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Abstract. To facilitate research in the field of user story effort estima-
tion (USEE), this work analyzes the applicability of case-based reasoning
to effort estimation of user stories. The analysis uses real-world user sto-
ries of a software development project of the Capgemini Group. The
focus of the analysis is the development of an effort estimation tool that
could generate accurate effort estimates serving the purposes of project
planning and control. In addition to a classical structural CBR approach,
the paper applies the weights optimization method Particle Swarm Opti-
mization to small case bases. The highly accurate effort estimates result-
ing from a couple of experiments on real data show that estimation by
analogy presents with the aid of an automated environment an eminently
practical technique. As a consequence, this approach impacts estimation
accuracy and thus success of industrial software development projects.

Keywords: CBR applications · Software engineering · Few data ·
Particle swarm optimization

1 Introduction

Software effort estimation (SEE) is the process of approximating the amount of
effort needed to complete project activities [24]. In agile software development, a
project comprises several iterations, each of which delivers a set of requirements
known as user stories [1]. The success or failure of an agile software project
depends on accuracy in estimating the effort of user stories [16]. Underestimates
bear the risk that projects reveal to exceed the budget. When efforts are overes-
timated, the company might mistakenly reject potentially profitable user stories
or even projects.

Numerous studies on effort estimation of user stories have been published in
the recent past [1,6,12,16,25]. They report on many different estimation tech-
niques of expert-based or data-driven kind. The data-driven approaches have
in common that they require a large amount of data. Malgonde and Chari’s
work [12] with around 500 stories are among those with smaller data sets. In
practice, however, many repositories with user stories are distinctly sparser for
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privacy or further business concerns. Our research is investigating how accu-
rate estimations can be derived from small repositories of user stories. We have
developed a Case-based Reasoning (CBR) approach for estimating user stories’
effort that uses particle swarm optimization. It turned out during our experi-
ments with four small case-bases (below 60 cases each) that CBR outperforms
the estimation accuracy of expert judgements achieved with the Planning Poker
technique.

The remainder of the paper is organized as follows. Related work is discussed
in Sect. 2. The application scenario is introduced in further detail in Sect. 3. The
CBR approach is presented in Sect. 4. Next, Sect. 5 reports on the experiments
with real-world data from a software project of the Capgemini Group. Finally,
a conclusion is drawn in Sect. 6.

2 Related Work

SEE by analogy has already a long tradition in CBR [7,8,15,20,27,28]. These
approaches have in common that a software project is represented as a case
and is characterized by a set of features that are regarded as effort drivers,
such as the programming languages or complexity of the project. In contrast
to our approach those publications focus on entire software projects. Today,
agile software development is of increasing importance. This means that the
requirements whose effort can be estimated are described in the form of user
stories. Those smaller, less complex units have to our knowledge not yet been
considered in case-based research on SEE.

Recently, the optimization of CBR approaches in SEE has attracted consid-
erable research attention as approaches like particle swarm optimization (PSO)
and genetic algorithm (GA) have been used to optimize weights, parameters, and
select features [7,8,27,28]. These research results have shown that CBR method
with optimized weights derived by PSO or GA can improve estimation results.
Furthermore, there exist results verifying that PSO is able to outperform GA in
searching the optimized weight of CBR [14]. Again, there do not exist weights
optimization approaches in the context of user story effort estimation (USEE).
As the PSO method is known to outperformed GA [14], this method is chosen
to identify optimal weights for effort drivers in our CBR approach.

Additionally, related approaches for optimization have gained attention in
CBR research [9,22,26]. The work of Jarmulak et al. [9] optimizes the case-
base index and the feature weights for similarity measure simultaneously for the
application area of tablet formulation. Stahl and Gabel [22] implement a novel
approach for optimizing the similarity assessment in CBR. Their work employs
evolutionary algorithms for optimizing similarity measures by means of relative
case utility feedback. The work of Wiratunga et al. [26] introduces learning-to-
learn personalised models from few data. It applies a personalized meta-learning
approach to self-management cases for patients of back-pain. These approaches
provide alternative solutions to PSO in the context of CBR approaches, the
latter with few available data. They have not yet been considered in our work
but might inspire future work on alternative or hybrid approaches for USEE.
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3 Software Effort Estimation of User Stories

SEE is an active research field since the 1970s. This dynamic field of SEE has
undergone several changes in the last four decades, whereas one significant devel-
opment emerged in the course of the agile movement.

The shift from traditional to agile methodologies used in the development
process changed the perspective on estimation and planning in the last twenty
years. In agile development settings, the project is characterized by incremental
development in small iterations implying that estimations should be done pro-
gressively. Whereas in each iteration a number of user stories is implemented.
Thus, the estimation in agile projects especially focuses on estimating user sto-
ries rather than whole projects [4].

A user story is a common way for agile teams to express user requirements
[4] and describes functionality that will be valuable to either a user or purchaser
of a software [5]. Figure 1 shows an exemplary story of this project.

Due to the importance of reliable effort estimates for effective software project
management, the field of SEE was investigated actively in the last four decades,
leading to the evolvement of various estimation models and techniques [23].
Nevertheless nowadays, it is common practice to apply expert-based estimation
techniques to a great extent and the application of effort estimation techniques
other than expert judgement is still immature [25].

Expert-based approaches require a subjective assessment of experts [17]. For
this approach, different methods exist that guide the consultation process of
experts. Expert-based estimation with a structured group-consensus approach is
represented by the principles of Wideband Delphi [24]. A widely practiced expert-
based technique in agile software development is Planning Poker (PP) which
principles are in fact derived from the group-consensus methods of Wideband
Delphi [24].

This gamified estimation method involves discussion among the team mem-
bers [3,16]. For each user requirement, all team members make their estimate
by choosing a single card from their own deck of cards. Each card from the deck
shows one number which represents the estimated effort typically measured in
days or story points. Story points are a relative unit of measure. All cards,
this means all estimates, are revealed concurrently. If any discrepancy occurs,
then discussion among team members takes place to find consensus. Finally, the
agreed estimation is set down as finalized and the next user requirement is taken
into consideration.

PP does not require any historical data and is applicable in any phase of soft-
ware development. Typically, estimation based on group discussion contributes
to a better understanding of software development problems or the identifica-
tion of weaknesses in software requirements. Moreover, human experts can han-
dle differences between past project experiences and new techniques, architec-
tures or unique project characteristics. Besides its strengths, this group estima-
tion method involves multiple experts with advanced expertise in the developed
software which makes the estimation relatively expensive. This approach does
not provide a reusable estimation model as the estimation procedure must be
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Fig. 1. Exemplary user story
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repeated each time estimates are needed. Additionally, expert estimates can not
provide objective and quantitative analysis of project effort dependencies and
can be biased by numerous factors like individual expertise or preferences [24].

4 CBR Approach

The key to successful estimation is to identify relevant effort drivers [24]. In
terms of CBR, this is achieved by defining suitable case representations for the
description of user stories first. Next, the similarity functions are specified. An
adaptation rule is described to derive estimation values from multiple cases. In
addition to the classical CBR approach, the weights of the similarity functions
are optimized in order to balance the impact of the relevant effort drivers on the
system’s estimation. The specific contribution of our optimization approach is
that it works successfully for very small case-bases.

4.1 Case Representation

Interviews with experts revealed that effort drivers in agile software development
are dependent on the project context. It is difficult to define uniform effort drivers
for all user stories. Hence, the user stories have been grouped into different case-
bases depending on their main purpose. For instance, stories that primarily have
an effect on the user interface can be classified as stories of the category ‘UI’.
The UI stories can be further distinguished according to sub-categories such as
‘Dialog’ or ‘View’. For each sub-category, an own case-base is specified. The cases
record those feature-value pairs that are the most relevant effort drivers for the
purpose of the case-base, i.e. the case representation implements a structural
CBR approach [18]. The solution part of the cases comprises a numerical value
expressing the actual effort recorded post mortem.

4.2 Similarity

The similarity functions follow the local-global principle [18]. The similarity sim
for a problem q and a case c = (p, l) from the case-base is calculated as follows:

sim(q, p) = Φ(simA1(q1, p1), . . . , simAn
(qn, pn))

where Φ : Rn
↦R denotes an amalgamation function and simAi

: Ti×Ti↦R a local
similarity function for the i-th feature (with range Ti) of the case representation.
We have chosen to use the most prevalent amalgamation function namely the
linear sum Φ(s1, . . . sn)=

∑
i=1...n ωi ·si where ωi is the weight of the i-th feature.

4.3 Adaptation

The effort estimate for the new user story that is described in the query case is
based on the best matching cases identified in the retrieval step. We have chosen
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a multiple case adaptation approach which generates the effort estimate using
the weighted mean of the actual effort values of the k most similar source cases:

PredictedEffort =
k∑

i=1

sim(q, pi)
k∑

i=1

sim(q, pi)
· ActualEfforti

This adaptation rule calculates the weight factor on the basis of the similarity
measure between the user story q to be estimated and the historical user story
pi. The weight factors are only used for normalization purposes. Moreover, as
this adaptation rule is based on multiple cases, for instance k = 3, it allows to
cope with varying development productivities among software engineers which
arise from different levels of experience.

4.4 Weight Optimization with PSO

As defined in Sect. 4.2 the global similarity function is deduced from local similar-
ity functions of each feature where the weights determine the feature’s influence
on global similarity. It is eminent to identify the best weights in the term of
improved estimation accuracy. The optimization problem of discovering appro-
priate weights for the features can be solved by the Particle Swarm Optimization
(PSO) method [10].

PSO simulates the behaviour of fishes and birds in swarms. The position of a
particle represents a potential solution of the optimization problem. The goal is
that a particle meets an optimal point in the solution space. Please note, that the
solution space of the optimization problem differs from the solution space of the
case-base since it addresses optimal weights for the similarity function. In PSO,
a population of particles representing different solution proposals is created and
updated iteratively. In any iteration, the fitness of each particle is calculated by
putting its information into a designated objective function. In response to the
fitness value and in accordance with the movement of the other particles, each
particle is updated by adjusting its position in the solution space.

In an n-dimensional problem space, the position of the j-th particle at the
iteration t is described by an n-dimensional particle vector Xt

j=(x
t
j1, x

t
j2, ..., x

t
jn).

The particle’s velocity is as well defined as an n-dimensional vector V t
j =

(vt
j1, v

t
j2, ..., v

t
jn). The position of a particle is updated using the velocity vec-

tor in accordance with Wu et al. [28]:

Xt+1
j =Xt

j + V t+1
j .

The velocity vector is adjusted (like in [28]) by considering its previous best
position pj according to the objective function, its current position, its current
velocity and the previous global best position g of all particles:

V t+1
j = it · V t

j + c1r1 · (pj −Xt
j) + c2r2 · (g −Xt

j)
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where it is a time-varying inertia weight (decreasing from iteration to iteration
in order to slow down the impact of the former velocity, cmp. [28]), c1, c2 are
positive constants and r1, r2 random numbers between 0 and 1.

After the particle population is initialized randomly, the fitness value of each
particle is calculated. Then these values are compared with the fitness values of
the best positions resulting in the updates of the individual best positions and
the global best position. At least, the adjusted velocities and particles’ positions
lead to a new particle population.

In the context of USEE, the objective is to derive weights that generate
highly accurate estimates. Therefore, one needs to decide on an accuracy metric
on which the optimization problem is based. As the mean magnitude of relative
error (MMRE) between estimated and actual efforts is the most frequently used
accuracy metric, this metric is chosen to serve as the objective function.

It is defined by the magnitude of relative error (MRE) for a case

MRE =
|ActualEffort − PredictedEffort|

ActualEffort
,

averaging the MRE values for a case-base with N cases:

MMRE =
1
N

N∑

i=1

MREi.

Thus, the objective is to minimize the mean prediction error of all user stories
whose effort values are aimed to be estimated.

The PSO method is applied separately to each case-base. A population with
the same swarmsize of particles is generated for every case-base by randomly
selecting initial weights. Each particle represents a potential similarity function.
More precisely, a particle is a vector of weights to aggregate the values of the
(given) local similarity functions where ωi is the weight of the i-th feature, or in
other words, the weight of the i-th local similarity measure. The ωi’s are chosen
within lower and upper bounds pre-defined for each feature of the particular case
representation.

The defined objective function shows that there is data required that serves
as case-base and data that represents the new user stories whose effort values are
aimed to be predicted accurately. Consequently, the fitness of the local similarity
function (a particle) is determined by applying it to a case-base and measuring
the accuracy of the predicted estimation values. Dividing the data set into these
two containers could lead to the problem of over-fitting. This means that a CBR
cycle initialized on weights derived in this way would provide a perfect accuracy
score but would fail to predict anything useful on yet-unseen data.

The problem of over-fitting is encountered through a 3-fold cross-validation.
Therefore, the whole data set is divided into a training set (80%) and a test set
(20%). The test set contains user stories that the model has never seen before
and is used for the final evaluation of the CBR approach. The training set is used
for the search of optimized weights with the aid of PSO. This data set is split up
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into 3 folds. Hence, the optimal weights are derived 3 times, every time two folds
are used as case-base and one fold is utilized for accuracy evaluation purposes.
Even though it is common practice in cross-validation to choose the parameters
of the iteration with the lowest error rate, this principle is not applicable in the
context of small case bases. Since each fold contains only a very small number
of cases the error values can explode due to outliers. Thus, the optimal weight
vectors of all iterations are utilized by calculating their median value.

5 Experiments

The experiments have been guided by two hypotheses:

H1 The PSO optimization improves the results of the case-based estimation
approach.

H2 The case-based estimation approach with PSO outperforms human experts
who use Planning Poker as an estimation technique.

The experimental environment has been created in myCBR [2]. Two experi-
mental setups have been defined and conducted on the same experimental data
that is described in the following. Experiment 1 addresses hypothesis H1 as
described in Sect. 5.2. Experiment 2 focuses on hypothesis H2 (see Sect. 5.3).
The results of both experiments are discussed in Sect. 5.4.

5.1 Experimental Data

The experimental data comprises 127 user stories from a currently running soft-
ware development project of the Capgemini Group. The project whose user
stories formed the data basis of the analysis has involved around 100 employ-
ees, consisting of project manager, software developers, business analysts and
software testers. The project has been executed in the context of agile soft-
ware development. Concretely, the software has been developed using Scrum, a
process framework managing product development in an iterative, incremental
procedure [19]. Consequently, the software was planned, estimated and delivered
incrementally in small iterations, whereas in each iteration a certain number of
user stories was realized.

The evaluated period of 17 months offered a total of 298 user stories that
were realized in 11 increments. A major problem that SEE research community
encounters is the heterogeneity of data. Many studies emphasize the demand for
more homogeneous datasets to achieve higher accuracy levels [13,20,21]. The fact
that all stories belong to the same project and at least show a similar context,
complies the requirement of homogeneity. To strengthen this requirement, a
subset of 127 stories that primarily have an effect on the user interface were
selected as experimental data. This data set was divided into four self-contained
case-bases whose technical implementations differed from each other. The topics
and size of the four experimental case-bases are depicted in Table 1. Each case-
base shows effort values of similar range (cmp. Table 5).
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Table 1. Distribution of user stories across the category UI.

Dialog Filtering Report View
∑

32 18 59 18 127

‘Dialog’ user stories implement or extend any user interface which gives the
user the possibility for data entry, for record selection and deletion with the aid
of check-boxes, for triggering data processing through clicking on buttons and so
forth. ‘Filtering’ user stories implement or extend user interfaces which consist
of filters. An example case describes the requirement that the filter attributes
for postal addresses should include an additional attribute for name affixes.
‘Report’ user stories only display data and inform the user on the current status
of specified variables. ‘View’ user stories have the central purpose to display
data and are characterized by limited user interactions. To be more precise,
the allowed interactions are restricted to the actions belonging to the project’s
standard structure of interfaces. For instance, they do permit the user to remove
or select columns and navigate forth and back. Stories involving more complex
user interactions are put into category ‘Dialog’.

The four case-bases contain slightly different feature sets (cmp. the second
column of Table 4). Table 2 exemplarily depicts the feature set of one of the case
bases.

Table 2. Feature set of the Dialog cases.

Feature Domain

Level New/Extension

Process step 20/25/27/30/35/40/50/60/70/80/90

Fields 0–30

Buttons 0–5

Messages 0–8

Validations 0–8

Functionalities 0–5

Complexity Low/Medium/High

‘Level’ states whether a story specifies a new user interface which meets the
properties of the user story or extends an existing one. ‘Process step’ references
the identification number of the process step in the business process model that
underlies the software and describes the software’s functionality at a high-level,
business-oriented perspective. Stories that fulfill requirements of advanced pro-
cess steps tend to require more development effort than those of earlier steps.
The domain of the feature is restricted to those identification numbers that occur
within the software project’s business process. ‘Fields’ captures the number of
fields needed to be implemented. ‘Buttons’ accounts for the number of buttons
specified in the story. ‘Messages’ describes the number of messages needed to be
implemented. ‘Validations’ comprise various checks for the compliance of inserted
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values by the user on the permitted range of values as well as checks for data
records that are allowed to be displayed on the user interface. ‘Functionalities’
captures the number of functionalities specified in the story. This involves all
actions that can manipulate data and are triggered by the user through clicking
on buttons. ‘Complexity’ describes the story’s complexity. The assignment of
complexity to a user story is either more or less subjective but factors like the
difficulty of functionalities, the complexity of SQL-scripts or html-files are the
most relevant indicators.

Obviously, categorical local similarity functions are specified for ‘Level’, ‘Pro-
cess step’ and ‘Complexity’. MyCBR’s ‘polynomial’ similarity function is used
for ‘Fields’, ‘Buttons’ and ‘Messages’. ‘Validations’ and ‘Functionalities’ are com-
pared by another of MyCBR’s standard similarity functions called ‘smooth-step-
at’ [2]. The adaptation rule considers the three best matching cases, i.e. we have
specified k = 3.

5.2 Experiment 1

Experiment 1 investigates the impact of the optimization and aims to quantify
the improvement in terms of accuracy. As already introduced in Sect 4.4 the
experimental data set is split up into a training set and a test set. Each test set
of the four experimental case-bases is partitioned into three folds of the same
size. Consequently, the optimal weights are derived three times, whereas in each
iteration two folds act as case-base and one fold is used for accuracy evaluation.

The lower and upper bounds for the feature weights are specified depending
on the subjective assessment of the relevance of the effort drivers. Figure 2 shows
the bounds used for ‘Dialog’.

Fig. 2. Exemplary definition of lower and upper bound.

The experiment is conducted with the pyswarm package an optimization
package for python that implements PSO [11]. The number of particles in the
swarm (swarmsize), the particle velocity scaling factor (omega), the scaling fac-
tor to search away from the particle’s best known position (phip) and the scaling
factor to search away from the swarm’s best known position (phig) are assigned
to their default values [11]. The minimum stepsize of swarm’s best position
before the search terminates (minstep) is set to 1e-8 and the minimum change
of swarm’s best objective value before the search terminates (minfunc) is set to
1e-15. The maximum number of iterations for the swarm to search (maxiter)
has the value of 200. An exemplary optimizer for the first iteration, in which
the on MMRE based objective function is named error global S1, is illustrated
in Fig. 3.



Particle Swarm Optimization in Small Case Bases 219

Fig. 3. Exemplary call of the PSO optimizer.

Table 3. Improvement in accuracy through weights optimization

Dialog Filtering Report View

+ 9.20% + 1.17% + 3.29% + 2.35%

Table 4. Results of weights optimization.

Case base Feature Optimized weights

Per iteration Median

Fold1 Fold2 Fold3

Dialog Level 3.00 3.00 3.00 3.00

Process step 3.00 3.82 3.00 3.00

Fields 5.51 5.22 5.31 5.31

Buttons 6.00 3.00 6.00 6.00

Messages 3.00 1.00 1.00 1.00

Validations 3.00 3.00 1.00 3.00

Functionalities 4.00 6.00 5.26 5.26

Complexity 5.98 4.00 5.26 5.26

Filtering Level 1.00 1.00 1.00 1.00

Process step 3.00 1.00 1.00 1.00

Filters 4.00 4.00 6.00 4.00

Additional columns 3.00 3.00 1.00 3.00

Dialogs 3.00 1.00 1.00 1.00

Filterconcept 2.00 2.00 1.25 2.00

Concept maturity 3.00 3.00 1.00 3.00

Report Level 6.00 6.00 2.55 6.00

Reportconcept 5.15 6.00 5.38 5.38

Type 1.35 1.94 2.71 1.94

Contentfields 4.82 6.00 3.75 4.82

Export option 1.00 1.00 1.65 1.00

Export file 3.00 3.39 3.64 3.39

Export execution 3.00 3.00 3.00 3.00

Entities 1.79 3.00 2.13 2.13

View Level 1.23 1.00 1.00 1.00

Process step 3.00 1.67 1.00 1.67

Columns/Fields 3.00 3.00 6.00 3.00

Buttons 3.00 3.00 3.00 3.00

Entities 6.00 6.00 3.00 6.00

Filteroption 1.80 2.60 1.93 1.93
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The resulting, optimized weights are depicted in Table 4. The evaluation of
the CBR model on the test set led to a moderate improvement of accuracy
compared to the original weights as shown in Table 3.

5.3 Experiment 2

Experiment 2 addresses the evaluation of the optimized CBR model in compar-
ison to the estimation values obtained from human experts.

Table 5 shows the results for the test sets. All effort values are shown in hours.
The MRE values for the test cases are fully listed. The accumulated values for all
cases (for PP even including the three training folds) are provided in the boxes
below the rows with the particular test cases. In addition to MMRE, the values
of two further accuracy metrics are depicted. MdMRE denotes the median of
the MRE’s which is less sensitive to outliers than the mean MRE. PRED(x)
measures the accuracy by the percentage of predictions that fall within x percent
of the actual value [20]. In other words, the PRED(x) is the percentage of MRE
which is less than or equal to value x for all stories. It is common practice to use
x = 25 as performance indicator [6]. The CBR method outperforms the experts
for all four sample case-bases with respect to the MMRE. The MdMRE and
PRED(25) for the ‘Report’ case-base achieved a slightly better accumulated
value with the PP method compared to the CBR method while for the other
three case-bases CBR performed better.

5.4 Discussion of Results

Both hypotheses are confirmed by the experiments. Experiment 1 succeeded well
in avoiding over-fitting since the accuracy of the estimation values for the user
stories is improved by the optimization (cmp. Table 3). While the amount of
improvement in a single digit range might seem marginal at a first glance the
impact on software projects is significant at a closer look. In terms of staff-hours
as well as in terms of reputation losses the economic consequences of such an
improvement are high.

The results of experiment 2 show that the CBR approach clearly outperforms
the PP approach. In addition to the direct benefits from improving the accuracy
of the estimation values, the support and validation of PP sessions by an auto-
mated estimation approach could provide further advantages for the software
projects.
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Table 5. Results from Experiment 2.

PP CBR

Story-No. Actual

effort

Predicted

effort

MRE PRED(25) Predicted

effort

MRE PRED(25)

Dialog:

7040 12 12 0.00 1 11.86 0.01 1

4769 22 16 0.27 0 17.25 0.22 1

7870 25 40 0.60 0 26.56 0.06 1

7572 36 36 0.00 1 32.39 0.10 1

3232 47 67 0.43 0 48.38 0.03 1

2570 72 100 0.39 0 79.14 0.10 1

Accumulated: MMRE = 0.25 MMRE = 0.09

MdMRE = 0.15 MdMRE = 0.08

PRED(25) = 0.56 PRED(25) = 1.00

Filtering:

7880 32 24 0.25 0 33.13 0.04 1

3233 48 48 0.00 1 48.79 0.02 1

4759 62 56 0.10 1 56.67 0.09 1

3241 76 58 0.24 1 65.66 0.14 1

Accumulated: MMRE = 0.17 MMRE = 0.07

MdMRE = 0.10 MdMRE = 0.06

PRED(25) = 0.72 PRED(25) = 1.00

Report:

2740 42 40 0.05 1 41.97 0.00 1

5498 51 52 0.02 1 58.69 0.15 1

5444 64 64 0.00 1 78.66 0.23 1

5455 68 68 0.00 1 95.28 0.40 0

5471 77 77 0.00 1 71.31 0.07 1

5463 84 68 0.19 1 92.29 0.10 1

5466 92 96 0.04 1 94.87 0.03 1

8716 92 92 0.00 1 51.34 0.44 0

8827 98 106 0.08 1 96.57 0.01 1

8171 106 106 0.00 1 96.76 0.09 1

8597 120 120 0.00 1 115.17 0.04 1

8104 144 144 0.00 1 93.89 0.35 0

Accumulated: MMRE = 0.20 MMRE = 0.16

MdMRE = 0.05 MdMRE = 0.09

PRED(25) = 0.80 PRED(25) = 0.75

View:

8449 27 24 0.11 1 28.05 0.04 1

4777 40 40 0.00 1 40.54 0.01 1

3036 50 32 0.36 0 43.16 0.14 1

8469 84 100 0.19 1 78.91 0.06 1

Accumulated: MMRE = 0.16 MMRE = 0.06

MdMRE = 0.16 MdMRE = 0.05

PRED(25) = 0.67 PRED(25) = 1.00
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6 Conclusion

The aim of the paper was to analyze the applicability of a case-based reason-
ing estimation technique on effort estimation of user stories and to provide an
automated effort estimation tool which could offer reliable support for project
planning. On the basis of real-world data, the applicability was approved. The
distribution of the user stories from a large software project into multiple small
case-bases and the PSO based weights optimization of the local similarity mea-
sures was very successful. We think it might play a role that the user stories
in the case-bases are homogeneous due to this separation. Moreover, the docu-
mentation of the stories is of an outstanding quality. Further, it seems that it
is an advantage that the adaptation rule is considered by the objective function
during optimization with PSO. In our future work, we are planning to conduct
research to investigate this assumption. Concluding, the results show that CBR
in combination with an automated environment reveals to be a suitable esti-
mation technique for user story software estimation that can offer a reliable
estimation support.
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