
between I and J in σ.

Fig. 2. The alignment mapping. The figure depicts a pair of configurations, σ and σ′,
where σ′ = MAJr(σ), and also a pair of blocks, [i, j] in σ and [i′, j′] in σ′, where [i′, j′]
is mapped to [i, j] by the alignment mapping. The block I in σ is the one that contains
the cell i′ + r, and the block J in σ is the one that contains the cell j′ − r. The block
[i, j] in σ is the one right in the middle of the interval of five blocks in σ whose left and
right ends are I and J . Hence, by Definition 13, the alignment mapping maps [i′, j′] to
[i, j].

We stress that the alignment mapping, as defined in Definition 13, is a back-
ward mapping, in the sense that, given a configuration σ′, it maps all blocks
in σ′ into those of the configuration σ that precedes σ′. This naturally suggests

8 The middle block is well defined, as it is shown in the full version [10] that the
number of blocks between I and J must be odd.
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defining the notion of the forward alignment mapping as the inverse function of
the backward alignment mapping that would map the blocks of the configura-
tion σ to those of the configuration σ′ that follows σ (for example, in Fig. 2, the
forward alignment mapping maps [i, j] in σ to [i′, j′] in σ′).

However, while it can be shown that the backward alignment mapping is
always one-to-one, it is not necessarily onto (unless we apply it within a pair of
temporally periodic configurations). Hence, under our definition of the forward
alignment mapping, not all blocks will be mapped forward.

Formally, let σ0, ...σm be a sequence of configurations where MAJr(σt−1) =
σt for each 1 ≤ t ≤ m. We define the step-t forward alignment mapping, denoted
ϕt, as follows. Given a block [i, j] in σt, if there is a block [i′, j′] in σt+1 such
that the backward alignment mapping between the configuration pair σt, σt+1

maps [i′, j′] into [i, j], then ϕt([i, j]) = [i′, j′]. Otherwise, ϕt([i, j]) = ⊥. In the
case in which ϕt([i, j]) �= ⊥, we also define ϕ2

t ([i, j]) as ϕt+1(ϕt([i, j])).
One notable property of the forward alignment mapping is what we refer

to as “identity preservation in stable intervals”. Roughly speaking, consider any
block [i, j] residing in a sufficiently long weakly stable or strongly stable cell
interval of σt. Then ϕt([i, j]) �= ⊥, and hence ϕ2

t ([i, j]) is defined and is equal to
the same block [i, j] we started with. In particular, for a pair of configurations
comprising a 2 cycle, applying the forward alignment mapping twice essentially
maps each block to itself.

In the proof of Theorem 1, we essentially use the forward alignment mapping
and its properties to show that for a configuration in which all blocks are of
length at most r, if the configuration is temporally periodic, then it is also
spatially periodic. We achieve this through three steps.

In the first step, we employ the alignment mapping to express the length of
each of the configuration’s blocks in terms of the lengths of other O(r) blocks
in the preceding configuration. Specifically, given a pair of temporally periodic
configurations σt and σt+1, we obtain a relationship between the length of each
block [i, j] in σt and the lengths of O(r) consecutive blocks, belonging to a block
sequence centered at the block ϕt([i, j]), in the configuration σt+1.

In the second step, we look at the difference between the length of each block
[i, j] and the lengths of the blocks at the two ends of the sequence mentioned
above, and define aligned difference vectors, whose entries are these differences.
We use the properties of the forward alignment mapping to establish that the
aligned difference vectors (defined formally in the full version [10]) are spatially
periodic with a spatial period that is linear in r.

In the third and final step, by applying the relationship between aligned dif-
ference vectors iteratively, we use the spatial periodicity of the aligned difference
vectors to establish that the configurations themselves are spatially periodic as
well, and that each configuration’s spatial period must be quadratic in r.
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5 Related Work

The main focus of most of the research on majority/minority (and more gener-
ally, threshold) cellular automata so far has been on the convergence time (e.g.,
[3,4,11]) and on the dominance problem9 (e.g., [1,2,9]).

As mentioned earlier, most of the work on the problem of understanding the
structure of the configuration space is based on the assumption that the initial
configuration is random. For the one-dimensional case, the case with which the
current paper is concerned, this includes the paper of Tosic and Agha [14]. In
their paper, they distinguish between synchronous/sequential and finite/infinite
majority cellular automata with radius r, and our work can be viewed as extend-
ing their result for the finite and synchronous case.

They show that whereas 2 cycles cannot emerge under the sequential model,
in the synchronous model (the one we focus on in this paper), 2 cycles exist even
for r = 1. They also show that a randomly picked configuration is a transient
configuration (and, in particular, not a 2 cycle) with probability approaching 1
(both for finite and infinite configurations), and it can additionally be shown that
the probability that such a random transient configuration eventually converges
to a 2 cycle approaches 0. Finally, they characterize the “common” forms of
fixed-point configurations (those that in our paper are described in Case (1a) of
Theorem 1).

Their theoretical result is supplemented by a later experimental work [15],
showing that in practice, convergence to these “common” fixed-point configura-
tions occurs relatively quickly. Namely, the simulations in [15] demonstrate that
convergence tends to occur in less than five steps for n = 1000 and 1 ≤ r ≤ 5.

Additional work beyond the one-dimensional case includes [6] for two-
dimensional majority cellular automata, [5] for majority in random regular
graphs, [18] for majority in Erdos–Rényi graphs as well as expander graphs.

One notable work that does not rely on the assumption that the initial con-
figuration is random is Turau’s work [16] on characterizing all the temporally
periodic configurations for majority and minority processes on trees. The char-
acterization presented in [16] also yields an output-sensitive algorithm for gen-
erating these configurations.
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