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Abstract. Instance-based and case-based learning algorithms learn by
remembering instances. When scaling such approaches to datasets of
sizes that are typically faced in today’s data-rich and data-driven decade,
basic approaches to case retrieval and case learning quickly come to their
limits. In this paper, we introduce a novel scalable algorithm for both,
the retrieval and the retain phase of the CBR cycle. Our approach builds
an efficient graph-based data structure when learning new cases which it
exploits in a stochastic any-time manner during retrieval. We investigate
its characteristics both, theoretically and empirically using established
benchmark datasets as well as a specific larger-scale dataset.

1 Introduction

Retrieval in Case-Based Reasoning (CBR) takes time. For some applications,
specifically data intensive ones, retrieval times can quickly become the system’s
bottleneck. Since this has been known for decades, a lot of research effort has
been put into the development of CBR approaches to increase retrieval efficiency
while retaining its efficacy. Those approaches tackle the problem in different
ways, including but not limited to (a) reducing the number of cases stored in
the case base, (b) using hierarchical, filtering, or multistep retrieval methods
to reduce the number of query-case comparisons, (c) constructing and utilizing
index structures to guide the search for similar cases, (d) improving case rep-
resentation and developing tailored methods for efficient similarity assessments,
or (e) using anytime algorithms whose retrieval efficacy grows with available
computation time.

The core contribution of the paper at hand is a novel retrieve and retain
procedure that combats the aforementioned challenges using a combination of
the strategies (a), (c), and (e) listed above. According to [17], indexing cases
is one of the most challenging tasks in CBR. To this end, we aim at building
up a graph-based index structure that enhances the similarity-driven search for
nearest neighbors (c), while also reducing the number of cases stored overall (a).
Additionally, we design the method to be an anytime approach (e) which means
that the retrieval process can be stopped at any time and that the quality of
the results obtained is likely to be better if more time has been allocated to the
retrieval process.
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At the heart of our contribution is the construction of an index structure
that we call a boundary graph or, respectively, a labeled boundary multigraph
extension of it. We build up the graph structure from case data, i.e. its topology
is not fixed a priori. It is worth noting that the construction process can be
applied in an online setting, i.e. no batch access to the full dataset is needed
and, hence, the graph index structure can be extended as more and more cases
come in. Both, the buildup as well as the employment of that graph-based index
structure are inherently stochastic – a fact that we found to substantially improve
the robustness of the approach as well as to reduce its dependency on other
factors like the order of case presentation during learning.

We start this paper with a brief literature review on related work. Section 3
introduces boundary graphs and labeled boundary multigraphs and presents cor-
responding retain and retrieve procedures for constructing such graph structures
as well as for utilizing them during the actual retrieval. We have tested our algo-
rithms on a variety of classical benchmark datasets as well as on a large scale
dataset from the application field of robotic soccer simulation (RSS). In Sect. 4,
we present the corresponding empirical results as well as further analyzes of our
algorithms’ properties and their scaling behavior.

2 Background and Related Work

Since retrieval takes such a prominent position in CBR, the optimization of its
efficacy and efficiency has attracted a lot of research in the past. Providing a
comprehensive overview on these issues is beyond the scope of this paper, which
is why we only point to work that is strongly related ours.

Case Base Maintenance (CBM [13]) aims to control the number of cases in the
case base while guaranteeing a high competence of the system. Following the
initial proposal of the nearest neighbor rule [6], several authors have proposed
ideas to reduce the set of stored cases [12]. Among those, the family of Instance-
Based Learning algorithms (IBL [1]) is a classic whose IB2 variant centered
around the idea of adding a new case only, if its problem part would not be
solved by the so far existing case base. This simple but powerful idea is also
fundamentally embedded into the core of the algorithms we are proposing in
this paper. Other CBM algorithms take the opposite approach and iteratively
decide which cases to delete from a case base [21] which comes at the cost of
requiring batch access to the case data. Another technique to limit the case base
size utilizes the notion of coverage and reachability of cases [18] which henceforth
was exploited by the incremental COV-FP [19] algorithm.

Index Structures for Efficient Retrieval are supposed to guide the search for
similar cases. Thus, before the actual retrieval utilizing an index structure can
take place that structure must be generated. Tree-based structures have fre-
quently been employed to speed up the access to large datasets (e.g. geometric
near-neighbor access trees [5] or nearest vector trees [14]). Tree-based algorithms
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that do also feature online insertion capabilities include cover trees [4], bound-
ary trees [16] (see below), or kd-trees [20] where the latter have the additional
advantage of not requiring full similarity calculations at tree nodes. Many more
complex retrieval methods and belonging index structures do exist, including,
for example, case retrieval nets [15] or retrieval using Bayesian networks [7].

Boundary Trees [16] are a powerful tree-based index structure for similarity-
based search. They consist of nodes representing training cases connected by
edges such that any pair of parent and child node belongs to different classes1.
This fact is eponymous as with each edge traversal a decision boundary is crossed.

Given a boundary tree T and a new query q, the tree is traversed from its
root by calculating the similarity between q and all children of the current node,
moving to that child which has the highest similarity to q. Boundary trees use
a hyper parameter k ∈ [1,∞] that determines the maximal number of children
any node is permitted to have. The retrieval is finished, if a leaf node has been
reached or if the current (inner) node v has less than k children and the similarity
between q and v is larger than the similarity between q and all children of v.
This way, a “locally closest” case c∗ to the query is found, meaning that neither
the parent(s) of c∗ nor the children of c∗ are more similar.

The tree creation procedure for boundary trees is inspired by the classical IB2
algorithm [1] (see above). The next training case ci is used as query using the so
far existing boundary tree Ti−1. If the result of the tree-based retrieval returns
a case c∗ whose solution does not match the solution of ci, then ci is added as
a new child node of c∗. In [16], Mathy et al. propose to extend the described
approach to an ensemble of boundary trees, a so-called boundary forest (BF).
They train an ensemble of (in that paper, usually, ten or 50) boundary trees on
shuffled versions of the training data and employ different voting mechanisms
using the retrieval results of the boundary trees. The Boundary Graph approach
we are presenting in the next section takes some inspiration from boundary trees
which is why we also use it as a reference method in our empirical evaluations.

3 Boundary Graphs and Labeled Boundary Multigraphs

We propose a case-based technique that covers both, a method to decide which
cases to store in the case base and which not as well as algorithms to build up and
employ an index structure that facilitates an efficient retrieval. In what follows,
we assume an attribute value-based case representation over a problem space P
and a solution space S where each case c = (p, s) consists of a problem part p ∈ P
and a solution part s ∈ S which we can both access using the dot operator (i.e. c.p
or c.s). As usual, similarity between cases is measured using a problem similarity
measure simp : P × P → [0, 1], while the similarity between cases’ solutions can
be assessed using a solution similarity measure sims : S × S → [0, 1]. Note that
we do not impose any further requirements on sims/p throughout the rest of the
paper, except that, for ease of presentation, we assume it to be symmetric.
1 While the definition given here focuses on classification tasks, a straightforward

generalization to other tasks like regression or mere retrieval can easily be made.
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3.1 Boundary Graphs

We now introduce the concept of boundary graphs which we will later extend to
so-called labeled boundary multigraphs. These graph structures, plus techniques
to create and utilize them, represent the backbone of our entire approach.

3.1.1 Notation
For a given case base CB, a Boundary Graph (BG) B = (V,E) is an undirected
graph without loops with a set of nodes V ⊆ CB and a set of edges

E ⊆ {(ci, cj)|ci, cj ∈ V and i �= j}, (1)

where, by construction, each edge from E connects only cases with differing
solutions. This means, for each (ci, cj) ∈ E it holds

sims(ci.s, cj .s) < 1 − ε (2)

where ε ∈ [0, 1] is a threshold that defines when two solutions are considered
to be different. The definition given so far and the relations in Formula 1 and
2 are not finalized, since Eq. 1 gives just a subset specification. We concretize
this specification in the next paragraphs, emphasizing that the graphs we are
creating will be a sparse representation of the data and contain a tiny fraction
of the edges that would be allowed to be in E according to Eqs. 1 and 2.

3.1.2 Retrieval and Reuse
Given a query q ∈ P and a boundary graph B = (V,E), the retrieve algorithm
moves repeatedly through the graph structure, calculating the similarity between
q and the current node c ∈ V as well as between q and the neighbors of c, i.e. for
all v ∈ V for which an edge (c, v) ∈ E exists. It successively “moves” onwards
to the node with the highest similarity to q until some maximum c� has been
reached, which means that simp(q, c�) ≥ simp(q, c)∀(c�, c) ∈ E.

Importantly, this procedure is repeated for r times, where the starting node
is selected randomly from V each time. Hence, r determines the number of
random retrieval starting points from which the similarity-guided search is initi-
ated. Consequently, as retrieval result a vector N r

q = (n1, . . . , nr) of r estimated
nearest neighbors is obtained.

The delineated retrieve step (function BG Retrieve in Algorithm 1) is
embedded into the superjacent function BG Predict for boundary graph-based
prediction which performs both, the retrieve and revise step of the classic CBR
cycle. The mentioned vector of r nearest neighbor estimates are combined to
form an overall prediction R(q) using some amalgamation function A, such that

R(q) = A(N r
q ) = A((n1, . . . , nr)). (3)

For classification we can use a simple majority vote

A((n1, . . . , nr)) ∈ arg max
l∈S

|{nj |nj .s = l, j = 1, . . . , r}| (4)
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BG Predict(q, B, r) BG Retrieve(q, B, r)
Input: query q ∈ P, Input: query q ∈ P,

boundary graph B = (V,E), boundary graph B = (V,E) with V �= ∅,
number r of random retrieval number r of random retrieval restarts
restarts, Output: r-dimensional vector N r

q of

amalgamation function A potential nearest neighbors
Output: BG-based prediction R(q) 1: N r

q ← r-dimensional vector

1: // retrieve step 2: for i = 1 to r do
2: N r

q ← BG Retrieve(q,B, r) 3: c� ← random node from V

3: // reuse step (cf. Eq. 4-6) 4: stop ← false
4: R(q) ← A(N r

q ) 5: while stop = false do

5: return R(q) 6: c ← argmaxv∈V s.t. (c�,v)∈E simp(q, v)

7: if simp(q, c) > simp(q, c�)
8: then c� ← c
9: else stop ← true
10: N r

q [i] ← c�

11: return N r
q

Algorithm 1: Boundary Graph-Based Prediction and Retrieval

or a similarity-weighted voting scheme, like

A((n1, . . . , nr)) ∈ arg max
l∈S

r∑

j=1

{
simp(q, nj) if nj .s = l

0 else
. (5)

In a similar manner, for regression tasks the estimated value becomes

A((n1, . . . , nr)) =

∑r
j=1 simp(q, nj) · nj .s∑r

j=1 simp(q, nj)
. (6)

A pseudo-code summary of the entire case-based retrieval and revise approach
utilizing a boundary graph as index structure is given in Algorithm 1.

3.1.3 Graph Construction
We assume that the cases c1 to cn from the case base CB are presented to the
boundary graph construction algorithm successively. Given a single training case
ci, the algorithm first queries the boundary graph Bi−1 = (Vi−1, Ei−1) which has
been trained for the preceding i − 1 cases, yielding a vector N r

ci
= (n1, . . . , nr)

of r possible nearest neighbors. The algorithm then iterates over these nj (j =
1, . . . , r) and, if sims(ci.s, nj .s) < 1 − ε (i.e. nj does “not solve” ci, which for
classification tasks boils down to ci.s �= nj .s), then ci is added as a new node to
Vi−1 and a (bidirectional) edge (ci, nj) is added to Ei−1. The resulting, extended
boundary graph is denoted as Bi. To sum up, training cases are added as nodes to
the graph (including connecting edge), if the algorithm stochastically discovers a
random retrieval starting point for which the currently existing boundary graph’s
prediction would be wrong and where, hence, a correction is needed.
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Again, pseudo-code for constructively building up a boundary graph
for a sequence of training cases is provided in Algorithm 2, denoted as
BG Construct. Note that the algorithm can be easily deployed in an online
setting where new cases arrive during runtime by simply calling the BG Retain
function.

The left part of Fig. 1 is meant as an attempt to visualize an exemplary
boundary graph for a synthetic two-dimensional, linearly separable two-class
problem. Using 80 randomly created training cases, the BG Construct algo-
rithm created a boundary graph of 19 nodes and 40 edges. Using 20 indepen-
dently sampled test cases, the resulting graph-based classifier yields an average
classification error of 9.42% for 1000 random repetitions of the experiment.

BG Construct(CB, r) BG Retain(B, c, r)
Input: case base Input: single (new) case c,

CB = {c1, . . . , cn}, boundary graph B = (V, E),
number r of random number r of random retrieval restarts
retrieval restarts Requires (global variables):

Output: boundary tree B amalgamation function A,
1: B ← (∅, ∅) solution discrimination threshold ε
2: // loop over all cases Output: (possibly extended) boundary graph B
3: for i = 1 to n do 1: if V = ∅ then V ← V ∪ c
4: B ← BG Retain(B, ci, r) 2: else
5: return B 3: N r

c ← BG Retrieve(c, B, r)
4: for i = 1 to r do
5: σ ← sims(c.s, N r

c [i].s)
6: if σ < 1 − ε then
7: V ← V ∪ c, E ← E ∪ (c, N r

c [i])
8: (return (V, E)):

Algorithm 2: Construction of and Retain Procedure for Boundary Graphs

3.2 Labeled Boundary Multigraphs

We observed that increasing the value of the parameter r for the number of
random retrieval restart improves the prediction accuracy and the stability of
predictions. However, just like IB2 (cf. Sect. 2), the presented approach suf-
fers from a dependency of the resulting boundary graph on the order in which
the cases are presented to the retain procedure. The boundary forest algorithm
(cf. Sect. 2) mitigates this dependency by forming an ensemble of (tree-based)
classifiers. This is a straightforward idea whose impact we will also analyze for
the IB2 algorithm below. At this point, however, we take inspiration from these
ideas to extend our boundary graph algorithm such that it becomes more robust
with respect to the order of the training data, while the computational overhead
is acceptable and a single holistic retrieval index structure is retained.
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Negative Training Case Retained
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Edge in Boundary Graph
Edges in Labeled
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Fig. 1. Left: Visualization of an Examplary Boundary Graph: From the 80 training
cases, 19 are included in the graph’s set of vertices (11 from the negative class, 8 from
the positive one), when trained using r = 9. Among that set of nodes, there are 88
possible edges that would cross the decision boundary. Out of those, 40 are included in
the graph’s set of edges. Right: Examplary Labeled Boundary Multigraph trained on
the same data set for λ = 3 different labels and, accordingly, using rt := r

λ
= 9

3
= 3. In

total, 27 nodes are included in the multigraph’s set of vertices which are interconnected
using 71 edges (32/8/31 for the three labels).

The core idea is to use uniquely identifiable labeled edges in the graph struc-
ture. This means we allow for multiple edges between vertices (which turns the
graph into a multigraph), but make them distinguishable by attaching a label
out of a set of λ labels to each edge. This promotes a more efficient dispersion of
the retrieval knowledge across the graph structure. Then, instead of performing
r random retrieval restarts (as we did before), the algorithm now (on average)
performs rt := r/λ such random retrieval restarts per edge label. In so doing,
the total amount of inner-graph retrieval computations stays roughly the same.

In the following, we first introduce the necessary notation, then present the
retain part and, afterwards, conclude with the retrieve/revise procedures.

3.2.1 Notation
We define a Labeled Boundary Multigraph (LBM) B̃ = (Ṽ , Ẽ, L̃) to be a labeled
undirected multigraph [2] with Ṽ a set of vertices, Ẽ a multiset of bidirectional
edges, and L̃ : Ẽ → L a labeling function mapping to each edge a label out of a
finite set of λ unique labels L = (l1, . . . , lλ). We use the notation B̃|l to indicate
the submultigraph of B̃ = (Ṽ , Ẽ, L̃) for some specific edge label l. Note that, due
to the restriction to edge label l, B̃|l represents a boundary graph, no longer a
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labeled boundary multigraph. Formally,

B̃|l =(Vl, El) where El = {e ∈ Ẽ|L̃(e) = l} and (7)

Vl = {v ∈ Ṽ |∃(x, y) ∈ Ẽ with L̃((x, y)) = l and x = v or y = v}

Figure 1 (right) conveys an impression of a labeled boundary multigraph for a
toy domain. Most importantly, the multigraph is factored by the edge labels and,
retrieval and retain decisions do always take place in a label-specific manner.

LBM Retain(B̃, CB, r)
Input: labeled boundary multigraph B̃ = (Ṽ , Ẽ, L̃), case base CB = {c1, . . . , cn},

number r of random retrieval start points
Output: (possibly extended) labeled boundary multigraph B̃
1: repeat λ times // λ = |L|
2: CB ← shuffle cases in CB
3: for i = 1 to n do
4: l ← random edge label from L = {1, . . . , λ}
5: (Vl, El) ← B̃|l // induced subgraph for label l, cf. Equation 7
6: (V ′

l , E′
l) ← BG Retain((Vl, El), ci,

r
λ
)

7: forall e ∈ Ẽ ∪ E′
l do if e ∈ E′

l then L̃′(e) = l else L̃′(e) = L̃(e)
8: B̃ ← (Ṽ ∪ V ′

l , Ẽ ∪ E′
l , L̃

′)
9: return B̃

Algorithm 3: Construction of Labeled Boundary Multigraphs

3.2.2 Multigraph Construction
The LBM Retain algorithm, provided in Algorithm 3, takes as input the num-
ber r of random retrieval restarts, a set of cases CB = {c1, . . . , cn} as well as a
(possibly empty) labeled boundary multigraph B̃ which it extends and returns.
It thus works for both scenarios, either being given a set of training cases and
starting out with an empty graph or in an online setting where a non-empty
labeled multigraph is extended for a single or a few further training case(s).

When considering the next training case ci, the algorithm first selects a ran-
dom edge label l. If the algorithm later finds that this case should be added to
the graph, then it will be connected to other nodes by edges that are labeled
with l. Accordingly, line 5 determines the induced boundary subgraph for label
l (cf. Eq. 7), consisting of edges with label l exclusively and of vertices that are
adjacent to those edges. For this subgraph B̃|l = (Vl, El) the BG Retain algo-
rithm is invoked, handing over the current case ci plus the number of random
retrieval restarts to be made during that retain step. Note that the latter number
is reduced by a factor of λ (i.e. r

λ is handed over in line 6) which is balancing
the fact that the loop over all training cases (c1, . . . , cn) is repeated for as many
times as we do have labels (i.e. for λ times, repeat loop from lines 1 to 8). The
result of the BG Retain call on the subgraph is finally incorporated into the
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labeled boundary multigraph B̃ (lines 7 and 8) before the algorithm continues
with the next iteration. Note that each case is handled for λ times (each time
using a randomly selected label) and might, thus, be connected with other nodes
by a number of possibly differently labeled edges. Moreover, the contents of CB
is shuffled at the beginning of each of the λ outer loop repetitions in order to
mitigate against the dependency on the presentation order of the instances.

3.2.3 Multigraph Retrieval
Retrieval in an LBM B̃ traverses the graph structure – searching greedily for more
similar cases to the query q, jumping to neighboring vertices, if their similarity
to q is higher than the similarity q and the current vertex – for a total of r times,
starting at a random node v each time. Moreover, each of these traversals sticks
to using edges with a specific label l exclusively. So, the r repetitions are equally
distributed among the subsets of Ẽ that contain edges with label l only. We point
to the fact that lines 5 to 9 in the LBM Retrieve procedure (Alg. 4) could be
rewritten using a call to BG Retrieve on B̃|l with r

λ random retrieval restarts,
but that we decided for the more lengthy write-up for better comprehension.

As a result, an r-dimensional vector of estimated nearest neighbors is formed
which, finally, can be utilized by some prediction function to form an overall
estimate (reuse step) using some amalgamation function. To this end, we may
alter the function BG Predict (Algorithm 1) to LBM Predict with the only
difference that it calls LBM Retrieve instead of BG Retrieve in line 2.

As mentioned, the right part of Fig. 1 shows an exemplary labeled bound-
ary multigraph (for λ = 3 labels) for the same toy problem as in Sect. 3.1.3.
The increase in number of vertices and edges stored brings (while staying com-
putationally at nearly the same level) a reduction of the classification error by
almost 17% compared to the basic boundary graph approach: Using 20 indepen-
dently sampled test cases, the resulting boundary graph-based classifier yields
an average classification error of 7.87% (for 1000 random repetitions of the test).

LBM Retrieve(q, B̃, r)
Input: query q ∈ P, LBM B̃ = (Ṽ , Ẽ, L̃), number r of random retrieval restarts
Output: r-dimensional vector N r

q of potential nearest neighbors
1: N q

r ← r-dimensional vector
2: for l = 1 to λ do
3: (Vl, El) ← B̃|l
4: for i = 1 to r

λ
do

5: v ← random node from Vl, stop ← false, c∗ ← v
6: while stop = false do
7: c∗ ← arg max(v,c)∈El

simp(q, c)
8: if simp(q, c∗) > simp(q, v) then v ← c∗ else stop ← true
9: N q

r [(l − 1)r/λ + i] ← v
10: return N r

q

Algorithm 4: Labeled Boundary Multigraph Retrieval
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3.3 Discussion

For both algorithms described, the boundary graph as well as the labeled multi-
graph extension, we find empirically that the retrieval time using such a graph
as index structure scales either as a power law βnα in the amount of training
cases n with a power value α < 1 or logarithmically For the most comprehensive
data set we analyzed we found the complexity to be in O(log n). Accordingly,
training time scales as n1+α or n log n, respectively, because each retain step
essentially includes a retrieve step, rendering the complexity of training to be a
loop of n repetitions wrapped around the retrieval procedure.

The boundary graph approach has the favorable characteristic to be an any-
time retrieval algorithm. By handling the parameter r of random retrieval start-
ing points within the graph different during training (rt) and the application (ra)
of the learned graph, i.e. separating rt := r

λ from ra, one can gain a significant
performance boost by letting ra > rt, given that a sufficient amount of time
is available for the system to respond to a query. This is a desirable property
in real-time and online application settings since the accuracy of the retrieval
grows with ra as we will show in the next section.

4 Empirical Evaluation

Our experimental investigations were driven by two questions: What final per-
formance can be achieved using labeled boundary multigraphs as index structure
in case-based retrieval? And at what costs can these results be obtained? We are
going to address these questions in the next subsections.

4.1 Experimental Set-Up

Our experiments focus on classification problems. Hence, no specific value for ε
must be set as two cases’ solutions are considered different, if their class labels do
not match. We selected a variety of established classification benchmark datasets
from the UCI Machine Learning Repository [8] with varying amounts of case
data, classes, and numbers and types of features. Additionally, we used a larger
(500 k instances) nine-dimensional dataset from the field of robotic soccer simu-
lation where the goal is to predict the type of an opponent agent’s next action
(e.g. kick or dash or turn, cf. [9]) In all our experiments we employ a knowledge-
poor default similarity measure according to the local-global principle [3] with
uniform attribute weights, identity similarity matrices for discrete features and
linear difference-based similarity functions for numeric ones. We are fully aware
that the classification accuracy might be improved significantly, when applying
knowledge-intensive, domain-specific similarity measures or even learned ones
[10]. For each domain, we split the available case data into two randomly cre-
ated disjoint sets, using the first (80%) one for construction the graph-based
index structure and the second (20%) for applying (testing) it. To account for
the stochastic nature of our proposed algorithms, all experiments were repeated
100 times, forming average values of performance indicators.
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4.2 Classical Benchmark Data Sets

In this series of experiments, we compared our proposed methods (BG and LBM)
to several other retrieval mechanisms. As a baseline, we employed the k-nearest
neighbor classifier with k = 1, yielding a classification error μ of 26.07% averaged
over the 24 datasets2 (cf. Table 1). Searching for the best value of k for that set
of domains in a brute force manner, we found that k∗ = 13 yields best results
(μ = 21.07%). We proceeded in the same way for the boundary tree/forest
approach (cf. Sect. 2). Using forests of 10 and 50 trees (as the authors in [16]
propose), a classification error of 23.32 and 21.32%, respectively, is obtained,
while the best one found (brute force search) is 20.83% for a forest of 325 trees.

With respect to storage requirements it is worth noting that the only algo-
rithm that yields a substantial case base compactification γ (last line in Table 1)
is the classical IB2 algorithm which retains 34.6% of the given case data on aver-
age. To this end, we also tested a straightforward extension of IB2, called IB2e,
which runs IB2 on e shuffled versions of the training data, forms an ensemble
of e compactified case bases and classifies cases by applying a majority vote as
in Eq. 4. As expected, increasing e clearly impairs the achieved level of case
base compactification (γ is now determined on the basis of the union of the e
IB2 instances’ case bases), trading this off for lower classification errors with the
lowest one found (again, in a brute force manner) for e∗ = 94.

Using a single boundary graph as index structure (columns BGr), that was
trained using r = 10 and 50 random retrieval restarts (these numbers have been
chosen in accordance to the boundary forests), approximately 25% of the training
cases need not to be stored. However, with an average classification error of 24.10
and 23.52%, respectively, the approach does not surpass the boundary forests.

Next, we investigated the labeled boundary multigraph approach where, for
reasons of comparison to the previous algorithms, we set r = 50 . We first report
the setting where these 50 random retrieval restarts are distributed over λ = 7
labels during training and application, i.e. rt = ra = r

λ = 50
7 ≈ 7. Apparently,

μ drops to 21.08%, outperforming all other approaches considered so far. On
the supposition that during the application of the system was more time or
computational power available, one might consider increasing ra beyond rt. The
impact of that computational extra effort can be read from the neighboring table
column where μ is reported to drop to 20.49%. We emphasize that this is a unique
characteristic of the BG/LBM approach, i.e. a feature that the other algorithm
do not possess, and that further increasing ra would reduce the error even more.
This particular effect of varying computational budgets during retrieval in the
application phase of the system is more thoroughly analyzed in Fig. 2.

The third and second from last columns indicate that doubling the number
of labels while retaining the overall effort at the same level (i.e. λ = 13 and
rt = 4 with λrt = 13 · 4 ≈ 7 · 7) improves the average performance of the
2 A-Balance, B-BanknoteAuth, C-Cancer, D-Car, E-Contraceptive, F-Ecoli, G-Flare,

H-Glass, I-Haberman, J-Hayes, K-Heart, L-Iris, M-MammogrMass, N-Monks, O-
Pima, P-QualBankruptcy, Q-TeachAssistEval, R-TicTacToe, S-Transfusion, T-
UserKnowledge, U-VertebralCol, V-Wholesale, W-Wine, X-Yeast.
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Table 1. For all considered retrieval approaches and for each of the considered domains
the classification error in percent (averaged over 100 experiment repetitions) is pro-
vided, plus an average μ over all domains. Additionally, in the last line the average
case base compactification γ is reported. For each domain, the two top-performing
algorithms are highlighted. The first column contains domain identifiers (see footnote
for plain text names).

Dom. k-NN BFt IB2e BGr LBMλ=7
rt,ra

LBMλ=13
rt,ra

LBM
λ∗=37

k=1 k∗=13 t=10 t=50 t∗=325 e=1 e=13 e∗=94 r=10 r=50
rt=7
ra=7

rt=7
ra=50

rt=4
ra=4

rt=4
ra=50

rt=6
ra=50

A 35.47 17.12 26.11 20.47 19.13 48.59 47.05 45.75 24.43 25.18 19.54 17.24 18.39 14.85 15.69

B 0.16 0.30 0.12 0.12 0.15 0.57 0.15 0.17 0.20 0.14 0.12 0.10 0.11 0.09 0.12

C 31.48 24.84 29.76 27.94 26.91 32.85 29.64 28.91 30.16 31.58 27.02 26.58 25.62 25.27 25.29

D 22.78 9.18 10.06 5.21 3.93 22.94 15.14 14.57 12.84 5.76 8.61 6.51 11.99 9.13 6.59

E 56.34 52.00 54.87 53.06 52.67 57.18 54.69 53.90 54.57 54.81 52.43 51.24 51.84 50.24 51.11

F 20.08 16.12 20.31 19.98 19.98 28.07 23.74 23.13 20.84 21.99 16.16 16.03 15.57 15.37 15.24

G 28.86 17.52 21.51 21.37 21.21 40.65 36.60 33.82 18.36 21.16 17.25 17.17 16.99 16.85 17.12

H 28.66 33.52 27.60 27.06 26.54 32.61 29.62 29.41 31.07 30.02 28.19 27.98 27.90 27.10 26.40

I 35.34 26.20 35.77 35.29 35.17 40.00 37.63 38.12 35.56 36.66 33.93 34.00 32.66 32.79 33.39

J 33.15 43.28 27.58 25.10 24.28 32.21 29.78 29.29 32.50 31.00 33.50 34.54 34.19 35.35 35.19

K 21.27 16.89 23.41 20.61 20.02 28.81 24.71 23.77 23.87 24.72 19.22 18.76 18.39 18.39 18.31

L 5.93 4.88 6.43 5.72 5.79 8.75 6.70 6.46 8.13 8.87 5.93 5.90 5.63 5.63 5.70

M 26.93 20.10 23.93 22.35 21.82 32.57 28.61 27.42 22.77 23.64 20.22 19.29 20.61 19.49 19.14

N 27.37 6.11 3.97 0.03 0.00 26.57 15.74 13.03 9.49 1.03 2.64 0.47 5.56 1.06 0.22

O 30.46 26.58 31.24 28.97 28.14 36.16 35.02 34.00 30.68 32.47 27.40 27.10 26.49 25.87 26.38

P 0.20 0.40 0.60 0.67 0.63 1.88 0.42 0.28 0.52 0.20 0.26 0.18 0.24 0.20 0.10

Q 38.42 52.88 40.43 40.44 40.47 42.59 39.00 38.45 42.83 40.43 42.30 41.50 42.80 42.43 39.87

R 18.88 2.33 7.63 1.82 1.07 18.70 15.77 16.02 12.19 2.46 7.08 4.92 10.61 9.42 4.61

S 31.24 22.30 29.28 29.14 29.03 36.38 33.56 33.51 27.83 30.98 24.70 24.46 23.46 23.41 24.08

T 19.95 18.14 16.08 13.62 13.48 25.78 18.75 18.24 18.61 17.33 12.92 12.37 12.29 11.61 11.51

U 24.58 21.26 25.26 23.28 22.53 29.75 26.07 25.59 25.32 26.19 22.94 22.95 22.32 21.74 22.37

V 46.65 29.24 45.40 43.04 42.91 51.65 49.65 49.19 43.86 46.31 38.00 37.47 34.70 34.56 35.75

W 3.99 2.72 2.66 2.02 1.60 7.52 2.69 2.41 4.03 3.51 2.17 2.14 2.20 1.77 1.86

X 47.57 41.85 47.51 44.43 43.92 53.80 51.52 51.60 47.77 47.98 43.38 42.93 42.62 41.86 42.17

μ 26.49 21.07 23.23 21.32 20.89 30.69 27.18 26.54 24.10 23.52 21.08 20.49 20.97 20.19 19.93

γ 100.0 100.0 79.5 92.3 96.4 34.6 79.3 93.2 72.4 74.9 92.4 92.4 94.8 94.8 96.4

obtained index structure even further. For completeness, we also included the
best possible LBM (using a set of λ = 37 edge labels, rt = 6 random retrieval
restarts during training and ra = 50 during application) that we found by brute
force search (therefore, again marked with a star) whose average classification
error is 19.93%.

4.3 Scaling Analysis

When introducing novel algorithms, their space and time requirements are of
high interest. In our case, space complexity boils down to the number of cases
retained which can be equated with the number of nodes in a BG/LBM. Storing
edges represents a negligible overhead as we realize this by storing pointers to
the original case data. We measure the algorithms’ time complexity in terms of
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50 1 22.97 22.10 21.81 21.62 21.49 21.41 21.40 21.37 21.26 21.21 21.18 21.12 21.06

λ rt ra

Values of λ and rt (wriƩen as λ/rt)

Fig. 2. Comparison of LBMs with Equal Computational Construction Effort: The
product of λ and rt is always (nearly) the same, i.e. r = λrt ≈ 50. The left matrix
shows classification errors averaged over all 24 UCI domains, subject to differing values
of ra (columns). While the diagonal is highlighted as a default setting with rt = ra,
the diagram on the right visualizes the gains/losses in accuracy that are obtained when
deviating from the default and varying the values of ra between 1 to 50, subject to the
different combinations of λ and rt (all with λrt ≈ 50).

similarity calculations as a function of the number of training cases n, as this is
the computational bottleneck for case-based retrieval algorithms.

Part a) in Fig. 3 visualizes the average number of required similarity calcu-
lations for a test query for the 24 UCI domains we selected (trained/tested for
λ = 1 and rt = ra = 15). The best power law fit of the data is nearly identical to
the best logarithmic fit (in terms of the coefficient of determination R2) leaving
us somewhat undecided whether the computational effort scales with O(n

3
5 ) or

logarithmically, especially since there is a lot of variation included due to the
varying characteristics of the different domains.

By contrast, part b) visualizes the scaling behavior of the boundary graph
approach (λ = 1, rt = ra = 50) for the mentioned robotic soccer simulation
domain. Here, the number of required similarity calculations per test query seems
to scale clearly logarithmically in the number of the training cases (i.e. O(log n)
and O(n log n) for the overall training process).

The behavior plotted in part b) of Fig. 3 can be fully appreciated only, when
relating this to the achieved case base compactification γ which can be read
from part c). Apparently, the number of cases stored grows linearly with n (note
the log scale abscissa) at a level of γ ≈ 0.6, such that, e.g., for a training set of
n = 51200 cases on average only 4548 similarity calculations (4.9% of n) must be
performed. For n = 409600 cases, we observe 251 k stored cases (γ = 61%) and
7278 required similarity calculations (1.8%) for a single test query on average.
This is in strong contrast to the other algorithms where many more similarity
calculations are required during retrieval. Essentially, this is achieved by the fact
that the number of edges per vertex grows logarithmically with n (see dashed
line in the plot of part c) in Fig. 3).

Finally, part d) highlights the relation between the training set size and the
final performance of the constructed graph-based index structure in the robotic
soccer domain. While it is to be expected that the classification error on the test
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Fig. 3. Scaling Behavior of BGs/LBM: See the text for details.

set decreases with the number of training cases, it is interesting to observe that
for smaller training sets a distribution among a larger number λ of label layers
is less beneficial. This fact is revealed for n ≥ 100 k where the simpler structured
boundary graph (i.e. with λ = 1) supersedes other variations and finally achieves
an excellent low classification error of less than 6%.

It is worth noting that, under these settings (n = 409.6 k, λ = 1, rt = ra =
50), a case-based classification can be made within 18.6ms of time on a single
core of a contemporary 3 GHz CPU which adheres to the real-time constraints
imposed by the soccer simulation environment where an agent must execute
each action within 100ms. With the already discussed additional opportunity to
increase/decrease ra online depending on necessary other computations done by
the agent during decision-making, we obtain a reliable and performant module
for case-based opponent modeling. Further analyses for that domain and of our
algorithms’ scaling properties can be found in a separate paper [11].

5 Conclusion

Retrieval efficiency in Case-Based Reasoning remains an important topic even
after decades of research. In this paper, we have introduced the concept of
boundary graphs which we suggest to use as an efficient index structure dur-
ing case-based retrieval. The core idea of these graph structures as well as of
their labeled multigraph extensions that we develop on top of them is that their
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edges do always connect cases with differing solutions. We have proposed appro-
priate retrieve and retain algorithms and evaluated them using a selection of
benchmark classification problems as well as a robotic soccer dataset. While our
methods are presented in a way that makes them applicable to various prob-
lem types, our empirical evaluations focused on classification tasks, leaving the
analysis of other problem types (like regression etc.) for future work.
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