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Abstract. Atherosclerosis, which refers to a reduction in vessels diame-
ter due to fatty deposits, is considered as the main cause of heart attacks,
strokes, and peripheral vascular disease. The malfunctioning of cardiovas-
cular system is mainly related to haemodynamics. However, the magnetic
properties of blood are of great interest in haemodynamics. In this paper,
a double population lattice Boltzmann model is suggested to investigate
magnetohydrodynamic blood flow in stenotic artery. Blood is consid-
ered as a homogeneous fluid with magnetic properties. The rheological
behavior of blood is presented by Carreau-Yasuda model. Blood flow is
considered as incompressible and laminar. The vessel walls are assumed
to be rigid. The proposed lattice Boltzmann model is found to be accu-
rate, stable and effective. Findings are presented in terms of streamlines,
velocity and wall shear stress profiles, based on a variety of parameters,
including Reynolds and Hartmann number. The results show that the
increase in magnetic intensity causes a considerable decrease in velocity
and recirculation zones.

Keywords: Lattice Boltzmann approach · Atherosclerosis · Blood
flow · Magneto-hydrodynamic

1 Introduction

The development of blood vessels pathologies such as stenosis, atherosclerosis
and spasm disturb blood flow and lead to a malfunctioning of many organs. In
order to detect the vessels diseases, a detailed knowledge of blood flow remains
a necessity. The study of blood flow is the subject of different numerical meth-
ods. However, the traditional conventional computational fluid dynamics method
(CFD) are limited and the implementation of boundary conditions still more
complicated for complex geometries [1]. In addition, the resolution of math-
ematical equations used to present the system is complicated. Given the com-
plexity of these equations, the analytical solutions of Navier-stokes equations are
generally nonexistent and only an approximated numerical solution is existing.
This justifies, the considerable development of the techniques and methods of
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numerical computation in fluid mechanics (CFD) during these last decades. The
continuous evolution of numerical methods is related to the computer resources
development, what allows the numerical resolution of the equations governing
fluid mechanics and heat transfer with great precision and for a wide range of
complex geometries. Unlike numerical simulation methods based on the resolu-
tion of partial differential equations linking the macroscopic properties of fluids,
the lattice gas automata (LGA) method makes it possible to find macroscopic
variables such as velocity, pressure or pressure fields and temperature, by sim-
ulating the interactions between molecules. Lattice Boltzmann Method (LBM),
a numerical method evolving from LGA, has gained popularity in the last few
years. It has been used for simulating and modeling different systems including
immiscible fluids [2], multiphase flows [3], heat transfer problems [4–7], isotropic
turbulence [8] and porous media [9]. It has proven its effectiveness in the field of
conventional fluid flows, particularly in complex geometries and porous media. It
has attracted the attention of researchers for the simulation of flows in different
applications. Higuera and Jimenez [10] proposed an important simplification in
LBM by approximating the collision operator in Lattice Boltzmann Equation
with a linearized one that assumes that the distribution is close to the equilib-
rium state. The success of lattice Boltzmann method is related, in large part, to
the introduction of the Bhatnagar-Gross-Krook (BGK) collision operator char-
acterized by its simplicity and ease of implementation. Bhatnagar-Gross-Krook
(BGK) collision model is a simple linearized collision operator, introduced by
Koelman [11] and Chen et al. [12]. The macroscopic Navier-Stokes equations
are recovered by the Lattice BGK model through a Chapman-Enskog analysis
[13]. The lattice Boltzmann method describes fluids in a mesoscopic scale and
provides stable and efficient numerical calculations for the fluids macroscopic
behavior [14–16]. The problem of taking into account the initial and boundary
conditions was the subject of particular attention by the initiators of the LBM
method. Stability and numerical precision are closely related to the nature of
the boundary conditions. The lattice Boltzmann approach does not necessitate
the resolution of a global system of equations, just information from surround-
ing nodes is required to describe variables evolution. Because of the nature of
the explicit computation with locality, the lattice Boltzmann method is a cost-
effective solution to communication between processors and hence excellent for
parallel computation.

In this paper, we propose an efficient and accurate lattice Boltzmann model
for simulating magnetohydrodynamic blood flow in stenotic arteries. The unique
feature of this modelization is that both velocity and magnetic fields are solved
using the lattice Boltzmann technique, which allows to investigate the influence
of strong magnetic field intensities on blood flow.
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2 Mathematical Model

2.1 Problem Description

In this study, blood is considered as a homogeneous magnetic bio-fluid, incom-
pressible and non-Newtonian with density ρ = 1060 kg/m3. The Vessel walls are
assumed to be rigid and blood flow is considered laminar and steady. The diam-
eter of the artery is D = 6mm. An idealized geometry of stenosis is considered
(Fig. 1) in this study.

Fig. 1. Stenosis geometry

Stenosis refers to a reduction in the vessel section due to a deposition of fatty
components on the walls. The geometry of the wall with the presence of stenosis
is given by: y(x) = D−h sin

[
π(x−d)

l

]
where D is the diameter of health artery, h

the width of the restricted zone, d the length of the inlet region and l the length
of the restricted zone. The severity of the reduction zone (degree of stenosis
DOS) can be calculated by the following equation: DOS(%) = (1 − As

A ) × 100
where As is the restricted zone section and A is the section of healthy artery.

2.2 Equations

Taking into consideration the presented hypothesis, the 2-D incompressible,
unsteady flow of blood as an electrically conductive fluid is described by Navier–
Stokes equations, with an additional term presenting Lorentz force are written
as:

∂u

∂t
+ (u.∇)u = −∇p

ρ
+ νΔu +

j × B
ρ

+ Q (1)

∇.u = 0 (2)

where ν is the fluid kinematic viscosity, ρ is the density, p is the pressure, u =
[ux, uy] the velocity, B = [Bx, By] the magnetic field, j = ∇×B and Q = [Qx, Qy]
the external body force vectors.

This research investigates the 2-dimensional, laminar and incompressible
magnetohydrodynamic blood flow through a restricted vessel. The governing
equations, including the impact of viscosity and energy dissipation due to the
presence of magnetic field are given by the following equation:

∂ux

∂x
+

∂uy

∂y
= 0 (3)
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ρ(ux
∂ux

∂x
+ uy

∂ux

∂y
) = −∂p

∂x
+ μ(

∂2ux

∂x2
+

∂2ux

∂y2
) − σB2

0ux (4)

ρ(ux
∂uy

∂x
+ uy

∂uy

∂y
) = −∂p

∂x
+ μ(

∂2uy

∂x2
+

∂2uy

∂y2
) (5)

The term σB2
0ux in Eq. 4 depicts the magnetic body force (j×B) per volume.

Where B = [Bx, B0] and σ is the electrical conductivity of blood.

Carreau-Yasuda Model

Human blood is a composed fluid, containing mainly plasma and blood cells. The
plasma acts like a Newtonian fluid, its viscosity depends on the concentration of
plasma proteins [17], whereas the whole blood has a non-Newtonian behavior.
Many models have been developed in order to predicts the rheological behavior.
Carreau-Yasuda model is one of the simplest and accurate models used in blood
modeling. The viscosity depends on shear rate and modelled by the Carreau-
Yasuda model [18] as following:

μ(γ̇) = μ∞ + (μ0 − μ∞) + (1 + (λγ̇)α)
n−1

α (6)

where μ is the viscosity, γ̇ is the shear rate, μ∞ = 0.0035Pa.s is the viscosity
at infinite shear rate, μ0 = 0.16Pa.s is the viscosity at the absence shear-rate,
and λ = 8.2, α = 0.64, and n = 0.2128 are material coefficients. The shear rate
is given by:

γ̇ = 2
√

D� (7)

where D� is the second invariant of the strain rate tensor, given by:

D� =
l∑

α,β=1

SαβSαβ (8)

where l= 2 for a two-dimensional model.
For incompressible fluids, the stress tensor is written as:

σαβ = −pδαβ + 2μSαβ (9)

where δαβ is the Kronecker delta and Sαβ is the strain rate tensor, written as:
Sαβ = 1

2 (∇βuα + ∇αuβ)

3 Numerical Model

3.1 Lattice Boltzmann Method with Single Relaxation Time
(LBM-SRT)

Solving two linked lattice Boltzmann equations can be used to solve magnetohy-
drodynamic equations. The first equation covers fluid dynamics by forecasting
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the development of the particle distribution function fi, whereas the second
equation incorporates a vector-valued function gi that represents the evolution
of the magnetic field. The two equations are discretized in a D2Q9 space (Fig. 2).

Fig. 2. D2Q9 model

The lattice Boltzmann approach (LBM) with single relaxation time, which is
based on the Bhatnagar-Gross-Krook (BGK) approximation, is used to forecast
the development of both fluid dynamics and magnetic fields. The fluid in the
lattice Boltzmann approach is defined by a particle distribution function that
develops in discrete space and time. As a result, the lattice Boltzmann equation
is stated as:

fi (x + Ξiδt, t + δt) − fi (x, t) = Ci (f) (10)

where Ci is the collision operator, presenting the change in particles distribution
after collision step. The lattice Bhatnagar-Gross-Krook (BGK) equation can be
written as:

fi (x + Ξiδt, t + δt) − fi (x, t) = −1
τ

[fi (x, t) − feq
i (x, t)] (11)

where τ is the relaxation parameter, related to viscosity by the following: τ =(
ν
c2s

+ 0.5
)

with cs is the lattice speed, given by cs = δx√
3δt

. δx and δt are the

lattice width and time step respectively, chosen as δx = δt = 1 and c = δx
δt . feq

i is
the equilibrium distribution function, which depends on the local fluid velocity
and density. The equilibrium distribution function is given by:

feq
i = wiρ

[
1 +

3Ξi.u
c2

+
9 (Ξi.u)2

2c4
− 3u.u

2c2

]
i = 0 → 8 (12)

In the presence of external magnetic field, the equilibrium distribution func-
tion includes an additional term presenting the effect of magnetic field intensity
on particles distribution. The equilibrium distribution function becomes:
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feq
i = wiρ

[
1 +

Ξi.u
c2s

+
(Ξi.u)2

2c4s
− u.u

2c2s

]
+

λi

2c4s

[
1
2
| Ξi |2| b |2 − (Ξi.b)2

]
(13)

where wi and λi are the weighting factors defined in D2Q9 as following: wi =
λi = 4

9 for i = 0, wi = λi = 1
9 for i = 1, 2, 3, 4 and wi = λi = 1

36 for i = 5, 6, 7, 8.
⎧
⎨
⎩

Ξi = (0, 0) i = 0
Ξi =

(
cos

[
(i − 1) π

2

]
, sin

[
(i − 1) π

2

])
c i = 1, 2, 3, 4

Ξi =
(
cos

[
(2i − 9) π

4

]
, sin

[
(2i − 9) π

4

])
c
√

2 i = 5, 6, 7, 8
(14)

The magnetic field evolution is described by the following lattice Boltzmann
equation:

gi (x + Ξiδt, t + δt) − gi (x, t) = − 1
τm

[gi (x, t) − geq
i (x, t)] (15)

where τm is the magnetic relaxation parameter, related to magnetic resistivity
η by: τm =

(
η
c2s

+ 0.5
)
. In 2-dimensional space, Eq. 15 is written as following:

gix (x + Ξiδt, t + δt) − gix (x, t) = − 1
τm

[gix (x, t) − geq
ix (x, t)] (16)

giy (x + Ξiδt, t + δt) − giy (x, t) = − 1
τm

[
giy (x, t) − geq

iy (x, t)
]

(17)

The coupling between hydrodynamics and magnetic field takes place in the
equilibrium functions:

geq
ix = λi

[
bx +

Ξiy

c2s
(uybx − uxby)

]
(18)

geq
iy = λi

[
by +

Ξix

c2s
(uxby − uybx)

]
(19)

In order to reproduce Navier-Stokes Equations, the following identities must
hold:

ρ =
8∑

i=0

fi (20)

ρu =
8∑

i=0

fiΞi (21)

Unlike the other simulation methods that solve Poisson’s equation to compute
pressure, the pressure p can be directly computed from the equation of state
p = ρc2s.
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The macroscopic magnetic properties are given by:

bx =
8∑

i=0

gix (22)

by =
8∑

i=0

giy (23)

3.2 Boundary Conditions

The problem of taking into account the initial and boundary conditions was
the subject of particular attention by the initiators of the lattice Boltzmann
method. Stability and numerical precision are closely related to the nature of
the boundary conditions. In order to simulate blood flow in stenotic artery in
the presence of magnetic field, we implement the Zou-He boundary condition in
the inlet and the Bounce back boundary condition in the walls for both velocity
and magnetic field (Fig. 3).

Fig. 3. Boundary conditions

Zou-He Boundary Condition. The Zou-He boundary condition is used to
apply certain flux condition in the inlet. The velocity at the inlet is given by the
profile of poiseuille:

{
ux(y) = 4umax

(
y
D − y2

D2

)

uy = 0
(24)

After streaming, the unknown density and distribution functions f1, f5, f8 at
the inlet are given by:

ρ = 1
1−ux

[f0 + f2 + f4 + 2(f3 + f6 + f7)] ,
f1 = f3 + 2

3ρux,
f5 = f7 − 1

2 (f2 − f4) + 1
2ρuy + 1

6ρux,
f8 = f6 + 1

2 (f2 − f4) − 1
2ρuy + 1

6ρux.

(25)
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3.3 Bounce Back

In the walls, the mid way bounce back boundary condition is applied. This
boundary condition is equivalent to no-slip boundary condition, which means
that the velocity is zero in the walls. The wall is placed halfway between a wall
grid point and a fluid grid point. The bounce back boundary condition assumes
that particles hitting the wall disperse back to the fluid following their entering
path (Fig. 4).

Fig. 4. Mid-way bounce back boundary condition

The unknown distribution functions at the wall are given by:

f5(x, y, t) = f7(x, y, t)
f2(x, y, t) = f4(x, y, t)
f6(x, y, t) = f8(x, y, t)

(26)

4 Model Validation

The results given by the suggested lattice Boltzmann model for hemodynamic
are compared with in vivo measurements conducted by H. Park et al. [19] in the
case of a stenosed aorta with a stenosis degree of 34%. The in vivo measurements
were performed by surgically attaching a stenotic clip to a live rat model. The
hemodynamic information are obtained by using X-ray PIV method. Figure 5
shows a comparison of velocity field in the stenotic aorta. It is shown that velocity
increases considerably in the stenotic section reaching its maximum value of
8mm/s in both numerical and experimental results. The results found by lattice
Boltzmann model are in good agreement with in vivo measurements. It can be
concluded that the proposed lattice Boltzmann model is accurate and effective
in the treatment of blood flow in stenosed vessels.
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Fig. 5. Comparison of velocity field of in vivo measurement (a) and lattice Boltzmann
model (b)

5 Results and Discussion

The aim of this study is to investigate the impact of imposed external mag-
netic field on blood flow characteristics, mainly velocity and wall shear stress
(WSS), in a stenotic artery. The numerical simulations have been carried out for
a Reynolds number Re = 360 and various Hartmann numbers Ha= 0, Ha= 5,
Ha= 10, Ha= 15 and Ha= 20. The Obtained results of blood flow simulations,
indicate that for a fixed stenosis degree (50% in this case), the velocity decreases
due to the increasing magnetic field intensity.

Figure 6 and Fig. 7 show the effect of various magnetic field intensities on
velocity profiles and recirculation zones in the downstream region of an artery
with a 50% stenosis degree. It is apparent that increasing the magnetic field
lowers the recirculation zone, resulting in a reduction in hydrodynamic stresses in
this area. For Ha= 20, velocity at the stenotic section reduces by approximately
80%, and recirculation zones vanish. This decrease in velocity is produced by
RBC aggregation, which increases when blood is exposed to a magnetic field.
Our findings are consistent with those reported in the literature by Ilyani et al.
[20] who studied the magnetohydrodynamic (MHD) effects on blood flow and
discovered that a magnetic field decreases blood flow rate. In their method, a
term containing Lorentz force is introduced to Navier-Stokes equations, resulting
in a magnetic field with just one conceivable direction. In contrast, in our model,
each particle is connected with a vector with nine possible directions, describing
the evolution of magnetic field.
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Fig. 6. Velocity profiles at the restricted zone for Re = 360 and Ha = 0, 5, 10, 15 and
20

Fig. 7. Velocity streamlines for Re = 360 and Ha = 0, 5, 10, 15 and 20

The WSS is one of the most critical hemodynamic variables in cardiovascular
diseases, it has a major impact on stenosis pregression. Figure 8 presents the
effect of an external magnetic field on WSS in a stenosed artery for various
values of Hartmann number. It is shown that the wall shear stress reaches its
maximum at the restricted zone, this is caused by the reduction in diameter in
that region. In the stenotic section, the non-Newtonian behavior of blood is more
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Fig. 8. Wall shear stress (WSS) for Re = 360 and Ha = 0, 5, 15 and 20

noticeable due to red blood cells aggregation in that zone. Figure 8 shows that
the WSS in the stenotic region is reduced considerably by applying an external
magnetic field. It is found that the WSS decreases by increasing the magnetic
field intensity.

6 Conclusion

A simulation of 2-D steady and laminar magnetohydrodynamic blood flow is con-
ducted using a double population lattice Boltzmann model. The blood vessels
are assumed to be rigid and blood is considered as non-Newtonian and its rhe-
ological behavior is modelled by Carreau-Yasuda model. The effect of magnetic
field intensity on blood flow is investigated. The findings show the effectiveness
of the proposed Lattice Boltzmann model to study magnetohydrodynamic blood
flow problem. In the other hand, it is found that the velocity profiles, recircula-
tion zones and WSS decrease by increasing the magnetic field strength. Which
can have interesting application in modulating blood flow rate during medical
surgeries and in the treatment of hypertension and other cardiovascular diseases.
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