
A Cellular Automaton Model of a Laser
with Saturable Absorber Reproducing

Laser Passive Q-switching
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and José Manuel Guerra4

1 Departamento de F́ısica de la Materia Condensada, Universidad de Sevilla,
41012 Sevilla, Spain
jimenez@us.es

2 Department of Computer Architecture and Technology, Universidad de Sevilla,
Avenida Reina Mercedes s/n, 41012 Sevilla, Spain

3 Research Institute of Computer Engineering (I3US), Universidad de Sevilla,
Avenida Reina Mercedes s/n, 41012 Sevilla, Spain

4 Departamento de Optica, Facultad de C.C. F́ısicas, Universidad Complutense

de Madrid, 28040 Madrid, Spain

Abstract. In this paper, we present a cellular automata model for a
two-level laser which includes a saturable absorber. We show that the
model reproduces laser passive Q-switching, a behavior in which intense
short pulses of laser radiation are produced. Depending on the concen-
tration of the absorbent, the automaton model qualitatively reproduces
two operating states of the laser: a stable state and another oscillatory
or pulsed state.
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1 Introduction

Cellular automata (CA) have proven to be very successful in modeling com-
plex systems in many areas of science and engineering [1,8,12]. One particularly
interesting application is to model the dynamics of a laser, which is one of the
most paradigmatic examples of a complex system. A CA model to describe laser
dynamics was introduced in [3]. It describes the laser system as a collection
of simple components: the atoms, electrons or molecules of the active medium
of the laser cavity and the radiation laser photons that they produce. Local
interactions among these components are described by the CA evolution rules
based on the physical processes that occur in a laser system: stimulated emission,
absorption, pumping, and noise. It was shown in [3] that different macroscopic
laser properties are reproduced by the CA model as emerging properties induced
by self-organization: the pumping threshold value, the emission of a laser beam
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above it, the temporal patterns (constant or oscillatory) of the radiation beam,
and the dependence of the type of temporal pattern exhibited by a laser on its
characteristic parameters.

Since then, it has been possible to model variants of a general laser system
by modifying some of the ingredients of the CA model. And for instance in
[4] a successful CA model of pulsed-pumped lasers was introduced. Also in [5]
another CA model that reproduces antiphase dynamics in lasers was presented.
This demonstrates the robustness and usefulness of the CA approach to model
laser physics.

The basic idea of modeling laser physics using a microscopic or mesoscopic
discrete model has been also developed further by Chusseau et al. to propose
related Monte Carlo simulations of laser obtaining very good results for quantum-
well and quantum-dot semiconductor lasers [2]. Also recently, Zhang et al. have
proposed a CA model of nonlinear optical processes in a phase-change material
inspired by this idea (in particular, for a polymorphic gallium film undergoing a
light-induced structural phase transition) [13]. They have employed a CA model
very similar to our laser model, a three-level system governed by only four transi-
tion rules and a sparse set of independent material and process parameters. They
have found that their model can phenomenologically describe the complex, non-
stationary, spatially inhomogeneous dynamics and resulting nonlinear optical
properties of a medium undergoing a light-induced structural phase transition.

In this work, we go a step beyond the original model presented in [3] to intro-
duce a new variant of that model that simulates a laser with a saturable absorber,
capable of reproducing the behavior known as laser passive Q-switching. Laser
Q-switching is a widely used technique by which a laser can be made to pro-
duce an output beam with intense light pulses by modulating the cavity losses,
i.e. the Q factor (quality factor) of the cavity, which is the ratio of the stored
energy to the energy dissipated per oscillation cycle [6,7,11]. Q factor determines
the level of damping of the laser cavity: a laser with a low Q factor has higher
losses and is thus more damped than a laser with a higher one. Q-switching is
achieved by placing some type of variable attenuator in the laser optical cav-
ity, which provides high attenuation (low Q-factor) for low intensities of laser
light circulating through the cavity, and low attenuation (high Q-factor) for
higher intensities. In this way, when the laser is switched on, the attenuation
is very high, so that the intensity of laser radiation produced by stimulated
emission increases only very gradually. Therefore, the pumped energy accumu-
lates in a high population inversion. When the laser radiation intensity exceeds
a certain threshold value, the variable attenuator quickly goes from low Q to
high Q (the attenuation goes down). This, together with the high population
inversion achieved, causes a rapid increase in laser radiation intensity by feed-
back from stimulated emission. This process consumes the population inversion
until it is extinguished and returns to the starting point. The result is a short,
intense pulse of laser light, called a giant pulse, which is repeated periodically.
In lasers with passive Q-switching, one of the two variants of Q-switching, the
variable attenuation is obtained by introducing a saturable absorber inside the
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laser cavity, a material whose transmission increases when light intensity exceeds
some threshold. Some popular saturable absorbers are ion-doped crystals such
as Cr4+ : YAG,V3+ : YAG, or Co2+ : MgAl2O4, where YAG stands for yttrium
aluminum garnet (Y3Al5O12).

Modeling laser Q-switching using a CA instead of the standard approach
based on macroscopic differential equations has different advantages: i) a CA
model can be used in cases in which the differential equations are stiff and present
convergence problems; ii) it is possible with a CA model to study specific spatial
structures of the laser device, for example, structures of the absorbing medium
(randomly or regularly distributed); iii) CA models can be implemented very
efficiently on parallel computers, due to their intrinsic parallel nature; iV) once
a basic CA model has been designed and validated, it is possible and relatively
easy to study modifications of the model to deal with different variants of the
phenomenon to be studied.

The structure of this paper is as follows. In Sect. 2 the classical description
of laser passive Q-switching using rate equations is introduced and the main
operation regimes obtained by integrating them are presented. The CA model
is introduced in Sect. 3. Results are presented in Sect. 4. Finally, conclusions are
drawn in Sect. 5.

2 Laser Rate Equations

The classical balance equations to formulate a two-level laser with a saturable
absorber are [11]:

dn

dt
= K1 N n − n

τn
− K2qn (1)

dN

dt
= R1 − N

τN
− K1 N n (2)

dq

dt
= R2 − q

τq
− K2 q n (3)

where n is the number of photons, N is the population inversion and q is the
saturable absorber. K1 and K2 are two coupling constants between the radiation
and the lasing medium and between the radiation and the absorber. R1 is the
pumping of the laser medium and R2 is a characteristic property of the absorber.

The laser rate equations allow us a simple interpretation of the different
physical processes involved. The intensity of the laser, which is proportional to
the number of photons n, increases with the stimulated emission (K1Nn) and
decreases due to the effect of the absorber (−K2qn). The population inversion
N , Eq. (2), which is the difference between the electrons that are in the higher
and fundamental energy level of the laser active medium, increases due to an
external pumping (R1) and decreases due to stimulated emission. Regarding the
absorber, its behavior is similar to that of the population inversion. But in this
case, R2 is a characteristic of the material, although its effect can be understood
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as if it were an external pump. The absorber q decreases its action as the number
of photons increases (K2qn), this being one of the main characteristics of this
type of device: the laser is transparent for high intensity values. Each of the
values of the three populations, photons, population inversion, and absorber
has a lifetime that represents in each case the decay time of the photon in the
resonant cavity τn = γ−1

n , the decay time of the electron in the upper level of
the laser active medium τN = γ−1

N and the decay time of the absorber in the
active state τq = γ−1

q .
From the analysis of these laser rate equations, it has been established that for

a single mode the main laser regimes are a constant wave (cw) and Q-switching
state in which the power shows oscillations [10]. Other unstable laser operations
can also be found but are out of the scope of this work [9].

Figure 1 shows the two main operation regimes of the laser which have been
obtained by integrating the equations by the fourth order Runge-Kutta method,
where we have used the following lifetimes of τn = 80, τN = 103, τq = 2.
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Fig. 1. Time series of the number of photons obtained from the laser rate equations.
(a) After a damped transient the laser output is a constant wave. Parameters R1 = 0.1,
R2 = 0.5. (b) Pulsed behavior for R1 = 0.05, R2 = 0.9.

3 A Cellular Automata Model for a Laser
with a Saturable Absorber

The CA is defined in a two dimensional lattice of N = L × L cells with periodic
boundary conditions. The state of each cell at a given time, sij(t), is a vector of
3 values which includes the electronic state of the lasing medium e ∈ {0, 1}, the
number of photons f ∈ {0, 1, 2, ...,max} and the state of the absorber q ∈ {0, 1}.

sij(t) = {e, f, q} (4)
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Table 1. Set of parameters used in the simulations of the CA.

Parameter Symbol Value

Photons lifetime τn 80

Population inversion lifetime τN 103

Absorber lifetime τq 2

Threshold for stimulated emission K1 2

Threshold for absorption K2 2

Transient time 50

Number of noise photons 100

The state of every cell changes in parallel according to the following transition
rules:

Population Inversion

– Every electron in the ground state (e = 0) can be excited to the state e = 1
with a pumping probability R1. Although in our model we speak of electrons,
they are actually the two states of the laser medium. For this reason, we have
not included any restrictions on the number of electrons in each level.

– An electron in the state e = 1 that is surrounded by a number of photons
higher than a given threshold value K goes to e = 0. In this process, a
new photon is created by stimulated emission. To evaluate this condition the
photons in the Moore neighborhood of the cell are considered:

Γij =
∑

Neig

fi,j (5)

– An electron in the state e = 1 goes to e = 0 after a time τN . And this
transition is considered to be not radiative.

Photons Evolution
When stimulated emission occurs one new photon is created:

fi,j(t + 1) = fi,j(t) + 1 (6)

Like the electrons, photons vanish after a given time τn.
The Absorber (q ∈ {0, 1})

In our model, the absorber, in the same way as the inversion of the popula-
tion, has only two possible states: an inactive state q = 0 in which it does not
interact with radiation and the active state q = 1 in which said interaction does
occur.

The evolution of the absorber is given by the following rules:

– If q(t) = 0 then with a probability R2, which depends on the physical char-
acteristics of the absorber, q(t + 1) = 1.
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Fig. 2. Time series of (a) the number of photons n(t), (b) the population inversion
N(t) and (c) the absorber q(t). For clarity, the last two data sets (b and c) have been
shifted slightly along the y-axis in I, II and III. The lattice size is 300 × 300 cells, the
parameters da = 0.5, R2 = 0.5. The other parameters used in these simulation are
shown in Table 1. The different laser outputs depending on the pumping probability
R1 are: (I) No laser output R1 = 0.0035. (II) Oscilatory behaviour R1 = 0.004. (III)
Constant wave R1 = 0.007. (IV) Detail of a pulse corresponding to case (II).

– When the absorber is in the excited state, q(t) = 1, it eliminates photons
if Γij ≥ K2 and decays to the state q(t + 1) = 0. This is a deterministic
process. In our simulations, we have considered the case in which the absorber
eliminates all the photons in the corresponding cell position.

– Also the absorber in the excited state decays to the inactive state after a
certain number of time steps τq if Γij < K2.

Another important aspect to take into consideration is that in this lattice
model, unlike in the balance equations, it is possible to take into account the
spatial distribution of the absorber inside the system. In each and every point
of the network we have considered that it can host population inversion and
photons. But not so for the case of the absorber where it will be only present in
a certain number of cells so that we can introduce a given density of points with
absorber da.



A CA of a Laser with SA 169

4 Results

The simulations have been carried out in networks of 300 × 300 cells with periodic
boundary conditions. The values of the different parameters used in most of the
simulations are shown in Table 1. Initially the population inversion is null and the
random distribution of absorbers is also in the ground state. During a temporary
transient we introduce a small amount of noise photons into the system to initiate
the action of the laser.

The number of parameters (seven, see Table 1) that define the system are
too many to address in this preliminary work an exhaustive study of all the
behaviors that can be shown by the CA model. In this way, the simulations that
we present below have been carried out by setting the values of the lifetimes and
of the constants K1 and K2 as indicated in the Table 1. The values of τn and τN
were the typical ones used in previous studies [3]. And as for τq we take a value
small enough and less than τn.

4.1 Dependence with the Pumping Probability R1

First, we analyze the possible behaviors of the model as we modify the pumping
probability of the lasing medium R1 having fixed R2 = 0.5 and the density
of absorber cells da = 0.5. Figure 2(I) shows the time series of the number of
photons n(t), the population inversion N(t) and the absorber in the excited state
q(t). For small values of R1 after a small transient no laser signal is produced.
The absorber reaches a fixed value while the population inversion shows damped
oscillations until it reaches a fixed value as well.
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Fig. 3. Dependence of the laser output on the parameter R2: a) 0.1, b) 0.4, c) 0.8. The
pumping is R1 = 0.004 and the density of absorber cells is da = 0.5.

By increasing the value of R1 above a certain threshold value (≈0.003), the
laser shows an oscillatory state that is stable over time as can be seen in Fig. 2(II).
A further increase in R1, Fig. 2(III) results in the disappearance of the oscillatory
state after a transient period during which the output intensity dampens and
now the laser shows a constant wave output.
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The Fig. 2(IV) is an expanded figure of one pulse corresponding to Q-
switching. It is interesting to observe that the behavior captured by the CA
model reproduces qualitatively the physics of the laser with a saturable absorber.
The absorber q reduces its value near the peak in the number of photons due to
the bleaching effect.

4.2 Dependence with R2

We have limited the dependency with the parameter R2 to the case of the oscilla-
tory state, previously described, being R1 = 0.004 and da = 0.5. Figure 3 shows
the time series of the number of photons for three values of R2. We have found
that as long as R1 is greater than the threshold value, the oscillatory behavior
is maintained as R2 is modified. But the frequency of pulses decreases as R2

increases.

4.3 The Effect of the Density of the Absorber

With the discrete model presented here, we can investigate the result of varying
the concentration da of possible absorbing cells in the lattice. That is an impor-
tant issue in the preparation of materials with adequate characteristics. Figure 4
is a heat map obtained from the analysis of the time series of n(t) for a fixed
value of R1. Higher values (yellow) are assigned to regular oscillations, and lower
values (violet) appear when the signal is constant, down to the null value (black)
when there is no output.
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Fig. 4. The different kinds of laser outputs as a function of the density of the absorber
and the R2 parameter. The pumping probability is fixed at R1 = 0.004. a) Black color:
there is no laser output for high density of the absorber (da > 0.75). b) Violet color:
constant output of the laser intensity. c) Red color: damped oscillations. d) Yellow
color: oscillatory behaviors with an almost constant value of the maximum intensity
are observed in the range (0.45 < da < 0.75) whereas damped oscillations are observed
when da < 0.45. (Color figure online)
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Figure 5 shows the time series of the intensity for three values of the density
da and a fixed value of R2. We find that in the absence of the absorber (Fig. 5-(a))
the signal has a constant value. As the density increases, the behavior goes from
a constant value to an oscillatory behavior; first of all, there are damped oscil-
lations and later they are maintained over time (Fig. 5-(b)). A further increase
in the density causes the laser action to stop (Fig. 5-(c)).
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Fig. 5. Time series of the laser intensity for three values of the density da of absorber
cells in the lattice: a) 0, b) 0.4 and c) 0.8. Other parameter values: R1 = 0.004 and
R2 = 0.4. Without the saturable absorber the laser output is a steady state with some
noise. The presence of the saturable absorber makes the laser to pulse.

5 Conclusions

In this work we present an extension to a previous CA model used to simulate
the laser physics in which a passive saturable absorber is included. Despite its
simplicity, the model qualitatively reproduces the main phenomenology of such
systems: the inclusion of the absorber can cause the laser to pulse.

Depending on the different parameters that define the system, we have carried
out a study modifying the pumping probability R1 and the parameter R2 which
is a property of the absorber. In this way we obtain that the laser signal can be
constant, a damped oscillation, a maintained oscillation (Q-switching) and the
absence of laser output.

Finally, this discrete model allows us to analyze the different behaviors that
can take place in lasers by modifying the density and location of the points that
act as absorbers, something that is not possible with the laser rate equations.
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