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Abstract. Whole-heart segmentation aims to delineate substructures of the heart,
which plays an important role in the diagnosis and treatment of cardiovascular dis-
eases. However, segmenting each substructure quickly and accurately is arduous
due to traditional manual segmentation being extremely slow, the cost is high and
the segmentation accuracy depends on experts’ level. Inspired by deep learning,
we propose a weakly supervised CNN method to effectively segment the sub-
structure from CT cardiac images. First, we utilize the deformable image registra-
tion technology to generate pseudo masks with high confidence for whole heart
datasets, which can provide rich feature information to distinguish foreground and
background. Meanwhile, the ground truth is used to cut patches containing more
heart substructures so that the network can obtain more information about heart
substructures. Then, we developed a novel loss function based on the weighted
cross-entropy to enforce CNN to pay more attention to the tricky voxels nearby
the boundary of cardiac substructures during the training stage. The proposed
method was evaluated on MICCAI2017 whole heart CT datasets, and the overall
segmentation score of 91.30%.
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1 Introduction

Thewhole heart segmentation is essential for the diagnosis of heart disease. However, the
efficiency is limited due to both the annotation of experts and the subjective judgments
of doctors. Meanwhile, the segmentation results can only be annotated by doctors and
experts, which makes medical images available for research much less than other image
datasets. In recent years, deep learning has achieved great success in computer vision
and artificial intelligence, which enables the auto segmentation of the substructure of
the heart from Computed Tomography (CT) [3]. U-net [9] and Fully Convolutional
Network [7] have greatly improved medical image segmentation in terms of accuracy
and execution speed, but there exist gradient vanishing and gradient explosion problems
when the depth of the network increases. To tackle this problem, Lee et al. [10] added
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depth supervision mechanism into the network, effectively alleviate the problem caused
by gradient. Yang et al. [1] applied a deep supervision mechanism to the whole heart
segmentation, through integrating DICE loss and cross-entropy loss into the network,
they obtained excellent segmentation results. Based on this work, Ye et al. [5] replaced
the weighted cross-entropy loss function with the Focal loss function, which makes the
model focus on the indistinguishable boundary and improves the Dice accuracy.

For medical images, they contain more background voxels than foreground voxels.
Thus, it suffers from the problem of high misclassification. To overcome these limi-
tations, some segmentation frameworks [6, 8] are put forward in recent years. These
frameworks, known as cascade networks, are divided into two steps: (1) the first step is
to locate the target and simplify the task; (2) the second step is segmentation. Among
these frameworks, Payer et al. [8] performed this method on whole heart images and
won first place in the MICCAI2017 Whole Heart Segmentation Challenge. However,
these frameworks have the disadvantage of excessive or redundant use of parameters,
such as repeated extraction of underlying features. Oktay et al. [11] proposed the plug-
play Attention Gates (AGS) model, which makes the network automatically focus on
relevant areas through training, effectively overcoming the shortcomings of CNNs to
some extent. Wu et al. [4] have proposed a WSL (Weakly supervised learning)-based
method for brain lesion segmentation. Through weak supervision learning, the network
can automatically select the relevant region to suppress the irrelevant image information.

In this paper, we proposed a novel 3D CNN combining WSL learning for cardiac
segmentation. We firstly used deformable image registration (DIR) [2] technology to
generate pseudo masks of all the CT images for producing weakly supervised informa-
tion. Then, we utilized that weakly supervised information to guide a novel 3D U-net
learning. Furthermore, we developed a novel loss function based on the weighted cross-
entropy to enforce CNN to pay more attention to the tricky voxels nearby the boundary
of cardiac substructures during the training stage.

The main contributions of this paper are as follows:

(1) We applied traditional medical image registration technology to generate weakly
supervised information as the prior knowledge for guiding deep network learning,
which not only helps distinguish background and foreground organs but also can
be as a data augmentation way avoiding overfitting problems.

(2) We developed an improved weighted cross-entropy loss for enforcing the deep net-
work to pay attention to the missegmented voxels and alleviate the class imbalance
problem.

2 Method

2.1 Pseudo Masks

The inputs of the network consist of two parts: one is the original CT image, while
another is the pseudo masks that format the one-hot after the background is removed.
For the generated pseudo masks, relevant image regions can be automatically selected.
Although pseudo masks are not able to segment accurately, they can provide relevant
positional features of background and foreground for the region, and effectively extract
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heart substructure from background. This paper utilized DIR (deformable image regis-
tration) [2] technology to generate pseudo masks for medical images. Set {(Ti)}Ni=1 as N

training samples,
{(
Vj

)}M
j=1 as M test samples. There are two training methods, called

Model_N-1 and Model_1, as shown in Fig. 2. For a certain training sample Ti, the other
N-1 training samples are respectively used as atlas to generate pseudo masks for Ti.
In the Model_N-1, we concatenate Ti with its N-1 pseudo masks respectively and put
them into deep network for training. In the Model_1, the N-1 pseudo masks of Ti are
firstly majority voting to get a final pseudo mask, then we concatenate it with Ti and put
them into deep network for training. Thus, similarly, there are two ways to generate test
results, called IND and MV, as shown in Fig. 2. IND model is that each training sample
is used as atlas to respectively generate pseudo mask for test sample Vj. At testing stage,
we concatenate each of N pseudo masks with Vj and pass through the deep network.
Then we can obtain N segmentation results for test sample Vj. Finally, we use majority
voting method to generate the final segmentation result. MV model is that N pseudo
masks of Vj are majority voting to obtain a final pseudo mask, the it is concatenated with
Vj and put into the deep network for generating a segmentation result.

Fig. 1. The framework of the proposed Deep U-net network. In input layer, we concatenated the
generated pseudo masks with the cropped patches and placed them into the network for training.
The details of pseudo masks generation and patch cropping will be introduced in Sect. 2.1 and
2.2.

Fig. 2. Two training methods (left) of pseudo masks, two test methods (left) of pseudo masks.



Weakly Supervised Whole Cardiac Segmentation via Attentional CNN 79

2.2 Deep U-Net Network

In order to better train the deep network, we adopt themethod of deep supervision, which
increases the output path in different network layers and shortened the backpropagation
path of gradient flow. In this paper, three deep supervised branches are introduced in the
decoding stage. The output of each branch is the same as that of the main branch, in
Fig. 1, out1, out2, and out3 are the three deep supervised branches, and the final total
loss is the sum of the losses of each branch and the main branch.

2.3 Improved Weighted Cross-Entropy Loss

The commonly used weighted cross-entropy loss does not perform well for voxels that
are difficult to segment. In this paper, we added predicted false negative (FN) and true
positive (TP) voxels losses into the weighted cross-entropy to formula the total loss. As
shown in Eq. (1).

LmwCross(x, y, z) = −
∑C
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where Gi
cFN is 0 or 1, where 1 indicates that the current voxel belongs to class c but

is predicted to be of another class. Pi
cTP is 0 or 1, where 1 indicates that the current

voxel is predicted to be class c, but is actually something else. Pi
c(0.005 < Pi

c < 0.995)
is the probability that the current voxel is class c, and the range is limited to prevent
the excessive loss, which is not conducive to network convergence. wc is the weight
coefficient of class c, which can be used to alleviate class imbalance.

MDSC (Multi-Class Dice Similarity Coefficient) based loss function to balance the
training for multiple classes [1]. This loss can be defined as:
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where N is the number of voxels; Gi
c is a binary value, where 1 indicates the voxels

belong to class c, 0 stands for other categories; Pi
c (0 < Pi

c < 1) denotes the probability
that the current voxels belong to class c.

After and are added into the network, the new loss function can be defined as follows:

Lout_x(d ,w) = 100dLmDSC + wLmwCross (3)

where d and w are the weights of different branches, x represents the output of the deep
supervised branch, the final loss function, called the Improved Weighted Cross-Entropy
(IWCE), is:

Ltotal = Lout_1(0.2, 0.3) + Lout_2(0.4, 0.6) + Lout_3(0.8, 0.9) + Lout_4(1.0, 1.0) (4)
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3 Experimental and Results

3.1 Datasets and Implementation Details

We evaluated our approach with the MICCAI2017 whole-heart CT datasets, which con-
tains 20 publicly available CT data [1]. We randomly selected 10 samples as training
samples and the rest as test sets. These data were collected in the actual clinical environ-
ment, which was variable and contained some images of poor quality, so the robustness
of the algorithm in this paper remains to be verified. Each sample is stackedwithmultiple
2D images of 512 ∗ 512 size. All training data were normalized to zero mean and unit
variance. Adam is used to optimize network parameters, the number of iterations was
35,000 epochs [5], the batch size was 2, and the initial learning rate was 0.001.

3.2 Patch Selection

Due to the particularity of heart medical images, and the 7 substructures voxels in whole
heart CT image account for less. When the random cropped size is 96, the background
occupied more than half of the training data, which is not conducive to the better learn-
ing prospects of the network. To tackle this problem, we adopted an effective cropped
method, which utilized ground truth to crop the patches with less background. For the
randomly cropped patches, we calculated the proportion p of the background voxels in
the whole patch. If the background proportion p is less than a (a = 0.5), this patch will
be called the available patch and sent into the network for training, otherwise, the patch
will be re-cropped.

3.3 Experimental Results

We took deeply-Supervised U-net [1] as the baseline network, Multi-Depth Fusion [5]
is an improvement of the baseline network and Dice score as performance evaluation.
In order to the efficiency of the proposed method in this paper, we conducted a series of
ablation experiments.

The experimental results of cardiac substructure, pulmonary artery (PUA), ascend-
ing aorta (ASA), right ventricular blood chamber (RVBC), right atrial blood chamber
(RABC), left ventricular blood chamber (LVBC), left atrial blood chamber (LABC),
and myocardium of the left ventricle (MLV) were shown in Table 1. Except for the
PUA (Dice score about 82%–86%), we can see that all the methods achieved relatively
accurate substructures’ segmentation for the whole heart. The reason could be that the
shape and appearance of the PUA always has greater variability.

Compared with the baseline method, the proposed the four methods with the pseudo
masks can produce better segmentation results in almost substructures of thewhole heart.
And all the proposed four methods have comparable performance with the advanced
Multi-Depth Fusion method. Although, these regions ofMLV (has the epicardial surface
and the endocardial surface of the left ventricular) and RABC havemuch larger variation
in terms of shapes and heterogeneous intensity of the myocardium and the blood. All
the proposed methods outperform the two compared methods on the MLV and RABC.
Particularly, “MV + Model_1” achieves the best results on MLV, RVBC, ASA, and
PUA.
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Table 1. Segmentation accuracy (%) of the state-of-the-art segmentation methods and the pro-
posed four methods. “IND + Model_N-1” indicated that it used Model_N-1 at training stage and
IND model at testing stage; “IND + Model_1” indicated that it used Model_1 at training stage
and INDmodel at testing stage; “MV + Model_N-1” indicated that it used Model_N-1 at training
stage and MV model at testing stage; “MV + Model_1” indicated that it used Model_1 at train-
ing stage and MV model at testing stage. The Bold Font in the proposed four methods means it
outperform the Baseline and Multi-Depth Fusion methods. The values with underline mean that
they are the best results in the six methods.

Method MLV LABC LVBC RABC RVBC ASA PUA Mean

Baseline 87.6 90.5 92.1 86.0 88.6 94.8 82.6 88.93

Multi-Depth Fusion 88.9 91.6 94.4 87.8 89.5 96.7 86.2 90.73

IND +Model_N-1 89.9 90.7 94.2 89.6 89.4 93.0 87.0 90.56

IND +Model_1 90.2 90.8 94.4 89.6 89.8 94.0 85.7 90.68

MV +Model_N-1 89.5 91.1 94.2 90.0 89.9 96.5 86.3 91.14

MV +Model_1 89.8 91.3 94.1 89.9 90.0 96.9 86.9 91.30

3.4 Ablation Experiments

We verify the effectiveness of the proposed IWCE LOSS, patch selection, and pseudo
mask modules in the proposed model. We used the best model “MV + Model_1” as the
basic model “Model”. Then, we ablate or replace each proposed module, respectively.
Other experimental conditions are the same as the Table 1.

Table 2 shows the experimental results. We can see that the segmentation results
of six substructures become worse after the model without using the Patch Selection
module. It proved that the Patch Selection module can select meaningful image patch
conducive to the better learning prospects of the network. The third row is the best model
using traditional Cross-Entropy loss without using the proposed IWCE loss. We can see
that the segmentation results of the almost substructures are slightly worse than the best
model. It proved that the proposed loss function takes the class imbalance problem into
account and performwell for the voxels, like PUA, that are difficult to segment. The forth
row is the model without using pseudo mask information for training, we can see that
it achieved comparable performance on five substructures except ASA (reduce ~1%)
and PUA (reduce ~3%). One reason is that the pseudo masks generated by simple DIR
have lower quality which introduced very limit information for guiding deep network
learning on some substructures that are easy to segment. Other reason is that the pseudo
masks can provide some useful information, such as location information, for the PUA
segmentation.
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Table 2. Ablation experiment for the effect of the modules in the proposed MV + model_1
model. “PS” refers to Patch Selection modules; “IWCE” refers to the proposed mixing loss;
“pseudo mask” refers to the proposed pseudo mask label modules. “↓” or “↑” denote the increase
or decrease of the Dice score (%) compared with the values of “MV + Model_1” method.

Method MLV LABC LVBC RABC RVBC ASA PUA Mean

MV +Model_1 89.8 91.3 94.1 89.9 90.0 96.9 86.9 91.30

Model without PS 89.2↓ 90.9↓ 92.5↓ 89.9 90.2↑ 96.5↓ 86.4↓ 90.90↓
Model without IWCE 89.5↓ 91.0↓ 94.1 89.6↓ 89.1↓ 96.2↓ 85.6↓ 90.82↓
Model without pseudo mask 90.2↑ 90.6↓ 94.1 89.7↓ 90.1↑ 95.9↓ 83.9↓ 90.75↓

Table 3. Generality of the proposed modules. “Baseline” method is the deeply-Supervised U-
net [1]; “Baseline PS” is the combination of the baseline method and Patch selection module;
“Baseline IWCE” refers to the baseline method whose lose function is replaced for the IWCE
loss function; “Baseline Pseudo mask” refers to the baseline method integrates the pseudo mask
information during training stage. “↓” or “↑” denote the increase or decrease of the Dice score
compared with the values of “Baseline” method.

Method MLV LABC LVBC RABC RVBC ASA PUA Mean

Baseline 87.6 90.5 92.1 86.0 88.6 94.8 82.6 88.93

Baseline PS 89.91↑ 90.14↓ 94.08↑ 89.39↑ 89.98↑ 94.68↓ 84.69↑ 90.41↑
Baseline IWCE 88.70↑ 89.89↓ 93.66↑ 88.86↑ 89.99↑ 96.57↑ 85.74↑ 90.49↑
Baseline Pseudo mask 89.29↑ 90.48↓ 93.16↑ 89.71↑ 89.64↑ 96.57↑ 86.63↑ 90.78↑

3.5 Generality Experiments

In order to analysis and discuss the generality of the proposed modules including the
Patch Selection, IWCE loss, and pseudo masks, we use the deeply-Supervised U-net
[1] as the baseline segmentation network and combine it with the proposed modules
respectively. Table 3 shows the experimental results.We can see that the baselinemethod
with each proposed module has a positive effective on most substructures except LABC.
Especially, the performance of the baseline with pseudo mask method has significant
improvement on PUA. It further proved that the pseudo masks can provide certain prior
information which is useful for the hard to segment problem.

4 Conclusion

In this paper, a weakly supervised segmentation method based on CNN is proposed for
whole-heart segmentation. We first generate pseudo masks using traditional deformable
image registration methods, then perform them on whole-heart data for training. The
information provided bypseudomasks is used to distinguish foreground andbackground.
In order to obtain better experimental results, we improved the weighted cross-entropy
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loss function and mined the training samples to solve the problems of fuzzy boundary
and class imbalance. We performed validation on the MICCAI 2017 whole-heart CT
dataset, and the results demonstrate that ourmethod can effectively improve the accuracy
of heart segmentation.
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