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Abstract. With the growing market of cloud-native applications,
microservices architectures are widely used for rapid and automated
deployments, scaling, and management. However, behind the prosper-
ity of microservices, diagnosing faults in numerous services has brought
great complexities to operators. To tackle this, we present a microservices
troubleshooting framework called MicroCBR, which makes use of history
faults from a knowledge base to construct spatio-temporal knowledge
graph offline, and then troubleshoot online through case-based reason-
ing. Compared to existing frameworks, MicroCBR (1) takes advantage
of heterogeneous data to fingerprint the faults, (2) carefully extracts a
spatio-temporal knowledge graph with only one sample for each fault,
(3) can handle novel faults through hierarchical reasoning, and incre-
mentally update it to the fault knowledge base thanks to case-based rea-
soning paradigm. Our framework is explainable to operators, they can
easily locate the root causes and refer to historical solutions. We also con-
duct three different microservices architectures with fault experiments on
Grid’5000 testbed, the results show that MicroCBR achieves 91% top-
1 accuracy, and outperforms three state-of-the-art methods. We report
success stories in a real cloud platform and the code is open-sourced.

Keywords: CBR · Knowledge graph · Microservices · Troubleshooting

1 Introduction

Cloud-native applications enable loosely coupled systems that are resilient, man-
ageable, and observable. This technology embraces microservices, a popular archi-
tectural style for constructing modern applications in dynamic environments such
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as public, private, and hybrid clouds. The philosophy behind microservices is
decoupling the resources from applications, where each unit has a single task and
responsibility. Microservices architectures become increasingly complex with the
growth of user demands, causing that fault diagnosis across numerous services
exhaust the operators. Thus, an effective and automated troubleshooting method
is required to offload the labor and reduce the mean time to repair (MTTR) of
microservices.

We share several observations from a real cloud platform to clarify the chal-
lenges of microservices troubleshooting. First, the available data for fault diag-
nosis can be very different due to deployment, security, and performance require-
ments. Therefore, the methods [1,2] of using only homologous data are easy to
fail when the required data is missing. Second, faults are rare, which brings
huge obstacles for training-based methods [3,4], While these history faults are
well maintained in a knowledge base, we should consider how to learn from them
with only one sample for each fault. Third, we point out that the spatial topology
of instances and the temporal order of anomalies can also effectively diagnose
different faults. Further, in practical applications, the troubleshooting frame-
work needs to be incrementally updated to accommodate novel fault cases. In
addition, an explainable troubleshooting process and recommendation solutions
for the emerging fault are important to operators.

To tackle the aforementioned challenges, we propose MicroCBR, a case-
based reasoning (CBR) driven troubleshooting framework for microservices. In
particular, MicroCBR constructs a fault spatio-temporal knowledge graph using
heterogeneous data, which is embedded with temporal anomaly events sequences
and spatial instances topologies. Explainable case-based reasoning is performed
on the knowledge graph to diagnose emerging faults, followed by recommended
solutions. The salient contributions of our work are summarized as follows:

– We fully take advantage of heterogeneous data, i.e. metrics, logs, traces, and
commands. Comprehensive data entries can greatly enrich the fault finger-
prints, thus expanding the scope of applicable targets and improving the
troubleshooting accuracy.

– With retaining the physical and logical topologies of microservices instances,
we innovatively embed anomaly events sequences into the fault knowledge
graph. The analysis of spatial topology make diagnosing target instance with-
out historical data possible, and temporal anomaly events sequences improve
the troubleshooting accuracy with limited data.

– Our framework is not confined to retrieving the most similar historical case
to an emerging fault, it can further assign a novel fault to a fault type by
hierarchical reasoning. With CBR paradigm, we revise and retain the novel
fault in the knowledge base to achieve incremental updates.

– We report experiments that compare to three state-of-the-art (SOTA) meth-
ods on Grid’5000 testbed. The results demonstrate that MicroCBR outper-
forms SOTA methods with 91% top-1 accuracy. Success stories from a real
private cloud platform prove that our framework can troubleshoot the faults
effectively and offload the labor of operators. The code1 is also available.

1 MicroCBR repository: https://github.com/Fengrui-Liu/MicroCBR.

https://github.com/Fengrui-Liu/MicroCBR
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2 Related Work

In this section, we study the strengths and weaknesses of existing methods that
aim for microservices troubleshooting from three perspectives, i.e. data entries,
graph-based analysis, and reasoning methods.

Data Entries. The most common work focus on homologous data and diagnosis
faults by mining anomalies. [5,6] start from the logs. They collect anomaly scores
from different log detectors and identify root causes using correlation analysis.
Another great deal of efforts have been devoted to metrics analysis. [2,7] perform
anomaly detection on structured time-series metrics, and further determine the
faults according to the monitored targets. In addition, [1,8] turn their attention
to the traces, they model the service invocations and assume that instances with
abnormal latency are more likely to be root causes. However, these methods are
limited to a narrow perspective with only using homologous data, and fail when
required data is missing or faults affect multiple kinds of data. Recently, some work
[9–11] take into account the combination of metrics and logs, showing the advan-
tages of using heterogeneous data in industrial settings. We argue that they still
have deficiencies in data entries, especially for the post-hoc commands anomalies.

Graph-Based Analysis. Graph is a popular and effective representation of entities
and their relationships, researchers propose various views of graph construction
to assist microservices troubleshooting. Causeinfer [12] regards physics instances
as target entities while network connections as relationships, and [8,10] track
invocations among different traces as a service call graph. [11,13] try to deduce
event causality and build a graph to describe event relationships, with an under-
lying assumption that the order of anomalies can infer specific faults. Although
different graph-based methods have strengths in modeling microservices, they
still separate physics entities, services logic, and anomaly events sequences, which
limits them to a single granularity. In our framework design, multi-level abstrac-
tions and a fusion of spatio-temporal heterogeneous data are used to construct
the fault knowledge graph.

Reasoning. In recent years, the most popular faults diagnosis methods are those
driven by machine learning. [4] takes advantage of variational autoencoder to
detect anomalies and Seer [3] locates root causes using counterfactuals. Netrca
[14] adopts an ensemble model to improve troubleshooting generalization. Most of
these supervised methods suffer from labeling overhead in the training phase. They
also have limited discussion on incremental model updates and the reusability
when novel faults occur. In addition, unsupervised methods [1,9,13] utilize proba-
bilistic graphical models, such as Bayesian networks. Nevertheless, from practical
experience, the prior probability of a fault is hard to collect due to the bug fixes
and the growth ofmaintenance experience. Based on this observation, probabilistic
graphical models must be used with care. Case-based reasoning is different from
the above. It follows a 4R paradigm which contains Retrieve, Reuse,Revise and
Retain. In [15,16], authors introduce how CBR can be used for troubleshooting,
and iSQUAD [17] integrates CBR to provide explanation for reasoning results.
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Fig. 1. Simplified microservice architecture example.
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3 Background and Motivation

This section first introduces the background of microservices troubleshooting
with clarifying basic concepts. After that, we detail our motivation.

3.1 Background with Basic Concepts

Take Fig. 1 as a simplified example, we introduce the objects of microservices
troubleshooting. The workloads run in containers at the lowest level. They are
bundled together as pods which is the smallest deployable unit to create, sched-
ule and manage. A namespace is a virtual cluster, it provides a mechanism
for isolating groups of resources within a single node. In microservice deploy-
ment, the replica set is a common controller, which plays a central role in
automatically orchestrating workloads. Since pods are constantly being created
and destroyed, services provide a level of abstraction and act as an endpoint for
the pods. Due to the scalability of microservices, a configuration management
database (CMDB) is often used to manage their physical and logical topologies.

The knowledge base is a collection of all fault cases through long-term
microservices maintenances. For each fault, it contains the fault alerts, a fault
fingerprint, and the corresponding solutions, as shown in Fig. 2. Note that the
fault fingerprint records all anomalies that are related to the fault. It is drawn
from four types of heterogeneous data, i.e. metrics, logs, traces, and commands.
Metrics are numeric representations of data over intervals of time. They are
widely used in performance monitoring. Logs are timestamped records of dis-
crete events. They tend to give more in-depth information than metrics, e.g.,
predefined events or program exceptions. Traces add critical visibility into the
health of microservices end-to-end, which are introduced by caller and callee
pairs. Commands are post-hoc supplements to the above data sources, which
show great strength when required data is missing, e.g. security or performance
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limitations. While existing troubleshooting frameworks [1,2,5–8] turn a blind eye
to commands. Note that the above four heterogeneous data sources are summa-
rized from practical troubleshooting experiences. However, each fault fingerprint
only includes the available and anomaly items, not necessarily for all.

3.2 Motivation

Microservices troubleshooting, also known as fault diagnosis, is aiming to diag-
nose inevitable faults from both physical and logical components. The highest
priority of operators is to stabilize the system and avoid faults escalation. The
motivation of this paper is to propose a troubleshooting framework for microser-
vices, which can offload the labor by automated faults identification, minimize
the losses by reducing MTTR, as well as bridge the gap between prior works and
following practical constraints.

In practice, faults may recur because containers that have bugs can be
deployed multiple times to different services, or because complicated scenario
restrictions always lead to unexpected misconfigurations. If operators can quickly
determine whether the emerging fault is similar to a previously-seen case, those
known solutions may be reused to quickly fix the emerging fault. With this, sev-
eral interesting observations guide us to design the troubleshooting framework.

First, we learn that the required data for diagnosing various faults can be
very different [9–11]. In particular, we note that commands are widely used in
practice, they should be adopted together with metrics, logs and traces to enrich
the fault fingerprints. Second, the same fault data are always too scarce to train
a supervised model [3,14] in reality. In our practical experiences, if an emerging
fault can be solved by referring to the historical solutions, operators would hardly
enrich it anymore. Supervised methods suffer from handling novel faults, and fail
on incremental updates. Besides, the prior probability of each fault is difficult to
determine after the bugs are fixed or the maintenance experiences growth. Thus,
probabilistic graphical models [1,9,13], like the Bayesian network, should be used
with care. Next, we focus on how to draw the fault fingerprints as accurately
as possible in limited data. The effective answer is endowing spatio-temporal
characteristics to the fingerprints.

Thanks to the above valuable practical observations, we are expected to
design a microservices troubleshooting framework that can take advantage of
heterogeneous data, and learn from one sample of each fault. In addition, it
should be able to provide recommended solutions and handle novel faults. To
tackle these challenges, we propose MicroCBR which uses case-based reasoning
on spatio-temporal fault knowledge graph for microservices troubleshooting, and
the details are described in the next section.

4 Troubleshooting Framework

In this section, we firstly introduce the overview workflow of our troubleshooting
framework, followed by detailed descriptions of its main components.
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Fig. 3. Overview workflow of proposed MicroCBR troubleshooting framework.

4.1 Framework Overview

As Fig. 3 shows, our framework combines offline update with online diagnosis
through case-based reasoning. For the offline part, we leverage the CMDB of
target system to construct a graph that contains its physical and logical topolo-
gies. Then we embed the existing knowledge base into the graph, and enrich it
into a spatio-temporal fault knowledge graph. An online troubleshooting work-
flow is usually triggered by a system alert. The universal set of fault fingerprints
from existing knowledge base points out the objects to be detected. After var-
ious detecting methods applying on metrics, logs, traces and commands, we
select those anomalies to depict a fingerprint of emerging fault. In order to dis-
tinguish the importance of different anomalies, we assign weights scores to them.
After performing hierarchical case-based reasoning on constructed fault knowl-
edge graph to realize the retrieve and reuse of existing fault cases, we provide a
explanatory report with fault fingerprint and recommended solutions. The oper-
ators can revise the fault details and retain a novel fault in the knowledge base
for incremental updates. Next we elaborate on each technology of the framework.

4.2 Spatio-Temporal Fault Knowledge Graph

In our framework, the fault knowledge graph is the cornerstone of fault diagnosis.
The backbone of the knowledge graph is constructed from the CMDB of a target
system. Its entities include logical nodes, namespaces, services topologies, and
physical clusters. The spatial topologies of these entities are represented by links
that indicate their affiliations, and the links of different services represent their
call relation. On this foundation, we append the fingerprints from the knowledge
base to the graph. For each fingerprint, its upstream is the anomaly entity, and
its downstream is the corresponding fault. We further illustrate the power of
temporal event sequences and spatial topologies for troubleshooting by giving a
fault case respectively in Fig. 4. Note that these two analytical perspectives are
not independent, and should be combined in some fault cases.
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Fig. 4. A subgraph of spatio-temporal fault knowledge graph. The left pod failure
fault fingerprint has temporal event sequences, while the right JVM memory stress
fault shows us the spatial topologies and hierarchical reasoning for troubleshooting.

Temporal. A key insight of the fingerprints is that some anomaly events occur
orderly. Having the same composition, anomaly events with different orders may
point to different faults. The rating pod in Fig. 4 shows us a remarkable event
sequence of its pod failure. At first, both the net_receive and net_transmit
metrics have unexpected declines, accompanied by a significant increase in its
callee_latency. However, this symptom is too common in various faults to diag-
nose correctly. What inspires us is that there are a series of follow-ups. Its
pod_restart counter is incremented by one, followed by continuous increases in
memory_usage and cpu_usage. These sequential events point out that the dae-
mon is trying to restart the rating pod, and diagnose it as a pod_failure fault.
The key challenge of embedding event sequences into the knowledge graph is
mining their temporal order. For a fault fingerprint, supposing each anomaly
ai and its beginning time ti is presented by a tuple (ti, ai). We ascending sort
the anomalies according to their beginning time ti. After that, an unsupervised
DBSCAN [18] algorithm is performed on their time dimension for clustering,
as C1, C2, ..., Cm = DBSCAN([t1, t2, ..., ti], n, ε), with two important empirical
parameters minimum points (n = 1) and neighborhood radius (ε = 15s) in our
settings. The positions m of clusters Cm on the time dimension are used as tem-
poral order of ai. Anomaly events in the same cluster share the same temporal
order, as the memory_usage and cpu_usage in the above pod failure example.

Spatial. We turn to how spatial topology helps us with fault diagnosis when
lacks historical data. A useful observation is that the entities with similar spatial
topology can be used as references for anomaly detection. Due to the Java-based
advertising services being widely deployed in different namespaces, we study its
Java virtual machine (JVM) stress faults in Fig. 4. Owing to resources limita-
tions, the pod under ticket-order namespace has a JVM stress fault during the
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startup phase, it is impossible to detect anomalies on related time series met-
rics without historical data. Similar advertising pods that work well in other
namespaces can serve as normal references. It turns out that the target pod has
a higher ratio of bufferpool, memory, and garbage collection usage than those
normals. To determine those references, for a target instance i, we retrieve its
one-hop neighbors n and form a subgraph subg(i). Thanks to CMDB provides us
the physical and logical topologies of microservices, we search the whole topol-
ogy graph for reference instances r, s.t. sim(subg(i), subg(r)) > θ, empirically
findings that sim(·) can be calculated by Jaccard distance and θ = 0.7.

Hierarchical. In some certain circumstances, like a novel fault that has never
been seen before occurring in the target system, we are unable to retrieve a
sufficiently similar case from the existing fault knowledge graph to reuse its
solutions. Thus, we introduce a hierarchical abstraction of all known faults. Take
the JVM stress fault in Figure 4 as an example. At the finest granularity, the
knowledge base has only collected heap and stack memory stress faults. Once
there occurs another kind of memory stress fault, metaspace overflow, similarity-
based retrieving (introduced in Sect. 4.3) fails to assign it to any known faults
with a predefined threshold. An ideal way is to classify this novel fault to a
higher level, such as a JVM memory stress or a JVM stress fault. Although
this is a coarse-grained diagnosis, it can also effectively reduce the scope of
troubleshooting. After revising the fault fingerprint and solutions by operators,
the novel fault is added to the knowledge base and finishes the incremental
updates to the fault knowledge graph.

4.3 Fingerprinting the Fault

When an alarm triggers the troubleshooting workflow as Fig. 3 shows, the first
step is to detect anomalies for the target system. All the items to be detected
are from the fingerprints of the existing knowledge base. Here we list a series
of anomaly detection methods that are used in practice. For metrics data, we
detect their anomalies in a time series manner [19,20]. Log anomalies [21,22]
can be reported from their template sequences and specific events. As for traces,
according to [1,8], their anomalies are reflected in call latency. Thus we select
their one-hop caller and callee latency to monitor. The commands are post-hoc
detections for faults, they should be sent to different targets and collect returns
to automate the troubleshooting workflow. Predefined rules are the best practice
for commands owing to security and customization requirements.

The above methods usually represent the state of detected items in a binary
way, a.k.a normal and anomaly. We introduce an algorithm to evaluate the
weights of anomalies in a fault fingerprint. Suppose a knowledge base that con-
tains k known fault fingerprints F . For each fingerprint F , it contains a collection
of anomalous items f . The first consideration is frequency. It reflects the belief
that the lower the frequency, the more important the word is, as

Wfreq(f) =
∑k

i 1[f∈i]

k
(1)
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Another factor to consider is the relatedness of anomalous items, which reflects
in their degrees. The more numbers of different terms that co-occur with the
candidate detection item, the more meaningless the item is likely to be. The
length of co-occur list of f is Cl(f) =

∑k
i

∑i
j 1[j,f∈i], and the length of co-occur

set of f is Cs(f) =
∑k

i

∑i
j 1{j,f∈i} which only counts the unique detection items.

We define the relatedness weight of f as

Wrel(f) = 1 +
Cs(f)
Cl(f)

+
Cs(f)

max(Wfreq(·)) (2)

We heuristically combine the two important factors into a single measure as

W (f) =
Wrel(f)

Wfreq(f)
Wrel(f)

+ Cl(f)
(3)

The motivation of this equation is to assign high weights to anomalous items
that appear infrequently as long as the item is relevant. Those anomalies with
high weights have great contributions to fault discrimination.

4.4 Case-Based Reasoning

After fingerprinting the emerging fault, we show how to use the paradigm of
case-based reasoning to complete once fault diagnosis.

Retrieve. The key idea of this step is to select the most similar known fault
F from the knowledge base to the emerging fault F ′. As we have discussed
the temporal characteristic of fault fingerprints in Sect. 4.2, it can be solved by
converting to a weighted longest common subsequence (WLCS) problem [23].
The similarity can be defined in a weighted bitwise way:

Sim(F ′, F ) =

∑F ′

f W (f)1[f∈F∩WLCS(F,F ′)]

max(
∑F ′

f W (f)1[f∈F ′],
∑F

f W (f)1[f∈F ])
(4)

Reuse. For each fault F in the knowledge base, we can get its similarity score
to emerging fault F ′. The solutions of a fault F that has the highest similarity
score can be used as references for troubleshooting. Furthermore, to ensure the
recall rate for similar faults, a common practice is to sort their scores in descend-
ing and select top-k for recommendations. At the same time, we should avoid
recommending too many options under the consideration of labor cost. Thus, we
argue the power of top-2 in experiments.

Revise & Retain. The weighted detection items, similar faults, and recommended
solutions together form the explanatory report. The good benefits are that the
operators can understand the root causes of an emerging fault. Some anomalies
that hardly distinguish various faults can be eliminated from the fingerprint
by operators. After that, the revised fault fingerprint is retained within the
knowledge base.
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5 Evaluation

This section presents the detailed results of extensive experiments to evaluate
our troubleshooting framework by answering the following questions:

Q1. What is the accuracy of MicroCBR compared to SOTA baselines?
Q2. How much accuracy is affected by each component of the framework?
Q3. How MicroCBR is affected by the data scale?
Q4. Does it offload the labor in practical applications?

5.1 Evaluation Setup

We configure a testbed in Grid’5000 [24] and deploy three open-source microser-
vices architectures to evaluate our framework. Besides, three selected SOTA
methods for comparison are introduced in this section.

Testbed & Microservices. We prepare 3 private nodes in the Nancy site of
Grid’5000, with 16GB RAM and 4 cores Xeon E5-2650 CPU for each node.
Online-Boutique2(OB), Sock-Shop3(SS), and Train-Ticket4(TT) are deployed
respectively, which have different microservice architectures. Each service of
them is deployed with multiple instances. We continuously run a workload gen-
erator to simulate the real-world user access behaviors.

Fault injection & Data collection. To explore the faults of different microservices
architectures, we select 31 faults at both pods and containers from Chaos-Mesh5.
Besides, 10 misconfiguration faults have been prepared manually. These faults
can be categorized in a high hierarchy with 6 types, including network faults,
stress scenarios, etc. For different faults, we carefully analyze their anomalies and
collect them to form a knowledge base. Then, we successfully inject them into
different instances and finish 3572 experiments. For each injection, we collect the
anomalies from metrics, logs, traces, and commands within 10min.

Baselines. We select three SOTA methods, Bayesian-based CloudRCA [9], case-
based CloodCBR [15] and graph-based GraphRCA [10] for comparison. To make
these methods suitable for our experimental settings, we assume that CloudRCA
treats all faults with the same prior probability, CloodCBR adopts equal match-
ing as the similarity calculation strategy, and GraphRCA needs no additional
assumptions. Another thing to note is that all of them ignore the traces and
commands, and we comply with their original frameworks.

5.2 Q1. Comparative Experiments

For the four troubleshooting methods applied on different microservices, we use
top-k (A@k), specially A@1 and A@3, to evaluate their accuracy. It refers to
the probability that the groundtruth fault is included in the top-k results.
2 Online-Boutique: https://github.com/GoogleCloudPlatform/microservices-demo.
3 Sock-Shop: https://github.com/microservices-demo/microservices-demo.
4 Train-Ticket: https://github.com/FudanSELab/train-ticket.
5 Chaos-Mesh: https://chaos-mesh.org/.

https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/microservices-demo/microservices-demo
https://github.com/FudanSELab/train-ticket
https://chaos-mesh.org/
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Table 1. Overall accuracy comparison of microservices troubleshooting.

Fault
type

Fault
(#)

Micro-
services

Instance
(#)

MicroCBR CloodCBR CloudRCA GraphRCA
A@1 A@3 A@1 A@3 A@1 A@3 A@1 A@3

Net 17 OB 187 .91 1.0 .47 .59 .72 .82 .81 1.0
SS 238 .94 1.0 .39 .54 .61 .78 .80 1.0
TT 1139 .92 1.0 .49 .61 .70 .81 .79 1.0

Pod 3 OB 33 1.0 1.0 .84 .84 .82 .82 .91 .97
SS 42 1.0 1.0 .88 .88 .83 .83 .88 .93
TT 201 1.0 1.0 .81 .81 .88 .88 .81 .93

Stress 2 OB 22 .95 1.0 1.0 1.0 .95 1.0 .73 .95
SS 28 .96 1.0 .89 1.0 .89 1.0 .57 .93
TT 134 .97 1.0 .90 1.0 .94 1.0 .66 .96

JVM 4 OB 4 1.0 1.0 .91 1.0 .84 1.0 .67 1.0
SS 16 .93 1.0 .69 1.0 .57 1.0 .74 .98
TT 148 .94 1.0 .78 1.0 .80 1.0 .64 .94

I/O 5 OB 55 .96 1.0 .62 .75 .87 1.0 .84 1.0
SS 70 .98 1.0 .66 .84 .84 1.0 .87 1.0
TT 335 .90 1.0 .70 .80 .87 1.0 .83 1.0

Config 10 OB 110 .84 1.0 .00 .00 .00 .00 .00 .00
SS 140 .81 1.0 .00 .00 .00 .00 .00 .00
TT 670 .82 1.0 .00 .00 .00 .00 .00 .00

All (of 3572 instances) .91 1.0 .45 .54 .57 .66 .59 .74

Improvement of our method (ours) 102% 85% 60% 51% 54% 35%

Var. across 3 microservices 1.3e–4 0.0 7.6e−4 4.7e−5 1.1e−3 4.9e−6 3.2e−4 8.8e−5

Table 1 details the experiment results. The A@1 of our method outperforms
the compared SOTA methods by 54% to 102%, and A@3 prove that our method
can always provide the correct answer within three options. Furthermore, the
pod faults catch our attention, which contain plenty of temporal anomaly events
collected by the knowledge base. The design of our method that can handle
temporal characteristics ensures our accuracy advantages. Besides, those config-
uration faults heavily depend on the post-hoc commands. Compared to SOTA
methods that leak commands information, our method benefits from adequate
heterogeneous data and achieves higher accuracy. We also study the accuracy
variance of these methods across different microservices, while our method has
the lowest variance. This indicates that MicroCBR is more robust than others
and can be used widely on various microservices.

Next, with other SOTA methods ignoring the fault type analysis, we report
A@1 of MicroCBR hierarchical reasoning in Table 2 on its own. Different from
the first experiment, we study the fault type accuracy of novel faults that have
never been seen before. By analyzing the results, we find out that although novel
faults are not included in the knowledge base, whether their fingerprints are sim-
ilar to known faults matters. For the novel stress and JVM faults, parts of their
fingerprints overlap with known same type faults, resulting in high accuracy. In
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Table 2. A@1 of MicroCBR hierarchical reasoning for novel faults.

Net Pod Stress JVM I/O Config All (of 6 types)

OB 0.81 0.76 0.95 0.93 0.83 0.79 0.82
SS 0.83 0.74 0.93 0.95 0.76 0.72 0.80
TT 0.85 0.75 0.97 0.93 0.80 0.78 0.84
All (of 3 systems) 0.96 0.75 1.00 0.94 0.80 0.77 0.83

a comprehensive view across 3 microservices with 6 fault types, the hierarchical
reasoning of MicroCBR can diagnose the fault type with 83% accuracy.

5.3 Q2. Ablation Experiment

For ablation experiments, we first study the A@1 with different ablation rates
and further talk about the effect of spatio-temporal knowledge graph on trou-
bleshooting accuracy.

Anomaly detectors play the entry role of MicroCBR, by drawing the finger-
prints of emerging faults. However, due to various limitations, such as param-
eter selections or data bias, they fail to give a perfect fingerprint. We study
their impact by customizing the ablation rates of fingerprints, e.g. 0.2 ablation
rate means that only 80% of the complete fingerprint can be collected. One
additional setting is that the size of each fault fingerprint is no less than one.
Figure 5 reports the A@1 of MicroCBR with different ablation rates. With the
increase of ablation rate, the accuracy of stress and JVM faults decrease sig-
nificantly. While the pod faults benefit from temporal anomaly events orders,
our framework is still able to locate root causes correctly. Besides, limited to the
size of fingerprints, those configuration faults that have small fingerprints change
slightly on their A@1. However, it is particularly noteworthy that the accuracy
of I/O faults increases when the ablation rate changes from 0.2 to 0.4. This is
because this change affects fingerprint importance weight, as expressed in Eq. 3.
This experiment illustrates that the anomaly detectors do affect the accuracy of
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Fig. 5. A@1 of MicroCBR with different
fingerprint ablation rates.
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Fig. 6. A@1 of MicroCBR with spatial
and temporal ablations.
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MicroCBR. This conclusion guides us to select anomaly detectors with care in
practical applications, ensuring high-quality fault fingerprints.

Next is the ablation study on spatio-temporal knowledge graph. We sepa-
rately eliminate the spatial and temporal characteristics from our framework,
represented by \ Spatial and \ Temporal. Figure 6 shows that these two char-
acteristics in varying degrees impact A@1. The JVM and configuration faults
need to compare similar instances to detect anomalies, while pod and I/O faults
contain anomaly events sequences. The results show that the design of spatio-
temporal knowledge graph improves the troubleshooting accuracy of MicroCBR.

5.4 Q3. Efficiency Experiments

Retain new cases of CBR make the incremental update possible, accompanied
by the accumulation of knowledge base. To ensure the long-term usability of
our method, we study how the scale of knowledge base and the size of fault
fingerprints affect the troubleshooting efficiency.

Fingerprinting the emerging fault is the first step after a system alert. In our
framework, it requires interaction with the microservice systems, which includes
requesting data from databases and executing commands post-hoc. From Fig. 7
we can see that the troubleshooting mean time of MicroCBR far outstrips oth-
ers because collecting commands results takes plenty of time. Fortunately, the
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Fig. 7. Troubleshooting mean time with
different fingerprint sizes (knowledge base
size = 3000).
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Fig. 9. Prototype of MicroCBR management system.
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overhead of time can be optimized through parallelism. Figure 8 shows us the
troubleshooting mean time with different knowledge base sizes. The mean trou-
bleshooting time of our MicroCBR and other compared methods are increase
linearly with the knowledge base accumulation, which is consistent with the the-
oretical analysis from Eq. 4. In particular, linear time complexity also ensures
the usability of our algorithm in practical scenarios. Although the cost of our
framework in time comparison is not the best, we argue that its performance of
once troubleshooting at a second level is still acceptable.

5.5 Q4. Case Studies and Learned Lessons

Our framework has been widely tested in a real private cloud platform, which
has more than 100,000 users from the field of education, health care and finance.
During the long-term maintenance of this platform, we collect 710 known faults
as a knowledge base. To evaluate the usability of our method in practical appli-
cations, we apply MicroCBR on this platform. Figure 9 shows a prototype that
provides an easy access for operators to use MicroCBR. We collect the user
experience feedback and select two typical cases for study.

The first case is a misconfiguration fault. We successfully detect a disk mount
error after once container upgrade. It is noteworthy that most of the metrics fail
to be sampled during the upgrade, thus anomaly detection cannot be performed
from the time dimension when a new pod start. Thanks to our framework having
designed a strategy of referencing similar instances, it finds out a misconfigura-
tion by comparing pods that have not been upgraded. The whole diagnosis is
completed in 60 s, which shortens the time by 90% compared with experiential
10-minutes manual troubleshooting. This case shows the power of our framework
in reducing MTTR and improving the quality of service.

Another case is related to the mining virus. The system monitors that the
CPU utilization of a cnrig process on a cluster is as high as 3181% and continues
to be abnormal. Since no mining-related cases have been included in the knowl-
edge base before. MicroCBR reports it as a stress fault at a high level. Operators
revise this report by adding more mining virus names and traffic features of min-
ing pools, with adding it to the knowledge base. We successfully detect another
mining virus called syst3md after one week. This case proves the ability of our
framework to deal with novel faults.

An important lesson learned from real deployment is that anomalies with high
weighted scores always indicate root causes. Meanwhile, these anomalies provide
sufficient discrimination for fault fingerprints, which is the basis for similarity-
based retrieval.

6 Conclusion

This paper presents our framework named MicroCBR for microservices trou-
bleshooting. Heterogeneous data from metrics, logs, traces, and commands are
integrated into a spatio-temporal fault knowledge graph. Hierarchical case-based
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reasoning is performed to recommend historical similar cases and solutions to
operators. The extensive experiments show that MicroCBR outperforms the
SOTA methods on troubleshooting accuracy. We also share case studies and
learned lessons from our deployment in a real private cloud.
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