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Preface

This volume contains a collection of original papers covering both applications and
theoretical results on cellular automata, which were selected for presentation at the 15th
International Conference on Cellular Automata for Research and Industry, ACRI 2022,
held in Geneva, Switzerland, from September 12 to September 15, 2022. The event
was organized by the Computer Science Department of the Faculty of Sciences at the
University of Geneva.

The primary goal of the conference was to bring together researchers coming from
many different scientific fields in order to favor and foster international collaborations on
cellular automata as well as to spread scientific knowledge among the experts in several
scientific areas: computer science, pure and applied mathematics, physics, biology, etc.

Cellular automata are powerful computational models used for studying complex
phenomena characterized by simple local interactions. They are discrete (both in space
and time) models that have been successfully applied in many different scientific fields
for dealing with complex systems. Starting from their introduction in the middle of
the 20th century, cellular automata have generated more and more interest in both the
theoretical aspects and the practical applications.

The ACRI conference series was first organized in Italy, namely, ACRI 1994 in
Rende, ACRI 1996 in Milan, and ACRI 1998 in Trieste, which were followed by ACRI
2000 in Karlsruhe (Germany), ACRI 2002 in Geneva (Switzerland), ACRI 2004 in Ams-
terdam (The Netherlands), ACRI 2006 in Perpignan (France), ACRI 2008 in Yokohama
(Japan), ACRI 2010 in Ascoli Piceno (Italy), ACRI 2012 in Santorini (Greece), ACRI
2014 in Kraków (Poland), ACRI 2016 in Fez (Morocco), ACRI 2018 in Como (Italy),
and ACRI 2020 in Łódź (Poland).

This 15th edition of ACRI aimed at enlarging the traditional topics to include other
areas related to or extending cellular automata. This allowed a larger community to have
the opportunity to discuss their work in various related fields like, for example, complex
networks, games, cryptography, lattice gas and lattice Boltzmann models, agent-based
models, etc.

Each paper inside this volume was reviewed by at least two Program Committee
members. Following the initial, tutorial-related, paper, the remainder of the volume is
divided into five parts, which collate the papers relating to different topic areas: Theory;
Modelling and Simulation of Physical Systems and Phenomena; Cellular Automata and
Spreading Dynamics; Crowds, Pedestrians, and Traffic Dynamics; and Other Studies on
Cellular Automata.

We would like to express our sincere thanks to the invited speakers who kindly
accepted our invitation to give plenary lecture at ACRI 2022: Michel Milinkovitch,
Katsuhiro Nishinari, and Pablo Arrighi.

Moreover, we are grateful to the Program Committee and all the additional review-
ers for their contribution in selecting the papers. We are also grateful for the financial
and logistic support from CUI (Centre Universitaire d’Informatique) and the Computer
Science Department of the University of Geneva. Finally, we acknowledge the excellent
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cooperation from the Lecture Notes in Computer Science team of Springer for their help
in producing this volume in time for the conference.

July 2022 Bastien Chopard
Stefania Bandini

Alberto Dennunzio
Mira Arabi Haddad
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Cellular Automata Application on
Chemical Computing Logic Circuits

Michail-Antisthenis Tsompanas1(B) ,
Theodoros Panagiotis Chatzinikolaou2 , and Georgios Ch. Sirakoulis2

1 Unconventional Computing Laboratory, University of the West of England,
Bristol BS16 1QY, UK

Antisthenis.Tsompanas@uwe.ac.uk
2 Department of Electrical and Computer Engineering, Democritus University

of Thrace, Xanthi, Greece

Abstract. Cellular Automata (CAs) have been proved to be a robust
tool for mimicking a plethora of biological, physical and chemical sys-
tems. CAs can be used as an alternative to partial differential equations,
in order to illustrate the evolution in time of the aforementioned systems.
However, CAs are preferred due to their formulation simplicity and their
ability to portray the emerging of complex dynamics. Their simplicity is
attributed to the fact that they are composed by simple elementary com-
ponents, whereas their complexity capacities are the result of emerging
behaviors from the local interactions of these elementary components.
Here, the utilization of CAs on mimicking of physio-chemical reactions
is presented. In specific, the implementation of chemical-based logic cir-
cuits with the use of the Belousov-Zhabotinsky (BZ) class reactions was
illustrated. The BZ reaction can demonstrate non-linear oscillations that
have been utilized in different scenarios as a computational substrate,
whereas its photo-sensitivity have been exploited as an additional factor
of manipulating the computations. A common method to mathemat-
ically represent the BZ dynamics is the Oregonator equations, which
are a set of PDEs. In this work the approximation of the Oregonator
equations is performed with CAs to simulate logic circuits (from clas-
sic logic gates like AND to combinatorial ones). The proposed tool has
been proved to be in agreement with results produced in the lab from
the actual chemical reactions. Moreover, the tool is used to design novel
computing architectures in a trivial manner, without the need of spe-
cialized knowledge on chemistry, without the need to handle dangerous
chemicals and alleviating unnecessary costs for equipment and consum-
ables. The main advantage of this method can be summarized as the
acceleration achieved in current implementations (serial computers), but
also towards potential future implementations in massively parallel com-
putational systems (like Field-Programmable Gate Array hardware and
mainly nano-neuromorphic circuits) that have been proved to be good
substrates for accelerating the implemented CA models.

Keywords: Cellular automata · Belousov-Zabotinsky reaction ·
Unconventional computing · Chemical computing
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1 Introduction

Limitations of silicon based computing, like Moore’s Law and environmental
reasons for higher integration of green computing have refueled the interest and
effort put in the field of unconventional computing. Namely, specific features of
physical, chemical and living systems are exploited to perform some types of
computations [1]. The use of material in the liquid state for building computing
systems is not a new concept, however, it still sounds alien to most of computer
scientists [5]. Despite that, there are plenty prototypes build in laboratories
that employ liquids to perform computations. The use of the liquids can be to
carry signals, accommodate chemical reactions or actuate mechanical parts as
an element of the calculations [5].

A well established medium that is utilized in several laboratory based experi-
ments is the Belousov-Zhabotinsky (BZ) reaction [53,54]. This class of reactions
is characterized by non-equilibrium thermodynamics that are the result of inter-
actions between the activating and inhibiting species within the liquid solution
[11]. Because of these dynamics, the reactions are ideal for use as a compu-
tational substrate. One of the first experiments to prove the suitability of BZ
as a computational substrate was the successful replication of the diode on the
medium [7]. Moreover, more complicated architectures were developed, like coun-
ters [24] and logic gates [45]. While, these experiments proved the concept that
BZ medium can be utilized as the building block of a massively parallel com-
putational medium, some other experiments targeted on computation beyond
the use of classical von Neumann architectures. For instance, the use of a light-
sensitive variant of the BZ solution to perform image processing [36] and more
recently, the use of mechanical parts to build an array of programmable BZ cells
that have achieved in memory computation, performing pattern recognition as
a chemical auto-encoder [40].

The robustness of these unconventional computing machines is attributed
to the fact that they are comprised by several elementary units that can be
affected by and interchange signals internally or/and to their environment, in
order to acquire, retain and process information [44]. This definition makes them
ideal systems to be mimicked by Cellular Automata (CAs). CAs are models of
physical systems that incorporate localized interactions, whereas space and time
are defined in a discrete form [52]. In order to define a CA, the simulated plane
is divided in a grid of cells, where each cell is described by an ensemble of
parameters, namely its state, and a local rule that determines how the state of
each cell is updated based on the neighboring cells’ states. Usually the rule is the
same for all the cells in the grid and they update their states in a synchronous
manner [17,35], although, spatial inhomogeneity in the rule can be inserted and
asynchronous updating of the local rule. The process of using CAs to simulate
physical systems is in agreement with the present concept of unified space and
time, as well as implementing the cutting-edge notion of in-memory computation.
This is conceived by representing the memory as the state of the CA cell and
the processing unit as the local rule of the grid [8].
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There are numerous examples of successful explanation and simulation of real
world phenomena by CAs [17,26]. For instance, they were utilized as robust tools
to extensively analyze and effortlessly imitate the dynamical wave propagation
in chemical media [18,27,37,38,51]. These models enabled the analysis of the
dispersion and curvature of wave patterns [22], the wave dynamics associated
with turbulence [27] and anisotropic media [41]. Nonetheless, CAs are suitable
tools to approximate the solution of partial differential equations (PDEs) and
it has been established that they can easily represent high complexity in the
initialization, constrains and anisotropies of PDEs [43,47].

This study investigates the transformation of the Oregonator equations used
to simulate light-sensitive BZ reactions into a local rule for CAs. In particular,
the Oregonator is a very simple model of chemical dynamics of the BZ reac-
tion oscillations [20,25,53,54]. It was developed by Field and Noise [21] at the
University of Oregon and consists of five elementary chemical stoichiometries.
This network was obtained by reconstructing BZ’s complex chemical reaction
mechanism while the reduction is carried out using standard methods of chem-
ical dynamics, in particular the approximation of the step ratio. The successful
corresponding CA tool is then utilized to inform the development of light masks
that can be used so that the reservoir performs the desired logic functional-
ity. As examples here, the classic AND logic gate and a combinatorial one were
demonstrated.

2 Methods for Simulation of Chemical Gates

The dynamics of the BZ reaction that is affected by light intensity can be deter-
mined by the Oregonator equation set with two variables [10,21]. These two
variables represent the concentrations of excitation (u) and refractory (v) com-
ponents in the chemical solution. Namely, the equations are:

∂u

∂t
=

1
ε
(u − u2 − (fv + φ)

u − q

u + q
) + Du∇2u

∂v

∂t
= u − v (1)

where u and v as mentioned previously are the activating/excitation and the
inhibiting/refractory ingredients of BZ reaction, respectively. The time scale for
the conversion of u to v is expressed as the ε parameter. The stoichiometric coef-
ficient of the reaction is expressed as f , whereas, the proportional modulation
between activation and inhibition of the ingredients is expressed by the param-
eter q. Also, the development of the inhibiting ingredient can be affected by the
φ parameter, a fact that is employed to represent the photo-sensitivity of the
BZ. Namely, the parameter φ can be associated with the illumination intensity
of the specific area and, as a result, alter the speed of the inhibiting ingredi-
ent development. More specifically, the lower the parameter φ is, the lower the
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speed of the inhibiting ingredient is developed and, as a result, the BZ medium
becomes more excitable.

The use of CAs for the numerical approximation of differential equations
was studied and confirmed [16,28,30,47,48] as a powerful technique in order to
provide significant speed up. Given the fact that CAs are viable alternatives
of solving PDEs, the Oregonator equations were expressed in a CA format to
study a photo-sensitive BZ medium and its application in unconventional com-
putations.

This CA model has been developed and tested previously [15,49,50], and
proved to replicate the results of previous models and actual chemical experi-
ments with appropriate accuracy. It is based on a discrete grid that divides the
area of interest in identical cells. These cells are characterized by a specific state
each, which are updated in a synchronous fashion based on a local rule. The
local rule takes into account the states of the current cell and all the cells in its
neighborhood. From the two most renown neighborhoods for CAs in two dimen-
sions, the von Neumann was utilized here. Namely, the center, north, south, east
and west adjacent cells form a group that informs the updating of the local rule.

The cells that represent the laboratory area are defined by the following state:

ST t
i,j =

{
AAi,j , U

t
i,j , V

t
i,j , Φi,j

}
(2)

where AAi,j is a constant parameter that symbolizes the sectors that can be
accessed by the chemical waves, i.e. sets the barriers of the computing architec-
ture. Also, parameters U t

i,j and V t
i,j symbolize the aggregation of the excitation

and refractory ingredients, respectively, of the simulated sector as the (i, j) cell
on the time interval t. The final parameter of the state, defined as Φ, symbolizes
the intensity of light in the appropriate cell (i, j) that affects the speed of devel-
opment of the refractory ingredient, which is similar to the parameter φ used in
Eq. (1).

Utilizing the technique of the three point central difference approximation:

d2g

dx2

∣
∣
∣
∣
x

=
g(x + Δx) − 2g(x) + g(x − Δx)

Δx2
(3)

and the set of the Oregonator equations (Eq. 1), the local rule is obtained as in
the following:

U t+1
i,j =

Δt

ε
(U t

i,j − U t
i,j

2 − (fV t
i,j + Φi,j)

U t
i,j − q

U t
i,j + q

)

+
ΔtDu

Δx2 (U t
i−1,j + U t

i+1,j + U t
i,j−1 + U t

i,j+1 − 4 ∗ U t
i,j)) + U t

i,j

V t+1
i,j = Δt[U t

i,j − V t
i,j ] + V t

i,j (4)

To initialize the architecture of the chemical gate and set its functionality,
each parameter of the state of the CA cells were set to the following values
for t = 0. For the area availability parameter, AAi,j = 1 represents a section
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where the chemical waves can not reach, whereas AAi,j = 0 represents a section
that is part that is accessible by the chemicals. To express the inputs of the
chemical gates, in these specific areas where logic values are considered HIGH
the concentration of the excitation ingredient is set to the maximum values,
namely U t=0

i,j = 1. For the rest of the areas, the concentration of both ingredients
are set to zero. Finally, the parameter that expresses the controllability by light
intensity, Φi,j is equal with 0.088 for sections simulating excitable areas, whereas
equal with 0.091 for sections simulating sub-excitable areas.

The aforementioned values of excitability control were based on previous
works [4,50] where the simulations provided similar results to actual experiments.
The traversing of the chemical waves in the simulated area for a sub-excitable
and an excitable medium are compared in Fig. 1. This example is performed
on a 100 × 100 cells grid, where the available area is illustrated with white
color, whereas the unavailable area with grey color. An initial source of the wave
fronts is defined as an ensemble of cells (here defined as an area of 5 × 1 cells)
that were set with an initial parameter U t=0

i,j = 1 and indicated by a black
arrow. The difference of the traverse of wave fronts on an excitable and a sub-
excitable medium can be realized in Figs. 1(b) and (c), respectively. The advance
of the wave fronts in Fig. 1(b) and (c) is depicted in grey scale, whereas the
unavailable area in black color. In the case of the excitable medium (Fig. 1(b)) it
is apparent that the wave front is inflated around the whole available area after
reaching a wider channel. On the other hand, in the case of the sub-excitable
medium (Fig. 1(c)), the formation of the waves on the wider channel resembles
the formation of the narrow channel where it was initiated. This can imitate

(a)

(b) (c)

Fig. 1. (a) Chemical medium representation. wave front evolution for (b) excitable and
(c) sub-excitable medium.
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the ballistic features of entities used in collision based computing [2,3]. Thus, a
similar approach is utilized to implement logic circuits.

3 Results

Having as main goal to simulate the potential computational capabilities of the
chemical medium, two gates were demonstrated with the CA-based described
earlier Oregonator model, namely a classic AND and one with combinatorial logic
gate. For triggering the input signals, the U t=0

i,j ingredient was set to 1 for a
column of 10×1 cells on the respective input channel. To provide a clear view of
the wave front, the presented figures were considered as snapshots of every 500
time-steps of the simulation and not as the results on the final time-step of the
simulation.

The AND gate was designed as depicted in Fig. 2(a) configuration, where the
inputs, outputs and the light mask are properly illustrated. This is a two-input
gate and only when both inputs are HIGH (“1”), the gate output requests to
be HIGH, as can be realized in Fig. 2(d) through the merging of the two wave
fronts that results to a unified one able to travel forward to the proper output
channel. On the contrary, when only one of the proposed inputs is present, the
wave front is not able to overcome the sub-excitable medium areas and, as a
result, it is slowly decreasing till it dies out (Figs. 2(b) and (c)). Consequently,
the light sensitive BZ logic gate acts as a constraint to the wave propagation.
The truth table of AND gate is achieved in the experiments as shown in Fig. 2
owing to the topology of light illumination, given that the (“00”) case is again
omitted since no wave front would be propagated in the medium.

As next step, the emergence of increased complexity in logic functions, within
the same grid of 200 × 500 cells used for the basic logic gate, was attempted.
The presented gate of Fig. 3(a) is able to perform two logic functions at the
same time, utilizing the illustrated light mask. The simulations for every input
combinations were successfully performed (Figs. 3(b), (c) and (d)), verifying that
the results comply with the theoretical background for the FU = AB and FL =
AB functions of the upper and lower output channel, respectively.

In the aftermath, in case of cascading such gates, the formation of more
complex functions can be achieved. For example, a XOR gate can be formed if
both outputs of the combinatorial gate are connected to the inputs of an OR gate.
Considering that XOR gate can be the “SUM” output of a half-adder, along with
an AND gate representing the “CARRY” output, a complete computing system can
be achieved.

In the view of the forgoing, there is a novel nano-electronic device suitable
for the successful representation of CA models in hardware, and in particular for
chemical logic gates, namely memristor device [46] able to perform effectively
in-memory computations taking leverage of its inherent characteristics of non-
volatility, high density and low power consumption. In more details, memristor
is a two terminal nanoelectronic device with resistance controlled by an applied
voltage signal across its terminals, and depended on its state’s history [19]. It
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Fig. 2. AND logic gate (a) medium configuration and (b–d) simulation results.
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AB

AB

INPUTS OUTPUTS

(a)

(b)

(c)

(d)

Fig. 3. Combinatorial logic gate (a) medium configuration and (b–d) simulation results.
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presents certain similarities with the notion of unified memory and computa-
tion architecture in one physical unit like CAs while, at the same time, mem-
ristors are successfully implemented in a grid like manner as switching nodes
on nano-crossbars. Moreover, memristors have been efficiently coupled with the
CA notion resulting to the notion of memristive cellular automata [6,29,31–
34,39,42]. Towards this path, memristors have been utilized for implementing
a coupling between excitable elements [9,23] that are able to propagate wave
fronts. Also, simplified MRLC and MRC circuits have been presented in litera-
ture that mimic the behaviour of the chemical waves propagation and interaction
in order to perform logic computations [12–14]. The resulting unconventional
logic gates as well as their nano-electronic representation through the memris-
tors’ oscillating networks in crossbar topologies incorporate basic principles of
CA theory, like emergent computation, inherent parallelism, reprogrammability
and neighborhood consideration.

Concerning the first approach, an implementation of a reaction-diffusion-
based (RD-based) excitable medium is foreseen incorporating memristive devices
into the nano-electronic circuit. These RD circuitries are able to perform CA-
like computations of RD systems using nano-electronic elements that emulate
chemical reactions. Having a rectangular or hexagonal grid of such RC cells
coupled with each other through their neighboring connections via appropriate
devices can result to a 2-D spatial chemical dissipation and wave propagation
to the medium. The diffusion coupling of the RD-based excitable medium is
modeled with the memristor nanodevices by changing their switching state when
the excitable waves are propagating towards them. Both 1-D and 2-D RD models
can be foreseen, showcasing the velocity change of the propagating excitable wave
directly linked to the conductance change.

In the case of the latest approach, the wave propagation of a BZ mem-
brane is presented thought the transmission-line-equivalent of appropriate nano-
electronic circuits. A memristor is incorporated in these cells in order to expand
the local non-linearity of BZ medium. The wave propagation is occurring through
an applied voltage stimulus, which is transmitted to the neighboring cells of the
proposed grid. In order to simplify the circuit, a corresponding memristor-based
with elements unit can be utilized finally able to perform oscillations even with
the inductor element is removed. Neighboring cells are connected using a power
supply module that can activate their oscillation and effectively perform the
wave propagation though the medium. Suitable simulations of chemical logic
gates have been already presented in the corresponding literature for the suc-
cessful evaluation of the discussed approaches enabling chemical computing with
nano-electronic circuits.
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4 Conclusions

In this work, chemical logic gates simulation was efficiently performed by utilizing
the concept of CA in combination with the Oregonator model. In particular,
chemical medium light sensitivity was taken into consideration and exploited to
demonstrate various logic gates. Simulations for classic logic gate like the AND
one, as well as for more complex and combinatorial functions were adequately
delivered proving the correct functionality of the proposed model.
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44. Solé, R., Moses, M., Forrest, S.: Liquid brains, solid brains. Philos. Trans. R. Soc.
Lond. B Biol. Sci. 374 (1774), 20190040 (2019)

45. Steinbock, O., Kettunen, P., Showalter, K.: Chemical wave logic gates. J. Phys.
Chem. 100(49), 18970–18975 (1996)

46. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor
found. nature 453(7191), 80–83 (2008)

47. Toffoli, T.: Cellular automata as an alternative to (rather than an approximation
of) differential equations in modeling physics. Physica D 10(1–2), 117–127 (1984)

48. Tsompanas, M.-A., Adamatzky, A., Ieropoulos, I., Phillips, N., Sirakoulis, G.C.,
Greenman, J.: Cellular non-linear network model of microbial fuel cell. Biosystems
156, 53–62 (2017)

49. Tsompanas, M.A., Fyrigos, I.A., Ntinas, V., Adamatzky, A., Sirakoulis, G.C.: Cel-
lular automata implementation of Oregonator simulating light-sensitive Belousov-
Zhabotinsky medium. Nonlinear Dyn. 104(4), 4103–4115 (2021)

50. Tsompanas, M.-A., Fyrigos, I.-A., Ntinas, V., Adamatzky, A., Sirakoulis, G.C.:
Light sensitive Belousov-Zhabotinsky medium accommodates multiple logic gates.
Biosystems 206, 104447 (2021)

51. Weimar, J.R.: Three-dimensional cellular automata for reaction-diffusion systems.
Fund. Inform. 52(1–3), 277–284 (2002)

52. Wolfram, S.: A New Kind of Science, vol. 5. Wolfram Media, Champaign, IL (2002)
53. Zaikin, A., Zhabotinsky, A.: Concentration wave propagation in two-dimensional

liquid-phase self-oscillating system. Nature 225(5232), 535–537 (1970)
54. Zhabotinsky, A., Zaikin, A.: Autowave processes in a distributed chemical system.

J. Theor. Biol. 40(1), 45–61 (1973)

https://doi.org/10.1007/978-3-319-10924-4


Theory



Exploring Lightweight S-boxes Using
Cellular Automata and Reinforcement

Learning

Tarun Ayyagari , Anirudh Saji(B) , Anita John , and Jimmy Jose

National Institute of Technology Calicut, Kozhikode, India
{tarun b180682cs,anirudh b180387cs,anita p170007cs,jimmy}@nitc.ac.in

Abstract. The most important elements of block ciphers are nonlin-
ear functions known as substitution boxes (S-boxes). S-boxes with weak
cryptographic properties are vulnerable to attacks by various cryptanaly-
sis techniques. Cellular Automata has been used to design S-boxes with
good cryptographic properties such as nonlinearity, differential unifor-
mity, balancedness, etc. Cellular Automata based S-boxes also have low
implementation cost due to their highly parallel nature. In this work, we
explore an approach of using Cellular Automata based semi-bent Boolean
functions to generate S-boxes. Genetic algorithms have been used exten-
sively to generate CA based S-boxes. Here we explore the use of Rein-
forcement Learning algorithms that uses relatively well understood and
mathematically grounded framework of Markov Decision Processes as an
alternative to genetic programming.

Keywords: Lightweight S-boxes · Semi-bent Boolean functions ·
Cellular Automata · Reinforcement Learning · Block ciphers

1 Introduction

Cellular Automata (CA) have been proved to be quite useful in the field of cryp-
tography, widely being used as keystream generators for stream ciphers due to
their good pseudo-randomness. CAs have also been proved to be very useful in
creating semi-bent functions with good cryptographic properties as proven in
[1]. In this work, we expand on the work done by Mariot et al. in [1] and con-
sider the different permutations of Boolean functions. Further, we implement
these Boolean functions as the coordinate functions of an S-box. For finding a
suitable subset of Boolean functions to use as coordinate functions, we will use
Reinforcement Learning. By the end, we evolve a good set of functions which
would result in an S-box with good cryptographic properties such as nonlinear-
ity (NL) and differential uniformity (DU). In previous works [2], we have seen
designs using genetic programming to create the S-boxes. Genetic programming
is largely based on heuristics. Genetic programming’s end goal is to evolve an
unfit population of elements using various genetics inspired functions. Genetic
programming has adapted concepts of crossover and mutation from genetics and
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implemented them in code. The crossover operation involves swapping random
parts of selected pairs of parents (elements from the previous population) to
produce new and different offspring that become part of the new generation.
Mutation involves substitution of some random part of an element with some
other random part of an element. Both these crossover and mutation functions
are used on populations in the hope that the next population would create
stronger off-springs (elements). This process will continue until the desired level
of fitness is observed in a population. Our design involves using Reinforcement
Learning (RL) instead of genetic programming to select the set of semi-bent
Boolean functions that will be used to generate the S-boxes. Both Genetic Pro-
gramming and Reinforcement Learning aim to maximize a defined reward signal.
We aim to experiment with RL as it is based on the mathematically grounded
framework of Markov Decision Processes (MDPs) and on initial analysis, can
be seen to even speed up the convergence process of finding the set of functions
that produce the strongest S-boxes. Reinforcement Learning is used to system-
atically explore the solution space to find the permutation of semi-bent Boolean
functions which has the strongest cryptographic properties.

2 Cellular Automata

CA has been widely researched because of their low implementation cost and
parallel computing nature. These properties of CA make them excellent high
bandwidth cryptographic application solutions. A CA is a system of finite state
automata (cells) which are arranged in a grid. The state of a cell at a timestep
depends on the cell’s state as well as the state of the cell’s neighbours. Each
cell has a local update rule which determines the state of the cell at the next
timestep. The states of a cell in a CA are generally from the set {0,1}. In context
of CAs, we consider both time and space to be discrete. In each timestep, each
cell in the CA is updated according to the local rule of the cell. A local rule can
be represented as a function

f : Sm → S

where m represents the neighbourhood size considered in the update rule. For a
1D CA (where the cells are arranged in a 1-dimensional array), a neighbourhood
size of m indicates that we consider 2m + 1 states in the local update rule (m
on each side and the state itself). For a 2D CA (where the cells are arranged as
a 2-dimensional array), a neighbourhood of m considers 4m + 1 states for the
update rule (m on each side and the state itself). At the ends of the CA, the
neighbourhood wraps around to the other end of the CA. Theoretically, a CA
can be represented in any number of dimensions [3] but increasing the dimen-
sionality also increases the computational cost for the CA. CA are mathemat-
ically complete and lightweight in most of their implementations, thus making
them suitable for a wide range of applications. In our application, we will only
be considering a 1D CA with a neighbourhood size of 1. The output for each
combination can be succinctly represented by a single number called the CA’s
Wolfram Number [5]. An important aspect of the CA rule is that each CA rule
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can be represented in their algebraic normal form (ANF) in terms of the states
of the cells considered. The ANF of a Boolean function f can be represented as

f (x1, . . . , xn) =
⊕

I∈2[n]

aIx
I (1)

where, xI =
∏

i∈I xi, 2[n] is the power set of [n] = {1, 2, ..., n} and aI = 0 or 1.
This is how the rules will be represented in code. The algebraic degree of the
Boolean function f is the cardinality of the largest subset I ∈ 2[n] in its ANF,
such that its coefficient aI �= 0.

3 Substitution Boxes (S-boxes)

S-boxes are an integral part of many encryption systems. An S-box can be rep-
resented as

F : Fm
2 → F

n
2

where n,m are two positive integers and F2 is the Galois Field of two elements.
S-boxes are also referred to as (n,m) functions, where n and m correspond
to number of inputs and outputs of the S-box respectively. The function F is
also called a vectorial Boolean function. Function F can be decomposed into the
vector F = (f1, f2, ..., fm) where each function fi is a Boolean function fi : Fn

2 →
F2∀i. The functions fi ∀ i ∈ {1, 2, ...,m} are called the coordinate functions of S-
boxes function F . Any non-trivial linear combination of the coordinate functions
is called a component function of F . For an S-box to be cryptographically strong,
there are a number of properties it must satisfy [7].

3.1 Nonlinearity

The Walsh-Hadamard Transform WF of (n,m) function F is given by

WF (u, v) =
∑

x∈F
n
2

(−1)v·F (x)⊕u·x, v ∈ F
m
2 , u ∈ F

n
2 (2)

The nonlinearity NF of function F is given by the equation:

NF = 2n−1 − 1
2

max
u∈F

n
2 ,v∈(Fm

2 )∗
|WF (u, v)| (3)

where (Fm
2 )∗ = F

m
2 \{0}. We aim to achieve maximum nonlinearity, i.e., reduce

the linearity between the function F and its component functions. A high value
for nonlinearity will make it harder to perform linear cryptanalysis on the S-
boxes.
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3.2 Differential Uniformity

For a given (n,m) function F , we can define a difference distribution table DF

as

DF (a, b) = {x ∈ F
n
2 : F (x) ⊕ F (x ⊕ a) = b}, a ∈ F

n
2 , b ∈ F

m
2

The value at (a,b) represents the cardinality of DF (a, b) denoted by δ(a, b). The
differential uniformity of the function F , δF is given by

δF = max
a�=0,b

δ(a, b) (4)

We aim to minimize the differential uniformity of an S-box. A low value of δF
implies that the S-box can withstand differential cryptanalysis. The minimum
attainable value for differential uniformity is 2 and S-boxes which achieve this
value are called almost perfect nonlinear (APN) functions.

4 Semi-bent Boolean Functions

Consider a Boolean function f. From Eq. (3), it is evident that the maximum
value of Nf is achieved when the max term in the equation evaluates to 2

n
2 ,

resulting in the bound: Nf ≤ 2n−1 −2
n
2 −1. Functions that satisfy this bound are

known as bent functions, but these functions only exist for even values of n [8].
Unfortunately, bent functions are not balanced, so they cannot be considered for
use in cryptographic systems. A Boolean function is balanced if its truth table
has equal number of 0’s and 1’s in its output, i.e., for an arbitrary input, it is
equally likely to get a 0 or 1 as the output. The truth table of a Boolean function
is the mapping of the input bits to the output bits for that Boolean function.
Every Boolean function can be represented as a truth table. The quadratic bound
for when n is odd is NF ≤ 2n−1−2

n+1
2 −1. Any function of algebraic degree 2 can

achieve this bound. In general, this bound is not tight when n is odd and n > 7.
It is still an open problem to determine the true upper bound on the nonlinearity
for that case. The Walsh transform for a Boolean function f : Fm

2 → F2 is given
by the equation

Wf (u) =
∑

x∈F
m
2

(−1)f(x)⊕u·x, ∀u ∈ F
m
2 (5)

The Walsh transform of a Boolean function measures the correlation between
the function f and the linear function u · x. It is therefore, used to calculate the
nonlinearity of a Boolean function f . Semi-bent Boolean functions are Boolean
functions whose Walsh transform can be defined as:

Wf (u) =

{
2

n+1
2 if n is odd,

2
n+2
2 if n is even.

(6)

These functions reach the bound on nonlinearity when n is odd. It is possible
for these functions to be balanced, so we shall be considering these to use as



S-boxes Using CA and RL 21

coordinate functions in our construction of S-boxes. A Boolean function is bal-
anced if its truth table has equal number of 0’s and 1’s in its output, i.e., for an
arbitrary input, it is equally likely to get a 0 or 1 as the output.

5 Reinforcement Learning

Reinforcement Learning is the area of machine learning that deals with how intel-
ligent agents interact within an environment to maximize a cumulative reward.
RL is considered to be the 3rd machine learning paradigm alongside supervised
learning and unsupervised learning and is sometimes semi-supervised in nature.
The learner and decision maker is called the agent. The thing it interacts with,
comprising everything outside the agent, is called the environment. RL agents
interact with the environment, which can be classified as a set of states that can
be both continuous or discrete, using a set of pre-defined actions. Each action in
each state, also known as a state-action pair is associated with a reward signal.
The goal of the agent is to maximize the cumulative sum of the reward signals.
It does so by exploring the actions it has never taken before and exploiting the
actions that have been taken and the agent has prior knowledge about. In almost
all RL problems, there exists an exploration-exploitation dilemma. The dilemma
is that the agent has to exploit what it already knows to obtain reward but the
agent also has to explore in order to make better selections in the future. Gen-
erally, on knowing what actions are optimal in a state, the agent still chooses
sub-optimal actions once in a while, in the hopes to achieve a greater cumula-
tive sum of rewards by choosing a different sequence of actions and states. Apart
from the actions and states, an RL problem has 4 more sub-elements: a policy,
a reward signal, a value function and optionally a model of the environment [4].
The policy defines how the agent behaves in a state and what actions it chooses.
In their book, Richard Sutton and Andrew Barto define a policy as a mapping
from states to probabilities of selecting each possible action. A reward signal
defines the goal of a reinforcement learning problem. The value function or the
value of a state is the expectation of total reward it will accumulate over time.
There also exists state action values, which is, the value of taking a particular
action from a particular state. The reward signal, takes into account what is
good as the immediate next step, whereas the value function is far sighted and
looks into the total reward accumulated in the future. The last element is the
model. This is something that mimics the behavior of the environment, or more
generally, that allows inferences to be made about how the environment will
behave. RL problems are usually formulated as a Markov Decision Processes.
In [4], MDPs are defined as a mathematically idealized form of the reinforce-
ment learning problem for which precise theoretical statements can be made.
For a finite MDP, the states, actions and rewards have a well defined discrete
probability. That is,

∑

s′∈S

∑

r∈R
p (s′, r | s, a) = 1,∀s ∈ S, a ∈ A(s) , (7)
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where S is the set of all states, A(s) is the set of all actions available at the
state s and r is the reward received when after transitioning to state s′ from the
state s on taking action a. In an MDP, the probabilities given by p completely
characterize the environment’s dynamics. That is, the probability of each possible
value for St and Rt depends only on the immediately preceding state and action,
St−1 and At−1, and, given them, not at all on earlier states and actions [4].
The RL agent together with its policy and state action pairs make decisions to
explore the environment, learning and exploiting data learnt through positive
and negative reinforcements to maximize the reward signal.

6 Our Design

Our goal is to build an S-box with excellent cryptographic properties, i.e., high
nonlinearity and low differential uniformity. To implement our goal, it has been
formulated as a 3-part problem. The three parts include Boolean Functions,
Substitution Box and Reinforcement Learning (Fig. 1 and 2).

6.1 Boolean Functions

Our design allows us to use a set of 2 or more semi-bent Boolean functions
to generate the output array. We consider the CA as the input bits to the S-
boxes. The CA length is 8 cells long, the state of each cell is given by the
corresponding input bits. We consider the CA to have a periodic boundary, i.e.,
the neighbourhoods for the edge cells wrap around to the other end of the CA.
In this work, we consider set sizes of 2 and 3 semi-bent Boolean functions to
generate the output array from the set of input bits. Each Boolean function
involves a set of 2 operations. The first operation is the application of a CA
rule on the set of 8 input bits. After first step, an intermediary array is created
whose bits are then XORed to get one bit. This is the second step. The size of
this intermediary array depends on the size of the neighbourhood of the CA rule
(Boolean function). In our design, the size of the intermediary array is always 6,
as we are only work with CA rules of neighbourhood size 3 for both the set sizes
of rules. Each intermediary array produces only one of the output bits. Hence,
the process of creating the intermediary array is iterated 8 times in order to get
the 8 output bits. During each of these iterations, the neighbourhood cells do not
overlap with the initial cell. Hence, during each iteration to produce one output
bit, it can be said that the boundary is fixed at 8 cells starting from the cell
indexed at start and ending at the cell indexed at (start + nbr size)%8. Here,
it is to be remarked that for periodic boundary conditions, the constructions
from [1] does not work as it is not possible to prove that the resulting Boolean
function has the same degree as the local rule [9]. The pseudocode for this has
been given below in Algorithm1. rule is the CA rule which we will be applying
on the input. nbr size is the neighbourhood size on which the CA rule is applied.
len is the size of the input CA (here 8). start indicates the neighbourhood offset.
2 steps together make the semi-bent function. Semi-bent functions are known for
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Fig. 1. First iteration of Algorithm 1 applying a CA rule of neighbourhood size nbr size
to a set of bits of length len generating len−nbr size+1 output bits which are further
XORed to get a single bit. Here, start = 1, and in our design nbr size = 3 bits and
len = 8 bits.

Fig. 2. Second iteration of Algorithm 1 applying a CA rule of neighbourhood size
nbr size to a set of bits of length len generating len − nbr size + 1 output bits which
are further XORed to get a single bit. Here, start = 2, and in our design nbr size = 3
bits and len = 8 bits.

their high cryptographic standard, exhibiting properties of high nonlinearity and
low differential uniformity. Mariot et al. [1] discovered several CA based semi-
bent functions using varying neighbourhood sizes. For our use, we narrowed
down to the 56 CA rules of neighbourhood size 3. We will use these rules in the
construction of the S-boxes.
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Algorithm 1
function Rule OP(rule,nbr size,len,start)

outputs ← ∅
i ← start
max iter ← start + len − nbr size + 1
while i < max iter do

nbr ← ∅
j ← 0
while j < nbr size do

nbr.Append(CA[(i + j)%len])
end while
outputs.Append(rule(nbr))
i ← i + 1

end while
return

⊕

bit∈outputs

bit

end function

6.2 Substitution Box

Our design is implemented as a CA consisting of 8 cells. The CA rules are semi-
bent functions as discussed in the previous section. In this work, we discuss 2
designs of S-boxes. In the first design, we use 2 CA rules, each generating 4 bits
of the final output. In the second design, we use 3 CA rules, 2 of which generate
3 bits towards the final output and the last one generating only 2. The S-box
pseudocode has been described in Algorithm 2. The S-box takes in the set of
CA rules as parameter. input size is the length of the CA (8 in our case) and
num rules represents the number of rules we are using in the design.

6.3 Reinforcement Learning

In this work, we will be using Reinforcement Learning to find suitable sets of
semi-bent functions to use in our S-box design. To solve a problem using RL,
it first has to be formulated as a Markov Decision Process. So we start by
identifying our states, rewards and actions with respect to our design. We define
the state space as all possible k-permutations of all semi-bent functions, where
k ∈ {2, 3}. The number of permutations of k items from n objects is given by

nP k =
n!

(n − k)!
(8)

where k is the number of rules selected and n is the total number of rules. The
state space is discrete. Each permutation of the set of rules can be considered as
a different state and hence, each state varies by at least one semi-bent function.
When considering 2 semi-bent functions, the total space consists of 56P 2 = 3080
different states and in the 3 semi-bent functions design, we have 56P 3 = 166320
states. The set of actions are also discrete and can be considered as the swapping
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Algorithm 2
function Sbox(rules)

outputs ← ∅
for each possible input ip do

output ← ∅
start ← 0
k ← ceil(input size/num rules)
for all rule in rules do

i ← 0
while i < k do

op ← RULE OP (rule, 3, input size, ip, start)
output.Append(op)
start ← start + 1
i ← i + 1

end while
end for
outputs.Append(output[0 : 7]) � Only the first 8 bits of the output are taken

end for
return outputs

end function

of a rule for another rule. The reward for transitioning from one state to another
is the cryptographic strength of the latter state given as

strength = (scaled NL + (100 − scaled DU))/2 (9)

where strength is the cryptographic strength of the current set of rules in the
S-box. The scaled nonlinearity of the S-box denoted by scaled NL is

scaled NL = (NL/112) ∗ 100 (10)

scaled DU is the scaled differential uniformity of the S-box.

scaled DU = ((DU − 4)/(128 − 4)) ∗ 100 (11)

The scaling was done with respect to the values attained by the AES S-box
[6]. The policy is chosen to be epsilon greedy, that is, with epsilon probability,
the agent chooses a non greedy action. We talk about greedy/non-greedy with
respect to the calculated state value or the state action value. We use the on-
policy Sarsa algorithm [4] to calculate the state action value pairs from the
information gathered during exploration. We use the concept of average reward
in our Sarsa algorithm [4]. This is used in our problem as our problem deals with
a continuous task. We chose to use the value-function approximation method [4],
given the large state spaces. An Artificial Neural Network (ANN) was chosen
to be the function approximator given the nonlinear relationship between the
rules used and the strength of the state. The function approximator is used
to approximate the value of a given state, given the input parameters from a
given state. In our design, we give the rules used in that particular state as the
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parameters so as to calculate the value of the state using the rules used in that
state. For each rule, the input array to the ANN is flattened, so as to achieve a
distinct array for each distinct permutation of rules. In the 2 rule design, there
are 2 positions for the rules and 56 rules can be inserted in each space. Hence the
size of the input array to the ANN will be a binary array of length 2 ∗ 56 = 112.

We define the reward for transitioning from state s1 to state s2 as

reward = strength(s2) (12)

In other words, the immediate reward we get for transitioning to state s2 from
s1 is the cryptographic strength of the state s2. This indicates how good that
particular transition is for us.

7 Results

We ran the experiment with set sizes of both 2 and 3 semi-bent Boolean func-
tions. We ran the RL algorithm with each configuration 10 times, each time the
algorithm traversed fifty unique states. The results obtained are summarized in
Table 1. Set Size is the number of CA rules used in the S-box. The columns DU,
NL and Strength represent the best values obtained for Differential Uniformity,
Nonlinearity and Strength (computed using 9) by the particular design. Strength
is the average strength of the S-boxes that were explored during the ten runs.
σStrength gives the standard deviation of the average strengths obtained by the
S-boxes in the ten runs. The best possible properties obtained of the S-boxes cre-
ated from the design consisting of 2 rules had a differential uniformity of 32 and
nonlinearity of 96. There were multiple states that gave these properties. With
the design consisting of 3 rules, the best S-box obtained had a nonlinearity of 96
and differential uniformity of 16. Again, there were multiple states that gave this
result. The values obtained are on par with the values obtained using Genetic
Programming. Furthermore, our design using 3 semi-bent functions was able to
outperform the S-box obtained using genetic programming in both differential
uniformity as well as nonlinearity. The genetic programming based S-box had a
maximum differential uniformity and nonlinearity of 20 and 82 respectively [2].

Table 1. Summary of the results

Set Size DU NL Strength Strength σStrength

2 32 96 81.57 58.42 2.51

3 16 96 88.02 59.72 3.04
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8 Conclusion and Future Work

It can be successfully concluded that not only genetic programming but rein-
forcement learning can also be used to generate S-boxes with strong crypto-
graphic properties. The semi-bent Boolean function based S-boxes are relatively
lightweight in their implementation as well.

Our work is heavily constrained by the computational resources and time. As
Reinforcement Learning is a computationally intensive task, it requires very high
performance computing machines. Certain computations such as the calculation
of cryptographic properties is also a very compute intensive task. In our work,
we only explored S-boxes created by 2 and 3 semi-bent functions. This work can
be further expanded by increasing the number of rules used to 4, 5, etc. The
manner of usage of rules can also be changed. In our work, the rules were used
in an in-order manner. This can be changed to alternating rules, or randomly
selecting rules from a subset of the rules. In the reinforcement learning part, a
lot can be expanded and built on. Other control algorithms such as the off-policy
Q-learning, or Expected Sarsa, can be used instead of the Sarsa algorithm used
in our design. Other policies can also be implemented such as policy gradient
methods instead of the epsilon greedy policy used in our design. The parameters
to the function approximators (ANN) can be changed and experimented with.
This work only focused on 8× 8 S-boxes, we can also try to modify the design
to work on different input and output sizes.

A Appendix

The source code for the S-box design and RL implementation is available at
https://github.com/tarunaygr/RL-based-S-boxes.
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Abstract. This work reports characterization of 1-dimensional periodic
boundary cellular automata (PBCA) rules in 3-neighborhood for identi-
fication of CA rules that influence the formation of single length cycle
attractors (fixed points). It targets the synthesis of CA with only one
fixed point (SACA) for arbitrary length. The graph based tool NSRT
diagram (NSRTD) provides the theoretical framework for this charac-
terization. Schemes are developed to identify the SACA rules that form
uniform SACA for all length.

Keywords: Cellular automata · Attractor · SACA · NSRTD

1 Introduction

A 3-neighborhood 2-state Cellular Automaton (CA) can be viewed as an
autonomous finite state machine [15]. While characterizing such CA state space,
the researchers identified a set of CA states, called attractors, towards which the
neighboring states asymptotically approach during evolution [3]. A single length
cycle attractor (fixed point) is one where the number of states in the attractor
is one [3]. Characterization of this class of CA is yet to be formalized.

The synthesis of fixed point attractor CA in linear/additive domain [1,2,4,10]
has been proposed in the literature [8,11]. The identification of attractors,
specially for null-boundary, is explored in [3,14]. A tool called reachability
tree is used in [13] to characterize and synthesize fixed point attractor CA in
null-boundary. However, characterizations of fixed point PBCA, in non-linear
domain, are yet to be explored. This motivates us to characterize the CA rules
that can form fixed points in a PBCA state space. The NSRT Diagram (NSRTD)
introduced in [12] is employed to explore existence of the multi-length cycle as
well as the fixed points in a PBCA. It effectively identifies the SLCA (single
length cycle attractor CA -that is, the CA with fixed point), specially, the class
of SACA (single length cycle single attractor CA -that is, the CA with one and
only one fixed point). It leads to the synthesis of uniform SACA of any length.
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2 Preliminaries of Cellular Automata

In 3-neighborhood (self, left, right neighbors) CA, the next state (NS) (at time
t+1) of the ith cell is

St+1
i = fi(St

i−1, S
t
i , S

t
i+1)

where St
i−1, S

t
i and St

i+1 are the present states (PSs) of its neighbors. The fi is
the next state function. The collection of states St = (St

1, S
t
2, · · · , St

n) of the n
cells at t is the state of CA at t. In a 2-state 3-neighborhood CA (ECA), there
are 256 next state functions called rules. Three such rules 184, 226, and 232 are
shown in Table 1. The first row lists the possible 23 (8) combinations of the PSs
of (i − 1)th, ith and (i + 1)th cells [7]. Such a combination is referred to as the
rule min term (RMT).

Table 1. Truth table for rule 184, 226, and 232

PS: 111 110 101 100 011 010 001 000 Rule

(RMT) (7) (6) (5) (4) (3) (2) (1) (0)

(i) NS: 1 0 1 1 1 0 0 0 184

(ii) NS: 1 1 1 0 0 0 1 0 226

(iii) NS: 1 1 1 0 1 0 0 0 232

Figure 1 is the block diagram of an n-cell periodic boundary CA (PBCA). Its
left (right) neighbor of leftmost (rightmost) cell is the rightmost (leftmost) cell.

Cell 1 Cell 2 Cell nn−1
Cell

Fig. 1. Block diagram of an n-cell PBCA

The set of rules <R1,R2, · · · ,Ri, · · · ,Rn> that configures the cells of a CA
is denoted as rule vector RV. If R1 =R2 = · · · =Rn, then the CA is uniform
(Fig. 2(c)) otherwise, it is a non-uniform/hybrid CA (Fig. 2(a)).

A set of states can form cycle (0 → 0, 10→ 5→ 10 and 15→ 15 of Fig. 2(a))
and is called attractor. A self loop (0→ 0/15→ 15) is called single length cycle
attractor or fixed point. Cycle involving multiple states (10→ 5→ 10) is a multi-
length cycle attractor. An attractor forms a basin with the states that lead to
the attractor. For example, (10→ 5→ 10)-basin of Fig. 2(a) contains 4 states.

An RMT is represented as T(m), m = {0, 1, 2, 3, 4, 5, 6, 7}; and T(m) ∈T,
where T = {T(0), T(1), ..., T(7)}. The RMT for ith cell based on which the cell
changes its state at t is denoted as Tt

i(m). For example, Tt
1(0) denotes at time

t cell 1 changes its state on RMT T(0). However, in the diagrams, an RMT is
represented only by corresponding decimal number (m) -that is, Tt

i(0) is 0.
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The RMT for which the next state is 0 (0-RMT), belongs to T/0 and that
having next state as 1 (1-RMT) belongs to T/1, where T/0 ∩ T/1 = ∅ and T/0
∪ T/1 = T. An RMT x0y (respectively x1y), where x and y are the PSs of left
and right neighbor in a rule R is called passive if it belongs to T/0 (respectively
T/1). On the other hand, if an RMT x0y (respectively x1y) belongs to T/1
(respectively T/0), it is active.

An RMT String (RS) is defined as a sequence of consecutive RMTs which
appear in a state of CA. It is represented as (T1, T2,...,Tn) for an n-cell CA,
where Ti ∈T. For example, the state 1011 of a 4-cell CA can be represented by
the RS (T1, T2, T3, T4) = (T(6), T(5), T(3), T(7)).
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a) SLCA <232, 184, 184, 184> b) SSLCA <128, 129, 128, 128> c) SACA <64, 64, 64, 64>

Fig. 2. State transitions of CA

The CA having at least one fixed point attractor is the single length cycle
attractor CA (SLCA). It can have multi-length cycle. The SLCA with only one
fixed point is a single single length cycle attractor CA (SSLCA). Figure 2(b) is
an SSLCA. The SLCA producing connected graph during its state transitions
-that is, having one and only one fixed point attractor is called single length
cycle single attractor CA (SACA). The rule that configures uniform SACA for
all length is an SACA rule.

3 NSRTD

The NSRT diagram (NSRTD) is to characterize the 256 ECA rules to deter-
mine the presence of fixed points as well as multi-length cycles in a PBCA. The
following terminologies are essential for describing the NSRTD [12].

If Tt
i is the RMT of ith-cell rule based on which the cell i changes its state

at tth time step, then the next cell RMTs (NCRs) of Tt
i are the RMTs Tt

i+1 =
(2×Tt

i mod 8) and ((2×Tt
i+1) mod 8) of (i+1)th-cell rule based on which the

(i+1)th-cell can change its state at tth time step. For example, if RMT of Ri is
T(1), then its NCRs are T(2) (=2×T(1) mod 8) and T(3) (=(2×T(1)+1) mod
8). The NCRs of all the 8 RMTs are shown in Table 2.

If Tt
i (respectively Tt+1

i ) be the RMT of ith-cell rule Ri based on which cell
i changes its state at time t (respectively at time t+1), then Tt+1

i is the Next
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State RMT (NSR) of Tt
i for cell i. The sequence of NSRs based on which the

ith-cell changes its state during the state transitions of the CA is called Next
State RMT Sequence (NSRS). That is, an NSRS for the ith-cell (denoted as
NSRSi) is T0

i , T1
i , ..., Tt

i, Tt+1
i , ..., where Tt+1

i is the NSR of Tt
i.

For the ith-cell rule Ri of a CA, the all possible NSRSs can be represented
by a directed graph G(V,E), called NSRS graph (NSRS-G), where all the Tt

is
∈ V and ei(Tt

i, Tt+1
i ) ∈E iff Tt+1

i is the NSR of Tt
i.

The NCR, NSR, NSRS and NSRS-G of a CA enable construction of the set
of directed graphs, called NSRTD, as 2-dimensional arrangement of nodes. Each
node is an RMT and each graph in NSRTD represents an attractor of the CA.
The edge (Tt

i, Tt+1
i ) ∈ E, such that Tt+1

i is the NSR of Tt
i and also the edge

(Tt
i, Tt

i+1) ∈ E, such that Tt
i+1 is the NCR of Tt

i. Further, the nodes Tt
i (∀t)

form an NSRS for ith-cell.
The two NSRSs defined for ith and (i+1)th cell (NSRSi and NSRSi+1) are

called compatible if jth NSR of these two are related in the sense that jth NSR
of NSRSi+1 is the NCR (Table 2) of jth NSR of NSRSi.

Table 2. Relationship between Ti and Ti+1 (NCR)

RMT Ti of RMTs Ti+1 of

ith rule (i+1)th rule (NCR)

T(0)/T(4) T(0), T(1)

T(1)/T(5) T(2), T(3)

T(2)/T(6) T(4), T(5)

T(3)/T(7) T(6), T(7)

Figure 3 describes the computation of NSR of a cell of the uniform PBCA
with rule 116. If the present RMT for ith cell, based on which the cell changes
its state, is xyz and l and r be the PSs of cell(i− 2) and cell(i+ 2) respectively,
then the NSR of cell i can be dlddr, where RMT xyz of Ri (here 116) Tt

i(xyz) is
d and dl = RMT lxy of Ri−1 (here also 116) and dr = RMT yzr of Ri+1 (here
is 116) - that is, Tt

i−1(lxy) = dl and Tt
i+1 (yzr) = dr. Now, if xyz = 000, then dl

= Tt
i−1(l00), where l can be either 0 or 1. That is, dl = Tt

i−1(l00) = Tt
i−1(000)

or Tt
i−1(100). The T(0) and T(4) of rule 116 are 0 and 1 respectively (Fig. 3(a)).

Therefore, dl = 0 or 1. On the other hand, dr = Tt
i−1(yzr) = Tt

i−1(00r). That
is, dr = Tt

i+1(000) or Tt
i+1 (001) = ‘0’ (Fig. 3(a)). Therefore, the NSR of RMT

000 (T(0)) is 0 or 4. The NSRS-G of rule 116 -that is, of a uniform PBCA with
rule 116, is shown in Fig. 4(a).

The cycles in the NSRS-G are 0 → 0, 1 → 1, 5 → 6 → 3 → 5, 4 →
6 → 3 → 4, 0 → 4 → 6 → 3 → 1 → 0, etc. Figure 4(b) shows the NSRTD
of the uniform PBCA. It can be observed (in Fig. 4(bi)) that the NCR of cell
i for T(5) is T(3). Now, the NSR of cell i in the NSRS (5 → 6 → 3 → 5)
is T(6). On the other hand, the NSR of T(3) at cell i+1 (also assuming the
NSRS 5 → 6 → 3 → 5) is T(5) which is also the valid NCR of T(6) at cell i.
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Similarly, it can be shown that if cell i follows NSRS 5 → 6 → 3 → 5 during
its evolution, the cell i+1 follows NSRS 3 → 5 → 6 → 3. It can be noted from
Fig. 4(bi) that all the cells of the PBCA of length 3n (n = 1, 2, 3, ...) can follow
the NSRS of length 3 (5 → 6 → 3 → 5, 3 → 5 → 6 → 3) during evolution.
It points to the fact that the PBCA with rule 116 forms a multi-length cycle
attractor of length 3. On the other hand, the graph of Fig. 4(bii) corresponds to
a fixed point attractor.
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Fig. 4. NSRTD of uniform PBCA with rule 116

The following properties [5] of NSRS-G and NSRTD guide the identification
of CA rule (R) that forms fixed point attractor PBCA.
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Property 1. If there is no multi-length cycle in NSRS-G of rule R, then the
uniform CA configured with rule R cannot have a multi-length cycle attractor.

Property 2. If there is no multi-length cycle in the NSRTD of a uniform PBCA,
then the CA cannot have a multi-length cycle attractor in its state transitions.

Figure 5(a) shows the NSRS-G for rule 253. The self loops in the NSRS-G
are 3 → 3 and 7 → 7. The NSRTD of the 4-cell uniform PBCA with rule 253 is
shown in Fig. 5(b). It denotes 253 is an SACA rule. The NSRS-G of rule 116 in
Fig. 4(a) points to the existence of multi-length cycles (for example, 3 → 6 → 5
→ 3, 4 → 6 → 3 → 4, etc.). The NSRTD (Graph G1 of Fig. 4) denotes the multi-
length cycle in uniform PBCA with rule 116. Following algorithm (Algorithm1)
checks whether an n-cell uniform PBCA with rule R is free from multi-length
cycle.

Algorithm 1 COUNT CYCLES IN PBCA (Rule R, length of CA (n), NCRs)
Input: Rule R, length of CA (n), NCRs for RMTs T(0), T(1), T(2), ..., T(7)
forming the sets NCR0, NCR1, ..., NCR7
Output: Decision on multi-length cycles and number of fixed point attractors

1. Find NSRSs for cell i for rule R
2. Construct NSRS-G
3. (a) Find self loops SL = {SLj | where j = 1, 2, ..., k, k is the number of self

loops in NSRS-G} and multi-length cycles ML = {MLr, where r = 1, 2, ...,
p, p is the number of multi-length cycles in NSRS-G};
(b) LP = SL, ML

4. If the NSRS-G has only self-loops -that is, ML = ∅, then
/*There is no multi-length cycle attractor*/
Call FIND SEQUENCES NSRTD IN SL(R, n, NCRs, SL)

else Call FIND SEQUENCES NSRTD IN GN(R, n, NCRs, LP)

Algorithm 2 FIND SEQUENCES IN NSRTD SL (Rule R, n, NCRs, SL)
Input: Rule R, CA length n, NCRs and SL
Output: Number of fixed point attractors (SLA)

1. Find all unique sequences of RMTs (nodes) Pu of length n, where
Pu = P1u → P2u → P3u ... P(n−2)u → P(n−1)u → Pnu,
such that Piu ∈ SL ∀i and Piu is NCR of P(i−1)u ∀i�=1; P1u is NCR of Pnu;

2. SLA = number of Pus (each of n-length);
3. return SLA

Algorithm 3 FIND SEQUENCES NSRTD IN GN (Rule R, n, NCRs, LP)
Input: Rule R, CA length n, NCRs and LP
Output: Number of fixed point attractors (SLA) if there is no multi-length cycle

1. Find compatibility class C among elements LP1, LP2, ...of LP, where
C = {Cj | Cj is compatible pair (LPk, LPl); LPk and LPl belong to L };
/*(LPk, LPl) is a compatible pair iff
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i) LPlq ∈LPl is the NCR of LPkr ∈LPk, and

ii) NSR(LPlq) is NCR(NSR(LPkr)), ∀q*/
2. Find all sequences of RMTs (nodes) Pu of length n, where

Pu = P1u → P2u → P3u → P4u ... P(n−2)u → P(n−1)u → Pnu

such that
a) for m=1 to n-1 {

P(m+1)u is an NCR of Pmu, where Pmu ∈LPo, P(m+1)u ∈LPp for some
o and p, and (LPo, LPp)∈C;
PLPm = LP0;
LP0 = LPp; }

b) P1u is an NCR of Pnu and (PLPn, PLP1)∈C;
/*PLP1 and PLPn are resulted from (a)*/

3. LPAu = PLP1, PLP2, PLP3, ... PLPn selected in step 2;
4. Number of attractors = number of Pus (n-length)

/*The length of an attractor is the maximum of cycle lengths of PLPh ∈LPAu

for a Pu;
5. if there exists an PLPh ∈LPAu without self-loop for a Pu, then

/*that is, having multi-length cycle in the CA*/
Exit (return 0); else {
SLA = number of Pus; return SLA }

Example 1. Let us consider uniform PBCA with rule 116. Here, the NSRSs are
0→ 0; 1→ 1; 1→ 1→ 0→ ; 2→ 7→ 0→ 0; 2→ 7→ 1→ 1; 4→ 6→ 3→ 4;...

Its NSRS-G is shown in Fig. 4(a). The SL = 0→ 0, 1→ 1; and ML = 5→ 6→
3→ 5, 0→ 4 → 3→ 0, ... (step 3(a) of Algorithm 1). That is, LP = 0→ 0, 1→ 1,
5→ 6→ 3→ 5, 0→ 4 → 3→ 0, ... (step 3(b)). As there is multi-length cycle in
LP (ML�=∅), Algorithm 3 is called (step 4 of Algorithm 1).

As per step 1 of Algorithm 3, from the LP, the compatible pairs are ((0), (0));
((0), (1)); ((5, 6, 3, 5), (3, 5, 6, 3)) and ((3, 5, 6, 3), (5, 6, 3, 5)). The NSRTD
for the CA is shown in Fig. 4(b).

As per step 2 of Algorithm 3, the sequences of RMTs identified are
P1 = 0→ 0→ 0→ 0 ... that corresponds to graph G1 of Fig. 4(bi), and
P2 = 5→ 3→ 6→ 5 ... that corresponds to graph G2 of Fig. 4(bii).
Here, for P1, the PLP1 = PLP2 = ... PLPn = 0→ 0.
For P2, the PLP1 = 5→ 6→ 3→ 5, PLP2 = 3→ 5→ 6→ 3, PLP3 = 6→ 3→
5→ 6, PLP4 = 5→ 6→ 3→ 5, ...

Now, the LPA1 = (0→ 0), (0→ 0), (0→ 0) ...;
and LPA2 = (5→ 6→ 3→ 5), (3→ 5→ 6→ 3), (6→ 3 → 5→ 6), ... (step 3).

As per step 4, the number of attractors in such a CA is 2. The cycles (PLPh)
in LPA2 are multi-length, therefore, Algorithm3 exits (step 5).

The step 1 of Algorithm 1 finds NSRs and it requires constant time. In an
NSRS, the maximum number of nodes are 8 and the maximum out-degree of
a node is 4. Therefore, construction of NSRS-G (step 2) also requires constant
time. Now, the step 3 finds all possible Euler cycles from a graph of maximum
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Fig. 5. NSRS-G and NSRTD for rule 253

8 nodes, with maximum out-degree 4. The number of such cycles are of course
finite and is independent of n (length of CA). Finding of all possible self-loops
from the set of cycles is also independent of n (step 4).

Algorithm 2, finds all possible n-length sequence of RMTs following the con-
dition mentioned in step 1. Extraction of each sequence is of O(n) complexity.
The total number of such sequences (number of graphs in NSRTD) depends on
the rule. There can be 2n-number of n-length sequences (corresponding to 2n-
number of fixed point attractors) in worst case. Hence, worst case running time
of this algorithm is exponential. However, for most of the rules, the number of
such sequences are <<2n. The step 2 of Algorithm 2 counts the number of such
sequences p in O(p) time.

In step 1 of Algorithm 3, the time required to compute compatible classes
depends on the maximum number of cycles in LP, and hence, it is independent
of n. For a rule R, finding compatible classes is the one time cost. It is stored
in a dictionary where against each rule there is the set C of compatible classes;
and it is input to Algorithm3. Extraction of sequences in step 2 has the same
time complexity as that of step 1 of Algorithm 2. The steps 3, 4, and 5 count the
number of cycles/sequences and have the same time complexity as that of step
2 of Algorithm 2.

4 SACA Rules

This section reports identification of SACA rules for PBCA out of the 256 ECA
rules. The following properties are to reduce the search space.

Property 3 [9]. A rule R contributes to the formation of single length cycle attrac-
tor(s) if at least one of the RMTs T(0), T(1), T(4) or T(5) belongs to T/0 (that
is, passive), or the RMT T(2), T(3), T(6) or T(7) belongs to T/1 (passive).

Based on this property, the 256 rules are classified in 9 groups (group 0–8)
in [9]. The rule 207 (11001111) is in group 6 as it follows Property 3 for 6 RMTs
(T(7), T(6), T(5), T(4), T(3), and T(2)).

Observation 1. In PBCA, an SACA rule must be unbalanced.
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Observation 2. An SACA rule belongs to either group 4 or group 5.

The above properties reduce the number of candidate SACA rules to 89 [6].

Theorem 1. In uniform periodic boundary SACA, there can be either all 0s
fixed point attractor or all 1s fixed point attractor [6].

Theorem 1 states that the even rules in between 128 and 254, and odd rules
in between 1 and 127 cannot be the SACA rule. This reduces the number of can-
didate SACA rules from 89 to 52. The NSRTD for such 52 rules are constructed
following Algorithm 4 and it identifies 6 SACA rules (Table 3) for n ≥ 3.

Table 3. SACA rules for PBCA

Rule Group Fixed point Property 3 Remarks

Denial

0 4 000000 7, 6, 3, 2 Unbalanced

8 5 000000 7, 6, 2 Unbalanced

64 5 000000 7, 3, 2 Unbalanced

239 5 111111 5, 1, 0 Unbalanced

253 5 111111 5, 4, 0 Unbalanced

255 4 111111 5, 4, 1, 0 Unbalanced

Algorithm 4. FIND SACA RULE IN PBCA (Rule R, NCRs)
Input: Rule R, NCRs for RMTs T(0), T(1), T(2), ..., T(7) forming the sets
NCR0, NCR1, ..., NCR7
Output: Decision on SACA rule

1. Find NSRSs of a cell for rule R
2. Construct NSRS-G
3. (a) Find self loops SL = {SLj | where j = 1, 2, ..., k, k is the number of

self loops in NSRS-G} and multi-length cycles ML = {MLr, where r = 1,
2, ..., p, p is the number of multi-length cycles in NSRS-G};
(b) LP = SL, ML

4. If ML = ∅, then
/*There is no multi-length cycle attractor*/ {

5. Find all unique sequences of RMTs (nodes) Pu of length n, where
Pu = P1u → P2u → P3u ... P(n−2)u → P(n−1)u → Pnu,
such that Piu ∈ SL ∀i and Piu is NCR of P(i−1)u ∀i�=1; P1u is NCR of Pnu;

6. SLA = number of Pus;
7. if SLA = 1, then rule R is an SACA rule

else Exit (return 0) } else {
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8. Find compatibility class C among elements LP1, LP2, ...of LP, where
C = {Cj | Cj is compatible pair (LPk, LPl); LPk and LPl belong to L };
/*(LPk, LPl) is a compatible pair iff
i) LPlq ∈LPl is the NCR of LPkr ∈LPk, and
ii) NSR(LPlq) is NCR(NSR(LPkr)), ∀q*/

9. Find all sequences of RMTs (nodes) Pu of length n, where
Pu = P1u → P2u → P3u → P4u ... P(n−2)u → P(n−1)u → Pnu such that

a) for m=1 to n-1 {
P(m+1)u is an NCR of Pmu, where Pmu ∈LPo, P(m+1)u ∈LPp for some
o and p, and (LPo, LPp)∈C;
PLPm = LP0; LP0 = LPp; }

b) P1u is an NCR of Pnu and (PLPn, PLP1)∈C;
/*PLP1 and PLPn are resulted from (a)*/

10. LPAu = PLP1, PLP2, PLP3, ... PLPn selected in step 2;
11. Number of attractors = number of Pus (n-length)

/*The length of an attractor is the maximum of cycle lengths of
PLPh ∈LPAu for a Pu;

12. if there exists an PLPh ∈LPAu without self-loop for a Pu, then
/*that is, having multi-length cycle in the CA*/
Exit (return 0); else { SLA = number of Pus;

13. if SLA = 1, then rule R is an SACA rule else Exit (return 0) }

5 Conclusion

The property of fixed point attractor CA, is explored in this work. A special
class of irreversible CA, called SACA, has been introduced. The tool referred
to as the NSRTD provides the analytical foundations to synthesize fixed point
attractor CA having a single attractor (SACA).

References

1. Dennunzio, A., Formenti, E., Grinberg, D., Margara, L.: An efficiently computable
characterization of stability and instability for linear cellular automata. J. Comput.
Syst. Sci. 122, 63–71 (2021)

2. Dennunzio, A., Formenti, E., Provillard, J.: Local rule distributions, language com-
plexity and non-uniform cellular automata. Theoret. Comput. Sci. 504, 38–51
(2013)

3. Chaudhuri, P.P., Chowdhury, D.R., Nandi, S., Chatterjee, S.: Additive Cellular
Automata - Theory and Applications, vol. 1. IEEE Computer Society Press, Cali-
fornia, USA (1997)

4. Chopard, B.: Cellular automata and lattice Boltzmann modeling of physical sys-
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Abstract. In today’s world of digital technology revolution, the need for
secure data transmission has become very crucial. Symmetric encryption
algorithms play a very vital role in securing data in almost every appli-
cation. MICKEY is an efficient and compact synchronous stream cipher
designed to be used in resource constrained hardware applications. Even
though the mutual clocking mechanism made it resistant to statistical
attacks, the simple nature of the keystream generation algorithm made
it vulnerable to Differential Fault Attack. This paper proposes a Cel-
lular Automata(CA) based MICKEY stream cipher which strengthens
the cipher against fault attacks. The proposed cipher is resistant to fault
attacks due to the inherent characteristic of CA and has enhanced cryp-
tographic properties when compared to the original version of MICKEY.

Keywords: Stream cipher · Cellular Automata (CA) · Differential
Fault Attack (DFA) · 3-neighbourhood CA · Hybrid CA rules ·
Cryptography · MICKEY

1 Introduction

Nowadays, Internet is widely used in almost all sectors including banking, health
and business sectors. The need for secure data transmission and storage has
become inevitable to avoid cyber attacks. The Internet of Things (IoT) devices
which handle realtime data also needs security. Such devices have limited hard-
ware resources and hence we need to implement cryptographic algorithms that
are fast and lightweight. Stream ciphers are found to be useful in resource -
constrained applications that need faster processing speed. Stream ciphers are
symmetric encryption algorithms that encrypt a bit or byte of plaintext at a time.
The historical stream ciphers were cryptanalysed and the need for the design of
new and secure stream ciphers emerged. eSTREAM [22], the ECRYPT stream
cipher project was intended to design efficient and compact stream ciphers. The
eSTREAM portfolio of stream ciphers are categorized into two profiles - Profile 1
(SW) and Profile 2 (HW). The profile-1 stream ciphers were suitable for software
applications and profile-2 stream ciphers were suitable for hardware applications
that have limited resources like internal storage and/or power consumption.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
B. Chopard et al. (Eds.): ACRI 2022, LNCS 13402, pp. 40–51, 2022.
https://doi.org/10.1007/978-3-031-14926-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14926-9_4&domain=pdf
http://orcid.org/0000-0001-8939-6985
http://orcid.org/0000-0001-7074-090X
https://doi.org/10.1007/978-3-031-14926-9_4


CA Based MICKEY-Like Stream Cipher 41

MICKEY (Mutual Irregular Clocking KEYstream generator) [2], one of the
finalists under profile-2, is a synchronous stream cipher. Several versions of
MICKEY have emerged through the years. The new versions strengthened the
cipher against cryptanlaytic attacks by increasing the size of key, Initialization
Variable (IV) and registers. In this paper, we discuss about MICKEY 128 2.0
which takes 128-bit key and an IV whose length varies from 0 to 128 bits. The
cipher uses a linear and nonlinear shift register each of length 160 bits. As
the name says, MICKEY [2] follows an irregular clocking mechanism where the
clocking of each register is controlled by the other register. This helps to pre-
vent statistical attacks which was prevalent on stream ciphers that used vari-
able clocking method. Later, Banik et al. [4] proposed a differential fault attack
(DFA) on MICKEY and recovered the internal states of the cipher. This moti-
vated us to find techniques to defend the fault attacks with the help of Cellular
Automata (CA), a cryptographic primitive developed by Stephen Wolfram [23].
CA have been considered as an ideal primitive to prevent fault attacks on stream
ciphers [15].

This work proposes a CA based variant of MICKEY which replaces the linear
and nonlinear shift registers of MICKEY with 3-neighbourhood hybrid CA which
makes MICKEY resistant to DFA. The paper is organized as follows, Sect. 2 gives
an introduction to Cellular Automata and MICKEY stream cipher. Section 3
discusses the working of our proposed CA based MICKEY and Sect. 4 discusses
the design rationale of the proposed cipher. In Sect. 5, we discuss about DFA
and how CA has strengthened the cipher against fault attacks. Section 6 gives
the implementation details and statistical analysis followed by the conclusion in
Sect. 7.

2 Preliminaries

Here we give a brief description about the MICKEY 128 2.0 stream cipher,
Cellular Automata and 3-neighbourhood linear and nonlinear CA rules.

2.1 MICKEY-Mutual Irregular Clocking KEYstream Generator

Stream ciphers have been widely used in many applications due to the ease in
implementation, speed and limited error propagation. Most of the modern stream
cipher designs have two phases:- the initialization phase and the keystream gen-
eration phase. During the initialization phase, the key and IV are loaded into
the internal state of the cipher by invoking an updating function for sufficient
number of rounds. This ensures the diffusion of the key and the IV bits. The
keystream generation phase applies a keystream generator function which starts
generating the keystream bits from these internal states. The updating function
is invoked after the generation of each bit which ensures that the internal states
are updated before the generation of the next bit. The design of the updating
function and the keystream generation function plays an important role in the
quality of the generated pseudorandom keystream.



42 A. John and J. Jose

The eSTREAM finalists Grain [10], Trivium [7] and MICKEY [2] made use
of Linear and Nonlinear Feedback Shift Registers in their designs. Among them,
MICKEY followed an irregular clocking mechanism to update the internal states
of the cipher. The first version of MICKEY stream cipher was developed by
Babbage and Dodd in 2005 [2] which was designed to be efficient in resource -
constrained hardware environment. The cipher generates a maximum key length
of 240 bits from a single (key, IV ) pair where the size of key is 80 bits and IV
length varying between 0 and 80 bits. The same IV value must not be reused
with the same key to ensure security.

Working of MICKEY. Here, we discuss about the basic working of MICKEY
128 2.0 [3]. It makes use of two registers R and S. R is a linear feedback shift
register, where ri (0 ≤ i ≤ 159) denotes the ith cell of the R register and S is a
nonlinear feedback shift register, where si (0 ≤ i ≤ 159) denotes the ith cell of the
S register. Initially, the registers are loaded with zeroes. During the initialization
phase, the key and the IV bits are successively used to update the internal state
registers by invoking the initialization function which clocks the registers.

The registers are clocked in two different ways based on a clock control bit
which is set for each register. This is derived from the XOR of different pairs of
state bits, one from each of the registers. The control bit of register R is s54 ⊕
r106 and that of register S is s106 ⊕ r53. The two registers are clocked based on the
value of the control bit during each iteration. This is followed by a preclocking
round which invokes the function for register updates 160 times. This ensures
the diffusion of the key and IV bits at the end of initialization phase.

The initialization phase is followed by the keystream generation phase which
outputs the keystream bit by taking the XOR of r0 and s0. After the genera-
tion of each clock bit, the registers are clocked based on the control bits. The
involvement of cells from both the R and S registers makes the cipher secure
against guess and determine attacks. The detailed working of MICKEY cipher
is available in [3].

2.2 Cellular Automata - An Overview

Cellular Automata (CA) are a lattice of cells that evolve through discrete time
steps. Each cell can be in a finite set of states. The change in state values in each
cell takes place simultaneously based on a transition function or CA rule. The
rules are defined on a neighbourhood N of a cell. The number of cells involved
in the transition function decides the neighbourhood of CA. If the state of a cell
gets updated with the values of its left neighbour, right neighbour and itself, it
is called a 3-neighbourhood CA since the rule is based on the 3 neighbours of a
cell including itself. CA have evolved as a good pseudorandom number generator
[23] and hence a good cryptographic primitive in the design of stream ciphers.
The state of each cell of a CA together at any instant t defines the current state
of the CA. In 3-neighbourhood CA, the value of the cell after one clock cycle
depends on one left neighbour, itself and one right neighbour. The next state of
the ith cell of a 3-neighbourhood CA at any instant t is given by



CA Based MICKEY-Like Stream Cipher 43
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where f is the next state function or rule, St+1
i denotes the next state of the ith

cell, St
i−1 is the current state of left-neighbour, St

i is the current state of the cell
to be updated, St

i+1 is the current state of right-neighbour. The state of a CA
at any time instance is based on the the CA rules. These rules can be classified
as linear and nonlinear rules based on the underlying logical operations used.
The linear CA rules involve only XOR operation while the nonlinear CA rules
involve AND/OR operations in addition to XOR. The number of cells n that
participate in a CA cell update is given by n = 2r + 1, where r is the radius of
the neighbourhood [5]. In a two-state, three-neighbourhood CA, there are 28 =
256 possible rules. When all the cells in the CA use the same rule to update the
state, the CA is called uniform CA while non-uniform CA or hybrid CA refers
to the case where different cells update the state using different rules. Some of
the cryptographically suitable 3-neighbourhood CA rules are rules 30, 90 and
150, where 90 and 150 are linear rules and 30 is a nonlinear rule.

3 Proposed Cipher - CA Based MICKEY

Here, we have proposed a CA based MICKEY which resembles the original
MICKEY in all the functionalities. The following are the modifications that we
have made in our design

1. We have replaced both the R and S shift registers of MICKEY with a hybrid
<30, 60, 90, 120, 150, 180, 210, 240> CA applied alternatively to all the cells. The
combination of linear and nonlinear 3-neighbourhood CA rules used in this
rule set have been suggested in [16] as ”Ruleset 5”. We have used two null-
boundary hybrid CA R and S each having 160 cells. The rules in the rule
set are applied such that r0 works on rule 30, r1 works on rule 60 and so on,
where ri denotes the ith cell of R. The same strategy is followed for the S

register also.
2. In the original version of MICKEY, the nonlinearity was introduced into the

cipher through the S register which makes use of two predefined sequences
COMP0 and COMP1 [3]. In our proposed design, we have eliminated these
sequences. The use of hybrid CA rule set which contains nonlinear CA rules
helps to compensate for this loss without compromising the quality of the
generated keystream.

The cipher proceeds through 2 phases - the initialization phase and the keystream
generation phase. It accepts a 128-bit key and variable length IV, with the length
varying between 0 and 128 bits.

Initialization Phase: Initially, the two CA will be loaded with zeroes. The
key and the IV bits are taken successively and are loaded into the CA. During
each iteration, the state of each cell in the CA gets updated based on its three
neighbouring cells. The CA gets updated while each of the key and IV bits are



44 A. John and J. Jose

loaded into the CA, i.e., for a total of 128 + <IV length> cycles ( 128 is the length
of the key and IV length denotes the length of the IV which is variable). Once
the key and IV bits are fully loaded into the two CA, an additional preclocking
round of 80 cycles is executed. This ensures the diffusion of key and IV bits at
the end of the initialization phase.

The CA update function for both R and S CA which is invoked during
the initialization phase make use of the clock control bits. These control bits
are derived from the XOR of a pair of states of cells, one from each CA. The
functionality of these bits remain the same as in the case of original MICKEY
with the only difference that during each cycle, each of the cells involved in the
control bits will be influenced by its three neighbouring cells.

Keystream Generation Phase: The output keystream bits are generated
during this phase. The first bits of the R and S CA are XORed to get the output
keystream bit zi. i.e., zi = r0 ⊕s0. After the generation of each keystream bit, the
cells in both the CA will get updated depending on the state of its neighbours.
The CA update function that was invoked during the initialization phase is used
during the keystream generation phase also.

We have used the functions CLOCK R CA and CLOCK S CA which intro-
duce the hybrid CA into the cipher. In the algorithms, CA(x) refers to the
output obtained in cell x when the corresponding rule in the hybrid rule set is
applied and zi is the ith output. The clock control bits CONTROLBIT R and
CONTROLBIT S contain bits from both the R and S CA and it controls the
clocking of the respective CA during each iteration. A detailed description of
CLOCK R CA and CLOCK S CA are provided in Algorithms 1 and 2 given in
Appendix. We follow the same steps as in the original MICKEY stream cipher
[3] for all the other functionalities.

4 Design Rationale

This section discusses about the design rationale for the proposed CA
based MICKEY stream cipher. MICKEY stream cipher was vulnerable to
time/memory/data trade-off (TMD) attacks as suggested by Hong and Kim
[13]. This occurs due to the limited updates in the internal state of the cipher
before generating the next output bit. The cipher was also vulnerable to DFA.
Inorder to thwart these attacks, we have suggested the inclusion of CA into the
keystream generator function, so that after the generation of each output bit,
each cell in the CA gets updated based on the state of its neighbouring cells. In
addition, CA helps to diffuse the defects introduced in the cipher which prevents
side channel attacks on the cipher [18].

4.1 Selection of Hybrid CA Rules

Choice of Rules: The choice of rules used in any CA based stream cipher plays
an important role in the strength of the cipher against cryptanalytic attacks.
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Some of the most commonly used elementary CA rules in cryptographic appli-
cations are rules 30, 90 and 150, where 90 and 150 are linear rules and 30 is a
nonlinear rule. The linear rules provide randomness, but are susceptible to linear
cryptanalysis. Nonlinear CA rules, on the other hand, do not have good pseu-
dorandom properties, but have high algebraic degree making them resistant to
linear cryptanalysis [6]. So, the construction of hybrid rule sets that contain both
linear and nonlinear rules helps to utilize the good properties of each set of rules
making them a strong primitive to be used in cryptographic applications. This
was investigated in [16] through a newly developed statistical measure called d-
monomial test which was introduced in [9]. Karmakar et al. applied this test to
CA configurations to assess their pseudorandom properties in addition to other
properties like nonlinearity, algebraic degree and resiliency. They have suggested
6 hybrid CA rule sets which contained rule 30 in all of them in addition to other
linear and nonlinear rules. They conducted the d-monomial test on all these rule-
sets and the ruleset <30, 60, 90, 120, 150, 180, 210, 240> was considered better than
the others. The same ruleset have been used by them in the design of CAvium
[17], a CA based variant of Trivium [7]. The ruleset was also found to be a good
pseudorandom sequence generator in [18].

As a first step of the introduction of CA into the original MICKEY, we
have restricted ourselves to the use of 3-neighbourhood CA to make it hardware
efficient. We do not rule out the option of using higher radii CA where we can
use the hybrid ruleset of radius-2 as selected in [14].

Choice of Number of Pre-clocking Cycles: During the initialization phase
of the cipher, each key and IV bits are loaded into the CA successively. The
CAs have executed for atleast 128 cycles to a maximum of 256 cycles, since the
length of the key is 128 and IV length varies from 0 to 128 bits. Once the key
and IV bits are loaded, both the CA are mixed through the pre-clocking round
which runs for 80 cycles. Due to the inherent nature of CA, after t cycles, each
CA cell depends on 2t+ 1 neighbouring cells if they exist. Moreover, the mutual
clocking function invoked during each of these cycles enhance the diffusion of key
and IV bits which is an important factor in the design of stream ciphers. From
a theoretical standpoint, the key and IV loading, together with the preclocking
round, blends the key and IV bits together at the end of initialization phase.

5 Security Analysis and Resistance of CA Based
MICKEY to DFA

5.1 Differential Fault Attack on MICKEY

Differential Fault Attack (DFA) is a side channel attack in which the attacker has
control on the hardware that implements the cryptosystem. The attacker tries to
inject faults into the hardware and produce faulty output. The fault free output
will also be available. The faulty and the fault free keystream bits produced are
compared to extract the details about the internal state of the cipher which can
be used to deduce information about the secret key used in the cipher. DFA have
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been implemented on all the profile-2 eSTREAM finalists Grain, Trivium and
MICKEY [8,12,19]. MICKEY family of ciphers were found to be vulnerable to
fault attacks [4,19]. Even though the mutual irregular clocking makes the attack
more difficult when compared to the fault attacks on other eSTREAM candidates
Grain and Trivium, the simple nature of the output function of MICKEY opens
avenues for the attack.

The DFA on MICKEY cipher in [19] proceeds in two phases - The first phase
is determining the position of fault. The output keystream bit zi is dependent
on r0 and s0. Since r0(i) is dependent on r159(i − 1), the fault induced will prop-
agate and give a different output. Due to the mutual clocking mechanism, the
fault difference may not be a constant since the bit in the S register in the
CONTROL BIT R is also involved in the R register update. This is followed by
obtaining and solving linear equations from the identifiable fault locations. The
detailed description of the attack and the closed form of the equations are given
in [19].

Role of CA to Resist DFA: CA have been considered effective in the preven-
tion of fault attacks on stream ciphers [15]. It was found that the incorporation
of CA into the cipher helps in faster diffusion of bits which makes the DFA
computationally infeasible on the cipher. Here, we provide only a sketch of the
proof, where we show the effect of CA by using the closed form of equations
mentioned in [19], while a rigorous one is possible.

The equations of the state update function of R and S in CA based MICKEY
can be expressed as follows

rk(i) = (k > 0)CA(rk(i − 1)) + (k ∈ RTAPS)CA(r159(i − 1))

+ (CA(s54(i − 1)) + CA(r106(i − 1)))CA(rk(i − 1)) (1)

sk(i) = (k > 0)CA(sk(i − 1)) + (0 < k < 159)CA(s159(i − 1))FB0k

+ CA(s159CA(s106))(FB0kFB1k)+CA(s159(i− 1))CA(r53(i− 1))(FB0k +FB1k)

(2)

z(i) = r0(i) + s0(i) (3)

The output bit during the 2nd iteration of MICKEY is expressed as

z1 = r159 ⊕ r0 · s54 ⊕ r0 · r106 ⊕ s159 (4)

The output bit during the 2nd iteration of CA based MICKEY can be
expressed as

z1 = CA(r159) ⊕ CA(r0) · CA(s54) ⊕ CA(r0) · CA(r106) ⊕ CA(s159) (5)

which can be expressed as

r158 ⊕ r0 · r105 · r107 ⊕ r1 · r105 · r107 ⊕ s53 · s55 · r105 · r107
⊕ s55 · r105 · r107 ⊕ s54 · r105 · r107 ⊕ s158
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We can observe that during the 2nd iteration of our design, the number of
bits involved in the output bit generation is more when compared to original
MICKEY. In original MICKEY, only CLOCK S function introduced nonlinear-
ity, while CLOCK R function updated the register linearly. This leads to slow
growth of properties like algebraic degree and nonlinearity which are the essen-
tial cryptographic properties needed for a good stream cipher [24]. In CA based
MICKEY, we have used hybrid rule set in both the update operations. This helps
in faster growth of algebraic degree and nonlinearity during the initial iterations
itself.

In the proposed design, the fault position determination will be difficult since
the fault induced at one position will not be moving as in the case of a shift
register. The fast diffusion property of CA thwarts the attempt to find the fault
position. The effect of propagation will be affecting the control bits which inturn
makes the task of fault position determination more difficult. When the fault
position determination phase fails, the second phase of obtaining equations will
also fail. Moreover, in our CA based MICKEY we are using hybrid rule set in
both CLOCK R CA and CLOCK S CA functions. So, the underlying equations
during these operations contain nonlinear terms which thwarts the attempt to
solve the obtained equations and find the inner state of the cipher.

In CLOCK S CA function, we have avoided the predefined sequences
COMP0 and COMP1 whose predefined values were utilized during the DFA.
The replacement of these sequences with hybrid CA enhances the security, since
after each iteration, the bits involved will be based on the CA rules applied on
the state bits and this makes the task of obtaining equations through the already
known sequences difficult.

6 Software Implementation and Results

The proposed cipher was implemented in C and compiled using gcc 7.5.0. The
code was run on on an Intel(R) Core(TM)-i3 1005G1 CPU @ 1.20 Gz. The time
for computing 1 million and 100 million keystreams were computed. We analysed
the pseudorandom properties of the keystream generated using NIST test suite
[1] developed by National Institute of Standards and Technology (NIST) for
testing the randomness of the binary sequence of arbitrary length. This suite
consists of a set of 15 tests which assess the quality of a bitstream. For these
tests, each P-value is the probability that a perfect random number generator
would have produced a sequence less random than the sequence that was tested,
given the kind of non-randomness assessed by the test [1]. If the P-value for a
test is determined to be equal to 1, then the sequence appears to have perfect
randomness and a P-value of zero indicates the non-randomness of the cipher.
We have given 10 million keystream bits generated by CA based MICKEY and
the results show that the keystream generated is random which adds to the
strength of the cipher against statistical attacks. Table 1 shows the NIST test
suite results of our cipher.
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Table 1. CA based MICKEY NIST TEST RESULTS

Sl. No. Test name P-value Status

1 Frequency 0.514124 Pass

2 Block frequency 0.657933 Pass

3 Cumulative sums 0.637119 Pass

4 Runs 0.289667 Pass

5 Longest run 0.171867 Pass

6 Rank 0.401199 Pass

7 FFT 0.145326 Pass

8 Non overlapping template 0.595549 Pass

9 Overlapping template 0.366918 Pass

10 Universal 0.304126 Pass

11 Approximate entropy 0.723129 Pass

12 Random excursions 0.875539 Pass

13 Random excursions variant 0.474986 Pass

14 Serial 0.946308 Pass

15 Linear complexity 0.924076 Pass

Cryptographic Properties of CA Based MICKEY: Some of the most
important cryptographic properties for Boolean functions are algebraic degree,
balancedness, resiliency and nonlinearity. We have found the cryptographic prop-
erties of MICKEY and CA based MICKEY and are given in Table 2. Table 3
shows the comparison of parameters between MICKEY and CA based MICKEY.

Table 2. Comparison of cryptographic properties

Iteration Balancedness Nonlinearity Algebraic degree Resiliency

MICKEY

1 Balanced 0 1 1

2 Balanced 8 2 1

CA based MICKEY

1 Balanced 0 1 1

2 Balanced 64 4 1
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Table 3. Comparison of MICKEY and CA based MICKEY

Cipher Keysize IV size State

size

Initialization

cycles

Time taken in seconds

Initialization

time

KeyGeneration time

106 bits 108 bits

MICKEY 128

2.0

128 0–128 bits 320 159 0.001465 3.914 266.656

CA based

MICKEY

80 0–128 bits 320 80 0.002028 5.17 475.281

7 Conclusion and Future Work

This paper proposes a CA based MICKEY-like stream cipher. The cipher was
one of the finalists of the eSTREAM project and is efficient as well as compact.
But the simple nature of the cipher made it vulnerable to fault attacks. The
intention of this work is to make the cipher strong against fault attacks by using
the CA primitive. Here, we have incorporated 3-neighbourhood null-boundary
hybrid CA replacing the shift registers of the original MICKEY cipher with lesser
number of initialization cycles compared to original MICKEY. The addition of
CA primitive has not only strengthened MICKEY against fault attacks, but
has also strengthened the cryptographic properties like algebraic degree and
nonlinearity. As a future work, we plan to explore the advantages of incorporating
5-neighbourhood CA into MICKEY. Another direction of research is in the use
of asynchrony-immune CA [20,21] in the cipher which resists clock based fault
attacks [11] on stream ciphers.

Appendix

Algorithm for CA Based MICKEY

Algorithm 1: CLOCK R CA(R, INPUT BIT R, CONTROL BIT R)
Let r0, r1, ... , r159 be the state of the CA before clocking, and let r0 ,́ r1 ,́ ... , r

′
159 be the

state of the CA after clocking.
FEEDBACK BIT = r159 ⊕ INPUT BIT R
for i ← 1 to 159 do

r
′
i = CA(ri); // Addition of CA

for i ← 0 to 159 do
if i ∈ RTAPS then

r
′
i = r

′
i ⊕ FEEDBACK BIT

if CONTROL BIT R = 1 then
for i ← 0 to 159 do

r
′
i =r

′
i ⊕ ri
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Algorithm 2: CLOCK S CA(S, INPUT BIT S, CONTROL BIT S)
Let s0, s1, ... , s159 be the state of the CA before clocking, and let s

′
0, s

′
1, ... , s

′
159 be the

state of the CA after clocking. Let s”0, s
”
1, ... , s

”
159 denote the intermediate values

FEEDBACK BIT = s159 ⊕ INPUT BIT S
for i ← 1 to 159 do

s
′
i = CA(si) ; // Addition of CA

if CONTROL BIT S = 0 then
for i ← 0 to 159 do

s
′
i = s”i ⊕(FB0i, FEEDBACK BIT)

else
if CONTROL BIT S = 1 then

for i ← 0 to 159 do

s
′
i = s”i ⊕(FB1i, FEEDBACK BIT)
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12. Hojśık, M., Rudolf, B.: Differential fault analysis of Trivium. In: Nyberg, K. (ed.)
FSE 2008. LNCS, vol. 5086, pp. 158–172. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-71039-4 10

13. Hong, J., Kim, W.-H.: TMD-tradeoff and state entropy loss considerations of
streamcipher MICKEY. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.)
INDOCRYPT 2005. LNCS, vol. 3797, pp. 169–182. Springer, Heidelberg (2005).
https://doi.org/10.1007/11596219 14

14. John, A., Nandu, B.C., Ajesh, A., Jose, J.: PENTAVIUM: potent Trivium-like
stream cipher using higher radii cellular automata. In: Gwizda�l�la, T.M., Man-
zoni, L., Sirakoulis, G.C., Bandini, S., Podlaski, K. (eds.) Cellular Automata: 14th
International Conference on Cellular Automata for Research and Industry, ACRI
2020, Lodz, Poland, December 2–4, 2020, Proceedings, pp. 90–100. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-69480-7 10

15. Jose, J., Das, S., Roychowdhury, D.: Prevention of fault attacks in cellular
automata based stream ciphers. J. Cell. Autom. 12(1–2), 141–157 (2016)

16. Karmakar, S., Mukhopadhyay, D., Roy Chowdhury, D.: d-monomial tests of non-
linear cellular automata for cryptographic design. In: Bandini, S., Manzoni, S.,
Umeo, H., Vizzari, G. (eds.) ACRI 2010. LNCS, vol. 6350, pp. 261–270. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15979-4 28

17. Karmakar, S., Mukhopadhyay, D., Roychowdhury, D.: Cavium - strengthening triv-
ium stream cipher using cellular automata. J. Cellular Automata 7(2), 179–197
(2012). http://www.oldcitypublishing.com/JCA/JCAabstracts/JCA7.2abstracts/
JCAv7n2p179-197

18. Karmakar, S., Chowdhury, D.R.: Countermeasures of side channel attacks on sym-
metric key ciphers using cellular automata. In: Sirakoulis, G.C., Bandini, S. (eds.)
ACRI 2012. LNCS, vol. 7495, pp. 623–632. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-33350-7 64

19. Karmakar, S., Roychowdhury, D.: Differential fault analysis of mickey-128 2.0.
In: 2013 Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 52–59
(2013). https://doi.org/10.1109/FDTC.2013.8

20. Mariot, L.: Asynchrony immune cellular automata. In: El Yacoubi, S., Was, J.,
Bandini, S. (eds.) ACRI 2016. LNCS, vol. 9863, pp. 176–181. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-44365-2 17

21. Mariot, L., Manzoni, L., Dennunzio, A.: Search space reduction of asynchrony
immune cellular automata. Nat. Comput. 19(2), 287–293 (2020). https://doi.org/
10.1007/s11047-020-09788-1

22. Robshaw, M.: The eSTREAM project. In: Robshaw, M., Billet, O. (eds.) New
Stream Cipher Designs. LNCS, vol. 4986, pp. 1–6. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-68351-3 1

23. Wolfram, S.: Random sequence generation by cellular automata. Adv. Appl. Math.
7(2), 123–169 (1986). https://doi.org/10.1016/0196-8858(86)90028-X

24. Wu, C.-K., Feng, D.: Boolean Functions and Their Applications in Cryptography.
ACST, Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-48865-2

https://doi.org/10.1007/978-3-540-28632-5_18
https://doi.org/10.1007/978-3-540-71039-4_10
https://doi.org/10.1007/978-3-540-71039-4_10
https://doi.org/10.1007/11596219_14
https://doi.org/10.1007/978-3-030-69480-7_10
https://doi.org/10.1007/978-3-642-15979-4_28
http://www.oldcitypublishing.com/JCA/JCAabstracts/JCA7.2abstracts/JCAv7n2p179-197
http://www.oldcitypublishing.com/JCA/JCAabstracts/JCA7.2abstracts/JCAv7n2p179-197
https://doi.org/10.1007/978-3-642-33350-7_64
https://doi.org/10.1007/978-3-642-33350-7_64
https://doi.org/10.1109/FDTC.2013.8
https://doi.org/10.1007/978-3-319-44365-2_17
https://doi.org/10.1007/s11047-020-09788-1
https://doi.org/10.1007/s11047-020-09788-1
https://doi.org/10.1007/978-3-540-68351-3_1
https://doi.org/10.1016/0196-8858(86)90028-X
https://doi.org/10.1007/978-3-662-48865-2


On the Linear Components Space
of S-boxes Generated by Orthogonal

Cellular Automata

Luca Mariot1(B) and Luca Manzoni2

1 Digital Security Group, Radboud University,
PO Box 9010, Nijmegen, The Netherlands

luca.mariot@ru.nl
2 Department of Mathematics and Geosciences,

University of Trieste, Via Valerio 12/1, Trieste, Italy

lmanzoni@units.it

Abstract. We investigate S-boxes defined by pairs of Orthogonal Cellu-
lar Automata (OCA), motivated by the fact that such CA always define
bijective vectorial Boolean functions, and could thus be interesting for the
design of block ciphers. In particular, we perform an exhaustive search
of all nonlinear OCA pairs of diameter d = 4 and d = 5, which generate
S-boxes of size 6×6 and 8×8, respectively. Surprisingly, all these S-boxes
turn out to be linear, and thus they are not useful for the design of confu-
sion layers in block ciphers. However, a closer inspection of these S-boxes
reveals a very interesting structure. Indeed, we remark that the linear
components space of the OCA-based S-boxes found by our exhaustive
search are themselves the kernels of linear CA, or, equivalently, poly-
nomial codes. We finally classify the polynomial codes of the S-boxes
obtained in our exhaustive search and observe that, in most cases, they
actually correspond to the cyclic code with generator polynomial Xb+1,
where b = d−1. Although these findings rule out the possibility of using
OCA to design good S-boxes in block ciphers, they give nonetheless some
interesting insights for a theoretical characterization of nonlinear OCA
pairs, which is still an open question in general.

Keywords: S-boxes · Boolean functions · Cellular automata ·
Orthogonal Latin squares · Polynomial codes · Cyclic codes

1 Introduction

Substitution Boxes (most often referred to as S-boxes) are mappings of the form
F : {0, 1}n → {0, 1}m, i.e. vectorial Boolean functions that evaluate n-bit vectors
in input, and give m-bit vectors in output. S-boxes play a fundamental role in the
design of block ciphers, most notably in the so-called Substitution-Permutation
Network (SPN) paradigm [1]. There, S-boxes are used to implement the con-
fusion layer of the cipher, whose role is to make the relationship between the
ciphertext and the encryption key as “complicated” as possible. Typically, an
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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SPN cipher uses an S-box with n = m, where n is much smaller than the block
length. For instance, the Rijndael cipher (standardized by the NIST as the
AES encryption algorithm) is based on an 8 × 8 S-box which is evaluated in
parallel over sub-blocks of a 128-bit plaintext block [2]. In particular, this S-box
computes the multiplicative inverse of an element over the finite field F23 . The
128-bit block resulting from this parallel application of the S-box is then fed to
the permutation layer, which diffuses the information in a non-local way.

Other than the one used in Rijndael, many other S-boxes of different
sizes and defined by different operations have been considered in the literature.
The choice of a specific S-box mainly depends on the security and efficiency
requirements for a particular cipher. For example, lightweight ciphers such as
Present [3] and Rectangle [4] employ small 4 × 4 S-boxes, since they are
designed for very efficient hardware implementations.

Among the different approaches used to define good S-boxes, Cellular
Automata (CA) are one of the most interesting, since they can provide a
good trade-off between security and efficiency. Indeed, CA can be seen as shift-
invariant functions, where the same local rule is applied in each output coordi-
nate function. This enables a simple and compact implementation both in hard-
ware and software. The most notable example of a symmetric cryptographic
primitive that uses a CA-based S-box is Keccak [5], which has been selected
by the NIST in 2012 as the new SHA-3 standard for cryptographic hash func-
tions [6]. In particular, the confusion layer of Keccak is a 5 × 5 S-box defined
by the elementary CA χ, which corresponds to rule 210 in Wolfram’s number-
ing convention. Beside their use in Keccak, the body of research related to
CA-based S-boxes is quite extensive. The common thread in these work is to
consider a CA as a particular kind of vectorial Boolean function, which is then
either iterated for multiple time steps as a dynamical system [7–11] or evaluated
only once, as in Keccak [12–14].

In this work, we consider a different approach to design S-boxes, namely lever-
aging on orthogonal CA (OCA). Two CA are called orthogonal if their Cayley
tables define a pair of orthogonal Latin squares [15]. Beside defining an invertible
transformation—which is necessary for decryption—the use of orthogonal Latin
squares also ensures a certain amount of diffusion, since they are equivalent to
(2, 2)−multipermutations [16]. Therefore, S-boxes defined by orthogonal Latin
squares can provide both good diffusion and confusion, provided that their non-
linearity is high enough. In this regard, while the theory of linear OCA is well
developed [17], significantly less is known about nonlinear OCA [18].

Given a pair of OCA defined by two local rules of diameter d, we first give
a formal description of the associated S-box of size n × n, where n = 2b =
2(d − 1). This basically amounts to use the output of the first (respectively, the
second) CA as the left (respectively, right) b output bits of the S-box. Next, we
perform an exhaustive search of all OCA of diameter d = 4 and d = 5, which
correspond respectively to S-boxes of size 6×6 and 8×8, with the goal of finding
those with the best nonlinearity. Quite surprisingly, we remark that all these S-
boxes are linear, even if the respective OCA are defined by nonlinear local rules.
Since the nonlinearity of an S-box is defined as the minimum nonlinearity of
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its component functions, it follows that the S-boxes found by our exhaustive
search always have at least one linear component. It is a well-known fact that
the set of linear components in a linear S-box is a vector space over the finite
field F2. Therefore, we investigate the linear components spaces of the S-boxes
generated in our experiments, and remark that they are polynomial codes. The
interesting aspect of this finding is that the generator matrix of a polynomial
code is the transition matrix of a linear CA. Equivalently, this means that the
linear components space of a linear S-box defined by a pair of nonlinear OCA is
itself the kernel of a linear CA. We conclude our investigation by classifying the
OCA-based S-boxes generated in our exhaustive search experiments in terms
of the generator polynomials of their linear components spaces. Interestingly,
for most S-boxes the linear components space is the cyclic code defined by the
generator polynomial Xb + 1. This corresponds to the situation where the two
CA local rules share the same nonlinear terms in their algebraic normal form.
Consequently, each component function that sums only the coordinates i and
i + b is linear, for all 1 ≤ i ≤ b.

Overall, the experimental findings of this paper rule out the possibility of
using OCA to design good S-boxes for symmetric primitives. Nonetheless, the
coding-theoretic structure of the linear component spaces unveiled here could be
useful to give a theoretical characterization of certain classes of nonlinear OCA
pairs. To this end, we mention in the conclusions of this paper some directions
and ideas that we plan to pursue for future research on this topic.

2 Basic Definitions

We start by introducing all necessary background definitions and results used
throughout the paper. For a systematic treatment of the part on (vectorial)
Boolean functions, we refer the reader to Carlet’s recent book [19]. For orthog-
onal CA, we follow the notation in [17]. The recent chapter [20] gives a general
overview of the applications of CA to cryptography.

2.1 Cryptographic Boolean Functions and S-boxes

In what follows, we denote by F2 = {0, 1} the finite field with two elements,
with sum and multiplication defined, respectively, as the XOR (denoted by ⊕)
and logical AND (denoted by concatenation) of two elements. Given n ∈ N,
the n-dimensional vector space of all n-bit strings is denoted by F

n
2 . The sum

between two vectors x, y ∈ F
n
2 is defined as their bitwise XOR (and, slightly

abusing notation, still denoted as x⊕ y), while multiplication of a vector x ∈ F
n
2

by a scalar a ∈ F2 is the field multiplication of each coordinate of x by a. In
particular, this implies that two vectors x, y ∈ F

n
2 are linearly independent if

and only if x �= y. Further, the dot product of two vectors x, y ∈ F
n
2 is defined as

x · y =
⊕n

i=1 xiyi, while their Hamming distance dH(x, y) = |{i : xi �= yi}| is the
number of coordinates where x and y disagree. The Hamming weight wH(x) of
x ∈ F

n
2 is the Hamming distance between x and the null vector 0, or, equivalently,

the number of ones in x.
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An n-variable Boolean function is a mapping F
n
2 → F2. Since F

n
2 is finite, the

most obvious way to uniquely represent f is to specify its truth table, which is
the 2n-bit vector Ωf = (f(0, · · · , 0), · · · , f(1, · · · , 1)). In other words, the truth
table specifies the output value of f for each possible input vector, in lexico-
graphic order. The function f is called balanced if and only if Ωf has an equal
number of zeros and ones, which is a basic property for Boolean functions used
in cryptographic applications. A second common method to uniquely represent
a Boolean function is the algebraic normal form (ANF). Remarking that x2 = x
for all x ∈ F2, the ANF of f is the multivariate polynomial in the quotient ring
F2[x1, · · · , xn]/[x2

1 ⊕ x1, · · · , x2
n ⊕ xn] defined as:

Pf (x) =
⊕

u∈Fn
2

auxu =
⊕

u∈Fn
2

auxu1
1 xu2

2 . . . xun
n , (1)

where au ∈ F2 for all u ∈ F
n
2 . The algebraic degree of f is formally defined as

deg(f) = maxu∈F
n
2
{wH(u) : u �= 0}. Intuitively, the degree of f is simply the size

of the largest nonzero monomial in the ANF of f . Functions of degree 1 are also
called affine, and an affine function is called linear if a0 = 0 (i.e., the ANF of f
does not have any constant term). Nonlinear functions are simply those of degree
higher than 1. The nonlinearity of a Boolean function f : Fn

2 → F2 corresponds
to the minimum Hamming distance of its truth table from the set of truth tables
of all n-variable affine functions. Formally, this can be determined in terms of
the Walsh transform of f , which is the mapping Wf : Fn

2 → Z defined as:

Wf (a) =
∑

x∈F
n
2

(−1)f(x)⊕a·x, , (2)

for all a ∈ Fn
2 . Then, the nonlinearity of f equals

nl(f) = 2n−1 − 1
2

max
a∈F

n
2

{|Wf (a)|} . (3)

As a cryptographic criterion, the nonlinearity of Boolean functions used in
stream and block ciphers should be as high as possible to withstand fast-
correlation attacks and linear cryptanalysis, respectively.

The treatment above is generalized to the vectorial case as follows. Given
n,m ∈ N, an (n,m)-function (or S-box ) is a vectorial mapping F : Fn

2 → F
m
2 ,

which is defined by the set of its coordinate functions fi : Fn
2 → F2 that represent

the i-th output bit of F for all i ∈ {1, · · · ,m}. The component functions of F
are the non-trivial linear combinations of its coordinate functions. A component
function is defined by a vector v ∈ F

n
2 \ {0} as the dot product v · F (x) for all

x ∈ F
n
2 . Many block ciphers employ S-boxes with an equal number of inputs

and outputs, which is also the focus of this paper. When n = m, the concept
analogous to balancedness in S-boxes is bijectivity : indeed, a (n, n)-function is
bijective if and only if all its component functions are balanced. Bijective S-boxes
are necessary for decryption in SPN ciphers. The algebraic degree of an S-box
F : Fn

2 → F
m
2 is defined as the maximum degree of all its coordinate functions.
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On the other hand, the nonlinearity of F is the minimum nonlinearity of all
its component functions. Therefore, there can be S-boxes with degree higher
than 1 which are nonetheless linear: it sufficies that a single non-trivial linear
combination of coordinates gives an affine function. It is also easy to see that
the set LF = {v ∈ F

m
2 \ {0} : nl(v · F ) = 0} of all linear component functions of

an S-box F is a subspace of Fm
2 . As a matter of fact, if two functions are affine,

their sum must be affine too. We will call LF the linear components space (LCS)
of F .

2.2 Orthogonal CA

A cellular automaton (CA) is characterized by a regular lattice of cells, where
the state of each cell is determined by the application of an update rule over the
cell’s neighborhood. Most of the research related to CA focuses on the long-term
behavior of the dynamical system arising from the iteration of the update rule
for multiple time steps. Here, on the other hand, we consider CA as a particular
kind of vectorial Boolean functions, as per the following definition:

Definition 1. Let d, n ∈ N such that d ≤ n, and let b = d − 1. A no-boundary
cellular automaton with local rule f : F

d
2 → F2 of diameter d is a vectorial

Boolean function F : Fn
2 → F

n−b
2 whose i-th coordinate is defined as:

F (x1, · · · , xn)i = f(xi, · · · , xi+b) (4)

for all i ∈ {1, · · · , n − b} and x ∈ F
n
2 .

In other words, each output coordinate Fi corresponds to the local rule f applied
to the i-th input cell and the b cells to its right. The “no-boundary” specification
stems from the fact that we apply the local rule as long as we have enough right
neighbors, that is until i = n − b. The fact that the cellular lattice “shrinks”
after evaluating F does not pose an issue, since as mentioned above we are only
interested in the one-shot application of a CA rather than on its dynamical
behavior. Hence, we do not need to consider boundary conditions.

A Latin square of order N ∈ N is a N × N square matrix L where each rows
and columns are permutation of [N ] = {1, · · · , N}. Two Latin squares L1, L2

of order N are said to be orthogonal if their superposition yields all possible
pairs in the Cartesian product [N ]× [N ] exactly once. Orthogonal Latin squares
are combinatorial designs with several applications in cryptography and coding
theory, most notably secret sharing schemes and MDS codes [21]. Eloranta [22]
and Mariot et al. [23] independently proved that a CA equipped with bipermutive
local rule can be used to define a Latin square. A local rule f : F

d
2 → F2 is

called bipermutive if it can be written as the XOR of the leftmost and rightmost
variables with a generating function of the d−2 central ones, i.e. f(x1, · · · , xd) =
x1 ⊕ g(x2, · · · , xb)⊕xd, with g : Fd−2

2 → F2. Then, a CA F : F2b
2 → F

b
2 equipped

with such a local rule f corresponds to a Latin square of order N = 2b. The
idea is to use the left and right b input cells of F respectively to index the rows
and the columns of a 2b × 2b square, and then take the output of the CA as the
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entry of the square at those coordinates. A pair of orthogonal CA (OCA) is a
pair of CA F,G : F2b

2 → F
b
2 defined by bipermutive rules f, g : Fd

2 → F2 such that
the corresponding Latin squares of order 2b are orthogonal. The authors of [23]
that two CA with linear bipermutive local rules are orthogonal if and only if the
associated polynomials are coprime. Following our notation above on Boolean
functions, a linear bipermutive rule is defined by a vector a = (1, a2, · · · , ab, 1) as
f(x1, · · · , xd) = x1 ⊕ a2x2 ⊕ · · ·⊕ abxb ⊕xd for all x ∈ F

d
2. Then, the polynomial

associated to f is the monic polynomial Pf (X) ∈ F2[X] of degree b defined as
Pf (X) = 1+ a2X + · · ·+ abX

b−1 +Xb. Stated otherwise, we use the coefficients
of a as the coefficients of the increasing powers of the indeterminate X in Pf (X).

The authors of [17] expanded on the previous results of [23] by further provid-
ing counting results for the number of linear OCA and an optimal construction
of families of mutually orthogonal CA (MOCA), i.e. sets of CA that are pairwise
orthogonal. The great amount of theory developed for linear OCA [17,23–27]
contrasts with what little is known about the nonlinear setting. From a theoret-
ical point of view, only a necessary condition on the local rules of two nonlinear
OCA is currently known [18], and an inversion algorithm for the configurations of
nonlinear OCA has been proposed in [15]. The authors of [28] also used evolution-
ary algorithms to evolve pairs of nonlinear OCA. However, to date a theoretical
characterization of nonlinear OCA similar to the linear case is still missing.

3 S-boxes Based on OCA

Given a bipermutive local rule f : F
d
2 → F2 of diameter d = b + 1, one can

interpret the corresponding CA F : F2b
2 → F

b
2 both as a Latin square of order 2b

and as a (2b, b)-function. However, as we mentioned in Sect. 2.1 the S-boxes used
in SPN ciphers need to have the same number of inputs and outputs. To this
end, our approach is to define a (n, n)-function where n = 2b by using two OCA
F,G : F2b

2 → F
b
2 respectively defined by two d-variable bipermutive local rules

f, g : Fd
2 → F2. In particular, we define the S-box H : Fn

2 → F
n
2 for all x ∈ F

n
2

as H(x) = F (x)||G(x), where || denotes the concatenation of the two operands.
In other words, we evaluate the input x both under the CA F and G, thereby
obtaining two output vectors of length b each, and then we concatenate them to
get an output of length n = 2b. The formal definition of H(x) in full is thus:

H(x) = (f(x1, · · · , xd), · · · , f(xb, · · · , xn), g(x1, · · · , xd), · · · , g(xb, · · · , xn)) .
(5)

At this point, the reader might wonder why one would go to the trouble of defin-
ing an S-box in this way, instead of using a single CA with periodic boundary
conditions, as done in most of the related literature (e.g., [2,7,13,14]). Analo-
gously to the work done in [26], where OCA are considered for the design of
pseudorandom number generators, the motivation is twofold:

1. The fact that F and G are OCA means that the superposed Latin squares
are orthogonal, or equivalently they define a permutation over the Cartesian
product [2b] × [2b], which is isomorphic to F

b
2 × F

b
2. Hence, the S-box H in
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Equation (5) is bijective, since it is simply the concatenation of the outputs
of F and G, and F

n
2 is in turn isomorphic to F

b
2 × F

b
2, as n = 2b. As we

discussed before, bijectivity is necessary for decryption in SPN ciphers, and
this condition is not guaranteed by generic S-boxes defined by single CA.

2. The bijection induced by two Orthogonal Latin squares L1, L2 (and thus
by two OCA) have the peculiar property of being (2, 2)-multipermutations.
As shown by Vaudenay [16], this provides an optimal amount of diffu-
sion between 4-tuples formed by pairs of inputs and outputs. Concern-
ing the OCA S-box H defined in Equation (5), this means that for all
x, x′, y, y′ ∈ F

b
2 such that (x, y) �= (x′, y′), the tuples (x, y, F (x||y), G(x||y))

and (x′, y′, F (x′||y′), G(x′||′y)) always disagree on at least 3 coordinates.

Clearly, the S-box H associated to two linear OCA is also linear: indeed, any
linear combination of linear coordinates will always yield a linear component
functions. Therefore, one cannot use the theoretical characterization in terms of
coprime polynomials of [17] in order to get good S-boxes.

For this reason, we set out to investigate the nonlinearity of S-boxes of the
form (5) defined by nonlinear OCA. We performed an exhaustive search of all
distinct pairs of bipermutive local rules of diameters d = 4 and d = 5, which
corresponds to S-boxes H : Fn

2 → F
n
2 with n = 6 and n = 8, respectively. Since

the set of all bipermutive rules of diameter d is composed of 22
d−2

elements, the
sizes of the explored search spaces are respectively (22

2 · (22
2 − 1))/2 = 120 for

d = 4 and (22
3 · (22

3 − 1))/2 = 32640 for d = 5. We did not consider higher
diameters because the size of the search space grows super-exponentially in the
diameter of the local rules, making an exhaustive search unfeasible already for
d ≥ 7. This leaves out the case of diameter d = 6 (i.e. n = 10), which we
discarded anyway since S-boxes of sizes larger than n = 8 are seldom used in
SPN ciphers [19]. Further, we did not consider diameter d = 3 (n = 4) since it
is already known that there are only linear OCA pairs in that case [18].

For each pair f, g : Fd
2 → F2 of bipermutive rules visited by our exhaustive

search, we first computed their nonlinearity, discarding them if they were both
linear. Otherwise, we generated the corresponding CA F,G : F

2b
2 → F

b
2 and

checked if they were orthogonal. If so, we further defined the associated S-box
H : Fn

2 → F
n
2 and determined its nonlinearity.

Much to our surprise, all S-boxes obtained in this way turned out to be linear,
both for diameter d = 4 and d = 5, even if we only considered nonlinear OCA
pairs. Hence, for each of these S-boxes there is at least one linear combination
of coordinate functions which results in an affine function. Table 1 reports the
classification of the obtained S-boxes for each diameter d, with nl(f, g) denoting
the nonlinearity of the underlying local rules f and g, #OCA the total number
of nonlinear OCA pairs for that nonlinearity, dim the LCS dimension of the
corresponding S-box H, and #dim the number of S-boxes whose LCS have that
dimension. One can see from the table that for d = 4 all S-boxes have LCS
dimension d − 1. The same happens also for S-boxes of diameter d = 5 defined
by local rules with nonlinearity 4. For nonlinearity 8, there 704 out of 768 with
LCS dimension d − 1, while the remaining 64 have LCS dimension d − 2.
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Table 1. Classification of OCA-based S-boxes of diameter d = 4 and d = 5 in terms
of the nonlinearity of their local rules and LCS dimensions.

d nl(f, g) #OCA dim #dim

4 (4, 4) 32 3 32

5 (4, 4) 768 4 768

(8, 8) 768 4 704

3 64

4 Polynomial Codes from Linear Components Spaces

The results obtained so far clearly prevent the use of nonlinear OCA pairs to
define good S-boxes up to size n = 8. Despite this negative result, we now
analyze more closely the LCS of the S-boxes arising from our exhaustive search,
unveiling an interesting coding-theoretic structure.

Recall that a (n, k) binary code C ⊆ F
n
2 of length n and dimension k is

a k-dimensional subspace of Fn
2 . Any set of k linearly independent vectors are

a basis of the code C, and they form the rows of a k × n generator matrix
G of C. The encoding of a message m ∈ F

k
2 of length k is performed by the

multiplication c = mG, which gives the codeword c of length n. The n × k
parity-check matrix P is used in the decoding step: a received codeword y ∈ F

n
2

is multiplied by P , and if the result s = yP (also called the syndrome) is the null
vector 0, then no errors were introduced by the channel during transmission. A
polynomial code is a particular type of (n, k) code where the generator matrix
can be compactly described by a generator polynomial g(X) ∈ F

n
2 defined as

g(X) = a1 + a2X + · · · + Xt, with t < n. Specifically, the generator matrix G is:

G =

⎛

⎜
⎜
⎜
⎝

a0 · · · at−1 1 0 · · · · · · · · · · · · 0
0 a0 · · · at−1 1 0 · · · · · · · · · 0
...

...
...

. . .
...

...
...

. . .
...

...
0 · · · · · · · · · · · · 0 a0 · · · at−1 1

⎞

⎟
⎟
⎟
⎠

. (6)

In other words, each subsequent row of the matrix is obtained by shifting one
place to the right the coefficients of g. A polynomial code is cyclic if and only
if its generator polynomial g divides Xn + 1. In that case, the resulting code
is closed under cyclic shifts: shifting a codeword one place to the left (with the
first coordinate becoming the last one) yields another valid codeword1.

Interestingly, the LCS of the OCA-based S-boxes found by our exhaustive
search experiments are all polynomial codes of length n = 2b. Referring to

1 Notice that certain authors (see e.g. Kasami et al. [29]) use the term polynomial
code to actually refer to a subclass of cyclic codes. Here, instead, we follow Gilbert
and Nicholson’s notation (see [30]), where a polynomial code is a generalization of a
cyclic code (specifically, the generator polynomial does not have to divide Xn + 1).
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Table 1, all the 32 LCS for diameter d = 4 and the 768 LCS for d = 5 and nonlin-
earity (4, 4) are actually (2b, b) cyclic codes with generator g(X) = 1 + Xb. For
diameter d = 5 and nonlinearity (8, 8), the 704 S-boxes with LCS of dimension
4 are again (2b, b) cyclic codes with generator 1 + Xb, while the remaining 64
are split in four classes, each of size 16, defined by the following generators:

g1(X) = X + X4 + X5; g2(X) = 1 + X4 + X5;

g3(X) = 1 + X + X4; g4(X) = 1 + X + X6.

(7)

We remark that the case of generator polynomial 1 + Xb (which accounts for
the great majority of the LCS examined here) corresponds to the case where the
local rules f and g share the same nonlinear terms in their ANF. Indeed, this is
the only way how the linear components of the form Fi ⊕Gi for i ∈ {1, · · · b} can
give an affine function, since f and g are evaluated on the same neighborhood.

5 Conclusions

Although the findings of this paper are negative from the perspective of cryp-
tographic applications (as all OCA-based S-boxes generated in our exhaustive
search turned out to be linear), they prompt us nonetheless with new interesting
venues for the theoretical study of nonlinear OCA. Indeed, the fact that the LCS
of these S-boxes are all polynomial codes is particularly interesting, since polyno-
mial codes are simply linear CA under a coding-theoretic disguise: as remarked
for example in [31], the generator matrix of a polynomial code can be regarded
as the transition matrix of a linear CA, where the coefficients of the generator
polynomial are the coefficients of the linear local rule. In other words, the LCS
of the S-boxes generated by the nonlinear OCA found in our exhaustive search
are themselves the kernels of a linear CA. Whether this fact holds also for higher
diameters is an interesting question that we plan to address in future research.
In particular, we conjecture that if an OCA-based S-box is linear, then its LCS
is always a polynomial code. More in general, it would also be interesting to
extend the exhaustive search to higher diameters (in particular d = 6) to verify
if the corresponding S-boxes are always linear as observed for d = 4 and d = 5.
If this is the case, the coding-theoretic structure observed in this paper could
help in finding a theoretical characterization of nonlinear OCA pairs.

Appendix: Source Code and Experimental Data

The source code and experimental data are available at https://github.com/
rymoah/orthogonal-ca-sboxes.

https://github.com/rymoah/orthogonal-ca-sboxes
https://github.com/rymoah/orthogonal-ca-sboxes


On the LCS of S-boxes Generated by OCA 61

References

1. Stinson, D.R., Paterson, M.: Cryptography: Theory and Practice. CRC Press
(2018)

2. Daemen, J., Rijmen, V.: The Design of Rijndael - The Advanced Encryption Stan-
dard (AES). Information Security and Cryptography, 2nd edn. Springer, Heidel-
berg (2020). https://doi.org/10.1007/978-3-662-04722-4

3. Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier,
P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 31

4. Zhang, W., Bao, Z., Lin, D., Rijmen, V., Yang, B., Verbauwhede, I.: RECTANGLE:
a bit-slice lightweight block cipher suitable for multiple platforms. Sci. China Inf.
Sci. 58(12), 1–15 (2015)

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 313–314. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 19

6. Dworkin, M.J.: SHA-3 Standard: Permutation-Based Hash and Extendable-Output
Functions. Federal Information Processing Standards (NIST FIPS), vol. 202, pp.
1–35 (2015)

7. Seredynski, F., Bouvry, P., Zomaya, A.Y.: Cellular automata computations and
secret key cryptography. Parallel Comput. 30(5–6), 753–766 (2004)

8. Seredynski, M., Bouvry, P.: Block encryption using reversible cellular automata. In:
Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp.
785–792. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30479-
1 81

9. Marconi, S., Chopard, B.: Discrete physics, cellular automata and cryptography.
In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173,
pp. 617–626. Springer, Heidelberg (2006). https://doi.org/10.1007/11861201 72

10. Szaban, M., Seredynski, F.: Cryptographically strong s-boxes based on cellular
automata. In: Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini,
S. (eds.) ACRI 2008. LNCS, vol. 5191, pp. 478–485. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-79992-4 62

11. Oliveira, G.M.B., Martins, L.G.A., Alt, L.S., Ferreira, G.B.: Exhaustive evaluation
of radius 2 toggle rules for a variable-length cryptographic cellular automata-based
model. In: Bandini, S., Manzoni, S., Umeo, H., Vizzari, G. (eds.) ACRI 2010. LNCS,
vol. 6350, pp. 275–286. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-15979-4 30

12. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Radiogatún, a belt-and-mill
hash function. IACR Cryptology ePrint Archive, Paper 2006/369 (2006)

13. Picek, S., Mariot, L., Leporati, A., Jakobovic, D.: Evolving s-boxes based on cellu-
lar automata with genetic programming. In: Companion Material Proceedings of
GECCO 2017, pp. 251–252. ACM (2017)

14. Mariot, L., Picek, S., Leporati, A., Jakobovic, D.: Cryptogr. Commun. Cellular
automata based s-boxes 11(1), 41–62 (2019)

15. Mariot, L., Leporati, A.: Inversion of mutually orthogonal cellular automata. In:
Mauri, G., El Yacoubi, S., Dennunzio, A., Nishinari, K., Manzoni, L. (eds.) ACRI
2018. LNCS, vol. 11115, pp. 364–376. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-99813-8 33

16. Vaudenay, S.: On the need for multipermutations: cryptanalysis of MD4 and
SAFER. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 286–297. Springer,
Heidelberg (1995). https://doi.org/10.1007/3-540-60590-8 22

https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-642-38348-9_19
https://doi.org/10.1007/978-3-540-30479-1_81
https://doi.org/10.1007/978-3-540-30479-1_81
https://doi.org/10.1007/11861201_72
https://doi.org/10.1007/978-3-540-79992-4_62
https://doi.org/10.1007/978-3-642-15979-4_30
https://doi.org/10.1007/978-3-642-15979-4_30
https://doi.org/10.1007/978-3-319-99813-8_33
https://doi.org/10.1007/978-3-319-99813-8_33
https://doi.org/10.1007/3-540-60590-8_22


62 L. Mariot and L. Manzoni

17. Mariot, L., Gadouleau, M., Formenti, E., Leporati, A.: Mutually orthogonal Latin
squares based on cellular automata. Designs Codes Crypt. 88(2), 391–411 (2019).
https://doi.org/10.1007/s10623-019-00689-8

18. Mariot, L., Formenti, E., Leporati, A.: Enumerating orthogonal Latin squares gen-
erated by bipermutive cellular automata. In: Dennunzio, A., Formenti, E., Man-
zoni, L., Porreca, A.E. (eds.) AUTOMATA 2017. LNCS, vol. 10248, pp. 151–164.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58631-1 12

19. Carlet, C.: Boolean Functions for Cryptography and Coding Theory. Cambridge
University Press (2021)
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Abstract. We study the dynamics of (synchronous) one-dimensional
cellular automata with cyclical boundary conditions that evolve accord-
ing to the majority rule with radius r. We introduce a notion that we term
cell stability with which we express the structure of the possible configu-
rations that could emerge in this setting. Our main finding is that apart
from the configurations of the form (0r+10∗+1r+11∗)∗, which are always
fixed-points, the other configurations that the automata could possibly
converge to, which are known to be either fixed-points or 2-cycles, have
a particular spatially periodic structure. Namely, each of these configu-
rations is of the form s∗ where s consists of O(r2) consecutive sequences
of cells with the same state, each such sequence is of length at most r,
and the total length of s is O(r2) as well. We show that an analogous
result also holds for the minority rule.

1 Introduction

Dynamic processes that evolve according to the majority rule arise in various
settings and as such have received wide attention in the past, primarily within
the context of propagation of information or influence (e.g., [7,12,17]). Here we
consider perhaps the most basic case, that of one-dimensional cellular automata,
where our focus is on analyzing the structure of the configuration space. Specif-
ically, we analyze the configuration space of one-dimensional cellular automata
with cyclical boundary conditions that evolve according to the majority rule
with radius r.

It is well-known [8,13] that these processes always converge to configurations
that correspond to cycles either of length 1 (fixed-points) or of length 2 (period-2
cycles). In particular, it is easy to verify (see, e.g., [14]) that configurations in
which each cell belongs to a consecutive sequence of at least r +1 cells with the
same state1 are fixed-points. Not much is currently understood, however, about
the structure of the other fixed-point configurations or of configurations that
correspond to cycles of length 2.
1 In this work, a state is a value in {0, 1}.
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The reason for this gap in understanding is largely due to the fact that most
previous research has made assumptions about the mechanism producing the
initial configuration. Namely, it is usually assumed that the state of each cell in
the initial configuration is randomly chosen, independently from the other cells.
See, for instance, the theoretical analysis in [14] and the experimental results in
[15], both for one-dimensional majority cellular automata (and also the references
within Sect. 5 for examples in other models). Under such assumptions, as shown
in [14], these other configurations are indeed rarely encountered.

In this work, we tackle the problem of understanding the structure of the pos-
sible configurations without making assumptions about the mechanism behind
the generation of the initial configuration. One of our main results (stated for-
mally in Theorem 1) is that all period-2 configurations and all fixed-point con-
figurations (other than those mentioned above) have a very special structure.
Specifically, they have a “spatially” periodic structure with a period that is
quadratic in the radius r. In the course of the proof of this result, we intro-
duce several notions and prove several claims, which we believe are of interest
in their own right as they shed light on the dynamics of the majority rule in
cellular automata (and not only on the configurations they converge to).

1.1 Organization

In Sect. 2 we formally define the majority rule and other basic terms required
for the formulation of our results. Then, in Sect. 3, we introduce the notion of
cell stability and state Theorem 1, which is the main result of this paper. In
Sect. 3.1, we illustrate Theorem 1 for the special cases of r = 1, 2, 3. In Sect. 4,
we discuss some of the high-level ideas behind the proof of Theorem 1. Finally,
in Sect. 5, we review related work.

2 Preliminaries

2.1 The Majority Rule with Radius r

In all that follows, when performing operations on cells i ∈ Zn, these operations
are modulo n.

Definition 1 (cell interval). For a pair of cells i, j ∈ Zn we use [i, j] to
denote the sequence i, i + 1, . . . , j (so that it is possible that j < i), which we
refer to as a cell interval.

For an integer n, we refer to a function σ : Zn → {0, 1} as a configuration
and view σ as a (cyclic) binary string of length n.

Definition 2 (neighborhood). For a cell i ∈ Zn and an integer r, the r-
neighborhood of i, denoted Γr(i), is the cell interval [i − r, i + r]. For a set of
cells I ⊆ Zn, we let Γr(I) denote the set of cells in the union of cell intervals
[i − r, i + r] taken over all i ∈ I.
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Given a state β ∈ {0, 1}, a configuration σ : Zn → {0, 1} and a cell interval
[i, j], we denote by #β(σ[i, j]) the number of cells � ∈ [i, j] such that σ(�) = β.

Definition 3 (the majority rule). Denote by MAJr majority rule with radius
r. That is, for a configuration σ : Zn → {0, 1}, MAJr(σ) is the configuration σ′

in which for each cell i ∈ Zn,

σ′(i) =

{
0 if #0(σ[Γr(i)]) > #1(σ[Γr(i)])
1 otherwise

For each t ≥ 0, denote by MAJt
r(σ) the result of repeatedly applying the

majority rule with radius r, starting from the configuration σ. In particular,
MAJ0r(σ) = σ and MAJ1r(σ) = MAJr(σ).

2.2 Temporal and Spatial Periodicity

Eventually, for every initial configuration, the majority rule, and, in fact, any
rule, reaches a cycle: a periodic sequence of configurations. As mentioned earlier,
in the case of the majority rule, that cycle is always either a 2-cycle or a fixed-
point.

Definition 4 (fixed-point). We say that a configuration σ : Zn → {0, 1} is a
fixed-point if MAJr(σ) = σ.

Definition 5 (2-cycle). We say that a pair of distinct configurations σ, σ′ :
Zn → {0, 1} is a 2 cycle if MAJr(σ) = σ′ and MAJr(σ′) = σ.

We refer to the configurations that constitute a cycle as temporally periodic
configurations. That is,

Definition 6 (temporally periodic). We say that a configuration σ : Zn →
{0, 1} is temporally periodic if MAJ2r(σ) = σ.

Note that if a configuration σ is temporally periodic, then it is either the
case that MAJr(σ) = σ (i.e., σ is a fixed-point), or MAJr(σ) = σ′ for σ′ �= σ, in
which case σ and σ′ constitute a 2 cycle.

Definition 7 (transient). If a configuration σ : Zn → {0, 1} is not temporally
periodic, we say that σ is transient.

Definitions 4–7 are all related to the notion of temporal periodicity, i.e., peri-
odicity that occurs over time. In this paper, we relate temporal periodicity to
spatial periodicity, i.e., periodic behavior exhibited within individual configura-
tions. Formally,

Definition 8 (spatial period). We say that a configuration σ : Zn → {0, 1}
has spatial period p if p is the minimum positive integer such that for every cell
i ∈ Zn, σ(i + p) = σ(i).

Definition 9 (spatially periodic). We say that a configuration σ : Zn →
{0, 1} is spatially periodic if its spatial period p satisfies p < n.
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3 Our Main Result and the Notion of Cell Stability

In this section we state our main result, Theorem 1, whose proof can be found in
the full version of the paper [10] and some the proof’s high level ideas appear in
Sect. 4. In order to state Theorem 1, we introduce the notion of a cell’s stability
within a configuration via Definitions 10–12 (illustrated in Fig. 1).

Definition 10 (unstable). We say that a cell i ∈ Zn is unstable with respect
to a configuration σ : Zn → {0, 1} if σ(i) �= σ′′(i) where σ′′ = MAJ2r(σ).

Recall that after a finite number of steps,2 a one-dimensional cellular automa-
ton that evolves according to the majority rule, reaches either a fixed-point or
a 2 cycle. Thus, a configuration σ : Zn → {0, 1} is transient if and only if it
contains unstable cells.

As for the “stable” cells, we define two variants: strongly stable and weakly
stable.

Definition 11 (strongly stable). We say that a cell i ∈ Zn is strongly stable
with respect to a configuration σ : Zn → {0, 1} if there exists a cell interval [a, b]
of length at least r + 1 such that i ∈ [a, b] and for each j ∈ [a, b], σ(i) = σ(j).

Definition 12 (weakly stable). We say that a cell i ∈ Zn is weakly stable
with respect to a configuration σ : Zn → {0, 1} if i is not strongly stable with
respect to σ, but σ(i) = σ′′(i) where σ′′ = MAJ2r(σ).

Fig. 1. The evolution under the majority rule with r = 2. Gray squares correspond
to state-0 cells and dark squares correspond to state-1 cells. Each cell is labeled by a
letter indicating the cell’s stability, where S stands for Strongly stable, W for Weakly
stable and U for Unstable.

The crucial property of the strongly stable cells is that their states, unlike
the states of the weakly stable cells, cannot change in later configurations. In
that sense, their stability is “stronger” than that of the weakly stable cells. It
is worth noting, though, that if a cell lies within a long cell interval of weakly
stable cells, then that cell remains weakly stable, alternating between the same
pair of states, for a number of steps that depends on the cell interval length.

2 Which can be shown to be at most linear in n [10].
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Accordingly, given a configuration σ : Zn → {0, 1}, we say that a cell interval
[i, j] is strongly stable, weakly stable or unstable if all the cells in that cell interval
are, respectively, strongly stable, weakly stable or unstable.

Considering complete configurations, observe that all the configurations of
the form (0r+10∗ + 1r+11∗)∗ contain only strongly stable cells. As noted previ-
ously and explained in the characterization provided in [14], these configurations
are always fixed-points, which means that they are, in particular, also tempo-
rally periodic (with a period of 1). However, there are more forms of temporally
periodic configurations, both period-1 and period-2, that contain only weakly
stable cells and are not addressed by [14]’s characterization, as the authors of
[14] were only interested in “typical” configurations, which are not of that kind.3

Theorem 1 complements [14]’s characterization by additionally specifying
the structure of the remaining temporally periodic configurations. In addition
to temporally periodic configurations, Theorem 1 also includes a property of the
transient configurations that is related to the dynamics by which they eventually
converge.

Theorem 1. For any configuration σ : Zn → {0, 1}, exactly one of the following
must hold:

1. The configuration σ is a temporally periodic configuration and it is either the
case that:
(a) all the cells in σ are strongly stable, in which case σ is of the form

(0r+10∗ + 1r+11∗)∗), or
(b) all the cells in σ are weakly stable, in which case σ is spatially periodic

with spatial period at most 2r(r + 1).
2. The configuration σ is a transient configuration and the length of every unsta-

ble cell interval in σ is at most 2r.

In the full version [10] we show that an analog of Theorem 1 holds for the
minority rule as well, with analogous variants of cell stability.

Under the assumption that r is a constant, Theorem 1 directly yields an
output-sensitive algorithm that, given n, generates all the temporally periodic
configurations of length n. The running-time of the algorithm is linear in the
number of temporally periodic configurations.

Turning to transient configurations, recall that all transient configurations
contain unstable cells, and the evolution of the transient configurations can be
described using the notion of cell stability. Namely, the following can be shown
regarding any transient configuration σ : Zn → {0, 1} (see proofs in the full ver-
sion [10]). First, the configuration MAJr(σ) contains strictly fewer unstable cells

3 Indeed, it is shown in [14] that the probability that a randomly selected configura-
tion of length n being transient approaches 1 as n −→ ∞. As such, the additional
temporally periodic configurations that we address in this work are, in a sense, not
“typical”. We, in contrast to [14], make no assumption about the distribution of the
configuration space, and are therefore interested in understanding the structure of
all configurations, not only the “typical” ones.
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than σ. Second, if σ contains strongly stable cells, then MAJr(σ) contains even
more strongly stable cells than σ, and the automaton eventually converges to a
fixed-point of the form defined in Case (1a). Third, if there are no strongly stable
cells in σ, then there are cases in which the automaton eventually converges to
a fixed-point of the form defined in Case (1a)4 and there are also cases in which
it eventually converges to a fixed-point or to a 2 cycle of the form defined in
Case (1b)5.

3.1 Illustrating Theorem 1 for r = 1, 2, 3

To get a feel for the nature of the statement in Theorem 1, we demonstrate some
of its aspects for r = 1, 2, 3.

1. For r = 1, the temporally periodic configurations are either
(a) of the form (000∗ + 111∗)∗, or
(b) of the form (01)∗.6

2. For r = 2, the temporally periodic configurations are either
(a) of the form (0000∗ + 1111∗)∗, or
(b) of one of the following forms: (01)∗, (0011)∗, (001101)∗, (001011)∗.

3. For r = 3, the temporally periodic configurations are either
(a) of the form (00000∗ + 11111∗)∗, or
(b) of the form s∗, where s belongs to the set:7

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

01,
0011,
010011, 010110, 001110,
01011001, 10100101, 10100110, 01011100, 10010011, 00011101, 10110001,
0011001110, 1000111001

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

An interesting observation about the patterns in Case (1b) in our demon-
stration is that the number of zeros in each of them equals the number of ones.
This, in fact, holds in general, as we prove in the full version [10].

4 e.g., for r = 3, the transient configuration 001001001001001001 converges after one
step to the fixed-point configuration (0)∗.

5 e.g., for r = 4, the transient configuration 001011001011001011001011001011001011
converges after one step to the 2 cycle consisting of (111000)6 and (000111)6.

6 Also (10)∗, but since the configurations are cyclic, the patterns (01)∗ and (10)∗

correspond to equivalent sets of configurations.
7 The string s could also be the mirror or the complement of any of the specified

patterns, which we omit for the sake of conciseness. For example, since we explicitly
specified that s could be 010011, it means that s could also be 110010 (which is the
mirror of 010011) or 101100 (which is the complement of 010011), even though these
two are not explicitly specified.



The Structure of Configurations in 1D Majority CA 69

4 The Alignment Mapping (High-Level Idea)

In proving Theorem 1, we define a number of notions and establish several claims,
some of which we believe are valuable in and of themselves. We decided to focus
in this section on a high-level description of only a few of the ideas underlying
the proof of Theorem 1. The complete proof as well as the precise definitions
of the notions we introduce in order to establish the proof can be found in the
full version [10]. We have chosen to highlight the high-level idea behind one of
the key tools we utilize, which is a mapping we introduce between blocks of
consecutive configurations.

Given a configuration σ : Zn → {0, 1}, we say that a cell interval [i, j] is a
maximal homogeneous block in σ with value β ∈ {0, 1} if for every cell � ∈ [i, j],
σ(�) = β, and also σ(i − 1) = σ(j + 1) �= β if the length of [i, j] is less than n.

We refer to this mapping, defined below (and illustrated in Fig. 2), as the
alignment mapping. The alignment mapping, beyond being essential for the proof
of Theorem 1, has several features that make it useful for reasoning about the
dynamics of the majority rule, which is why we present its definition here.

Definition 13 (alignment mapping). Let σ and σ′ be a pair of configurations
satisfying MAJr(σ) = σ′. Given a block [i′, j′] in σ′, let I be the block in σ that
contains the cell i + r and let J be the block in σ that contains the cell j − r.
The alignment mapping maps the block [i′, j′] (in σ′) to the middle8 block [i, j]
between I and J in σ.

Fig. 2. The alignment mapping. The figure depicts a pair of configurations, σ and σ′,
where σ′ = MAJr(σ), and also a pair of blocks, [i, j] in σ and [i′, j′] in σ′, where [i′, j′]
is mapped to [i, j] by the alignment mapping. The block I in σ is the one that contains
the cell i′ + r, and the block J in σ is the one that contains the cell j′ − r. The block
[i, j] in σ is the one right in the middle of the interval of five blocks in σ whose left and
right ends are I and J . Hence, by Definition 13, the alignment mapping maps [i′, j′] to
[i, j].

We stress that the alignment mapping, as defined in Definition 13, is a back-
ward mapping, in the sense that, given a configuration σ′, it maps all blocks
in σ′ into those of the configuration σ that precedes σ′. This naturally suggests

8 The middle block is well defined, as it is shown in the full version [10] that the
number of blocks between I and J must be odd.
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defining the notion of the forward alignment mapping as the inverse function of
the backward alignment mapping that would map the blocks of the configura-
tion σ to those of the configuration σ′ that follows σ (for example, in Fig. 2, the
forward alignment mapping maps [i, j] in σ to [i′, j′] in σ′).

However, while it can be shown that the backward alignment mapping is
always one-to-one, it is not necessarily onto (unless we apply it within a pair of
temporally periodic configurations). Hence, under our definition of the forward
alignment mapping, not all blocks will be mapped forward.

Formally, let σ0, ...σm be a sequence of configurations where MAJr(σt−1) =
σt for each 1 ≤ t ≤ m. We define the step-t forward alignment mapping, denoted
ϕt, as follows. Given a block [i, j] in σt, if there is a block [i′, j′] in σt+1 such
that the backward alignment mapping between the configuration pair σt, σt+1

maps [i′, j′] into [i, j], then ϕt([i, j]) = [i′, j′]. Otherwise, ϕt([i, j]) = ⊥. In the
case in which ϕt([i, j]) �= ⊥, we also define ϕ2

t ([i, j]) as ϕt+1(ϕt([i, j])).
One notable property of the forward alignment mapping is what we refer

to as “identity preservation in stable intervals”. Roughly speaking, consider any
block [i, j] residing in a sufficiently long weakly stable or strongly stable cell
interval of σt. Then ϕt([i, j]) �= ⊥, and hence ϕ2

t ([i, j]) is defined and is equal to
the same block [i, j] we started with. In particular, for a pair of configurations
comprising a 2 cycle, applying the forward alignment mapping twice essentially
maps each block to itself.

In the proof of Theorem 1, we essentially use the forward alignment mapping
and its properties to show that for a configuration in which all blocks are of
length at most r, if the configuration is temporally periodic, then it is also
spatially periodic. We achieve this through three steps.

In the first step, we employ the alignment mapping to express the length of
each of the configuration’s blocks in terms of the lengths of other O(r) blocks
in the preceding configuration. Specifically, given a pair of temporally periodic
configurations σt and σt+1, we obtain a relationship between the length of each
block [i, j] in σt and the lengths of O(r) consecutive blocks, belonging to a block
sequence centered at the block ϕt([i, j]), in the configuration σt+1.

In the second step, we look at the difference between the length of each block
[i, j] and the lengths of the blocks at the two ends of the sequence mentioned
above, and define aligned difference vectors, whose entries are these differences.
We use the properties of the forward alignment mapping to establish that the
aligned difference vectors (defined formally in the full version [10]) are spatially
periodic with a spatial period that is linear in r.

In the third and final step, by applying the relationship between aligned dif-
ference vectors iteratively, we use the spatial periodicity of the aligned difference
vectors to establish that the configurations themselves are spatially periodic as
well, and that each configuration’s spatial period must be quadratic in r.
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5 Related Work

The main focus of most of the research on majority/minority (and more gener-
ally, threshold) cellular automata so far has been on the convergence time (e.g.,
[3,4,11]) and on the dominance problem9 (e.g., [1,2,9]).

As mentioned earlier, most of the work on the problem of understanding the
structure of the configuration space is based on the assumption that the initial
configuration is random. For the one-dimensional case, the case with which the
current paper is concerned, this includes the paper of Tosic and Agha [14]. In
their paper, they distinguish between synchronous/sequential and finite/infinite
majority cellular automata with radius r, and our work can be viewed as extend-
ing their result for the finite and synchronous case.

They show that whereas 2 cycles cannot emerge under the sequential model,
in the synchronous model (the one we focus on in this paper), 2 cycles exist even
for r = 1. They also show that a randomly picked configuration is a transient
configuration (and, in particular, not a 2 cycle) with probability approaching 1
(both for finite and infinite configurations), and it can additionally be shown that
the probability that such a random transient configuration eventually converges
to a 2 cycle approaches 0. Finally, they characterize the “common” forms of
fixed-point configurations (those that in our paper are described in Case (1a) of
Theorem 1).

Their theoretical result is supplemented by a later experimental work [15],
showing that in practice, convergence to these “common” fixed-point configura-
tions occurs relatively quickly. Namely, the simulations in [15] demonstrate that
convergence tends to occur in less than five steps for n = 1000 and 1 ≤ r ≤ 5.

Additional work beyond the one-dimensional case includes [6] for two-
dimensional majority cellular automata, [5] for majority in random regular
graphs, [18] for majority in Erdos–Rényi graphs as well as expander graphs.

One notable work that does not rely on the assumption that the initial con-
figuration is random is Turau’s work [16] on characterizing all the temporally
periodic configurations for majority and minority processes on trees. The char-
acterization presented in [16] also yields an output-sensitive algorithm for gen-
erating these configurations.
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Abstract. In this paper, we study how synchronization and state esti-
mation are related in the context of elementary cellular automata. We
first characterize the synchronization error between two 1D elementary
cellular automata implementing Wolfram’s 18th rule. Then we propose
a simple approach to statistically model the transient phase of the syn-
chronization error spread. We finally present a way to utilize this model
of the error spread to place mobile sensors in order to reduce the overall
synchronization error when the initial error is small.

Keywords: Cellular automata · Synchronization · Mobile sensors

1 Introduction

In control theory, monitoring physical systems which are distributed in space is
based on the construction of an estimate from measurements and the dynamics
of the system. Measurements which come from potentially mobile sensors. The
problem of positioning these sensors is crucial to make it possible to estimate
the state of the system. This state estimation problem is widely studied by
classical control theory [5,7] and it follows from the verification of observability,
a notion that ensures that the sensors are well placed. This notion of observability
can be applied to cellular automata (CA) [3,4,6] (and by extension to Boolean
networks [10] which can be seen as a generalization of CA) but its evaluation
has proven to be extremely complicated when it comes to non-linear CA [6].

The synchronization problem consists in converging a system called replica
to another one called driver by means of a unidirectional coupling between the
two. In the case of CA, the state of some cells of the driver are copied to these
same cells of the replica. The coupling between the two can be realized with
a single cell [2], with fixed cells [8] or with cells chosen randomly at each time
step [1]. In the first case, Dogaru et al. showed that a strong condition regarding
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
B. Chopard et al. (Eds.): ACRI 2022, LNCS 13402, pp. 73–82, 2022.
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the chaoticity of the system is needed to synchronize the driver and the replica.
In the second case, Uŕıas et al. propose a necessary and sufficient condition
concerning the cell position to ensure the synchronization of linear elementary
cellular automata. Finally, Bagnoli and Rechtman propose a statistical approach
to synchronization with a critical probability pc that ensures synchronization.

The problem of synchronization of two CA can also be seen as a state esti-
mation problem. Indeed, the driver can be seen as the system to be observed,
the replica as the state estimator and the synchronized cells as sensors. For the
purpose of monitoring physical systems, the conditions on the system imposed
by Dogaru et al. (choaticity) and by Uŕıas et al. (linearity) make it difficult to
apply to this type of system. The approach of Bagnoli and Rechtman, on the
contrary, is not based on a specific type of system. Moreover, it allows to include
the notion of mobile sensor through the random choice of synchronized cells.

The main objective of this paper is to study a synchronized CA as a state esti-
mator for the observation of distributed parameter system with spatio-temporal
dynamics. We focus on synchronization with a small initial error because in some
physical system monitoring, only a small portion of the system is unknown. For
example, when monitoring forest fires spread, the topology of the forest is known
but only the ignition points are unknown. Throughout this article, we focus on
a single elementary rule that exhibits spatio-temporal dynamics so that the
obtained results may be transferred to other CA and in particular to physical
systems. Therefore, we chose to study the elementary rule 18 because it is the
smallest chaotic, symmetric, and nonlinear rule [9].

The article starts by studying the differences in synchronization performance
as a function of the initial synchronization error. Then, we model the spreading
of the initial error within the CA using basic geometry. We finish by presenting
an improvement of the synchronization algorithm for systems with a small initial
error.

2 Influence of Initial Error on Synchronization

In order to study the impact of the initial error on the synchronization perfor-
mance, we need to define the synchronization method but also to express it in
terms of the initial error. For this purpose, we chose the definition proposed by
Bagnoli and Rechtman [1] which expresses the synchronization of two 1D CA of
N cells: x and y. The synchronisation of y with x is done by copying some of x
cells’ state in the matching cells in y, at each time step. A diagonal matrix P
indicates which cells are coupled. A value of 1 in this matrix indicates that the
corresponding cells are coupled. The position of the coupled cells are determined
randomly at each time step with a probability p, called control strength. The
expression for synchronization is:

⎧
⎪⎪⎨

⎪⎪⎩

xt+1 = f(xt)
yt+1 = (I − P ) · f(yt) + P · f(xt)
et+1 = xt+1 ⊕ yt+1

εt+1 = 1
N · ∑

i e
(i)
t+1

(1)
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The synchronization error et is the difference between xt and yt, and εt its
normalized mean error value. Since we are studying the influence of the initial
error, we initialize x0 and e0 randomly and set y0 = x0 · e0. We will note e the
proportion of cells in y0 that are different from cells in x0, in percentage.

In [1], Bagnoli and Rechtman discuss the notion of critical control strength
pc (determined statistically or analytically using maximum Liapunov exponents)
which guarantees that the synchronization is total during a random synchroniza-
tion. This critical parameter insures, for a state estimator, that the estimated
state correctly corresponds to the state of the observed system. In Sect. 4, we
present an improvement of this synchronization algorithm in order to reduce this
critical power control for a total synchronization.

To get relevant results, we conducted a large number of simulations for each
initial conditions. This is required by the fact that some initial conditions lead
very quickly to a convergence that biases the results. More on this later.
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Fig. 1. Mean synchronization error as a function of time for different initial error ε0.

Figure 1 presents mean synchronization error εt as a function of time for
different initial error ε0 values. These results were obtained by taking the mean
of the synchronization error εt over 500 simulations for the elementary rule 18
with 500 cells and a control strength p = 0.1. The initial configuration x0 was
randomly initialized at each simulation, same for the initial unsynchronized cells,
ε0. Initial error has a clear impact on the performances of synchronization. Its
first influence is on the speed of convergence towards the asymptote. Indeed,
the 10% curve seems to converge faster than the 20% and 100% curves which
converges earlier than the 1% and 0.2% curves. The second effect of the initial
error is on the value of the asymptote when the error is small enough. For
sufficiently large errors, all simulations converge towards the same asymptote
value, around 0.23. But if ε0 is sufficiently small, the reached asymptote is lower
than this “generic” one.

To understand the difference in value between the two asymptotes, we stud-
ied the evolution of the error as a function of time for the particular case of
a single cell of initial error (e = 0.2%). As we can see on Fig. 2, there are two
very different kind of evolution of the synchronization error et. On one hand, in
Fig. 2a, the error spreads until it covers the whole CA and reaches the asymp-
totic non-zero value. On the other hand, in the very specific case depicted on
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Fig. 2b, the synchronization quickly becomes total and the error reaches zero.
Therefore, when we average these two cases, which we did for Fig. 1, we obtain
a lower asymptotic value than the generic case will give. For the remaining of
the study, we chose to dissociate the two cases and to not consider the fast total
synchronization cases when we study the asymptotic value.

Fig. 2. Evolution of the synchronization error for elementary rule 18 with 500 cells
from a single cell error (e = 0.2%). The time is represented on the vertical axis. A
black pixel is an erroneous cell in the synchronized CA.

To characterize the influence of the initial error ε0 on the ability of the syn-
chronized CA to be considered as a state estimate, we will only consider the
mean of the asymptotic value of the synchronization error. Figure 3 represents
this mean asymptotic synchronization error as a function of the initial error.
First, if we consider only the asymptotic synchronization (without special cases
of early complete synchronization), the value of the asymptote does not depend
on the initial error. Second, the value from which the average error with and with-
out total synchronization become different depends on the strength of the control
p: the stronger it is, the more the chances of total synchronization increase.

3 Modeling of the Error Spreading Dynamics

In order to explain the dynamics of the evolution of the synchronization error,
we will study how the error propagates within the CA as a function of the control
strength. To do so, we will start by studying the propagation of the error with
the simple case of a single erroneous cell, and then generalize these results.

Typical error propagation dynamics from one erroneous cell are depicted in
Fig. 4. We adopted a triangle as a simple geometric model for these dynamics. It
appears that the top angle of the triangle is inversely proportional to the control
strength p.
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Fig. 3. The asymptotic value of the mean synchronization error as a function of initial
error ε0. This was obtained by taking the mean of the synchronization error εt as a
function of time over 200 iterations. The continuous lines consider only the asymptotic
synchronization while the dashed lines include both asymptotic and total synchronisa-
tion.

Fig. 4. Evolution of the error for elementary rule 18 with 500 cells from a single
erroneous cell (e = 0.2%). The time is represented on the vertical axis.

To describe how the synchronization error spreads, two parameters will be
used: the first being the aperture angle of the propagation triangle, and the
second being the shift angle between the altitude and the median of the triangle.
Indeed, the median of the triangle seems to vary from one simulation to another.
Figure 5 describes the geometry associated with these angles α and β which
describe respectively the aperture angle and the shift angle.

Fig. 5. Schematic of the theoretical spread of the synchronization error from a single
initial error cell.
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For the purpose of this article, we will not use directly the α and β angles but
their tangents, which represents spread velocities. We will simply call α and β
the velocities associated to the angles and not the angles themselves. Therefore,
the error spreading ratio α represents the mean number of cells by which
the triangle base increases at each time step and error shift ratio β the mean
number of cell shift at each time step.

We can calculate the mean value of the error spreading ratio by measuring
the area of the error at time T and divide by current time to obtain the tangent
of α. Figure 6 describes the evolution of the average spread ratio as a function
of the control strength. This one is a linear function of which we experimentally
obtained the equation α = −8.23.p + 1.93 using linear regression.
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Fig. 6. The error propagation coefficient α as a function of control strength. The con-
tinuous curve is obtained by taking the mean of α over 1000 simulations. The dashed
curve is the curve obtained by linear regression.

The error spreading ratio α has, for a given control strength, a normal dis-
tribution whose average is presented on Fig. 6. The standard deviation related
to α can be calculated in order to have a better representation of α. The error
shift ratio β also follows a normal distribution. Based on these two parameters,
we can express the width and the center of the error at time T by c1 = c0 +β ·T
and d = α · T .

Corollary 1. The synchronization error εt can be estimated from the parameter
α as well as the value of the asymptote γ associated to the control strength p.
Thus, the synchronization error εt is defined by:

εT =
γ

N
· max(α · T,N)

Indeed, α·T gives the width of the error in number of cells. When dividing by
N , we obtain the normalized error width and then multiplying by the asymptote
γ, the value of εt when the error is present on the whole CA, we obtain the
synchronization error εT .
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Using the Corollary 1, we can make an example for p = 0.1. For this control
strength, the error spreading ratio α follows a normal distribution with mean
1.127 and standard deviation 0.1376. On Fig. 7, the synchronization error εT is
displayed as well as the estimated error with an α fixed at the mean and an α
that follows the normal distribution. We quickly notice that the use of the normal
distribution in the calculation of the error allows to explain the rounded curve
when the error approaches the asymptote. However, the two theoretical curves
have a difference with the real curve which is explained by a faster increase of
the error during the first iterations which is caused by a higher α as the error is
not yet detected, and therefore controlled, by the sensor.
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Fig. 7. Evolution of the average synchronization error as a function of time for the real
case as well as the theoretical cases with the error spreading ratio which is constant
and follows a normal distribution.

This method allows us to simply represent the propagation of the error in the
case where a single cell is erroneous in the initial configuration. If we consider
two or more erroneous cells then the modeling becomes more complex. Indeed,
the two errors propagate independently until they collide, in this case we must
consider that the errors merge in a single (larger) source of error. Thus, consid-
ering that the collision takes place at time t1, we can consider that the error
spreading ratio α is expressed as:

α(t) =

{
α0 + α1 , if t ≤ t1
(α0−β0+α1+β1)

2 , if t ≥ t1

The time t1 of the collision depends on the initial distance between the two
initial errors, whose probability distribution depends on the boundary conditions
used. Moreover, since each of these initial errors is subject to the total and fast
synchronization (of probability τ), the model must include, with probability
2τ(1 − τ), a propagation with only one initial error using the model of Fig. 5.
With more than two erroneous cells, the operation is the same but it is necessary
to take into account several collisions at different times.
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4 Optimization of Algorithm for a Single Erroneous Cell

If we consider that the synchronized cellular automaton has only a few errors
at initialization, then it is possible to adapt the synchronization algorithm so as
to concentrate the sensors only on the area that contains errors. To do this, we
must first identify the areas that possibly contain errors and then distribute the
sensors over those.

To identify the error area, a sensor must already detect an error. Then, with
a method similar to the one shown in Fig. 5, it is possible to backpropagate the
error measured at time t to obtain the possible error area ê0 at time 0 which could
lead to the initial error. Propagating an error from this initial estimate, we can
obtain the possible current error area êt. Figure 8 represents the backpropagation
of the error with a ratio αmax which corresponds to a ratio α large enough to
include all (or a large part) of the possible spread ratios. The maximum ratio is
2 because it is not possible for the error to spread to more than one cell on each
side (this results from the size of the neighbourhood) but if the strength of the
control p is strong enough αmax can be chosen smaller. As α follows a normal
distribution, a ratio αmax = αmean + 3σ encompasses 99.9% of the possible
spreading ratios.

As new errors are detected, the initial error area can be refined using the
intersection of all the initial error areas of all the errors detected by the sensors.
In this way, it is possible to reduce the size of the error zone at time t but also
to locate the position of the initial error.

Fig. 8. Schematic of the backpropagation of the synchronization error to find the initial
error area ê0

Now that error area can be estimated, it remains to position the sensors.
The method consists in placing the sensors only in the area where the error
could be present. The number of sensors will remain the same but the control
strength (the sensor density) of the error area will increase proportionally to the
smallness of the error area resulting in a lower critical control strength pc as
shown in Fig. 9. The control strength in the error area is described by:

perror = p · N

ε̂t
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Fig. 9. Evolution of the average synchronization error as a function of control strength
for a single cell error.

As shown in Fig. 9, the optimized synchronization performs better than the
usual one with a critical control strength pc at 0.05 instead of 0.21. However,
when the control is too weak, the difference between the two is negligible because
the first error cell is detected too late by the sensors and therefore the optimized
control strength perror is not sufficient to synchronize the two systems. In Fig. 10,
we have compared these two synchronization methods on other elementary rules
belonging to different classes [9]. The results obtained are minimal in that the
error spreading ratio used for the backpropagation is αmax = 2, smaller values
according to the distribution of probability could have been chosen to further
increase the performances. The optimized synchronization performs better but
the difference between the two seems to depend on the class. Class 2 CA (pre-
sented by Wolfram as “filters”) seem to exhibit lower error propagation coeffi-
cients α than class 3 and 4 CA. Without control, α is 0.048 for rule 37, 0.54 for
rule 110 and 1.9 for rule 126. However, a systematic study on elementary CA
would be necessary to confirm this conjecture.
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Fig. 10. Evolution of the average synchronization error as a function of control strength
p for a single cell error for different rules. From left to right: rule 37 class 2; rule 110
class 4; and rule 126 class 3. Continuous line represents the optimized synchronization
and dotted line the usual synchronization.
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5 Conclusion and Perspectives

In this paper we studied how CA synchronization relates to state estimation of
distributed parameter system in the context of Wolfram’s 18th rule. In order to
understand how a synchronized CA can be seen as an estimated state, we studied
the dynamics of the synchronization error spreading. To do so we proposed a sim-
ple geometric model of this propagation. Finally, we present a sensors placement
algorithm utilizing this geometric model in order to reduce the synchronization
error and improve the accuracy of the synchronized CA as an estimate of the
original CA representing the studied system. This optimized synchronization has
been studied in the case of different elementary rules of classes 2, 3 and 4 whose
performance increase in comparison to the usual synchronization is particularly
important in the case of classes 3 and 4.

In the future, we will be able to adapt this algorithm to more than a single
initial error cell. Furthermore, a systematic study on the elementary automata
could be carried out in order to refine the algorithm of synchronization according
to damage (error) spreading.
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Abstract. In this paper, we come back on the notion of local simulation
allowing to transform a cellular automaton into a closely related one with
different local encoding of information. In a previous paper, we applied
it to the Firing Squad Synchronization Problem. In this paper, we show
that the approach is not tied to this problem by applying it to the class
of Real-Time Sequence Generation problems. We improve in particular on
the generation of n3 sequence by using local mappings to obtain millions of
5-state solution, one of them using 58 transitions. It is based on the solution
of Kamikawa and Umeo that uses 6 states and 74 transitions. Then, we
explain in which sense even bigger classes of problems can be considered.

Keywords: Cellular automata · Automata minimization · Firing
Squad Synchronization Problem · Real-Time Sequence Generation

1 Introduction

1.1 Local Mappings to Explore the Cellular Solution Space

This paper is about the formal concepts of local mapping and local simulation
which found their firsts applications in the study of the so-called Firing Squad
Synchronization Problem (FSSP) proposed by John Myhill in 1957. In the latter,
the goal is to find a single cellular automaton (CA) such that any one-dimensional
horizontal array of an arbitrary number of cells synchronizes, i.e. such that a
special state is set for all the cells at the same time. As explained in [8], there
was a race to obtain solutions with as few states as possible, leading in 1987
to a situation where it was established, for minimal-time time solutions, that
there were no 4-state solutions, and only one solution had 6-state using a unique
strategy. In 2018, a surprise came when 718 solutions were found using massive
computing power, but a bigger surprise came in 2020 when many millions of
solutions where discover using ordinary computer power. It is still not known
whether there is a 5 state solution, but the concept used to generate the millions
of solutions, local mappings and local simulation still have many things to tell,
a story that is not tied to FSSP, but that may lead to some ideas about the
famous 5-state FSSP open problem. More information can be found in [8,9].
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1.2 Real-Time Sequence Generation Problems

To show explicitly in which sense the approach can be applied to other problems,
let us focus here on the so-called Real-Time Sequence Generation problems, or
RTSG problems for short. In the latter, given a fixed sequence S ⊆ N, the goal
is to find a cellular automaton running on an one-dimensional horizontal array
of cells such that the leftmost cell is in a special state exactly when the number
of transition t from the beginning belongs to S. A formal description is given
later. In the following, we write f(n) to mean S = {f(n) | n ≥ 1}.

The study of such problems began in 1965 for the sequence of prime numbers,
with a description of a cellular automaton algorithm by Fischer [1]. In 1998,
Korec [6] proposed a 9-state solution. Other sequences where considered in 2007
by Kamikawa and Umeo [7] who gave some different algorithms for the sequences
2n, n2, and 3n using one-bit inter-cell-communication cellular automata. In 2012,
Kamikawa and Umeo [3] described the sequence generation powers of CAs having
a small number of states, focusing on the CAs with one (only one sequence n
of all positive natural numbers), two, and three internal states, respectively.
The authors enumerate all of the sequences generated by two-state CAs (linear
sequences: 2n, 4n, 3n − 1, n, 3n − 2, 2n − 1, n + 1; non-regular sequences: 2n+1 −
2, 2n − 1) and present several non-regular sequences like 2n, n2, 3n that can be
generated in real-time by three-state CAs, but not generated by any two-states
CA. In 2016 [4], they gave a construction for the Fibonacci sequence using five-
state, followed in 2019 [5] by two solutions of 8 states and 6 states for the sequence
n3. In these studies, much attention has been paid to the developments of small-
state RTSG solutions for specific non-regular sequences. Other complexities are
also studied such as the space, communication or state-change complexities.

Here we consider the sequence n3 and provide millions of 5-state solutions
using local mappings from the known 6-state solution. This reduction from 6
to 5 is reminiscent of the FSSP situation. The work presented here leaves open
the question of the existence of solutions with 3 or 4 states for the n3 sequence.
Advances have been made since the writing of this paper as described in the
conclusion. This doesn’t impact the content of this paper, the goal here being
simply to illustrate the generality of the local simulation approach.

1.3 Organization of the Content

In Sect. 2, we begin by defining formally cellular automata, local mappings, local
simulations, RTSG solutions and related objects in a suitable way for this study.
In Sect. 3, we explain how local mappings can be used firstly to obtain a first
5-state solution to the n3-RTSG problem, and then to generate millions of other
solutions. These other solutions are essentially the same, but differ in the way
the local information is encoded, leading to different numbers of transitions
for example. This is in direct comparison with compiler optimization where a
program is optimized but stays essentially the same. We finish this section by
making more precise the generality of the approach. We conclude in Sect. 4 with
a discussion of some additional aspects of this investigation, in particular with
the relation with some topological concepts.
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2 Preliminaries

We summarize here the formal definitions of CA, local mappings solutions as
defined in [8]. More detailed explanations can be found in [8,9]. We then define
RTSG solutions in a formally relevant way for this framework. As for the other
papers, the formal setting is presented for one dimensional CA with usual neigh-
borhood {−1, 0,+1}, but is easily extended to any (non necessarily commuta-
tive) group and any (none necessarily fixed) neighborhood.

2.1 Cellular Automata, Local Mappings, and Local Simulations

The purpose of these following definitions is to describe CA with partial transi-
tion table first directly and then in terms of their deterministic family of space-
time diagrams. With the latter representation, local mapping and local simula-
tions are more easily understood. Non-deterministic families also play a role.

Definition 1. A cellular automaton α consists of a finite set of states Σα, a
set of initial configurations Iα ⊆ Σα

Z and a partial function δα : Σα
3 ⇀ Σα

called the local transition function or local transition table. Elements of Σα
Z

are called (global) configurations. Those of Σα
3 are called local configurations.

For any c ∈ Iα, its space-time diagram Dα(c) : N × Z → Σα is defined as:

Dα(c)(t, p) =

{
c(p) if t = 0,

δα(c−1, c0, c1) if t > 0 with ci = Dα(c)(t − 1, p + i).

The partial function δα is required to be such that all space-time diagrams are
totally defined. When Dα(c)(t, p) = s, we say that, for the cellular automaton α
and initial configuration c, the cell at position p has state s at time t.

Definition 2. A family of space-time diagrams D consists of a set of states ΣD

and a set D ⊆ ΣD
N×Z. The local transition relation δD ⊆ ΣD

3 × ΣD of D is:

((c0
−1, c

0
0, c

0
1), c

1
0) ∈ δD : ⇐⇒ ∃(d, t, p) ∈ D × N × Z s.t. cj

i = d(t + j, p + i).

We call D a deterministic family if its local transition relation is functional.

Definition 3. Given a deterministic family D, its associated cellular automa-
ton ΓD is defined with set of states ΣΓD

= ΣD, set of initial configurations
IΓD

= {d(0,−) ∈ Σα
Z | d ∈ D}, and local transition function δΓD

= δD.

Definition 4. Given a cellular automaton α, its associated family of space-time
diagrams (abusively denoted) Dα is defined as having the set of states ΣDα

= Σα,
and the set of space-time diagrams {Dα(c) | c ∈ Iα } and is clearly deterministic.

Definition 5. A local mapping � from a CA α to a finite set X consists of two
functions �z : {d(0, p) | (d, p) ∈ Dα ×Z} → X and �s : dom(δα) → X. We define
its associated family of diagrams Φ� = {�(d) | d ∈ Dα} where:

�(d)(t, p) =

{
�z(d(0, p)) if t = 0,

�s(d(t − 1, p − 1), d(t − 1, p), d(t − 1, p + 1)) if t > 0.

If Φ� is deterministic, we say that � is a local simulation from CA α to CA ΓΦ�
.
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Fig. 1. Transition table of Kamikawa and Umeo’s 6-state solution using 74 transitions.

2.2 Real-Time Sequence Generators

Definition 6. A CA α is RTSG-candidate if there are �α, Bα, Qα, Sα ∈ Σα such
that Iα = {−→∞α} with −→∞α the RTSG right-infinite initial configuration, i.e.−→∞α(p) = �α, Bα and Qα if, respectively, p ≤ 0, p = 1 and p ≥ 2. Moreover,
�α must be the outside state, i.e. ∀(c−1, c0, c1) ∈ dom(δα), [δ(c−1, c0, c1) = �α ⇔
c0 = �α], and Qα must be quiescent so δα(Qα, Qα, Qα) = δα(�α, Qα, Qα) = Qα.

State �α is not counted as a state since it represents cells considered as non-
existing. So an RTSP-candidate cellular automaton α will be said to have s states
when |Σα \{�α}| = s, and m transitions when |dom(δα)\Σα ×{�α}×Σα| = m.

Definition 7. Given S ⊆ N, a RTSG-candidate cellular automaton α is a S-
RTSG solution if for any time t, Dα(−→∞α)(t, 0) = Sα if and only if t ∈ S.

Proposition 1. There is a n3-RTSG solution using 6 states and 74 transitions.

Proof. Figure 1 shows Kamikawa and Umeo’s solution, reproduced with the same
format as their paper to ease comparison, that should be completed with obvious
entries for the outside state �. The proof of correction can be found in [5].

The corresponding diagram is shown on the left half of Fig. 2, where cell 0 has
state A at time 1, 8, 27, and 64 as expected. In [5], the table of D wrongly has
column C identical to column E, as the proofs and diagrams of [5] makes clear.

3 Exploring RTSG Solutions via Local Mappings

Let us now describe how to apply the same techniques used for the FSSP in [8]
in order to first obtain a first optimization from 6-state to 5-state, and then use
the exploration algorithm to generate millions of other 5-state solutions. The
first step is to study those local mappings which complies with RTSG problems.

3.1 Compliant Local Mappings

Given two CA α and β, a local mapping between them associates to each triplet
found in a space-time diagram d at position p and time t of α to the state found
in the associated diagram d′ at position p and time t+1. When both of these CA
are RTSG solutions, this implies the following properties on the local mapping.
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Definition 8. A local mapping � from an RTSG solution α to the states Σβ of
an RTSG-candidate CA β is said to be RTSG-compliant if it is such that (0) �z
maps �α, Bα, and Qα respectively to �β, Bβ, and Qβ, (1) �s(c−1, c0, c1) = �β if
and only if δα(c−1, c0, c1) = �α (meaning simply c0 = �α), (2) �s(�α, c0, c1) = Sβ

if and only if δα(�α, c0, c1) = Sα, and (3) �s(Qα, Qα, Qα) = �s(�α, Qα, Qα) = Qβ.

Proposition 2. Given S, an S-RTSG solution α, a RTSG-candidate β and a
local simulation � from α to β, β is an S-RTSG solution iff. � is RTSG-compliant.

Proof. To see this, consider the diagram d ∈ Dα of the solution α. The special
RTSG states appear at specific places and � ensures or witnesses, depending
on the direction of the implication considered, that these special states/places
are conserved in �(d) ∈ Dβ , (Definition 5). Indeed, condition (0) is just about
the initial configuration, condition (1) is about the conservation of the outside
state, condition (2) is about the conservation of the special generation state for
the leftmost cell only and condition (3) about the conservation of the quiescent
state behaviour. These conditions are sufficient to ensure and β is a solution, and
clearly necessary since they perfectly match Definitions 6 and 7 of the problem.

Note that once α fixed, β can be reconstructed from �, and � from β. So
local mappings are another representation of their generated RTSG-candidates
(see Definition 5), but it is much easier to check compliance of the former than
correctness the latter as an RTSG solution. This is the key feature justifying this
application.

3.2 A Hand-Crafted Local Simulation

The first local mapping that we consider is the identity local mapping id, given
by the local transition function of the 6-state solution of Proposition 1. The
latter simply transforms this solution into itself. The point here is that we can
now work with local mappings. However, the reader should be careful to clearly
distinguish modifications made local mappings and the resulting modifications
on transition tables. It is easier to think in terms of space-time diagram, since
each modification in local mappings corresponds directly to a uniform set of
modifications in the target diagram, which may thus become non-deterministic.

Let us now describe how the second, hand-crafted, local mapping is obtained,
as we come back on the process itself later. It is build by noticing different
features of the original space-time diagram on the left of Fig. 2. Firstly, the state
A is not often used, so we can try to remove it entirely. This means changing
every entry (x, y, z) of ids such that ids(x, y, z) = A. Since A is the special
generating state, we can not replace it by B, Q or E as they appear in the
evolution of the leftmost cell. So we are left with C or D. However, looking at
time 1, we see changing A into C would lead to a CCQ local configuration, which
is already used. So we heuristically choose D instead, to have DCQ at time 1,
an unused local configuration. To summarize, for the leftmost cell we choose to
change A by D, and for the other cells, we can choose any state a priori.
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Fig. 2. 6-state diagram, hand-crafted local mapping and resulting 5-state diagram.

The second local mapping is thus obtained by taking every local configura-
tions (x, y, z) of ids such that ids(x, y, z) = A, and setting them to D if x = �,
and to E otherwise. The result is not a deterministic space-time diagram, but
this is easily corrected with two additional modifications for ACQ and QQC.
The local mapping has the same entries as the transition table of Fig. 1 except
for 12 entries as depicted in the center of Fig. 2 update. The space-time diagram
on the right is obtained by applying the local mapping on the space-time on the
left as indicated by the outlined local configuration on the left, and resulting
state on the right, at the following timestep as dictated by Definition 5.

Proposition 3. There is a n3-RTSG solution using 5 states and 72 transitions.

Proof. First note that the right space-time diagram is deterministic.1 We can
therefore extract the transition table given in Fig. 3 from it. All entries of this
table actually appear in the part of the right space-time shown in Fig. 2. To
prove this CA to be an n3-RTSG solution, it is enough to check that the local

1 The quickest way to convince oneself is to compute 10.000 transitions of the 6-state
solution and notice that all quintuplets occur by timestep 237. So it is enough to
check for non-determinism only up to timestep 237. See [9] for more information.
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Fig. 3. Transition table of the hand-crafted 5-state solution using 72 transitions.

mapping is RTSG-compliant. Note that the new solution has a different special
accepting state (D instead of A) as allowed by Definition 8. Since the source CA
is a solution, we can conclude using Proposition 2.

To ease the comparison of this 5-state solution with the original 6-state one,
the transitions that are different, added or removed are highlighted in Fig. 3.
All transition containing A should be considered as removed. Note that these
differences do not correspond exactly to those described in the local mapping.

3.3 Optimizing Through Millions of Solutions

We are ready to generate millions of 5-state solutions. They are essentially the
same, but can have fewer states or/and a different number of transitions. We
briefly summarize of the algorithm (more details in [8]) then examine the results.

TheExplorationAlgorithm. The exploration algorithm is related to the hand-
crafted process above. We start it with the identity local mapping of the hand-
crafted 5-state solution. Then, only compliant modifications of the local mapping
are considered. In fact, this is a graph exploration algorithm.The node of this graph
are the compliant local mappings from the hand-crafted 5-state solution to a fixed
set of 5 states (and an outside � state). The neighbors of a local mapping � are
all the local mapping obtained by exactly one compliant modification on �. The
identity local mapping is obviously a compliant local simulation, and the algorithm
generates all its neighbors and add to the “remaining tasks” queue any neighbor
that is also a compliant simulation. Continuing in this way with the content of
the queue, the algorithm explores the complete connected component of compliant
simulations. By Proposition 2, all these compliant local simulations are n3-RTSG
solutions. Let us describe two additional ingredients.

The first one is that there is an initialization step. To check that a local
mapping � is a local simulation, we need generate its local transition relation δΦ�

to check if it is a function or not. This is easy to do for all the local mappings if
we first collect all the super-local transition of the hand-crafted solution, i.e. all
quintuplets of states with their resulting triplet of states appearing anywhere in
the space-time diagram of the hand-crafted solution. From these data, and for
any local mapping �, it is enough to apply �s on all the super local transitions
to generate the entries of associated local transition relation δΦ�

.
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Fig. 4. Hand-crafted 5-state diagram and optimized 5-state/58-transition diagram.

The second ingredient is a parameter k allowing the discovery of more compli-
ant simulation connected component. With k = 0, the algorithm is unchanged and
a compliant local simulation is reached only if its modifications can be applied one
at a time while leading to compliant local simulation all the way through. With
k ≥ 1, the algorithm randomly apply k additional modifications simultaneously
on any given compliant local simulation. If fact, it is often the case that many mod-
ifications need to be applied simultaneously, for example the two last modifications
described in the design of the hand-crafted solution (Fig. 4).

Generated Solutions and Optimizations. Running the algorithm on a 32
cores of 2.00 GHz machine having 126 Gb of memory, we obtain so many solu-
tions that the algorithm stops because of memory overflow. The first time, we ran
the algorithm with k = 0. The program actually uses 2 cores and about 43 Gb of
memory. We did not optimize the program nor the configuration of the Java Vir-
tual Machine of this Java implementation. The following data are not reproducible
but gives a rough idea: after 1 days about 15 millions local simulations have been
obtained, after 6 days about 85 millions, and after 20 days about 90 millions. The
number of solutions found each day was steady for the 6 firsts days then dropped,
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Fig. 5. Transition table of the generated 5-state solution using 58 transitions.

presumably because of memory issues. Running concurrently the program with
k = 2, it uses 2 cores and 36 Gb of memory before memory overflow: after 1 days
about 15 millions found local simulations, after 6 days about 70 millions local sim-
ulations, after 20 days, about 74 millions. In fact, all solutions was kept in memory
to keep track of the total number of generated solutions. Better strategies can be
found if the goal is only to optimize the solution.

Proposition 4. There are at least 90,000,000 n3-RTSG solutions using 5
states.

Among these millions of solutions, no 4-state solutions are found, but 32379
of them have fewer transitions. The following table indicate for each number of
transitions (first line) the corresponding number of solutions (second line).

58 59 60 61 62 63 64 65 66 67 68 69 70 71

1 7 22 51 98 174 336 589 1044 1618 2696 4643 7671 13429

Proposition 5. There is a n3-RTSG solution using 5 states and 58 transitions.

Proof. The transition table of the generated solution is shown in Fig. 5. The
local mapping having 45 entries different from the identity local mapping, it is
not practical to display it, but it can be reconstructed from both CA. It is then
a matter of checking that it is compliant and apply Proposition 2 to conclude
as before.

3.4 Beyond RTSG and FSSP Optimizations

It should be clear by now that the approach can be applied to a large class of
problems. For example, the same algorithm used here for the n3-RTSG problem
is not particular to the n3 sequence and can be used for any sequence S, as
indicated in the definitions and propositions above. Also, the slightly differently
parameterized algorithm for the minimal-time FSSP is not particular to minimal-
time solutions and can be used for any synchronization time, without specifying
this synchronization time to the algorithm. The difference in the parameters
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only reflects the slightly different notion of compliance for RTSG problems and
FSSP. The notion of compliance being the only changing factor, the approach
can readily be adapted to any class of problem for which an appropriate notion of
compliance can be designed. As exemplified here, and in the FSSP case described
in [8], the compliance property is a direct translate of the problem.

4 Conclusion

There are still many components of this work to communicate properly, including
how local mappings compose and relate to each other and how the integration
of non-deterministic family of space-time diagrams can allow to explore even
more (deterministic) solutions, and this conclusion is not the place to start these
discussions. Let us nonetheless comment on two other aspects.

Firstly, the notion of local mapping appears to be a bridge between a com-
mon practice and a topological tool. On the practical side, it is common to
work directly at the level of space-time diagrams, and this is this practice that is
partly captured formally and automatized by local mappings. On the topological
side, a question was raised about the relation with conjugacy classes, a standard
notion in the CA and symbolic dynamics literature [2]. In fact, the concept of
local mapping appears to be an adaptation of the notion of shift-equivariant
homomorphism between two cellular automaton. Such homomorphisms are usu-
ally described on total transition functions, with any configuration being a valid
initial configuration. This is a dynamical system point of view not necessarily
aligned with the more algorithmic point of view of FSSP and RTSG problems.
Local mappings augment the notion of homomorphism by including the partial-
ity of the transition functions and the temporal aspect of the space-time dia-
grams, essential for the very specification of many algorithmic problem. Forming
a bridge between the algorithmic and dynamical points of view might be the rea-
son of their effectiveness.

Secondly, more results have been obtained since the writing of this paper and
we now have 4-state and 3-state solutions, but the details of these news results
still need to be worked out. The 4-state solution is obtained by running again the
exploration from the solution of Proposition 5. Running again the exploration
from it gives no additional local simulation. The 3-state solutions are obtained by
a brute force exploration in a particular order to maximize pruning. This gives
optimal-state solutions for the n3-RTSG problem, and more data to deepen our
understanding of the local mapping landscape, with possible applications to the
famous 5-state FSSP problem.
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Abstract. The problem of cellular automata coarse-graining is con-
sidered. The case of 1D boolean cellular automata (CA) is investi-
gated. Probabilistic rules for 1D CA are parameterized. Then the coarse-
graining procedure and the reduced probabilistic CA are defined in the
general case. The reduction procedure is illustrated on the example of
the Wolfram CA deterministic rule 30. It is then analyzed on the exam-
ple of a 1D ring probabilistic voter model. The coarse-grained transition
rule is improved by making use of the network adjacency matrix. Results
obtained for the original and the coarse-grained models are compared,
both in the uncontrolled and controlled cases.

Keywords: Cellular automata · Coarse-graining · Projection ·
Dynamical systems · Probabilistic dynamics · Voter model

1 Introduction

Many systems of interest to scientists are made of a large number of interacting
constituents whose detailed behavior may not be of great interest when observing
the system at a larger scale. For instance a fluid is made of many molecules
but such a fine grain description is not tractable if one is interested in local
macroscopic properties such as pressure, velocity or temperature.

In the realm of complex systems, it is an interesting question to understand
when and how a system can be reduced by projecting the fine degree of free-
dom. We are for instance concerned with the question of the controllability of
a complex system, namely our ability to act on it to force its behavior towards
a desired objective. Dealing with a large number of degrees of freedom makes
this question very challenging, both mathematically and numerically. Therefore,
there is a great interest to consider the control of a reduced system as a good
approximation of the control of the full system. It is worthwhile to note that the
problem has already been investigated in the control community, but mainly for
the reduction of large scale unstructured linear systems, i.e. described by a large
set of differential (or difference) equations. The proposed reduction methods then
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rely usually on matrix decomposition algorithms and projections which preserve
some system properties such as controllability (see for instance [2] for a textbook
on this approach). However these methods do not apply (in general) to nonlinear
systems and do not make use of the information on the interaction topology (or
structure) of the system. In this work we would rather consider reduction meth-
ods more specifically adapted to nonlinear complex systems, relying on local
dynamics and local interactions topology (agents neighborhood).

The typical problem we have in mind is a stochastic dynamical system on
a graph, where each node is an agent that can have a finite number of possible
states. Below we will present a version of a voter model that will illustrate our
approach. From a general point of view, our goal is act on some agent, impose
their state so as to produce a desired global response (e.g. all agents reach the
same state). Intuitively, it seems reasonable to assume that the behavior of the
system could be obtained by a reduced number of representative agents that
aggregate a community of agents that adopt, on average, a similar state.

In what follows, we explore the above question in a simplified topology of
agents, namely a periodic one-dimensional system, with only nearest neighbors
interactions and two possible states. Such a system corresponds to a probabilistic
Cellular Automaton (CA). In short, we want to build “supercells” that aggregate
3 cells of the original system, and see whether we are able to express an evolution
rule for a global property of these supercells, for instance the state of the majority
of the internal cells.

The process of coarse graining a CA has been addressed by a few authors
(see for instance [3–5]). The main difference of the present approach is that we
consider probabilistic rules for which any projection of the state of a super-
cell to {0, 1} is possible and will give rise to a new probabilistic rule. In the
case of deterministic CA, the challenge is to find whether a projection exists so
that the coarse-grained CA is still a deterministic CA. In this work, the ques-
tions are rather to decide whether the coarse-grained probabilistic CA is a good
approximation of the original (deterministic or probabilistic) one and what good
approximation means in this context.

The paper is organised as follows. First we develop the formalism for coarse
graining a probabilistic CA, and we discuss its applicability in practical cases.
Then, we consider the specific case of a CA voter model, its reduction and our
capability to design a control strategy on the coarse grained model that would
produced the same effect as on the fully resolved CA. We conclude the discussion
with open questions and tentative approaches to address them.

2 Problem Formulation

The goal of this section is to provide a general framework to define what we
mean by the coarse graining of a CA, or its reduction. We start from a general
formulation of a 1D CA model. It is well known that the deterministic, elemen-
tary CAs can be specified using the numbering scheme proposed by Wolfram [1].
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All possible input configurations are listed and the set of corresponding output
is interpreted as a number characterizing the rule of CA. This is sketched below
for a two-state, radius 1 rule 110110002 = 21610:

111
︸︷︷︸

1

110
︸︷︷︸

1

101
︸︷︷︸

0

100
︸︷︷︸

1

011
︸︷︷︸

1

010
︸︷︷︸

0

001
︸︷︷︸

0

000
︸︷︷︸

0

(1)

The output p = 0 or p = 1 can be interpreted as the probability p that the site
si(t + 1) = 1 provided the values si−1sis1+1 at the previous time t. Therefore,
using the same approach, we can define a stochastic k = 2 states and r = 1
radius as

111
︸︷︷︸

p7

110
︸︷︷︸

p6

101
︸︷︷︸

p5

100
︸︷︷︸

p4

011
︸︷︷︸

p3

010
︸︷︷︸

p2

001
︸︷︷︸

p1

000
︸︷︷︸

p0

(2)

where p� is the probability that configuration � = si−1sisi+1 is 1 at the next
iteration. Therefore any 1D r = 1, k = 2 CA, whether stochastic or deterministic
can be specified by the vector

p = (p7, p6, p5, p4, p3, p2, p1, p0)

with pi ∈ [0, 1].
Note that the number of probability pi can be reduced if the rule has sym-

metries or additional properties. For instance, for the so-called totalistic rules,
where the outcome depends only on the sum of the state of the neighborhood,
p6 = p5 = p3, p4 = p2 = p1, and only four components are needed to specify
the rule, for instance p7, p6, p4 and p0. The number of components of p is also
reduced if the rule is symmetric by permuting the left and right neighbors, or
by the transformation 0 ↔ 1.

The reason why we are introducing this representation is that the coarse
graining procedure that we will present transforms a probability vector p into
another one, p′, by adding noise. The difference between p and p′ indicates how
the coarse grained rule differs from the original one. Our formalism allows us to
consider both deterministic and stochastic rule within the same framework.

3 Coarse Graining Procedure

Our coarse graining procedure is based on several steps that we illustrate on a
r = 1 CA whose evolution rule is defined through the transition function (or
conditional probability).

P (si(t + 1)|si−1(t), si(t), si+1(t)) (3)

Generalization to a larger neighborhood or to any kind of interaction graph is
left for further investigations.

Figure 1 sketches the process. The cells re grouped in super cells of size 3. A
given configuration of 3 such supercells produces one super-cell after 3 iterations
of the CA (operation T ). This super-cell can then be reduced to w ∈ {0, 1}
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Fig. 1. Schematic illustration of the coarse graining procedure for stochastic CA with
radius 1.

according to a projection F . The question is then to determine the rule TCG

that would lead to the same result by directly projecting the initial super-cells.
As suggested in Fig. 1, there might be different sets of super-cells that have the
same projection x, y, z, but a different projected output w. This variability can
be considered as a probabilisitic component of the reduced CA.

(1) Extension of the CA rule by combining several time steps on the corre-
sponding extended neighborhood. For instance, a r = 1, CA, iterated 3 times
required the knowledge of the state, a1 . . . a9, of 9 consecutive cells and deter-
mines the state, d4 . . . d6, of 3 cells as illustrated in the following example

t = 0 : a1 a2 a3 a4 a5 a6 a7 a8 a9

t = 1 : b2 b3 b4 b5 b6 b7 b8
t = 2 : c3 c4 c5 c6 c7
t = 3 : d4 d5 d6

(4)

The lookup table corresponding to this extension amounts to computing the
conditional probability

P (d4, d5, d6|a1, a2, a3, a4, a5, a6, a7, a8, a9) (5)

Such a quantity can be obtained from the original rule, namely relation (3). First
we notice that conditional probability (5) can be expressed as

P (d4, d5, d6|a1, a2, a3, a4, a5, a6, a7, a8, a9)

=
∑

c3,...,c7,b2...b8

P (d4, d5, d6|c3, c4, c5, c6, c7)

×P (c3, c4, c5, c6, c7|b2, b3, b4, b5, b6, b7, b8)
×P (b2, b3, b4, b5, b6, b7, b8|a1, a2, a3, a4, a5, a6, a7, a8, a9) (6)
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Each of these terms can be obtained from the original CA rule as, for instance
for P (b|a),

P (b2, b3, b4, b5, b6, b7, b8|a1, a2, a3, a4, a5, a6, a7, a8, a9)
= P (b2|a1, a2, a3) × P (b3|a2, a3, a4)
×P (b4|a3, a4, a4) × P (b5|a4, a5, a6)
×P (b6|a5, a6, a7) × P (b7|a6, a7, a8)
P (b8|a7, a8, a9) (7)

because, for each cell i, the CA rule is applied independently (new random
numbers are drawn for a stochastic rule) and can be computed explicitly with
Eq. (3). A similar expression holds for P (c|b). Expression (6) together with (7)
is analytically heavy but can easily be computed numerically from the original
CA rule (3). In case the original CA is with two states {0, 1}, one has, using
representation (2), that

P (1|xyz) = pxyz P (0|xyz) = 1 − pxyz (8)

where the notation xyz means the binary number obtained with bits x, y and z.
Note the transformation proposed here is exact and contains no approximation.
Using the extended rule P (d|a) simply reduces the number of iterations by 3
compared to the original rule. This transformation is denoted T in Fig. 1.

(2) Projection of the extended CA rule: This step of the procedure consists
in a projection of the extended CA on a simple one. First one notices that we
can group the 9 cells of the extended CA in 3 super-cells. If the original CA has
two states, 0 and 1, the super-cells have 3 bits, that is 8 possible states.

We will now define a projection F from these 8 states to {0, 1} so that the
projected states take the same values 0 and 1 as the original CA (see Fig. 1, left,
where it is shown that two different state vectors a and a′ for 9 contiguous cells
are projected through F on the same state (x, y, z) for the three corresponding
super-cells).

A simple choice for F , in the case of super-cells with 3-bit states, is the
majority rule

F (x, y, z) =
{

1 if x + y + z ≥ 2
0 otherwise (9)

This choice will be used in the sequel of the paper, although the proposed reduc-
tion method may be applied using any map F with values in {0, 1}. The reduced,
or coarse grained, CA is then defined by the transition probability P (w|xyz)
given by

P (w|xyz) = P (F (d4:6) = w)|F (a1:3) = x, F (a4:6) = y, F (a7:9) = z) (10)

Notation: αp:q = (αp, αp+1, . . . , αq)
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It is represented as the transition TCG in Fig. 1. This can be written with the
joint probability distribution P (d, a) as

P (w|xyz) =
P (w, xyz)
P (xyz)

(11)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

∑

F (d4d5d6) = w
F (a1a2a3) = x
F (a4a5a6) = y
F (a7a8a9) = z

P (d, a)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

∑

F (a′
1a′

2a′
3) = x

F (a′
4a′

5a′
6) = y

F (a′
7a′

8a′
9) = z

P (a′)

⎞

⎟

⎟

⎟

⎟

⎠

−1

(12)

where a is short for a1, a2 . . . a9, a′ is short for a′
1, a

′
2, . . . a

′
9 and d is short for

d4, d5, d6.
Expressing the joint probability P (d, a) as P (d|a)P (a) gives

P (w|xyz) =
∑

F (d4d5d6) = w
F (a1a2a3) = x
F (a4a5a6) = y
F (a7a8a9) = z

⎛

⎜

⎜

⎜

⎝

P (d|a)

⎡

⎢

⎢

⎢

⎣

P (a)
∑

F (a′
1a′

2a′
3) = x

F (a′
4a′

5a′
6) = y

F (a′
7a′

8a′
9) = z

P (a′)

⎤

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠

(13)

The term P (d|a) is known from the previous step, but the term

P (a)
∑

F (a′
1a′

2a′
3) = x

F (a′
4a′

5a′
6) = y

F (a′
7a′

8a′
9) = z

P (a′)
(14)

is unknown as the probability to get the sequence a may depend on the his-
tory of the evolution. This probability can be, for instance, estimated by sam-
pling. However, assuming that all configurations are equally likely, (14) can be
obtained easily with combinatorial arguments. This is done in the next section
for a deterministic CA example which is known to have a uniform configurations
distribution. In Sect. 5, a probabilistic voter model will be reduced. In this latter
example, on the contrary, it is shown both through numerical (empirical) exper-
iments and from adjacency matrix analysis, that the configurations may not
be considered as uniformly distributed. In that case, a corresponding weighted
reduction has to be proposed.

4 Example

As an illustration of the previous section, we coarse grain Wolfram CA deter-
ministic rule 30 into a stochastic CA. For this rule, as P (a) is uniform for all
configuration a = a1a2 . . . a9, with the projection F being the majority rule (9),
expression (14) equals 1/64. According to expression (13), to obtain probabili-
ties pi, we need to compute P (d|a). These values are deduced from (6), (7) and
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from rule 30. Thus, for this example, by applying the method presented in the
previous part, we obtain the following probabilities:

p0 = 0.65625 p1 = 0.546875 p2 = 0.671875 p3 = 0.734375 p4 = 0.34375

p5 = 0.453125 p6 = 0.328125 p7 = 0.265625

Figure 2 (left) shows the evolution of rule 30, for a periodic CA of length
300, every 3 iterations, and with a projection by F of each supercell of size 3
to a size 1 cell. In the middle we show the evolution of the coarse grained rule
30, which naturally has a time scale and spatial scale reduced by a factor 3.
Finally, on the right, we show a fully random rule, with pi = 0.5. Clearly the
first two images look very similar and different from the last one. This suggests
that the coarse graining preserves some spatio-temporal patterns of rule 30. Of
course a quantitative analysis should be performed to measure the quality of the
reduction in this case. It is left for further investigations.

Fig. 2. Wolfram rule 30, projected, reduced and compared to a random rule.

5 Reduced Voter Model

5.1 Description of the Model

We will now apply the projection method to the voter model defined in [6].
This agent-based model is defined on a graph of arbitrary topology, whether
directed or not. A binary agent occupies each node of the network. The dynamics
is specified by assuming that each agent i looks at every other agent in its
neighborhood, and counts the percentage ρi of those agents which are in the
state +1 (in case an agent is linked to itself, it obviously belongs to its own
neighborhood). A function f , with 0 ≤ f(ρi) ≤ 1, gives the probability for an
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agent i to be in state +1 at the next iteration. For instance, if f would be chosen
as f(ρ) = ρ, an agent for which all neighbors are in state +1 will turn into state
+1 with certainty. The update is performed synchronously over all n agents.
Formally, this dynamics for the voter model can be expressed as

si(t + 1) =
{

1 with probability f(ρi(t))
0 with probability 1 − f(ρi(t))

(15)

where si(t) ∈ {0, 1} is the state of agent i at iteration t and where

ρi(t) =
1

|Ni|
∑

j∈Ni

sj(t). (16)

Ni denotes the set of neighbors of agent i, according to the network topology.
The global density of all n agents with opinion 1 is

ρall(t) =
1
n

n
∑

i=1

si(t) (17)

In what follows, we will use the particular function

f(ρ) = (1 − 2ε)ρ + ε (18)

The quantity 0 ≤ ε ≤ 1/2 is called the noise. It reflects the probability to take
a decision different from that of the neighborhood majority.

5.2 Transition Probabilities for a 1D Circular Graph Voter Model

We will consider a 1D voter model where each agent has only left and right
neighbors. To avoid boundary effects, we will make use of a 1D circular graph
of size n for the network topology. The expression for ρi is then

ρi =
si−1(t) + si(t) + si+1(t)

3
, i ∈ {1, . . . , n} (19)

where si(t) denotes the state of agent i at time t. Following the coarse graining
procedure defined in Sect. 3, we make groups of 3 cells defined as “super-agents”.
The boolean state Si(t) of the super-agent i is defined by:

Si(t) =

{

1 if s3i+1(t) + s3i+2(t) + s3i+3(t) � 2
0 otherwise

(20)

Following the notations of Fig. (1), we define the coarse-grained transition prob-
ability P (w|xyz) as the probability that Si(t + 1) = 1 knowing that the values
of Si−1(t), Si(t) and Si+1(t) are respectively x, y and z. These coarse-grained
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transition probabilities for super-agents may be computed according to (12)
and the resulting probabilistic cellular automaton may be represented using the
notation introduced in (2). For instance, with a noise ε = 0, 01, we obtain

p = (p7, p6, p5, p4, p3, p2, p1, p0)
= (0.9512, 0.7898, 0.3836, 0.2108, 0.7838, 0.6111, 0.2116, 0.0501) (21)

5.3 The Transition Function

We compute the values of P (1|xyz), defined by expression (12), through intensive
simulations with the original CA, for different noise values ε. We look for a
transition function, g for the reduced system which is affine as the transition
function, f , of the original system (18). However, we observe that when choosing

ρ =
Si−1(t) + Si(t) + Si+1(t)

3

the function g is not affine. It is therefore useful to consider weights for the values
of the block states in the expression of ρ. With the values of P (1|xyz) found by
sampling, we compute α and ε1 such that:

{

g(ρ) = (1 − 2ε1)ρ + ε1

ρ = αSi−1(t) + (1 − 2α)Si(t) + αSi+1(t)
(22)

In Fig. 3 (right part), g is computed for several values of ε and evaluated for
ρ ∈ {0; 0.181; 0.363; 0.637; 0.818}. We can see in Fig. 3 (left part) that, for small
values of ε, ε1 grows linearly with ε (the correlation coefficient is 0.99 for values
of ε ∈ [0; 0.05]). Using the least squares method, we obtain

ε1 = 3.667ε + 0.0106 (23)

The need to weight state values Si is due to the fact that the state of a block
(or super-agent) at time t+3 is more influenced by its own state at time t, than
by the state of its 2 neighboring blocks. The interactions between the agents can
be represented by a causality graph. Its adjacency matrix is, in the case of a
periodic (circular) topology:

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 0 . . . . . . 0 1
1 1 1 0 0

0
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . . . .

...

0
. . . . . . . . . 1

1 0 . . . . . . 0 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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The number of causal paths between 2 agents after 1, 2 or 3 iterations is then
given by the coefficients of the matrix B = A + A2 + A3. We have:

B =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

C D 03,3 03,3 D
D C D 03,3 03,3

03,3
. . . . . .

...
...

. . . . . . . . . . . . 03,3

...
. . . . . . D C D

D O3,3
. . . . . . . . . D C

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

with

C =

⎛

⎝

1 4 9
0 1 4
0 0 1

⎞

⎠ , D =

⎛

⎝

9 11 9
4 9 11
1 4 9

⎞

⎠ , 03,3 =

⎛

⎝

0 0 0
0 0 0
0 0 0

⎞

⎠

We may therefore define a parameter b to characterize the influence of the vote
of a block of cells at time t on the vote of the same block at time t + 3:

b =
∑

di,j
∑

ci,j + 2
∑

di,j
=

67
107

≈ 0.626

Similarly, we may define the corresponding influence parameter a for the vote of
the two neighbouring blocks at time t on the vote of the central block at time
t + 3:

a =
∑

ci,j
∑

ci,j + 2
∑

di,j
=

20
107

≈ 0.187

Note that these weighting parameters are derived directly from the interaction
graph and do not require (intensive) sampling to be estimated, contrarily to
the estimation of the probabilities in the coarse-grained configuration space by
simulations.

For all considered values of ε, we obtained for α a mean value of 0.182 and
a standard deviation of 0.0028. It may be noticed that these values are very
close to the value of a obtained with the matrix B only. Therefore we conjecture
that the weights computed from the adjacency matrix B (hence the value of α)
give an accurate approximation of the “real” weights which could be computed
from the estimation of the coarse-grained configuration probabilities through an
intensive simulation effort. For the rest of the simulations in the paper, we will
choose α = 0.182.

5.4 Simulation of a Controlled Situation

To compare the original system and the reduced one, we look at their behavior
while controlling blocks (or supercells). We have done simulations by forcing
the vote to 1 of the block agents, and calculate the average opinion ρall of the
population. In the case of the original system we carry out simulations by forcing
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Fig. 3. Left: ε1 as a function of ε. Right: g(ρ) with different noises: ε = 0(red curve), 0.03
(green curve), 0.07 (yellow curve) and 0, 1 (purple curve), values calculated for ρ ∈
{0; 0.181; 0.362; 0.638; 0.819}. (Color figure online)

the vote to 1 of 3 cells of a block, of 2 blocks and of 4 blocks. We compute the
average rate of blocks voting 1 (i.e. 2 or 3 cells of the block vote 1) as a function
of t. For the reduced system, we force the values of the coarse-grained cells to
1 for 1, 2 and 4 blocks, and we compute the average fraction of vote 1 over the
entire system.

In Fig. 4, we see the results obtained with a ring graph of size n = 120.
The noise is ε = 0.01. We did 104 simulations with 600 time steps. The average
voting rate is compared for the original and reduced systems. When 1 and 2
blocks are controlled among 40 blocks, we see that the noise induced by the
projection generates a slightly lower average rate of blocks voting 1 for the
simplified system. On the other hand, when we control 4 blocks, these rates are
very close.
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Fig. 4. The fraction of votes 1 for a ring graph of size 120 with controlling blocks of
3 agents during a time period of 600. The blue curves are the fraction of blocks that
vote mostly 1 (2 or 3 agents vote 1 among the 3 agents of the block). These curves are
obtained with the real system. The red curves are obtained with the simplified system.
They give us the rate of blocks that vote 1 in majority. The noise is ε = 0.01, and the
noise in the reduced model is ε1 = 0.047, as given by Eq. (23). We compute the average
of the votes with a sample of 104 simulations. The number of controlled blocks of size
3 is 1 (left panel), 2 (middle panel) and 4 (right panel). (Color figure online)
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6 Conclusions

Our goal was to explore the possibility to simplify stochastic complex systems
on graphs by reducing the number of degrees of freedom, while keeping the
essential dynamical features. We believe that the originality of the proposed
method is that it can be applied for any projection function and any probabilis-
tic or deterministic CAs. In our theoretical framework an important aspect to
correctly build the simplified system is to have hypotheses on the probability
distribution of all possible configurations. In the case of the voter model, where
we determined the reduced system from a statistical analysis of the real one,
we observed that coarse grained agents may have to be defined with a weighted
average of the real ones. Anyway, the examples we showed in this study suggest
that system reduction is a possible avenue, in particular with the objective of
controllability. However, numerous issues need to be investigated: the evalua-
tion of the information loss in the reduction, the comparisons of the stationary
probability distributions, etc. Another question is how to best define the blocks
or super-agents for the system reduction. When applying the reduction on a
dynamical system defined on a graph, a natural way could be to consider the
partitions associated with graph communities.
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Abstract. Inspired by the theory of continuous dynamical systems,
Lyapunov exponents have been previously defined in the framework of
cellular automata (CAs) in order to quantify a CA’s sensitive dependence
on initial conditions, i.e. a CA’s sensitivity to a perturbation of an initial
configuration. However, the application of these Lyapunov exponents is
currently limited to two-state CAs, which limits their usefulness in the
framework of CA-based models since these typically involve more than
two states. This paper proposes an extension of the existing methodolog-
ical framework to three-state CAs. Our method is illustrated for some
interesting totalistic three-state rules, although it is generally applicable.
Our proposed extension to the existing framework reveals some interest-
ing features regarding CAs classified as class IV according to Wolfram’s
classification.

Keywords: Cellular automata · Lyapunov exponents · Multi-state
systems

1 Introduction

In the theory of continuous dynamical systems, Lyapunov exponents are a mea-
sure of the exponential divergence rate of two trajectories that are initially
infinitesimally close in phase space [9]. As such, they quantify how a dynam-
ical system responds to a perturbation of its initial state. For an N -dimensional
dynamical system, this yields a Lyapunov profile consisting of N different Lya-
punov exponents, one for each (mutually orthogonal) direction in phase space.
As soon as one of the N Lyapunov exponents is non-zero, an initial perturba-
tion will grow exponentially over time - this indicates a sensitive dependence on
initial conditions. The details of the Lyapunov profile further specify the kind of
dynamics that can occur.

In order to arrive at a comprehensive overview of CAs, many different mea-
sures have been proposed [3,11,13]. As a CA is essentially a discrete dynamical
system, a measure that captures its sensitivity to the initial configuration and
its possible chaotic dynamics is useful to gain insights into the dependence of
the dynamical evolution on the initial configuration. However, the extension
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of the concept of Lyapunov exponents to CAs is not straightforward. For the
case of two-state one-dimensional CAs, two separate viewpoints emerged in the
early nineties. The first viewpoint was suggested by Wolfram, who defined the
Lyapunov exponents of CA empirically by considering the average propagation
velocity to the left and right of the defect pattern [12]. This idea was later for-
malized for binary one-dimensional CA by Shereshevsky [7] and further refined
by other authors [4,8]. This approach yields the left and right Lyapunov expo-
nents Λ+(x) and Λ−(x) respectively for one-dimensional CA. The conditions
under which Shereshevsky’s definition applies are fairly strict, which prompted
Tisseur [8] to define the more generally applicable average Lyapunov exponents
that are smaller than or equal to the exponents defined by Shereshevsky.

The second viewpoint, proposed by Bagnoli [2], is more similar to the famil-
iar notion of Lyapunov exponents as the exponential divergence rate of nearby
trajectories. This method was later extended by Baetens et al. in order to yield
the full discrete Lyapunov profile of a CA rule [1].

Both of these approaches are currently only defined for two-state CAs. This
significantly reduces their applicability in real-world scenarios, as CA relevant
for such applications often require more than two states [5,6]. This paper demon-
strates how Bagnoli’s [2] approach for obtaining Lyapunov profiles for two-state
CAs can be extended to three-state CAs while also distinguishing between the
directionality of the defects, i.e. a state change from 1 to 0 is distinct from a
change from 0 to 1. In addition to quantifying the exponential divergence rate
of initially close trajectories for three-state CAs, this extension also captures the
kind of defects that dominate the chaotic dynamics in certain CAs.

2 Lyapunov Profiles of Cellular Automata

2.1 Preliminaries

A CA can be conveniently represented by a sextuple C = 〈T , S, s, s0,N , φ〉. Here,
T denotes a countably infinite tessellation of a one-dimensional Euclidean space,
consisting of consecutive intervals ci, i ∈ N, referred to as sites, and S constitutes
the space of states of the CA. The output function s : T × N → S yields the
state value of site ci at the t-th discrete time step, i.e. s(ci, t). The function
s0 : T → S assigns to every site ci an initial state, i.e. s(ci, 0) = s0(ci). N (ci)
is the neighborhood function with size |N |, i.e. N (ci) = (ci−1, ci, ci+1). Finally,
the transition function φ : S|N | → S, that governs the dynamics of each site ci,
is given by

s(ci, t + 1) = φ(s(ci−1, t), s(ci, t), s(ci+1, t)) .

2.2 Two-State CA

Extending the concept of Lyapunov exponents to CAs is not straightforward,
as the original definition relies on tools from differential calculus, which are not
applicable to CA since the state space SN is fully discrete. Instead of considering
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infinitesimally close initial configurations, one can instead consider initial config-
urations that differ only in a single site. The vector s(t) denotes the defect pat-
tern and indicates how such a perturbation in the initial configuration, referred
to as a defect, propagates. For binary one-dimensional CAs, the time evolution of
the defect pattern can be written recursively using the Boolean Jacobian matrix
J(s(t), t) [2]:

Δs(t + 1) = J(s(t), t) ∗ Δs(t) , (1)

where ∗ denotes the usual matrix multiplication but with the regular summation
replaced by summation modulo 2. The matrix J(s(t), t) contains the Boolean
partial derivatives of the transition function φ : S|N | → S [10]:

[
J(s(t), t)

]
ij

=
∂s(ci, t + 1)

∂s(cj , t)
(2)

=

{
1, if φ

(
s̃(N (ci), t)

)
= φ

(
s̃j(N (ci), t)

)
,

0, otherwise,
(3)

where s̃j(N (ci), t) is the set obtained by replacing s(cj , t) by its complement in
the set s̃(N (ci), t).

These entries simply indicate whether or not flipping the value at site cj at
time t causes a change in the value at site ci at time t + 1. Whether or not
a change at site cj propagates to site ci depends on the entire neighborhood
N (ci), which is why J(s(t), t) depends on the configuration s(t). Note that for
CA with a neighborhood size of three sites, J(s(t), t) is a tridiagonal matrix since
the right hand side of Eq. (3) vanishes when cj /∈ N (ci), because perturbations
of a certain site ci can only affect sites in its neighborhood N (ci) over the course
of a single time step.

Now, we let H(t) denote the sum of all elements of the defect pattern at a
certain time step t. This equals the Hamming distance dh between two configu-
rations evolved from initial configurations differing only in a single site, denoted
by s(t) and s∗(t):

H(t) = dh
(
s(t), s∗(t)

)
(4)

=
∑

i

Δs(ci, t), (5)

where Δs(ci, t) denotes the ith element of the vector Δs(t). Due to the local
nature of CAs, H(t) can grow at most linearly with time, so the Hamming
distance is not a suitable metric to define exponential divergence in SN .

Bagnoli resolved this issue for binary one-dimensional CAs by considering the
number of ways in which defects can propagate to a certain time step, instead of
simply considering the number of defects at a certain time step [2]. The damage
vector n(t) is defined as the vector whose i-th entry contains the number of
ways in which the initial defect can propagate to site ci in t time steps (i.e. the
number of defect paths). The evolution of n(t) is again written recursively using
the Boolean Jacobian matrix:

n(t + 1) = J(s(t), t),n(t) , (6)
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where regular matrix multiplication takes place. It is clear that the total number
of ways in which defects can propagate to time step t is given by the sum of all
entries in n(t), further denoted by ε(t). This quantity can grow exponentially
with time.

In summary, for one-dimensional binary CAs the defect pattern s(t) and
damage vector n(t) are determined by the following recursion relations:

Δs(t + 1) = J(s(t), t) ∗ Δs(t), (7)
n(t + 1) = J(s(t), t),n(t), (8)

From this, we infer the following upper bounds for H(t) and ε(t) [1]

H(t) =
∑

i

Δs(ci, t) ≤ (|N | − 1) t + 1, (9)

ε(t) =
∑

i

n(ci, t) ≤ |N |t , (10)

where |N | is the size of the neighborhood (e.g. |N | = 3 for elementary CA).
From the above discussion it is clear that considering ε(t) instead of H(t)

provides a way to meaningfully define the exponential divergence of trajectories
in SN. This can be used to define Lyapunov exponents in the context of CAs in
a way that complies with the definition of Lyapunov exponents for continuous
dynamical systems. In particular, Bagnoli defined the total Lyapunov exponent
as [2]

Λ1 = lim
t→∞

1
t

log
(

ε(t)
ε(0)

)
, (11)

where log indicates the natural logarithm. However, this discards the information
regarding the distribution of defects in n(t) [1]. A different approach considers
a one-dimensional finite CA of size N as an N -dimensional dynamical system,
where each site in the lattice corresponds to one of N dimensions, and introduces
a finite-time profile of N Lyapunov exponents as follows [1]:

Λ(T ) =
1
T

log(n(T )), (12)

where the is applied element-wise. The elements of Λ(T ) may be understood as
the time-averaged exponential rates by which the number of defects grows in
the sites of the CA. As such, the profile consisting of N Lyapunov exponents
is analogous to the spectrum of N Lyapunov exponents associated with an N -
dimensional continuous dynamical system.

The above definition relies on the fact that there is only one type of defect
(i.e. 1 → 0 defects). However, when considering three-state CAs, there are three
possible defects (i.e. 1 → 0, 1 → 2 and 2 → 0 defects). Furthermore, when explic-
itly accounting for the directionality of the defects, there are six possible defects
in the case of three-state CAs. This makes the above definition not applicable
to CAs with more than two states.
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2.3 Three-State CAs

This section discusses how the approach for two-state CAs can be generalized
to the three-state directional case. Such a generalization defines six Lyapunov
exponents, each one quantifying how one of the six types of defects propagates.
Note that in this paper we implement and illustrate our approach for three-state
CA, but it is applicable to CA with any number of states. As the number of
states k increases, the number of possible types of defects increases as k(k − 1),
so the required computing power to compute the Lyapunov profiles increases
drastically with k.

The extension to three-state CA entails a change in how the entries of the
Jacobian J(s(t), t) are defined. Now, J(s, (t)t) contains not only the Boolean
partial derivatives of the transition function φ : S|N | → S, but also a label that
expresses the type of defect that occurs:

[
J(s(t), t)

]
ij

=

⎧
⎨

⎩

τvw, if φ
(
s̃(N (ci), t)

)
�= φ

(
s̃j,vw(N (ci), t)

)
,

0, if φ
(
s̃(N (ci), t)

)
= φ

(
s̃j,vw(N (ci), t)

)
,

(13)

where s̃j,vw(N (ci), t) is the set obtained by perturbing s(cj , t) from state v, to
state w in the set s̃(N (ci), t). The values of v and w depend on the kind of defect
that arrives at the site ci.

Now, the evolution of n(t) can be written recursively using the Jacobian
matrix:

n(t + 1) = J(s(t), t),n(t) , (14)

where the regular matrix multiplication takes place. Now, the entries of n(t)
contain polynomials in τvw. Each term in such a polynomial in the ith entry of
n(t) represents a certain defect path that arrives at site i in t time steps. The
exponent of τvw in such a term represents the number of times the defect τvw
occurs in this defect path.

We illustrate this approach for the three-state totalistic CA with rule number
420 according to Wolfram’s enumeration scheme. We choose this rule because it
is the only totalistic rule for which all Boolean derivatives are non-zero, therefore
yielding a maximum Lyapunov exponent. For a totalistic rule, the state space is
S = {0, 1, 2}, is endowed with the regular addition, and the updated site value
depends only on the sum of the values in its neighborhood at the previous time
step: s(ci, t + 1) = φ(s(ci−1, t) + s(ci, t) + s(ci+1, t)).

Figure 1a shows the defect pattern generated by this rule starting from a
random initial configuration of nine sites evolved over three time steps. The
damage spreading is shown in Fig. 1b.

In the binary non-directional case, an arrow appears in the damage pat-
tern when the Boolean derivative equals one and no arrow otherwise. In the
three-state directional case, the arrows are labelled according to the type of
propagating defect. The polynomial at

[
n(t = 3)

]
i=1

equals τ20τ02τ12. This indi-
cates that there is a single defect path arriving at site ci = 1, which consists
of three different defects τ20, τ02 and τ12. When moving closer towards the cen-
ter of the lattice, where the defect was introduced, the number of defect paths
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Fig. 1. The defect pattern generated by totalistic three-state rule 420. For simplicity,
only the paths arriving at the two leftmost sites in the defect pattern in Fig. 1b have
been labelled.

arriving at a certain site increases. The polynomial at
[
n(t = 3)

]
i=2

equals
τ20τ02τ12 + τ2

20τ02 + τ2
20τ01. Now there are three terms in the polynomial, indi-

cating that there are three defect paths arriving at site ci = 2. Note that the
sum of the exponents of each term in the polynomial equals the number of time
steps.

3 Results and Discussion

3.1 Experimental Setup

Using the definition for directional Lyapunov profiles of three-state CAs, we
will illustrate this approach for the case of some exemplary totalistic three-state
rules. For each of these rules, the propagation of defects emerging from a single
defect was tracked for 15 time steps in a one-dimensional system consisting of 30
sites. We restrict ourselves to random initial configurations and a single initial
defect in the center of the lattice, though we should be aware that the Lyapunov
profiles might depend on the initial configuration from which they are evolved
in the sense that for some rules and initial configuration defects will die out by
chance, whereas they will be able to propagate for other initial configurations. In
order to yield a more clear visualization of the results, the discrete points which
yield the Lyapunov profiles are connected by lines so as to yield continuous
profiles.

For each of Wolfram’s classes [12], a representative totalistic three-state rule is
chosen and its space-time pattern, defect pattern and corresponding Lyapunov
profiles are computed. Totalistic rules are chosen for which the steady-state
behavior is reached after a single time step, as we want the finite-time Lyapunov
profile to reflect the steady-state behavior instead of the transient phenomena.
This avoids the need to simulate for long time periods. Computing Lyapunov
profiles for rules with long transients is an objective of future work.
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3.2 Class I

Class I behaviour is trivial. After a transient, the defect pattern vanishes for all
class I rules and the Lyapunov exponents are zero everywhere. This means that
any defect introduced in the initial configuration can only propagate over a small
finite distance in the lattice, before the system settles on the same equilibrium
state. This is true for all class I rules, not just the one-dimensional totalistic
rules considered here [2].

3.3 Class II

After a transient, the defect pattern associated with Class II rules becomes
non-expanding and periodic. Yet, it often strongly depends on the initial con-
figuration. As the defect pattern is non-expanding, the Lyapunov exponents are
non-zero only in certain regions as the defects can only propagate within certain
limits. Additionally, the magnitude of the Lyapunov exponents associated with
different kinds of defects varies considerably, depending on the type of defects
that constitute the periodic section of the defect pattern. This is illustrated in
Fig. 2, where the 1 → 0 defects make up an important part of the periodic section
of the defect pattern. This is reflected in the corresponding Lyapunov profile.
Additionally, it is clear that the Lyapunov profile is non-zero only in those sec-
tions of the lattice where the periodic part of the defect pattern persists

3.4 Class III

Class III rules yield defect patterns that are expanding, often at a maximal
rate. This in turn yields Lyapunov profiles that are largely overlapping and non-
zero everywhere, with their maximal value at the center of the lattice. This is
illustrated for rule 420 in Fig. 3. In addition, Lyapunov profiles associated with
class III rules are relatively independent of the initial configuration. Class III CA
are typically associated with chaotic systems. The resulting space-time patterns
are virtually random, with some class III rules finding use as random number
generators. As such, class III rules yield defects that are uniformly and randomly
distributed over the defect pattern, yielding the largely overlapping profiles. The

Fig. 2. The space-time pattern generated by Class II rule 126 along with the corre-
sponding defect pattern and Lyapunov profiles.
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maximum occurs near the center site as the number of paths reaching a certain
site decreases when moving away from this center.

Fig. 3. The space-time pattern generated by class III rule 420 along with the corre-
sponding defect pattern and Lyapunov profiles.

3.5 Class IV

Class IV is often seen as lying in the phase transition between Class II and III
rules, which is reflected in their defect pattern and Lyapunov profiles: the defect
pattern is irregularly expanding and highly dependent on the initial configura-
tion. This yields Lyapunov profiles that are non-zero in an ever increasing part
of the lattice, yet there are still zones where a sharp transition to zero occurs.
Additionally, whereas the Lyapunov profiles of class III rules have a single max-
imum that usually occurs near the center of the lattice, class IV rules often lead
to Lyapunov profiles exhibiting any number of local extrema, which is illustrated
for class IV rule 114 in Fig. 4. This multitude of extrema reflects the irregular
nature of the defect pattern that class IV rules tend to generate. In particular,
a minimum in the profile can signify the splitting of the defect pattern into two
separate clusters.

Figure 5 shows the space-time pattern, defect pattern and Lyapunov profiles
for class IV rule 63. It is clear that 2 → 0 defects yield a Lyapunov profile that
is significantly higher than those associated with any other type of defect. This
highlights the tendency of some class IV rules to yield defect patterns dominated
by a single kind of defect. In the large time limit, any given defect path will
consist almost entirely of a single type of defect. This is similar to the theory of
continuous dynamical systems, where the largest of the N Lyapunov exponents
dominates the others and completely determines the type of chaotic behavior.
These distinct features exhibited by the class IV profiles are very relevant, as
they can be used to distinguish class III from class IV CA, which has been proven
to otherwise be exceptionally difficult [11].



114 M. Vispoel et al.

Fig. 4. The space-time pattern generated by class IV rule 114 along with the corre-
sponding defect pattern and Lyapunov profiles.

Fig. 5. The space-time pattern generated by class IV rule 63 along with the corre-
sponding defect pattern and Lyapunov profiles.

4 Conclusions

In this paper, we have shown how the existing notion of Lyapunov exponents
of two-state CA can be extended to three-state CA by specifying the kind of
defect that can propagate in each entry of the Jacobian. Aside from permitting
similar insights into CA dynamics for the three-state case as for the two-state
case, this approach has the additional advantage of distinguishing between the
directionality of the defects.

In both theoretical and practical scenarios, the most interesting CA are found
in Wolfram’s class IV. These CA also provide the most interesting Lyapunov
profiles. In particular, they reveal that often a single kind of defect dominates
the profile, which indicates that the CA responds to a perturbation in a very
particular way, so as to provide a possible characterization of the specific CA.
This is useful information to have when a CA is used as a computational model
in a practical context. Additionally, the distinctive features the class IV profiles
exhibit can be used to address the difficult task of distinguishing class III from
class IV CA.

Our approach was illustrated for three-state CA, but is applicable to CA with
any number of states, yet the required computing power increases drastically
when the number of states increases and hence additional work will be needed
to increase the efficiency of the methodology and computation.



Lyapunov Exponents of Three-State CA 115

References

1. Baetens, J.M., Gravner, J.: Introducing Lyapunov profiles of cellular automata. J.
Cell. Autom. 13, 267–286 (2015)

2. Bagnoli, F., Rechtman, R., Ruffo, S.: Damage spreading and Lyapunov exponents
in cellular automata. Phys. Lett. A 172(1), 34–38 (1992). https://doi.org/10.
1016/0375-9601(92)90185-O, http://www.sciencedirect.com/science/article/pii/
037596019290185O

3. Bhattacharjee, K., Naskar, N., Roy, S., Das, S.: A survey of cellular automata:
types, dynamics, non-uniformity and applications. Nat. Comput. 19(2), 433–461
(2018). https://doi.org/10.1007/s11047-018-9696-8

4. Courbage, M., Kaminski, B.: Space-time directional Lyapunov exponents for cel-
lular automata. J. Stat. Phys. 124 (2006). https://doi.org/10.1007/s10955-006-
9172-1

5. Pfeifer, B., et al.: A cellular automaton framework for infectious disease spread
simulation. Open Med. Inform. J. 2, 70–81 (2008)

6. Reyes, L., Laroze, D.: Cellular automata for excitable media on a complex network:
the effect of network disorder in the collective dynamics. Physica A 588, 126552
(2021). https://doi.org/10.1016/j.physa.2021.126552

7. Shereshevsky, M.A.: Lyapunov exponents for one-dimensional cellular automata.
J. Nonlinear Sci. 2, 1–8 (1992). https://doi.org/10.1007/BF02429850

8. Tisseur, P.: Cellular automata and Lyapunov exponents. Nonlinearity 13(5), 1547–
1560 (2000). https://doi.org/10.1088/0951-7715/13/5/308

9. Vallejo, J., Sanjuán, M.: Predictability of Chaotic Dynamics: A Finite-time Lya-
punov Exponents Approach. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-28630-9

10. Vichniac, G.: Boolean derivatives on cellular automata. Physica D 45(1–3), 63–74
(1990)

11. Vispoel, M., Daly, A.J., Baetens, J.M.: Progress, gaps and obstacles in the clas-
sification of cellular automata. Physica D 432, 133074 (2022). https://doi.org/10.
1016/j.physd.2021.133074

12. Wolfram, S.: Universality and complexity in cellular automata. Physica D 10, 37
(1984)

13. Wuensche, A.: Classifying cellular automata automatically: finding gliders, filter-
ing, and relating space-time patterns, attractor basins, and the Z parameter. Com-
plexity 4, 47–66 (1999)

https://doi.org/10.1016/0375-9601(92)90185-O
https://doi.org/10.1016/0375-9601(92)90185-O
http://www.sciencedirect.com/science/article/pii/037596019290185O
http://www.sciencedirect.com/science/article/pii/037596019290185O
https://doi.org/10.1007/s11047-018-9696-8
https://doi.org/10.1007/s10955-006-9172-1
https://doi.org/10.1007/s10955-006-9172-1
https://doi.org/10.1016/j.physa.2021.126552
https://doi.org/10.1007/BF02429850
https://doi.org/10.1088/0951-7715/13/5/308
https://doi.org/10.1007/978-3-030-28630-9
https://doi.org/10.1007/978-3-030-28630-9
https://doi.org/10.1016/j.physd.2021.133074
https://doi.org/10.1016/j.physd.2021.133074


Modelling and Simulation of Physical
Systems and Phenomena



Evolving Quantum Circuits to Implement
Stochastic and Deterministic Cellular

Automata Rules

Shailendra Bhandari1,2,3(B) , Sebastian Overskott1,2,3,
Ioannis Adamopoulos1,2,3, Pedro G. Lind1,2,3 , Sergiy Denysov1,3,

and Stefano Nichele1,2,3,4,5

1 Department of Computer Science, OsloMet – Oslo Metropolitan University,
P.O. Box 4, St. Olavs Plass, 0130 Oslo, Norway

shailendra.vandari@gmail.com,
{s331402,s350141,pedrolin,sergiyde,stenic}@oslomet.no

2 AI Lab – OsloMet Artificial Intelligence Lab, Pilestredet 52, 0166 Oslo, Norway
3 NordSTAR – Nordic Center for Sustainable and Trustworthy AI Research,

Pilestredet 52, 0166 Oslo, Norway
4 Department of Holistic Systems, Simula Metropolitan Center for Digital

Engineering, Pilestredet 52, 0166 Oslo, Norway
5 Department of Computer Science and Communication, Østfold University College,

B R A Veien 4, 1757 Halden, Norway

Abstract. The aim of this work is to generate specific rules of determin-
istic and stochastic cellular automata (CA) using the set of five quantum
gates, which is known to generate any quantum circuit. To build such
quantum circuits, we use an evolutionary algorithm, based in mutations,
which allows the optimization of quantum gate types and their connec-
tivity. The fitness function of the evolutionary algorithm aims at min-
imizing the difference between the output of the quantum circuit and
the CA rule. We also inspect the differences observed when changing
the number of gates and the mutation rate. We benchmark our methods
with stochastic as well as deterministic CA rules, and briefly discuss the
possible extensions their quantum “cousins” may enable.

Keywords: Quantum circuits · Critical behavior · Evolutionary
algorithms · Stochastic cellular automata

1 Scope and Motivation

Quantum computing and cellular automata are two important topics in mod-
ern computer science, often approached independently from each other. Cellular
automata (CA) are classical discrete models for reproducing complex processes
of extended systems of coupled elements, based in simple rules which map the
present state of each element and its direct neighbors into the next state of each
element. Quantum computing (QC) is a field in its infancy aiming at solving
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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q0: |0 |m0 |1=X
Fig. 1. Example of a quantum circuit [11]

the limitations of classical computation, when dealing with problems which in
practice are not computable due to their complexity.

Underlying the difference between classical and quantum algorithms are their
respective elementary components, the bit and qubit respectively. While bits
can have only two possible states, 0 or 1, qubits can have an infinite number of
possible states if their state is not measured. If it is, they will “collapse” to the
classical pair of possibilities, 0 or 1, and one can know beforehand the probability
to observe each one of these final measured states. The gates used to build quan-
tum circuits are also different from the usual classical gates (e.g. NOT, AND,
OR), since they can operate on qubits, and only after measurement, retrieve an
on- or an off-state with a specific probability. Consequently, they may be good
candidates for mimicking so-called stochastic CA, discrete models which define
the CA rules with an associated probability. In this paper we introduce a frame-
work to build specific quantum circuits, whose classical counterpart reproduces
the behavior of a CA rule. We illustrate the framework for some specific deter-
ministic and stochastic CA rules and argue that it can be, in principle, apply to
any other rule.

Moreover, due to its particular features, beyond the common behavior of
classic bits and digital gates, there is still no straightforward procedure to build
the quantum circuit for one specific computation or algorithm using a minimum
number of gates. In this paper we show how evolutionary algorithms can be
useful to address this drawback to build optimal quantum circuits. Evolutionary
algorithms (EA) are a group of heuristic algorithms that solves problems in a
Darwinian way. In short, they start out with a widespread population of possible
solution for a problem. The solutions in the population that yielded best results
when tested against a target is used to create a new population: the next genera-
tion of solution. This process continues until a solution meets the target criteria,
based in a so-called fitness function (FF) which plays the role of a cost function.
We will focus on a sub-category of EA called genetic algorithms (GA) [1], which
built upon the idea of the solution of the algorithm to be chromosomes, compose
of genes [2]. In our case the chromosome represents a quantum circuit while a
gene represents a quantum gate.

Finally, the framework also enables to explore new contexts of complex behav-
ior. In particular, we focus in critical behavior. We introduce a quantum circuit,
which when reduced to a purely classical architecture - with all its components
being measured and therefore without superposing their states - retrieves the
usual behavior of a critical CA. Having such circuit, and with the sufficiently
large number of qubits, one is able to explore the outcome of an evolving critical
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CA when “switching-off” the full monitoring of its qubits and leaving their states
to superpose in time.

A quantum circuit involves a collection of one or more qubits which are
initialized to state |0〉. Figure 1 shows an example of a quantum circuit involving
one qubit. The gate which acts on the qubit is represented by a square and in
our case, it is the X gate which flips the state of the qubit from 0 to 1. Each
horizontal application of gates for a qubit is called a wire and each wire has a
depth which is the number of gates applied on that qubit. In our example we
have one wire with depth 1. The measurement symbol at the end is not a gate.
It is the component collapsing the state of the qubit into either 0 or 1. The time
progress in a quantum circuit goes from the left to the right [11].

2 The Genetic Algorithm to Evolve Quantum Circuits

Genetic algorithm has been used to evolve quantum circuits with success earlier
[3,4,6,8,10,12,14]. Lukac and Perkowski use the unitary matrix representation
of the gates and the identity matrix for connections/wires. This way we can
use Kronecker products (tensor products) and matrix products to calculate the
complete circuit as a matrix. This also makes it possible to represent the FF as
a matrix to calculate the error. As we see in [6] and [1] the quantum gates are
genes in the algorithm. They never change the properties of the gates themselves,
but move, swap, delete gates from the circuit as genetic operators. It is also a
possibility to add new gates as a mutation. The gates have been encoded in
several ways. Yabuki and Iba [14] encodes the gates with a letter set of four
digits 0,1,2,3, and assign each gate a three-letter codon i.e. 231. Here the first
letter describes type of gate, and the second and third indicate what qubit will
be operated. By using a table we can look up the gate type and placement in the
circuit. Here we will focus on one particular set of genes (quantum gates) and
compare the results with two different fitness functions. We will use the following
set of quantum gates: Hadamard, three Pauli gates (X, Y and Z), Cnot, Toffoli,
swap, RZZ, and RXX (Fig. 2).

Initially, a certain number of chromosomes is assigned with the number of
quantum gates per circuit, generating the initial number of chromosomes. Then,
iteratively, the genetic algorithm evolves the current chromosomes into new ones,
identifying in each generation the chromosome with highest fitness, which will be
a parent for the next generation. At each evolution step (generation), when a new
parent is generated, all chromosomes undergo a mutation process happens either
by replacing a gates from the pool of gates in the chromosome with a randomly
generated new one, or replacing the chromosome so as to generate four best
parents. The mutation process is probabilistic and when the chromosomes get
mutated, the four best chromosomes are left unchanged as “elites” the rest of
the chromosomes are evolved with a probabilistic selection where each of the
current circuit has a probability to become a parent that is proportional to its
fitness. This evolution cycle continues throughout a certain prescribed number
of generations.
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Fig. 2. An overview of quantum gates available to the algorithm: X-gate (q0), Y-gate
(q1), Z-gate (q2), Hadamard gate (q3), CNOT (control: q4, target: q5), swap-gate (q6,
q7), Toffoli-gate (control: q8 and q9; target: q10), RXX-gate (q11, q12), RZZ-gate (q13,
q14).

To assess the performance of the quantum circuits we derive, we measure only
the first qubit (q0) and consider two different fitness functions to compare the
measured probability Q(ω) of an initial state ω, computed from the chromosome,
and the corresponding desired probability P (ω). The first one is the sum of the
absolute difference between each P(ω) and corresponding Q(ω):

F =
∑

ω∈Ω

|P (ω) − Q(ω)|. (1)

This gives a possible fitness value between 0 and 8. The second type of fitness
function that is implemented is the Kullback-Leibler (KL) divergence, which
measures the difference between two probability distributions and has been used
in other works [5,7] as a fitness function as well:

DKL(P ||Q) =
∑

ω∈Ω

P (ω)log
(P (ω)

Q(ω)

)
. (2)

In our case those distributions are discrete and each one of them has eight
different values which are related to the eight different initial states of the three
qubits. If the distributions completely match then both F and DKL fitness func-
tions are zero.

There are some difference between the sum of the absolute differences
between the measured and the desired probabilities and the Kullback-Leibler
divergence. While the former treats each probability as pure values, the lat-
ter considers deviations of higher probability with a stronger weight than low
probability values.

In order to address our optimization problem, the performance of the pro-
posed approach has been accessed by running the evolutionary algorithm on
a simulator belonging to the IBM Q experience initiative (Qiskit)1. For more
information about the module and instructions on how to use it, please visit the
Github repository https://github.com/Overskott/Quevo. The project was cre-
ated and done in python version 3.8 with Qiskit version 0.34.1 and scipy.special
1.7.1.
1 https://qiskit.org.

https://github.com/Overskott/Quevo
https://qiskit.org
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Table 1. The deterministic and stochastic CAs considered in this paper. For the
stochastic cases, the values indicate the probability of an update of value 1 for the
middle cells in the triad-neighborhood. For the deterministic cases, the values indicate
the exact update imposed.

Neighbors Stoc. CAProb Rule90 Rule110 Ran. Prob. 1 Ran. Prob. 2 Ran. Prob. 3

[0, 0, 0] 0.394221 0 0 0.6364 0.4778 0.1988

[0, 0, 1] 0.094721 1 1 0.6603 0.5604 0.4701

[0, 1, 0] 0.239492 0 1 0.5261 0.8528 0.9836

[0, 1, 1] 0.408455 1 1 0.1748 0.4818 0.7115

[1, 0, 0] 0 1 0 0.8820 0.3143 0.6616

[1, 0, 1] 0.730203 0 1 0.3371 0.3464 0.1218

[1, 1, 0] 0.915034 1 1 0.0340 0.0678 0.1328

[1, 1, 1] 1 0 0 0.4444 0.9124 0.7306

The code developed for this paper was done in python, and resulted in a
python module called quantum_circuit_evolver. The module consists of three
classes: Chromosome, Generation and Circuit. The Chromosome-class is respon-
sible for handling the series of integers by storing them as a list. The class also
handles the creation of random series, the list of angles needed by some of the
gates, mutation of the series, and other list related functions. It takes a list of
the desired gate types as a parameter on construction, and automatically cre-
ates the tables needed for parsing. The Generation-class stored a generation of
chromosomes, the fitness associated with each, methods for running and retriev-
ing fitness for two different fitness functions, and functions for printing. Last,
the Circuit-class is handling the parsing from string and generating a Qiskit
quantum circuit, the simulations of the circuit, measurements, and visualization
of the circuit.

3 Three Different “Flavours” of Quantum Cellular
Automata

The quantum CAs we derive will be based in the standard classical one dimen-
sional CA, composed of cells with two possible states, 0 or 1 (Boolean CA),
which are updated according to one out of 256 possible rules matching each one
of the eight neighborhoods ([0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0,
1], [1, 1, 0] and [1, 1, 1]) to an update of the middle cell.

We will consider three different types of quantum CA. We will start with a
stochastic critical CA and then illustrate the robustness of our framework with
more general stochastic CA (random updates) and a few deterministic rules,
namely rule 90 and 110 [13]. In all cases, the updates are shown in Table 1.
We fix a maximum number of chromosomes Nc = 20, a maximum number of
generations Ng = 150, and each simulation is repeated for Nic = 20 initial
conditions randomly chosen.



124 S. Bhandari et al.

Fig. 3. (Top) The fitness scores as a function of the number of generations, for differ-
ent number of gates. (Bottom) Number of gates vs. the best fitness scores. In each
case we show the result for (left) the absolute sum of differences, Eq. (1), and (right)
Kullback-Leibler divergence, Eq. (2). The fitness scores of each gates for the box plots
are the best fitness scores per run and the fitness scores for the lower two plots are the
average fitness scores of 20 runs.

3.1 The Quantum Cousin of a Stochastic Critical Cellular Automata

The authors in [9] have evolved a stochastic CA model in order to reach criticality
which is a property of dynamical systems that gives them the possibility to do
robust computations. For each triad-pattern a probability has been calculated
through genetic algorithm for the central cell to have state 1. These probabilities
are shown in Table 1, second column.

We start by considering the number of gates used, evolving quantum CAs
with 3, 5, 10, 15 and 20 gates. The mutation probability is fixed to 10%.

Figure 3 shows the result for both fitness functions above. It is clear from the
figure that the fitness score improves with increasing the number of gates until
15 gates and the gradual increase is seen for 20 gates. Therefore for experiment
2 and 3, the number of gates used is 15. Notice that the fitness score is optimum
for 15 gates in the case of KL fitness function while the fitness score is optimum
for 20 gates in the absolute difference of probabilities fitness function. Moreover,
while the sum of absolute differences performs better for the cases with lowest
number of gates, while KL fitness function is better suited when the number of
gates increases.
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Fig. 4. (Top) The fitness scores as a function of the number of generations, for dif-
ferent mutation rates. (Bottom) Mutation rates vs. the best fitness scores. In each
case we show the result for (left) the sum of absolute differences (Eq. (1)), and (right)
the KL divergence. The fitness scores of each gates are the average fitness scores of 20
runs.

Next we explore how the fitness changes when changing the mutation prob-
ability. The goal is to test the impact of mutation over the fitness function at
different number of generations. We fix the number of gates to 15 and select
mutation probabilities of 5%, 10%, 20%, 30% and 50%.

Figure 4 (left) shows the comparison of the fitness scores with the number of
generations at different percentage of mutation rate for the absolute difference
of probabilities fitness function, while Fig. 4 (right) shows the comparison of the
fitness scores with the number of generations at different percentage of mutation
rate for KL-fitness function. In case of KL divergence fitness function we can see
the gradual improvement in results with increase in percentage of the mutation
rate, however similar conclusion cannot be drawn in other fitness score as the
results are random.
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Fig. 5. (Left) Fitness scores for different sets of probabilities against the number of
generations for KL-fitness function. (Right) Best fitness scores per runs for KL-fitness
function for different sets of probabilities. The fitness scores of each gates are the
average fitness scores of 20 runs.

3.2 The Two Other Flavours: Deterministic CA and Stochastic CA
but Non-critical

We end our investigation applying the same framework to deterministic rules as
well as to stochastic CAs which do not show critical behavior. Here, we fix the
parameters with 15 gates and 10% mutation probability. The desired probabili-
ties for Rule 90, and Rule 110 (the deterministic rule, so the probabilities of the
8 neighborhoods will be either 0 or 1), and 8 randomly generated probabilities
with three repetitions are used as target probabilities. The target probabilities
for each condition are shown in Table 1 and results are shown in Fig. 5. The
fitness scores for the deterministic CA (Rule 90 and Rule 110) are very good
as shown in figure Fig. 5 (left), therefore it is quite successful to run quantum
circuit for deterministic CA. For the stochastic CA with randomly generated
probabilities with three repetitions, the results are indeed promising, with best
fitness scores 0.14 and 0.27 for Random2 and Random3. While the best fitness
score for Random1 is 0.685 which is not bad either but needs further experi-
ments to be able to tune the evolution to reduce the difference even further.
Figure 5 (right), shows the fitness scores for the different sets of probabilities
against the number of generation for two deterministic CA (Rule 90 and Rule
110) and the stochastic CA with randomly generated probabilities with three
repetitions (Random1, Random2, and Random3).

Finally, we illustrate the quantum circuits generated with our algorithms.
The circuit in Fig. 6 is the result of a run that scored much better than the
average runs for critical stochastic CA. It shows a fitness score of 0.3404, using
KL fitness function in Eq. (2).

Similarly, the circuit in Fig. 7, is the result of the deterministic CA Rule 90.
It has a best fitness score of 0.000921, with 15 numbers of gates, 10% mutation
probability and the KL fitness function.
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Fig. 6. Visualization of a circuit created by 15 number of gates, 10% mutation proba-
bility with KL fitness scores. The circuit is the best produced circuit with fitness score
of 0.3404 for critical stochastic CA.

Fig. 7. Visualization of a circuit created by 15 number of gates, 10% mutation prob-
ability with KL fitness scores for deterministic CA (Rule 110). The circuit is the best
produced circuit with fitness score 0.000921.

4 Discussion and Conclusions

In this paper we showed a simple framework to derive quantum circuits reproduc-
ing specific CA rules, using genetic algorithms. We showed that the framework
is able to evolve quantum circuits towards several types of CA rules, ranging
from deterministic rules to stochastic updates.

An important observation for all the experiments that we did, was that most
of the times the fitness functions of the parents that would survive were not
the same in the next generations. Their fitness functions in the next generations
were sometimes actually worse than those they had in the previous generations.
Mutated solutions with better fitness functions would then take their places as
parents but still these functions could be worse than those that the first parents
had originally. As a result, we did not see a gradually decrease of the value of
the best fitness function from generation to generation as we expected or as
we wanted but instead, that value had ups and downs. The above phenomenon
happened for both types of fitness functions that we used and the reason is
the following. Every quantum circuit which corresponds to a chromosome or
a solution, is executed multiple times (1000 in our case) with a simulator. The
outcome probabilities that are related with the fitness function can not be exactly
the same each time we run the same circuit in another generation. If we execute
the same circuit another 1000 times for example, we will have slight differences
in our results. Even when we increased the number of shots in the simulator
(10000 and then 50000) to stabilize the probability value, we did not succeed.
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Another thing that we realized, was that for every set of desired probability
outcomes, we can reach approximately a common fitness function score for all
the mutation rates and for both types of fitness functions (Eqs. (1) and (2)), as
it is illustrated in Fig. 4. One possible reason for this could be that the pool of
potential solutions is not very big based on the number of gates that we used,
although the types of these gates were enough to build almost any quantum
circuit.

As far as concerned the two different fitness functions, we can not really
say that one performs better than the other. One small observation though is
that the diagrams which correspond to the KL fitness function have more gentle
fluctuations and they reach their final range of values in the early generations.

Moreover, there are some parameters that could be further tested in future
investigations, as well as considering additional genetic operators in evolutionary
algorithms, e.g. crossover.
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Abstract. Atherosclerosis, which refers to a reduction in vessels diame-
ter due to fatty deposits, is considered as the main cause of heart attacks,
strokes, and peripheral vascular disease. The malfunctioning of cardiovas-
cular system is mainly related to haemodynamics. However, the magnetic
properties of blood are of great interest in haemodynamics. In this paper,
a double population lattice Boltzmann model is suggested to investigate
magnetohydrodynamic blood flow in stenotic artery. Blood is consid-
ered as a homogeneous fluid with magnetic properties. The rheological
behavior of blood is presented by Carreau-Yasuda model. Blood flow is
considered as incompressible and laminar. The vessel walls are assumed
to be rigid. The proposed lattice Boltzmann model is found to be accu-
rate, stable and effective. Findings are presented in terms of streamlines,
velocity and wall shear stress profiles, based on a variety of parameters,
including Reynolds and Hartmann number. The results show that the
increase in magnetic intensity causes a considerable decrease in velocity
and recirculation zones.

Keywords: Lattice Boltzmann approach · Atherosclerosis · Blood
flow · Magneto-hydrodynamic

1 Introduction

The development of blood vessels pathologies such as stenosis, atherosclerosis
and spasm disturb blood flow and lead to a malfunctioning of many organs. In
order to detect the vessels diseases, a detailed knowledge of blood flow remains
a necessity. The study of blood flow is the subject of different numerical meth-
ods. However, the traditional conventional computational fluid dynamics method
(CFD) are limited and the implementation of boundary conditions still more
complicated for complex geometries [1]. In addition, the resolution of math-
ematical equations used to present the system is complicated. Given the com-
plexity of these equations, the analytical solutions of Navier-stokes equations are
generally nonexistent and only an approximated numerical solution is existing.
This justifies, the considerable development of the techniques and methods of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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numerical computation in fluid mechanics (CFD) during these last decades. The
continuous evolution of numerical methods is related to the computer resources
development, what allows the numerical resolution of the equations governing
fluid mechanics and heat transfer with great precision and for a wide range of
complex geometries. Unlike numerical simulation methods based on the resolu-
tion of partial differential equations linking the macroscopic properties of fluids,
the lattice gas automata (LGA) method makes it possible to find macroscopic
variables such as velocity, pressure or pressure fields and temperature, by sim-
ulating the interactions between molecules. Lattice Boltzmann Method (LBM),
a numerical method evolving from LGA, has gained popularity in the last few
years. It has been used for simulating and modeling different systems including
immiscible fluids [2], multiphase flows [3], heat transfer problems [4–7], isotropic
turbulence [8] and porous media [9]. It has proven its effectiveness in the field of
conventional fluid flows, particularly in complex geometries and porous media. It
has attracted the attention of researchers for the simulation of flows in different
applications. Higuera and Jimenez [10] proposed an important simplification in
LBM by approximating the collision operator in Lattice Boltzmann Equation
with a linearized one that assumes that the distribution is close to the equilib-
rium state. The success of lattice Boltzmann method is related, in large part, to
the introduction of the Bhatnagar-Gross-Krook (BGK) collision operator char-
acterized by its simplicity and ease of implementation. Bhatnagar-Gross-Krook
(BGK) collision model is a simple linearized collision operator, introduced by
Koelman [11] and Chen et al. [12]. The macroscopic Navier-Stokes equations
are recovered by the Lattice BGK model through a Chapman-Enskog analysis
[13]. The lattice Boltzmann method describes fluids in a mesoscopic scale and
provides stable and efficient numerical calculations for the fluids macroscopic
behavior [14–16]. The problem of taking into account the initial and boundary
conditions was the subject of particular attention by the initiators of the LBM
method. Stability and numerical precision are closely related to the nature of
the boundary conditions. The lattice Boltzmann approach does not necessitate
the resolution of a global system of equations, just information from surround-
ing nodes is required to describe variables evolution. Because of the nature of
the explicit computation with locality, the lattice Boltzmann method is a cost-
effective solution to communication between processors and hence excellent for
parallel computation.

In this paper, we propose an efficient and accurate lattice Boltzmann model
for simulating magnetohydrodynamic blood flow in stenotic arteries. The unique
feature of this modelization is that both velocity and magnetic fields are solved
using the lattice Boltzmann technique, which allows to investigate the influence
of strong magnetic field intensities on blood flow.
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2 Mathematical Model

2.1 Problem Description

In this study, blood is considered as a homogeneous magnetic bio-fluid, incom-
pressible and non-Newtonian with density ρ = 1060 kg/m3. The Vessel walls are
assumed to be rigid and blood flow is considered laminar and steady. The diam-
eter of the artery is D = 6mm. An idealized geometry of stenosis is considered
(Fig. 1) in this study.

Fig. 1. Stenosis geometry

Stenosis refers to a reduction in the vessel section due to a deposition of fatty
components on the walls. The geometry of the wall with the presence of stenosis
is given by: y(x) = D−h sin

[
π(x−d)

l

]
where D is the diameter of health artery, h

the width of the restricted zone, d the length of the inlet region and l the length
of the restricted zone. The severity of the reduction zone (degree of stenosis
DOS) can be calculated by the following equation: DOS(%) = (1 − As

A ) × 100
where As is the restricted zone section and A is the section of healthy artery.

2.2 Equations

Taking into consideration the presented hypothesis, the 2-D incompressible,
unsteady flow of blood as an electrically conductive fluid is described by Navier–
Stokes equations, with an additional term presenting Lorentz force are written
as:

∂u

∂t
+ (u.∇)u = −∇p

ρ
+ νΔu +

j × B
ρ

+ Q (1)

∇.u = 0 (2)

where ν is the fluid kinematic viscosity, ρ is the density, p is the pressure, u =
[ux, uy] the velocity, B = [Bx, By] the magnetic field, j = ∇×B and Q = [Qx, Qy]
the external body force vectors.

This research investigates the 2-dimensional, laminar and incompressible
magnetohydrodynamic blood flow through a restricted vessel. The governing
equations, including the impact of viscosity and energy dissipation due to the
presence of magnetic field are given by the following equation:

∂ux

∂x
+

∂uy

∂y
= 0 (3)
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ρ(ux
∂ux

∂x
+ uy

∂ux

∂y
) = −∂p

∂x
+ μ(

∂2ux

∂x2
+

∂2ux

∂y2
) − σB2

0ux (4)

ρ(ux
∂uy

∂x
+ uy

∂uy

∂y
) = −∂p

∂x
+ μ(

∂2uy

∂x2
+

∂2uy

∂y2
) (5)

The term σB2
0ux in Eq. 4 depicts the magnetic body force (j×B) per volume.

Where B = [Bx, B0] and σ is the electrical conductivity of blood.

Carreau-Yasuda Model

Human blood is a composed fluid, containing mainly plasma and blood cells. The
plasma acts like a Newtonian fluid, its viscosity depends on the concentration of
plasma proteins [17], whereas the whole blood has a non-Newtonian behavior.
Many models have been developed in order to predicts the rheological behavior.
Carreau-Yasuda model is one of the simplest and accurate models used in blood
modeling. The viscosity depends on shear rate and modelled by the Carreau-
Yasuda model [18] as following:

μ(γ̇) = μ∞ + (μ0 − μ∞) + (1 + (λγ̇)α)
n−1

α (6)

where μ is the viscosity, γ̇ is the shear rate, μ∞ = 0.0035Pa.s is the viscosity
at infinite shear rate, μ0 = 0.16Pa.s is the viscosity at the absence shear-rate,
and λ = 8.2, α = 0.64, and n = 0.2128 are material coefficients. The shear rate
is given by:

γ̇ = 2
√

D� (7)

where D� is the second invariant of the strain rate tensor, given by:

D� =
l∑

α,β=1

SαβSαβ (8)

where l= 2 for a two-dimensional model.
For incompressible fluids, the stress tensor is written as:

σαβ = −pδαβ + 2μSαβ (9)

where δαβ is the Kronecker delta and Sαβ is the strain rate tensor, written as:
Sαβ = 1

2 (∇βuα + ∇αuβ)

3 Numerical Model

3.1 Lattice Boltzmann Method with Single Relaxation Time
(LBM-SRT)

Solving two linked lattice Boltzmann equations can be used to solve magnetohy-
drodynamic equations. The first equation covers fluid dynamics by forecasting
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the development of the particle distribution function fi, whereas the second
equation incorporates a vector-valued function gi that represents the evolution
of the magnetic field. The two equations are discretized in a D2Q9 space (Fig. 2).

Fig. 2. D2Q9 model

The lattice Boltzmann approach (LBM) with single relaxation time, which is
based on the Bhatnagar-Gross-Krook (BGK) approximation, is used to forecast
the development of both fluid dynamics and magnetic fields. The fluid in the
lattice Boltzmann approach is defined by a particle distribution function that
develops in discrete space and time. As a result, the lattice Boltzmann equation
is stated as:

fi (x + Ξiδt, t + δt) − fi (x, t) = Ci (f) (10)

where Ci is the collision operator, presenting the change in particles distribution
after collision step. The lattice Bhatnagar-Gross-Krook (BGK) equation can be
written as:

fi (x + Ξiδt, t + δt) − fi (x, t) = −1
τ

[fi (x, t) − feq
i (x, t)] (11)

where τ is the relaxation parameter, related to viscosity by the following: τ =(
ν
c2s

+ 0.5
)

with cs is the lattice speed, given by cs = δx√
3δt

. δx and δt are the

lattice width and time step respectively, chosen as δx = δt = 1 and c = δx
δt . feq

i is
the equilibrium distribution function, which depends on the local fluid velocity
and density. The equilibrium distribution function is given by:

feq
i = wiρ

[
1 +

3Ξi.u
c2

+
9 (Ξi.u)2

2c4
− 3u.u

2c2

]
i = 0 → 8 (12)

In the presence of external magnetic field, the equilibrium distribution func-
tion includes an additional term presenting the effect of magnetic field intensity
on particles distribution. The equilibrium distribution function becomes:
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feq
i = wiρ

[
1 +

Ξi.u
c2s

+
(Ξi.u)2

2c4s
− u.u

2c2s

]
+

λi

2c4s

[
1
2
| Ξi |2| b |2 − (Ξi.b)2

]
(13)

where wi and λi are the weighting factors defined in D2Q9 as following: wi =
λi = 4

9 for i = 0, wi = λi = 1
9 for i = 1, 2, 3, 4 and wi = λi = 1

36 for i = 5, 6, 7, 8.
⎧
⎨
⎩

Ξi = (0, 0) i = 0
Ξi =

(
cos

[
(i − 1) π

2

]
, sin

[
(i − 1) π

2

])
c i = 1, 2, 3, 4

Ξi =
(
cos

[
(2i − 9) π

4

]
, sin

[
(2i − 9) π

4

])
c
√

2 i = 5, 6, 7, 8
(14)

The magnetic field evolution is described by the following lattice Boltzmann
equation:

gi (x + Ξiδt, t + δt) − gi (x, t) = − 1
τm

[gi (x, t) − geq
i (x, t)] (15)

where τm is the magnetic relaxation parameter, related to magnetic resistivity
η by: τm =

(
η
c2s

+ 0.5
)
. In 2-dimensional space, Eq. 15 is written as following:

gix (x + Ξiδt, t + δt) − gix (x, t) = − 1
τm

[gix (x, t) − geq
ix (x, t)] (16)

giy (x + Ξiδt, t + δt) − giy (x, t) = − 1
τm

[
giy (x, t) − geq

iy (x, t)
]

(17)

The coupling between hydrodynamics and magnetic field takes place in the
equilibrium functions:

geq
ix = λi

[
bx +

Ξiy

c2s
(uybx − uxby)

]
(18)

geq
iy = λi

[
by +

Ξix

c2s
(uxby − uybx)

]
(19)

In order to reproduce Navier-Stokes Equations, the following identities must
hold:

ρ =
8∑

i=0

fi (20)

ρu =
8∑

i=0

fiΞi (21)

Unlike the other simulation methods that solve Poisson’s equation to compute
pressure, the pressure p can be directly computed from the equation of state
p = ρc2s.
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The macroscopic magnetic properties are given by:

bx =
8∑

i=0

gix (22)

by =
8∑

i=0

giy (23)

3.2 Boundary Conditions

The problem of taking into account the initial and boundary conditions was
the subject of particular attention by the initiators of the lattice Boltzmann
method. Stability and numerical precision are closely related to the nature of
the boundary conditions. In order to simulate blood flow in stenotic artery in
the presence of magnetic field, we implement the Zou-He boundary condition in
the inlet and the Bounce back boundary condition in the walls for both velocity
and magnetic field (Fig. 3).

Fig. 3. Boundary conditions

Zou-He Boundary Condition. The Zou-He boundary condition is used to
apply certain flux condition in the inlet. The velocity at the inlet is given by the
profile of poiseuille:

{
ux(y) = 4umax

(
y
D − y2

D2

)

uy = 0
(24)

After streaming, the unknown density and distribution functions f1, f5, f8 at
the inlet are given by:

ρ = 1
1−ux

[f0 + f2 + f4 + 2(f3 + f6 + f7)] ,
f1 = f3 + 2

3ρux,
f5 = f7 − 1

2 (f2 − f4) + 1
2ρuy + 1

6ρux,
f8 = f6 + 1

2 (f2 − f4) − 1
2ρuy + 1

6ρux.

(25)
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3.3 Bounce Back

In the walls, the mid way bounce back boundary condition is applied. This
boundary condition is equivalent to no-slip boundary condition, which means
that the velocity is zero in the walls. The wall is placed halfway between a wall
grid point and a fluid grid point. The bounce back boundary condition assumes
that particles hitting the wall disperse back to the fluid following their entering
path (Fig. 4).

Fig. 4. Mid-way bounce back boundary condition

The unknown distribution functions at the wall are given by:

f5(x, y, t) = f7(x, y, t)
f2(x, y, t) = f4(x, y, t)
f6(x, y, t) = f8(x, y, t)

(26)

4 Model Validation

The results given by the suggested lattice Boltzmann model for hemodynamic
are compared with in vivo measurements conducted by H. Park et al. [19] in the
case of a stenosed aorta with a stenosis degree of 34%. The in vivo measurements
were performed by surgically attaching a stenotic clip to a live rat model. The
hemodynamic information are obtained by using X-ray PIV method. Figure 5
shows a comparison of velocity field in the stenotic aorta. It is shown that velocity
increases considerably in the stenotic section reaching its maximum value of
8mm/s in both numerical and experimental results. The results found by lattice
Boltzmann model are in good agreement with in vivo measurements. It can be
concluded that the proposed lattice Boltzmann model is accurate and effective
in the treatment of blood flow in stenosed vessels.
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Fig. 5. Comparison of velocity field of in vivo measurement (a) and lattice Boltzmann
model (b)

5 Results and Discussion

The aim of this study is to investigate the impact of imposed external mag-
netic field on blood flow characteristics, mainly velocity and wall shear stress
(WSS), in a stenotic artery. The numerical simulations have been carried out for
a Reynolds number Re = 360 and various Hartmann numbers Ha= 0, Ha= 5,
Ha= 10, Ha= 15 and Ha= 20. The Obtained results of blood flow simulations,
indicate that for a fixed stenosis degree (50% in this case), the velocity decreases
due to the increasing magnetic field intensity.

Figure 6 and Fig. 7 show the effect of various magnetic field intensities on
velocity profiles and recirculation zones in the downstream region of an artery
with a 50% stenosis degree. It is apparent that increasing the magnetic field
lowers the recirculation zone, resulting in a reduction in hydrodynamic stresses in
this area. For Ha= 20, velocity at the stenotic section reduces by approximately
80%, and recirculation zones vanish. This decrease in velocity is produced by
RBC aggregation, which increases when blood is exposed to a magnetic field.
Our findings are consistent with those reported in the literature by Ilyani et al.
[20] who studied the magnetohydrodynamic (MHD) effects on blood flow and
discovered that a magnetic field decreases blood flow rate. In their method, a
term containing Lorentz force is introduced to Navier-Stokes equations, resulting
in a magnetic field with just one conceivable direction. In contrast, in our model,
each particle is connected with a vector with nine possible directions, describing
the evolution of magnetic field.
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Fig. 6. Velocity profiles at the restricted zone for Re = 360 and Ha = 0, 5, 10, 15 and
20

Fig. 7. Velocity streamlines for Re = 360 and Ha = 0, 5, 10, 15 and 20

The WSS is one of the most critical hemodynamic variables in cardiovascular
diseases, it has a major impact on stenosis pregression. Figure 8 presents the
effect of an external magnetic field on WSS in a stenosed artery for various
values of Hartmann number. It is shown that the wall shear stress reaches its
maximum at the restricted zone, this is caused by the reduction in diameter in
that region. In the stenotic section, the non-Newtonian behavior of blood is more
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Fig. 8. Wall shear stress (WSS) for Re = 360 and Ha = 0, 5, 15 and 20

noticeable due to red blood cells aggregation in that zone. Figure 8 shows that
the WSS in the stenotic region is reduced considerably by applying an external
magnetic field. It is found that the WSS decreases by increasing the magnetic
field intensity.

6 Conclusion

A simulation of 2-D steady and laminar magnetohydrodynamic blood flow is con-
ducted using a double population lattice Boltzmann model. The blood vessels
are assumed to be rigid and blood is considered as non-Newtonian and its rhe-
ological behavior is modelled by Carreau-Yasuda model. The effect of magnetic
field intensity on blood flow is investigated. The findings show the effectiveness
of the proposed Lattice Boltzmann model to study magnetohydrodynamic blood
flow problem. In the other hand, it is found that the velocity profiles, recircula-
tion zones and WSS decrease by increasing the magnetic field strength. Which
can have interesting application in modulating blood flow rate during medical
surgeries and in the treatment of hypertension and other cardiovascular diseases.
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Abstract. We show how to construct a deterministic nearest-neighbour
cellular automaton (CA) with four states which emulates diffusion on a
one-dimensional lattice. The pseudo-random numbers needed for direct-
ing random walkers in the diffusion process are generated with the help
of rule 30. This CA produces density profiles which agree very well with
solutions of the diffusion equation, and we discuss this agreement for
two different boundary and initial conditions. We also show how our
construction can be generalized to higher dimensions.

Keywords: Cellular automata · Diffusion · Random walk

1 Introduction

Modeling of diffusion processes with cellular automata (CA) is almost as old as
the field of cellular automata itself. Lattice gas automata models [7] can simulate
diffusion of real gas [4] very realistically and they were extensively studied in
the last several decades, thus abundant literature of the subject exists, including
monographs and textbooks [5,11,13,16]. Various models of diffusion using lattice
gases were investigated in recent years, for example [1,9,10]

Lattice gas automata are relatively complicated compared to “classical” CA.
Even in the simplest HPP model [7] there are up to four particles per lattice site
and each particle is characterized by one of the four allowed velocity vectors.
Moreover, the update step consists of two substeps, movement of particles in the
direction of the velocity vector followed by the collisions step when the direc-
tions of velocity vectors of some particles are changed. In more advanced models,
such as, for example, reactive lattice gas automata [2,15], there are three sub-
steps, namely interaction, randomization and propagation. In the randomization
substep the call to a pseudo-random generator is required for each lattice node.

In contrast to the above, in regular CA there are no velocity vectors attached
to particles, and the update is done in a single time step with no need of substeps.
The lattice sites change their state simultaneously at each time step according
to a specified local rule which is purely deterministic, thus there is no need to
call a random number generator.
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B. Chopard et al. (Eds.): ACRI 2022, LNCS 13402, pp. 142–152, 2022.
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We argue that for some applications it would be advantageous to have such a
simple deterministic nearest-neighbour cellular automaton mimicking diffusion
process, so that it could be used as a building block for various “complexity
engineering” tasks. For example, it could be used to constructs solutions of
classification problems in which diffusive spreading of agents is required, like in
recently proposed “diffusive” solution of density classification problem [6].

What we would like to discuss in this paper, therefore, is a model of diffusion
which is not based on lattice gas automata but rather on “classical” cellular
automata. It is a model of an assembly of random walkers which perform random
walk on a lattice following exclusion principle, that is, one lattice site can be
occupied by only one walker at a time.

2 Construction of the Rule

Consider one dimensional lattice with lattice sites being either empty (state
0) or occupied by a single particle (state 1). All particles simultaneously and
independently of each other decide whether to move to the left or to the right,
with the same probability 0.5 in either direction. We then simultaneously move
every particle to the desired position if it is empty, otherwise the particle stays in
the same place. If two particles want to move to the same empty spot, only one
of them, randomly selected, is allowed to do so. This process, which constitutes
a single time step, is then repeated for as many time steps as desired.

In order to describe the process more formally, let us denote by si the state
of the lattice site i, and let Xi denote binary random variable attached to site
i. All variables Xi should be independent and identically distributed such that
Pr (Xi “ 0) “ Pr (Xi “ 1) “ 1{2. We give the following interpretation to values
of random variables Xi. If si “ 1, then Xi “ 1 (Xi “ 0) means that movement
of the particle from site i to the right (left) is allowed. If si “ 0, then Xi “ 1
(Xi “ 0) means that arrival from the right (left) of site i is allowed. If movement
or arrival is not allowed, the particle does not move. With this notation, the state
of the site i at the next time step, denoted by s1i, can be expressed as follows.

s1i “ si ´ siXi (1 ´ si`1) (1 ´ Xi`1)
︸ ︷︷ ︸

move to the right

´ si (1 ´ Xi) (1 ´ si´1) Xi´1
︸ ︷︷ ︸

move to the left

` (1 ´ si) (1 ´ Xi) si´1Xi´1
︸ ︷︷ ︸

arrive from the left

` (1 ´ si) Xisi`1 (1 ´ Xi`1)
︸ ︷︷ ︸

arrive from the right

(1)

The above equation can be simplified,

s1i “si ` XiXi´1si ´ XiXi´1si´1 ` XiXi`1xi ´ XiXi`1si`1

´ Xisi ` Xisi`1 ´ Xi´1si ` Xi´1si´1. (2)

It is also easy to verify that for periodic boundary conditions on a lattice of
length L,

L´1
∑

i“0

s1i “
L´1
∑

i“0

si,
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meaning that the number of particles is conserved.
Equation (2) represents a probabilistic cellular automaton, and if we had

a way to simulate Xi by some pseudo-random process, we could constructs a
purely deterministic CA. This can be done by using elementary rule 30 [12,17],

X 1
i “ f30(Xi´1,Xi,Xi`1), (3)

where f30 denotes local function of rule 30, which can be written as

f30(x0, x1, x2) “ (x0 ` x1 ` x2 ` x1x2) mod 2. (4)

This means that at each site i we have two binary state variables, si and Xi,
evolving, respectively, according to Eqs. (2) and (3). We can combine them
together by introducing another variable,

yi “ 2si ` Xi,

so that we obtain CA with four states, yi P {0, 1, 2, 3}. This is a fully determin-
istic nearest neighbour CA given by

y1
i “ f(yi´1, yi, yi`1),

where f : {0, 1, 2, 3}3 Ñ {0, 1, 2, 3} is defined in the Table 1. Let us call {0, 1}
lower states and {2, 3} upper states. Lower states represent empty sites, while
upper states sites occupied by particles. Of course this mean that empty cell can
be in two states (0 or 1) and a particle can be in two states as well (2 or 3).
These “internal” states are used only for generation of random numbers.

Table 1. Rule table for the diffusive rule with four states. The entries represent
(yi´1, yi, yi`1) Ñ y1

i.

(0,0,0) Ñ 0 (1,0,0) Ñ 1 (2,0,0) Ñ 0 (3,0,0) Ñ 3

(0,0,1) Ñ 1 (1,0,1) Ñ 0 (2,0,1) Ñ 1 (3,0,1) Ñ 2

(0,0,2) Ñ 0 (1,0,2) Ñ 1 (2,0,2) Ñ 0 (3,0,2) Ñ 3

(0,0,3) Ñ 1 (1,0,3) Ñ 0 (2,0,3) Ñ 1 (3,0,3) Ñ 2

(0,1,0) Ñ 1 (1,1,0) Ñ 0 (2,1,0) Ñ 1 (3,1,0) Ñ 0

(0,1,1) Ñ 1 (1,1,1) Ñ 0 (2,1,1) Ñ 1 (3,1,1) Ñ 0

(0,1,2) Ñ 3 (1,1,2) Ñ 2 (2,1,2) Ñ 3 (3,1,2) Ñ 2

(0,1,3) Ñ 1 (1,1,3) Ñ 0 (2,1,3) Ñ 1 (3,1,3) Ñ 0

(0,2,0) Ñ 2 (1,2,0) Ñ 1 (2,2,0) Ñ 2 (3,2,0) Ñ 3

(0,2,1) Ñ 3 (1,2,1) Ñ 0 (2,2,1) Ñ 3 (3,2,1) Ñ 2

(0,2,2) Ñ 2 (1,2,2) Ñ 1 (2,2,2) Ñ 2 (3,2,2) Ñ 3

(0,2,3) Ñ 3 (1,2,3) Ñ 0 (2,2,3) Ñ 3 (3,2,3) Ñ 2

(0,3,0) Ñ 1 (1,3,0) Ñ 0 (2,3,0) Ñ 1 (3,3,0) Ñ 0

(0,3,1) Ñ 3 (1,3,1) Ñ 2 (2,3,1) Ñ 3 (3,3,1) Ñ 2

(0,3,2) Ñ 3 (1,3,2) Ñ 2 (2,3,2) Ñ 3 (3,3,2) Ñ 2

(0,3,3) Ñ 3 (1,3,3) Ñ 2 (2,3,3) Ñ 3 (3,3,3) Ñ 2
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Fig. 1. Spatiotemporal patterns for lattice with periodic boundary conditions and
length L “ 50. (a) Random initial condition. (b) Random initial condition with only
0s and 1s. (c) Initial condition with block of 10 cells in upper states in the middle,
lower states elsewhere; every 10th step is shown. (d) Identical pattern as in (c) but
with lower states colored white and upper states blue. (Color figure online)

Figure 1 shows examples of spatiotemporal patterns produced by this rule,
with upper states shown in blue/green and lower states in grey/white. Random
walk performed by individual particles is clearly visible. If we start with a lattice
with all sites in lower states, the well known pattern produced by rule 30 can be
observed (Fig. 1b).

We will now demonstrate that by taking the appropriate limit, Eq. (2) actu-
ally leads to the partial differential equation known as diffusion or heat equa-
tion. Let ρi “ 〈si〉, where the angle bracket denotes the expected value. Taking
expected value of both sides of the Eq. (2) we obtain

ρ1i “ ρi ` 1
4
ρi ´ 1

4
ρi´1 ` 1

4
ρi ´ 1

4
ρi`1 ´ 1

2
ρi ` 1

2
ρi`1 ´ 1

2
ρi ` 1

2
ρi´1, (5)



146 H. Fukś

where we used the fact that 〈Xi〉 “ 1{2 for all i. The above then simplifies to

ρ1i “ 1
2
ρi ` 1

4
ρi`1 ` 1

4
ρi´1. (6)

We can write this as

ρ1i ´ ρi “ 1
4

(

ρi`1 ´ 2ρi ` 1
4
ρi´1

)

. (7)

Let us now suppose that the system is updated in discrete time steps, where the
time interval between updates is τ . Moreover, let the spacing between lattice
sites be ε. If we divide both sides of the above equation by τ and multiply its
right hand side by ε2

ε2 we obtain

ρ1i ´ ρi

τ
“ ε2

4τ

ρi`1 ´ 2ρi ` ρi´1

ε2
. (8)

It is now clear that the left hand side corresponds to numerical approximation of
the first derivative of ρ with respect to time, while the right hand side corresponds
to the numerical approximation of the second derivative of ρ with respect to the
spatial coordinate. If we take the limit of both sides with ε Ñ 0 and, at the same
time, allowing τ tend to zero in such a way that ε2{τ remains constant, we get

Bρ
Bt “ D

B2ρ
Bx2

, (9)

where D “ ε2{4τ , x “ iε represents spatial coordinate, and t “ kτ represents
time with k denoting time step, k P {0, 1, 2, . . .}. This is indeed the diffusion
equation. We will now show that orbits of our rule defined in Table 1 approximate
solutions of Eq. (9) remarkably well.

3 Experiments

We will consider two numerical experiments highlighting the quality of the rule
of Table 1. The first one is usually described in PDE textbooks as a heated finite
bar with inhomogeneous boundary conditions [3]. We will consider finite lattice
of size L with fixed boundaries where the leftmost site is always occupied by a
particle and the rightmost site is always empty. Figure 2 shows the correspond-
ing spatiotemporal patterns. We computed numerical approximations of ρi by
obtaining average value of si after k iterations, where the average is obtained by
repeating the simulation 104 times. Defining x “ i{L we then plotted ρ versus
x for various values of k. Results are shown in Fig. 3.
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(a)

i

t

i

t

(b)

Fig. 2. (a) Spatiotemporal patterns for lattice with fixed boundary conditions and
length L “ 50. Left end is the source of particles and the right end is kept empty. (a)
Identical pattern as in (a) but with lower states colored white and upper states blue.
Only every 10-th step is shown. (Color figure online)

Let us compare the results with solution of Eq. 9 with boundary conditions
ρ(0, t) “ 1, ρ(1, t) “ 0, given by the following [3] infinite series,

ρ(x, t) “ 1 ´ x ´ 2
π

8
∑

n“1

1
n

exp
(´n2π2Dt

)

sin (nπx) . (10)

One can see that as t → 8, corresponding to our k → 8, the density profile
should tend to a straight line, ρ(x,8) “ 1´x, labelled in Fig. 3 as “steady state”
line. For k “ 105 the experimental density profile almost overlaps with 1 ´ x,
confirming that the approximation of Eq. (9) by rule of Table 1 is indeed very
good.

The second experiment we will describe is the case of the initial configuration
where all the particles are placed in a solid block in the middle of the lattice,
just like in Fig. 1c and 1d. We again computed average densities using 104 runs,
and the results are shown in Fig. 4a. We used lattice of 300 sites with only 30
sites occupied initially, for i “ 135, 136, . . . , 165, the rest being empty. Spatial
variable i (upper axis) is rescaled as x “ (i´150){15 (lower axis), so that x “ ´1
corresponds to i “ 135 and x “ 1 corresponds i “ 165. The rescaling was done
to compare the CA density profiles with solution of Eq. (9) with initial condition

ρ(x, 0) “
{

1 if |x| < 1,

0 otherwise,
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Fig. 3. Density profiles obtained by numerical experiments for finite lattice (L “ 100)
with inhomogeneous boundary conditions. Left end is the source of particles and the
Right end is always empty. Vertical axis represents density obtained after k iterations,
averaged over 104 runs.

which, following [8], is given as

ρ(x, t) “ 1
2
√

Dπt

∫ 1

´1

exp
(

´ (x ´ v)2

4Dt

)

dv “ 1
2
erf

(

x ` 1
2
√

Dt

)

´ 1
2
erf

(

x ´ 1
2
√

Dt

)

.

(11)
For k “ 50, we compared the numerically obtained density profile (shown in

Fig. 4a as dotted line) with the corresponding solution of the diffusion equation
given by Eq. 11. In Fig. 4b, the density profile obtained by the CA rule for k “
50 is shown together with the corresponding graph of the right hand side of
Eq. (11). We can again see very good agreement of both, although there are slight
discrepancies in the intervals around x “ ˘1.5. Given that we are comparing
orbits of the discrete process with solution of the continuous PDF, the agreement
is still quite remarkable.

4 Two-Dimensional Rule

It is not difficult to construct the deterministic diffusion rule in higher dimen-
sions, following the method outlined in the first section. As an example, we will
show two-dimensional version of the rule of Table 1. In this case, two independent
pseudo-random variables Xi,j and Yi,j are needed, controlling the movement in,
respectively, horizontal and vertical direction. These variables can be obtained
by using the rule 30 applied in horizontal and vertical direction,
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Fig. 4. (a) Development of density profile for lattice of length L “ 300 with particles
initially located only at i “ 135, 136, . . . 165. Vertical axis represents density obtained
after k iterations, averaged over 104 runs. (b) Density profile for CA for k “ 50 com-
pared with solution of the diffusion equation given by Eq. (11).
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X 1
i,j “ f30(Xi´1,j ,Xi,j ,Xi`1,j), (12)

Y 1
i,j “ f30(Yi,j´1, Yi,j , Yi,j`1). (13)

The two-dimensional diffusive rule is then given by

s1i,j “ si,j ´ si,jXi,j(1 ´ si`1,j)(1 ´ Xi`1,j)Yi,jYi`1,j
︸ ︷︷ ︸

move to the right

´ si,j(1 ´ Xi,j)(1 ´ si´1,j)Xi´1,jYi,jYi´1,j
︸ ︷︷ ︸

move to the left

` (1 ´ si,j)(1 ´ Xi,j)si´1,jXi´1,jYi,jYi´1,j
︸ ︷︷ ︸

arrive from the left

` (1 ´ si,j)Xi,jsi`1,j(1 ´ Xi`1,j)Yi,jYi`1,j
︸ ︷︷ ︸

arrive from the right

´ si,jXi,j(1 ´ si,j`1)(1 ´ Xi,j`1)(1 ´ Yi,j)(1 ´ Yi,j`1)
︸ ︷︷ ︸

move to the top

´ si,j(1 ´ Xi,j)(1 ´ si,j´1)Xi,j´1(1 ´ Yi,j)(1 ´ Yi,j´1)
︸ ︷︷ ︸

move to the bottom

` (1 ´ si,j)(1 ´ Xi,j)si,j´1Xi,j´1(1 ´ Yi,j)(1 ´ Yi,j´1)
︸ ︷︷ ︸

arrive from the bottom

` (1 ´ si,j)Xi,jsi,j`1(1 ´ Xi,j`1)(1 ´ Yi,j)(1 ´ Yi,j`1)
︸ ︷︷ ︸

arrive from the top

.

We can then introduce variable

yi,j “ 4si,j ` 2Yi,j ` Xi,j ,

and with this new variable we will obtain deterministic cellular automaton with
8 states and von Neumann neighbourhood, where lower states {0, 1, 2, 3} corre-
spond to empty sites and upper states {4, 5, 6, 7} to occupied sites. The rule table
of this rule consists of 85 “ 32768 entries, thus it cannot be reproduced here.
Nevertheless, using compression tool for CA rules included with Golly software
[14], this rule table can be reduced to 94 transitions using 31 variables. The .rule
file for Golly program is available from the author, allowing to perform inter-
active experiments with the rule. Results of one of such experiments are shown
in Fig. 5, where we used only two colors, white for low states and blue for high
states. This is done to emphasize the dynamics of the diffusion process and to
“hide” the generation of random variables by two embedded rules 30.
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Fig. 5. Patterns produced by two-dimensional diffusive rule starting from the initial
image depicting letters “CA” on a lattice 250ˆ250 with periodic boundary conditions.
States 0–3 are shown as shades of gray and states 4–7 as shades of blue. (Color figure
online)

5 Conclusions

Deterministic nearest-neighbour cellular automaton modelling diffusion process
with very high fidelity can easily be constructed providing that sufficient number
of states is employed, and in d dimensions 2d`1 states are needed. This brings an
interesting question and research challenge: could one construct realistic diffusion
model with smaller number of states? In particular, in one dimension, can we
construct a nearest-neighbour CA rule with only 3 states (instead of our 4),
yet emulating diffusion process with similar quality as the rule presented here?
The answer is most likely no, yet one would have to formulate the problem in a
more rigorous fashion first in order to give the definitive answer. What is certain
is that it cannot be done with two states, as none of the elementary CA rules
exhibits sufficient diffusion-like properties.
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Abstract. The evolution of microstructure of the precursor particles
during the sintering of ceramic materials has been assessed by a cellular
automaton model in which the only physical consideration for the evolu-
tion of the system is to minimize the interface energy among the cells and
the interface energy alumina-air. The model reproduces qualitatively the
vermicular microstructural patterns observed in actual partially-sintered
alumina powders for different heat treatments. Moreover, a successful
comparison between porosity computed data and experimental data was
performed.

Keywords: Cellular automata · Alumina · Vermicular structure ·
Sinterization · Porosity

1 Introduction

The scientific research of ceramic materials has been an extensive field since cen-
turies due to their outstanding combination of physical, mechanical and chemical
properties. Nowadays, many technologies of the every-day life involve ceramics
or ceramic matrix composites. In particular, alumina, Al2O3, is one of the most
researched ceramic materials and it is currently implemented on a wide vari-
ety of applications, such as mechanical, high temperature or biomaterials [1–3].
Therefore, there are still major fundamental and technological interests in the
fabrication processes of alumina, which involves a high-temperature treatment
for the sintering (also known as consolidation or densification) of the precursor
compacted powders in order to obtain a fully dense bulk ceramic material.

Despite that the fabrication of ceramics has been known since centuries, the
understanding of the sintering behavior and the evolution of the microstructure
of the compacted powders are still subjects of research. Hence, a wide variety of
procedures have been considered for the fabrication of ceramics, starting from
different recipes of the synthesis of the precursor powders, to the employment
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of different densification methods, such as pressureless sintering, hot isostatic
pressure sintering, spark plasma sintering, or reactive sintering [1,4,5]. Typically,
the goal is to obtain the fully dense material and the finest grain size, but saving
as much as energy and time as possible.

Sintering is a process that leads to the densification of the material thanks
to viscous flow and/or diffusion to reduce porosity [6]. In addition, other pro-
cesses could be involved such as surface dehydroxylation, crystallization and
grain boundary formation, or phase transformations. In brief, the system tends
to diminish its energy through the reduction of the interface solid-gas (or solid-
vacuum) and grain boundaries. In the case of crystalline materials, the forma-
tion of the grains and boundaries are additional mechanisms consuming time
and energy during densification, but, again, the driving mechanism is reduc-
ing the surface energy, which involves the grain boundaries in addition to the
external interface solid-gas. It should be noted that these diffusion processes
are energy-activated, being coarsening more relevant at low temperature. For
example, viscous sintering is driven by the gained energy through interface sur-
face reduction [6], and the viscosity, η, depends on the temperature through an
Arrhenius-like relation with a threshold temperature, Tth, namely

η = η0e
[Q/k(T−Tth)] (1)

In summary, the densification of the powders is a complex phenomenon that
involves different concomitant and competing physical processes that govern the
morphology of the powders, the crystal and grain sizes, and the disappearance of
the porosity. The dependence of each phenomenon with time and temperature,
the threshold temperatures of each process, and the influence of the microstruc-
tural and chemical composition of the precursor powders have been deeply stud-
ied, and they are still under research. In particular, several studies can be found
in the literature assessing the sintering behavior, namely, the evolution of the
microstructure of the precursor powders, and monitoring the gradual reduc-
tion of the porosity among the powders throughout the consolidation process.
Moreover, the dependence of the residual porosity is typically analysed by the
relative density, that is, the ratio of the actual sample density with regard to the
theoretical bulk alumina density of 3.98 g/cm3. Hence, in all cases, a direct rela-
tion between decreasing porosity with time and temperature has been confirmed
[1,6,7].

The use of simulation techniques in the field of materials science has a double
interest. On the one hand, the improvement of the properties of the material for
its industrial use and, secondly, the theoretical interest in the knowledge of the
physical processes involved. Traditionally, Monte Carlo simulation methods have
been considered but their sequential update of randomly selected points may
not be able to capture the simultaneous evolution of grains and the realistic
representation of the physical processes also it is very inefficient when applied
to large sets of data [8]. On the contrary, in Cellular Automata models, the
simultaneous update of every single cell in the lattice of the discretized system
appear to reflect more realistically the underlying physical phenomena during
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Fig. 1. The neighborhood for the calculus of the surface energy of a given configuration,
which is obtained as E =

∑
ij Jij(1 − δij). If i = j, δij = 1 otherwise, if i �= j, δij = 0,

and Jij = 1 in all cases.

nature process. Recently, numerous studies in the field are using models based
on cellular automata [9–12]. Most of these models focus on the study of the
dynamic recrystallization [13,14] process and its kinetics [15]. However, there is
a lack of studies on the structural patterns that originate during densification, for
example, of the boehmite (γ-AlOOH) precursor powders on sapphire substrates,
where vermicular structures are formed and studied by electron microscopy [16].

In this work, we present a probabilistic model of cellular automata, in which
the evolution of the system is determined exclusively by the minimization of the
energy at the interface boundaries. The patterns generated in the simulation
qualitatively reproduce the vermicular structures found experimentally [16] for
different temperatures. In addition, the decreasing trend of the porosity with
the temperature is also well reproduced, allowing the correspondence between
simulation and sintering temperatures.

2 The Cellular Automaton Model

We take a two dimensional array of N = L × L cells with periodic boundary
conditions to avoid border effects. The set of possible states is σ = {0, 1}, which
correspond to a void lattice cell or cell filled with an elemental portion of alumina,
respectively. To conserve the number of filled cells, the Margolus neighborhood
is used, the lattice is split in non-overlapping sub-lattices and the updating is
done simultaneously on each block of size 2×2. In Fig. 1, one block and its neigh-
borhood are sketched. Note that, in the current model, we have considered only
one state for the alumina. But the proposed model is so versatile that different
crystallographic orientations can be implemented simply by assigning different
states to the alumina cells. This feature will allow the detailed study of crystal-
lographic domains behavior. Nevertheless, different crystallographic orientations
are left for elsewhere.
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2.1 The Interface Energy

We assume that the energy E of a certain configuration only depends on the
interfaces between neighboring cells. Figure 1 shows the elementary block of four
cells (a,b,c,d) and the neighbors cells (e,f,g,h,k,l,m,n). The configuration energy
is defined as:

E =
∑

ij

Jij(1 − δij) (2)

where δij is the Kronecker delta, and Jij is the surface energy of one elemental
interface, which in this work is considered to be the same for all the alumina-void
interfaces (J = 1). Thus, the total energy of the system is obtained summing up
the energy of all the blocks. In other words, the configuration energy is obtained
as the total number of sides of the lattice cells that are found between lattice
cells with different states.

2.2 Transition Probabilities

The evolution rule assigns to each configuration at time t a different one at
time t + 1, depending exclusively on the difference between both energies ΔE =
E(t + 1) − E(t). Table 1 shows the lookup table of the rule. All possible initial
states of the elementary blocks, not including rotations, are shown along with
all the possible outputs. Each of these possible outputs is assigned a function of
Arrhenius type:

qi = A · e− ΔEi
kT (3)

the prefactor A is taken as 1. And finally the probability is obtained by normal-
izing between the set of possible corresponding final states.

pi =
qj∑
i qj

(4)

Therefore, in our probabilistic CA model, all states have a probability of
being able to occur, contrary to what happens in other simulation methods in
which, for example, transitions with ΔE > 0 are rejected while if ΔE ≤ 0 are
accepted with probability 1. These different methodologies (namely, the soft one
and the hard one, respectively), involve different physical considerations and
lead to different final states.
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Table 1. Lookup table rule of the cellular automata. All the 5 possible initial states
of the blocks at time t and their possible states at instant t + 1 are shown. For each
transition, the difference between the interface energies of the block is obtained and

the Ahrrenius-type coefficient qi = e−
ΔEi
kT is calculated. The probability assigned to

each of the outputs are normalized pi = qi/(
∑

j qj)

t t + 1 t t + 1 t t + 1

=⇒ 1 =⇒ p1 =⇒ p1

t t + 1 =⇒ p2 =⇒ p2

=⇒ p1 =⇒ p3 =⇒ p3

=⇒ p2 =⇒ p4 =⇒ p4

=⇒ p3 =⇒ p5 t t + 1

=⇒ p4 =⇒ p6 =⇒ 1

In the hard case, the system reaches the equilibrium state in a few time
steps. However, in the final state, the system has a total energy higher than
in the soft case. In other words, the system upon the typical hard transition
probabilistic methodologies achieves faster some “local” equilibrium, while the
soft probabilistic methodology allows a wider exploration of the energy pathway,
which leads to a more stable equilibrium state.

3 Results

The simulations are performed on lattices of N = 500 × 500 cells and start from
a random initial state with a concentration ρ = 1

N

∑N
i σi = 0.6. The system

evolves under the transition rules described above and the different data are
recorded after 104 time steps. Since k = 1 and J = 1 the energy and temperature
values are in arbitrary units.

3.1 The Total Interface Energy

Figure 2 shows the relative decrease of the total interface energy versus the tem-
perature. It was found that the largest relative decreases of the energy, ΔE/E0
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Fig. 2. Simulation results of the CA model. Lattice size 500 × 500, periodic boundary
conditions. Starting from a random initial condition with a density of 0.6. Dependence
of the relative decrease of the total energy versus the temperature. The “frozen” system
(T = 0) would not exhibit any change of the energy, as expected

are observed in the range of lower temperatures, that is, for 0.5 < T < 0.75. It is
below this value of T = 0.75 where it makes physical sense that the mechanism
to reach equilibrium is the decrease of the total interface energy. On the other
hand, when T increases, the thermal energy of the particles is the dominant
factor against the minimization of energy.

The analysis of the evolution of the energy can be also made in terms of
the distribution of the energy throughout the system. Figure 3 shows the spatial
distribution of local energies for two different temperatures. For evaluating this
local energy, the Von-Neumman neighborhood of each cell is taken into account.
In the case of low temperature, the energy, which is only found in the interface
between matter and the vacuum, clearly depicts the contour of the particulate,
partially-sintered, system. On the contrary, at higher temperatures, the energy is
distributed throughout the network, meaning that, even at the final equilibrium
state, there are interfaces throughout the sample. We assume that, during the
simulation of the sintering of the sample at high temperature, there are multiple
remaining pores (void cells) located within the domains of alumina, due to the
soft probabilistic transition methodology, which allows that some kind of thermal
agitation of the cells prevails over the minimization of the interface energy. This
could also explain the increase of the relative reduction of the energy above
T = 0.75 observed in Fig. 2.
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Fig. 3. Contour Plot of the local energy at t = 104 time steps for two temperatures:
(a) T = 0.5, (b) T = 1.5. The minimum value of the energy are the pixels of black
color, while the yellow color represents the maximum values. (Color figure online)

3.2 Vermicular Structures

The spatial arrangements of the matter obtained at the final configurations can
be discussed and compared with experimental images in Fig. 4, where the top
file shows the patterns generated at various temperatures after 104 time steps,
in which the equilibrium was reached in all cases. A blue pixel is a lattice with
alumina.

In the case of T = 1.5, we have plotted the temporal average of σ for 104

time steps, so thermal fluctuations at high temperatures are neglected. In the
plots, it can be seen how the particles are distributed minimizing the interface
energy forming clusters, with vermicular shapes of different sizes that are directly
related with the temperature. Surprisingly, this type of patterns has already
been observed experimentally in the sintering of alumina on sapphire surfaces,
as shown in the bottom file of Figure 4. Therefore, the ability of the proposed
CA model for simulating partially sintered structures is clearly supported by the
structural similarity of the simulated and experimental systems.

3.3 A Measure of the Porosity

During the preparation of ceramics such as alumina, voids among the precursor
particles progressively disappear resulting in the densification of the sample.
Nevertheless, partial or imperfect preparations lead to incomplete densifications
and then the material exhibits some remaining porosity. In this simple CA model,
we can measure the porosity by interpreting the existence of holes in the sample
when the time average occupancy of a given cell is less than 0.5. Figure 5 shows
the results obtained through the simulation where some experimental data have
also been included. The porosity decreases as the temperature increases and



160 F. Jiménez-Morales et al.

Fig. 4. Top line: Vermicular structures shown by the CA model at different tempera-
tures. a) T = 0.25, b) T = 0.50, c) T = 0.80, d) T = 1.5. The initial concentration is
0.6. For d) each pixel is a temporal average of the cell state. A blue pixel if 〈σ〉 > 0.5.
Bottom line: Scanning electron microscopy images of vermicular structures of partially
sintered alumina. Reproduced with permission from [16]. (Color figure online)

Fig. 5. Evolution of the porosity of the sample vs. temperature. Simulation data (red
circles) reproduced reasonably well the decreasing trend exhibited by the experimental
data. The temperature of the samples of alumina were maintained during 600min.
(Exp1, green squares) and 300min (Exp2, cyan triangles). Data from ref. [17]. (Color
figure online)
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Fig. 6. Log-log plot of the number N(s) of void clusters versus the size s. The initial
concentration was ρ0 = 0.6 and the simulation temperature T = 1.5. The slope of the
straight line drawn is −1.

above a certain critical value it practically reaches a null value, meaning that,
above a given T , fully-dense samples are obtained, which makes an absolute
realistic sense. Moreover, the correlation between the trends of both sets of
results is remarkable. Finally, we have correlated the sintering temperature with
the simulation temperature obtaining that Tsimulated = 1 ≈ Treal = 1450 K. We
have found also that the distribution of the holes within the sample follows a
power law N(s) ≈ s−1 as shown in the Fig. 6.

4 Conclusions

Among the simulation methods used in materials science, CA stand out for
their ability to easily capture the complexity of material sintering processes.
In this paper we have developed a probabilistic cellular automata in which the
transition probability depends on the interface energies as an Arrhenius function.
We point out the similarity between the patterns generated by the simulations
and the vermicular patterns observed in sol-gel growth of alumina. The model
also allows for a measurement of the porosity of the sample as a function of
the temperature that qualitatively is in good agreement with experimental data.
It is left for a future work the study of the influence of local crystallographic
orientations and also the growth kinetics.
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Abstract. In this paper, we present a cellular automata model for a
two-level laser which includes a saturable absorber. We show that the
model reproduces laser passive Q-switching, a behavior in which intense
short pulses of laser radiation are produced. Depending on the concen-
tration of the absorbent, the automaton model qualitatively reproduces
two operating states of the laser: a stable state and another oscillatory
or pulsed state.

Keywords: Laser · Saturable absorber · Q-switching · Cellular
automata

1 Introduction

Cellular automata (CA) have proven to be very successful in modeling com-
plex systems in many areas of science and engineering [1,8,12]. One particularly
interesting application is to model the dynamics of a laser, which is one of the
most paradigmatic examples of a complex system. A CA model to describe laser
dynamics was introduced in [3]. It describes the laser system as a collection
of simple components: the atoms, electrons or molecules of the active medium
of the laser cavity and the radiation laser photons that they produce. Local
interactions among these components are described by the CA evolution rules
based on the physical processes that occur in a laser system: stimulated emission,
absorption, pumping, and noise. It was shown in [3] that different macroscopic
laser properties are reproduced by the CA model as emerging properties induced
by self-organization: the pumping threshold value, the emission of a laser beam
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above it, the temporal patterns (constant or oscillatory) of the radiation beam,
and the dependence of the type of temporal pattern exhibited by a laser on its
characteristic parameters.

Since then, it has been possible to model variants of a general laser system
by modifying some of the ingredients of the CA model. And for instance in
[4] a successful CA model of pulsed-pumped lasers was introduced. Also in [5]
another CA model that reproduces antiphase dynamics in lasers was presented.
This demonstrates the robustness and usefulness of the CA approach to model
laser physics.

The basic idea of modeling laser physics using a microscopic or mesoscopic
discrete model has been also developed further by Chusseau et al. to propose
related Monte Carlo simulations of laser obtaining very good results for quantum-
well and quantum-dot semiconductor lasers [2]. Also recently, Zhang et al. have
proposed a CA model of nonlinear optical processes in a phase-change material
inspired by this idea (in particular, for a polymorphic gallium film undergoing a
light-induced structural phase transition) [13]. They have employed a CA model
very similar to our laser model, a three-level system governed by only four transi-
tion rules and a sparse set of independent material and process parameters. They
have found that their model can phenomenologically describe the complex, non-
stationary, spatially inhomogeneous dynamics and resulting nonlinear optical
properties of a medium undergoing a light-induced structural phase transition.

In this work, we go a step beyond the original model presented in [3] to intro-
duce a new variant of that model that simulates a laser with a saturable absorber,
capable of reproducing the behavior known as laser passive Q-switching. Laser
Q-switching is a widely used technique by which a laser can be made to pro-
duce an output beam with intense light pulses by modulating the cavity losses,
i.e. the Q factor (quality factor) of the cavity, which is the ratio of the stored
energy to the energy dissipated per oscillation cycle [6,7,11]. Q factor determines
the level of damping of the laser cavity: a laser with a low Q factor has higher
losses and is thus more damped than a laser with a higher one. Q-switching is
achieved by placing some type of variable attenuator in the laser optical cav-
ity, which provides high attenuation (low Q-factor) for low intensities of laser
light circulating through the cavity, and low attenuation (high Q-factor) for
higher intensities. In this way, when the laser is switched on, the attenuation
is very high, so that the intensity of laser radiation produced by stimulated
emission increases only very gradually. Therefore, the pumped energy accumu-
lates in a high population inversion. When the laser radiation intensity exceeds
a certain threshold value, the variable attenuator quickly goes from low Q to
high Q (the attenuation goes down). This, together with the high population
inversion achieved, causes a rapid increase in laser radiation intensity by feed-
back from stimulated emission. This process consumes the population inversion
until it is extinguished and returns to the starting point. The result is a short,
intense pulse of laser light, called a giant pulse, which is repeated periodically.
In lasers with passive Q-switching, one of the two variants of Q-switching, the
variable attenuation is obtained by introducing a saturable absorber inside the
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laser cavity, a material whose transmission increases when light intensity exceeds
some threshold. Some popular saturable absorbers are ion-doped crystals such
as Cr4+ : YAG,V3+ : YAG, or Co2+ : MgAl2O4, where YAG stands for yttrium
aluminum garnet (Y3Al5O12).

Modeling laser Q-switching using a CA instead of the standard approach
based on macroscopic differential equations has different advantages: i) a CA
model can be used in cases in which the differential equations are stiff and present
convergence problems; ii) it is possible with a CA model to study specific spatial
structures of the laser device, for example, structures of the absorbing medium
(randomly or regularly distributed); iii) CA models can be implemented very
efficiently on parallel computers, due to their intrinsic parallel nature; iV) once
a basic CA model has been designed and validated, it is possible and relatively
easy to study modifications of the model to deal with different variants of the
phenomenon to be studied.

The structure of this paper is as follows. In Sect. 2 the classical description
of laser passive Q-switching using rate equations is introduced and the main
operation regimes obtained by integrating them are presented. The CA model
is introduced in Sect. 3. Results are presented in Sect. 4. Finally, conclusions are
drawn in Sect. 5.

2 Laser Rate Equations

The classical balance equations to formulate a two-level laser with a saturable
absorber are [11]:

dn

dt
= K1 N n − n

τn
− K2qn (1)

dN

dt
= R1 − N

τN
− K1 N n (2)

dq

dt
= R2 − q

τq
− K2 q n (3)

where n is the number of photons, N is the population inversion and q is the
saturable absorber. K1 and K2 are two coupling constants between the radiation
and the lasing medium and between the radiation and the absorber. R1 is the
pumping of the laser medium and R2 is a characteristic property of the absorber.

The laser rate equations allow us a simple interpretation of the different
physical processes involved. The intensity of the laser, which is proportional to
the number of photons n, increases with the stimulated emission (K1Nn) and
decreases due to the effect of the absorber (−K2qn). The population inversion
N , Eq. (2), which is the difference between the electrons that are in the higher
and fundamental energy level of the laser active medium, increases due to an
external pumping (R1) and decreases due to stimulated emission. Regarding the
absorber, its behavior is similar to that of the population inversion. But in this
case, R2 is a characteristic of the material, although its effect can be understood
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as if it were an external pump. The absorber q decreases its action as the number
of photons increases (K2qn), this being one of the main characteristics of this
type of device: the laser is transparent for high intensity values. Each of the
values of the three populations, photons, population inversion, and absorber
has a lifetime that represents in each case the decay time of the photon in the
resonant cavity τn = γ−1

n , the decay time of the electron in the upper level of
the laser active medium τN = γ−1

N and the decay time of the absorber in the
active state τq = γ−1

q .
From the analysis of these laser rate equations, it has been established that for

a single mode the main laser regimes are a constant wave (cw) and Q-switching
state in which the power shows oscillations [10]. Other unstable laser operations
can also be found but are out of the scope of this work [9].

Figure 1 shows the two main operation regimes of the laser which have been
obtained by integrating the equations by the fourth order Runge-Kutta method,
where we have used the following lifetimes of τn = 80, τN = 103, τq = 2.
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Fig. 1. Time series of the number of photons obtained from the laser rate equations.
(a) After a damped transient the laser output is a constant wave. Parameters R1 = 0.1,
R2 = 0.5. (b) Pulsed behavior for R1 = 0.05, R2 = 0.9.

3 A Cellular Automata Model for a Laser
with a Saturable Absorber

The CA is defined in a two dimensional lattice of N = L × L cells with periodic
boundary conditions. The state of each cell at a given time, sij(t), is a vector of
3 values which includes the electronic state of the lasing medium e ∈ {0, 1}, the
number of photons f ∈ {0, 1, 2, ...,max} and the state of the absorber q ∈ {0, 1}.

sij(t) = {e, f, q} (4)
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Table 1. Set of parameters used in the simulations of the CA.

Parameter Symbol Value

Photons lifetime τn 80

Population inversion lifetime τN 103

Absorber lifetime τq 2

Threshold for stimulated emission K1 2

Threshold for absorption K2 2

Transient time 50

Number of noise photons 100

The state of every cell changes in parallel according to the following transition
rules:

Population Inversion

– Every electron in the ground state (e = 0) can be excited to the state e = 1
with a pumping probability R1. Although in our model we speak of electrons,
they are actually the two states of the laser medium. For this reason, we have
not included any restrictions on the number of electrons in each level.

– An electron in the state e = 1 that is surrounded by a number of photons
higher than a given threshold value K goes to e = 0. In this process, a
new photon is created by stimulated emission. To evaluate this condition the
photons in the Moore neighborhood of the cell are considered:

Γij =
∑

Neig

fi,j (5)

– An electron in the state e = 1 goes to e = 0 after a time τN . And this
transition is considered to be not radiative.

Photons Evolution
When stimulated emission occurs one new photon is created:

fi,j(t + 1) = fi,j(t) + 1 (6)

Like the electrons, photons vanish after a given time τn.
The Absorber (q ∈ {0, 1})

In our model, the absorber, in the same way as the inversion of the popula-
tion, has only two possible states: an inactive state q = 0 in which it does not
interact with radiation and the active state q = 1 in which said interaction does
occur.

The evolution of the absorber is given by the following rules:

– If q(t) = 0 then with a probability R2, which depends on the physical char-
acteristics of the absorber, q(t + 1) = 1.



168 F. Jiménez-Morales et al.

)II()I(

0⋅100

5⋅104

1⋅105

 1000  2000  3000  4000  5000

n(
t)

,N
(t

),
q(

t)

t 

n(t)
N(t)
q(t)

0⋅100

1⋅105

2⋅105

 1000  2000  3000  4000  5000

(a)

(b)

(c)

n(
t)

,N
(t

),
q(

t)

t 
(III) (IV)

0⋅100

5⋅104

1⋅105

 1000  2000  3000  4000  5000

(a)

(b)

(c)

n(
t)

,N
(t

),
q(

t)

t 

0⋅100

2⋅104

3⋅104

5⋅104

6⋅104

 400  600  800  1000

(a)

(b)

(c)

n(
t)

,N
(t

),
q(

t)

t 

Fig. 2. Time series of (a) the number of photons n(t), (b) the population inversion
N(t) and (c) the absorber q(t). For clarity, the last two data sets (b and c) have been
shifted slightly along the y-axis in I, II and III. The lattice size is 300 × 300 cells, the
parameters da = 0.5, R2 = 0.5. The other parameters used in these simulation are
shown in Table 1. The different laser outputs depending on the pumping probability
R1 are: (I) No laser output R1 = 0.0035. (II) Oscilatory behaviour R1 = 0.004. (III)
Constant wave R1 = 0.007. (IV) Detail of a pulse corresponding to case (II).

– When the absorber is in the excited state, q(t) = 1, it eliminates photons
if Γij ≥ K2 and decays to the state q(t + 1) = 0. This is a deterministic
process. In our simulations, we have considered the case in which the absorber
eliminates all the photons in the corresponding cell position.

– Also the absorber in the excited state decays to the inactive state after a
certain number of time steps τq if Γij < K2.

Another important aspect to take into consideration is that in this lattice
model, unlike in the balance equations, it is possible to take into account the
spatial distribution of the absorber inside the system. In each and every point
of the network we have considered that it can host population inversion and
photons. But not so for the case of the absorber where it will be only present in
a certain number of cells so that we can introduce a given density of points with
absorber da.
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4 Results

The simulations have been carried out in networks of 300 × 300 cells with periodic
boundary conditions. The values of the different parameters used in most of the
simulations are shown in Table 1. Initially the population inversion is null and the
random distribution of absorbers is also in the ground state. During a temporary
transient we introduce a small amount of noise photons into the system to initiate
the action of the laser.

The number of parameters (seven, see Table 1) that define the system are
too many to address in this preliminary work an exhaustive study of all the
behaviors that can be shown by the CA model. In this way, the simulations that
we present below have been carried out by setting the values of the lifetimes and
of the constants K1 and K2 as indicated in the Table 1. The values of τn and τN
were the typical ones used in previous studies [3]. And as for τq we take a value
small enough and less than τn.

4.1 Dependence with the Pumping Probability R1

First, we analyze the possible behaviors of the model as we modify the pumping
probability of the lasing medium R1 having fixed R2 = 0.5 and the density
of absorber cells da = 0.5. Figure 2(I) shows the time series of the number of
photons n(t), the population inversion N(t) and the absorber in the excited state
q(t). For small values of R1 after a small transient no laser signal is produced.
The absorber reaches a fixed value while the population inversion shows damped
oscillations until it reaches a fixed value as well.
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Fig. 3. Dependence of the laser output on the parameter R2: a) 0.1, b) 0.4, c) 0.8. The
pumping is R1 = 0.004 and the density of absorber cells is da = 0.5.

By increasing the value of R1 above a certain threshold value (≈0.003), the
laser shows an oscillatory state that is stable over time as can be seen in Fig. 2(II).
A further increase in R1, Fig. 2(III) results in the disappearance of the oscillatory
state after a transient period during which the output intensity dampens and
now the laser shows a constant wave output.
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The Fig. 2(IV) is an expanded figure of one pulse corresponding to Q-
switching. It is interesting to observe that the behavior captured by the CA
model reproduces qualitatively the physics of the laser with a saturable absorber.
The absorber q reduces its value near the peak in the number of photons due to
the bleaching effect.

4.2 Dependence with R2

We have limited the dependency with the parameter R2 to the case of the oscilla-
tory state, previously described, being R1 = 0.004 and da = 0.5. Figure 3 shows
the time series of the number of photons for three values of R2. We have found
that as long as R1 is greater than the threshold value, the oscillatory behavior
is maintained as R2 is modified. But the frequency of pulses decreases as R2

increases.

4.3 The Effect of the Density of the Absorber

With the discrete model presented here, we can investigate the result of varying
the concentration da of possible absorbing cells in the lattice. That is an impor-
tant issue in the preparation of materials with adequate characteristics. Figure 4
is a heat map obtained from the analysis of the time series of n(t) for a fixed
value of R1. Higher values (yellow) are assigned to regular oscillations, and lower
values (violet) appear when the signal is constant, down to the null value (black)
when there is no output.
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Fig. 4. The different kinds of laser outputs as a function of the density of the absorber
and the R2 parameter. The pumping probability is fixed at R1 = 0.004. a) Black color:
there is no laser output for high density of the absorber (da > 0.75). b) Violet color:
constant output of the laser intensity. c) Red color: damped oscillations. d) Yellow
color: oscillatory behaviors with an almost constant value of the maximum intensity
are observed in the range (0.45 < da < 0.75) whereas damped oscillations are observed
when da < 0.45. (Color figure online)
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Figure 5 shows the time series of the intensity for three values of the density
da and a fixed value of R2. We find that in the absence of the absorber (Fig. 5-(a))
the signal has a constant value. As the density increases, the behavior goes from
a constant value to an oscillatory behavior; first of all, there are damped oscil-
lations and later they are maintained over time (Fig. 5-(b)). A further increase
in the density causes the laser action to stop (Fig. 5-(c)).
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Fig. 5. Time series of the laser intensity for three values of the density da of absorber
cells in the lattice: a) 0, b) 0.4 and c) 0.8. Other parameter values: R1 = 0.004 and
R2 = 0.4. Without the saturable absorber the laser output is a steady state with some
noise. The presence of the saturable absorber makes the laser to pulse.

5 Conclusions

In this work we present an extension to a previous CA model used to simulate
the laser physics in which a passive saturable absorber is included. Despite its
simplicity, the model qualitatively reproduces the main phenomenology of such
systems: the inclusion of the absorber can cause the laser to pulse.

Depending on the different parameters that define the system, we have carried
out a study modifying the pumping probability R1 and the parameter R2 which
is a property of the absorber. In this way we obtain that the laser signal can be
constant, a damped oscillation, a maintained oscillation (Q-switching) and the
absence of laser output.

Finally, this discrete model allows us to analyze the different behaviors that
can take place in lasers by modifying the density and location of the points that
act as absorbers, something that is not possible with the laser rate equations.
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4. Guisado, J.L., Jiménez-Morales, F., Guerra, J.M.: Simulation of the dynamics of
pulsed pumped lasers based on cellular automata. In: Sloot, P.M.A., Chopard,
B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 278–285. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30479-1 29
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8. Kroc, J., Jiménez-Morales, F., Guisado, J.L., Lemos, M.C., Tkac, J.: Building
efficient computational cellular automata models of complex systems: background,
applications, results, software, and pathologies. Adv. Complex Syst. 22(5), 1950013
(2019)

9. Kurtner, F.X., der Au, J.A., Keller, U.: Mode-locking with slow and fast saturable
absorbers-what’s the difference? IEEE J. Sel. Top. Quant. Electron. 4(2), 159–168
(1998)

10. Marcuse, D.: Pulsing behavior of a three-level laser with saturable absorber. IEEE
J. Quant. Electron. 29(8), 2390–2396 (1993)

11. Siegman, A.E.: Lasers. Unversity Science Books (1986)
12. Sloot, P.M., Hoekstra, A.G.: Modeling dynamic systems with cellular automata.

In: Fishwick, P.A. (ed.) Handbook of Dynamic System Modeling, pp. (21) 1–6.
Chapman & Hall/CRC (2007)

13. Zhang, L., Waters, R.F., Macdonald, K.F., Zheludev, N.I.: Cellular automata
dynamics of nonlinear optical processes in a phase-change material. Appl. Phys.
Rev. 8, 011404 (2021)

https://doi.org/10.1007/978-3-540-30479-1_29
https://doi.org/10.1007/978-3-319-66766-9_14
https://doi.org/10.1007/0-387-29338-8


Modeling Phase Change Materials Using
Cellular Automata

Yasser Khaddor1(B) , Abdes-samed Bernoussi1, Khalid Addi2 ,
Mohamed Byari1 , and Mustapha Ouardouz3

1 GAT, Faculty of Sciences and Techniques, Abdelmalek Essaadi University, Tangier,
Morocco

yasserkhaddor@gmail.com
2 Laboratoire Physique et Ingénierie Mathématique pour l’Energie, l’environnemeNt

et le BâtimenT (PIMENT), University of La Réunion, Saint Pierre, France
khalid.addi@univ-reunion.fr

3 MMC, Faculty of Sciences and Techniques, Abdelmalek Essaadi University,
Tangier, Morocco

Abstract. This work proposes a recent model for modelling the Phase
Change (PC) phenomenon based on Cellular Automata (CA) of com-
posite and heterogeneous materials with a complex geometry. We aim to
describe the temperature distribution and phases (liquid/solid) evolution
for multi-components materials. The main idea of this paper is to answer
the problem of the high complexity generated when the classical meth-
ods for modelling the PC is used in the case of heterogeneous materials
and complex geometry. For this purpose, Each cell was associated with
a set of attributes that characterize each portion of modelled material,
such as thermal conductivity, specific heat capacity, material density, a
specific material phase change temperature, Latent heat, etc.

Keywords: Phase change · Complex system · Multi-components
materials · Heat transfer

1 Introduction

Thermal energy storage represents a solution that will help reduce the gap
between the supply and demand of energy. It also improves the performance
and reliability of energy systems. Phase change materials (PCM) are an effec-
tive application for temperature control and consumption reduction. Their ease
of integration makes it a reasonable tool for developing and improving appli-
cations in various fields, including building [1,7,12], food transportation [8,19],
medicine [5,9], electronic system cooling [2,11], and clothing [3,10,15]. The use
of PCM is not limited to energy storage, but also provides temperature control
and stabilization. The key to the PCM phenomenon lies in the concept of latent
heat. This was introduced by J. Black [16], who demonstrated by a series of
experiments on water and ice that the process of solid/liquid phase change can-
not be studied only in the context of sensible heat. The first study of the phase
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B. Chopard et al. (Eds.): ACRI 2022, LNCS 13402, pp. 173–184, 2022.
https://doi.org/10.1007/978-3-031-14926-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14926-9_16&domain=pdf
http://orcid.org/0000-0001-6142-7989
http://orcid.org/0000-0002-3026-4555
http://orcid.org/0000-0002-0243-2777
https://doi.org/10.1007/978-3-031-14926-9_16


174 Y. Khaddor et al.

change problem was carried out by Clapeyron and Lamé [16] by considering the
secular cooling of the globe. They concluded that the thickness of the solid part
that covers our globe increases proportionally to the square root of the time that
has elapsed since the beginning of its solidification. The problem of phase change
is linked to Jozef Stefan, who introduced the problems of phase change with his
work between 1889 and 1891.

The mathematical models found in the literature, to solve the solid-liquid
phase change problems, are based on two principal methods: Interface-tracking
and no-interface-tracking [20]. Interface tracking methods consist of fixing the
interface using a mobile mesh, this leads to the solution of non-linear system
equations. The application of interface tracking methods is complex to implement
because the time step is fixed and we iterate on the space step so that the phase
change interface always coincides with a node of the mesh all the time. The heat
transfer equations must be discretized in each phase, and they are linked by the
discretization of the energy balance equation at the solid-liquid interface. No-
interface-tracking methods simplify the solution of PCM heat transfer without
explicitly tracking the solid-liquid interface. In this method class, we can find
the two most adopted methods: the enthalpy method [20], and the effective
heat capacity method [20]. The enthalpy method uses, for both phases, a single
variable (the enthalpy H as an unknown) and therefore reduces the equations
system to a single heat transfer equation. In this way, the temperature field is
determined without tracking the progression of the solidification front in time.
By the enthalpy method, the PC problem becomes easier since the governing
equation for the two phases is the same. The effective heat capacity method
also reduces the equations system to a single equation. It consists of forming a
dependence between latent heat and specific heat capacity.

These models present some limitations, specially when the application in
heterogeneous space (media). The heat transfer equations must be discretized
in each phase and they are linked by the discretization of the energy balance
equation at the solid-liquid interface. It is necessary to establish mathematical
models that can correctly link the enthalpy, liquid fraction and temperature [21]
plus the different proprieties of different components of the heterogeneous area
which are the most difficult to relate since each component got its own proprieties
and behaves on its proper way. Thus, heavy numerical instabilities can occur
and since in most materials melting or solidification problems can be considered
to be multi-dimensional and multi-components problems, which makes them
difficult to be solved analytically. Generally, the application of Partial Differential
Equations remains difficult to implement to describe the process of phase change
with its models in heterogeneous media.

The CA method was applied to many phase change related phenomena, in
[6] B. Cortie studied the solidification of a hypothetical liquid using cellular
automaton. In [17] the author considered A one-dimensional problem and pre-
sented thermodynamic laws applied to CA to take into account phase transition.
In [22] a 3D Cellular automata model coupled with finite elements was developed
for microstructure evolution. And others mostly focused on material processing
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[13,14,18]. Throughout its applications, Cellular Automata showed number of
advantages in dealing with this type of problems, especially in proposing solu-
tions dealing with complex geometries and heterogeneous phenomena.

Using cellular automata as an approach will allow us a local description of
the evolution of phase change within those types of materials. In this paper we
propose a 2D cellular automata model describing the dynamics and behavior of
multi-component phase change materials. Conductive heat transfer and solid-
liquid phase transition mechanisms are taken into account.

2 Model Description

2.1 Phenomenon Description

Phase change occurs when a substance changes from one state to another. Melt-
ing is the transition from solid to liquid, while solidification is the change from
solid to liquid. The transition is the result of an energy gain or loss (gain for fusion
and loss for solidification). During the phase transition, a zone is created, called
a zone phase, characterized by a discontinuity in physical properties. For pure
substances, PC occurs with a constant phase change temperature Tpc while in the
case of impure substances, PC occurs over a temperature range ΔTpc. The PC
phenomenon depends on several parameters such as the temperature, thermal
conductivity, phase change temperature of each substance, velocity, solid/liquid
fraction, etc. The relations between these parameters are non-linear as shown in
Eq. 1 that describes the No-interface-tracking model which may be considered
the most suitable reference for this problem:

∂H

∂t
+ ∇ · (fsHs�us + flHl�ul) = �∇ · (λ̄�∇T ) (1)

fs is solid fraction, fl is liquid fraction,
λ is thermal conductivity,
H is enthalpy and its function of temperature and given as:

H = fs

∫ T

T0

ρsCsTdθ + fl

∫ T

T0

ρlClTdθ + ρlflLF (2)

ρs is solid density, ρl is liquid density,
Cs is solid specific heat capacity, Cl is liquid specific heat capacity,
T0 is the temperature reference point,
LF is Latent heat of phase change.

2.2 Cellular Automata for Phase Change Phenomenon

For solving the above problem, this paper proposes a new CA model for the
phase change phenomenon capable of describing the PC where the material
is composite and has complex geometry by an approach more adapted to the
computer architecture. The four components of the CA (lattice, neighbourhood,
state set and local transition rules) are described in the following.



176 Y. Khaddor et al.

Lattice and Neighbourhood. The lattice L is a 2D array that consists of
discrete cells cij . The modelled area is discretized into square or hexagonal ele-
mentary cells cij with centred coordinates (i, j). A cell represents a portion of
material in the occupied area. The model works for two cell shapes, square and
hexagonal. We consider the Von-Neumann neighbourhood for the square geo-
metric cell and uniform for the hexagonal one.

Attributes. To overcome the problem of modeling a complex phenomenon in
the case of a heterogeneous medium (where the cell state depends on several
factors and properties that characterize the space). In this way, we consider
that the cell can be associated with a set of space attributes. This approach
introduced in [4] allows us to separate the state of the phenomenon (the phase
of the material in our case) and the space characteristics that impact it. Thus,
the attributes are applications linking each cell to a static or dynamic space
characteristic, defined by:

σ : L × I → Fσ

(cij , tτ ) �→ σtτ (cij)
. (3)

where L is the lattice, I is the time interval and Fσ is a bounded set.

States Set. We were interested in the transient of the solid-state towards liquid
or vice versa, in that way we distinguished between three main states of matter:
solid, transient, and liquid. For more precision, we have considered in transition
state an M transient sub-states that can be calculated from the attribute of
liquid fraction. So we can present the state of a cell at each iteration t by:

State S : Solid state
State {Tm}m�M : Transition states
State L : Liquid state

where m indicates the rate of the liquid part in the material. Each cell
is associated with a set of attributes that can be static or dynamic At =
{Tpc, Lpc, φt, λtτ

, Cpt, ρ, ε}. The attributes details are shown in Table 1:

Local Transition Rules. In our model transition rules are based on conductive
heat transfer and solid-liquid phase transition principals.

f ≡ heat exchanged ⊕ phase change , (4)

where the sign ⊕ refers to mutual action. The evaluation rules for each process
are discussed as follows.
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Table 1. Attribute set considered in the model

Phase change temperature Tpc : L �→ R
+

Latent heat Lpc : L �→ R
+

Thermal conductivity λt : L �→ R
+ λt(cij) = λlφt(cij) + λs(1 − φt(cij))

Specific heat capacity Cpt : L �→ R
+ Cptτ

(cij) = Cpl�{φt(cij)=1} + Cps�{φt(cij)=1}
Density ρ : L �→ R

+ ρt(cij) = ρl�{φt(cij)=1} + ρs�{φt(cij)=1}
PC approximation coefficient ε : L �→ R

+

Liquid fraction φt : L �→ [0, 1] φt(cij) =
Tt(cij)−Tpc(cij)+ε

2ε

Heat Exchanged. The amount of energy transferred in thermal conduction
between two cells can be calculated using the law of heat conduction.

Q = −KΔT (5)

where Q is the local heat flux density (SI unit [W/m2]),
K is equivalent conductivity (SI unit [W/m2.◦C]),
ΔT is the temperature difference (SI unit [◦C]),

By applying Eq. 5 between each cell cij and its neighbour n, the energy exchanged
ΔQt(cij) of each cell is calculated, for example in a case of the hexagonal lattice
by

Qt(cij) =
6∑

n=1

ΔQt(n) (6)

where n indicates the neighbour cell number.

ΔQt(n) = Kt(ci,j , n)(Tt(cij) − Tt(n)) (7)

Kt(ci,j , n) is the equivalent thermal conduction coefficient at instant t. Its indi-
cates how heat passes from a cell to another one and equals 1

Rtht(ci,j ,n) , where
Rtht(ci,j , n) is the equivalent thermal resistance between the central cell and its
neighbour n. Figure 1 shows a central node and six surrounding nodes and their
equivalent thermal resistance. Note that the thermal conductivity λ(n) of each
cell around the central cell can have a different value. Kt(ci,j , n) is calculated as
follow :

Kt(ci,j , n) =
1

Rtht(ci,j , n)
=

1
d/2

λt(n)
+ d/2

λt(cij)

(8)

λt(cij): is thermal conductivity of cell cij at instant t.
λt(n): is thermal conductivity of cell n at instant t.
d: is the distance between the center of cell cij and its neighbour cell n. Distance
is calculated from the center of the cells.
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Fig. 1. Equivalent thermal resistance

Phase Change. To take into account the phase change, we use the concept of
latent heat. To change its state, a cell requires to gain or lose energy necessary
to allow that change. This energy is called latent energy that we introduced as
an attribute we first calculate Ht(cij) for each cell, following Eq. 9.

Ht =

⎧⎪⎨
⎪⎩

ρsCps(Tt − T0) Solid state Tt ≤ T1

ρsCps(T1 − T0) + ρlφtLpc Trans state T1 < Tt < T2

ρsCps(T1 − T0) + ρlLpc + ρlCpl(Tt − T2) Liquid state T2 ≤ Tt

(9)
T0(cij) is the temperature reference point. In this paper we choose T0(cij)
the temperature where H0(cij) = 0
T1(cij) = Tpc(cij) − ε(cij)
T2(cij) = Tpc(cij) + ε(cij)
ε is used to guarantee phase change.

Adding up the energy exchanged Qt(cij) to the calculated energy Ht(cij) we
obtain Ht+1(cij) as shown in Eq. 10.

Ht+1(cij) = Ht(cij) + Qt(cij)Δt (10)

The transition from one state to another is illustrated in Fig. 2. We have grouped
the transient sub-states (T1, ... ,TN ) in the middle box. The notation Pab repre-
sents the condition that allows a cell to move from a state a to b (solid, transition
and liquid states are indicated respectively by 1, 2 and 3). These conditions are
represented in Eqs. 12–18.

To determine these conditions, we start from the state of the cell at time t
and we base it on the relations between the enthalpy H and the energy necessary
to pass from a state to another E. These necessary energies E (Ers, Erl; Eq. 11)
depends on the attributes of the cell (type of matter and coefficient of approxi-
mation of change of phase ε). Moreover, the values of enthalpy Hare calculated
according to the energy received from the neighborhood (Eq. 10).

Ers(cij) = cs(cij)ρs(cij)T1(cij) and Erl(cij) = cs(cij)ρs(cij)T1(cij) + Lpc(cij)
(11)
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States {T1 · · · , TN} State LState S

P22
P23

P21

P11

P12

P33

P32

Fig. 2. States transition

P11: if cell is in solid state and did not receive energy necessary to start
fusion.

P11 = {st+1(cij) = 1 if st(cij) = 1 and Ht+1(cij) < Ers(cij)} (12)

P12: if cell is in solid state and receives enough energy to start fusion.

P12 = {st+1(cij) = 2 if st(cij) = 1 and Ht+1(cij) ≥ Ers(cij)} (13)

P21: if cell is changing phase loses enough energy to transform its state to solid.

P21 = {st+1(cij) = 1 if st(cij) = 2 and Ht+1(cij) ≤ Ers(cij)} (14)

P22: if cell is changing phase and did not receive or lose energy necessary to
transform its state.

P22 = {st+1(cij) = 2 if st(cij) = 2 and Ers(cij) < Ht+1(cij) < Erl(cij)} (15)

P23: if cell is changing phase and receives enough energy to transform state to
liquid.

P23 = {st+1(cij) = 3 if st(cij) = 2 and Ht+1(cij) ≥ Erl(cij)} (16)

P32: if cell is in liquid state and loses enough energy to start solidification.

P32 = {st+1(cij) = 2 if st(cij) = 3 and Ht+1(cij) < Erl(cij)} (17)

P33: if cell is in liquid state and did not loose energy necessary to start solidifi-
cation.

P33 = {st+1(cij) = 3 if st(cij) = 3 and Ht+1(cij) ≥ Erl(cij)} (18)

Remark 1. The time step is integrated into the transition rules in Eq. 10 to
calculate the enthalpy in such a way that the information flux between cells
depends on the length of the time step. However, we must choose a time step
small enough to avoid the direct transaction from the solid to the liquid state,
or the reverse.
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3 Simulation

3.1 Model Evaluation

To evaluate the model we compared the results with the outputs of the FreeCad
software, which was developed in finite elements. The comparison is made only at
the temperature level and in the case of a homogeneous material. The comparison
of the results for the two types of square (REC) and hexagonal (HEX) cells is
through the x-axis. The simulation represents 60min, we took 4 instants for the
comparison 6min, 15min, 36min, and 60min (Fig. 3).

Fig. 3. Temperature distribution along the x-axis, for the 4 instants

3.2 Simulation Results

The simulation represents the heat transfer through a conductive material layer
mixed with phase change material (PCM). To apply our approach we consider
two types of configurations (circles and fibres) for the Phase Change Material.
Figure 4(b) represents the configuration in which the phase change material
forms circles of different sizes. Figure 4(c) represents the case of a phase change
material in the form of fibres. The initial conditions representing the values of
the attributes associated with the phase change materials are shown in Fig. 4(a).

– Layer area: W = 1 m2

– Time step used: 10 s
– Mesh size: 100 × 100 cells
– Tt(0, j) = 50 ◦C.
– Initial temperature: Ti(L) = 10 ◦C
– Boundary condition: The boundary is considered adiabatic (no heat exchange

at the boundaries cells).
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Fig. 4. Illustration of the simulation conditions. Figure 4(a) initial conditions. Figure
4(b) circles configuration. Figure 4(c) fibres configuration.

Figures 5 and 6 shows the evolution of temperature and liquid fraction over
2000 iterations. We can see that for the same PCM the temperature distribution
differs between the circle and the fibre configurations. Liquid fraction figures
explains the cold circles and fibres in temperature distribution figures for both
configurations, showing the resistance created by the PCM.

The displacement of the heat is almost the same for both configurations,
we can see that for the four iterations (100, 500, 1000, 2000) the temperature
translation is similar along the horizontal axis. Heat find its way to pass through
conductive material.

Fig. 5. Circle: evolution of temperature and liquid fraction distribution over 2000
iteration
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For the same simulation, to observe the temperature evolution of a cell, we
have chosen 3 cells at the following positions: (25,25), (50,50) and (75,75). Figures
7(a) and 7(b) shows the variation of temperature for the two configurations
(circle and fibre) over 8000 time steps of 3 cells in the following positions: (25,25),
(50,50) and (75,75). In the Fig. 7(a) we can see that even if the cell (25,25) was
the first one of the 3 to get heated its temperature got dilated because that cell
is occupied with PCM and the other two are occupied with conductive material.
For the fibre configuration (Fig. 7(b)) the cell at position (75,75) was occupied
by the PCM which explain the temperature stabilization between iterations 2000
and 3500.

Fig. 6. Fibre: evolution of temperature and liquid fraction distribution over 2000
iteration

(a) (b)

Fig. 7. (a) Circle configuration: plot over 8000 iterations of 3 cells (b) Fibre configu-
ration: plot over 8000 iterations of 3 cells
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4 Conclusion and Perspectives

We presented a model based on CA to describe temperature and phases evolu-
tion during phase change in complex geometries of multi-components materials.
CA have the advantage of being able to consider cases where the space is het-
erogeneous. Since, we have associated each cell an elementary feature presented
by the set of spatial attributes. Consequently, the local description of the phase
change phenomenon allows to avoid the computational complexity of the classi-
cal methods.

This work allows many perspectives: i) The model can be developed to take
into account gas state; ii) The model will be extended to 3D; iii) Optimal control
will be introduced in order to design the best configuration and optimize its
performance.
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Abstract. Current CMOS technology suffers from low device density and
high power dissipation due to tremendous enhancement of device scaling.
Quantum-dot Cellular Automata (QCA) is alternative nanotechnology to
overcome these drawbacks. A cell containing four quantum dots and two
electrons is a fundamental element for logic circuit realization in QCA. In
QCA, clocking plays a vital role in the proper synchronization and flow
of information along with the scalability of the QCA circuit. In addition,
regular clocking diminishes the fabrication challenges of the nanoscale era.
On the other hand, defects remain an issue in nanoscale circuit realization.
This work aims to analyze the performance of underlying clocking schemes
in terms of fault-tolerant capability. A full adder circuit is realized using
different clocking schemes, and the HDLQ and QCADesigner simulators
are used for this purpose.According to experimental results, Zig-Zag clock-
ing exhibits better performance under cell deposition defects, whereasRES
clocking stands at the top in the case of HDLQ analysis.

Keywords: QCA · Regular clocking · QCA defect · Fault-tolerant ·
HDLQ · QCADesigner

1 Introduction

As CMOS technology has enhanced tremendously in the last few decades, it
encounters serious problems like low device density and high power dissipation.
Quantum-dot Cellular Automata (QCA) is one of the emerging technology that
can solve these problems [6]. At the same time, a scalable QCA processor was
proposed in [3]. It has a strong effect on the development of future fast nano-
architecture circuits. In QCA, the fundamental element is the QCA cell. Four
quantum dots are present in every cell. Two electrons are positioned in the
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diagonally opposite quantum dots due to the consequence of the columbic inter-
action. In contrast with CMOS, the primary gates in QCA are majority voter
(MV) and Inverter (INV). Besides these primary gates, other essential elements
of QCA circuits are QCA wire and cross-wires. The majority voter is used to
realizing traditional AND, OR gate.

In the realization of QCA circuits, clocking plays a vital role. The restoration
option of signal with attenuation and loss is a significant advantage of clocking
in QCA. Many clocking schemes have been reported till now. Some of the well
known clocking schemes are USE [2], RES [5], Optimized 2-D [17], Zig-Zag [11]
clocking schemes. Optimized 2-D [17] do not follow a uniform shape; as a result,
it is very difficult to fabricate. USE [2] clocking scheme uses a multi-layer clocking
scheme, whereas RES [5] uses coplanar wire crossing for QCA circuit realization.

In QCA circuit design, the fundamental idea is to place the QCA cells prop-
erly to get desired output. As defect is one of the critical issues in nanoscale,
the correctness of any design depends on its fault-tolerant capability. Usually,
defects can occur in deposition, fabrication, or both phases. However, the max-
imum possibility of defect can occur in the deposition phase. In the fabrication
phase, common faults are cell displacement, cell omission, extra cell, and cell
misalignment faults. Because of the thermodynamic effect or slight energy vari-
ation between excited and ground states, a defect can occur in QCA circuits.
A testing mechanism is required to check the fault-tolerant capability as the
performance of any QCA circuit depends on its fault-tolerant ability.

In a digital circuit, the adder is a vital circuit. It is used in many logic
operations like subtraction, addition, etc. Till now, various methods have been
proposed to design adder [8,10,15]. But none of them has investigated which
clocking scheme is suitable for this circuit in terms of fault-tolerant capability.

The above factors motivate us to realize 1-bit Full Adder circuit using USE
[2], RES [5], Optimized 2-D [17], Zig-Zag [11] clocking schemes. The primary
focus of this work is to investigate the fault-tolerant capability of clocking
schemes, as mentioned earlier, using a 1-bit full adder. The contributions of
the work are as follows:

– A 1-bit Full adder is realized using existing clocking schemes.
– Performance of each clocking-based circuit is investigated in terms of fault-

tolerant capability.
– A proper clocking scheme is reported to eradicate the QCA defects.

This article is arranged as follows: Section 2 presents a brief description of the
basics of QCA, Regular Clocking, and QCA defects. Section 3 contains an analy-
sis about the fault-tolerant capability of different clocking-based 1-bit Full adder
(FA). Section 4 presents a detailed discussion about the fault-tolerant capability
of underlying clocking schemes. Section 5 concludes the work.

2 Background and Related Work

This section describes the basic concepts of various aspects used in this research
work.
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2.1 QCA Basic

The basic elements are presented in Fig. 1. Each QCA cell contains four quantum
dots, and two electrons are present in diagonally opposite dots, as shown in Fig. 1
(a). Two possible arrangements are formed due to coulombic repulsion, Logic ‘1’
and logic ‘0’ as represented in Fig. 1(b). In quantum dots, electrons switch their
places to transmit information from one part to another part. The primary gates
are majority voter (Fig. 1(c)) and inverter. Conventional AND, OR gate can be
realized from majority voter by fixing any input to 0 or 1. A majority voter has
three inputs and one output, as shown in Fig. 1(c), but [14] proposed a five-input
majority voter. An inverter is used to flip the input. According to research, many
structures of the inverter are available. However, Fig. 1(d) represents one of the
structures of the inverter. A QCA wire is formed by arranging cells adjacent
to each other. Different wire crossing techniques (multi-layer, rotated cell, and
clock zone-based) are available to realize QCA circuits.

Electron

Quantum Dot

(a) QCA Cell
Logic ’0’Logic ’1’

P = +1 P = −1

(b) Polarization

Q F

P

R

MAJ
P
Q
R

F

F = PQ + QR + RP

(c) Majority Voter

(d) Inverter

SWITCH HOLD RELEASE RELAX

(e) Four Phases of QCA Clocking

Fig. 1. Basic structural components of QCA

QCA clocking is used to synchronize the information flow throughout the
circuit. It has four phases, as shown in Fig. 1(e). At the beginning of the switch
phase, the QCA cells are un-polarized, and interdot potential barriers are low
between them. By the end of this phase, barriers are high, and cell states are
fixed. In the hold phase, the barriers remain high, and polarized cells influence
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the neighbor cell. Cell barriers are lowered and allowed to relax to an unpolar-
ized state in the release phase. Interdot barriers remain lowered in relax phase.
According to [2], each array of QCA cells can be divided into sub-array (known
as clock zones) to realize multi-phase clocking. A model was developed for cal-
culating the clocking electric field at the device layer in [1].

2.2 Regular Clocking

Clocking plays a vital role in the QCA circuit. Clocking is used to regain the lost
signal. [7] has proposed the idea about clocking. Nowadays, many well known
clocking schemes are available to realize QCA circuits, like USE Clocking Scheme
[2] is a Universal, Scalable, and Efficient clocking scheme (Fig. 2(a)). It can real-
ize the feedback path efficiently. Here information can propagate from Zone 1 to
2, 2 to 3, 3 to 4, 4 to 0, and so on. It also propagates information to the rows
and columns. Here information flows in two directions. This clocking scheme
uses multi-layer wire crossing to realize QCA circuits, which is challenging to
fabricate. RES Clocking Scheme [5] is a Robust, Efficient and Scalable clocking
scheme, shown in Fig. 2(b). The advantage of this scheme is that it permits three
directional information flow at a particular point, as shown in Fig. 2(b) with the
red circle. However, achieving this advantage loses uniformity for the underlying
layout for the clock zone 3. As this clocking scheme creates useless wire crossing,
it increases the difficulty in fabrication. This scheme utilizes rotated cell-based
wire crossing to realize QCA circuits. Optimized 2-D Clocking Scheme [17] is a
tile like structure as shown in Fig. 2(c). It has a rectangular structure of clock
zone with a 2:1 aspect ratio. It can realize all the functions that other existing
clocking schemes can realize. However, it is tough to fabricate due to the move-
ment of clock zones in each row. It allows bi-directional information flow. It solves
the problem of underlying wire crossing. Zig-Zag [11] clocking schemes is also
known as efficient, scalable, regular clocking scheme. It permits both straight
and zig-zag lines (Fig. 2(d)). In this scheme, a bi-directional feedback path is
utilized. This clocking permits three directional input and output. This clocking
scheme has all the advantages of the clocking schemes mentioned above. In the
realization of QCA circuits, [12] has compared RES and USE clocking schemes
in terms of the aspects that significantly impact the cost calculation of circuits.
Whereas [13] demonstrates the comparison between RES and USE regarding
power dissipation. However, the comparison between these four well-established
clocking schemes is not reported.

2.3 QCA Defects

Due to various types of cell deposition defects, QCA has high fault rates [16]. In
QCA, circuit defects can occur in the deposition phase or fabrication phase [16].
Various types of cell deposition defects are depicted, concerning 3-input majority
voter in Fig. 3(a). The defects are (a) Cell Misalignment: In this defect cell
is misaligned compared to its original alignment. As shown in Fig. 3(b), X is the
cell which is wrongly aligned, as compared to the which is fault free (Fig. 3(a)).
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(a) USE [2] (b) RES [5] (c) Optimized 2-D [17] (d) Zig-Zag [11]

Fig. 2. Regular clocking schemes

(b) Cell Displacement: As depicted in Fig. 3(c), X cell is displaced vertically
from its actual position. As a result, it may produce an incorrect output. (c)
Extra cell: In this defect extra cell(s) is doped, termed as ‘extra cell’ defect.
As shown in Fig. 3(d), two extra cells are doped on both sides of the X cell.
Due to this defect, the majority gate will provide incorrect output. (d) Cell
Missing: In this type of defect, any cell may be missing. In Fig. 3(e), input
cell X is missing compared to its original structure (Fig. 3(a)) of majority voter.
(e) Rotation Defect: A cell can be doped as rotated (45◦) as compared to
its original structure (90◦). As shown in Fig. 3(f), input cell X is rotated by θ◦

compared to Fig. 3(a). As a result, the output of this defective gate is incorrect.

3 Analysis of Fault Tolerant Capability of Underlying
Clocking Schemes

In QCA, some important circuits are Adder, Subtractor, Latch, etc. However,
analysis of all QCA circuits is not possible due to page limitations. As many
researches [8,15] are targeted towards the full adder (FA) and it is most impor-
tant circuit, an one bit FA circuit is used to analysis the fault-tolerant capability
of different (USE [2], RES [5], Optimized 2-D [17], Zig-Zag [11] ) underlying
clocking schemes.

The fault-tolerant capability of a circuit is investigated by efficient testing. A
defect can occur in the QCA circuit’s realization in the synthesis and deposition
phases. A serious problem in circuit testing is that logic gates do not have the
in-built method for error sensing. Thus, a correct technique is required for cir-
cuit testing. Many defects are possible, like cell omission defect, extra cell defect,
and cell misalignment defect. In the following sections, cell omission defects of
clocking-based full adder circuits are investigated using the HDLQ and QCADe-
signer simulators. Correct doping of QCA cells is required to provide accurate
output on a small scale. As a result, a proper testing technique is necessary to
detect faults in boosting the performance of circuits.
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(a) Defect Free (b) Misalignment (c) Displacement

(d) Extra cell (e) Missing(f) Rotation

Fig. 3. Possible QCA defects in a majority gate

3.1 Analysis Using HDLQ

Different clocking-based Full Adder (FA) circuits are evaluated using the Hard-
ware Description Language (HDL) simulator to find the fault-tolerant clocking
scheme [9]. The HDLQ simulator has considered all the feasible faults for a spe-
cific cell [4]. In this simulation, HDLQ Verilog library functions are used. This
tool is equivalent to Verilog, and it includes Verilog HDL library collections.
It contains the library functions for inverter, majority voter, wire crossing, L-
shaped, fan-out with the capability to insert defects. The fault tolerance of the
QCA is established in literature using HDLQ only. The launder clocking scheme
is considered in this case.

The HDLQ diagrams for each clocking based full adder are represented in
Fig. 4–7. In this model, “L”, “M”, “F”, “I”, “W” represents L-shaped, Majority
Voter, Fan-out, Inverter, and Wire Crossing, respectively. Extensive testing for
the designed HDLQ diagram is done with the help of the Verilog HDL simulation
tool. This diagram or model is tested in the presence of all types of single-cell
missing defects. It contains eight input samples for the three inputs and pro-
duces 42 different fault samples for the output. The fault samples for different
clocking based FA are depicted in Table 1–8. In these tables, ai represents the
decimal value for the input combination (i), like a2 represents 10 as 2 is the dec-
imal value for 10. In these tables first, second and last column represents Input
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Vector (IV), Expected Vector, and % of fault count (%FT), respectively. %FT
indicates the percentage of fault-tolerant outputs out of 42 various fault samples.
The fault-tolerant capability of each clocking scheme is investigated below.

USE Clocking Scheme [2]: The 1-bit Full Adder is realized using USE [2]
clocking scheme, as shown in Fig. 4(a). It has three inputs (In0, In1, Cin) and
two outputs (COUT and SUM). HDLQ diagram or model for Fig. 4(a) is shown
in Fig. 4(b). It has 18 L-shaped, 2 Wire Crossings, 6 Fan-outs, 7 Majority Voters,
and 2 Inverters. This circuit is tested for 42 different samples, and the results
are tabulated in Table 1 and 2. According to these tables, the most fault-tolerant
Input Vectors are “a5” and “a6” as it has the highest value for %FT.

(a) QCA cell layout (b) HDLQ modeling

Fig. 4. USE clocking based Full Adder

Table 1. Fault pattern (1–22) for USE clocking based FA

IV EV 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

a0 a0 a2 a0 a2 a0 a0 a0 a0 a1 a0 a0 a0 a0 a0 a0 a0 a1 a0 a0 a0 a0 a1 a1

a1 a2 a1 a2 a2 a0 a2 a2 a2 a3 a2 a2 a2 a2 a2 a2 a1 a1 a2 a2 a2 a2 a3 a3

a2 a2 a0 a0 a0 a0 a1 a1 a2 a2 a0 a0 a2 a2 a0 a0 a2 a2 a2 a2 a2 a2 a3 a3

a3 a1 a2 a2 a1 a3 a3 a2 a1 a1 a2 a2 a1 a1 a1 a1 a1 a1 a0 a0 a3 a3 a1 a1

a4 a2 a2 a0 a0 a0 a2 a1 a1 a1 a2 a2 a2 a2 a0 a0 a2 a2 a2 a2 a2 a2 a3 a3

a5 a1 a1 a2 a1 a3 a1 a2 a3 a3 a1 a1 a1 a1 a1 a1 a1 a1 a0 a0 a3 a3 a1 a1

a6 a1 a1 a3 a3 a1 a2 a1 a1 a1 a1 a1 a3 a3 a1 a1 a1 a1 a1 a1 a1 a1 a0 a0

a7 a3 a3 a1 a3 a1 a1 a3 a3 a3 a3 a3 a1 a1 a3 a3 a1 a1 a3 a3 a3 a3 a2 a2

RES Clocking Scheme [5]: 1-bit Full Adder in RES [5] clocking scheme is
represented in Fig. 5(a). It produce 2 output lines (Sum and Carry) from 3 input
values (A, B and C). Similar to USE, HDLQ model for Fig. 5(a) is shown in
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Table 2. Fault Pattern (23–42) for USE clocking based FA

IV EV 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 %FT

a0 a0 a1 a1 a2 a2 a2 a2 a2 a1 a2 a2 a2 a2 a2 a2 a2 a2 a2 a2 a0 a0 42.86

a1 a2 a3 a3 a1 a1 a1 a3 a3 a3 a1 a1 a0 a0 a0 a0 a0 a0 a1 a0 a2 a0 38.10

a2 a2 a3 a3 a0 a0 a0 a3 a3 a3 a0 a0 a0 a1 a1 a1 a1 a1 a2 a2 a0 a0 28.57

a3 a1 a1 a1 a2 a2 a2 a1 a1 a0 a2 a2 a1 a2 a2 a2 a2 a2 a1 a1 a2 a3 42.86

a4 a2 a3 a3 a0 a0 a0 a3 a3 a3 a0 a0 a0 a1 a1 a1 a1 a1 a0 a2 a0 a0 30.95

a5 a1 a1 a1 a2 a2 a2 a1 a1 a0 a2 a2 a1 a2 a2 a2 a2 a2 a2 a1 a2 a3 45.24

a6 a1 a0 a0 a3 a3 a3 a0 a0 a1 a1 a3 a3 a3 a3 a3 a3 a3 a1 a3 a3 a1 45.24

a7 a3 a2 a2 a1 a1 a1 a2 a2 a3 a3 a1 a1 a1 a1 a1 a1 a1 a3 a1 a1 a1 38.10

Fig. 5(b). It utilizes 10 Fan-outs, 11 L-shaped, 7 Majority Voters, 2 Inverters
and 2 Wire Crossings. The results of testing are depicted in Table 3 and 4. “a3”
is the most fault tolerant Input Vector.

(a) QCA cell layout (b) HDLQ modeling

Fig. 5. RSE clocking based Full Adder

Table 3. Fault pattern (1–22) for RES clocking based FA

IV EV 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

a0 a0 a0 a0 a0 a0 a1 a0 a0 a0 a0 a0 a0 a0 a0 a1 a0 a0 a0 a0 a0 a1 a0 a0

a1 a2 a2 a2 a2 a2 a3 a1 a2 a2 a2 a2 a2 a2 a2 a3 a2 a2 a0 a0 a2 a2 a2 a2

a2 a2 a1 a2 a2 a2 a3 a2 a1 a2 a2 a2 a2 a2 a2 a2 a2 a2 a2 a2 a1 a1 a2 a2

a3 a1 a3 a1 a1 a1 a1 a2 a2 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a3 a3

a4 a2 a2 a1 a2 a2 a3 a2 a1 a2 a2 a2 a0 a0 a1 a1 a2 a2 a2 a2 a1 a1 a2 a2

a5 a1 a1 a3 a1 a1 a1 a2 a2 a1 a1 a1 a2 a2 a3 a3 a1 a1 a1 a1 a1 a1 a3 a3

a6 a1 a2 a2 a1 a1 a0 a1 a1 a1 a1 a1 a1 a1 a1 a1 a3 a3 a1 a1 a1 a1 a1 a1

a7 a3 a1 a1 a3 a3 a2 a1 a3 a3 a3 a3 a3 a3 a3 a3 a1 a1 a1 a1 a3 a3 a3 a3
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Table 4. Fault Pattern (23-42) for for RES clocking based FA

IV EV 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 %FT

a0 a0 a0 a0 a2 a2 a0 a2 a2 a2 a2 a0 a1 a1 a1 a2 a2 a0 a0 a1 a1 a1 59.52

a1 a2 a2 a2 a1 a1 a2 a1 a1 a0 a0 a2 a3 a3 a3 a1 a0 a2 a2 a1 a3 a3 54.76

a2 a2 a2 a2 a1 a0 a2 a0 a0 a1 a0 a1 a3 a3 a3 a0 a2 a0 a2 a1 a3 a1 47.62

a3 a1 a0 a0 a3 a2 a1 a2 a2 a2 a1 a2 a1 a1 a1 a2 a1 a2 a1 a3 a1 a3 64.29

a4 a2 a2 a2 a0 a0 a1 a0 a0 a1 a0 a1 a3 a3 a3 a2 a2 a0 a2 a1 a0 a1 42.86

a5 a1 a0 a0 a2 a2 a3 a2 a2 a2 a1 a2 a1 a1 a1 a1 a1 a2 a1 a3 a2 a3 47.62

a6 a1 a1 a1 a2 a1 a2 a1 a1 a3 a3 a1 a0 a0 a0 a1 a3 a3 a1 a0 a0 a2 59.52

a7 a3 a3 a3 a1 a3 a1 a3 a3 a1 a1 a3 a2 a2 a2 a3 a1 a1 a3 a0 a2 a1 52.38

Optimized 2-D Clocking Scheme [17]: Fig. 6(a) represents realization of 1-
bit FA using Optimized 2-D [17] clocking scheme. It has two outputs (SUMi
and C0) and three inputs (Ai, Bi, Ci). Figure 6(b) represents the HDLQ model
for Fig. 6(a). This model has 36 L-shaped, 5 Fan-outs, 3 Majority Voters and 3
Inverters. Figure 6(a) is tested for 42 different samples and results are depicted
in Table 5 and 6. Result shows that “a3” and “a4” are most fault tolerant Input
Vector.

(a) QCA cell layout (b) HDLQ modeling

Fig. 6. Optimized 2-D clocking based Full Adder
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Table 5. Fault Pattern (1–22) for Optimized 2-D clocking based FA

IV EV 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

a0 a0 a0 a0 a0 a1 a0 a0 a1 a2 a2 a0 a0 a2 a2 a2 a2 a2 a2 a2 a2 a2 a0 a0

a1 a2 a2 a1 a1 a3 a2 a2 a2 a2 a2 a0 a0 a0 a0 a2 a2 a2 a2 a2 a2 a2 a0 a0

a2 a2 a1 a2 a1 a3 a0 a1 a1 a2 a2 a2 a2 a2 a2 a0 a0 a0 a2 a2 a2 a2 a0 a0

a3 a1 a2 a2 a1 a0 a3 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a3 a3 a3 a3 a3 a3

a4 a2 a1 a1 a2 a3 a0 a2 a2 a2 a2 a2 a2 a2 a2 a2 a2 a2 a0 a0 a0 a0 a0 a0

a5 a1 a2 a1 a2 a0 a3 a2 a2 a1 a1 a1 a1 a1 a1 a3 a3 a3 a1 a1 a1 a1 a3 a3

a6 a1 a1 a2 a2 a0 a1 a1 a1 a1 a1 a3 a3 a3 a3 a1 a1 a1 a1 a1 a1 a1 a3 a3

a7 a3 a3 a3 a3 a2 a3 a3 a2 a1 a1 a3 a3 a1 a1 a1 a1 a1 a1 a1 a1 a1 a3 a3

Table 6. Fault pattern (23–42) for optimized 2-D clocking based FA

IV EV 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 %FT

a0 a0 a0 a0 a0 a2 a2 a2 a2 a2 a2 a1 a2 a2 a0 a0 a1 a2 a2 a0 a2 a2 35.71

a1 a2 a0 a0 a0 a2 a2 a2 a2 a0 a0 a3 a0 a0 a0 a2 a1 a1 a1 a2 a0 a0 45.24

a2 a2 a0 a0 a0 a0 a0 a0 a0 a2 a2 a3 a2 a2 a0 a1 a1 a1 a1 a0 a2 a2 40.48

a3 a1 a3 a3 a3 a3 a3 a3 a3 a1 a1 a0 a1 a1 a3 a1 a2 a1 a1 a3 a1 a1 50.00

a4 a2 a0 a0 a0 a0 a0 a0 a0 a2 a2 a3 a2 a2 a0 a2 a1 a2 a2 a0 a2 a2 50.00

a5 a1 a3 a3 a3 a3 a3 a3 a3 a1 a1 a0 a1 a1 a3 a2 a2 a2 a2 a3 a1 a1 40.48

a6 a1 a3 a3 a3 a1 a1 a1 a1 a3 a3 a0 a3 a3 a3 a1 a2 a2 a2 a1 a3 a3 45.24

a7 a3 a3 a3 a3 a1 a1 a1 a1 a1 a1 a2 a1 a1 a3 a3 a2 a1 a1 a3 a1 a1 35.72

Zig-Zag Clocking Schemes [11]: The QCA layout for Zig-Zag [11] clocking
based 1-bit FA is depicted in Fig. 7(a). The HDLQ model for this layout is
shown in Fig. 7(b). This model has 14 L-shaped, 5 Fan-outs, 3 Majority Voters,
2 Inverters, and 3 Wire Crossing. The testing results are tabulated in Tables 7
and 8. Depending on the %FT value, most fault-tolerant input vectors are “a1”
and “a6.

(a) QCA cell layout (b) HDLQ modeling

Fig. 7. Zig-Zag clocking based Full Adder
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3.2 Analysis Using QCADesigner

The Full Adder (FA) circuits are realized using QCADesigner to detect single-
cell omission defects. Each clocking-based circuit is tested by deleting one cell
at a time (except input, output, and fixed polarized cell). The result of this
testing is tabulated in Table 9. In this table, the last column represents (FT %)
fault-tolerant capability (%) of that clocking-based FA circuit. It is calculated
as (Total cell for which output is not faulty/Total cell except input, output, and
fixed polarized cell) * 100.

Table 7. Fault pattern (1–22) for Zig-Zag clocking based FA

IV EV 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

a0 a0 a0 a2 a0 a0 a1 a0 a1 a0 a0 a0 a0 a2 a2 a0 a0 a2 a2 a2 a2 a2 a2 a2

a1 a2 a2 a0 a1 a1 a3 a2 a2 a2 a2 a2 a2 a2 a2 a2 a2 a2 a2 a2 a2 a2 a0 a0

a2 a2 a1 a2 a2 a1 a3 a1 a1 a2 a2 a0 a0 a0 a2 a1 a1 a0 a0 a0 a0 a0 a2 a2

a3 a1 a2 a1 a2 a1 a0 a1 a1 a3 a3 a3 a3 a1 a3 a2 a2 a3 a3 a3 a3 a3 a1 a1

a4 a2 a1 a2 a1 a2 a3 a2 a2 a0 a0 a0 a0 a2 a0 a1 a1 a0 a0 a0 a0 a0 a2 a2

a5 a1 a2 a1 a1 a2 a0 a2 a2 a1 a1 a3 a3 a3 a1 a2 a2 a3 a3 a3 a3 a3 a1 a1

a6 a1 a1 a3 a2 a2 a0 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a3 a3

a7 a3 a3 a1 a3 a3 a2 a3 a2 a3 a3 a3 a3 a1 a1 a3 a3 a1 a1 a1 a1 a1 a1 a1

Table 8. Fault pattern (23–42) for Zig-Zag clocking based FA

IV EV 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 %FT

a0 a0 a2 a2 a1 a2 a0 a2 a0 a2 a0 a0 a0 a0 a1 a0 a0 a1 a1 a1 a3 a1 45.24

a1 a2 a0 a0 a3 a2 a2 a2 a2 a1 a1 a2 a0 a2 a0 a1 a1 a3 a3 a1 a3 a3 52.38

a2 a2 a2 a2 a3 a2 a2 a1 a1 a2 a2 a0 a0 a1 a3 a2 a1 a3 a1 a1 a3 a3 33.33

a3 a1 a1 a1 a0 a2 a2 a1 a1 a1 a1 a3 a3 a1 a1 a2 a3 a2 a2 a2 a3 a3 35.72

a4 a2 a2 a2 a3 a1 a1 a2 a2 a2 a2 a0 a0 a2 a2 a1 a0 a1 a1 a1 a0 a0 35.72

a5 a1 a1 a1 a0 a1 a1 a2 a2 a1 a1 a3 a3 a2 a0 a1 a2 a0 a2 a2 a0 a0 33.33

a6 a1 a3 a3 a0 a1 a1 a1 a1 a2 a2 a1 a3 a1 a3 a2 a2 a0 a0 a2 a0 a0 52.38

a7 a3 a1 a1 a2 a1 a3 a1 a3 a1 a3 a3 a3 a3 a2 a3 a3 a2 a2 a2 a0 a2 42.86

4 Discussion

From Table 1–8, it is clear that the USE [2], Optimized 2-D [17] and Zig-Zag
[11] clocking based circuits are most fault-tolerant (FT) for two input vectors
(for USE a5 and a6, optimized 2-D a3 and a4, Zig-Zag a1 and a6) whereas
RES [5] based circuit is most FT for only one input vector (a3). For HDLQ,
the average FT (%) capability for any clocking-based circuit is calculated using
%FT values for all the input vectors. It can be called the FT capability of
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Table 9. Result of single cell omission defect for FA

Clocking
scheme

Total
cell

Total input,
output and fixed
polarized cell

Total cell
-output is faulty

Total cell-
output is not
faulty

Fault-Tolerant
(FT%)

USE [2] 286 12 97 177 64.60

RES [5] 206 12 100 94 48.45

Optimized
2-D [17]

300 5 140 155 52.54

Zig-Zag
[11]

248 5 69 174 71.60

that clocking-based circuit. Thus, the FT capabilities of the USE, RES, opti-
mized 2-D, and Zig-Zag clocking-based circuits are 38.99, 53.57, 42.86, and 41.37
(in %), respectively. So, by comparing these average % FT values, it is clear that
the RES clocking scheme’s performance is better than other clocking schemes
according to the HDLQ simulator. But Zig-Zag is the most FT clocking scheme,
according to QCADesigner, as reported by Table 9. However, these two (HDLQ,
QCADesigner) results are combined to find the efficient clocking scheme in terms
of fault-tolerant capability as tabulated in Table 10. So the final sequence of fault-
tolerant (higher to lower) clocking schemes is Zig-Zag, USE, RES, and Optimized
2-D.

Table 10. Final result of fault tolerant capability for FA

Clocking scheme Avg. FT (%)
for HDLQ

FT (%) for
QCADesigner

Average FT
(%)

USE [2] 38.99 64.6 51.8

RES [5] 53.57 48.45 51.01

Optimized 2-D [17] 42.86 52.54 47.7

Zig-Zag [11] 41.37 71.6 56.49

5 Conclusion

As the underlying clocking scheme plays a vital role in the realization of QCA
circuits, this paper investigates the performance of different (USE, RES, Opti-
mized 2-D, and Zig-Zag) underlying clocking schemes concerning fault-tolerant
capability. A Full Adder is one of the vital circuits in digital circuit design. There-
fore, a 1-bit Full Adder is used to investigate the performance of the clocking
schemes. In this regard, HDLQ and QCADesigner simulators are used. According
to the results of the HDLQ simulator, the performance of RES clocking schemes
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is better than others. But in the case of QCADesigner, Zig-Zag clocking scheme
performs better. According to the combined results of these two simulators, Zig-
Zag clocking scheme performs better, and the Optimized 2-D performs worse.
Therefore, Zig-Zag clocking can be used to realize efficient QCA circuits.
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Abstract. One of the most known physical experiments in quantum mechanics
and optics is two-slit experiment on transition particles through the screen with
two slits. It was important for establishing quantum mechanical description based
on probability distribution functions. It is naturally that the mathematical tools of
quantum mechanics allow understanding such behavior. However it is interesting
to search the analogs of such experiments in other distributed systems. One of
such media for investigation is the cellular automata. It is known that the cellular
automata are themedia constituted from regularly distributed cellswith some states
and rules for their evolution. In proposed material the description of analogs of
two-slit experiment for cellular automata are proposed. The results of computer
experiments are given. Some interpretations are proposed including distribution of
states frequencies during evolution. Particularly oscillations of quantum trajectory
are discussed. Also presumable role of strong anticipation in such experiments is
described.

Keywords: Cellular automata · Two-slit experiment · Anticipation ·
Multivaluednes · Frequency distribution

1 Introduction

Two-slit experiment is so important for the concepts of quantum mechanics that further
research attempts that add to the understanding of such phenomena are of interest. In the
present paper the results of such an attempt are de-scribed. Namely, a description of the
formulation and results of the study based on themodel of cellular automata is presented.
Let us recall briefly that cellular automata as a model in classical form are represented
as follows (see [1–3], etc.). Space is divided into identical cells, which are regularly
arranged, cells have a set of certain states (in the simplest case, two), taken at discrete
points in time and certain local rules for changing cell states, depending on the cell states
in somevicinity of this cell. It isworth noting that the idea of cellular automata has already
appeared as one of themeans for understanding quantummechanics (see, e.g., [4–7], etc.)
and the number of studies is growing. One is tempted to consider the idea of cellular
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automata applied to the problem of the two-slit experiment. The idea itself has been
described, for instance, in [8, 9], and some results of computer experiments with cellular
automata are given in [10]. Namely, patterns of cellular automaton activity distribution
were investigated, which reveals hidden regularities of the process of passing through
an obstacle with holes. In addition, aspects of accounting for anticipating have also been
considered. The structure of the paper is the next. In the Subsect. 2 the general idea of
two-slit experiments is proposed. Some details of computer experiments are described.
Illustration of computer experiment results is described in the Subsect. 3; Sect. 4 is
devoted to accounting the strong anticipatory property in proposed experiments. Also
presumable interpretations of results are discussed.

2 Description of a Two Dimensional Computer Experiment
with Cellular Automata

Let us first describe a scheme of a possible computational experiment in the simplest
formulation. There is a partitioning of the binary plane into cells. Each cell has a plurality
of states, discrete timing and rules of change of status. In case of strong, anticipating the
change of the current state depends on the possible future states (see [1–3]).

2.1 Geometry of the Binary Cellular Automata

The construction of the binary automaton begins with the construction of a lattice, and
the area of space in which the behavior of the binary automaton will be investigated.
There are two openings in the block (see Fig. 1 below). It allows carrying out computer
experiments in a limited time.

Fig. 1. Geometry and initial conditions of the cellular automaton. The black color shows the
walls, the white color shows areas with zero values of the cells, the gray color show areas with
value one of the cells. (Color figure online)

A grid size of 34 cells per 34 cells was inverted. The automaton is considered in the
restricted area so on the outermost cells on all sides a static value different from the set
of states was set. In this implementation the value 2 was set, which will now correspond
to wall. The internal wall was constructed as a horizontal line in the middle of the entire
domain. The cells, which correspond to the walls have a value of 2.
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The wall was implemented in such a way that it is possible to change its width, i.e.
to study the behavior of the cellular automaton both on the wall with a width of one cell
and larger width. The length and height of the area, the width of the openings and the
distance between them and the outside walls are also parameters that can be different in
different experiments. It is possible to change both the number of passes and the width
of each of the passes. Therefore, the model can be configured differently and its behavior
under various conditions can be investigated.

2.2 Dynamic Rules for Cell States

Here (very briefly) we will describe the rules for change of state. The set of states was
as in the classic “game life” [1–3, 11], i.e. zero and one. Also, the value two was added,
which corresponds to the walls. The value of the over-shoot cells are always static and
does not change over time, only cells with value one or zero are changed. Moore’s
neighborhood (8 subsidiary cells) was used to re-run the cells at the next moment of
time. There can be a lot of dynamical rules for the change of state of the cells, starting
with the classic ones in the “game life”. Initially, a simple rule of state transition was
considered in the work: if there is at least one neighboring cell with state 1, then this
cell will take on the value 1 at the next moment. Initial conditions can be chosen in the
usual way, but in this work it was taken so that to ensure modeling of wave spreading
from the initial point. An example of these initial conditions is shown in Fig. 1.

2.3 Frequency Principle of Experimental Processing

Taking into account a possible multivaluedness in systems with strong antici-pation [12,
13], a problem of visualization and processing of results of compu-tational experiments
arises. That is why the definition of frequency was added. Frequency in this work is
a percentage ratio of the number of time moments when a cell takes value one to the
total number of time moments that the cellular automaton passes. This is expressed as a
percentage and is described by the following formula for each cell:

(
Frequencyi,j = ((

amfci,j
)
/steps

) ∗ 100
)

(1)

where amfci,j (alive moments for cell) is the number of moments when the cell was in the
state “1”; steps is the total number of clock cycles that the cellular automaton operated.
It is not very important for this experiment, but will be used in the next section as a very
important part of the model.

3 Results of Computational Experiments

We can see that starting from the initial position the cellular automaton develops over
time like a circular wave, spreading in all directions. It is possible to draw some parallels
with light propagation, where the initial position is the source of light and each moment
of time will propagate at the speed of light.

The result of frequency distribution shows (Fig. 2) that the highest frequency of cells
with state “1” is in the intervals, which are located at 45° angle to the walls and are
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2-dimensional cellular automata (frequency) 

Fig. 2. Frequency for the simple divergence rule at the fixed moment of time in cells domain, The
colors from white to black correspond to gradation of frequency from 0 to 1. (Color figure online)

gradually moving away from the openings. The rules for switching states that have been
used are similar to the “game life” but slightly modified, if there will be one neighboring
cell in state “1” and the central cell in state “1”, or if there are two daughter cells in state
“1”, the central cell will take value one at the next moment on the clock, otherwise it
will take the value zero. However, with the addition of the windows, there is the need
to expand these rules, because passing through the windows will not be possible. This
is taken into account by changing the rules when switching states, so that the cell under
the windows goes to state “1”.

Rule of thumb reads as follows: “If, for cells interfacing from the bottom of the cells
at the beginning of the windows, the number of cells with state “1” in the proximity is
equal to one, the cell also accepts state “1”, but the rules which apply to all other cells
also apply to these cells. As, the initial position was formed by four living cells in the
center of the top part of the domain (placed in a gray square, see Fig. 1).

The above described cellular automaton was tested for 10,000 clock cycles. Up to the
eighth step, the cellular automaton develops only in the upper part of the domain. Further
rules are additionally introduced, which allow the cellular automaton to developments
in the lower part of the domain. After the eighth step, the cellular automaton begins
to develop in the lower part of the domain. The cellular automaton was investigated
for 100,000 times of development. Three different configurations of the automaton at
differentmoments of timewere illustrated above: for 10,000, 20,000, 50,000 and 100,000
steps.

For this configuration of the cellular automaton it is very difficult to identify which
class the cellular automaton belongs to according to S. Wolfram [1], because the number
of cells which change the state is 994. Therefore, the number of possible configurations
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of this model will be, but there is a likelihood that the cellular automaton will reach a
stable state and stop changing or will develop in cycles. However, this work was carried
out for 100,000 cycles and none of this behavior was observed. The graphs below show
the number of cells with the status of “1” as a percent of all cells (Fig. 3).

Fig. 3. Upper part: The percent of “1” cells after 1000 steps. Low part: The percent’s of living
cells with level “1” after 100,000 steps.

We can see from the graphs that with the development of the cellular automaton, the
number of cells with a value “1” almost never exceeds 40 percent. We can also say that
the development is quite stable. At first we can see growth in the number of such cells,
but then the number of cells with level “1” will be in the range of 25% to 40% without
significant deviations.

4 Anticipation Based Cellular Automata for Two-Slit Experiments

Already computer-based binary experiments with conventional binary automata show
new interesting features in behavior relations. But as shown in [12–14], entirely new
features appear in the case of taking into account anticipating. Namely, the possibility of
ambiguity of relations appears (D. Dubois calls such behavior in discrete systems hyper-
incursion). On the level of cellular automata this phenomenon has been investigated, for
instance, in [14]. The next is the investigation of cellular automata with anticipating in
two-slit experiments.

4.1 Definition of Anticipation

There are many variants of the description of anticipating. It should be noted that physics
itself has long indicated the possibility of manifestation of anticipation in this or that
form, startingwith R. Feynman. Of the necessity of consideration of non-locality, both in
time and space, is indicated by the results of experiments of J. Bell and others. In quantum
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mechanics there is a transactional interpretation of quantum mechanics by J. Cramers
based on micro-processes with delay and anticipation. A significant development and
formalization of the foreknowledge concept was introduced by D. Dubois. Dubois de-
scribed the idea of strong anticipation [12, 13]: “The definition of a discrete system with
strong anticipation: it is a systemwhich calculates the current state at time t as a function
of past states, … t – 3, t – 2, t – 1, the present state and the state in the future, … t + 1,
t + 2, t + 3,…

x(t + 1) = f (. . . , x(t − 2), x(t − 1), x(t), x(t + 1), x(t + 2), . . .), (2)

where the x in the future time is computed indirectly from the equation.

4.2 Anticipating in an Cellular Automata Model

In order to add anticipating power to the model, it is necessary to design a function of
the next step, which depends on the next (expected) states of the cells. In the simplest,
the transition function used in the usual binary cellular automata will be changed to the
following function

X (t + 1) = a ∗ f (S(t)) + (1 − a) ∗ f (S(t + 1)), (3)

where α is a constant that acts as a force and determines which of the rules will have the
greatest influence on the value of the cell; f (*)a state change function that will describe
the value of the cell as at the current time (the same that was used to calculate the value
of the cell for the conventional model); f (S(t + 1)) is a function that will return the
possible values for the next step [14]. The basis of the peculiarity of the solutions is the
possible multivaluedness. This phenomenon is called hyperincursion [11, 12].

For cellular automata this also implies the existence of a number of space con-
figurations at a given moment in time. One the method of solution of Eq. (3) is a brute
force method, i.e. at the beginning, we put zero in the left part of the equation, then the
right part of the equation also must be zero, i.e. both f (S(t)) must equal zero and f (S(t
+ 1)) must equal zero, then this case is suitable for the solution. The same calculation
is performed for the value of a “1” in the left-hand side of the equation. The function
f (S(t + 1)) will compute all possible occurrences (configurations) for the evolution of
the cellular automaton on the next step.

The difficulty is that these groups of possible configurations become very large and
not enough capacity for calculation. For a single variant a maximum 23 of possible
variants for each cell exists and for a double variant 29. Recently in the simplest case of
computation n = 10 cells and t = 10 time steps because of branching we need 1 day for
computation.

4.3 Computational Experiments with Cellular Automata with Anticipating

The developed model of a cellular automaton with anticipating was implemented on a
smaller grid than the one described in Sect. 3. The grid is de-signed in the size of 13
by 13 cells with two windows, as in the previous model, which is placed in the wall in



Idea of Cellular Automata Application in Two-Slit Experiments 205

the middle of the grid (as in Fig. 1). The initial position was used as one central cell at
the top of the domain. For experiments with cellular automata anticipating, the Moore
neighbor used in the usual experiment in Sect. 2 was changed into the von Neumann
neighbor and the transition rules were changed to simplify the calculations.

Let us see how the configurationwill change at the nextmoment, according to Eq. (3).
The values are selected for each cell and if they match, the value of the solution is saved.
After the calculations, there will be four possible situations for the first step to develop
the cellular automaton. However, when the number of possible variants is very large,
it is impossible to analyze the obtained results by looking at all sets of configurations.
Taking into account the potential for ambiguity, a more appropriate tool for analysis is
frequency (1), which takes into account the contribution of all possible configurations.
For example, the frequency of different cells after the first step is shown in Fig. 4.

Fig. 4. Frequency after the first step.

For the second step of the calculation, the initial position will be each of the blocks
obtained in the first step, i.e. we will consider each of the possible variants by line and
calculate the possible variants of development for them. For the following steps, the same
rule will be used. Because of the complexity of the calculations (high number of possible
links), already on the eighth installment there are more than 4million possible scenarios,
only twenty-five terms were carried out. The following are some of the possible variants
of configurations for the twenty-fourth time frame (Fig. 5).

Fig. 5. A few of the many configurations for the development of a 12-step cellular automaton.
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It is impossible to make conclusions and analyze the results on so many possible
variations of configurations of the cellular automaton, so it is better to investigate the
values of frequency at the same moments of time. Therefore, we will consider how the
frequency will look only for the lower part of the lattice.

Each of the cells in Table 1 corresponds to the cells of considered cellular automata.
The horizontal row corresponds to the row of cells under the obstacles. Upper row is just
near the openness. The values into the cell correspond for the total number of 1 accounts
of this cell from different branches during the evolution of CA. The symbol 10 m for
example corresponds for example to ten millions for example and 47t corresponds to 47
thousand.

Table 1. Frequency for the lower part of the lattice in numerical values

- - >20 m - - - - - >20 m - -

>2 m >10 m >18 m >10 m >2 m 340t >2 m >10 m >18 m >10 m >2 m

445t ~4 m >12 m ~4 m 472t 36t 472t ~4 m >12 m ~4 m 445t

46t 872t ~3 m 872t 47t 1.5t 47t 872t ~3 m 872t 46t

1t 42t 226t 42t 1t 0 1t 42t 226t 42t 1t

0 615 5t 615 0 0 0 615 5t 615 0

0 0 0 0 0 0 0 0 0 0 0

Thus, even with anticipating the given cellular automaton evolves with a wavelike
behavior, as one can see from the distribution of values in cell frequency. From the
numbers in Table 1 we can see that the intermediation between the leads from different
directions has started and similarly we can say that they will reinforce one another and in
timewill merge into one lead. Themain feature revealed in themodeling of such a system
with strong anticipating is the appearance of a laggard state of such a system. This new
behavior allows us to reexamine the classical questions, including unambiguity.

The equations presented in this section are completely new objects and represent
a wide field for research. On the other hand, these features are the most promising
in terms of interpretation. In the case of strong, anticipating there is a possibility of
multivaluedness of states of the individual cell at any moment of time and simultaneous
multivaluedness of configurations of the system. This is reminiscent of the structure
of classical quantum mechanics, where there is a distribution function, which gives a
distribution of probabilities of different states, from which one process of measurement
is chosen. Potentially given CAwith strong anticipation has another analogy to quantum
mechanics.

5 Conclusions

Cellular automata are both fascinating and relatively easy to understand system which
has very great potential in modeling both simple and complex real-world processes and
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phenomena. Local interactions can be modeled by cellular automata; the state of the
environment is updated taking into account the states of the neighbors in its periphery.
They can calculate functions and solve algorithmic problems.

The space is combined into a grid of neighborhoods, and the behavior of each neigh-
borhood is displayed in varying states, the values of which at any given moment of
time are functions dependent on a small circle around the neighborhood. In this work
we have built and examined a model of a binary cellular automaton in a circumscribed
area. Most of the attention of this work was given to the double-slit experiment, which
investigated how the cellular automaton passes and interacts with the wall in which the
two windows were placed. In the obtained results one can notice some similarity with
the propagation of light in vacuum. The described models can be used as a ground for
testing and developing new approaches and ideas in the field of cellular automata and
physical systems.
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Abstract. We propose a second–order Cellular Automata (CA)–based
approach to solve a problem of lifetime optimization in Wireless Sensor
Networks (WSN). A WSN graph created for a given deployment of WSN
in monitored area is considered as a multiagent system, where agents take
part in a spatial Prisoner’s Dilemma game. We propose a local, agent–
player oriented criterion which incorporates issues of area coverage and
sensors energy spending. Agents act in such a way to maximize their
profits what results in achieving by them a solution corresponding to
Nash equilibrium. We show that the system is self–optimizing, i.e. is able
to optimize a global criterion not known for players, related to a Nash
equilibrium, which provides a balance between requested coverage and
spending energy, and results in expanding WSN lifetime. The proposed
approach is validated by a number of experimental results.

Keywords: Collective behavior · Network coverage and lifetime ·
Second–order CA · Spatial Prisoner’s Dilemma · Wireless Sensor
Networks

1 Introduction

WSN is a system composed of a large number of tiny computer–communication
devices called sensors deployed in some area, which sense a local environment.
They are one of the key information and communication technologies [9] applied
today in the area of Internet of Things and oriented on collecting, sending and
processing large amount of data necessary to provide intelligent services termed
as Ambient Intelligence. In many applications, such as e.g., monitoring remote
and difficult to access areas, sensors are equipped with single use batteries which
can not be recharged.
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From the point of view of QoS of such WSN, there exist two closely related
important issues: an effective monitoring (coverage) some area and an opera-
tional lifetime. After a deployment (e.g., by an aircraft) of sensors at random
locations they should self–organize: recognize their nearest neighbors to be able
to communicate and start taking locally decisions in subsequent moments of time
about turning on or off their batteries to monitor events. These decisions will
directly influence a degree of area coverage, spending sensors’ batteries energy
and lifetime of the network. The problem of lifetime maximization is closely
related to the coverage problem. A group of sensors monitoring some area is
usually redundant, i.e., usually more than one sensor cover monitored targets
and forms of redundancy can be different. By solving the coverage problem one
can indirectly also solve the problem of maximization of WSN lifetime.

There exists a number of algorithms to solve the problem of coverage/lifetime
maximization. They are classified either as centralized and assume availability of
entire information and a solution is delivered usually in the form of a schedule of
activities of all sensors during the entire lifetime, or distributed, where a solution
is found on the basis of only partial information about the network. Because
these problems are known as NP–complete [2], WSN centralized algorithms are
oriented either on delivery of exact solutions for specific cases (see, e.g. [1]) or
applying heuristics or metaheuristics to find approximate solutions (see, e.g.
[7,8,11,13]). The main drawback of centralized algorithms is that a schedule of
sensors’ activities must be found outside the network and delivered to it before
starting operation. Therefore, distributed algorithms become more and more
popular because they assume reactivity of sensors in real time, and they are
scalable in contrast to centralized algorithms.

In this paper we propose a novel approach to the problem of coverage/lifetime
optimization based on its multi–agent interpretation, applying game–theoretic
interaction between players participating in spatial Prisoner’s Dilemma (SPD)
game, with the use of a second–order CA as players [6,12]. The paper extends
our works and concepts presented in [4] and [5] concerning development of dis-
tributed algorithms, where learning automata and classical CA, respectively were
applied. The works [10] and [3] are related to our work because they use also
game theory and genetic operators for optimization.

The structure of the paper is the following. Section 2 presents the problem
of coverage/lifetime optimization in WSN. The next section proposes a multi–
agent interpretation of the problem, presents a set of simple heuristics (CA rules)
used by agents and shows how their collective behavior influences on solving
coverage/lifetime optimization. In Sect. 4, the proposed heuristics are applied
in the SPD game, and results related to the collective behavior of them are
presented. Section 5 proposes a distributed algorithm based on the SPD game
with the use of a second–order CA to solve the coverage/lifetime optimization
problem, and the last section contains conclusions.
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Fig. 1. Example of WSN: 9 sensors cover monitored area containing 36 PoI (a); cor-
responding WSN graph (b). Sensors currently turned on monitor their green corre-
sponding areas. (Color figure online)

2 Sensor Networks: Coverage and Lifetime Problems

It is assumed that some area (Fig. 1(a)) contains a number M of “points of inter-
est” (PoI) which should be monitored and covered by N randomly deployed sen-
sors, which can perform monitoring in time. Each sensor has a non–rechargeable
battery of capacity batt_capacity and can monitor PoI in a sensing range R if
its battery is turned on. An energy capacity of a sensor is decreased on one unit
of energy per a single interval of time if a battery is turned on. Figure 1(a) shows
illustrating simplified example with M = 36 PoI (in orange), N = 9 sensors (in
red), and R = 17 m; some of sensors are currently turned on and monitor the
corresponding areas (in green).1

It is assumed that decisions about turning on/off batteries are taken in
discrete moments of time t. It is also assumed that there exists some QoS measure
evaluating the performance of WSN. As such a measure, we accept a value of
coverage defined as a ratio of a number of PoI covered by active sensors to whole
number M of PoI. The coverage q of a target area at j–th time period tj can be
denoted as qj :

qj =
Mobsj

M
. (1)

Preserving a complete area coverage is a desirable objective, but sometimes it
may be more practical to achieve a predefined coverage rate just high enough.
So, we assume that at a given moment of time, this ratio should not be lower
than some predefined requested value of qr (0 < qr ≤ 1). A lifetime of WSN
can be defined as a number of time intervals tj in the schedule during which the

1 The WSN graph in Fig. 1(b) was obtained under the assumption that the number
M of PoI is equal to 21 × 21 = 441 as explained in the following section.
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coverage of the target area is within δ range of the requested coverage ratio qr,
as follows:

lifetimeq =
Tmax∑

j=1

tj (2)

where: tj = 1 if abs(qj − qr) ≤ δ, otherwise tj = 0.
Our objective is to prolong the lifetime of WSN by minimizing the num-

ber of redundant sensors during each time interval in order to minimize energy
consumption, providing at the same time the requested value of the coverage.

3 Multi–agent System for WSN Coverage and Lifetime
Optimization

An important step to interpret WSN Coverage and Lifetime Optimization prob-
lem in terms of a multi–agent system is converting a WSN into a corresponding
WSN graph. Figure 1(b) shows a WSN graph corresponding to the WSN from
Fig. 1(a). The conversion is based on the principle saying that two nodes of a
WSN graph are connected, iff they have at least one common PoI within their
sensing range R in a corresponding WSN. The number of neighbors of a given
node depends on a value of R. The WSN graph was obtained under an assump-
tion that the number M of PoI is equal to 21 × 21 = 441 and this value will be
used in our experiments. We can see from Fig. 1(b) that the nodes of the WSN
graph correspond to the sensors of the WSN. The nodes, except node 8, have a
number of neighbors ranging from 1 to 4.

Let us further assume that each node of a WSN graph is controlled by an
agent Ai of a multi–agent system consisting of N agents. Each agent has two
alternative decisions (actions): αi = 0 (battery is turned off) and αi = 1 (bat-
tery is turned on). All agents will make discrete–time decisions regarding the
activation of their batteries using certain rules assigned to them (heuristics).

Set of Agents’ Rules. We will consider the following set of socially interpreted
rules that potentially are useful and inspired by the idea of an underlying game:

• all–C : always cooperate (turn on battery);
• all–D : always defect (turn off battery);
• k–D : cooperate until not more than k neighbors defect, otherwise defect (turn
on battery until not more than k neighbors have batteries turned off, oth-
erwise turn off the battery);

• k–C : cooperate until not more than k neighbors cooperate, otherwise defect
(turn on battery until not more than k neighbors have batteries turned on,
otherwise turn off the battery);

• k–DC : defect until not more than k neighbors defect, otherwise cooperate
(turn off battery until not more than k neighbors have batteries turned
off, otherwise turn on the battery).
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Fig. 2. Example of running a multi–agent system with classical CA–based agents:
changes of coverage q (upper), corresponding changes of sensors’ batteries energy vol-
ume (lower).

One can see that the presented model corresponds to classical non–uniform
CA–based models, with a graph structure. We may ask further how the CA
rules of the considered multi–agent system will collectively influence on QoS
parameters of WSN, such as q and lifetimeq.

Motivating Example. Figure 2 shows some results of experiments with the
use of the WSN presented in Fig. 1 under the assumption that the initial battery
volume of each sensor is batt_capacity = 5, and the initial setting of sensors
battery states on/off is equal likely. Figure 2 (upper) shows how the coverage
q changes during a run of the multi–agent system when all agents use the same
rule, either: 1–D (in green), 1–C (in blue), or 1–DC (in violet), or these rules
are randomly assigned to agents with the same probability and work collectively
(in red). Figure 2 (lower) shows how these rule assignments change the average
batteries energy volume. One can notice that in each case when rules are used
separately or working collectively we have to do it with a specific influence on
the coverage and batteries energy change. We cannot identify the best rule for
this single and small example, but we see that the actual applied rule(s) make a
big difference in performance. The main problem with this model is that classical
CA–based agents do not have any feedback from the WSN environment saying
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how their actions influence on QoS of the network. Therefore we will replace
these agents by a second–order CA (time-variant rules influenced by neighbors)
to establish such a feedback that shall depend on the outcome of SPD game. In
short, our scheme of the method to solve the problem is the following:

– Model the area to be monitored as a 2D grid of PoI. Locate the sensors with
a given sensor range R. Compute the WSN graph.

– Consider the sensors as agents that have neighboring agents as given by the
WSN graph. Each agent switches on or off according to a local rule taking
into account the neighbors’ states.

– The local rule is taken from a given set of rules that are useful in the context
of playing a game, and which potentially can be applied to our problem.

– SPD game explained in Sect. 4 is used as an underlying heuristic to evaluate
in a decentralized way a global objective.

– Our problem is mapped to the SPD game (Sect. 5) by designing a payoff
function related to the considered problem and used by the players in the
game.

– The agents’ rules are changed dynamically (second–order CA) taking into
account the neighbors rules, states, and game payoffs, in order to find an
optimal solution; driving forces of a process of searching a solution are mech-
anisms of competition and mutation.

4 Collective Behavior of Second–Order CA–Based
Players in Spatial Prisoner’s Dilemma Game

The purpose of this section is to show that second-order CA operating in a
SPD game environment are able to self-optimize. Note that we don’t address
the whole problem here, and the cells (not the sensors) take the role of agents.
In order to solve our optimization problem we further need to express the global
criteria as a local criterion (next Sect. 5).

To recognize the applicability of second–order CA to solve the problem of
WSN coverage and lifetime optimization, we extend the SPD game model [6,12]
by including the set of rules presented in Sect. 3. We consider a 2D spatial array
of size m × n. We assume that a cell (i, j) will be considered as an agent–player
participating in the SPD game with neighbors. At a given discrete moment, each
cell can be in one of two states: either C or D. The state of a given cell will be
considered as an action C (cooperate) or D (defect) of the corresponding player
against an opponent from its neighborhood. The payoff function of the game is
given in Table 1. Each player playing a game with an opponent in a single round
(iteration) receives a payoff equal to R, T , S or P , where T > R > P > S.
We assume that R = 1, T = b, S = c, and P = a. We assume that players are
rational and act in such a way to maximize their payoff defined by the payoff
function. To evaluate a level of collective behavior of the system, we will use an
external criterion (not known for players) and ask whether it is possible to expect
from players selecting such actions sij which will maximize the average total
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Table 1. Payoff function of a player in the SPD game.

Player’s action Opponent’s action
Cooperate (C) Defect (D)

Cooperate (C) R = 1 S = c

Defect (D) T = b P = a

payoff (ATP) ū() (what corresponds to the maximization of the total number of
cooperating agents) of the whole set of players:

ū(s11, s12, ..., smn) =
1

mn

m∑

j=1

n∑

i=1

nij∑

k=1

uij(sij , sikjk)/nij (3)

where nij is the number of opponents in the neighborhood.
Game theory predicts that the behavior of players is oriented towards achiev-

ing a Nash equilibrium (NE). We call the price of a NE a value of ATP at this
point. The game can have many NE points with different ATP. The maximal
ATP equal to R = 1 corresponds to selecting action C by all players. We will
call this ATP the maximal price point, however, a solution corresponding to this
point is not always a Nash point. To solve this problem we introduce an income
sharing mechanism [12] to the game, if necessary.

Cells (i, j) of a 2D array are considered as CA–based players. States D or
C are used by the player as actions in games with opponent players. For each
cell, a local neighborhood is defined. We apply a cyclic boundary condition.
We will assume the Moore neighborhood with eight immediate neighbors. That
means that each player has eight (nij = 8) opponents in the game. At discrete
moments, CA–based players will use their current states as actions to play games
with opponents, they will receive payoffs, and next they will change their states
applying rules (also called strategies) assigned to them.

To convert classical CA into a second–order CA we use the mechanism of
competition, based on the principle “adapt to the best neighbor”. It assumes that
each player participating in games with neighbors collects some total score. If
the competition mechanism is turned on, each agent compares its cumulated
payoff with the total payoffs of its neighbors. If a more successful player exists
in the neighborhood, this player with his rule is replaced by the most successful
one. This mechanism converts a classical CA into a second–order CA, which can
adapt in time.

Figure 3 presents experimental results (with b = 1.2, c = 0) showing how a
fraction of cooperating agents depends on subsets of rules presented in Sect. 3.
First, let us notice that a high level of global collective behavior can be achieved
for the value of the parameter of the payoff function a < 0.3. The highest level
of cooperation is observed when all players used the k–D rule. While using
separately rules all–C and all–D does not make sense, using them together
provides also very good results. The performance of rules k–C and k–DC is
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Fig. 3. Fraction of cooperating agents for different subsets of rules.

low when they are used separately, but it can be good if they work collectively
together with the remaining rules.

A general conclusion from the conducted experiments is such that a second–
order CA operating in SPD game environment are able to self–optimize, i.e.
maximize a global criterion in the form of Eq. (3) without an explicit knowledge
of agents about this criterion. To be able to apply this approach to solve the
coverage and lifetime optimization problem, we need to express both the global
criteria Eqs. (1) and (2) representing the issues of coverage and batteries energy
spending in the form of a local agent criterion as discussed in the next section.

5 Coverage and Lifetime Optimization: Spatial PD Game
with the Use of a Second–Order CA

Mapping of the Problem onto the SPD Game. We will assume that the i–
th agent (sensor) of the multi–agent system presented in Sect. 3 will take part in
a variant of the SPD game related to a WSN coverage and lifetime optimization
problem. It will be assumed that each agent knows the value of a global param-
eter qr and this value can be considered as a local value, i.e. qir = qr. An agent
will receive for his actions in the game some payoffs which depend on whether
his current qicurr is below or above the requested qir. The payoff function of a
player is given in Table 2. The payoff function assigns values to the i–th player
in the following way:

(a) if he “turns off battery” then he calculates his local value of coverage
qicurr; if this value qicurr ≥ qir then he receives reward b, otherwise some punish-
ment equal to a;

(b) if he “turns on battery” then he calculates what would be his value of
qicurr (denoted as qi−off

curr ) if in fact he would have “turned off” his battery; if
qi−off
curr < qir then he receives the reward equal to 1, otherwise a penalty equal to

c. It is assumed that values of rewards and penalties should fulfill the inequality:
b > 1 and b > c > a. In our experiments we will use b = 1.2, c = 0.5, a = 0.
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Table 2. SPD approach to solve WSN coverage and lifetime optimization problem:
payoff function

i−th agent’s action Fulfilment of qir

Turn on batterry (C) qi−off
curr ≥ qir

No Yes
revon+

i = 1 revon−
i = c

Turn off batterry (D) qicurr ≥ qir

No Yes
revoff−

i = a revoff+
i = b

Fig. 4. Instance of the problem: WSN with 12 sensors, and R=35 (a), corresponding
WSN graph (b).

Experiments and Results. Figure 4 presents a WSN which will be used in our
experiments. It consists of 12 sensors with a sensing range R = 35 m located in
a monitored area (100 m× 100 m) as shown in Fig. 4a. The corresponding WSN
graph of the multi-agent system is shown in Fig. 4b. Let us assume that, e.g.
qr = 0.8. In the space of 212 possible solutions (combinations of states on/off
of sensors’ batteries) there exist 3 feasible solutions consisting of 4 sensors turned
on, which provide a cover q ≥ qr, and one of such solutions is shown in Fig. 4a
(in green). Generally, under a constant value of R and a given value of qr there
can exist some number of feasible solutions.

We assume generally that the multi–agent system for a coverage and lifetime
optimization performs a number of rounds, each consisting of 3 steps: (a) find
a unique solution (b) full exploitation of the solution found, and (c) deleting
sensors with dead batteries from the WSN graph, resulting in changes in the
graph. If we assume, e.g. batt_capacity = 5, it means that in the case of our
example each solution will be exploited 5 units of time, and lifetime = 15.

The purpose of our experiments was to see how the proposed second–order
CA will act in different situations related to different values of qr. We will focus
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Fig. 5. Solving of WSN coverage problem with second–order CA. Evolving in time
steps of: a final coverage (upper) and corresponding number of active sensors (lower).
(Color figure online)

on the most important, the first step of each round: searching of a single solution.
The used rules from the whole set are: all–C and all–D. These rules and also the
sensors states will initially be assigned to agents with equal probability. Agents
will change their rules participating in a competition. Our initial experiments had
shown that competition based on the principle “adapt to the best neighbor” is not
effective for irregular graph structures. We found out that the mechanism based
on “a local proportional selection” (similar to one used in genetic algorithms)
performs well and this mechanism is used in the competition. Each run of the
multi–agent system lasted 100 iterations. As we have to do it with a probabilistic
CA, we will present statistical results averaged over 50 runs.

Figure 5 presents some preliminary results of our experimental study and
shows (upper) how a value of the coverage q evolves for different values of qr,
and (lower) how a number of active sensors evolves corresponding to the found
coverage. Let us analyze these results from the perspective of a difference �q =
q̄ − qr which can be calculated from Fig. 5 (upper). For the subsequent values
of qr = 0.9, 0.8, 0.7, 0.65, 0.61, 0.6, 0.5 we have the corresponding values of �q =
0.1, 0.17, 0.19, 0.05,−0.12,−0.3,−0.44. It can be seen that there exist two regions
of behavior of the multi–agent system with respect to the values of �q. In the
first region (0.65 ≤ qr ≤ 0.9) the algorithm finds solutions that satisfy the
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requirement defined by a value of qr, and in the second region (qr < 0.65) the
solutions found do not meet the requirements.

When qr = 0.9 the algorithm finds on average a coverage equal to 1 (Fig. 5
(upper—in violet)), exceeding the required coverage by 0.1, and for this purpose
it requires to turn on all 12 sensors on average (Fig. 5 (lower—in violet)). A
similar behavior can be observed for qr = 0.8 and qr = 0.7 with even higher
values of �q. For q = 0.65 we can observe (Fig. 5 (upper—in red)) a behavior
of the algorithm with the lowest difference equal to 0.05 between requested and
found values of q with the use of around 7.5 sensors on average to be turned on.
This solution seems to be an optimum for the given instance of the problem and
the values of the payoff function.

The presented method and simulation algorithm is complex but preliminary
results are promising. For a detailed analysis and performance evaluation, it is
necessary to conduct an extensive experimental study with use of different WSN
instances and different settings of the payoff function.

6 Conclusions

In this paper we have proposed a second–order CA–based approach to solve the
problem of lifetime optimization in Wireless Sensor Networks. A WSN repre-
sented by a graph was considered as a multi–agent system with agents partici-
pating in the Spatial Prisoner’s Dilemma “SPD” game and where players could
use different rules (heuristics) to maximize their profits.

We considered two models, where we used either classical CA or second–order
CA. For the second–order CA model, we have proposed an agent–player payoff
function which incorporates issues of area coverage and sensors energy spending,
and it is used by agents to maximize their profits, what results in achieving a
solution corresponding to Nash equilibrium. We have shown experimentally that
the system is able to optimize in a fully distributed way a global criterion not
known for players, which provides a balance between the requested coverage and
the energy spending, and results in a prolongation of WSN lifetime. Our future
work will be oriented towards a more detailed study of the proposed approach
and the influence of specific model parameters on the performance.
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Abstract. In this paper, we investigate two concepts of system theory
in the framework of cellular automata: spreadability and vulnerability.
We have proposed adapting the definitions of these concepts for CA asso-
ciated with a set of information characterizing the modeled space. The
spreadability concept describes the expansion of property in space-time,
and vulnerability describes the possibility for a region to be affected by
this spreadability. The redefinition of these concepts will be based on the
impact of the space structure translated into attributes notion. The inter-
est is to study the spatial configuration effect as an environment favors
or resists the property. This way, we can study vulnerability through an
internal vision rather than only through external effects. Illustrations of
our approach will be discussed in a 3D wildfire modeling application.

Keywords: 3D-CA · Attributes · Spreadability · Vulnerability ·
Wildfire

1 Introduction

Forest growth, the spread of an epidemic, or the way a colony of bees is formed are
large networks of interacting entities that can be grouped and studied under the
name of “complex dynamical systems”, which refers to a branch of mathematics
that studies the properties of a dynamic system. Today, they constitute a major
scientific challenge that goes far beyond the specificities of the fields in which
they are encountered and require a particular research effort. Historically, the
system theory was initially introduced via the stability concept which formalizes
the properties that bring a system to an equilibrium state [1]. Other concepts
have been developed subsequently, notably the controllability that refers to the
system’s behavior study under the actions that bring it to the desired states
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[2]. Observability is a controllability concept dual that consists in studying the
system solution by measuring the output [3]. The concept of spreadability was
introduced by El Jai [4,5] in 1994 which describes the spatiotemporal expansion
of a given property, while the vulnerability concept [6] was introduced to study
the areas susceptible to be affected by the spreadability of a property. El Yacoubi
and El Jai couple the spreadability and controllability by a spreadable control
[7]. It is a control that makes a system spreadable. Also, Bernoussi introduced
the concept of control protector [8] that consists in modifying the spreadability
of a property to protect an area where the system is vulnerable.

In the last decades, systems theory has contributed to the development of
CA as a particular discrete system [9]. Indeed, the local vision of the CA allows
describing a complex phenomenon by focusing exclusively on the interactions of
a cell and its neighborhood. We produce a model that takes into account the
space’s heterogeneity since the cells have specific information about the space
they occupy. CA represents an ideal framework to study dynamic system com-
plexity. Moreover, it constitute a remarkable model for its formal simplicity and
capable of producing very rich and often difficult to predict behaviors. However,
the study of systems theory concepts through CA is considerably younger com-
pared to the continuous approach. Therefore, CA is poor compared to the rich-
ness offered by continuous systems such as PDE. In the case of CA, in the early
2000 s,s, El Yacoubi and El Jai enlarged the controllability concept by discussing
additive and boolean case of CA [10]. An application of the closed-loop con-
trollability concept was considered in [11] for industrial maintenance processes
modeled by CA. Spreadability and vulnerability concepts have been extended to
CA by Jellouli [12] considering only the inclusion sense. An application on forest
fire problem have been presented. Moreover, Kassogué [13] improved these two
concepts by considering the spreadability in the area sense and extended the vul-
nerability indexes. He considered two CA models [14] for water flow problems
(flooding and erosion) as applications for which he adapted the vulnerability
indexes in order to take into account the cells structures. The use of cells param-
eters values in transition rules is introduced rather than just cells states. Then,
Byari developed recently in [15,16] the formalism of attributes-based CA (state
as a summary of cell attributes values and transition rules as a mutual action
of processes on cells attributes). From this formalism he addressed the concept
of controlability with actuator and protector control via cells attributes for 3D
CA. As applications he considered wildfire problem.

In this paper, we focus on the two concepts: spreadability and vulnerabil-
ity. We redefine them basing on cells attributes in order to take into account
the impact of the space structure locally. Indeed, spreadability and vulnerability
are seen in two aspects: an external aspect represented by the intensity of the
property that drives the cells to be infected as discussed in [13]; and an internal
aspect (attributes resistance) that represents the cells reaction to the external
excitation that we discuss here. In this case, the values taken by the attributes
are decisive to know if the cell will be infected or not. Our contribution will then
concern the study of the effect of a zone attributes on the spreadability of a given
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property and this zone vulnerability to this spreadability. We propose a readap-
tation of the vulnerability indexes according to these attributes. To illustrate
our approach, we have developed a CA model based on 3D geometry cells for
the wildfire phenomenon. The model was developed by taking into account sev-
eral vegetation attributes as well as climatic constraints. The input data for the
regions considered for use in this project were acquired by a terrestrial LiDAR
scanner and processed in a GIS environment. Simulation results were performed
in a decision support software we have developed in Java programming language.
Details on this software are given in [17].

The paper is organized as follow. In Sect. 2, we first recall the formalism of
attributes-based CA from [15,16] and the original spreadability and vulnerability
concepts from [12,13]. We pursue then with our contribution on spreadability and
vulnerability via cells attributes while discussing adapted vulnerability indexes.
Section 3 will deal with an application on wildfire phenomenon. We describe first
the considered 3D model and we discuss then simulation results on the wildfire
spreadability and vulnerability. Finally we conclude our work by giving some
perspectives in Sect. 4.

2 CA, Spreadability and Vulnerability

2.1 Attributes-Based CA

CA’s originality is manifested not only in the evolution of the system through a
local view but also in its ability to solve the problem of space heterogeneity, based
on the attributes that characterize each space portion. A CA is the quadruplet

A = (L,N ,S, f), (1)

where L = {ci; i ∈ Z
d} is the d-dimensional lattice; N : c �→ (c1, . . . , cm) is the

neighbourhoods that a cell c interacts with; S = {s1, . . . , sn} is the set of states,
that is denoted for a cell c as st(c) ∈ S at time t with t ∈ I the time horizon
indices; and f : st �→ st+1 is the local transition function. For attributes-based
CA, each cell is associated with a set of attributes At(c) = {σ1

t (c), · · · , σl
t(c)}

that can be static or dynamic depending on the modelled phenomenon. During
the evolution, state and attributes have a mutual influence on the cell represented
by Φ(At) = st. Then transition function in this case reads f : Φ(At) �→ Φ(At+1).
More details are in [15,16].

2.2 Original Spreadability and Vulnerability

Let A = (L,N ,S, f) be a CA modelled a spatio-temporal evolving system. We
consider a given property P and let ωt = {c ∈ L; Pst(c)} be the set of cells
satisfying the property P. We say that the property P is spreadable in the
inclusion sense if:

ωt ⊂ ωt+1, ∀t ∈ I. (2)
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We say that the property P is spreadable in the area sense if :

μ(ωt) � μ(ωt+1), ∀t ∈ I, (3)

where μ(ω) :=
∑

c∈ω
μ(c) is the measure of ω in the sense that μ(c) is the area of

c. Not that if L is regular, Definition in (3) reduces to card(ωt) � card(ωt+1),
∀t ∈ I.
Now, let A be a CA on which we have the spreadability of a property P during
a time horizon I. A is vulnerable over the area Z ⊂ L to the spreadability of
property P or (P-vulnerable) during I if:

∃t ∈ I; Z ∩ ωt 	= ∅. (4)

See [13, pp. 513–515] where some results have been discussed for vulnerability
index in the external point of view. In the following sections, we contribute on
the internal point of view of these concepts.

2.3 Spreadability via Attributes

The spreadability concept can be seen in two aspects, external: represented by
the neighborhood impact, and internal by the values of the attributes (reaction
of the cell on the external excitation). In this way, a cell will be infected by a
property P if it is located near another infected one and its attributes values
favour the spreadability of the property P. See illustration in Fig. 1. To couple
these two criteria (distance and attributes values) in a property spreadability, we
define a cell sensitivity radius at time t as the distance between this cell infected
at time t + 1 and another nearest infected cell at time t:

rt(c) = min{d(c, c′); c′ ∈ ωt and c ∈ ωt+1}, (5)

where d(c, c′) is a distance between two cells.

Fig. 1. An illustration of attributes impact on the evolution of ωt ⊂ L where the
attributes values of the areas Ω1 and Ω2 do not allow them to be infected by the
property P.

Remark 1. We use either the Euclidean distance or the distance defined by:

d(c, c′) = min{k ∈ N; c′ ∈ N k(c)}, (6)
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where
N 0(c) = {c} and N k(c) = N (N k−1(c)), (7)

denote successive neighbourhoods for a cell c.

Proposition 1. Some results are consequences of the definition in (5):

– rt(c) = +∞ ⇒ c /∈ ωt+1 or ωt = ∅.

–
∑

c∈L
rt(c) = 0 ⇒ ωt+1 ⊆ ωt then A is not P − spreadable.

Next, we also define the set Pk of attributes values taken by the cells that
allow satisfying the property P if they are close by a sensitivity radius equal to
k:

Pk =
⋃

c∈L
{At(c); rt(c) = k}. (8)

Remark 2. – P0 represents the attributes values allowing the cells, which satis-
fies the property P at the time t, to stay at the time t + 1

P0 =
⋃

c∈L
{At(c); c ∈ ωt ∩ ωt+1}.

– P1 represents the attributes values that can allow the cells to satisfy the
property P if one of its neighbors satisfies it at time t

P1 =
⋃

c∈L
{At(c); N (c) ∩ ωt 	= ∅ and c ∈ ωt+1}.

– Pk for k > 1, represents the values of the attributes that allow the cells to
satisfy P without needing a neighbourhood that satisfies it.

According to the definition in (8), the attributes of a cell c are said to support
the spreadability of the property P at time t if:

∃k > 0 ; At(c) ∈ Pk. (9)

2.4 Vulnerability via Attributes

Let A be a CA on which we have spreadability of a property P and ωt be the
set of cells satisfying P at time t.

Definition 1. We define the sensitivity radius rt(Z) of a zone Z as the minimal
distance between Z and the infected zones ω at time t which impacts a part of
Z at the next time:

rt(Z) =
{

d1(Z, ωt) if Z ∩ ωt+1 	= ∅
+∞ else , (10)

where d1(Z, ωt) = min{k ∈ N : N k(Z) ∩ ωt 	= ∅}, with N k(Z) =
⋃

c∈Z N k(c)
and N k(c) defined in (7).
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Proposition 2. Let A be a CA, P a property and Z a zone in L.

– ∀c ∈ Z; rt(Z) � rt(c).
– if ∃t ∈ I; rt(Z) = 0 then the CA is P-vulnerable in Z at the time t.
– if ∃t ∈ I; rt(Z) ∈ R

+
∗ then the CA will P-vulnerable in Z at the time t + 1.

– if ∀t ∈ I; rt(Z) = +∞ then the CA is not P-vulnerable in Z.

Definition 2 (Internal Resistance).
A cell’s internal resistance to the vulnerability of a property P is the set of
attributes values that does not allow the cell to be affected by P:

P(c) =
⋂

t∈I

{At(c); rt(c) = +∞}. (11)

Proposition 3. Let Z ⊂ L a non-empty zone of the lattice. The CA A is
vulnerable on Z if at a given time t the distance between Z and the zone affected
ωt is less than the sensitivity radius of Z, that is

d1(Z, ωt) < min{k ∈ N; At(Z) ∩ Pk 	= ∅}, (12)

with At(Z) =
⋃

c∈Z
At(c).

2.5 Vulnerability Indexes via Attributes

Different zones may react differently to the effect of a property P. Zones may
be partially or totally affected. This can also relate to the speed at which areas
are affected or the mode of spreadability. The attributes govern the reaction of
a zone to the external effect. Thus, to determine which zone is more vulnerable
among several zones, the attributes values of each zone must be compared. And
this, using vulnerability indexes: the iterative one is used to compare zones vul-
nerability at each instant; the average one is used to compare zones vulnerability
between two instants; and the global one is used to compare zones vulnerability
during whole time horizon. Fist defined in [13, pp. 513–514] in the external point
of view, we adapt them via attributes in order to take into account the internal
effect of cells in the spreadability of P.

Iterative Vulnerability Index

– We call the vulnerability index at a time t, the rate of cells that have favorable
attribute values to satisfy the property P :

Ivt(Z) =
μ(ZPk>0,t)

μ(Z)
, (13)

where ZPk>0,t = {c ∈ Z;At(c) ∈ Pk>0} and μ(Z) the area of Z.
– We call the rate of cells with attributes favoring the property P and which

are located near to the infected area, the quantity.

Ivdt
(Z) =

μ {c ∈ Z; d(c, ωt) < rt(c)}
μ(Z)

. (14)
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Average and Global Vulnerability Index

– Between two iterations t0 and tf , the average vulnerability index is defined
by:

Iv(Z) =
tf∑

t=t0

It(Z)
(tf − t0)

. (15)

– During a time horizon I, the global vulnerability index takes into account
the satisfaction rate of the property P, the contact time of the zones and the
crossing speed of P through the zones. That is:

Ivg(σ) =
μ(ZPk>0)

tr (t�r − tr)μ(Z)
, t�r > tr > 0, (16)

where
ZPk>0 =

⋃

t∈I

{c ∈ Z; At(c) ∈ Pk>0} ,

is the global rate of cells in Z having attributes values favoring the spreadabil-
ity of P during time horizon I. tr and t�r are respectively the first iteration
where the area is affected and the first iteration where most part of the area
is affected.

3 Case Study: Forest Fire Modelling

3.1 Model Description

As an illustration of the proposed approach, we apply it to an example of 3D
wildfires modeling that we have developed [15–17]. The lattice consists of 3D
hexagonal cells cijk whose centered coordinates i, j, k represent a part of the
soil, vegetation, or air (Fig. 2a). For the neighbourhood, we consider the D3Q21

model. At an instant t, the cell state is given by the absence or existence of
fire in the cell. The set of states S considered is: state 0 for the non-flammable
cell such as the cell represents air, ground or smoke, state 1 for the vegetation
without fire and state 2 for the vegetation on fire. Each cell is associated with a
set of attributes defined in Table 1.

The evolution of the CA is identified as the mutual action between two mech-
anisms:

f ≡ Heat transfer ⊕ Catalyst transfer (17)

The transition rules are defined from two mechanisms: the first is defined from
heat transfer which depends on three processes (conductivity, convection, and
radiation). The cell temperature is calculated at each iteration where a cell will
ignite if its temperature is higher than the auto-ignition temperature. The second
mechanism determines the cell dryness by calculating the fuel and air humidity
where a cell will ignite if it receives a fire catalyst and its humidity is low. That
is:

At(c) =
{
1 if [Tt(c) > Tauto] or [�t(c) > 1 and Hin

t (c) < β]
0 else

. (18)
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Table 1. Attributes considered for wildfire model.

Cell classification δ : L �→ {0, 1, 2} {air, fuel, soil}
Temperature Tt : L �→ R

Temperature Tauto : L �→ R

Packing ratio of the plant species βt : L �→ [0, 1]

Air and vegetation humidity Ht : L �→ [0, 1]

Thermal conductivity λt : L �→ [0, 1]

Inflammation rate Γt : L �→ [0, 1]

Ignition catalyst �t : L �→ {0, 1} {without catalyst, with catalyst}
Porosity φt : L �→ [0, 1] φt(c) = 1 − βt(c)

Slope factor Pt : L �→ R
n P

[i]
t (c) = 5.275βt(c)

−3 tan2(θi(c))

Radiative conductivity bt : L �→ R
+ σnεr,tϕ

Wind vector Wt : L �→ R
n Wt(c) = (w[1](c), · · · , w[n](c))t

More details on lattice and cells geometry, neighborhood, attributes, states, tran-
sition rules and simulation aided software are available in [17]. We pursue in the
following sections with the simulation results.

3.2 Wildfire Spreadability

Figure 2 presents some snapshots of fire propagation with the developed wildfire
model from iteration 200 to iteration 1000. The lecturer can found a simulation
example video at (this link).

Fig. 2. Fire propagation from initail conditions to iteration 1000 and spreadability
evolution of P.

https://drive.google.com/file/d/1kCtaelQtADzxxvBidSXHyaDy5ekqgPAZ/view?usp=sharing
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From this simulation, we can observe that the property Pst(c) ⇔ st(c) = 2 that
describes the cells on fire at an instant t is spreading. In order to check the spread-
ability mode, we draw in Fig. 2c the number of old cells on fire card{ωt\ωt+1},
the number of new cells burned card{ωt+1\ωt} and the difference between the
two values card{ωt+1\ωt} − card{ωt\ωt+1} where ωt represents the set of cells
satisfying the property P, and this between t200 and t1000.
According to the graph in Fig. 2c the property P is spreadable in area sense
from the initial time until iteration 450. Then, after iteration 450, the number
of new burned cells is lower than the number of extinguished cells. So P is not
spreadable in area sense even if the fire is still spreading.

To capture the values of the attributes with the distance between a given
cell and the nearest burning cell, we made a series of simulations by modifying
at each one the burned areas at the initial state. We record for each burned cell
three values at time t+1: the distance between the cell and the nearest burning
cell, the temperature of the cell, and the dryness of the cell at a time t. We
present these values in Figs. 3a, 3b and 3c by averaging the values associated with
the vertically arranged cells to create a 2D map of the modeled space. Figure 3a
shows the vertical average of the sensitivity radius rt using the distance d defined
in (6). It is seen that the sensitivity radius of the areas containing trees is the
largest due to convection as the warm air closest to the thermal source decreases
in density and tends to rise. Figure 3b shows the vertical average of dryness Rt

degree of the cells defined by :

Rt(c) = βt min{Ht(c) + Hint
t (c), 1} + 1{0,2}(δ(c)), (19)

Fig. 3. Vertical average values of sensitivity radius, dryness and temperature of each
cells at the moment before ignition.

where βt, Ht(c), Hint
t (c) and δ(c) represent respectively packing Ratio, air

humidity, vegetation humidity, and cell type. Figure 3c represents the cells tem-
perature at the moment before ignition. To capture the cell ignition conditions
and the sufficient ratio associated with the attribute values, several simulations
were performed by recording the three values presented above in order to identify
a map of attributes values that enable cells ignition. Figure 4 shows the function
E defined by :

E(R, T ) = max
c∈L,t∈I

{rt(c); Rt(c) = R et Tt(c) = T},
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from the values of E , we can determine the cells that favour the spreadability of
P at the initial time (Fig. 4b) by dividing the lattice into cells that favour fire
spread and others whose attributes resist.

Fig. 4. Determination of attributes values that favour the spreadability of P in order to
determine which cells have these values at the initial time. Figure 4a represent the max-
imum sensitivity radius depending on dryness and temperature and Fig. 4b represent
cells classification that favour or not the spreadability of P at time t0.

3.3 Wildfire Vulnerability

To compare zones vulnerability based on the attributes we consider two zones
Z1 and Z2 for a time interval [t0, t4500] as simulation illustrated in Fig. 5 for
iterations 250, 500, 1000 and 4000. Based on the values of the attributes favouring
the spreadability of P as classified in 4b, we calculate at each iteration for the
two zones considered the vulnerability indices, the cells on fire number, and the
burned cells number (Fig. 6a). We can observe that the zone 2 is more vulnerable
than the zone 1 at most time. Figure 6a presents details on vulnerability index for
these two zones for classification need. It shows an oscillation of most vulnerable
zone. From Fig. 6a observation and the use of iterative and average vulnerability
indexes, we give the most vulnerable zone classification into Table 6b according
to time intervals.

Fig. 5. Simulation results of fire spreadability and system vulnerability on two zones
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Fig. 6. Figure 6a represent the vulnerability index, cells on fire and cells burned num-
ber. Figure 6b represent classification of most vulnerable zone.

4 Conclusion and Perspectives

In this paper, we have considered two concepts of systems theory via the cellular
automata approach: spreadability and vulnerability. Our contribution concerns
the redefinition of spreadability and vulnerability based on spatial attributes in
order to take into account the cells internal reaction. This redefinition allows the
development of new vulnerability indexes. As a practical application, we have
considered a 3D-CA model for the wildfire phenomenon, a recent model we have
proposed to simulate and represent wildfires dynamics. We have described an
innovative mechanism that allows taking into account the environment hetero-
geneity as well as the possibility to follow the evolution while keeping a simplified
point of view on the wildfire propagation.

As a future study, we will work on the question of optimal control and pro-
tector control of vulnerable areas. To address this objective, we will focus on a
new type of control based on Reinforcement Learning (RL) to solve problems
such as: i) the choice of zones and attributes in which the action will operate;
ii) the possibility and feasibility of doing the action; iii) the action cost and
intensity; iv) the cost of the system damage over time. The RL can learn how
to control this system over time through systematic trial and error, guided by a
vast variety of algorithms
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Abstract. Forest fires have faced a huge increase due to climate change
threatening different biomes. Fire propagation modeling is a critical
issue to prevent and control the damage of this phenomenon. Cellu-
lar automata shown to be efficient in the construction of such models.
However, tuning the various parameters involved in these models is a
difficult task. This work proposes a method of parameters adjustment
of fire propagation models based on genetic algorithms. Different exper-
iments in various scenarios showed that was possible to use evolutionary
computation that automatically adjusts the parameters of a fire spread
model.

Keywords: Cellular automata · Fire spread · Forest burning ·
Computational modelling · Genetic algorithms · Bio-inspired simulation

1 Introduction

Forest fires are notably harmful to the ecosystem, resulting in environmental,
economic and social impacts. Recently in Brazil, a considerable increase in for-
est fires has been observed, mainly in the biomes known as Amazon, Pantanal
and Cerrado. To prevent and fight fires, it is necessary to understand how fire
spreads in environments and how factors related to vegetation, topography, cli-
mate and wind impact the propagation. Furthermore, it is important to choose
an adequate modeling approach, capable of reproducing the phenomenon satis-
factorily, allowing a model parameters adjustment by simple implementations.

Cellular automata (CA) have been studied as a tool for modeling natural
phenomena, and fire propagation is one of the main investigations of such sim-
ulation models [2]. Regardless of the modeling used, a wildfire simulation must
consider different environmental characteristics, such as soil type, climate, veg-
etation, wind and terrain topography [9], which leads to a considerable number
of parameters in the resulting model. Therefore, setting the parameters of a fire
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propagation model is a critical task. Furthermore, even if a model has been pre-
viously tuned for a particular area, its applicability to others may depend on a
parameters adjustment that takes into account the differences between areas.

The objective of this work is to investigate an approach based on a genetic
algorithm (GA), which allows an automatic adjustment in the parameters of the
fire spread models based on CA, from historical data of fires occurred in a target
area. In the experiments reported, it was possible to verify that the evolutionary
approach was able to find a good fit of parameters for different scenarios.

2 Related Work

CA models have been applied in different areas, such as cryptography [15], task
scheduling [1], path planning [10], swarm robotics [8], among others. It is note-
worthy that one of the main applications of CA has been in the modeling of
natural phenomena that produces a complex behavior from local interactions,
such as the epidemiological models [14], urban traffic and fire spread [2], which is
also investigated in the present work. Several fire propagation models CA based
have been proposed in the literature. Most of these models use probabilistic
transition rules applied in two-dimensional grids of cells, which represent the
environments where the fire is propagated. The model proposed in [2] consists
of a probabilistic CA with three states and it uses the Moore’s neighborhood,
which was the basis for several rule-based models of CA that emerged later.
The study described in [3] considered data from a forest fire in USA. The model
has random neighborhoods, wind direction and magnitude, as well as air tem-
perature and relative humidity. The model described in [7] uses scenarios with
homogeneous and non-homogeneous forests, considering climatic conditions and
the topography of the area.

The model proposed by Louzada & Ferreira Jr. (2008) [11], uses a 2D-CA
with Moore’s neighborhood and two parameters: LQ (number of firing stages)
and LR (forest age). The fire spread model proposed in Lima & Lima (2014) [9]
is represented by a 2D-CA with Moore’s neighborhood and there are 3 possible
states: tree alive, burning and ashe. The burning state can assume 4 different
values burning = {1, 2, 3, 4}, depending on the fire intensity. A preference
matrix Wm×m representing wind speed and direction was used in their model. A
new model for fire simulation based on CA update rules is proposed here. It has
the parameters LQ and LR, used in [11], with the preference matrix W3×3, which
represents the wind, similar to that proposed in [9].

Genetic algorithms consist of a search and optimization technique based on
the mechanisms of natural selection and genetics. GA usage allied to CA has
already been described in the literature, whether in the adjustment of model
parameters as discussed here, or even in the specification of rules [12,13]. The
evolutionary search approach has been applied in CA-based models for simulat-
ing natural and biological phenomena, such as modeling debris and lava flow [4]
and vegetarian recovery [6]. A GA was used in [5] to adjust the parameters of
the CA-based model based of proliferation of insect vectors of Chagas disease,
which is also used herein.
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3 Proposed Model for Forest Fire Simulation

The model proposed herein uses a 2D-CA with Moore’s neighborhood (ηv
ij),

where v = (2r + 1)2 − 1 = 8, r = 1 (radius), L (lattice) in t = 0 and L′ (lattice)
for t ≥ 1. The cell’s state xij is expressed by the pair (Type, Stage), with
Type ∈{fire, tree} and Stage ∈[1 · · · LQ], if Type=fire (represents tree burning
time) or Stage ∈ [1 · · · LR], if Type = tree (represents tree recovery time).

A cell of type fire will go through different LQ stages while burning. When
changing to fire type, it starts with Stage = 1 and at each subsequent time
step (t), the Stage is incremented up to the maximum value equal to LQ. After
reaching Stage = LQ, a cell of type fire is changed to type tree with Stage =1,
which represents a tree that has just been burned and will start its regeneration.
A cell of type tree will go through up to LR different stages of recovery. This
represents the dry organic matter amount presented in xij ∈ L

′ that can be fuel
for burning. At each subsequent t in which it remains in the tree state, it is
incremented (+1) up to the maximum value (LR). The simulation starts defining
all cells being of type tree with Stage = LR. Matrix W3×3 represents the wind
speed as a probability of a neighbor fire cell ignite a tree in the center. Each
position wij ∈W3×3 assumes a value between [0, 1], modelling the wind direction
and intensity w. Figure 1 shows examples of W3×3. It indicates the probability

(a) Sc1, Sc5 (b) Sc2, Sc6 (c) Sc3, Sc7 (d) Sc4, Sc8 (e) Sc1 (f) Sc2 (g) Sc3

(h) Sc4 (i) Sc5 (j) Sc6 (k) Sc7 (l) Sc8 (m) Sc9 (n) Sc10

Fig. 1. Probabilities matrices W3×3 representing the wind (w) vector forces, where (�)
represents the references and (�) represents GA matrix.

for a flame propagate to the center cell xij from each one of the 8-outer cells
xmn ∈ η8

ij , that represents wind direction w = (wN ,wS ,wE ,wW ,wNE ,wNW ,
wSE ,wSW ). At each iteration, a tree cell xij has a probability P (xij) becoming
fire: P (xij)=

Stageij

LR
×

Δ
LQ

, where Δ=
∑η

ab Stageab×wab, which ∀xab ∈η
8
ij neighbor

cells of the center xij that are in the fire state. The Δ is saturated in 1.

4 Evolutionary Approach to Adjust the Model
Parameters

Our proposal is to use an evolutionary search, more specifically a GA, to specify
the main parameters involved in the fire propagation model described in the
previous section, in order to obtain a simulation very close to the one observed
in the propagation of flames from a forest fire in a given area.
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(a) Sc1, Sc5 (b) Sc2, Sc6 (c) Sc3, Sc7 (d) Sc4, Sc8 (e) Sc1 (f) Sc2 (g) Sc3

(h) Sc4 (i) Sc5 (j) Sc6 (k) Sc7 (l) Sc8 (m) Sc9 (n) Sc10

Fig. 2. Vector forces (w) from W3×3 representing the wind direction and intensity,
where (�) represents the references and (�) represents GA matrix.

In this stage of the work, we used artificial databases generated by fire simu-
lations, using a model with different parameter settings related to fire scenarios.
In this way, it is possible to evaluate the ability of the GA to specify an ade-
quate set of parameters, from temporal sequences of L′, which represent the
images captured of the area during the evolution of a fire. For each scenario
evaluated, the model was configured with a set of different parameters that were
simulated to generate a base with 50 lattices L′ of size 102 × 102 that represent
the temporal evolution of the fire, simulating a base of images taken at 50 time
intervals. Each time interval corresponds to 200 evolution steps of the CA. We
will call each set of 50 registered lattices (representative simulation of each fire
scenario), the reference lattice base, or simply, the reference base. The parame-
ters extracted from the fire propagation model and which must be specified by
the GA are: LQ (maximum burning time), LR (maximum recovery time) and the
8 values of probabilities that make up the matrix W3×3, representing the wind
direction w. In a preliminary stage, different GA specifications were evaluated
until reaching an efficient configuration for the parameter adjustment. The indi-
vidual (chromosome) is a length-10 vector composed by genes, 8 real values and
2 integer (LQ, LR) values. The real value fields are relative to the eight positions
of the W3×3 and each field stores a float value in the range [0, 1]. GA initial
population is composed of 100 solutions generated at random. The selection of
parents for each generation is done through a simple tournament (Tour = 3). A
two-point crossover (rate of 90%) is used. A mutation rate of 20% is applied,
adding or subtracting a random value to the genes. At each generation end, the
best 25% individuals are kept. GA evolves for 102 generations. To calculate the
fitness F (k), 0 ≤ k ≤ 100, the simulation of the model using the parameters of the
individual k is compared, image by image, with the referential set of 50 lattices
(L′

100×100) generated for the chosen scenario.
The series of lattices (L′) associated with the individual is then paired with

the reference data set and the individual is evaluated by the difference in the
number of fire cells for each pair of lattices (individual, reference), that means
F (k) =

∑|L|
k=0 |(xRef

ij ) − (xGA
ij )|, where xRef

ij ∈ L′
Ref and xGA

ij ∈ L
′
GA.
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In an initial stage of our experiments, an evaluation was given by the simple
sum of the differences in the number of fire cells calculated in the 50 capture
instants. However, two requirements proved to be important for a good evalua-
tion of the individuals: considering the spatial distribution of the differences in
the fire cells and seeking to attenuate the stochastic characteristic of the sim-
ulation. To meet the first requirement, in an analogy to the compass rose (CR),
the lattice is divided into 9 parts and the difference in the number of fire cells
is calculated for each part, considering each pair of (L′

Ref , L′
GA), and them the

sum is calculated. The assessment of the individual for each simulation is given
by the simple average of the sum of the calculated differences.

Finally, to meet the second requirement, two actions were taken. For each
scenario, the baseline stores the value of each cell at each time step for a complete
simulation. In addition, 102 executions were performed for each scenario and
the average amounts of fire cells in each of the 9 lattice parts were recorded.
Furthermore, in the evaluation of each individual, 5 different simulations are
performed using the values of parameters specified in their chromosome and
at each simulation the average of the sums of the 9 lattice parts is obtained.
In calculating the differences between each simulation and the reference, the
difference between the average value obtained in the 102 runs and the value
obtained in each individual simulation is considered. At the end, the evaluation of
the individual is calculated by the simple average, considering the 5 simulations,
of the average sum per lattice part obtained in each simulation.

5 Experiments

Experiments were carried out considering different scenarios. To analyze the
results, the following aspects were taken into account: (i) the values of the param-
eters LQ, LR and W3×3, which are compared with the values used in the bases of
reference; (ii) the vector obtained by the resultant force of the W3×3 and repre-
senting the direction and intensity of the wind; (iii) the temporal evolution in
which the best individual obtained by the GA was used to define the parameters
of the CA model and visually compared with the referential CA temporal evolu-
tion at the time instants t = {5, 20, 30, 50}. Each result will be given by a 3-uple
(x̄, s,wGA

CR), being x̄ the fitness average, s the observed standard deviation and
wGA

CR the length of the resulting vector that points in one of the directions of the
CR. For all 8 experiments the value wRef

CR = 2.0, for the reference model (Ref).
In the first experiments, 4 scenarios were evaluated using a single fire spot

in which, although we applied different W3×3, the fire was started from the same
point. In those scenarios (LQ, LR) were fixed at (3, 30). The referential matrices
W3×3 are shown in Fig. 1 (a to d). The best individual evolved for each of the
4 scenarios also has (LQ, LR) equal to (3, 30), but differences were observed in
the matrices. The scenario Sc1 applies a reference W3×3 with larger values at
the top (Fig. 1(a)), resulting in (2.63, 0.008, 1.60), where x̄ = 2.63, s = 0.008 and
wAG

S =1.60. The evolved W3×3 (Fig. 1(e)) is similar to the reference with the wind
direction to the south (wS ). The intensity of the evolved vector (Fig. 2(d)) is
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w=1.60, lesser than wRef
S =2.0 (Fig. 2(a)). A slight inclination is noticed. Despite

the differences between matrices, the behavior observed in Fig. 3 by applying the
individual (e to h) is similar to that of the reference (a to d): the fire propagates
to the south and the edges are reached between t = 20 and t = 35.

Considering scenario Sc2, the result is (3.60, 0.12, 2.07). Although the evolved
(Fig. 1f) and the reference (Fig. 1(b)) matrices have differences, they have similar
balances: the highest values are on the right. As a consequence, the wind direction
is the same. When analyzing the vector that represents the resultant wind force,
it can be seen that the GA vector (Fig. 2(e)) presents an angle a little larger than
the reference (Fig. 2(b)). Moreover, the intensity of the evolved vector wGA

W is
slight bigger than wRef

W : 2.07 > 2.0.

(a) t=5 (b) t=20 (c) t=35 (d) t=50 (e) t=5 (f) t=20 (g) t=35 (h) t=50

(i) t=5 (j) t=20 (k) t=35 (l) t=50 (m) t=5 (n) t=20 (o) t=35 (p) t=50

Fig. 3. Sc1 (1st line): wS , reference matrix (a, b, c, d) and GA individual (e, f, g, h).
Sc2 (2nd line): wW , reference matrix (i, j, k, l) and GA individual (m, n, o, p).

The fire spreads to the west of the lattice in both simulations. Figure 3 (i to
l) shows the reference data, while Fig. 3 (m to p) shows the simulation using the
evolved parameters obtained.

Scenario Sc3 considered a W3×3 with the opposite propagation in the east
direction. Figure 1(g) shows the obtained W3×3 with greater intensity in the fields
on the left, as well as the reference, Fig. 1(c), resulting in (2.06, 0.03, 1.89). In
the vector comparison, as shown in Fig. 2(f), it was obtained a vector similar to
the reference (Fig. 2c), but there is an angle and wAG

E <wRef
E , where 1.89 < 2.0.

The resultant behaviors can be seen in the first line of Fig. 4. In both cases,
t ∈ [20, 25], the fire spread has already reached the right edges of the lattice.

Finally, a scenario Sc4 we have the following result (2.92, 0.16, 2.06). The
scenario was generated with the largest diagonal fields, according to the W3×3

shown in Fig. 1(d). The GA W3×3, Fig. 1(h), also obtained values with equilib-
rium of diagonal fields. In relation to vector comparison, the angles and direction
were similar. The GA wind intensity (Fig. 2(g)) 2.06>2.0 (reference) (Fig. 2(d)).
The second line of Fig. 4 compares the reference (i to l) and the best individual
evolved by GA (m to p), they have a similar behavior. This spread initially took
place towards the wNW . In both cases, the initial position of the fire favored
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(a) t=5 (b) t=20 (c) t=35 (d) t=50 (e) t=5 (f) t=20 (g) t=35 (h) t=50

(i) t=5 (j) t=20 (k) t=35 (l) t=50 (m) t=5 (n) t=20 (o) t=35 (p) t=50

Fig. 4. Sc3 (1st line): wE , reference matrix (a, b, c, d) and GA individual (e, f, g, h).
Sc4 (2nd line): wNW , reference matrix (i, j, k, l) and GA individual (m, n, o, p).

automatic adjustment: the edges took a long time to be reached. GA was suc-
cessful in the adjustment of the 3-parameters (LQ, LR, W3×3).

(a) t=5 (b) t=20 (c) t=35 (d) t=50 (e) t=5 (f) t=20 (g) t=35 (h) t=50

(i) t=5 (j) t=20 (k) t=35 (l) t=50 (m) t=5 (n) t=20 (o) t=35 (p) t=50

Fig. 5. Sc5 (1st line): wS , reference matrix (a, b, c, d) and GA individual (e, f, g, h).
Sc6 (2nd line): wW , reference matrix (i, j, k, l) and GA individual (m, n, o, p).

In this step, we simulated the CA different fire spots initialization. We
sought to know the impact of the initial focus position on the GA performance.
Each individual was evolved 5 times, starting the fire from a different spot. The
first fire spot evaluated was the central point of L. Also, L was divided into 4
parts and a fire spot was placed in the center of each part, resulting in more
4 fire starts. The Sc5 experiment uses the same scenario of Sc1, because we
sought to understand the behavior of the worst case of the initial experiments.
However, the GA evaluation is based on 5 runs, each one starting from a different
fire spot. The reference W3×3 had propagation to the south wS , as shown in
Fig. 5 (a to d). The W3×3 is the one obtained by the GA (Fig. 1(i)), resulting in
(2.99, 0.08, 2.12). Compared to the reference, Fig. 1(a), it can be seen that the
fields have intensities distributed in the same proportion, and wGA

S (Fig. 2(i), is
slight greater than wRef

S (Fig. 2(a)). However, this result is better than the one
obtained in the previous experiment Sc1 (Fig. 2(d)), in which just one simulation
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was used. As a consequence the simulation obtained using GA solution (Fig. 5
(e to h)) is better than the previous one observed in scenario Sc1 (Fig. 3 (e to
h)). We only show here the simulation starting from central spot.

We sought to evaluate the impact of changing the parameters LQ and
LR in the last experiments. The GA evaluation based in 5 simulations was also
used here. In scenario Sc6, the pair (LQ, LR) are (6, 30), respectively, and final
result is (3.20, 0.15, 1.84). Despite the different values in matrices (Fig. 1(b) and
Fig. 1(j)), it shown to be balanced. The vector has the same intensity, albeit a
greater angle. Figure 5 (i to p) shows the simulation starting from the central
spot: the fire reaches the L′ edges in t∈ [35−50]. It is also possible to perceive the
influence of LQ. With a higher value (6), the cells burn longer, therefore, there are
more fire cells. In scenario Sc7, the pair (LQ, LR) are (3, 90) and uses the W3×3,
Fig. 1(c), resulting in (2.2, 0.13, 2.07). Figure 1(k) shows the values of the evolved
W3×3. The intensity 2.07 of the GA (Fig. 2(j)) slightly larger than the reference.
Figure 6 (a to h) shows the CA evolution. A higher value for LR causes cells to
take a while to get back on fire. The last experiment (Sc8) uses (LQ, LR): (4, 40)
and the W3×3 in Fig. 1(d), where the highest values are on the lower diagonal.
The GA search resulted in (3.27, 0.16, 2.06), has the W3×3 shown in Fig. 1(l). The
wind vector (Fig. 2(l)) has a smaller angle to the reference (Fig. 2(d)), but with
similar intensity. The wind direction is equal to the reference: it spreads to the
NW. The influence of (LQ, LR) is noted in Fig. 6: cells spend more time burning,
take a little longer to become organic matter, which may (or not) catch fire
again. The best starting is the central spot with a larger spreading. To analyze
the sensitivity of the model, we checked whether the initial settings of the CA
affect the behavior of the GA to mimic the fire. This was done by changing
the position of the fire spots, but still using the database generated for the
Sc6 scenario shown above. In the Sc9, in the GA configuration, the five initial
fire spots were moved two spaces to the left and two spaces down, resulting in
(3.89, 0.048, 3.81), where x̄=3.81, s=0.048 and wAG

S =1.93. The W3×3 obtained by
AG is shown in Fig. 1(m). The wind vector (Fig. 2(m)) has a smaller angle to the

(a) t=5 (b) t=20 (c) t=35 (d) t=50 (e) t=5 (f) t=20 (g) t=35 (h) t=50

(i) t=5 (j) t=20 (k) t=35 (l) t=50 (m) t=5 (n) t=20 (o) t=35 (p) t=50

Fig. 6. Sc7 (1st line): wE , reference matrix (a, b, c, d) and GA individual (e, f, g, h).
Sc8 (2nd line): wNW , reference matrix (i, j, k, l) and GA individual (m, n, o, p).
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reference (Fig. 2(b)) and the intensity is also lower (1.93). The temporal evolution
of the CA with the obtained parameters had a behavior similar to the reference.
In Sc10, the fire spots were shifted two spaces to the right and two spaces up.
The result was (4.15, 0.080, 4.00), where x̄ = 4.00, s = 0.080 and wAG

S = 2.01. The
wind vector (Fig. 2(n)) has a bigger angle to the reference (Fig. 2(b)) and the
intensity is similar (2.03). The W3×3 obtained by AG is shown in Fig. 1(n). In
the temporal evolution of the model, the behavior is also similar to the reference.
Despite the initial fire positions being different from the reference database, the
result of scenarios is quite satisfactory.

Finally, we verified if an individual with delay or fire propagation anticipation
would have a large error. We choose the values from the Sc2 reference and run
the CA. In our model each time interval corresponding to 200 evolution steps
of the CA, Fig. 7 displays the fitness values of the execution with lead and lag.
Fitness has a considerable increase in cases with delay. When the fire starts with
anticipation, the L′ is occupied faster, which causes a smaller increase in fitness,
since it is not so easy to capture the fire spread behavior.

Fig. 7. Fitness variation where there is a delay and an anticipation in fire propagation.

6 Final Considerations

The GA shown to be efficient to adjust the parameters involved in the fire
spread model. Regarding LQ and LR, the GA found solutions with the same
values used in the referential simulations in all tested scenarios. Regarding the
matrices, although the GA did not evolve exactly the same parameters used in
the reference data, it was possible to observe that the solutions configured W3×3

with effects on fire dynamics similar to those observed in the different scenarios.
The initial scenarios that shown more difficult to adjust were those that started
from fire spots in unfavorable positions to observe their dynamics. Thus, the
strategy of GA evaluating from 5 simulations started at different points of the
lattice, made the tuning approach more robust in relation to the initial point
chosen to start the simulation. From a practical point of view, when using real
fire images to evolve the model parameters, we can emphasize the importance of
capturing sequences of images from different perspectives of the area. As future
work, we intend to evaluate the proposed approach in more complex scenarios,
with more than one type of vegetation, in addition to other landscape elements
such as water body and buildings. Moreover, we intend to apply this approach
to more complex fire models that involve a greater number of parameters, such
as topography, humidity and spontaneous combustion. We aim to optimize the
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fitness function so that it is able to consider the behavior of the model with
delay. We also aim to use real data, especially from the Brazilian Cerrado, for
model adjustments. In this sense, we intend to create a generic GA adaptable
to other models of CA. Finally, we intend to develop a GA that is able to learn
the transition rule of the CA model.

Acknowledgements. Authors thank for FAPEMIG, CNPq and CAPES support and
scholarships.
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12. Mitchell, M., Crutchfield, J.P., Hraber, P.T.: Evolving cellular automata to perform
computations: mechanisms and impediments. Physica D 75, 361–391 (1994)

13. Oliveira, G.M.B., De Oliveira, P., Omar, N.: Improving genetic search for one-
dimensional cellular automata, using heuristics related to their dynamic behavior
forecast. In: IEEE CEC (2001)

https://doi.org/10.1007/978-3-319-44365-2_26
https://doi.org/10.1007/978-3-319-99813-8_6
https://doi.org/10.1007/978-3-319-44365-2_31


Automatic Evolutionary Adjustment of CA Model 245

14. Slimi, R., El Yacoubi, S., Dumonteil, E., Gourbiere, S.: A cellular automata model
for Chagas disease. Appl. Mathe. Model. 33, 1072–1085 (2009)

15. Wolfram, S.: Cryptography with cellular automata. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 429–432. Springer, Heidelberg (1986). https://
doi.org/10.1007/3-540-39799-X 32

https://doi.org/10.1007/3-540-39799-X_32
https://doi.org/10.1007/3-540-39799-X_32


Wildfire Simulation Model Based
on Cellular Automata and Stochastic

Rules

Claudiney R. Tinoco(B) , Heitor F. Ferreira , Luiz G. A. Martins ,
and Gina M. B. Oliveira

School of Computer Science, Federal University of Uberlândia, Uberlândia, Brazil
{claudineyrt,lgamartins,gina}@ufu.br, heitor.ff@hotmail.com

Abstract. A significant increase in the occurrence of large wildfires has
been observed in the last decades. Several works seek ways to attenuate
the side effects of these events. In this work, it is proposed a simulation
model for wildfires propagation based on stochastic cellular automata.
Its main objective is to understand the dynamics of these wildfires in
order to speed the decision-making on the main actions to be taken by
firefighter forces. The model presents different states, fire intensities and
wind currents that redirect the flames. In addition, a non-linear vegeta-
tion recovery function is proposed, which brings the model closer to the
real characteristics of natural systems. According to the results obtained,
it was possible to conclude that the model achieves the expected objec-
tives, satisfactorily simulating the analysed phenomenon.

Keywords: Cellular automata · Stochastic rules · Wildfire
simulation · Complex phenomena · Firefighting efficiency

1 Introduction

Spontaneous wildfires occur in nature and are part of the natural cycle necessary
for the conservation of some biomes [13]. However, the occurrence of these events
has increased throughout the planet in the last decades due to the impacts of cli-
mate changes, indiscriminate exploitation and extraction [9]. Since this increase
is not part of its natural cycle, in most cases these environments end up col-
lapsing. In addition to the loss of the fauna and the flora, which are irreparable,
these wildfires can advance to areas of human occupation [11], especially those of
marginalised populations (e.g., indigenous tribes, quilombolas, riverside dwellers
and favelas) where there is no ideal physical infrastructure.

In order to mitigate negative effects, many works propose wildfire simulation
models [12], seeking to understand the behaviour of the flames as a means to
recommend countermeasures, strengthening the capacity to prevent and suppress
wildfires while protecting human lives, nature itself and property.

Cellular Automata (CA) [4] stand out as a simulation technique due to their
simplicity of implementation and high correspondence with natural behaviour.
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Among the several dynamic models that use CA, we can highlight models for
urban growth [1], pedestrian evacuation [3], coordination of swarm of robots [16],
epidemiology [14], and disease vector spreading [6]. Considering that a wildfire
can be categorised as a complex natural phenomenon, the application of CA
facilitates its simulation, since they are discretised both in time and in space [5].
On the other hand, the implementation of continuous systems for the spread of
fire would demand a greater computational processing. Furthermore, since the
cells evolve independently, it is easily adaptable for multiprocessing, allowing
the exploration of high-performance simulations.

Therefore, considering the points raised, this work proposes a computational
model to simulate wildfires as a way to speed the decision-making process and,
thereby, enabling a greater efficiency for management and firefighting forces. The
model is based in CA with stochastic rules for fire propagation. Applied in areas
of vegetation, the model does not only take into account the burning time, but
other important characteristics during a wildfire, such as the fire intensity, the
presence of wind currents and obstacles. Furthermore, this work also contributes
from an experimental perspective, since it performs a set of experiments in order
to analyse how different parameters influence the evolution of wildfires.

2 Related Works

This section describes a brief literature review including some works related to
the application of cellular automata in wildfires simulation. At the end of this
review, a table (Table 1) is presented in order to compare key characteristics of
the models described by these works with our proposed model.

One of the seminal works proposing CA models to simulate fire spreading
is [5]. The model employs three states and stochastic transition rules to recover
burnt cells and provide spontaneous combustion. In order to enhance simulations
with wildfires, the application CA with hexagonal tessellation spaces was pro-
posed in [20]. Experiments with artificial and real data allowed to conclude that
the model can be useful in managing wildfires with heterogeneous characteris-
tics. In [19], it was proposed the integration of CA and Geographic Information
Systems for the simulation of forest fires. Focusing on modelling the environ-
ment, the system presents different options for terrain, vegetation and weather.
According to the authors, the results showed that the proposed model can be
adapted to other spatiotemporal modelling applications based on CA. Bringing
the models closer to reality, a case study related to a forest fire (Spetses Island,
1990) was carried out in [2]. The authors proposed a simulation model using a
non-linear optimisation approach to approximate its behaviour to that of the
analysed event. The simulation results were promising in terms of the predictive
capacity of the model. More recent works still present CA as an important tool
for fire simulation models. In [8] is proposed a model for the simulation of forest
fires based on CA that applies a numerical optimisation approach to find val-
ues that correlate the model parameters. Simulations showed promising results,
bringing the proposal closer to the classical methods. In [18], the authors eval-
uated a set of factors that influence the spread of flames in forest fires. Among
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the analysed factors, the authors highlight combustible materials, wind, temper-
ature, and terrain. Implemented through CA rules, the model demonstrates to
be able to satisfactorily simulate the flame spread trends under different con-
ditions. Finally, a model for simulating forest fires was proposed by combining
different techniques, including CA, in [15]. The main objective of the authors
was to improve the accuracy of the model in relation to the spread speed of the
flames. According to the results, the model was able to simulate and predict the
spread of forest fires, ensuring accuracy in the simulations.

Table 1. Detailed comparison between CA-based wildfire simulation models

Authors Year
CA States

Prblty. Wind Topog.
Veg.

recover
Veg. Fire Obst. Total

Chopard et al. [5] 1998 1 2 0 3 Yes No 2D Linear

Yongzhong et al. [20] 2004 1 2 0 3 No Yes 3D No

Yassemi et al. [19] 2008 1 [0.0...1.0] 0 ∼ Yes Yes 3D No

Alexandridis et al. [2] 2008 1 2 1 4 Yes Yes 3D No

Ghisu et al. [8] 2015 1 2 0 3 No Yes 3D No

Xuehuaet al. [18] 2016 1 2 1 4 No Yes 3D No

Sun et al. [15] 2021 1 4 0 5 No Yes 3D No

Our Model 2022 1 4 1 6 Yes Yes 2D Non-linear

3 Model Description

Inspired by the works presented in Sect. 2, we propose a wildfire simulation
model based on CA. Applying a stochastic evolution, the model is characterised
by the composition of a combustion matrix with wind currents. Furthermore, in
order to maintain the environment cycle realistic, it is also proposed a non-linear
recovery function based on an exponential probability for burnt cells.

Figure 1 shows the possible states for each CA cell. The state “vegetation”
(in green) represents the cells that have fuel material. It is a state that does not
influence others, but can be influenced by the fire states. States “initial-fire”,
“stable-fire” and “ember” (orange, red and dark-red, respectively) represent the
fire states, where each one has a different local fire intensity (defined later).
When a fire is over, the cells change to the state “ash” (grey). In this state,
there is no likelihood of spreading fire to other cells or catching fire again, unless
fuel material in this position recovers. Finally, the state “water” (blue), is a state
defined at the beginning of the simulation, and does not interact with any other
state, but it can serve as a barrier if a fire takes its direction.
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Fig. 1. Possible states for the cells of the CA described by different colours. (Color
figure online)

Cells change state according to transition rules, which here we call fire prop-
agation rules. These rules use a combustion probability matrix that defines the
probability of the central cell to ignite through the propagation of fire from its
closest cells (Moore’s Neighbourhood), whether they are already in some state
of fire. The proposed combustion probability matrix can be seen in Fig. 2a. The
figure shows a central cell in the state “vegetation”, i.e., capable of igniting. Each
cell in the neighbourhood of the central one has a probability of propagating the
fire. For example, the cell to the right of the central cell has a probability of
25% of propagation. Furthermore, the total burning time of a cell lasts a few
time steps and the central cell is influenced by all the cells in its neighbourhood,
increasing the probability of ignition when accumulated.

(a) Combustion matrix (b) Wind force vector

Fig. 2. Combustion probability considering a northeast wind: (a) combustion matrix
and (b) force vector with the direction and intensity of the wind.

It is known that certain factors can influence how the flames spread in a
wildfire [18]. In our work, the wind was defined as an influencing factor. In
the combustion matrix (Fig. 2a), one can see that the lower-left cell has a higher
probability of propagation (100%) in comparison to the upper-right cell (12.5%).
This difference in the probability is due to the composition of the combustion
matrix and wind currents. In order to facilitate the visualisation, Fig. 2b presents
the wind influence as a force vector. This vector constitutes the influence com-
position of all cells that are in the neighbourhood of the central cell. As a result,
we have the wind direction and its intensity.

The model has two coefficients to adjust the fire behaviour: the calorie (λ)
and the wind factor (δ). The calorie λ is used to produce different scales of
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wildfires, i.e., it represents the global fire intensity. For its implementation, the
coefficient is applied to each cell of the combustion matrix (Fig. 2a). In turn, the
wind factor δ represents a cardinal/collateral value that indicates the direction of
the wind. For instance, considering Fig. 2b, the value of δ would be “northeast”.
From this coefficient, it is possible to rearrange the combustion matrix (done
by means of rotations) in such a way that its values represent the specified
direction. Since the combustion matrix represents a predefined proportionality
of fire propagation, both coefficients, λ and δ, modifies these values maintaining
the same proportion. Furthermore, from these coefficients, the model derives all
parameters used in the simulation, including the CA rules.

In addition to the fire propagation rules, our model also implements a tran-
sition rule for the recovery of burnt vegetation. That is, unlike the other models
of the literature presented in Sect. 2, in our model, a cell that is burnt, i.e., in
the state “ash”, can return to be a cell in the state “vegetation”. Vegetation
recovery is an important process to consider, as some biomes are highly resilient
to wildfires and have a rapid recovery capacity. Described by the Generating
Function (GF) in Eq. 1, it defines the probability of recovering Pr of a cell xij of
the 2D lattice. If a time of idleness is defined, i.e., a period after the burn where
no recovery occurs, then the probability is zero. Otherwise, the probability is
equal to the square of the counting of time steps since the cell xij turn to ash
(tsr) over a power of 10. Defined by the variable a, this exponential represents
the longitudinal extent of the probability distribution.

Pr(xij) =

{
0.0, if idle
(tsr)

2
/10a, otherwise, such that tsr ≥ 1 and a ≥ 1

(1)

In order to take the model closer to reality, the GF is defined as an expo-
nential, in which the applied probability is proportional to the number of time
steps, i.e., cells that have been burnt for a long time are more likely to change
state. Other types of functions would not print the desired behaviour. On the
one hand, a constant probability function would not have a temporal effect on
the recovery of the flora, i.e., it would not imply that the longer a cell is burnt,
the more likely it is to be reborn. On the other hand, using a linear probabil-
ity function, although the temporal characteristic is present, would imply an
accentuated probability of recovery for cells that have just been burnt.

Figure 3 illustrates examples of Probability Density Functions (PDF)
(Fig. 3a) and Cumulative Distribution Functions (CDF) (Fig. 3b), obtained
through the GF (Eq. 1). The PDF and CDF curves were computed using a
process derived from the Monte Carlo method [10] (each curve with a sample
size of 100m). The variable a affects the height of the PDF curve, i.e., it increases
the distribution of data over more time steps. According to the data obtained,
the value of a equal to six (a = 6) presented the best behaviour intended. In
this case, the PDF shows that the highest probability of a cell being reborn is
reached around the time step 160. In turn, in CDF, from the time step 300, the
probability of a burnt cell being reborn is almost 100%, considering that the
limx→∞ CDF = 1.0.
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(a) Relative Probability (b) Cumulative Probability

Fig. 3. Probability distribution for the recover of cells after a complete burning.

CA Rules: Taking into account the characteristics and parameters of the model
presented, the fire propagation rules can be described as follows:

– If the central cell is in the state “vegetation” and there are no cells in a fire
state in the neighbourhood: maintain the same state;

– If the central cell is the in state “vegetation” and a cell cl in the neighbourhood
is in a fire state: there is a probability to change to the state “initial fire”;
{P (“initial fire”) = combustion-matrix(cl) × local-fire-intensity × (λ)}

– If the central cell is in the state “initial fire”: it is not influenced by other cells,
maintains this state for 3 time-steps and switches to the state “stable fire”;

– If the central cell is in the state “stable fire”: it is not influenced by other
cells, maintains this state for 3 time-steps and switches to the state “ember”;

– If the central cell is in the state “ember”: it is not influenced by other cells,
maintains this state for 10 time-steps and switches to the state “ash”;

– If the central cell is in the state “ash”: it is not influenced by other cells.
It can change to the state “vegetation” according to the recovery function
(Eq. 1);

– If the central cell is in the state “water”: there is no interaction with others
states.

Model Parameters (Values Obtained by Preliminary Experiments):
calorie (λ = {0.08, 0.16, 0.24}); wind factor (δ = {{cardinal} ∪ {collateral}});
local fire intensity (“initial fire” = 0.6; “stable fire” = 1.0; “ember” = 0.2); dwell
time of states with active fire (“initial fire” = 3ts; “stable fire” = 3ts; “ember”
= 10ts); recovery time step (tsr = {1..} ‖ tsr ∈ N∗); and, the exponent (a = 6).

4 Simulations and Analyses

This section describes the simulations and analyses performed with the proposed
model. It was implemented in the GameMaker [7] engine and in the C program-
ming language, where the former was used for visualisation and the latter for
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mass processing. All simulations have run for 300 time steps, while the mass
experiments consist of 100 executions per simulation, using different seeds to
avoid outliers. Screenshots are composed of a CA lattice (1024 × 1024) in the
same time step intervals ts = {20, 50, 100, 200, 300}.

Figure 4 presents three scenarios (S1, S2 and S3) of wildfires using our pro-
posed model. Each scenario implements a different caloric coefficient: λ1 = 8%
(Fig. 4); λ2 = 16% (Fig. 4b); and λ3 = 24% (Fig. 4c), respectively. The evaluation
of different calories is very important, since some biome and climate character-
istics (e.g., type of vegetation, seasonality, humidity, temperature) can influence

(a) Scenario S1: (λ1 = 0.08)

(b) Scenario S2: (λ2 = 0.16)

(c) Scenario S3: (λ3 = 0.24)

Fig. 4. Evolution of the model in three different scenarios, in which there is the presence
of wind currents from east to west and different calorie coefficients.

how the flames behave whether a wildfire occurs. Thus, the main objective of
these simulations is to, empirically, observe the evolution of the flames in relation
to the caloric coefficient, so that it would be possible to calibrate the model and
bring its behaviour closer to the characteristics of real wildfires.

In the beginning, all cells are in the state “vegetation”. Intentionally, a spark
is placed in the centre of the lattice to start the fire. In the scenario S1, one
can observe that the propagation of the fire is slower compared to the other two
scenarios. In S2 and S3, all cells within the wildfire radius went into combustion,
differently from scenario S1. This is due to the fact that the coefficient calorie
was weakened in S1. Observing Fig. 4a (ts = 300), there are several intact green
areas within the burnt area, not resulting from the recovery of the vegetation
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(depending on environmental conditions, a part of the vegetation may not be
affected in real wildfires). In the scenarios S2 and S3, in which the coefficient
calorie is stronger, all cells ignited within the radius of the wildfire. In S3, in
addition to the burning of all cells, the speed of fire propagation was faster. For
instance, in S3 with 200 time steps, the burn radius is close to that of S2 with
300 time steps. Finally, it is worthy to highlight the recovery of cells in the state
“ash”, from the centre (older burnt cells) to the edges (recently burnt cells),
which characterises the proposed recovery function (see Eq. 1).

(a) S2 (λ2 = 0.16) (b) S3 (λ3 = 0.24)

Fig. 5. Simulations performance in the scenarios S2 and S3.

This analysis is even more evident by observing the charts of Fig. 5, which
show the total number of burnt cells and time steps required for the fire to
reach one of the lattice edges in all simulations, considering scenarios S2 and S3
(Figs. 5a and 5b, respectively). As it can be noticed, the increase of 50% in the
combustion coefficient resulted in an increase upper than 100% in the number
of burnt cells (300,000 vs. 700,000) and a reduction of approximately 33% in the
time steps needed to reach the lattice edge (950 vs. 1,240).

In a second experiment, an obstacle was built in the direction of the fire
(southwest). Figure 6 presents a scenario (using λ = 0.16 and a = 6) where the
fire goes towards a lake (cells in blue representing state “water” [5]). From 100
time steps, it is possible to notice that the flames reach the lake and, in that
direction, the fire propagation is interrupted. However, the flames manage to go
around the lake and reach the opposite shore. Despite being an initial experi-
ment, this is an important variable to be considered in wildfires, to understand
which factors would influence the blocking of the flames. For instance, although
water flows are obstacles, in some real wildfires, flames are able to cross rivers,
depending on their width, through the dispersion of sparks by the wind.

In order to better visualise the influence of wind currents, Fig. 7 shows two
scenarios where the wind force (δ) is opposite. In the first one (Fig. 7a) the
wind current is cardinal east ↔ west, whereas in the second one (Fig. 7b) it is
collateral northwest ↔ southeast, both using (λ = 0.16) and (a = 6). Besides,
the figures were divided into Cartesian quadrants, making it possible to compare
and quantify burnt cells (state “ash”). Figure 7a, in which the wind current is
from east → west, has a total of 6435 burnt cells, where 76.93% (4951 cells) are
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Fig. 6. Propagation of the wildfire towards a lake as an obstacle.

in quadrants II and III, and 23.06% (1484 cells) in quadrants I and IV. On the
other hand, when the wind current from west → east, the fire spreads in the
opposite direction. From 5743 burnt cells, 92.72% (5325 cells) are in quadrants I
and IV, while 7.27% (418 cells) are in quadrants II and III. The same behaviour
is observed in Fig. 7b. Applying a wind current from southeast → northwest,
from 5581 burnt cells, 47.84% (2670 cells) are just in quadrant II, while 52.15%
are distributed over the others. When the wind current is from northwest →
southeast, from 6457 burnt cells, 62.36% (4027 cells) are in quadrant IV, while
37.63% are distributed. These results are consistent with the expected influence
of wind currents, since the fires have started exactly at the centre of the lattice.

(a) West ←→ East (b) Northwest ←→ Southeast

Fig. 7. Assessment of the influence of wind currents through Cartesian planes.

5 Conclusion and Future Work

This work proposed a model for wildfire simulation through the application of
cellular automata. Among its main characteristics, one can highlight (i) the pres-
ence of different states for the fire, which makes it possible to simulate different
intensities of flames; (ii) the presence of wind currents that influence the fire
direction; and, (iii) a non-linear recover function for the burnt vegetation.

According to the preliminary analyses, it was possible to conclude that our
model achieves the expected behaviour. It was able to satisfactorily simulate,
considering the characteristics presented, the fire behaviour in the event of a
wildfire. The spreading of the flames presented clear characteristics of a stochas-
tic model, and the wind currents were able to direct these flames. Moreover, the
proposition of a recovery function allowed to print more realistic characteristics,
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mainly, compared to a random function, which, in turn, gave a high probability
to the vegetation to grow in the time step subsequent to its burning.

Regarding future works, we intend (i) to add more states to the vegetation,
bringing it closer to the characteristics of the Cerrado, a biome in our loca-
tion that frequently suffers from wildfires; (ii) to compare our model with other
wildfire simulation models present in the literature; (iii) to evaluate the con-
struction of a three-dimensional model, which would allow the implementation
of fire propagation by roots and wind; (iv) to make a deep study of the sensi-
tivity of the model’s parameters; and (v) to apply evolutionary computation in
the optimisation this parameters [17], taking into account real data.
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Abstract. Cellular Automata have successfully been applied to the mod-
eling and simulation of pedestrian dynamics. These simulations have often
been focused on the evaluation of situations of medium-high density, in
which the motivation of pedestrians overcomes natural proxemic tenden-
cies. The COVID-19 outbreak has shown that in certain situations it is
instead crucial to focus on situations in which proxemic is amplified by the
particular affective state of the individuals involved in the studied scenario.
We present the first steps in a research effort aimed at integrating results of
quantitative analyses concerning effects of affective states on the percep-
tion of mutual distances by pedestrians of different type and the modeling
of movement choices in a cellular automata framework.

Keywords: Cellular automata · Pedestrian simulation · Affective
state modeling

1 Introduction

The perception and evaluation of distances, especially mutual distances among
people, is a topic of relevance to different disciplines and decision making activi-
ties, ranging from psychology to architectural design. In general, having a model
of this phenomenon is relevant whenever one needs to understand how pedes-
trians move throughout an environment in situations where their comfort zones
may be threatened.

The concept of proxemic distances introduced by Hall [8] describes how peo-
ple perceive space differently when interacting with others, with their behaviour
heavily influenced by internal (e.g., age, gender, emotions) and external factors
(e.g., the environment, culture, existing relationships with the other person or
people involved).
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The global pandemic brought by the COVID-19 virus also contributed to
change even more how people approach others, modifying the way distances
are perceived not only according to the different regulations that every country
implemented to deal with the outbreak, but also according to the fear of being
infected. This topic has become even more relevant for scientific investigation,
although unfortunately pedestrian models are usually more focused on situations
in which medium-high densities are easily reached, and also easily accepted by
pedestrians since their motivations (e.g., the need to employ a public transport
facility) are preponderant over the natural tendencies they adopt in normal
situations.

Pedestrian dynamics have always been of interest for multiple disciplines,
and have always been investigated from different points of view. Including the
Cellular Automata (CA) modelling approach, in which the spreading of emotions
and proxemics have also been investigated. Works concerning the introduction
of emotions [10,12,13] and proxemics [1,14] in cellular automata models are
already present in the literature, but they tend to mainly involve emotional
models [3,5,11], proxemic theories [8] and well-grounded cellular automata con-
cepts [2] with changes in the pedestrians’ behaviour only dictated by ad-hoc
formulas. What is missing, in these cases, is the utilization of information about
actual measurements regarding distances and their perception, acquired through
systematic experiments carried out more recently than the pioneering work of
Hall. Considerations that can be obtained from these times of global pandemic
are also important to be brought on board, since they would have been impos-
sible to even conceive only a few years ago.

This is why, in this work, we focus our efforts on investigating the influence of
affective states, intended as states containing a measure indicating how a person
feels when faced with a particular situation, influenced both by internal factors
related to the person himself/herself and external ones tied to the environment in
which the person is. In particular, this preliminary investigation involves pedes-
trian proxemic tendencies, basing the modeling of these states on data collected
from an experiment performed with human subjects rather than relying only on
theories presented in the literature.

Our aim is to investigate pedestrian dynamics with a focus on the prox-
emic behaviours of people influenced by different affective states, investiga-
tion carried on through the modeling of a 1-dimensional and a 2-dimensional
cellular automata. In order to do this, data acquired from an online experi-
ment involving the perception of proxemic distances in the COVID-19 era [6]
are analysed to gain knowledge about how pedestrians with different affective
characteristics handle distances from others. Moreover, the work here presented
concerns itself with low density simulations, to effectively see how pedestrians
modify their behaviour given different affective factors without having crowding
mechanics overpower their natural proxemic tendencies as they move inside the
environment.
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The outline of the paper is the following: Sect. 2 briefly explains the online
experiment through which we gathered the data we used; in Sects. 3 and 4 the
formal models of the 1D and 2D CA respectively are presented, together with
some preliminary results obtained with a virtual simulation carried on with the
NetLogo tool; lastly, conclusions regarding the presented work are drawn in
Sect. 5.

2 Affective State Design: Data from Experiments

In order to parametrize affective states inside the CA models according to real
data, we started working on data coming from a previously executed online
experiment, carried out with the aim of studying how distances perceived as
comfortable varied in COVID-19 times in different circumstances.

The experiment was made public in the period between 27/12/2020 and
18/01/20211, and it involved 80 Italian subjects whose only requirement for the
study was not to have previously contracted COVID-19. The population age
varied between 16 and 92 years old and, regarding demographics, 44 of them
were women and 25 of them were elderly (i.e., aged 65 and older).

The designed procedure was composed of two main phases: the first one
focused on questionnaires to gather information about the participant, while the
second one proposed the active part of the experimentation in which the subjects
were involved in a figure-stop activity inspired by previous studies [4].

In the figure-stop activity, subjects were presented an avatar, chosen in
respect of their indicated gender and age group, positioned on the left side of
an environment. They were then asked to move their character along a line and
towards another figure, of the opposite gender and age group, positioned at the
other side of the environment. Their objective was to move closer to the other
figure and stop the second they sensed that shortening the distance even more
could make them uncomfortable (Fig. 1).

Fig. 1. One of the figure-stop activities performed by the participants.

1 We think it is relevant to mention the precise period since the perception of COVID-
related risk changed significantly according to trend in the number of infections.
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This activity was proposed for a total of eight time during the experiment,
with changes regarding the environment the participants had to move their
avatar into (an indoor one, a restaurant, and an outdoor one, a park) and the
presence or absence of masks on both the moving figure and the still one, which
led to the creation of four different configurations where: (1) the subject’s avatar
and the other avatar both had a mask on, (2) only the subject’s avatar had a
mask on, (3) only the other avatar had a mask on and (4) no avatar had a mask
on.

The experiment allowed us to gather demographic data together with infor-
mation about the proxemic distances adopted by the participants in the figure-
stop activity. Through the collected questionnaires, we then managed to gather
gender, age, mask condition, sociality levels and fear of contagion data, which
all proved to influence in some way the distances the subjects chose as they
performed the tasks.

Thus, from the data analysis of this experiment results it is possible to cor-
relate the distance perceived as safe with the other factors, and to relate the
distances, chosen varying the environmental conditions, to the 4 distances of the
Hall’s space. The information then extracted from the experiment to be included
in the models were then gender, age group, mask information, sociality levels,
fear index and Hall’s proxemic spaces derived from the recorded distances.

3 1D CA Model

We are firstly going to describe the simplest CA that can be used to model the
experimental scenario described in Sect. 2 in the most natural way possible. In
order to keep the model as simple as possible, the affectivity has been embedded
into their local rules. As a matter of fact, introducing it inside the CA state
set would have produced a too complex design with respect to the considered
scenario.

This approach leads us to have a family of different cellular automata since
the local rule depends on the value m, which is the minimum distance the moving
person can have from the non-moving person in the environment. This happens
because the m value is derived from the affective states of the two people involved
in the situation described by the CA. In particular, the moving person’s infor-
mation derived from the experiment and the other person’s mask condition are
used to select a Hall’s space with a certain probability, which gives the upper
and lower bound for the m value to be randomly selected between them. The
scale of discretization is of course important: traditionally, CA based pedestrian
models employ 40 cm sided cells [2] and we also considered this as a baseline
value for the model.

The involved one-dimensional CA are then triples (S, r, f) where the set of
states S = {0, 1, 2}, the radius r ∈ N and the local rule f : S2r+1 → S are
defined as follows.
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As far as any cell of the one-dimensional lattice is concerned, states 0, 1, 2 cor-
respond to an empty cell, a cell containing a moving person and a cell containing
a resting person, respectively.

The radius r of the CA assumes the value of the ceiling of m, the minimum
distance we described before, and this could lead us to two different CA classes.

When m is an integer, the CA radius is r = m and the local rule f is defined
for any (a−r, ..., a0, ..., ar) ∈ S2r+1 as follows:

– if a0 = 2,
f(a−r, ..., a0, ..., ar) = a0,

– if a0 = 1,

f(a−r, ..., ar) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if a1 = ... = ar = 0

0 if ∃ 0 < i < r s.t. (ai = 1 ∨ ai = 2) ∧ a−1 = 0

a0 if (ar = 1 ∨ ar = 2) ∧ a1 = ... = ar−1 = 0

a0 if ∃ 0 < i < r s.t. (ai = 1 ∨ ai = 2) ∧ (a−1 = 1 ∨ a−1 = 2)

,

– if a0 = 0,

f(a−r, ..., ar) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a0 if a−1 = a1 = 0
a0 if a1 = 1 ∧ a2 = ... = ar = 0
a0 if a−1 = 1 ∧ if ∃ 0 < i < r s.t. (ai = 1 ∨ ai = 2)
1 if a−1 = 1 ∧ a1 = ... = ar−1 = 0
1 if ∃ 1 < i < r s.t. (ai = 1 ∨ ai = 2) ∧ a1 = 1

.

When m is not an integer, on the other hand, the CA radius is r = �m�.
The local rule f is defined for any (a−r, ..., a0, ..., ar) ∈ S2r+1 as specified before,
except for the following case:

– if a0 = 1,

f(a−r, ..., a0, ..., ar) = 0 if (ar = 1 ∨ ar = 2) ∧ a1 = ... = ar−1 = 0.

As usual, the lattice is a one-dimensional array of cells where every cell is
associated with a certain state from S. Moreover, the state of each cell is updated
at every discreet time step by the local rule f on the basis of its own state and
the ones of both its r-neighbouring cells on the left and on the right.

The second CA class we described causes an oscillatory movement in the
CA dynamics, since the moving person finds himself/herself switching from a
position where it is still far enough from the other to a position where it is
already too close to the other, which is absent when the CA with r = m are
considered.
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Fig. 2. The user interface of the NetLogo model used for the 1D CA simulation.

3.1 Implementation and Results

After the formalization of the cellular automaton was concluded, we then pro-
ceeded to try and simulate the automaton transition function through the Net-
Logo platform [15] (Fig. 2).

The simulation allows the user to choose different options for the setting, such
as the environment of the experiment, the gender and age of the main moving
pedestrian and the mask configuration for both the moving and the resting
person, basically following the specification highlighted in the online experiment
to obtain the same condition in the in-vitro simulation involving the automaton.

Since every parameter is easily set and visible throughout the entire execution
of the simulation, the different colours are used to differentiate the two types of
pedestrians presented in the simulation: the one highlighted in red on the left
is the moving person, while the one coloured in blue is the resting person. Just
like it happened in the online experiment, the moving person is always setup to
be on the left of the resting person, and the only modification regards the place
in which it gets set up: the positions of both pedestrians are, in fact, randomly
selected before the simulation can be started, with each of them being in one
specific half of the environment.

Given how the simulation is built in order to feed on the data and the infor-
mation gathered from the experiment, reproducing the same situations proposed
during the online trials performed by human participants, the CA behaviour mir-
rors the one already observed. The conditions on the moving and on the resting
pedestrians are the same that were implemented in the experiment, so that we
could see if the transition function of the CA worked to correctly show what we
were expecting after analysing those results.

The only notable difference from the online experiment lies in how the mov-
ing person behaves in the case r = �m�, regarding the oscillatory behaviour
described in the formalization. This behaviour was not shown in the experi-
ment, given how space was treated differently, but it is well described by the
transition function defined for the CA.
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4 2D CA Model

The two-dimensional CA we are going to introduce is based on a rectangular
lattice L = {0, ...,M − 1} × {0, ..., N − 1} representing the discretization of the
real space, where M and N are the horizontal and vertical sizes respectively.
Periodic boundary conditions are applied to L so that it can be viewed as a
two-dimensional discrete torus.

For any cell x ∈ L and any h, the h-radius Moore neighborhood of x is
defined as:

Nh(x) = {y ∈ L : ||x − y||∞ ≤ h}
where || · ||∞ is the usual infinity (or maximum) norm.

The set of states of the CA is S = DIR×AS×G×AG×M ∪{�}, where � is
the state assigned to empty cells (i.e., in which there is no person) while a tuple
from the cartesian product is the state assigned to cells containing a person. The
sets involved in the cartesian product are defined as follows:

– DIR = {0, 1, ..., 8} is the set of the possible moving directions for a person.
Namely, numbers from DIR refer to the following direction vectors: v0 =
(0, 0), v1 = (1, 0), v2 = (1, 1), v3 = (0, 1), v4 = (−1, 1), v5 = (−1, 0), v6 =
(−1,−1), v7 = (0,−1), v8 = (1,−1). In this way, 0 concerns a resting person,
while every other value j ∈ DIR with j �= 0 refers to a person at a certain
position x ∈ L with a moving direction vj ;

– AS = {relaxed,worried, scared} is the set of the so-called affective states of
a person. Each value from AS is obtained by combining data about sociality
and fear previously obtained through the experiment and structured in three
different levels;

– G = {male, female} is the set of the genders of a person. Given the data
that were collected, we only involved the male and female options without
including more genders;

– AG = {y, ya, a, e} is the set of age groups a person could belong to (y =
young, ya = young-adult, a = adult, e = elderly);

– M = {on, off } is the set of the possible settings for a person as far as a mask
is concerned, i.e., the values specifying if the person wears a mask or not.

We point out that, unlike the case of the 1D CA model, the affectivity details
are now included inside the set of states of the CA, since we want to model more
complex situations contemplating people with different characteristics moving
together inside a two-dimensional environment. With an abuse of notation, for
any state s ∈ S and any i ∈ {1, ..., 5}, si will denote the i-th component of s
whenever s �= �.

This way, the CA configuration is a map c : L → S associating every cell
x ∈ L with a state c(x) ∈ S. Thereafter, regarding the dynamical evolution of
the CA, for every t ∈ N, any x ∈ L and every i ∈ {1, ..., 5}, ct, ct(x) and cti(x)
will denote the CA configuration at time t, the state of the cell x inside ct, and
the (ct(x))i, i.e., the i-th component of ct(x), respectively. The radius of the CA,
on the other hand, is the value r ∈ N defining the largest set Nr(x) of positions
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that a person located in any cell x ∈ L is able to detect and observe around
himself/herself.

Regarding its evolution, the considered CA is non deterministic. Because of
this, in order to describe its dynamical evolution {ct}t∈N starting from any initial
configuration c0 ∈ SL, we will illustrate how the configuration ct at time t is
transformed by the CA into the configuration ct+1 at time t + 1.

Before proceeding we point out that, in our model, one time step corresponds
to 0.33 s which, in addition to also considering 40 cm sided cells, leads to a
walking speed of about 1.2 m/s, which is in line with typically observed values [7].
Moreover, each time step consists of three different stages.

During the first one, for any time t ∈ N the configuration ct is transformed
into the intermediate configuration dt in such a way that ∀x ∈ L, ∀i �= 1, dti(x) =
cti(x). In other words, only the direction of every cell x containing a person may
change during this stage.

For any cell x ∈ L with ct(x) �= �, the value dt1(x)is computed as follows.
Firstly, the cells y ∈ Nr(x) s.t. ct(y) �= �, i.e., containing a moving or resting
person, are identified. Then, according to the values cti(y) with i ∈ {2, ..., 5} (i.e.,
the components of the state of the neighboring people previously detected), the
minimum possible distances between the person at cell x and each of them
is determined through an appropriate function. Such distances are computed
taking into account the affective information of the person in cell x and the
mask condition for the person in cell y. These information are used to designate
a probabilistic distribution weighting the selection of a certain Hall’s space, then
proceeding to randomly select an m distance between the upper and lower bound
of the drafted space as we previously described for the 1D CA.

This process results in a subset D(x) ⊆ {1, ..., 8} of possible directions the
person at x could adopt for their next movement. Namely, j ∈ D(x) if and only
if the person, moving alongside the direction vj , is not going to get nearer to
the other people in cells y ∈ Nr(x) that are already at a smaller distance than
or on the edge of the distance m computed between them and the person at
x. Once D(x) has been computed, we have two different cases; in the first one,
when D(x) = ∅, it holds that dt1(x) = 0, corresponding to the person at cell
x not move; in the second one, when D(x) �= ∅, dt1(x) gets randomly chosen
from D(x), corresponding to the person standing at x moving in the selected
direction. In this way, dt(x) has been defined.

Then, the second stage manages possible conflicts. In fact, it may happen
that, referring to the configuration dt, for a certain empty cell x there exist at
least two non-empty cells y1 and y2 belonging to its neighborhood N1(x) where
there are non-null dt1(y

1) = k1 and dt1(y
2) = k2 with k1, k2 ∈ DIR such that

x = y1+vk1 = y2+vk2 . In other words, there are two people in two distinct cells
whose directions dt1(y

1) and dt1(y
2) would move them into the same empty cell x.

The configuration dt is then transformed into another intermediate configuration
et. When a conflict is found, every person involved in it, with the exception of a
randomly chosen one, has their direction set to 0, blocking their movement.
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Finally, the third stage allows getting ct+1 from et. Namely, this step describes
the movement of each moving person from a cell x towards the adjacent one
identified by the moving direction of the person in et1(x). This behaviour is
formally expressed as:

– if et(x) = �,

ct+1(x) =

{
et(y) if ∃ y ∈ N1(x) s.t. x = y + vk with k = et1(y)
et(x) otherwise

,

– if et(x) �= �,

ct+1(x) =

{
� if et1(x) �= 0
et(x) otherwise

.

4.1 Implementation

The model allows the user to set the preferred environment to observe during
the simulation (indoor or outdoor, as presented in the online experiment) and
to set the initial density for both the moving people and the non-moving ones.
The maximum density that can be set for both type of people is 10%, so that
the total population density in the environment will never exceed 20%. This is
aligned with our intention of utilizing low densities for these trials.

The moving pedestrians inside the simulation have been modeled to roam
inside the environment by random walk, using a built-in NetLogo function to
randomically select one of their allowed directions to plan their next step. Also,
given that the data acquired through the experiment pointed how the distances
selected by the participants were not only influenced by their personal param-
eters but also by the mask condition of the other person they had to get close
to, every pedestrian computes two different preferred distances: one to be main-
tained from masked people, and the other to be maintained from non-masked
people.

Monitors allow the user to have under control the quantities of the pedes-
trians on screen together with the indication of the current automaton range
considered and of how many times a moving person found himself/herself unable
to move around due to it being surrounded too closely by others. For an easier
visualization, the moving people are represented by circles and the non-moving
ones by squares. With the same purpose, masked pedestrians are identified by
the color white while the non-masked pedestrians are shown with the color red
(Fig. 3).

Regarding possible conflicts and collisions, a clarification needs to be made:
in our specific case, as this is only a preliminary simulation of the model, it is
not contemplated that two moving pedestrians could find themselves walking
to and standing on the same patch. This is given by the fact that, as it was
mentioned before, we intended to work with low crowd density inside the envi-
ronment and, moreover, because the behavioural rules we implemented actively
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Fig. 3. The user interface of the NetLogo model used for the 2D CA simulation. (Color
figure online)

keep the pedestrians far from each other. They move around, but always keeping
into consideration that they have to avoid others in order to remain comfortable.
The combination of these two factors lead the pedestrians to remain at a dis-
tance from others and never actually occupying the same space out of necessity,
for example. A generalization of the model here proposed, without the clear lim-
itations introduced regarding density and pedestrians’ behaviour, should then
be able to properly address conflicts for space and avoid collisions. There are
already some approaches, in the literature, that could be adopted in order to
deal with this issue, like the one presented in [9] regarding friction.

4.2 Preliminary Results

Table 1. Table showing the percentage of pedestrian remaining stuck for each timestep
in simulation performed with different initial densities.

Density (%) Moving Still
Stuck Events
(on 100 ts)

Pedestrian stuck
per ts (mean)

1% 11 16 4 0.04 (0.36%)

5% 56 68 2770 27.70 (49.46%)

10% 123 127 8551 85.51 (69.52%)

15% 177 188 15358 153.58 (86.77%)

20% 277 329 27269 272.69 (98.44%)
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Table 1 shows some preliminary results obtained by making the 2D simulation
run for 100 timesteps at a time, each time with different pedestrian densities as
initial configurations. We previously showed how the densities of moving people
and non-moving people can be set separately, in order to set them differently for
different trials, but in this case we kept them equal so that, summed up, they
could reach the densities that are reported into the table. The different numbers
of people are derived from the way the environment is set up, since every empty
patch randomly chooses a number than, if smaller than the density set through
the slider, allows them to spawn a turtle representing a person.

As we can see from the data, as the pedestrian density inside the environment
grows, the number of events recording how a moving person find himself/herself
stuck grows rather quickly, and that is clearly visible looking at the percentage
indicating the mean of moving people recorded as still per timestep. The per-
centage reached even with a density of only 20%, which is not considered a high
density in terms of crowding, indicates how, despite the environment not being
too crowded for people to move around into, the distances set by the affective
state of every person are held in high regard and prevent the pedestrians from
moving around when others are perceived too close to allow movement. Despite
being gathered from a preliminary trial based on data coming from an experi-
ment in a 1D environment, the results reported here are already quite promising
in terms of how affective states modify pedestrian behaviour. The affective state
we modeled in the CA effectively influences the pedestrians’ choices, driving
them to get farther from people too close to them and making them stop the
moment every choice regarding direction they could take would only make them
uncomfortable.

5 Conclusion

In the work hereby presented, we aimed at tackling the problem of introducing
affective states inside cellular automata modeling by starting from realistic data
rather than on theoretical frameworks already studied in the literature. We then
proceeded to show the 1D and 2D models we designed in order to address the
matter, illustrating how data coming from a previously executed online exper-
iment was used in order to insert the concept of affective inside the models.
Simulations showing both of the models through NetLogo were then presented,
together with some preliminary results highlighting the effects of affective states
influencing proxemic distances on pedestrians’ behaviour.

Future work in this direction includes the investigation of more experiments,
in order to see if it is possible to also use other types of data to model the affective
states to be introduced in the models, together with a transition towards agent
modeling: with the 2D CA model, in fact, as other works in this same research
area, we focused on the behavioural rule for the single cell rather than on the local
rule used for the 1D model, which is a method near to agent modeling. Shifting
towards that approach would also help us manage more easily the heterogeneity
intrinsically present in the simulation.
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Abstract. Presented contribution deals with general concept of pedes-
trian density estimate appropriate even for cellular models of pedestrian
dynamics. Using kernel approach, authors are able to cover multiple den-
sity estimate methods (e.g. point approximation, Voronoi approach) and
to control required features by “blur” parameter. With respect to specific
setting, final density can be smooth enough even for discreet lattice and
still keep other requirements.

Keywords: Pedestrian dynamics · Density estimate · Cellular model

1 Introduction

Models simulating pedestrian movement may differ with purpose, level of com-
plexity, dynamic definition or e.g. the way how space and time is handled. These
differences affect the outputs, some models brings just macroscopic estimates of
total occupancy, average flows or total evacuation time. Multiple model classes,
including cellular automata, go deeper providing essential pedestrian quantities
as actual density in given area or actual velocity of agents representing single
pedestrians.

Even flow, velocity and density are considered to be fundamental quantities
in the both traffic flow [1] and pedestrian dynamics [2,3] the optimal estimate
of pedestrian density is still the contemporary topic in question. The proper
estimate in cellular models is much more complex as both the space and time
are roughly discretized.

In this contribution, we will recall complex density estimate approach using
kernels [4] and illustrates its features. Presented concept was developed for an
arbitrary data source and it is fully compatible with CA model data structure,
as will be shown further.

Applying the same or at least similar approach for model and real world data
is crucial for proper calibration and any further analysis and applications. The
purpose of this article is to spread developed methodology among the pedestrian
modelers community and, in general, discuss all possibilities how to evaluate
pedestrian density.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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1.1 Quantities

The standard approach using physical definitions counting the number of pedes-
trians (N) passing through a cross-section within the interval ΔT or standing
in the area (A) enriched by the hydrodynamic approximation

J =
N

ΔT
[ped · s−1], ρ =

N

|A| [ped · m−2], J = ρ · v (1)

were widely studied [5,6].
Such approach can be used for discrete CA data, just the sampling frequency

ΔT or detector area A should be defined with respect to the discretization
applied in the model. Unfortunately results generated by this method are highly
scattered and they could be hardy compared with real data on microscopic
level [7].

The need of more sophisticated analysis based on statistics methods, includ-
ing kernel estimates [3,8–12] or even the methods expressing the density based
on time to collision or minimal distance were derived from Eq. 1. More general
methods interpreting the comfort or crowdeness as independent variables related
to density became popular as they may be more relevant for several use cases.

Authors considered several parametrized kernels types (Gaussian, conic,
cylindrical, cubic) together with Voronoi diagram approach to estimate the den-
sity distribution in the observed area. Voronoi method was studied further and
stabilized by averaging over time in [13].

But, according to us, it is critical to keep comparing used methods and to
identify common aspects as well as differences. From our perspective, individual
density distribution based on kernel approach may be interpreted as general con-
cept where many other methods could be introduced as special cases. Moreover,
with appropriate scaling, kernel approach can be used as good proxy for multiple
above mentioned approaches.

Here should be noted that any outputs of model may be smoothed during post
processing phase. Such approach is completely acceptable as far as the smoothing
techniques conserves the mean (ergodicity requirements) as discussed further. In
cellular automata universe, it make sense to transform pedestrian trajectory
from points to smooth curve using some smart interpolation similarly to [14]
and then resample it with higher frequency. Such approach would enable to use
measurements for continuous space without any limits. Moreover, alternations
of cellular automata avoiding discretization issues has been studied in [15].

1.2 Data-Driven Study

The following parametric study is based on the egress experiment organized in
the study hall of FNSPE, CTU in Prague in 2014, see [16–18] for details. Pedes-
trians (undergraduate students wearing recognition caps) randomly entered the
room by one of three entrances, walked to the opposite wall and left the room
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by one exit. By controlling input flow, different conditions from free flow to con-
gestion in the exit area were achieved. In total, our sample is made up of 2000
paths through 10 experimental runs captured using 48 frames per seconds.

Cellular model generating the data represent a variant of floor filed model
enhanced by pedestrian heterogeneity, adaptive time span and conflict solution
using bonds [19,20].

In order to examine the kernel shape and size, the parametric study is based
on a rectangular static detector 2 m width and 1 m long placed symmetrically in
front of the exit.

To compare experimental runs with different length, the normalized time
tnorm in the meaning that the start is represented by tnorm = 0 and the end by
tnorm = 1 will be used.

Cone, cylinder, cubic and Gaussian kernels are evaluated for wide range of
parameter R ∈ {0.1, 0.2, . . . , 3} while Voronoi distribution, point approximation
were evaluated only once (there is no parameter). First, we will verify the pos-
sibility to mimic all mentioned density evaluation methods by conic kernel and
then, quantitative comparison will be provided.

2 Concept and Definitions

Let us rewrite the definition of density in an area A using distribution inspired
by kernel distribution theory [21–23]

ρ =
N

|A| =

∫
A

p(x) dx
|A| =

∫
A

∑N
α=1 pα(x) dx

|A| =
N∑

α=1

∫
A

pα(x) dx
|A| , (2)

where N represents the number of pedestrians, |A| the size of considered area
A, pα(x) the individual density distribution generated by each pedestrian α ∈
{1, 2, . . . , N} and p(x) =

∑N
α=1 pα(x) the density distribution in the area A.

In a case that area A fills the whole examined area, the individual density dis-
tribution holds normalization condition

∫
A

pα(x) dx = 1, therefore the relation∫
A

p(x) dx = N is fulfilled and the density ρA is called global.
Most of applied kernels used in relation (2) can be parametrized, thus the

density distribution should be written as pα(x, R). No matter the kernel type is,
R expresses the smoothing factor, i.e. we refer it as blur.

Blur manipulates the size of area affected by one pedestrian. Let us label this
area as pedestrian support Aα fulfilling

Aα = {x ∈ A | pαx > 0} (3)

i.e. Aα is the smallest possible subset of A fulfilling
∫

Aα
pα(x) dx = 1.

When an area B ⊂ A covers only the part of the possible area A, the
pedestrian α contributes to the density ρB only partially in case Aα /∈ B, i.e.∫

B
pα(x) dx < 1.
If the kernels intersect the walls or obstacles, they are normalized to keep

pedestrian volume in the eligible area, i.e. their support Aα is trimmed and the
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kernel is re-scaled – therefore the peak of the individual density distribution will
be higher than usual.

2.1 Type of Kernels

If the surroundings is set to the whole considered area and Dirac function is used
as the individual density distribution, the standard approach (1) is obtained.
However there is more different choices of kernels as the individual density dis-
tribution. Denoting xα := xα(t) as the (head) position of pedestrian α at fixed
time t ∈ R+

0 , let us mention a few of them which will be used in further analysis.

Fig. 1. Density map produced by four different kernels with R = 0.5 m. Selected frames
from experimental data [18].

Point Approximation with Dirac delta function

pα(x) = δx,xα

Stepwise Function levels density on whole support

pα(x, R) = Θ (x ∈ Aα(R))
1

|Aα(R)|
with Cylindrical kernel Aα(R) =

{
x ∈ R2 : ‖x − xα‖ ≤ R

}

or Cubic kernel Aα(R) =
{
x ∈ R2 : |x − xα| ≤ R

}
.

Voronoi kernel represent a step-wise approach with fluid kernel shape influ-
enced by agents around.

Each spatial point x ∈ R2 is assigned to the nearest pedestrian α at position
xα. The set of these points is called Voronoi cell and it is denoted as Aα for
pedestrian α [8].
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Aα does not depend on any blur parameter R, only occasionally Voronoi cell
is limited by some maximal size. This can be analytically covered overlapping of
Voronoi and cylindrical support.

For CA models, Voronoi approach is reduced to the question how to
assign/split cells that aren’t occupied. The simplest method would be to assign
the whole cell to nearest neighbor or to split it. As the cell is a unit, it is much
easier than the task to find edges of cells in continuous environment even such
approach may be used as well, assuming pedestrian sits in the middle of the cell.

Conic Kernel

pα(x, R) =
3

πR3
1Aα(R)(x) (R − ‖x − xα‖) ,

where
1Aα(R)(x) = Θ (R − ‖x − xα‖) .

It has several desired features for representing pedestrians compared to the
stepwise kernels, e.g. decreasing trend with increasing distance, limited support
and the independence of one pedestrian to the others.

Gaussian Kernel in a symmetric version, i.e. with diagonal covariance matrix,

pα(x, R) =
1

2πR2
exp

{

−‖x − xα‖2
2R2

}

.

This is the only representative with a limitless area of influence (i.e. with
unbounded support) in this study.

Blur Parameter. R represents the kernel bandwidth in our study, thus it is
comparable through all used kernel shapes. The example of density distribution
with blur equal to 0.5 m for different kernels can be seen in Fig. 1.

We work with all mentioned kernels in their symmetric version here, but in
general, the pedestrian support Aαit could be modified, e.g. elliptical shape with
axis dynamically reacting to pedestrian velocity might be introduced. Further-
more the kernel size can be definitely enhanced by varying in time in accordance
with the conditions in pedestrian surroundings. We will not cover that in pre-
sented study, it is the main point of the following research.

2.2 Smoothing Techniques

The smoothing of density could be realized either by providing measurements
that are less scatter or by filtering of final time series. Both approaches can
trivially replace density jumps caused by entering a new pedestrian into the
detector. As visualized in Fig. 2, weighted moving averages (time smoothing)
may be completely equivalent to kernel estimates (space smoothing) with respect
to the assumption to pedestrian velocity or border conditions.

To be more specific the two options are
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– space smoothing that replace jump-like pedestrian contribution (delta func-
tion) by a space representation of a person. One can imagine kernels, distance-
weighted contributions or cell approach. In highly discrete environment, space
smoothing may by degradated.

– time smoothing that balanced ups and downs. Typically weighted moving
averages, possibly any filtration method conserving mean value

Fig. 2. Equivalence of kernel approach (left) and point approximation processed by
moving average (right).

3 Illustrations and Analysis

As mentioned earlier, the kernel approach may be applied even in situations
when the space is roughly discretized, see illustration in Fig. 3. Two pictures
visualize two consecutive steps of any CA model with square lattice (cell edge
0.5 m). The number of agents in the detector (red rectangle) differs thus the
standard density would jump by 0.5 ped/m2. In case of kernel approach, this
jump would be significantly reduced due to the presence of more agents in front
of the detector. Assuming the average flow through the detector would be equal
to 1.5 ped/TU, the kernel method returning density fluctuating around 1.25
ped/m2 would be more satisfying then saw-like pattern alternating 1 ped/m2

and 1.5 ped/m2.
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Fig. 3. Comparison of point approximation and kernel approach (R = 0.9 m) for
discrete environment, one time step visualized. (Color figure online)

3.1 Similarity to Point Approximation

As we already mentioned that cylinder has similar properties as point approx-
imation for some values of R, let us research this similarity. We prepared for
this examination Fig. 4, where we compare pedestrian count obtained by the
point approximation versus pedestrian count (obtained as median for fixed value
of pedestrian count of point approximation) for an examined kernel - Gauss,
Voronoi, cone and cylinder. It is evident that the closer the axis of the first
quadrant, the closer the Dirac count.

It is seen that the count for blur R = 0.1 m is very similar to the Dirac
count for every kernel. Interesting fact is that the deviation is greater for greater
pedestrian count (and greater values of blur) - the highest the blur, the slope of
the line is lower for every kernel.

3.2 Alternatives of Voronoi Diagram

Time development of pedestrian count (left) and pedestrian count distribution
for different kernels versus Voronoi distribution (right) are denoted in Fig. 5. We
can say that Voronoi diagram has its alternatives among other kernels, specif-
ically for R ∈ (0.7, 1.5) m. However there is greater range for Voronoi than
for other kernels and also slight differences for low densities in Fig. 5 (left).
This undervaluation of Voronoi pedestrian count is evident in Fig. 5 (right). The
greater range could be caused due to the property that Voronoi can resemble
Dirac distribution under specific condition (dense crowd).
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Fig. 4. Similarity to Point Approximation. Median value of kernel pedestrian count
estimates is plotted against corresponding point approximation value. Data taken from
experiment [18].

Fig. 5. Similarity to Point Approximation. Time development of Voronoi and kernel
methods (left) and value of kernel pedestrian count estimates is plotted against cor-
responding voronoi value (right). Data of experimental round 6 taken from [18] used.
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4 Conclusions

No matter the level of discretization is, it worth trying to evaluate the density
in analyzed area using smooth approach conserving desired features of standard
point approximation. Proposed kernel approach represents valid and general
approach covering generally used methods, enabling to control “smoothness”
through blur parameter. To get really smooth values even for model with low
actualization frequency, it would be beneficial to combine presented approach
with trajectory oversampling techniques, but even without that simple applica-
tion of kernel density estimate brings satisfying results.

We would like to note that the calibration and detail parametric study intro-
duced in [4] were used for cellular automata case without any modification.
Though more detail metrics analyzing discrete systems are a subject of further
research.
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18. Bukáček, M., Hrabák, P.: Microscopic travel-time analysis of bottleneck experi-
ments. Transportmetrica A 14(5–6), 375–391 (2018)
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Abstract. We consider the auto-organization of a set of autonomous
vehicles following each other on either an infinite or circular road. The
behavior of each car is specified by its “speed regulator”, a device that
decides to increase or decrease the speed of the car as a function of
the head-tail distance to its predecessor and the speed of both cars.
A collective behavior emerges that corresponds to previously proposed
cellular automata traffic models. We further analyze the traffic patterns
of the system in the long term, as governed by the speed regulator and
we study under which conditions traffic patterns of maximum flow can
or cannot be reach. We show the existence of suboptimal flow conditions
that require external coordination mechanisms (that we don not consider
in this paper) in order to reach the optimal flow achievable with the given
density.

1 Introduction

The collective behavior of interacting autonomous vehicles is an interesting ques-
tion in view of its impact on traffic conditions, such as security or reduced con-
gestion. Our goal is to investigate the capability of autonomous cars, following
each other, to reach a state of global maximum flow, by only interacting deter-
ministically with the preceding car.

Our approach follows the work initiated in [14] of modeling traffic using cel-
lular automaton. The road is seen as a collection of cells and cars are moving
from one cell to another following some rules that we refer to as the speed reg-
ulator. Among the questions of interest is the determination of the maximum
flow as a function of the number N of cars. This is described as the fundamental
diagram, a relation between the traffic flow and the car density ρ = N/L [cars
per unit of length], where L is the length of the road section. This fundamen-
tal diagram usually shows two distinct dynamics, a first where increasing the
density increases the flow and a second one where, due to high density, the cars
interact and traffic jams occur.

Classical analysis of traffic models amount to classify the different dynamics
and identify the conditions for transition, for instance the existence of on/off-
ramp [4,6,7], traffic lights [2], lane changing [15], mixed-traffic [13], and combi-
nations [5].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Real Traffic have been subject to empirical studies where sensors located
on the road provide measurements of various parameters like speeds and head-
tail distances between cars. These works lead to an understanding of the var-
ious dynamics depending on the traffic conditions. In particular to the three-
phase traffic theory [8,10,11]. Roughly, this theory distinguishes the free-flow
phase where cars update their speeds independently, the synchronized flow where
speeds and head-tail distances decrease and tend to synchronize and, lastly the
jammed flow where we observe cars with null speed.

The large amount of data collected from real traffic conditions and the accu-
rate analysis, foster speed regulator designers to devise models that reproduce
the observed dynamics [9,12,17,19,20]. These models introduce new parameters,
such as probabilities, that are wisely tuned to reproduced the observed dynamics.

This paper follows a different approach. We consider a simple collision-free,
deterministic speed regulator, that mimics the behaviour of an autonomous car.
This speed regulator the behaviour of each car. Collectively, it leads to various
possible flow patterns that we want to compute rigorously and check whether
the resulting traffic flow is maximum. We do not intend to reproduce real traf-
fic patterns like those mentioned in the literature. Rather, our long-term goal
is the search for an efficient speed regulator to equip autonomous car whose
performance are better that human drivers.

We start here to consider the simplest speed regulator, which could be used
by autonomous cars, ensuring that: (i) no collision occurs and, (ii) speed is max-
imized. We analyze the dynamic of a pool of cars obeying the speed regulator.

In particular, we find a bound for the maximum flow as a function of the
density that leads to the fundamental diagram. We identify the traffic patterns
of maximum flow - reaching the bound. We show as well that in some non
optimal traffic patterns the cars involved cannot increase their speed due to the
no-collision constraint. In this situation, some external mechanism, that we do
not consider in this paper, is required to allow the cars to switch to a more
efficient traffic pattern.

In Sect. 2 we define the speed regulator. It maximizes the speed va of a car
a according to the head-tail distance d with a leading car b, ensuring that no-
collision occurs. We call viable a configuration where no-collision occurs and
shows that for viable configurations the property d < va is transient, see Propo-
sition 1. Hence, the long-term traffic patterns show d ≥ va, see Proposition 2.
This leads in Sect. 3 to bound the maximum flow, see Proposition 4. The fun-
damental diagram and related maximum flow traffic patterns are presented in
Sect. 4.

Interestingly, the condition d ≥ va plays a similar role as the synchronization
distance in the KKW-model [9,20].

The evaluation of the speed regulator performance requires to understand
the traffic patterns generated. We show traffic patterns where the car’s speeds
are locked to non-optimal values, and the general form of flow-optimal traffic
patterns in Proposition 2. We have also found other traffic patterns that are
metastable in the sense of [16] not included due to the lack of space.
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Unsurprisingly, our speed regulator is similar to several CA traffic models
proposed in the literature. For instance in [12] where it is complemented with
parameters that are tuned to reproduce some traffic patterns and human behav-
ior. Our use of the regulator is different.

2 The Speed Regulator

A (one-lane) road section consists in L cells that can be occupied by only one
car at a time. Cars are moving from cell to cell. Time is discrete t ∈ N. We
use letters a, b, . . . to denote cars, va, vb, . . . to denote the speeds of the cars and
xa, xb, . . . to denote the positions of the cars along the section of the road. If the
speed of a, is va at time t the position update of the car a is xa +va at time t+1,
we do not write the factor Δt = 1, i.e. xa + vaΔt. Usually, the distance of a cell
is 7.5 meters and speeds belong to {0, . . . , vmax}. For our numerical experiments
we use vmax = 5. Similarly, acceleration is bounded and belongs to {−1, 0, 1}.
Once the position is updated, the velocity is adjusted as explained below. The
updated quantities are indicated with a tilde on top (e.g. ṽa and d̃). Distances,
positions and speeds are all natural numbers.

Because the speed is bounded we use the following definition for the bounded
operators (adding a dot on top of the plus and minus signs).

Definition 1. The bounded addition and subtraction are defined by:

v+̇1 = min(v + 1, vmax),
v−̇1 = max(0, v − 1).

To denote that the speed regulator updates the speed of a we use the notation
ṽa and similarly for the updated head-tail distance d̃. This shorten the notation
va = va(t) and va(t + 1) = ṽa. Distances, positions and speeds are all natural
numbers.

We first focus on the dynamics of two cars a following b and the state of the
dynamical system is (va, vb, d), where d is the head-tail distance of cars a and b
(i.e. the number of empty cells).

In one step (t �→ t+1) two operations are done: (1.) move the cars according
to their speed, i.e. x̃a = xa + va, x̃b = xb + vb hence d̃ = d − va + vb and, (2.)
cars revise their speed following the speed regulator. We consider the succession
of configurations of the form

(va, vb, d) =⇒
︸︷︷︸

1. position updates

(va, vb, d̃ = d − va + vb) =⇒
︸︷︷︸

2. speed updates

(ṽa, ṽb, d̃) (1)

For the simulation where many cars are present the updates are done syn-
chronously.

Definition 2. We define the function df : N → N as df(v) = v+(v−1)+. . .+1 =
v(v+1)

2 , v ≥ 0.
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The function df gives the braking distance for a car moving at speed v and
decelerating constantly such that Δv = 1 each time step. The speed regulator
shown in Algorithm 1 sets the speed ṽa in such a way that no-collision occurs
even if the leading car b brakes constantly to 0.

Algorithm 1 Basic speed regulator.
1: if d̃ + df(vb−̇1) >= df(va + 1) then
2: ṽa = va+̇1
3: else if d̃ + df(vb−̇1)) >= df(va) then
4: ṽa = va
5: else
6: ṽa = va−̇1
7: end if

For a configuration (va, vb, d) we define the viability condition ensuring that
the traffic dynamic avoids collisions.

Definition 3. We say that a configuration (va, vb, d) is viable if

d ≥ df(va) − df(vb),

or equivalently d̃ ≥ df(va−̇1) − df(vb−̇1).

It can be shown that the regulator preserves the viability condition hence, the no-
collision condition. In the next sections it is implicit that the viability property
holds for the initial states and hence at any time. This ensures that the
speed regulator can at any time sets the maximum speed that avoids
collision.

Next, we show that the configurations with d < va are transient and the
speed regulator eventually leads to d ≥ va.

Proposition 1. If (va, vb, d) is viable and d < va then vb ≥ va. Moreover, such
configuration is transient in the sense that eventually d ≥ va holds.

Proof. va + df(vb) > d + df(vb) ≥ df(va) results from viability and d < va.
Hence, df(vb) > df(va) − va = df(va−̇1), which implies vb ≥ va. For the second
statement, the argument rests on vb > va except when b is decelerating. Each
time vb > va the head-tail distance increases and when b decelerates ṽa decreases.
The first case leads to d ≥ va because va is bounded and the second as well
because va decreases to 0.

To exemplify Proposition 1 consider a configuration (3, 3, 2), the two cars
move at speed 3 and distance 2. This condition is viable (no-collision occurs in
the future). Indeed, after updating the position, the trailing car reduces its speed
to 2 and then, d ≥ 2 ≥ va. In the long term the configuration (3, 3, 2) cannot
be observed since it is transient and the property d ≥ va is preserved by the
speed regulator as shown in Proposition 2. Such a configuration could only be
observed because of the initial condition.
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Proposition 2. d ≥ va =⇒ d̃ ≥ ṽa.

Proof. If d ≥ va then d̃ = d − va + vb ≥ vb and the result is true if vb ≥ ṽa. Let
us assume that vb < ṽa.
Case 1. We assume that ṽa = va + 1 which occurs if d̃ ≥ df(va + 1) − df(vb−̇1)
from which we deduce d̃ ≥ ṽa.
Case 2. We assume that ṽa = va which occurs if d̃ ≥ df(va) − df(vb−̇1) from
which we deduce d̃ ≥ ṽa.
Case 3. We assume that ṽa = va − 1 which occurs if d̃ ≥ df(va − 1) − df(vb−̇1)
from which we deduce d̃ ≥ ṽa.

The next proposition shows a set of configurations where the car copies
the behavior of the leader car. This behavior is referred to lag synchroniza-
tion in the literature [1]. Interestingly, such configurations are flow optimal, see
Proposition 4.

Proposition 3. If | va − vb |≤ 1 and d = va then ṽa = vb and d̃ = ṽa, in
particular | ṽa − ṽb |≤ 1.

Proof. d̃ = d − va + vb, hence d = va =⇒ d̃ = vb, it remains to see that ṽa = vb.
| va − vb |≤ 1 =⇒ va = vb − 1 or va = vb or va = vb + 1.

If va = vb − 1: (in particular vb �= 0) d̃ + df(vb − 1) = df(vb) = df(va + 1). The
speed regulator follows line 1 ṽa = va + 1 = vb.
If va = vb: d̃ + df(vb−̇1) = df(vb) = df(va). The speed regulator follows line 3
and ṽa = va = vb (condition d̃ + df(vb−̇1) ≥ df(va + 1) is not fulfilled).
If va = vb + 1: d̃ + df(vb−̇1) = df(vb) = df(va − 1), the regulator follows line 6
and ṽa = va − 1 = vb (conditions d̃ + df(vb−̇1) ≥ df(va + 1) and d̃ + df(vb−̇1) ≥
df(va) are not fulfilled).

3 Analysis of the Flow

In the previous sections we analyzed the speed regulator by considering config-
urations of the form (va, vb, d). Here, we consider a flow of cars. Recall that if
N cars are on a road section of length L, we define the density ρ = N/L [cars
per length units] and the flow j(N,L) = ρv̄ [cars per time unit] where v̄ is the
average speed of the N cars.

Propositions 1 and 2 show that in the long term configurations satisfy d ≥ va.
This leads to the next proposition.

Proposition 4. In the long term, for N cars are on a road of length L the
maximum flow j(N,L) is bounded by

j(N,L) ≤ 1 − N

L
.

In particular, the flow is maximal if all the cars configurations (va, vb, d) belong
to the invariant set defined by Proposition 3.
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Proof. Because in the long term configurations satisfy d ≥ v by Propositions
1 and 2 we have N +

∑N
i=1 vi ≤ N +

∑N
i=1 di = L, from which we get

j(N,L) =
∑

vi

L ≤ 1 − N
L . Proposition 3 defines a flow-optimal invariant set

since the condition v = d (va = d in the notation of the proposition) is fulfilled.

It is common to express the flow as a function of the density ρ = N/L, i.e.
j(N,L) = j(ρ).

We represent flows with a typewriter style using . to denote an empty cell
of the road and a number to indicate that the cell is occupied by a car and
the speed of the car. For instance a configuration (va = 3, vb = 4, d = 3) is
represented as 3

︸︷︷︸

va

...
︸︷︷︸

d

4
︸︷︷︸

vb

.

We start with a counterexample of Proposition 4. The traffic pattern
3..3..3.. etc. is viable (does not lead to collision), of density 1

3 and of flow
ρ = 1, hence it seems to contradict the statement of Proposition 4. However, this
traffic pattern is transient (notice d < va) because at the next step cars decrease
their speed to 2 and we get the traffic pattern 2..2..2..etc. which satisfies
the bound of Proposition 4 and d ≥ va. In general, our analysis of the flow is in
the long term and transient traffic patterns are ignored. It is not stated system-
atically that only long term traffic patterns are considered although everywhere
assumed in the following.

A (long term) traffic pattern of maximal flow is

.....5.....5.....5.....5.....5.....5..... etc. (2)

This flow is maximal because the head-tail distance d equals the speed as proved
in Proposition 4. Notice, that the flow is regular if measured on a road section
of length L with L = 6N where N is the number of cars, i.e. the configuration
maximizes the function j(N,L) = j(N, 6N). Hence for density ρ = 0.166̄. The
reader can imagine the same pattern repeating infinitely often.

Another example of maximal flow is

...3...3...3...3...3...3...3...3... etc. (3)

which is maximal for L = 4N hence for density ρ = 0.25.
Maximal flow can be obtained by other regular patterns for different values

of N and L. For instance, the flow of .1.2..3...2..1 etc. is maximal for
N = 5 k and L = 14 k for any k > 1, hence for density ρ = 5/14 = 0.36.

In general, for traffic patterns with v = d and Ni cars at speed i satisfy

vmax
∑

i=0

iNi = L, and
vmax
∑

i=0

Ni = N. (4)

Equations (4) are useful to generate flow-equivalent traffic patterns. For instance,
if we assume that there exists a configuration with N2, N3, N4 > 0 we can find
a traffic pattern with one less car in N2 and N4 and two more in N3. Consider
a car a ∈ N4 at speed 4, it can be turned to speed 3. To ensure flow-optimality
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(va = d) the next cars are moved one cell back until the speed of the car moved
back is 2. The speed of this last car is turned to 3. We obtain a new configuration
still satisfying (4). Actually this process can be repeated until N2 or N4 is empty.
For instance, .1.2..3...2..1. etc. can be turned to .1.2..2..2..2.. etc.
without modifying the flow-optimality of the traffic pattern.

The following traffic patterns are not optimal and of same density than (3):
.....4.....4.....4.....4..... etc. and
.....3.....3.....3.....3..... etc..
Indeed, in both configurations the density is ρ = 0.166̄ and no car changes his

speed due to the regulator speed in Algorithm 1. Indeed, for the traffic pattern
4.....4..... to increase the speed to 5 the condition df(5) ≤ d + df(3) (the
trailing car pays attention to the fact that the leading car can break) must be
satisfied which is not the case, i.e. 25 �≤ 5 + 6. The same argument holds for the
second traffic pattern, i.e. 10 �≤ 5 + 3.

Another non flow-optimal traffic pattern is given by

3....4.....5......4.....3....4.....5...... etc. (5)

This configuration is not optimal since the following one with same density has
a higher flow 5.....5.....5.....5.....5..... etc.. Indeed, both configu-
ration have density ρ = 1/6 but the flows are 16/24 and 20/24 respectively.

In summary, all these examples show that some traffic patterns are permanent
but not optimal. This means that the flow of cars can be trapped in a sub-optimal
state. Escaping such a state requires coordination. For instance, all the cars must
agree to accelerate at the same time. Otherwise, an accelerating car would violate
the viability condition.
Jam Formation. A classical traffic pattern is the appearance of a jam without
bottleneck, see [18] for real traffic experiment and [3] for a recent review. For
instance, cars are following a traffic pattern of the form of 3...3...3...etc..
For a reason a car slow down to speed 2 then 1 at some time and for a given
period. The trailing cars are following the speed changes and the cars are pla-
tooning at speed 1. When the braking car restarts following the speed regulator
we observe that the flow increases. The relevant observation is that no
trailing car is slowing below speed 1. Notice that the constant speed pat-
tern seems hard to restore and we observe a regular pattern of the form of (5).

The point is that, this is not what may be observed in real traffic conditions
where some cars are going to stop (at speed zero) [18]. Such an observation is
then not compatible with the respect of the viability condition.

4 Fundamental Diagrams

In this section we evaluate the average speed of cars v̄ and the corresponding
flow j for a traffic pattern where at most one car does not satisfy v = d. Consider
N cars separated by a distance d on a circular road of length L, d = max{x |
n(x + 1) ≤ L} except for one car where the distance between it and the next
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can be greater than d. Therefore, we can set the speed v = min(d, vmax) of the
cars without having a risk of collision and the flow is maximal by proposition 4.
Case d ≥ vmax. In this part, the density of the road is low enough so that the
cars can be at v = vmax and the flow j = vmaxρ.

As the number of cars increases, we reach a critical density ρcrit where their
distance d = vmax. We denote the critical number of cars Ncrit = L

(vmax+1) . If
this value is an integer, we can reach the maximal flow jmax = vmax

(vmax+1) .
Case d < vmax, i.e. N > Ncrit. It is still possible that some cars reach the
maximum speed but overall the cars will have their speed v = d = 	 L

N 
 − 1. Let
M + d be the remaining distance between the last car and the first car. This
distance can be written as: M = L − N(d + 1) ≥ 0.
Subcase M = 0. Every car have exactly a head-tail of d, no more, no less. The
cars are in a synchronized state as their speed will never change i.e. v = v̄ = d
and the flow j = 1 − ρ. This is the maximal achievable flow (see Proposition 4).
Using ρcrit = Ncrit

L we can substitute into the equation to get the maximal flow:

jmax = 1 − ρcrit = 1 − Ncrit

L
= 1 − L

L(vmax + 1)
= 1 − 1

vmax
=

vmax

vmax + 1

This is the value where the two flow functions intersect (see Fig. 1). Below shows
such a configuration.

4....4....4....4....4....4....4....4....4....

Subcase 0 < M < d + 1. The last car cannot increase its speed, therefore all
cars are driving at the same speed v = v̄ = d. But the last car has some extra
space which it will never catch up. The flow is given by j = (	1

ρ 
 − 1)ρ. Below
shows a configuration where all cars have a head-tail of 4 except the last one
who has 7 but cannot increase its speed.

4....4....4....4....4....4....4....4....4.......

Subcase M ≥ d + 1. The last car l has more head-tail and will increase its
speed to v = d+1. This happens only when M ≥ d+1, see the speed regulator.
Such speed updates are going on for all trailing car successively. Eventually l
reaches a head-tail of 2d to the next car and reduces its speed to v = d. The
global flow follows the dynamic of Proposition 3. In the example below, most
of the cars are at speed 3 except the ones that take advantage of M ≥ d + 1
to accelerate. In this case, we have v̄ = L−d

N − 1, since one car has head-tail 2d

and cannot accelerate, and the corresponding flow is j = 1 − d
L − ρ. Notice that

d < vmax.

3...3....4....4....4....4...3...3...3...3......

In Fig. 2a, we see the results of our simulation in dark blue dots. The plain
lines are the theoretical solutions of j = 1 − d

L − ρ. The dashed vertical line
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(a) vmax = 5 (b) vmax = 10

Fig. 1. Fundamental diagrams of our simulation with L = 100 and going through all
the possible densities (ρ = [0.01, 1]). Starting initial position as described in the text.

shows the value of the maximal flow jmax. As stated, this value is not reachable
since Ncrit = 16.67̄ is not an integer. For a density N/L the car reaches a traffic
pattern where d ∈ {0, 1, 2, 3, 4}.

In cyan we simulated a flexible road which changes its length Lf = 	 L
N 
 · N

in order to always satisfy the condition M = 0. This implies that the flow is
always maximal and that we can reach the maximum flow. In Fig. 2b, we see the
same diagram with a higher speed. We observe the same pattern but with a jmax

bigger and pushed to the left. The what seems to be random points after jmax

are density who follows the flow j = (	 1
ρ
−1)ρ. From these observations, we can

conclude that there are configurations where the flow is optimal. This happens
only when the cars use all the space available, i.e. M = 0 =⇒ vi = di for all cars
i. A configuration not optimal cannot go to an optimal one with our regulator
conditions. It would require one car to violate the condition d̃ + df(vb−̇1) >=
df(va + 1) thereby risking a collision. Finally, the state depends on the initial
conditions. If we start the cars at v = d = 0, like at a traffic light, they will
reach the maximum flow since our regulator assure vi = di. Nevertheless it only
happens if the last car reaches the first car before it starts closing the gap M to
zero. Otherwise, M > 0 and the flow will not be optimal.

To conclude the presentation of these experiments, we show the fundamental
diagram obtained with random starting initial conditions, the positions of the
cars are random and the speed is 0. We observe various flow value that are due to
more general traffic patterns. These traffic patterns are not optimal and can be
explained with an extended version of Proposition 3. In particular, it is always
the case that ṽa = vb meaning that the trailing cars copy the speed of their
leading car, this correspond to lag synchronization.
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(a) vmax = 5 (b) vmax = 10

Fig. 2. Fundamental diagrams of our simulation with L = 100 and going through all
the possible densities (ρ = [0.01, 1]). Starting with random initial positions.

5 Conclusions

In this paper we analyzed theoretically and numerically the traffic patterns that
are accessible for autonomous vehicles equipped with a simple, local and deter-
ministic speed regulator. We consider a simple traffic situations (cars following
each other) and identified the potential strength and weakness of an automatic
driving system, such as stop and go waves or non-optimal flow conditions. Of
course, more complex situations need to be investigated, such as junctions, merg-
ing or lane changing to better understand the emergent collective behavior of
autonomous cars.
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Abstract. Collective self-organization is a widely studied topic in ani-
mal behavior, but it also attracts the attention of researchers studying
crowds of people. The creation and dynamics of self-organized structures
in animals have been often studied by means of numerical simulation,
also considering how they would change in relation to the surrounding
environment (e.g. a predator approaching a flock of birds). However, little
has been done to research possible means to influence swarm behavior as
a whole. In this work, we study how soldier crabs react to a moving light
and how their individual reaction is amplified by swarm size. A numerical
model is created to reproduce experimental data and used to assess more
in detail swarm dynamics. Results show that crabs can self-organize bet-
ter in the presence of an external stimulus and their capacity to show a
collective behavior also depends on swarm size. In particular, the mov-
ing light results particularly efficient in inducing swarming for medium-
sized swarms, while becoming potentially detrimental at high densities.
Results are expected to increase the knowledge on self-organized struc-
tures in animals, but also help in the assessment of efficacy in the frame
of information-provision in human crowds.

Keywords: Swarming · Soldier crab · Crowd steering · Light-stimuli

1 Introduction

A large number of animal species are known for their striking capability to form
swarms resulting in a collective motion where the whole group moves as a single
entity, apparently following rules of motion unrelated to the behavior of the single
individuals. What is most impressive in such structures is the fact that they lack
a centralized command and the collective motion is merely the result of a large
number of individual-level interactions [16]. Flocks of birds are probably the most
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impressive, most known and most studied collective structure in animals [1,14],
but also school of fishes [12,15] are often studied for their capability to create
self-organized structures. Although some studies considered how swarms would
react to a change in the surrounding environment [2,9] or tried to influence them
by introducing robotic lures [10], only few attempted to artificially steer swarms
by modifying environmental conditions.

Humans create collective structures too; what is generally known as crowds.
However, although animal behavior can be mostly studied from a cognitive per-
spective, to understand phenomena related to crowd behavior, psychology also
needs to be accounted for, thus making human crowds more difficult to study.
Nonetheless, a number of theories have been developed to explain the forma-
tion of a shared identity in groups of people and numerical models allow us to
reproduce phenomena typically formed in crowds [7]. Still, influencing crowds is
not an easy task and typically crowd control is performed in an invasive manner
through policing or physical means [7]. Alternative methods relying on the so-
called “nudging” approach and aiming to drive people into a particular behavior
by intervening on the environment are also emerging, for example through light
stimuli [4] or music [17]. Such studies are still pioneering and they mostly aim
at pinpointing methods which could stimulate behavioral changes in crowds.

In this work, we will try to move one step forward and examine under which
conditions non-invasive crowd steering is likely to be effective and to which extent
individual compliance could affect overall behavior. On this purpose, a particular
species of crab, Mictyris guinotae, known under the name of soldier crab [5], is
employed. Although the cognitive capacities of this small crab are clearly much
lower than humans, they show a collective organization underlying spontaneous
formation in swarms. This hints to the possibility that they share the fundamen-
tal principle of collective self-organization with human crowds. They therefore
represent a good testbed to investigate how a stimulus effective on a single indi-
vidual could be reinforced by the interactions within the swarm/crowd. Clearly,
we are not trying to state that behavior observed in swarms of crabs can be
directly compared to human crowds, but learnings gained through the investi-
gation of collective motion in animals may help lay the fundamentals to study
methods to change crowd’s behavior.

Specifically, we will study how a moving light can affect swarming behavior in
soldier crabs and under which conditions it is particularly effective in stimulating
the creation of self-organized structures. Since the cognitive mechanisms leading
to the behavior of soldier crabs on the individual level can be only hypothesized,
a Cellular Automata model will be used to test whether the hypotheses are at
least likely to be correct1.

2 Experiment and Outcomes

In this section, a brief introduction will be given for the specific experiment
considered here. But before discussing the experiment, a few words would be
1 If a model can reproduce experimental results, it does not necessarily mean that

assumptions are correct. It is simply a first step toward a longer validation process.
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needed to describe the species involved: the soldier crab. This small crab (adults
have a carapace width of about 15–20 mm) can be found in sandy beaches with
“soft” fine gravel in the southern parts of Japan. Activity of the soldier crab
is governed by tidal periods. At low tide, individuals emerge from below the
sand and start wandering in large colonies, forming self-organized structures
resembling a “moving army”. When sea level rises, soldier crabs dig again under
the sand until the next tidal period. Another remarkable characteristic of soldier
crabs is that they walk forwards, rather than sideways as most crab species.

Interestingly, soldier crabs are likely to approach a flashlight on the tidal flat
at night, so-called phototaxis. This characteristic was found first by a research
group (including some of the authors) when studying collective behaviors of
soldier crabs both in nature and in laboratory. Those initial investigations showed
that crabs could be guided by the moving light even in laboratory experiments
[8]. Here, to test the influence of a moving light on swarms of soldier crabs,
the animals were collected from their habitat and taken to an experimental
facility (Iriomote Station, Tropical Biosphere Research Center, The University
of Ryukyus, Japan). Care was taken to not harm them and all individuals were
released into their natural habitat after the experiments. Experimental setup
consisted of a ring-shaped path 50 mm wide and having a centerline length of
1 m. The course was delimited with high transparent walls, preventing crabs
from moving out of it. To allow the recognition of crabs, markers painted using
a UV-reflecting material were used.

(a) Normal condition (b) External stimulus

Fig. 1. Experimental conditions considered in this work. Left: The course is fully lighted
and crabs are clearly recognizable. Right: A rotating light illuminates only a small part
of the course (roughly 30◦), while the rest is left in darkness. UV-light allows locating
crabs also in darkness.

As shown in Fig. 1 two different conditions were tested. In one condition the
course was fully lighted and crabs could be easily recognized from the green floor.
In the other condition all external light sources were covered, leaving the course
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in darkness. A rotating light mounted at a height of around 30 cm created a
beam shining from azimuthal direction above the course, which was used to try
influencing the motion of soldier crabs. The rotating light illuminated a section
of the course with an arc length of 30◦ and moved at a speed of 7.3 rpm (a speed
from 4.7 rpm to 13.4 rpm was found adequate to stimulate crabs according to [8]).
Direction was randomly changed during each trial, which lasted around 5 minutes
for both conditions. Tested swarm size consisted of 3, 10 and 30 individuals and
each crab was used only once in each trial. In addition, isolated single individuals
were also studied to grasp features of the fundamental behavior when stimulated
through the moving light.
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Fig. 2. Experimentally obtained CDFs for individual crabs moving along the course
in the normal (fully lighted) and stimulated condition (rotating light). Stopping time
distribution is approximated as a power law using the tail, with the exponents being
2.50 and 7.15 in the normal condition and with external stimulus, respectively. The
exponent for the non-stop moving distance was taken as 3.25 for both conditions.

Experiments on individual crabs revealed that crab’s kinematic behavior can
be divided into two activities: moving and stopping. Both moving distance and
stopping time can be generally described using a power law as shown in Fig. 2. In
addition, observations of individuals showed that the moving light has a stronger
effect on the stopping time, drastically reducing long stops. Since the scope of this
work is to focus on self-organization in swarms, rules used for individual motion
in simulation were taken for granted. Thus, we assumed that each crab will move
a given distance and stop for a given time according to a power law distribution
gained from the data of Fig. 2. In addition, we observed that, regardless of the
condition, crabs typically moved at a speed of 4.5 cm/s and, when alone, inverted
their moving direction every 30 s on average.

Experimental results for swarms of crabs will be presented while comparing
numerical simulation results, but here we want to provide a list of outcomes from
the experiments, which will be used in developing the simulation model.

– Especially for large swarms, clusters would occur with many crabs concen-
trated in a small area and trying to move in different directions. A dominant
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direction would eventually result from the conflict, with most crabs adopting
that direction.

– Preliminary experimental results showed that crabs tended to be particularly
receptive when light is approaching. Consequently they would resume moving
if resting and increase their speed if already moving. This could be explained
considering that food is typically found in areas close to the water, which
appears brighter in their natural habitat.

– Observations showed that crabs were not particularly able to assess the mov-
ing direction of light, but, in general they were more likely to start moving
in the same direction of light rather than the opposite one when the beam
approached.

– Although observations are difficult in the condition with light stimulus (right
under the light is too bright to clearly recognize crabs and in the dark area
only markers are visible), some cues indicate that crabs were more likely to
imitate peers’ behavior when in darkness. An hypothesis would be that uncer-
tainty caused by the darkness and the resulting low visibility prompted crabs
to sense the environment through vibrations, resulting in a coping behavior
which could explain the stronger collective motion.

3 Numerical Simulation

Swarm dynamics of soldier crabs has been already studied using numerical sim-
ulation and the discrete approach has been successfully applied to describe dif-
ferent mechanisms [11,13]. Also considering the almost unidimensional nature of
the experiment considered here, a Cellular Automata (CA) model was employed
to numerically model swarm behavior under the influence of light. The course
was discretized into a lattice composed of 50 cells, each having a size of 2 cm.
At the start of each simulation, crabs were randomly positioned over the lattice
with random orientation. In the experiments, about two crabs could move on
different “lanes” along the course, but sometimes they would partially overlap
moving on top of each other’s. Based on this observation a limit of 3 crabs per
cell was set in simulation. Time step was set at 0.44 s based on crabs’ moving
speed of 4.5 cm/s.

Update procedure is performed by parallel-update, i.e. each crab reserve the
target cell before actually moving. Whenever a number of crabs exceeding the
maximum limit reserve the same cell, only 3 of them are chosen randomly (three
being the limit here) with the remaining ones reassigned to their original posi-
tions. When all conflicts are resolved positions are updated at once. Additional
details on motion rules are given as follows.

3.1 Universal Behavior

Fundamental Motion. In accordance with the results obtained from individ-
ual observations, crabs are modeled as moving for a power-law distributed dis-
tance and stopping for a time also distributed according to a power law. In addi-
tion, we assumed that only the distribution for the stopping time changes due
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to darkness and moving distance will remain unchanged. In the model, moving
direction randomly changes every 30 s on average, regardless of the interaction
with other crabs.

Group Interaction. To reproduce the mechanisms related to the change in
direction seen in the experiments, each crab is assumed to interact over 3 cells
in both directions, as shown in Fig. 3.

Fig. 3. Schematic representation of a cluster potentially resulting in a direction inver-
sion for the crab highlighted in the middle. Note that the model is unidimensional
and crabs added over the lattice are intended to show the number of individuals in
each cell (a maximum of 3 is possible). For the sake of clarity, we should point out
that perception on the overall condition in the cluster is assumed to be based on the
pressure exerted on the body and transmitted through the legs and not through visual
assessment.

A change in direction will occur proportionally to the force balance within the
7-cells cluster, with this size based on evidence gained by observing videos of the
experiment (but not measured explicitly). For a specific crab, if the difference
between the crabs pushing in the opposite direction and the ones moving in
the same direction is large, then a direction change will occur with a probability
proportional to this difference. From the example of Fig. 3 we obtain that 3 crabs
are moving in the same direction and 5 in the opposite one. In this condition,
the crab in the middle is likely to invert its direction with a probability given
by:

pinvert = kchange · |nsame − nopposite|
nmax · Δxcluster

= 5.0 · 2
3 · 7 = 0.476 (1)

where nsame and nopposite are the number of crabs moving the in same and
opposite direction, respectively, nmax the maximum number of crabs per cell,
Δxcluster the cluster size (including the central crab) and kchange a model param-
eter. This mechanism of direction inversion is considered both in the normal
condition and when stimulus was added since we assume that crabs perceive the
force acting on them regardless of visibility2.
2 An hypothesis is that the fairly omnidirectional distribution of crab’s legs allows

them to estimate the pressure from each direction and thus feel which one is dominant
when inside a cluster.
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3.2 Behavior in the Presence of External Stimulus (Moving Light)

Alignment to Light Direction. In accordance with experimental observa-
tions, we assume that when light is approaching (starting from 30◦ before the
beam) each crab may align its direction with the one of the light with a prob-
ability of 0.05. Each crab can align with the light only once per turn, meaning
that the assessment is not repeated at every time step during the approach of
the light, but only once3.

Imitation in the Dark Section. As discussed earlier, a sort of coping mecha-
nism was observed in the dark areas and could be explained by the capability of
crabs to sense vibrations on the ground. To reproduce this imitating behavior,
similar to the following behavior observed for humans in lanes, a “pheromone
trace” was used4. A virtual trace is left when each crab moves, reporting its
direction. This trace may decay (i.e. decrease by a random value over one time
step) or diffuse to a random neighbor cell (i.e. the trace is reduced by a random
value in the “central” cell considered and increased by the same amount in a
randomly selected neighbor cell) with a probability of 0.10 and 0.05, respectively
(for details on this method see [3,6]). Each crab takes into account traces from
both directions and will align to the dominant direction with a probability given
by:

palign = 1 − exp(−kcoping · fi) (2)

where fi is the (total) trace value at cell i and kcoping is a model parameter (set
at 0.1).

Interaction in Darkness. Finally, to take into account the difficulty while
interacting with other crabs in darkness, hopping rate was reduced from 1 (cer-
tain motion to a neighbor cell) under normal conditions to lower values when
under complete darkness (not directly under the light nor beam approaching). In
this step, the number of crabs in the 7-cells cluster considered earlier is computed
(ncrabs) and hopping rate is set according to:

phop =
(

1 − ncrabs

nmax · Δxcluster

)kdensity

(3)

where kdensity is a model parameter (set at 1.5).

3 An assessment at each time step would be also reasonable, but the “once per turn”
approach was chosen because it is closer to the quantity measured experimentally.

4 Note that this is not to be intended in its strict biological meaning; crabs are not
known for releasing pheromone while moving.
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3.3 Results

Simulations were performed for a duration of 5 min (same as the experiments)
by varying swarm size from 1 to 45. A total of 750 repetitions were performed for
each swarm size. Model parameters were manually adjusted by trial-and-error
to match experimental results reported as follows, paying particular attention in
having a similar qualitative trend. The rather inefficient manual approach was
preferred to an algorithm due to the limited availability of experimental data
and because the aim of this work is not to reach a perfect fit, but rather to under-
stand the model while considering its dynamics. On top of that, we ensured that
parameters having a specific meaning would remain within acceptable limits.

Two quantities were selected to evaluate the results and compare them with
experimental data: absolute and collective flow. The absolute flow represents the
total number of crabs transiting to any given cross section along the course over
1 min and it roughly represents crabs’ activity. The collective flow uses the same
approach but takes into account the balance between crabs transiting in one
direction and the ones transiting in the opposite one. It can be said to represent
the capability of the swarm to self-organize. Both quantities are normalized by
the swarm size to allow a systematic analysis on the effect of this variable.
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Fig. 4. Absolute and collective flow in relation to swarm size and comparison with
experimental results (shown by circles and squares). Shaded areas represent the vari-
ance among simulation repetitions. Note that swarm size is shown from 2 to 31 to
restrict the graphs to experimentally investigated conditions.

Absolute and collective flow from simulations is compared with experimental
data in Fig. 4. In general a good agreement is found, especially for the collective
flow, which accounts for more subtle interactions. From an ethological perspec-
tive it can be observed that the light has an influence in inducing swarming in
soldier crabs, but its effect is related with swarm size. At low (swarm) densi-
ties the stimulus affects individuals and thus the increase in collective flow is
limited. At medium densities interactions within the swarm amplify the effect
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of the stimulus. However, at high densities self-organization is already obtained
without external stimuli, thus minimizing the swarming effect brought by the
moving light.
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Fig. 5. Swarm polarization and frequency of (collective) direction inversion. Both
results presented here are relative only to the simulation as such quantities could not
be measured experimentally. Markers are relative to each numerical result for the given
swarm size and a fitting curve is employed to better show the trend (a general smooth-
ing function is used). In the right graph results are visualized only for swarm sizes
larger than 5 crabs. At lower sizes, swarms composed of odd and even numbers of
individuals generate very different results due to (a)symmetry. The initial transition
from the random alignment to an organized state is not counted.

The above considerations are confirmed by the graphs of Fig. 5. The polar-
ization (index) is used to measure the degree to which a swarm move as a single
entity and is defined according to:

PI =
|nclockwise − ncounterclockwise|

nswarm
(4)

where nclockwise and ncounterclockwise is the number of crabs moving in the clock-
wise and counterclockwise direction, respectively, and nswarm the swarm size.
Thus, polarization will be 0 for completely unorganized swarms (random motion)
and 1 for a perfectly organized one. Differences between the normal and stim-
ulated conditions disappear for swarms larger than 35 individuals and, above
it, the stimulus of light is detrimental and swarms get less organized. The right
graph of Fig. 5 shows the number of changes in direction (per hour) of the whole
swarm. To avoid counting fluctuations around 0, a swarm is considered as mov-
ing in a given direction when polarization exceeds 0.5 (excluding the initial
transition). In this representation, it is confirmed that light has an influence in
conforming the behavior among crabs, although the effect is negligible for large
swarms and, as we saw earlier, it may even undermine self-organization.
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4 Conclusions

The possibility to influence self-organization in animal swarms has been studied
using soldier crabs, a particular species of crab walking forwards and known to
produce large swarms in nature. A narrow ring-shaped path was created thus
influencing the formation of an almost-unidimensional swarm structure, moving
in a specific direction (clockwise or counterclockwise) if fully self-organized. The
normal condition, fairly close to the natural habitat, was compared with a con-
dition in which a light beam was rotated along the course in a specific direction,
potentially influencing the collective behavior. To help confirm some hypothesis
on crabs’ behavior and allow a better investigation of related mechanisms, a CA
model was developed, reproducing with sufficient accuracy experimental data.

Results reveal that the rotating light has indeed an effect on self-organization,
specifically helping crabs to align toward a common direction. In addition, we
found that the stimulus provided by the light is amplified by the interactions
between crabs and this mechanism is particularly effective at medium swarm
densities, where distance between crabs is sufficiently small to let interactions
happen but without hindering motion. At high densities, a common behavior
emerges to limit the number of conflicts, but motion is also more difficult, espe-
cially in darkness, thus minimizing the stimulating effect of the moving light.

Although care is needed in generalizing the results to other types of social
animals, some outcomes may help in the management of human crowds, in partic-
ular when the stimulus provided by the moving light in crabs is associated with
information provision to crowds of people. Because crabs possess very simple
cognitive mechanisms, a simple stimulus such as a moving light is already suffi-
cient to induce changes on the collective level. However, similar effects may be
obtained in human crowds through information provision, for example through
information display or by smartphone notifications. In this context, it is possible
that, like for animal swarms, also in crowds, efficacy of information provision
could be limited to low-to-medium densities, thus stressing on the importance
of a crowd control strategy starting from low densities.

In the future, we plan to study whether the conclusions obtained for crabs
applies indeed to human crowds while also investigating more in detail collective
behavior of soldier crabs, for example by changing the rotating speed of light or
testing other swarm sizes to further validate the simulation model.
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Abstract. In this research, we introduce a modified TASEP model with
a bottleneck in order to model visitors’ behavior in a crowded aquarium,
Kaiyukan in Japan, and to propose a congestion reduction method. It is
distinct in that visitors walk through a fixed one-way aisle, as opposed to
a typical museum or aquarium where visitors can move freely in an open
space. Using theoretical analysis and numerical simulation, we investi-
gated the basic congestion features caused by the bottleneck and devel-
oped new indicators to estimate congestion.

Keywords: ASEP · Pedestrian behaviour · Crowd control ·
Aquariums

1 Introduction

The quantitative analysis of visitors’ behavior at museums or exhibitions has
recently increased because of the advancements in tracking systems and the
development of IT infrastructure knowledge [1,2]. Statistics of visitors’ behavior
enables us to create a model of real-life visitors’ motions at museums. Thus, the
applications of a mathematical model or a digital twin for visitors’ behaviors
in museums have been extensively studied [3,4]. Yoshimura et al. [5] simulated
visitors’ sequential movements in a global network of the museum by a random
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walk and compared the results to data collected at the Louvre Museum. Cen-
torrino et al. [6] acquired real-life data to create stochastic digital-twins of the
visitor dynamics at the Galleria Borghese museum in Italy, by acquiring real-life
data and they also optimized ticketing and entrance/exit management.

Although many mathematical tools are available, for hyper-congestion [7] situ-
ations that impact visitors’ choices, current data collection and quantitative anal-
ysis are insufficient and literature is mostly lacking. As a result, we simplify the sit-
uation to a one-way route museum model that addresses this problem and focuses
on heavily crowded situations. Our case study is Kaiyukan in Osaka, Japan, which
is one of the largest aquariums in the world. Kaiyukan is unique in that visitors
walk through a fixed one-way aisle, as opposed to a typical museum or aquar-
ium where visitors can move freely in an open space, which is consistent with our
aim. We construct a model using the totally asymmetric simple exclusion process
(TASEP), which has been intensively investigated for many years to reproduce a
transportation system. It has been extensively studied to describe non-equilibrium
systems such as production flow [8], vehicular traffic [9], biological transport [10]
and exclusive-queuing processes [11]. In TASEP, each site can only accommodate
one particle at a time. However, in our model, each site can hold multiple particles
up to a maximum accommodation limit. Sites represent the exhibition area in front
of the aquarium’s water tanks, while particles represent visitors. Additionally, we
consider a bottleneck in the system, which represents a significantly packed area
compared to other exhibitions. In the case of Kaiyukan, it is in front of the whale
shark tank which is displayed halfway through the route.

Usually levels of congestion are estimated based on flow or density for TASEP
models. Congestion level for specifically pedestrian crowds has been discussed [12,
13]. However, it is questionable whether those indicators are effective in estimating
the congestion level in areas where visitors want to take their time gazing around
the exhibitions with preference, such as museums and aquariums, where moving
fast unimportant. As a result, we are introducing a new congestion level that can be
used for museums and aquariums. We also propose a control method that involves
establishing a new bottleneck and testing it to see if it reduces congestion.

The rest of this paper is structured as follows. Section 2 defines and compares
our modified TASEP to the original TASEP. Section 3 introduces new indices
for estimating. Section 4 presents the results of theoretical analysis and steady
state simulation results. Section 5 includes simulations to test the reduction of
congestion in an unsteady state. Finally, Sect. 6 brings the paper to a conclusion.

2 Model Description

2.1 Original TASEP

The original TASEP with open-boundary is defined on a one-dimensional dis-
crete lattice of L sites, whose sites are labeled as i = 1, 2, . . . , L, respectively (see
Fig. 1 (a)). Here, we adopt discrete time and parallel updating scheme.

Particles hop into the system from the leftmost site 1 with probability α,
go through the bulk, and after reaching the rightmost site L, they leave the



Analysis of Congestion in a Crowded Aquarium 305

lattice with probability β. Each site is either empty or occupied by the particles.
When the ith site at time t is occupied by a particle, its state is represented as
ni(t) = 1; otherwise, its state is ni(t) = 0. At each time step, a particle at site
i can hop to the next site i + 1 with a certain hopping probability p if the site
i + 1 is empty; otherwise it remains at its present site.

2.2 Modified TASEP

Our modified TASEP differs from the original TASEP in several ways (see Fig. 1
(b)). In our model, each site (i ≥ 2) can hold multiple particles to a maximum
accommodation limit, i.e. 1 ≤ ni(t) ≤ nmax. For nmax = 1, the system cor-
responds to TASEP, therefore, our TASEP can be interpreted as an modified
TASEP with a maximum occupation number of particles. Note that we adopt
discrete time and parallel updating scheme for particles and that multiple par-
ticles can move at the same time step. There is no limit for the first site store,
thus nmax = ∞, as an exception in order to avoid a call loss at the first site.
This is because the entrance of the aquarium can hold no matter how many
visitors come. Next, we introduce a hopping probability pi allocated to the sites
determined by the expected staying time on the site, in the case of an aquarium,
the tank. At each time step, a particle at site i can hop to the next site i + 1
with a hopping probability pi if the number of particles at site i + 1 is less than
nmax; otherwise they remain at their present site. Note that if multiple particles
try to hop to the same site i + 1, {nmax − ni+1(t)} particles can hop; however
other particles cannot hop to the next site. More specifically, if multiple particles
try to hop to the same site i + 1 at time step t + 1, particles hop to site i + 1
from the first particle to the nmax −ni+1(t) th one that hopped on site i at time
step t. Particles at the right boundary, leave the lattice with β = pL. Note that
particle can overtake each other in the system.

Fig. 1. (a) Schematic of the original TASEP with open-boundary conditions. (b)
Schematic of the modified TASEP with open-boundary conditions.
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3 Definition of New Indexes to Estimate Congestion

3.1 Traditional Indicators to Estimate Congestion

Many studies modeling transportation systems with TASEP, especially vehicu-
lar traffic, usually investigate velocity, flow and density to estimate the level of
congestion of the system. When considering a vehicular traffic system, average
velocity can be used to understand how smoothly the particles can move. Simi-
larly, flow has been used to evaluate the amount of motion or movement of the
particles. Furthermore, density and flow are connected through the fundamen-
tal diagram, which is one of the most important principles that can be used to
predict capability of a system [14,15].

However, it is questionable whether velocity and flow are sufficient indicators
to estimate the congestion level of the system where visitors take their time
looking around the exhibitions, such as museums and aquariums. Since how fast
the visitors can move is not the objective in museums and aquariums, maximizing
the velocity and flow does not make sense. Low velocity does not necessarily mean
that the system is congested, but visitors would rather walk slowly of their own
free will regardless of the congestion.

Level of Service (LOS), an approach to classify congestion in pedestrian
crowds, was proposed by Fruin [16]. Different types of facilities are ranked on a
scale from A to F based on qualitative remarks using LOS. However, implement-
ing the LOS in real-time crowd would be difficult since the density differs with
time and space. From the perspective of previous studies on museums where vis-
itors walk around the systems enjoying the exhibitions, the number of visitors
or density and length of stay at each room or throughout the whole-building is
investigated to estimate the congestion level. Centorrino et al. [6] identified keep-
ing the number of visitors in each room below a certain room-dependent safety
limit as one of the objectives and optimized ticketing and entrance/exit man-
agement in the Galleria Borghese museum in Rome. In this research, they also
consider the length of stay at the museum as one of the basic illustrative statis-
tics. However, they constructed a model only for a mild congestion level situation
where the length of stay can be assumed to be independent from the conges-
tion. They suspect that, in a hyper-congestion [7] which has impact on visitors
choices, congestion can either increase or decrease the length of stay, depending
on the perceived importance and fame of the room content. Yoshimura et al. [17]
investigated the relationship between length of stay and density and figured out
that crowd density around exhibitions largely affects a visitor’s length of stay
either positively or negatively, and that the effect can differ depending on the
exhibition.

Although there is no doubt about the importance of density and length of
stay in museums, connecting them with congestion directly can be difficult and
may not be appropriate. There are few previous research that has challenged
to quantitatively define hyper-congestion with density [6]. High density or long
length of stay do not necessarily mean that the visitors are stuck in a congestion
and the relationship between density and length of stay is vague.
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3.2 Mean Experienced Density for Particle

Considering the argumentation above, we present two new indicators, “Mean
experienced density for particles” and “Number of waiting particles” that can
be used to estimate congestion level. Total experienced density for particle j
presented in this work is defined with the time particle j entered Subsystem 2,
t = tinj , the time particle j exited Subsystem 3, t = toutj and the density on the
site where particle j is at time t, ρj(t) as:

uj =
tout
j∑

t=tinj

ρj(t). (1)

Mean experienced density which particle j experienced can be also calculated
as:

uj =
uj

toutj − tinj
. (2)

Density is usually calculated as the density at a room or the whole building and
the time-variation or difference between rooms are investigated. However, note
that, in our research, uj focuses on the density that the visitor experiences.

Number of waiting particles, W (t) is defined as the number of particles that
could not move to another site because the next site reached the capacity nmax

at the time step t. Thus, if W (t) is a large value, it indicates that a lot of visitors
cannot move forward because other visitors are in their way.

Mean experienced density for particles and number of waiting particles can be
used as indicators of congestion at steady state and unsteady state respectively.
In the case of our research which focuses on museums and aquariums, the system
does not necessarily reach steady state because of operating hours. Therefore,
considering unsteady state is important as well.

4 Theoretical Analysis and Simulation Results of Steady
State

4.1 Theoretical Analysis

In this section, we theoretically analyze the steady state of our modified TASEP
in the presence of a bottleneck, i.e. a defect site with reduced hopping probability
pk = q < pi (k �= i), in order to model the influence of a bottleneck at a
aquarium. In the case of Kaiyukan, the whale shark tank attracts the visitors’
attention the most and creates a heavily crowded area infront of it, which can
be considered as the bottleneck of the whole aquarium. We calculate the steady-
state in the limit L → ∞ so that we can obtain theoretical results. In order
to simplify the calculation and elucidate the influence of the bottleneck, we set
p1 = pi = . . . = pL = p = const. (i �= k).

When α is small, we refer to it as low density (LD) phase. The flow approx-
imates to J = α because the capacity of each site is large enough to neglect
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failure of hopping due to the exclusion in LD, even though the exact steady
state flow can be calculated as α p−α

p−α2 for TASEP with open boundary and par-
allel updating [20,21].

When α is larger than a certain value, particles pile up behind the bottle-
neck. We call this phase as high-density with bottleneck (HDB) after the HD
phase with TASEP with open boundary. As shown in Fig. 2 (a), the system
can be virtually divided into three subsystems, Subsystem 1, 2 and 3. Thus, in
HDB Subsystem 1 and 2 are congested. Note that Subsystem 2 accommodates
nmax(k − 1) particles at most. On the other hand, particles in Subsystem 3,
which is after the bottleneck are relatively scarce. For Subsystem 3, the input
probability can be written as qnk as shown in Fig. 2 (a). Therefore, the steady
state flow for the whole system is given by:

J = qnk(t → ∞), (3)

since in steady state the flow of Subsystem 1, 2 and 3 should be equal due to
the rule of current conservation in [18].

We calculate the occupation number of particles at site i = k, i.e. nk(t → ∞)
approximately. At time t − 1 the time evolution of the number of particles at
site i = k can described as,

nk(t) = Occupation number of particles at site k at time t − 1
+ Inflow term to site k at time t

− Outflow term from site k at time t.

When we assume that there are enough particles at site k − 1 and can fill in the
holes at site k, the inflow term to site k at time t can be written as nmax−nk(t−1).
Therefore,

nk(t) = nk(t − 1) + {nmax − nk(t − 1)} − qnk(t − 1). (4)

When t → ∞, nk(t) ≈ nk(t − 1). Thus,

nk(t → ∞) =
nmax

q + 1
. (5)

Therefore, the steady state flow of the system can be calculated by Eq. (3) and
Eq. (5) as:

J =
qnmax

q + 1
. (6)

Theoretical results can be summarized as:

J =
{

α for LD phase (α ≤ qnmax
q+1 )

qnmax
q+1 for HDB phase (α > qnmax

q+1 ) (7)

We discuss the density at the systems and the average staying time in order
to calculate the mean experienced density for particles and the number of wait-
ing particles. Here we focus on Subsystem 2 and 3. In this paper, we exclude
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Subsystem 1 because waiting area at Subsystem 1 represents the entrance area of
the aquarium which can hold ever so many visitors and we want to focus on Sub-
system 2, we assume that the average number of particles at sites i = 2, . . . , k−1
equals to that of site k, thus the average density is ρ2 = 1

q+1 . The average stay-

ing time is T 2 = ρ2nmaxL2
J = L2/q. For Subsystem 3, average density ρ3 can be

calculated as ρ3 = J
pnmax

= q
p(q+1) . The average staying time is T 3 = L3/p. The

mean experienced density for particles can be described as:

u = ρ2T 2 + ρ3T 3 =
1

q + 1

(
L2

q
+

qL3

p2

)
. (8)

The mean of the number of waiting particles can be written as:

W = L2(pρ2 − (1 − ρ2)) =
(p − q)L2

q + 1
. (9)

Fig. 2. (a) Schematic of an modified TASEP with one bottleneck and (b) Subsystem
3 with open boundaries.

4.2 Simulation Results

Basic Analysis. In this section, we perform numerical simulations to validate
the theoretical results in the preceding section. In all the simulations below, we
set the system size, L = 101, k = L+1

2 , nmax = 5, over 10 trials and run for
5 × 103 steps for each calculation.

First, we investigate the flow when there is a bottleneck, i.e. q is sufficiently
smaller than α and p. Figure 3 (a) compares the simulation and theoretical results
of steady state flow, J for p = 1 and various q ∈ {0.05, 0.1, 0.15} and shows good
agreement with our theoretical analyses.

Next, we explore the mean experienced density for particle, uj and number
of waiting particles, W . Figure 3 (b) and Fig. 3 (c) compares the simulation and
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theoretical results of uj and W , respectively, uj for α = 1, as functions of p
and various q ∈ {0.05, 0.1, 0.15} and show good agreements with our theoretical
analyses. As shown in Fig. 3 (b), uj of q = 0.05 is considerably large compared
to that of q = 0.1 and q = 0.15.

(a) (b) (c)

Fig. 3. Simulation and theoretical results of (a) J as functions of α, (b) uj as functions
of p and (c) W as functions of p for various q ∈ {0.05, 0.1, 0.15}.

Investigation of Improvement of uj and W with Control. In this section,
we verify if putting a new bottleneck at site i = l with hopping probability q1
before the existing bottleneck at site i = k improves uj and W . We examine
how uj and W changes between 0 < q1 < 1. Here, we set the position of a new
bottleneck at site i = l = 25, which is the middle of subsystem 2. Figure 4 (a)
and Fig. 4 (b) show that when q1 is smaller than 0.1 and close to 0.1, uj and
W improve. However, as shown in Fig. 4 (c), when q1 < 0.1, the system flow
depends on q1, therefore J with a new bottleneck with q1 is smaller than that
without another bottleneck. Therefore, in order to maximize J and minimize uj

and W , we should select a q1 which is smaller than 0.1 but close to it.

5 Simulation Results of Unsteady State with Control

In this section, we investigate the effect of a new bottleneck explained in
Sect. 4.2 at unsteady state. In Fig. 5 (a) and (b), we plot the simulation
results of the number of waiting particles and flow, respectively, at time t for
q ∈ {0.05, 0.1, 0.15, 0.2, 1.0}. We fix (α, p, q, l) = (1, 1, 0.1, 25) for Fig. 5 (a) and
(b). The simulation starts at t = 0 and ends at t = 500, which is the time when
the system reaches steady state. Figure 5 (a) shows that W (t) reaches steady
State A rapidly when q1 ≤ 0.1. On the other hand, W (t) reaches steady State
B rapidly when q1 ≥ 0.2. When 0.1 < q1 < 0.2, W (t) reaches steady State B
slowly. Figure 5 (b) shows that the larger q1, the larger J . For example, at time
t = 400, W with q1 = 0.15 is smaller than that of q1 = 0.2, because W increases
more gradually with q1 = 0.15. However, J with q1 = 0.15 is same as that of
q1 = 0.2. Thus, we can say that putting a bottleneck with 0.1 < q1 < 0.2 in
order to reduce congestion levels.
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(a) (b) (c)

Fig. 4. (a) Simulation results of uj as functions of p for various q1. (b) Simulation
results of W as functions of p for various q1. (c) Simulation results of J as functions of
α for various q ∈ {0.05, 0.09, 0.1, 0.15, 1.0}.

(a) (b)

Fig. 5. Simulation results of (a) W and (b) J as functions of time.

6 Conclusion

Our proposed model along with theoretical and simulation results, provides us
with more insight into the influence of bottlenecks that cause heavy congestion
in large-scale museums and aquariums. We also have introduced a new indica-
tor of congestion level that can be used in a system where moving fast is not
the preferred behavior, as is peculiar in museums or aquariums. The modified
TASEP model allowed us to propose the implementation of a new bottleneck in
front of an existing bottleneck in a different way in steady and unsteady state.
We also used simulated data to verify that this method is effective against con-
gestion. This control method can be used in real-life settings in Kaiyukan by
arranging attractive exhibitions or narrowing the walking area to encourage vis-
itors to walk slowly before the bottleneck area. For future work, we intend to
create a more accurate model for Kaiyukan using trajectory data obtained from
Bluetooth sensors.
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Abstract. The video record with a real-life experiment of the pedestrian
movement in a straight corridor is analyzed. Open boundary conditions
are realized in the experiment, and it is unusual for known data sets.
The aim of the investigation is to determine data from the experiment
(initial and in dynamics): initial positions of people, an average move-
ment speed and a density for different moments, a free movement speed.
These data are necessary to make a simulation experiment reproducing
the real-life experiment and to compare results in order to investigate
ability of a software to simulate real process correctly. The data obtained
have been applied to test the SigmaEva software which is based on the
discrete-continuous pedestrian dynamics model. Some unexpected and
discussional findings were derived concerning free movement speed.

Keywords: Pedestrian movement · Real-life experiment · Open
boundary conditions · Validation of the model

1 Introduction

Issues of data collection that can be used for validation of computer programs
for modeling pedestrian movement [1,18], and, in fact, the development of val-
idation methods [2,3,9,11,14], are engaged all over the world. The most pop-
ular is to observe people movement in periodic boundary conditions, when the
time-spatial density is approximately constant, and there are no conditions for
transformations of the flow. So the steady-state regime is realized. People are
uniformly distributed over the entire area (e.g., in an extended corridor with-
out narrowing) and move in one direction. Under these limitations, the speed
of each person decreases with increasing density. In terms of a specific flow, the
fundamental diagram looks as follows. As the density increases, the specific flow
grows, attains its maximum, and then decreases.
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The flow spreading is caused by the fact that people tend to move under com-
fortable local density conditions. If there is an opportunity to keep distance from
others, people use it. In this case, the front line has a place to move. Those peo-
ple who are behind gradually start moving, and their speed is controlled by the
local density in front of them. These effects are observed in a transition regime,
which can be realized under so-called open boundary conditions. Unfortunately,
there is a lack of real-life data which fix this phenomenon.

In this paper we attempted to investigate experiment where transition regime
is realized (https://youtu.be/5fbd4kexrzw, Test 1-1/1). Twenty people move in
the straight corridor of 20 m in length and 2 m in width. Initially people are
placed in a area 5 m in length. The important features of these experiments are:

1. the experiment was carried out on a short section of a path (20 m), which
gave small values of the observed times;

2. there is a single implementation of the experiment, while pedestrian movement
is a random process with pronounced repeatability of results on average [6,13].

The scientific value of such single experiment is the possibility of a detailed
study of a specific instance of a random process. In this case result has a high
sensitivity to the initial data. In this situation a comparative analysis of real-life
and computational experiments requires the maximum possible proximity of the
initial conditions of both experiments. Therefore, first of all, the analysis of the
video of the experiment was performed and the initial data were extracted.

To obtain the data of the computational experiment we used the SigmaEva
model. The SigmaEva model considered [7,9,12] is designed in a way that a
fundamental diagram [5,6,13,16] is an input for the model. The fundamental
diagram is used to calculate speed according to the local density for each per-
son. This property of the model is very convenient for practical applications
because we omit a step to tune parameters to correspond to desired flow-density
dependence. In this article, we investigate the ability of the model to reproduce
the certain process under some uncertainties in initial data. Good agreement
between the results of the real-life and computational experiments is shown
under the proximity of the initial conditions.

In the next section an analysis and results of the real-life experiment is pre-
sented. Then we shortly presented the SigmaEva model. And in the Sect. 4 sim-
ulation results are discussed.

2 The Analysis of the Real-Life Experiment

The experiments were carried out in the gym. The shooting was conducted from
one point, but the camera is not rigidly fixed. During the experiments boundaries
of the area were marked on the floor. To measure lengths of the sectors we used
markings of playcourts (volleyball, basketball, tennis), Fig. 1.

Movement occurs under open boundary conditions. 20 students (12 male,
8 female) participate in the experiment. In the initial moment of time they
were located in their initial places 5 m in length, they started moving along the

https://youtu.be/5fbd4kexrzw
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Fig. 1. Control areas and lengths.

observing area 20 m in length and 2 m in width. The experiment is considered
finished when the last person leaves the area.

To analyze the real life experiment, methods of visual observation of the
participants of the movement are used according to the available video recording.
A notable person is selected from the stream and the travel time of the selected
section of the path is measured.

In the theory of pedestrian movement, two speeds are distinguished: the
speed of movement and the speed of free movement. The first reflects the cur-
rent speed of movement of a person, the second reflects the speed at which a
person can move if other people do not interfere with him. It is known that the
speed of human movement in the stream is determined by the current density,
and this dependence has an analytical expression [5,6,13,16]. At low densities,
the speed of movement is equal to the free movement speed, but when moving in
a stream, as a rule, only the first one is realized. As a result of numerous exper-
iments, it was determined that the person’s speed is a random variable with
a variance decreasing with increasing density. Different categories of people’s
movement have been identified, characterized on average by different average
speeds of free movement (comfortable, quiet, active, increased activity) [6,13].
The graphs of the speed-density relationship for these categories are presented
in Fig. 2 (0.96 [m/s] – quiet, 1.3 [m/s] – active, 1.66 [m/s] – increased activity).

In mathematical simulation of pedestrian movement using an individual flow
model, perhaps the most important element of the initial data is the free move-
ment speed v0, which is assigned to each person. Obviously, the value of v0

determines the evacuation time. Especially it has an impact in the case of short
observation areas as in the experiments under consideration.

The purpose of analyzing video recording of the experiment is to determine
a free movement speed.

In considered experiment 20 people were located in the area 5 m×2 m (the
control area 0–1, Fig. 1). After start, as described in [13], the front part of the
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Fig. 2. Speed-density relationship for different free flow speeds {0.96, 1.18, 1.3,
1.66} [m/s] [6].

flow began to move earlier and at a higher speed due to the availability of free
space than the middle and tail, the flow began to spread – the distance between
people increases.

Table 1 shows the results of the analysis of the flow movement in the control
areas 0–5. The density in Table 1 was estimated only for the tail section and
calculated as the ratio of the number of people1 to the size of the area occupied
by these people at the moment. We fixed the time when front line (the first
person) or tail (the last person) crosses the line which is the beginning of the
observed section and then we fixed the time when the end line of the observed
section is crossed.

As it can be seen from Table 1, by the beginning of the movement along the
control section 1–3, the flow had spread, and the density decreased to 1.4 [1/m2],
by the end of the movement along the section 0–2, the density decreased to
1.25 [1/m2], by the end of the tail movement along the section 1–3, the density
was 1.09 [1/m2]. Figure 3 shows the moment when the front reaches the boundary
of the observation area. The length of this area is approximately 8.6 m, there
are 20 people in this area, the density for the tail section can be estimated as
20/(8.6 ∗ 2) = 1.16 [1/m2].

Thus, the analysis of the video recording of the experiment allowed us to
establish:

1. the initial density (2 [1/m2]) decreases as a result of the flow spreading;
2. during the experiment, the density is not constant (which corresponds to

the descriptions of the flow behavior in [13], the observed range is [1.09–
1.4] [1/m2], for further analysis we will use the middle of this interval –
1.25 [1/m2];

1 This value was not always equal to 20, due to the location of control sections 1–3
and 2–4, some participants had already left the experimental area.
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Table 1. Flow characteristics in control areas.

Control

sections

Characteristic Front Tail

0–2 Length, m 6.4 6.4 + 5 = 11.4

Travel time, [s] 5.5 11.78

Speed, [m/s] 1.16 0.97

Instantaneous density at the beginning of

movement along the control area ρbegin, [1/m2]

20/(5 ∗ 2) = 2

Instantaneous density at the end of movement

along the control area ρend, [1/m2]

20/(8 ∗ 2) = 1.25

1–3 Length, m 9.4 9.4

Travel time, [s] 8.08 8.58

Speed, [m/s] 1.16 1.1

ρbegin, [1/m2] 20/(7 ∗ 2) = 1.4

ρend, [1/m2] 12/(5.5 ∗ 2) = 1.09

2–4 Length, m 6.4 6.4

Travel time, [s] 5.31 5.81

Speed, [m/s] 1.21 1.1

ρbegin, [1/m2] 20/(8 ∗ 2) = 1.25

ρend, [1/m2] 3/(2.2 ∗ 2) = 0.68

2–5 Length, m 8.6 8.6

Travel time, [s] 7.21 8.14

Speed, [m/s] 1.19 1.06

ρbegin, [1/m2] 20/(8 ∗ 2) = 1.25

0–5 Length, m 15 20

Travel time, [s] 12.71 20.1

Speed, [m/s] 1.18 0.99

3. the estimate of the tail speed varies in the range [0.97–1.1] [m/s], for further
analysis we will use the mean of this interval – 1.035 [m/s];

4. the estimate of the free movement speed of the front varies in the range
[1.16–1.21] [m/s], for further analysis we will use the mean of this interval –
1.185 [m/s].

The movement speed of the front part is the free movement speed, and it can
be estimated as the ratio 15/12.71 = 1.18 [m/s].

Now it is necessary to determine a free movement speed of the tail. We used
the estimates of the density, the current speed, and the known the speed-density
dependence [6]. So we are interesting in the pair (1.25; 1.035). The closest value
0.98 [m/s] is given by the curve “1.3” (Fig. 2). This value falls within the obtained
velocity range [0.97–1.1] [m/s]. This curve corresponds to the free movement
speed of 1.3 [m/s].

Thus, as estimates of the free movement speed, we have: vfront
0 = 1.18 [m/s]

for front part; vtail
0 = 1.3 [m/s] for tail part.

These results give rise to the following conclusion: the free movement speed of
the front part is lower than the free movement speed of the tail. Is this particular
phenomenon or result, claiming to be a pattern? The answer could come from
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Fig. 3. Positions of the people when the front line reaches control lines “2” (left) and
“5” (right).

the fact that the distance of the tail path is only 20 m, and this distance is not
enough to finish transition period when flow transfers to a steady-state regime,
and comfortable distance between people is reached. So by our findings we state
a new question for further investigations.

Remark. It is necessary to note there is some inaccuracy in fixing the time
presented in Table 1, but the adjustment is possible within 0.1–0.2 [s].

3 Description of the Model

A discrete-continuous approach is applied [4,7,12,15,17]. Below we shortly con-
sidered the SigmaEva model [7,9,12]. We will use the word “particle” speaking
about a person.

A continuous modelling space Ω ∈ IR2 is considered. A border ∂Ω (including
an open part ∂Ω′ which is the exit) is known.

We consider flat projections of persons on Ω. A shape of each particle is a disk
with diameter di, initial positions of particles are given inside Ω by coordinates
of disk centers xi(0) = (x1

i (0), x2
i (0)), i = 1, N , N – number of particles. Each

particle is attributed with the free movement speed v0
i [m/s], the particle size

f0i [m2] (which is the area of the disk with diameter di).
At each time step t each particle i may move in one of the predetermined

directions ei(t) ∈ {eα(t), α = 1, q}, q – the number of directions (a model
parameter, q = 16 in our investigation). Particles that cross the target line
(∂Ω′) leave the modeling space.

A person movement equation is derived from the finite-difference expression
v(t)e(t) ≈ x(t)−x(t−Δt)

Δt that is given by a velocity definition. This expression
allows us to present a new position of the particle as a function of a previous
position and the local particle velocity. Thus for each time t coordinates of each
particle i are given by the following formula:

xi(t) = xi(t − Δt) + vi(t)ei(t)Δt, i = 1, N, (1)

where xi(t−Δt) is the coordinate in previous moment; vi(t), [m/s] is the current
particle speed; ei(t) is the unit direction vector, Δt = 0.25 [s] is the time step.
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It is assumed that the speed of each particle vi(t) is controlled in accordance
with the local density and does not exceed the maximal value (the free movement
speed). The local density is estimated along the movement direction. Then the
density is substituted to some the speed-density relationship (for example, [5,6,
13,16]). Here, we use the following relationship [6], Fig. 2:

vKh(ρ) =
{

v0(1 − 0.295 ln ρ
0.51 ), ρ > 0.51;

v0, ρ ≤ 0.51,
(2)

where values 0.295 and 0.51 are parameters for horizontal way; v0 is the free
flow speed.

All predetermined directions for each particle for each time step ei(t) are
assigned with some probabilities to move, and the direction is chosen according
to the probability distribution obtained. In this discrete-continuous model we
took inspiration from our previously presented stochastic CA FF model [8,10].

Probabilities in the model are not static and vary dynamically. The personal
probabilities to move in each direction at each time step depends on: (a) the
main driving force (given by a destination point), (b) interaction with other
pedestrians, (c) interaction with an infrastructure (non-movable obstacles). The
highest probability2 is given to a direction that has the most preferable condi-
tions for movement considering other particles and obstacles and a strategy of
the people movement (the shortest path and/or the shortest time).

Parallel update is applied.

4 Simulation

The initial data for computational experiments are as follows. The same geome-
try of the modeling area and the number of people are as in the real-life experi-
ment. Figure 4 shows the initial positions of particles in the computational exper-
iment, as close as possible to the location of people in the real-life experiment.
The particle size was assumed to be 0.1 [m2] (the people size in summer cloth-
ing [6,13]). Since there is no narrowing in the finish line and after it, we assume
that people who cross the finish line (number 5 in Fig. 1), do not affect the pro-
cess inside the area. Therefore in a computational experiment the computational
area coincides with the observation area in the real-life experiment.

According to our findings presented in the previous section two variants (“a”
and “b”) were considered:

a) 5 particles at the front were assigned the free movement speed vfront
0 =

1.16 [m/s], the others were assigned with vtail
0 = 1.3 [m/s], Fig. 4a);

b) all the people were assigned with v0 = 1.3 [m/s].

For each variant 20 runs were conducted. The results are presented in Table 2.
The histograms for the evacuation time are shown in Fig. 5. One can see that

2 Mainly with value > 0.9.
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Fig. 4. Positions of particles in the simulation with vfront
0 = 1.16 [m/s] and vtail

0 = 1.3
[m/s]: a) initial positions; b) the front line riches the line “2”; c) the front line riches
the line “5” (finish).

the discrepancy for the variant “a” is smaller then for variant “b”. The Fig. 4
shows spread of the flow which is comparable with real-life experiment, Fig. 3.

The obtained intervals of exit (evacuation) times in the model include the
time value of the real-life experiment for each case. A small standard deviation
indicates the stability of the simulation results.

Fig. 5. Evacuation time histograms: vfront
0 = 1.16 [m/s] and vtail

0 = 1.3 [m/s] (left),
v0 = 1.3 [m/s] (right).

Table 2. Statistics over 20 runs and experimental data.

Characteristic

Free flow speed in simulations, [m/s] Front 1.16; tail 1.3 1.3

Mean Tmod, [s] 19.69 19.01

Standard deviation, [s] 0.38 0.52

Evacuation time in real experiment Texp, [s] 20.1 20.1

Free flow speed according to analysis of video, [m/s] Front 1.18; tail 1.3 Front 1.18; tail 1.3

Discrepancy δ = 100 × Texp−Tmod

Texp
, % 2.04 5.42
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5 Conclusion

The detailed analysis of the video of the considered real-life experiment was
carried out. This analysis made it possible to evaluate such an important char-
acteristic of pedestrian movement as the free movement speed. The data obtained
were used for computational experiments under the most close conditions (the
initial positions of people, the free movement speed).

The closer the conditions of a computational experiment to a real-life exper-
iment, the more the resulting discrepancies can be considered as a measure of
the quality of simulations. Otherwise, incomparable values are compared, and
the analysis of discrepancies does not make sense. “Fast” tests are especially
sensitive to the initial data when the process is observed in a transitional stage.

We tested combinations of initial data which were not determined directly
(the free movement speed of the middle part and tail of the flow is different
from the front line). Simulations show that “two-speed” variant gives the lower
discrepancies with real-life result then “one-speed” variant (Table 2). The spread
of the flow is observed in the simulation in variant “a”. So we can state a good
coincidence of final result (evacuation time) and dynamic of the process (spread
of the flow) of the simulation and real-life experiments. But at the moment the
question if the free movement speeds of the front part and people how are behind
are different in the open boundary conditions is open.
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Abstract. Elevators are familiar transporting systems exhibiting non-
trivial out-of-equilibrium behaviors like the cluster motion in which mul-
tiple elevators arrive without much time between them. In this study,
especially focusing on the interaction which occurs between elevators
unintentionally and spontaneously and causes the cluster motion, we
investigated the dynamic behavior of elevators during the down peak
period by using a discrete model. We introduced a control parameter that
changes the proportion of passengers who can get in an earlier-arriving
elevator and numerically simulated the dynamics of the elevators. We
examined the order parameter, the round-trip time, and the number of
passengers transported in a single round trip. The cluster motion emerges
when both the proportion of passengers who can get in an earlier-arriving
elevator and the inflow rate are not small. In this condition, the round-
trip time is short, and the number of passengers transported in a single
round trip is small. Those results indicate that arriving without much
time between elevators does not directly reduce the efficiency contrary
to our intuition. In addition, we also investigated the response of an ele-
vator to the external force by performing the control operation of one of
the elevators.

Keywords: Elevators · Transportation system · Out-of-equilibrium ·
Oscillators

1 Introduction

As the urban population in the world is still increasing, the efficient usage of land
has been more required. Building higher tower blocks can supply more space in
limited areas, while it can take a longer time to move in such tower blocks. As
the major system of transportation in high buildings is elevators, it is impor-
tant to increase the efficiency of elevator transportation in the higher building
for the urban economy. To increase the efficiency of transportation, improving
directly the machine performance such as operating systems and hardware is one
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method, however, investigating and understanding the phenomena that emerge
unintentionally is also worthwhile because it can lead to coming up with a future
breakthrough. A phenomenon popularly emerging in elevator systems is the clus-
ter motion in that multiple elevator cars arrive on each floor almost at the same
time. Pöschel et al. [1] demonstrated that elevators tend to synchronize their
motion in down-peak, and Nagatani et al. [2] addressed elevators in up-peak
also show synchronization. Also, behaviors in various conditions have been stud-
ied extensively in recent years [3–10]. However, the coupling interaction between
elevators is not sufficiently discussed. One possible coupling interaction causing
the cluster motion was the capacity of the elevator car, however, a previous
study demonstrated that elevators with extremely large capacities also show the
cluster motion [11]. In other words, the cluster motion occurs irrespective of the
capacity of the elevator cars, which suggests that there are other factors that
play a role in the coupling interaction.

In this study, we focus on the existence of passengers who can get in the
elevator which arrives earlier as an interaction between elevators. Generally, the
multiple elevators in the elevator hall adjoin each other, and passengers can
move in the elevator hall to ride the earlier-arriving elevator. However, in the
case that passengers cannot select the earlier-arriving elevators, for example, in
the case that the distance to the elevator is too far for the passenger, the effect
of arrivals of other elevators on the arrival timing of an elevator can become
weaker. Thus, we introduced the proportion of the passengers who can ride the
early-arriving elevator as a control parameter. We numerically simulated the
time development of two elevators in a down peak period for the various value
of the control parameter and investigated an order parameter characterizing the
cluster motion, the round-trip time, and the transported number.

Furthermore, we investigated the entrainment, which is a phenomenon that
the oscillators match their periods. As an external force for the elevator, we
prepared a controlled elevator that stops on every floor and stays there for a
given period of time. We examined the ratio of the round trip time of two
elevators for the various round-trip time of the controlled elevator.

2 Problem Formulation

The elevator system consists of two elevators,elevators A and B, serving K floors
(Fig. 1 and K = 10 in this study). The elevators take a time step to move one
floor up or down and γ time steps for the passengers to enter or exit. We set the
coefficients of the model as γ = 10. Consistent with previous studies [1,3,11,12],
all calls are from passengers waiting for the elevators at k-th floor (1 ≤ k ≤ K)
in order to move to the ground floor and exit the building. The elevators can
simultaneously carry not more than Λ passengers.

The capacity of elevators is set to be large enough to accommodate any
number of passengers, which is based on the results of a previous study showing
that elevators move as a cluster even if the capacity is hugely large [11].

In this study, we consider a downward elevator system motion during peak
loads. We assumed that the arrival of new passengers at each floor is a Poisson
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process. Thus, the number of new passengers on each floor and at every time
steps, n, is distributed according to Poisson law:

Pλ(n) =
λn

n!
e−λ , (1)

where λ = μ/K is the Poisson parameter and μ stands for the passenger inflow
rate for the entire building. We set η as the proportion of passengers who can ride
an earlier-arriving elevator; Other passengers can ride in only the predetermined
elevator.

Fig. 1. Schematic of the model. We consider two elevators in a building with K floors
except for the ground floor. The passengers arrive in front of elevators on the upper
floors to move down to the ground floor. The proportion of η can ride in an elevator
that arrives earlier; Others can ride in only the predetermined elevator.

The elevators do not necessarily move to the highest floor during each round
trip in this study. Once an elevator goes down, it does not go up again until it
arrives at the ground floor. If there are no passengers in neither the elevator nor
floors, the elevators stay on the floor where they stopped until the next call. In
case of no waiting calls and no passengers in the elevators, the next call will be
accepted by the elevator closest to the calling floor. If the two elevators stay on
the same floor without any passengers with a single new call, only one of the
elevators moves. If there is more than one unresolved call and both elevators
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are free, the elevator which stops at a higher floor (the upper elevator) moves
upward to the top floor. Simultaneously, the lower elevator starts moving if there
are some calls it can reach faster compared to the upper one.

In order to estimate the time to go to the target floor kt from the floor k, we
make the following assumptions:

– If the elevator is going up or on the ground floor, it will stop at the highest
floor among those having unresolved calls, kh, and then will switch to going
down and will stop at all floors with unresolved calls between kh and kt.

– If the elevator is going down and k > kt, it will stop at all the floors with
unsolved calls between k and kt.

The estimated time is also employed to decide whether the lower elevator goes up
or stops at a floor with unresolved calls when the upper elevator has passengers
and goes down. Note that the actual time to arrive at the target floor is different
from the estimated one because the number of waiting passengers is updated at
every time step. As an initial condition, we set two elevators at random floor
numbers and zero passengers on all floors. The elevators are not smart enough
to identify the number of carrying passengers and possibly stop even if they are
full.

3 Results

First of all, we investigated the dynamics of the two elevators for the various η
and μ. To characterize the cluster motion, we use the order parameter of two
elevators, which is defined as

S =

∣
∣
∣
∣
∣
∣

1
N

N∑

j=1

exp
(

2πi
τj

T

)

∣
∣
∣
∣
∣
∣

, (2)

where τj is the time between j-th and (j +1)-th departures of either elevator on
the ground floor, as used in previous studies [11,12]. T is a mean of the time of a
round trip, which is defined as the time from the departure to the next arrival of
each elevator. N is the total number of departures irrespective of which elevator
is. This order parameter S represents the regularity of the time interval of the
elevators arriving at the ground floor. S would be one when the two elevators
arrive simultaneously, while it would be zero when the time interval differs for
every arrival. Figure 2(a) shows S for various η and μ. S is small for small μ and
increases with μ as consistent with the previous study [11]. Similarly, S tends
to increase as η increases as shown in the previous study [12]. It indicates that
the elevators show the cluster motion in the high η and μ regions. In contrast to
the order parameter, the typical round-trip time and the number of passengers
transported in a single round trip decrease with η [Fig. 2(b) and 2(c)].

To compare the efficiency when we change η at the same μ, we normalized
the round trip time and the number of passengers transported in a single round-
trip at each μ with the value at η = 0 [Fig. 3(a) and 3(b)]. Both measurements
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Fig. 2. (a) The order parameters for various η and μ. (b) The mean round-trip time
for various η and μ. (c) The mean number of passengers transported in a single round
trip for various η and μ.

decrease with η, which indicates that the average number of passengers trans-
ported per unit time will increase as η increases irrespective of μ. Although γ is
constant in our model, however, the average number of passengers transported
per unit time will increase more if γ increases linearly with the number of pas-
sengers riding on the elevator car. Those results indicate that the round-trip
is short and the congestion in an elevator is reduced when the elevators move
together.

Fig. 3. (a) The round-trip time normalized by the value at η = 0 for each μ. (b) The
number of passengers transported in a single round trip, which is normalized by the
value at η = 0 for each μ.
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Next, we examine the waiting time of each passenger, which is defined as
the time since they arrive in front of the elevators until they get in an elevator.
Figure 4 displays the distribution of the waiting time for various η at μ = 0.4.
As η increases, the maximum waiting time decreases, and the proportion of the
number of passengers waiting less than 10 time steps time increases. It indicates
that the waiting time when the elevators move together tends to be shorter.

Fig. 4. The distribution of waiting time of each passengers at μ = 0.4.

Finally, we examine the response of an elevator to the external force by per-
forming the control operation. In the control operation, elevator A stops on all
floors. We vary the round-trip time of elevator A, TA, as a control parameter
by changing the stopping time γ to satisfy TA = 2K + γ(K + 1). For the dis-
crete simulation, γ is rounded to be an integer. Elevator B moves as follows the
previous rules. Figure 5 displays the ratio of the round-trip time of elevators A
and B, TA/TB , for various TA, where TB is the mean round-trip time of elevator
B. At around TA = 100, TA/TB is almost equal to one, which suggests that the
entrainment occurs in this range of TA. As shown in Fig. 5, the arriving timing of
the two elevators are close typically, which suggests synchronization. At around

Fig. 5. (a) The ratio of the round-trip time of elevators A and B when elevator A is
in the control operation. [(b) and (c)] Examples of the time evolution of the positions
of elevators A and B. Red and blue lines represent the positions of elevators A and B,
respectively. (b) TA = 100 and (c) TA = 210. (Color figure online)
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TA = 210, TA/TB is about two. However, it is not sure to be the entrainment
because the range of TA/TB = 2 is small. Figure 5 shows the example of the
time evolution of two elevators at TA = 210. When elevator A arrives on the
ground floor, elevator B tends to arrive on the ground floor also. To confirm the
entrainment with different periods of elevators, further research is needed.

4 Discussion and Conclusion

In this study, we investigated the dynamics of two elevators in a down peak,
focusing on the coupling interaction between the elevators which induces the syn-
chronization of elevators. We introduced a control parameter, η, which change
the proportion of passengers who can get in an earlier-arriving elevator and
examined the order parameter, the round-trip time, and the number of passen-
gers transported in a single round trip for various control parameter η and the
inflow rate μ. The results showed that the elevators show disordered motion
at small η whereas cluster motion is displayed at an enormous η. At the same
time, the behaviors when μ increases are consistent with the previous studies;
The elevators tended to exhibit the cluster motion in a large μ region. Next,
we investigated the typical round trip time and the mean number of passen-
gers transported per round trip. As η increased, the round trip time, T , became
shorter, and the number of passengers transported in a single round trip, m,
became smaller. The reduction rate of T when η increased was more signif-
icant than that of m, which indicates that the typical number of passengers
transported per unit time would increase when η increased. Furthermore, we
examined the distribution of waiting time of each passenger. As η increased,
passengers who waited for an elevator for a short time increased while those
who waited for a long time decreased.

Those results suggest the intuition that synchronization phenomena always
reduce efficiency is not correct. A factor that this counterintuitive phenomenon
occurs would be the rule that an elevator does not stop on a floor where passen-
gers have just ridden other elevators and new passengers have not appeared until
the elevator arrives. Moreover, the number of passengers in an elevator can be
reduced at the same time that the number of passengers transported in unit time
increases, which results in providing a comfortable ride during the synchroniza-
tion of elevators occurs. We want to note that those results do not indicate that
if synchronization occurs, then efficiency and comfort always increase. For exam-
ple, when an operation rule that elevators always stop on a floor where other
elevators are staying is employed, the round trip time does not improve even
if the elevators show synchronization. In addition, we employed an extremely
large capacity of an elevator car because we are interested in synchronization,
which occurs irrespective of the capacity. For applications of these results to real
scenarios, future studies that employ elevators with an appropriate capacity are
needed.

Finally, we also investigated the ratio of the round trip time of two elevators
when one of the elevators is in the control operation, in which the round-trip
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time of the elevator is set. When the round trip time of the controlled elevator
is close to the natural round-trip time of elevator B, the entrainment occurs. It
suggests that elevators can synchronize their motion to a so-call external force.
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Abstract. We investigate how knowledge percolates and clusters in a
given knowledge space. We introduce a simple model of knowledge orga-
nization in which each contribution spans a certain number of items.
If this contribution overlaps with others above a certain threshold, they
form a cluster. A contribution can also merge clusters together. We study
the growth of global knowledge and the cluster dynamics, both showing
a nontrivial behavior.

Keywords: Knowledge modelling · Knowledge visualization ·
Percolation model · Cluster dynamics · Agent based-model

1 Introduction

Knowledge is the set of ideas, emotions, beliefs and experiences, such as facts
(descriptive knowledge), skills (procedural knowledge), or objects (acquaintance
knowledge) owned by an individual or shared across collaborating individuals [7,
11]. It can be roughly seen as a set of concepts linked by some relationship
(e.g. derivations linked to prerequisites or axioms to form theorems). The set
of knowledge items that are connected by a path of links can be denoted as a
cluster of knowledge.

A good representation of this description is a network [2] where the single
knowledge items are the nodes and the links represent connections among items.
A connected cluster is a corpus of knowledge. By adding knowledge three things
can happen: the new knowledge item is isolated and forms an isolated cluster, it
might join an existing cluster, or it may act as a connection between two clusters,
fusing them together.

Since percolation describes the patterns of linked elements under a stochastic
or semi-stochastic connection mechanisms [8,10], the process of filling the vector
is analogous to a percolation process, and we can refer to it as the knowledge
percolation problem [4,14].

The reference scenario is that of reconstructing the process that has led to the
accumulation of a given corpus of knowledge, and, more important, the underly-
ing cluster dynamics. There are many models that interpret the formation of a
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
B. Chopard et al. (Eds.): ACRI 2022, LNCS 13402, pp. 335–345, 2022.
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collaboration network by the random joining of individuals or contributions, i.e.,
the formation of a giant component by the establishment of random links. Our
model is first of all bipartite, contributions contribute to the knowledge corpus,
and the contribution overlaps gives the link among them. Moreover, we require
a minimum overlap for establishing the link.

The whole corpus of knowledge can be spanned by several clusters separated
by unknown elements of the corpus, or organized in a single cluster where all
pieces of knowledge are connected by established relations, the process of acquir-
ing knowledge has many similarity with the formation of a giant components in
a random graph [3].

However, in a real case, redundant links are needed for considering concepts as
belonging to the same cluster or discipline. So, we assume that a new knowledge
item has to have minimum overlap with at least one of the members already
belonging to the cluster to be inserted.

Alternatively, this model can be seen also as a collaboration model, in which
every agent knows a certain number of concepts, but is able to collaborate with
others (i.e.belong to the same group), only if they have a minimum overlap (like
speaking the same language and having a shared background [5]), evaluating
therefore the possibility of agents to collaborate or to communicate with others,
that could be seen as the cooperation of individuals, research groups or societies,
to solve a given problem represented by the knowledge vector.

Our model can serve as an interpretation tool for examining, ex-post, how
a given corpus assembled and the relative cluster dynamics. For instance, one
could study how authors cluster by measuring the overlaps between citations
of their papers [9], or compare the evolution of customers of a supermarket by
studying the overlap among their buying habits [13]. Our model is however still
too rough to be compared with real data.

We study how the number and size of knowledge clusters evolve when adding
new items. This can be considered as a k-core growth percolation problem,
although normally k-core models are studied by pruning an existing network [6].

Fig. 1. Schematic representation of the system in the case of a knowledge space with
L = 26 items, N = 3 and Ω = 2 divided into two clusters C1 = {k1, k2} of size c1 = 2
and C2 = {k3} of size c2 = 1.
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2 The Model

We represented the corpus of knowledge K as a numbered set of L items, where
K(n) = 1 if the knowledge item n is present in the corpus and K(n) = 0 if
it is absent. Each contribution ki is given by a set of N random items k

(n)
i ,

n = 1, . . . , N among the available ones (k(n)
i ∈ {1, . . . , L}),. When ki is added

to the corpus, we set K(k(n)
i ) = 1 for n = 1, . . . , N .

The new contribution is added to a group if it has at least an overlap of Ω to
one of the elements of the group. A new contribution can also cause the fusion
of two separated groups. This process is illustrated in Fig. 1.

Once fixed the values of L, N and Ω, the algorithm proceeds as follows:

– Randomly generate a contribution ki with N random items k
(n)
i among the

L available (1 ≤ k
(n)
i ≤ L) without repetitions;

– Add this contribution to the knowledge corpus K(k(n)
i ) = 1 for n = 1, . . . , N ;

– Check if there is any overlap with all previous contributions kj (∀j < i).
By denoting this overlap ωij =

∑
nl δk

(n)
i ,k

(l)
j

(where δ is the Kronecker delta),
we can have three cases:
1. ωij ≥ Ω and ki not belonging to any group: ki is added to the cluster Cm

of kj ;
2. ωij ≥ Ω and ki already belonging to a group: merge the cluster Cm of ki

and Cq of kj ;
3. ωij < Ω: create a new group Cq and assign ki to it.

There are two different dynamics occurring in our model: how the knowledge
corpus size grows, and how clusters are formed or merged together. The first
one is a representation of how knowledge grows in a single individual or in a
group/society, while the second one could be seen as the representation of how
different branches of knowledge are intertwined [12].

2.1 Knowledge Corpus Dynamics

Let us denote the corpus size by S =
∑

n K(n). In the case L � N , at the begin-
ning contributions do not overlap because the probability to have overlapping
items is too low. Therefore the corpus size S grows linearly with time.

The population dynamics of the corpus is an independent stochastic process,
with the probability of adding an original contribution decreasing in time (t),
while the number of those already present in the corpus (x) increases.

Let us examine the case with N = 1 for simplicity. The probability (P (S, t))
of having S items already present at time t is

P (S, t + 1) =
L − (S − 1)

L
P (S − 1, t) +

S

L
P (S, t). (1)

In the limit of continuous time and space, we have

∂P

∂t
= −L − S

L

∂P

∂S
(2)
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Fig. 2. Knowledge size S vs. time t for L = 2000, N = 8, Ω = 3 (crosses) confronted
with Eq. 4 (continuous line) with the same values of N .

Fig. 3. Knowledge S vs. time t with L = 500 and N = 31 for several values of Ω.
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Fig. 4. Knowledge S vs. time t with L = 6000 and Ω = 1 for several values of N .

And using the method of characteristics [1] we obtain that: P =
f

(
(L − S) exp( t

L )
)

and therefore the average knowledge (S) grows as S =
L(1 − C exp(− t

L ), where C is an integration constant, fixed by the initial condi-
tion S(0) = 0, so that C = 1,

S = L(1 − e− t
L ) (3)

Since the addition of knowledge is an independent process we can write
Eq. (3) with arbitrary N

S = L(1 − e−Nt
L ). (4)

Confronting Eq. (4) with the results of simulations we get an almost complete
overlap as shown in Fig. 2, even though in simulations Ω > 1.

Indeed, it seems that the knowledge size S does not depend much on the
value of Ω, as shown in Fig. 3.

The knowledge size S grows faster for larger values of N , as shown in Fig. 4
and consistently with Eq. (4).

2.2 Cluster Dynamics

The number of clusters A at first grows with time, reaches a maximum and then
decreases, ending with a single cluster, as reported in Fig. 5.

We can distinguish three phases:

– An initial almost linear growth of A, where new contributions mostly form a
new cluster;

– An intermediate phase with, in which new contributions are mostly added to
an existing cluster;
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Fig. 5. Number of clusters A vs. time t for L = 600, N = 2 and Ω = 1.

Fig. 6. Number of new clusters an(t) (red circles), number of additions aa(t) (green
times signs) and number of merging am(t) (blue pluses) vs. time for L = 600, N = 2
and Ω = 1. (Color figure online)
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Fig. 7. Number of new clusters an vs. time t in log-log scale for L = 600, N = 2 and
Ω = 1. The exponential decreasing factor is (3N − 4)/L.

Fig. 8. Number of clusters A vs. time t for L = 6000, Ω = 1 and varying N .
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Fig. 9. Number of cluster A vs. time t for L = 500, N = 31 and varying Ω.

– A decreasing behavior dominated by cluster merging.

We measured the formation of a new cluster (number of new clusters an(t)),
the addition to an existing cluster (number of additions aa(t)) and the merging
of two clusters (number of merging am(t)), as shown in Fig. 6.

The actions of forming new clusters or adding it to an existing one (whether
or not it causes a merging) are mutually exclusive, therefore an + aa = 1 and
the total number of clusters A(t) is given by

A(t) =
t∑

τ=1

an(τ) − am(τ) (5)

We can develop a simple approximation for an in the case N = 1, Ω = 1, for
which we have either the formation of a new cluster (of size one) or the addition
of another cluster, and no cluster merging.

By denoting with P (A, t) the probability of having A clusters at time t, we
have

P (A, t + 1) =
L − A + 1

L
P (A − 1, t) +

A

L
P (A, t)

which can be approximated by

∂P

∂t
=

A − L

L

∂P

∂A

and therefore

P = f

(

(A − L) exp
(

t

L

))
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so that, for large A and small t, we have

an(t) =
dA

dt
∝ exp

(

− t

L

)

which, for N > 1 corresponds to

an(t) ∝ exp
(

−g(N)t
L

)

and numerically, as shown in Fig. 7, we have roughly

g(N) = 3N − 4.

Fig. 10. Scaled A/Q vs t/Q with Q = (L/F )Ω .

The time distribution of the numbers of clusters A(t) depends on N and Ω.
In particular with a smaller number of items in each contribution (smaller value
of N) is less probable to get items have an Ω overlap and therefore a larger
number of clusters A will form before merging, as shown in Fig. 8.

On the contrary, having a smaller number of elements needed to match for
merging (smaller values of Ω), means that the dynamics will reach the final state
much faster, and the maximum number of clusters reached will be much smaller,
as shown in Fig. 9.

It is therefore expected that A(t) scales with N and Ω. Numerically, we found
that all numerical curves overlap, as shown in Fig. 10, by rescaling A/Q and t/Q,
with

Q =
(

L

F

)Ω
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Fig. 11. Scaling factor F vs. X = N
1+Ω/4

.

and
F = aX2 + bX + c

with
X =

4K

4 + Ω

as shown in Fig. 11. We have not found a valid approximation for this behavior.

3 Conclusions

We investigate a problem related to knowledge percolation, clustering and for-
mation of a giant component, somewhat related to k-core percolation problems.

We studied a simple model in which each contribution is constituted by a
certain number of items, joining a cluster or even fusing two of them when
the overlap exceeds a given threshold. We showed that the growth of global
knowledge and the cluster dynamics has a nontrivial time behavior, providing
some analytical approximations.
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Abstract. As we know internet and social media usages are increasing
day by day. Sometimes users take social media as a medium to use hateful
and abusive comments that may rude and dis-respectful for others. So it
is important to detect the toxicity and remove it from the social media.
As social media users are in millions so it is impossible for filtering out
the toxic comments manually, and hence there is a need for a method to
filter out the toxic comments and make social media cleaner and safer
to use. This paper aims to detect toxic comments in social media using
cellular automata based LSTM (Long Short-Term Memory) model. Our
approach produces 97.43% of F1_score without using any kind of pre-
trained word embeddings or language models.

Keywords: Cellular automata (CA) · Toxic text classification ·
Machine learning · Long Short-Term Memory (LSTM)

1 Introduction

Social media has grown in popularity over time. People nowadays utilise social
media to express themselves and their thoughts, as well as to talk with others.
However, due to differences in opinion, conversations can sometimes devolve
into ugly confrontations on social media, with toxic comments being utilised
by one side. Comment can be classified as a toxic comment if users face issues
like harassment, dis-respectful comments, insults, threats, abuse words and hate
speeches. Detecting such toxic comments is important for prevent this type of
attack from one user to another user and from one group to another group,
and for discouraging associated wrongful activities. Because, this type of attack
mentally affect to the person. Toxicity in social media is a serious problem for
today’s world as millions of people have been using social media. According to
the pew poll on online harassment, every four out of ten internet users are victims
of online harassment. It impacts many people. So it is important to solve this
problem. Nowadays, social media platforms are attempting to eliminate toxic
comments from their platforms. A few of the social media platforms gives access
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to their users to turn off comment section for safe online environment. Thus,
such a task is inefficient and unscalable.

In the past, many deep learning based techniques have been designed for
toxic comments detection in social media for English language. Abusive com-
ment classification work started with Yin’s work. Yin et al. [11] applied Term
Frequency-Inverse Document Frequency (TF-IDF) and Support Vector Machine
(SVM) features on a chat-style database. Georgeakopoulos [4] proposed a CNN
model for toxicity classification and compared the results to K-nearest neigh-
bours, SVM, Nave Bayes, and Linear discriminated analysis. This comparative
study reveals that CNN is the best model with 92.7% accuracy score. Chu and
Jue [3] also proposed a CNN model, in which they used word embeddings and
character embeddings. CNN with character embedding performs better than
CNN with word embedding with an accuracy of 94% is shown in their paper.
Akash et al. [1] proposed a BERT - Transformer model with a RoBERTa weights
which gives an accuracy of 95.15%. Transformers is a multi-head attention sys-
tem that learns contextual relationships between words in a text. After identify-
ing this, Facebook AI Research released RoBERTa (Robustly Optimized BERT
Pre-training Approach), a robust and optimised version of BERT. A hybrid
Deep Learning model with an accuracy of 98.39% presented by Beniwal et al.
[2] using Jigsaw’s dataset. But this model less performed with other datasets.
Ameya and Feng [8] proposed a multi-task learning model with an attention
layer gives AUC score of 0.9709. Kunnupudi et al. [6] used LSTM and LSTM
with hyperbolic embeddings with an accuracy of 0.87% and 0.89% respectively.

In paper [3], Chu et al. tested word-level embeddings on the LSTM model
which produces 93% of accuracy. But they did not test character-level enbeddings
on LSTM. Our proposed approach uses character embedding on LSTM model.
This characher embeddings are generated using cellular automata (CA) which
produces cycle length (CL) sequences for text vectorization. These sequences are
used as input for LSTM model. CA records the text information in the form of
cycle length (CL) values. The classification is done by the LSTM model. In other
papers, the classification is done using a machine learning model with some kind
of pre-trained tools for language modeling such as Glove, BERT or word vectors
etc. But our model does not use any pre-trained language models. CA with the
LSTM model also works fine for this classification task.

The rest of the paper will proceed as follows. Section 2 describes the basics of
cellular automata. The proposed CA based LSTM model design techniques are
explained in Sect. 3. The performance analysis of the model is done in Sect. 4.
Section 5, concludes the paper with recommended instructions for future work.

2 Basics of Cellular Automata

The journey of Cellular Automata has started with Von Neuman [7] for the
purpose of modelling a biological self reproduction system. A cellular automaton
(CA) is a discrete, spatially-extended dynamical system that has been studied
extensively as a model of physical system. It evolves in discrete space and time.
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A CA consists of a lattice of cells, each of which stores a discrete variable at time
t that refers to the present state of the cell. The next state of a cell is affected by
its present state and the present states of its neighbors at time t. In other words,
a cellular automaton is made up of a regular grid of cells, each of which can be
in one of a finite number of states. Each site or cell evolves with a finite set of
values in discrete time by using a set of rules and the states of neighbourhood of
sites around it. Elementary cellular automata (ECA) is the simplest form of CA,
proposed by Wolfram [10]. In case of ECA, the next state of a cell is affected by
its present state and the present states of its two nearest neighbors, and each of
the CA cell store a binary state at time t. The next state of a cell is determined
as :

St+1
i = f(St

i−1, S
t
i , S

t
i+1) (1)

where f is the next state function, and St
i−1, St

i and St
i+1 are the present states

of the left, self, and right neighbor of the ith cell at time t. The function f :
{0, 1}3 �→ {0, 1} can be expressed as a look-up table (see Table 1). The decimal
equivalent of the 8 outputs is called ‘rule’ [10]. There are total 28(= 256) ECA
rules. Two such rules 90 and 150 are shown in Table 1.

Table 1. Look-up table for rule 90 and 150

Present State: 111 110 101 100 011 010 001 000 Rule
(7) (6) (5) (4) (3) (2) (1) (0)

(i) Next State: 0 1 0 1 1 0 1 0 90
(ii) Next State: 1 0 0 1 0 1 1 0 150

Traditionally, each of the cells of a CA follows same next state function. Such
a CA is called as uniform CA. On the other hand, if the CA cells are allowed to
follow different next state functions (rules), the CA is a non-uniform (or hybrid)
CA. In this work we used non-uniform ECA under periodic boundary condition
where first and last cells are neighbors of each other.

3 Proposed CA Based LSTM Model Design

Long short term memory (LSTM) is one of the deep learning approach used for
time-series data. LSTM architecture employs a recurrent neural network. Unlike
traditional feed forward neural networks, LSTM has feedback connections. It’s
a special kind of recurrent neural network that can figure out long-term data
dependencies. We have used LSTM for the processing of CL sequences because
CL sequences are also a kind of time series data. The design of cellular automata
based LSTM model for toxic comments detection can be categorized into three
modules as shown in Fig. 1, which are listed below:
– Module-I : Text to rule vector conversion
– Module-II : CL Value generation
– Module-III : Implementation of LSTM model
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Fig. 1. Design of our model

Module-I : Text to Rule Vector Conversion

First of all, rule vectors are to be generated for the text vectorization process for
each text in the dataset. These rule vectors are inputs to the CA machine. So,
those vectors are created based on corresponding ASCII values of the characters
in the text of the dataset as in the examples given below.

Text-1:
“You, sir, are my hero. Any chance you remember what page that’s on?”
Rule Vectors for Text-1: [89, 111, 117, 44, 32, 115, 105, 114, 44, 32, 97, 114,
101, 32, 109, 121, 32, 104, 101, 114, 111, 46, 32, 65, 110, 121, 32, 99, 104, 97,
110, 99, 101, 32, 121, 111, 117, 32, 114, 101, 109, 101, 109, 98, 101, 114, 32, 119,
104, 97, 116, 32, 112, 97, 103, 101, 32, 116, 104, 97, 116, 39, 115, 32, 111, 110,
63].

Text-2:
“I would appreciate an apology from both of you but I can see that is unlikely.”
Rule Vectors for Text-2: [73, 32, 119, 111, 117, 108, 100, 32, 97, 112, 112,
114, 101, 99, 105, 97, 116, 101, 32, 97, 110, 32, 97, 112, 111, 108, 111, 103, 121,
32, 102, 114, 111, 109, 32, 98, 111, 116, 104, 32, 111, 102, 32, 121, 111, 117, 32,
98, 117, 116, 32, 73, 32, 99, 97, 110, 32, 115, 101, 101, 32, 116, 104, 97, 116, 32,
105, 115, 32, 117, 110, 108, 105, 107, 101, 108, 121, 46].

Module-II : CL Value Generation

The rule vectors obtained from the Module-I are given as input to CA machine.
For generating CL values, the CA is initialized with alternate 0’s and 1’s (Ran-
dom initialization does not affect the results because the initial condition is the
same for all the sentences. If we change the initial condition then it will change
for all the sentences in the dataset. So it does not affect the results). After that
based on the state of the neighbours cells in CA, the next state of the current
cell is obtained using the rule number in the rule vectors. CA machine evolves
2000 times. This step value is considered based on the length of the text. (The
maximum length of the text in the dataset we consider is approximately equals
to 5000 and we saw that there is no change in the CL values after 2000 times of
evolution.) After certain iterations on a particular cell, the pattern starts repeat-
ing. The length of the pattern is called Cycle Length (CL) value. We consider
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this value as a CL value for a particular CA cell if the same pattern is repeating
at-least 32 times. The length of the CL values are taken based on the minimum
32 times repetition of the pattern. We can use any value instead of 32, that will
not affect the performance because CL values are the length of the repeated
pattern. If there is no repeated pattern found in the CA cell, we assign the CL
value of the cell is ‘0’. The evolution of CA shown in Fig. 2. The CL sequences
of Text-1 and Text-2 are given below:

CL Values of Text-1: [6, 2, 1, 1, 1, 2, 2, 2, 1, 1, 3, 9, 9, 9, 9, 9, 1, 1, 2, 2, 1, 1,
1, 1, 1, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 6, 2, 1, 2, 1, 1, 1, 1,
1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3].
CL Values of Text-2: [1, 1, 2, 2, 1, 1, 1, 1, 3, 3, 3, 3, 6, 2, 1, 2, 1, 1, 1, 2, 1, 1,
3, 3, 3, 3, 24, 8, 8, 8, 4, 2, 1, 1, 1, 3, 3, 6, 6, 2, 1, 1, 1, 1, 1, 6, 6, 6, 6, 6, 6, 3, 3,
3, 3, 1, 1, 2, 2, 1, 1, 1, 1, 13, 13, 13, 13, 13, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1].

Fig. 2. CA evolution

Module-III : Implementation of LSTM Model

The CL sequences obtained from Module-II are converted to numpy array or
tensors, then used as an input to the LSTM model. This prediction model is
one of the deep learning method, so no need to extract features manually. The
feature set needed for the prediction process are automatically extracted from
the CL sequences. In CA evolution the entire text is considered as it is, in the
form of rule vectors are evolving for finite amount of time. Therefore, the model
does not require any pre-trained knowledge for extracting information. To record
extra information, LSTM introduces a memory cell that has the same shape as
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the hidden state as well as a number of gates for memory cell control. The cell’s
entries are read out using the output gate. An input gate is required to determine
when data should be read into the cell. Finally, we need a forget gate-controlled
mechanism to reset the cell’s content. We have used sequential model of keras
for building the LSTM model. Sequential model allows us to build model, layer
by layer and each layer has its own input and output tensors.

Fig. 3. Layers of LSTM model

In our model, the input is given to the input layer with maximum CL sequence
length (For Jigsaw dataset [5], the maximum sequence length is 5000) and num-
ber of neurons (we used 100 neurons here) and the other four layers used here are
LSTM layer, dense layer, concatenate layer and dropout layer. We used ReLU
activation function in all the layers except dropout layer and output layer. In
a neural system, a dense is simply a typical layer of neurons, receives the out-
put of all previous layers neurons and helps with gradient flow refinement. The
over-fitting problem is fixed by using dropout layers because dropout is a regu-
larization strategy for minimizing over-fitting in neural networks by eliminating
or ignoring a number of layer outputs. In other words, it sets input units to ‘0’ at
random with a rate frequency at each step throughout the training period. The
output layer is dense layer with Sigmoid activation function for getting comment
labels of six classes such as toxic, obscene, severe toxic, insult, threat and iden-
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tity hate. The number of layers and neurons used in our model is shown in the
Fig. 3 and the proposed step by step procedure is explained in the algorithm 1.

Algorithm 1 Algorithm for toxic text classification using CA based LSTM
model
INPUT: Textual Comments
OUTPUT: Predicted labels for each comments.
1: Pre-process each comments in the dataset for generating rule vectors.

– Removal of long repeated patterns.
– Removal of non ASCII characters.
– Removal of blank rows from the dataset.

2: Convert pre-processed data into CA rule vectors using ASCII values.
3: Find out the CL sequences using CA rule vectors.
4: Implement a sequential LSTM model for toxic text classification using adam opti-

miser and Relu or sigmoid activation function.
5: With the aid of a specified threshold value, predict the labels for toxic comments.
6: Performance analysis of our model is done by calculating precision, recall, accuracy

and F1_Score using the formulae:

Precision = TP/(TP + FP ) (2)

Recall = TP/(TP + FN) (3)
Accuracy = (TP + TN)/total # of comments (4)

F1_Score = (2 ∗ precision ∗ recall)/(precision+ recall) (5)

7: Calculate Error rate or Mis-classification rate of proposed model using the following
equation:

Error rate = (FP + FN)/total # of comments (6)

In toxic text classification, ‘0’ represents positive comments (non toxic) and
‘1’ represents negative or toxic comments. So the terms used in the equations
(2) – (4) and (6) are defined as follows:

– True Positives (TP): These are correctly predicted positive comments (non
toxic)

– True Negatives (TN): These are correctly predicted negative comments (toxic
comments)

– False Positives (FP): These are incorrectly predicted positive comments (Also
known as a “Type I error.”)

– False Negatives (FN): These are incorrectly predicted negative comments
(Also known as a “Type II error.”)

Jigsaw Dataset: The dataset [5] is collected from the Kaggle website which
contains two set of files. The training set contains 1,59,572 comments that they
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have divided into 6 toxicity labels: toxic, obscene, severe toxic, insult, threat
and identity hate. The testing set contains 1,53,165 comments with same labels.
The difference what we analysed in the dataset is that, each class of the training
set contains only binary values: 0 and 1. The following percentages of toxicity
were found in the training dataset: toxic (10%), severe toxic (1%), obscene (5%),
threat (0.3%), insult (5%), identity hate (1%). But in the testing set there are
three values : 0, 1 and -1. So all the entries of -1 are removed from the test set.
Now the size of the testing dataset is 63,479.

4 Results and Performance Analysis

The proposed model is cross validated using the training set of Jigsaw dataset.
In the cross-validation approach the model is validated using subsets of input
data; that is to train the model, a subset of input data is used and then testing
process is done on previously unknown subset of the same input. So, we used
a function train_test_split of sklearn python module for spliting training
data into random train and test subsets. The first experiment is done on 5
subsets of 90:10 splitting of the input dataset. We got an accuracy as per Table 2.
Finally, the same process is repeated for 80:20 splitting of input data. The results
are shown in Table 3. The overall accuracy of the cross validation process is
calculated by taking the average of toxic score, severe_toxic score, obscene,
threat, insult and identity_hate score of the above experiment results, which is
of 96.31%.

Table 2. Accuracy calculation (when train and test-data ratio is 90:10)

Dataset Toxic Severe_toxic Obscene Threat Insult Identity_hate

Set-1 92.35 98.4 95.02 99.54 94.78 98.97
Set-2 91.08 98.72 94.61 99.24 95.02 99.26
Set-3 90.71 98.46 94.03 99.36 94.16 98.74
Set-4 93.06 98.33 94.92 99.14 95.26 98.07
Set-5 92.14 98.61 94.24 99.48 94.48 99.13
Avg. 91.86 98.5 94.56 99.35 94.74 98.83

Table 3. Accuracy calculation (when train and test-data ratio is 80:20)

Dataset Toxic Severe_toxic Obscene Threat Insult Identity_hate

Set-1 90.65 98.03 94.79 99.04 94.98 98.46
Set-2 91.76 99.04 95.04 99.23 95.11 99.02
Set-3 90.49 98.47 95.69 99.37 95.74 99.14
Set-4 92.34 98.63 94.36 99.03 95.34 98.84
Set-5 90.52 99.04 94.65 99.16 94.96 99.09
Avg. 91.15 98.64 94.9 99.16 95.22 98.91
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The entire Jigsaw dataset [5] is used for training and testing in our model and
the results are shown in Table 4. The overall training accuracy and validation
accuracy of the Jigsaw dataset are 99.42% and 99.41% respectively. Testing
results such as accuracy, precision, recall and F1_score for each category are
given in the Table 4. The average misclassification rate of the proposed model
is 4.95%, calculated using Eq. 6. The overall accuracy and F1_score for testing
dataset is 95.03% and 97.33% respectively.

Table 4. Results obtained with Jigsaw dataset

Metrics Toxic Severe_toxic Obscene Threat Insult Identity_hate Average

Accuracy 90.07 96.15 92.73 98.20 94.17 98.87 95.03
Precision 99.51 96.67 98.23 98.52 99.49 100 98.73
Recall 90.45 99.43 94.29 99.66 94.62 98 96.08
F1_Score 94.77 98.03 96.24 99.09 96.99 99.43 97.43

There are no baseline articles available to compare the outcomes of the pro-
posed model more closely. So we have done a comparative study with other
techniques as per Table 5.

Table 5. Different models and their results in terms of F1_score for Jigsaw dataset

Authors Techniques used F1_score

Wang et al. (2021) [9] CNN with GloVe 99.5%
Zhao et al. (2021) [12] RoBERTa 78.22%
Akash et al.(2021) [1] BERT 95.15%
Georgakopoulos et al.(2018) [4] CNN 91.2%
Our model CA based LSTM 97.43%

5 Conclusion

Toxicity in social media is a serious problem for today’s world and have many
negative impacts on the mental health of people in society. So it is important
for us to detect the toxicity and remove those harmful comments from the social
media. We designed a model for toxic comments detection based on cellular
automata without using any pre-trained word embeddings. We explored cellular
automata based technique to detect and classify toxic comments on social media
platforms. Our model is giving a good accuracy score of 95.03% for the jigsaw
dataset.

We can improve the efficiency of the model by reducing the false positive and
the false negative rates. The improvement can be accomplished further through



CA Enhanced ML Model for Toxic Text Classification 355

fine-tuning the LSTM parameters such as the number of neurons, epochs, and
batch size. It is also necessary to assess the presence of over-fitting and under-
fitting concerns. In future, we will explore different tasks in this direction. We
will develop a similar CA based model to classify toxic comments in dialects and
will focus on performance and error analysis of the model.
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Abstract. Learning Automata (LA) in combination with Cellular
Automata (CA) have been proven to be viable candidates as a mean to
deal with problems of high complexity. Their ability to learn and adapt
combined with their inherit parallelism can speed-up the solution process
of various problems, including complex logic puzzles. A well-known logic
puzzle is the Sudoku, which is a combinatorial optimization problem of
increased difficulty and complexity. In this work, the representation of a
Sudoku puzzle as a Irregular Learning Cellular Automaton (ILCA) has
been explored, incorporating the necessary rules of a reward and penalty
algorithm as a resolution process. The results prove the successful opera-
tion of the proposed algorithm, highlighting the concurrent and learning
capabilities of the ILCA structure.

Keywords: Complex logic puzzles · Sudoku · Cellular Automata ·
Learning Cellular Automata

1 Introduction

Since their introduction [2], Learning Cellular Automata (LCA) have sparked the
interest of the research community as a promising architecture for the resolution
of a wide variety of problems. The combination of the parallel processing com-
putational capabilities of Cellular Automata (CA) with the learning capabilities
of Learning Automata (LA) has introduced the principles of Learning Cellular
Automata (LCA) modeling tool. LCA is a distributed computational model [1]
where, through the spatial interaction of simple identical units, global complex
phenomena can emerge. The characteristic that differentiates LCA from tradi-
tional CA is the adaptation of the decision process. LCA improves the behavior
of its cells based on the overall system’s response, in an effort to provide optimal
results [2].

The Sudoku is a combinatorial optimization problem whose roots connect
it to the ancient magic square problem (Latin squares). A common property of
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many complex logic puzzles (including Sudoku) is that the solver is challenged
not to only find the solution but this must be realized under the constraint
that a unique solution exists. This solution should be delivered following the
puzzle’s specific rules and not only by using search in the space of all possible
solutions [16]. The LCA’s adaptivity and ability to learn and correcting itself,
make it an appropriate candidate for the resolution of logic puzzles that can
benefit from these characteristics. In this work, we will explore the adequacy of
Irregular Learning Cellular Automata (ILCA) to challenge the Sudoku puzzle.
This architecture was selected as the LCA’s spatial characteristics reveal appro-
priate fitting towards modeling of the Sudoku’s configuration. They can also
adapt during their evolution to Sudoku’s set of rules which are closely related
to its spatial connections.

2 Basics of the Employed Computational Models

2.1 Learning Automata

One model of Automata, capable of operating in abstract and random environ-
ments, are the Learning Automata (LA) [13]. A LA performs an action guided
by its past actions and responses and its environment responds to this action,
either favorably or not. The system’s goal is to learn how to choose the optimal
action to perform. In detail, a LA selects one action from a set of L available
actions T = {T1, T2, ..., TL} based on this action’s occurrence probability; there-
fore, there is an action probability vector P = {p1, p2, ..., pL} that characterizes
the LA. Initially, all actions have the same probability to be selected by the
LA. During its time evolution, the LA receives feedback from its environment
through a reinforcement signal that updates the action probability vector. As a
result, the LA favors the desired actions by increasing their probabilities and,
at the same time, penalizes the undesired ones by decreasing their correspond-
ing probabilities. This process is repeated for a predefined number of time-steps
until the LA has learned how to choose the optimal action depending on the
application [13].

2.2 Learning Cellular Automata

Combining the properties of CA and LA results in the introduction of a hybrid
model, called Learning Cellular Automata (LCA). LCA are a distributed learn-
ing model that effectively combines the parallel processing capabilities of CA
with the learning capabilities in unknown environments of LA. A LCA is a CA
grid where each cell utilizes a finite number of LA as learning modules. There-
fore, LCA aims to improve “classical” CA by enhancing them with learning
abilities and, thus, making them suitable for a wider range of applications that
may require probabilistic behavior. At the same time, LCA can be considered
superior to LA as they exploit local interactions of CA to achieve learning and,
moreover, receive feedback from neighboring cells to adjust the action probabil-
ity vector.
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� Irregular Learning Cellular Automata

The LCA’s structure can be either regular or irregular depending on the
restrictions applied at its connectivity. In the case of Irregular Learning Cellular
Automata (ILCA) the restriction for a regularly structured grid is removed. The
connections among the cells of the ILCA are undirected and update of the cells’
states is affected by the selected rule. On the contrary, in “classical” CA, the
cell state update in this case is determined through the action probability vector
which is updated considering actions selected by the LAs. During the ILCA’s
time evolution, the action probability vectors of neighboring LAs vary making
the local environment of each LA, non-stationary.

In detail, the ILCA’s operation in time can be described by the following.
Consider an ILCA consisting of N cells where each cell ci contains a LA, namely,
LAi whose action set Ai is finite (for i = 1, 2, ..., N). Initially, every cell’s state
is specified through the action probability vector of the LA that resides within
that particular cell. At every following iteration k, each LA, LAi selects an
action ai. Based on the selected action ai, a reinforcement signal bi, computed
using the ILCA’s rule, is applied to the LA. This reinforcement signal will either
favor or penalize the specific action and serve as the basis to update the action
probability vector for the next time-step of the ILCA’s evolution in time. This
process is repeated for a sufficient number of time-steps, until the system reaches
the desired behavior. Figure 1 presents a 4 × 4 ILCA grid, and the respective
connections among its cells, providing a more detailed insight in the red circle.

Fig. 1. 4 × 4 ILCA structure.

In general, the CA getting also inspiration by variations of LCA and ILCA
have been properly utilized to solve a variety of complex problems like the short-
est path [18], the collision avoidance [6,11], the graph coloring [17], logic design
[4], edge detection [7], as well as the bin-packing and the maximum-cut ones
[12]. Their adaptivity along with their inherit parallelism can provide viable and
scalable solutions to computationally-heavy problems and, thus, the resolution
of complex logic puzzles could be a perfect-fit. Having all these in mind, along
with the irregularity of ILCA, solving a Sudoku puzzle could be dealt accord-
ingly as it is a well-known NP-hard problem, i.e. its solution can not be found
in polynomial time.
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3 Complex Logic Puzzles: The Sudoku Paradigm

A complex logic puzzle is defined as a problem that, following specific steps,
leads to the extraction of one or more definite solutions. They differentiate from
games on the basis that puzzles are solved whereas games are won. The typical
characteristics of logic puzzles include: single player, simple rules that dictate
their evolution, language independency and solution by deduction [5].

One of the most popular logic puzzles available is the Sudoku. It became
popular in Japan in 1986 and also gained international popularity in 2005. It
is often described as “the Rubik’s cube of the 21st century” [9]. It derives its
attraction from its characteristic of following very simple rules that lead to its
solution, yet the course of reasoning that is required for its completion can turn
out to be of high difficulty and complexity. Each puzzle configuration leads to
a unique solution and does not require the search of the solution, meaning it is
based merely on reasoning.

In detail, a typical Sudoku puzzle is represented as a 9 × 9 grid (although
other variations also exist), divided in nine 3 × 3 sub-grids. Each one of the
Sudoku’s 81 cells is assigned a value from 1 up to 9. Initially, only some of
the cells are filled with their assigned number. A partially filled 9 × 9 Sudoku
grid that specifies a unique cell with its unique column, unique row and unique
sub-grid is shown in Fig. 2. The puzzle’s goal is to fill the entire grid with the
appropriate values such that the following rule is satisfied [15]:

– Each row contains exactly once every integer from 1 to 9.
– Each column contains exactly once every integer from 1 to 9.
– Each 3 × 3 sub-grid contains exactly once every integer from 1 to 9.

Fig. 2. 9 × 9 Sudoku grid with initial predefined cells specifying a cell with yellow, a
column with blue, a row with brown and a sub-grid with green. (Color figure online)

4 Solving Sudoku Puzzles

Several approximate optimization methods have been explored for the resolution
of the Sudoku problem. In [10], it is proposed solving of Sudoku puzzles by using a
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combinatorial genetic algorithm. Other efforts include a metaheuristic technique
[8] to be applied on a large number of problem instances and to provide a robust
method, especially for lower order puzzles. Deep learning methods have also
been successfully applied [19], where an input image is utilized to further detect
the largest area contour and extract the digits from the Sudoku image using
Optical Character Recognition (OCR). These digits are inserted in a neural
network which ultimately outputs the solution of the puzzle. Hardware-based
solutions are also presented in literature including FPGA-based implementations
performing genetic and/or heuristic algorithms [20] as well as unconventional and
novel nano-devices like memristors emerging to the solution due to the circuit
dynamics [3]. Furthermore, Artificial Bee Colony algorithm has been used [14]
as an alternative method to find the optimal solution in Sudoku puzzles.

4.1 Solving Process Using Irregular Learning Cellular Automata

As already mentioned, a Sudoku puzzle consists of a grid divided in 81 cells.
Representing a Sudoku puzzle using CA can be realized considering the Sudoku
as a graph, where each node corresponds to a cell of the puzzle. Therefore, the
CA is a 81-node graph (9 × 9) with undirected connections among the cells and
9 possible cell states. Two cells are neighboring, thus affect each others state
evolution, when they are adjacent. For the case of Sudoku there is a 9 × 9 grid
where every cell Ci,j , 1 ≤ i ≤ 9 and 1 ≤ j ≤ 9, is connected to all the cells in the
same column (N c

i,j), all the cells in the same row (Nr
i,j) as well as all the cells in

the same 3× 3 sub-grid (Nsg
i,j). Therefore, each cell will have 20 neighbors (Ni,j)

excluding itself. The rule that dictates the ILCA’s evolution considers the states
of all the neighbors. These neighboring connections are described as follows:

N c
i,j = {C1,j , C2,j , ..., C9,j} (1)

Nr
i,j = {Ci,1, Ci,2, ..., Ci,9} (2)

Nsg
i,j = {Ci−1,j−1, Ci−1,j , Ci−1,j+1, Ci,j−1, Ci,j , Ci,j+1, Ci+1,j−1, Ci+1,j , Ci+1,j+1}

(3)

Ni,j = N c
i,j ∪ Nr

i,j ∪ Nsg
i,j ∩ Ci,j (4)

Solving a Sudoku puzzle can be benefited from incorporating learning charac-
teristics to the resolution process, allowing the system to adapt to every unique
puzzle configuration. This leads to equipping every cell of the CA with a LA,
resulting to LCA. Due to the irregular connectivity among the cells, the grid can
be considered a graph, and solving the puzzle is translated to the use of ILCA.
With given initially predefined cells, every Sudoku puzzle has a unique solution.

The action probability vector of each cell’s LA is updated in every time-step
following a reward and penalty algorithm until the ILCA chooses a valid solution
for the given grid configuration. The criterion that dictates the action selection
of the ILCA is the degree of the cell (di,j). To enhance the algorithm’s operation,
the neighboring cells also affect directly the probability vector for every possible
cell state in order to boost the initial function but not to overpass it. Degree of
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a cell di,j is defined as the number of neighboring cells whose selected action is
different (i.e. the number of cells that did not choose the same action):

di,j = |Ck,l, for each Ck,l ∈ Ni,j where ck,l �= ci,j | (5)

1 F i n a l i z e dCe l l s = 0
2 for each c e l l Ci,j

3 i f di,j == |Ni,j |
4 P t+1

i,j (cti,j) = P t
i,j(c

t
i,j) · a(di,j)

5 F i n a l i z e dCe l l s++
6 e l s e i f di,j > max[dk,l, for each Ck,l ∈ Ni,j where ck,l = ci,j ]
7 P t+1

i,j (cti,j) = P t
i,j(c

t
i,j) · a(di,j)

8 else
9 P t+1

i,j (cti,j) = P t
i,j(c

t
i,j) · p(di,j)

10 end
11 for each neighbor Ck,l ∈ Ni,j and each number n ∈ [1, 9]
12 i f P t

k,l(n) > 1/9 :
13 P t+1

i,j (n) = P t+1
i,j (n) · p(P t

k,l(n))
14 else
15 P t+1

i,j (n) = P t+1
i,j (n) · a(P t

k,l(n))
16 end
17 end
18 end
19 i f F i n a l i z e dCe l l s < 81
20 t++
21 goto line 1
22 end

Pseudo code of the proposed ILCA sudoku resolution algorithm.

4.2 Irregular Learning Cellular Automata Algorithm

The resolution process to solve Sudoku by ILCA indicates that each Sudoku
cell is mapped to a cell of the ILCA where each cell’s variables are the chosen
action/cell’s state (ci,j) and its action probability vector (Pi,j(n)). The ILCA
receives the initialized Sudoku graph, with some predefined numbers, as input.
Initially, the predefined numbers probability is considered as 100%, while their
neighbors as 0%. Thus, for the remaining cells and numbers, all states have equal
probabilities to be selected.

The generated output of the ILCA is the solved puzzle. For the ILCA evo-
lution every cell is characterized by its degree. The chosen action which depicts
the cell’s state is considered as the number (n) with the highest probability.

cti,j = n, where P t
i,j(n) = max [P t

i,j(k)], k ∈ [1, 9] (6)
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 3. Step-by-step solving of a 9×9 Sudoku using the proposed algorithm. (a) Initial
configuration. (b–o) Intermediate steps presenting updated numbers in red. (p) Final
solved puzzle. (Color figure online)

In each step, the probability vector is awarded or penalized multiplying the
respective probability of the number by a factor a (award) or p (penalty):

P t+1
i,j (n) = P t

i,j(n) · (a(•) | p(•)),where a(•) > 1 and p(•) < 1 (7)

After the ILCA has been initialized, the presented algorithm occurs to reach
the generated output, where the cell state assignments are evaluated so as to
achieve the necessary conditions for the resolution of the puzzle.

In detail, if the cell has selected an action that is different from the actions
selected by all its neighbors, i.e. the cell’s degree is equal to number of neighbors,
then it is rewarded resulting its probability to get increased (lines 3–4). In case
the cell selects an action that has been selected by some of its neighbors, then this
action will only be rewarded under the condition that this cell’s degree is greater
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than the degrees of all its neighbors that have selected the same action (lines
6–7). Otherwise, the selected action is penalized, so its occurrence probability
decreases (lines 8–9). Regarding the direct effect from neighboring cells, for each
possible cell state, if neighbor’s probability to be in this state is greater than
the average, then the corresponding probability of the cell is penalized (lines
12–13). If not, it will be rewarded (lines 14–15). Each cell will choose the action
with the highest probability from its available action set. The above process
is repeated until all cells’ actions are different from their neighboring ones, i.e.
FinalizedCells is equal to the total number of ILCA cells (lines 19–21).

5 Results and Discussion

The described algorithm was simulated using the MATLAB R© R2020a software.
As a proof of concept, Fig. 3 presents the results obtained after the simulation of
a 9×9 Sudoku grid. Initially the values of the predefined cells are given, and the
evolution of the ILCA is provided focusing on the changed numbers of each time-
step. After 10 time-steps, the changes are limited to just a few cells driving to the
solution of the 9×9 Sudoku on 15 time-steps. This proves the inherit parallelism
of CA in combination with the stochastic and learning capabilities of LA can
lead to the successful resolution of Sudoku in limited time-steps showcasing the
proposed ILCA ability over other implementations.

The action probability vector evolution for each cell is presented in Figs. 4
and 5. Predefined cells can be easily spotted as the probability of the predefined
cell state remains 100% (e.g. c1,2, c2,6, c3,3, ...). Also, cells that have ruled off all
numbers except from one due to the initialization phase can be spotted with the
remaining cell state to have 100% probability throughout the ILCA’s evolution
(e.g. c3,9). For the rest cells, the probabilities vary in each time-step resulting
to changes on the cell state which leads to different chosen actions. In some
cases the successful selection of the cell state took place at the beginning of
the evolution (e.g. c2,2, c5,8, ...), while on other cases the selection needed more
time-steps to end up to the final cell state selection (e.g. c5,1, c9,1, ...). It should
be noted that on some cells there was an overturn on the cell state even if there
was a divergence between these numbers (e.g. c1,6, c7,1, ...) verifying the learning
and adaptive capabilities of the proposed algorithm.

Considering the generalization of the proposed algorithm in various Sudoku
puzzles, the required time-steps to achieve a solution is 4 for easy puzzles, 6 for
medium ones, and 16 for hard ones. These time-steps are derived as the mean
time-steps from a set of 30 different randomly-generated Sudoku puzzles.
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Fig. 4. Action probability vector evolution in time-steps for each possible cell state for
every cell of the 9 × 9 Sudoku. For clarity, the Figure has been split in two parts and
this part is depicting cells from (1,1) up to (1,9), (2,1) up to (2,9), (3,1) up to (3,9),
(4,1) up to (4,9), (5,1) up to (5,9) and (6,1) up to (6,9).
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Fig. 5. Action probability vector evolution in time-steps for each possible cell state for
every cell of the 9 × 9 Sudoku. For clarity, the Figure has been split in two parts and
this part is depicting cells from (7,1) up to (7,9), (8,1) up to (8,9) and (9,1) up to (9,9).

6 Conclusions

In this work, we have presented an ILCA algorithm for the resolution of Sudoku
puzzles. The process that is followed exploits successfully the CA’s spatial and
temporal evolution enriched with learning capabilities. The ILCA’s ability to
solve the Sudoku in only a few time-steps proves that this can be a promising
architecture for several problems that have analogous characteristics. As future
work, a more extensive testing of the proposed algorithm with larger number of
Sudoku puzzles will be investigated in order to quantitatively compare its results
with other methods.
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