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Abstract. Development and verification of modern, dependable auto-
motive systems require appropriate modelling approaches. Classic auto-
motive safety is described by the normative regulations ISO 26262,
its relative ISO/PAS 21448, and their respective methodologies. In
recent publications, an emerging demand to combine environmental influ-
ences, machine learning, or reasoning under uncertainty with standard-
compliant analysis techniques can be noticed. Therefore, adapting estab-
lished methods like FTA and proper tool support is necessary. We argue
that Bayesian Networks (BNs) can be used as a central component to
address and merge these demands. In this paper, we present our Open-
Source Python package BayesianSafety. First, we review how BNs relate
to data-driven methods, model-to-model transformations, and causal rea-
soning. Together with FTA and ETA, these models form the core func-
tionality of our software. After describing currently implemented fea-
tures and possibilities of combining individual modelling approaches, we
provide an informal view of the tool’s architecture and of the resulting
software ecosystem. By comparing selected publicly available safety and
reliability analysis libraries, we outline that many relevant methodolo-
gies yield specialized implementations. Finally, we show that there is
a demand for a flexible, unifying analysis tool that allows researching
system safety by using multi-model and multi-domain approaches.

Keywords: Fault Tree Analysis · Event Tree Analysis · Bayesian
Networks · Causality · Package BayesianSafety

1 Introduction

Today’s view on Functional Safety (FS) and reliability was developed over
decades. Throughout this evolution, multiple techniques to manage different
aspects of system safety emerged. Modern standards like IEC 61508 or its auto-
motive relatives ISO 26262, ISO/PAS 26448, and UL 4600 encourage and sup-
port these modelling approaches. Consequently, methodologies like Fault Tree
Analysis (FTA), Event Tree Analysis (ETA), Failure Mode and Effects Anal-
ysis (FMEA), or Goal Structuring Notation (GSN) form the basis that allows
building complex, highly dependable [2] systems like autonomous driving cars.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Trapp et al. (Eds.): SAFECOMP 2022, LNCS 13414, pp. 17–30, 2022.
https://doi.org/10.1007/978-3-031-14835-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14835-4_2&domain=pdf
http://orcid.org/0000-0002-4196-3263
http://orcid.org/0000-0002-7727-2448
https://doi.org/10.1007/978-3-031-14835-4_2


18 R. Maier and J. Mottok

Practitioners and researchers working with these modelling approaches
demand appropriate tool support. Even though there are proprietary as well
as Open-Source solutions available, most of them are optimized to work with
one methodology only.

In recent years, researchers noted that system safety is a multi-aspect endeav-
our. Feth et al. [8] state that various of the above disciplines should be combined
to form a joint safety engineering process in the automotive context. Similarly,
Mosleh et al. [13] outline that different frameworks (here FTA, a modified ETA,
and BNs) can be merged on a conceptual level. This allows addressing many
requirements such as model maintainability and justifiability, incorporation of
uncertainty, or high fidelity while staying compatible with various standards [18].

In the autonomous driving domain, research questions of interest include
how reasoning under uncertainty, handling operational and environmental con-
ditions, or a combination of abstract influences from multiple domains can be
combined with ISO 26262 or ISO/PAS 21448. Modelling uncertainty is often
addressed by resorting to BNs [12]. Moreover, Bayesian-based graphical models
allow researching causality to answer questions like “what if” and “why” [15].
BNs are commonly used in conjunction with established, standard-compliant
methods (e.g. Hybrid Causal Logic (HCL) [13]) and for model-to-model trans-
formation [4,5,11].

Usually, the various FS and reliability methodologies have their own seman-
tics, modelling assumptions, or mathematical frameworks to calculate metrics of
safety evaluation like Average Probability of Failure on Demand or Probability of
Failure per Hour. Due to this, software supporting these various methodologies
differs drastically and renders a multi-method often a multi-tool approach. Addi-
tional features, like the incorporation of environmental aspects (e.g. adapting
FTA as required by HCL) or combining various frameworks (e.g. Bow-Tie mod-
els (BTs)) are typically not supported by commercial tools like AnsysR© medini
analyze1 or Open-Source packages like SCRAM 2. Nonetheless, these capabili-
ties are of high interest to researchers and practitioners alike. Ideally, software
supporting the outlined combination of methodologies should be easy to adapt
and modify, extensible, and foremost available for all.

The contribution of this paper and associated research is an Open-Source
Python package called BayesianSafety3, which can serve as a basic implemen-
tation to address the demands outlined above. Our aim is to provide a novel,
extensible software environment with a focus on harmonizing the combination
of various modelling approaches by using BNs.

First, we will cover the basics of BNs and how they can be used as a universal
model to transform established standard-compliant methodologies. We will do so
by addressing how our currently supported modelling approaches FTA and ETA
can be mapped to BNs as a mathematical core framework. By doing so, we gain
access to methods that can learn environmental models from data, combine them

1 https://www.ansys.com/.
2 https://github.com/rakhimov/scram.
3 https://github.com/othr-las3/bayesiansafety.
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with transformed models, and allow causal reasoning as outlined by [15]. Next,
we give a brief overview of the resulting modelling possibilities by combining
simple models and the currently implemented features of BayesianSafety. Based
on requirements for a novel FS and reliability analysis software package, we
review and compare related work. We close this paper with a summary as well
as future research and implementation intentions.

2 Preliminaries

The following section highlights the key ideas behind our proposed software
package BayesianSafety.

2.1 Bayesian Networks

Probabilistic Graphical Models (PGMs) like BNs are often used as suitable
mathematical frameworks for reasoning under uncertainty [12]. BNs are directed
acyclic graphs that are able to convey assumptions on how variables interact.
They specify and represent a joint probability distribution and allow efficient
computation of probabilistic information. When connections between variables
are given a causal (i.e. cause and effect) interpretation, they can be used as
causal models to facilitate causal reasoning [15].

Given the assumption that variables are only directly influenced by their
Markovian parents pai (i.e. immediate predecessor nodes), the underlying joint
probability distribution P (X) can be factorized as a special case of the chain
rule of probability:

P (X) =
∏

i

P (xi|pai) (1)

A conditional probability distribution can be interpreted as a causal mecha-
nism mapping the influence of parent nodes to the distribution of the child node.
Causal models allow interventions (i.e. locally changing a causal mechanism) and
estimating how probability distributions would change. These mechanisms can
be used to model stochastic as well as deterministic relationships. This property
is exploited in model-to-model transformations.

2.2 Model-to-Model Transformations

Bobbio et al. [4] show that Fault Trees (FTs) can be mapped into BNs without loss
of expressiveness. The deterministic relationship between input nodes (e.g. basic
events) and a node of interest (e.g. gate) can be modelled by adjusting the respec-
tive conditional probability distributions (i.e. implementing a truth table). In con-
trast to FTs, a straightforward topological transformation of Event Trees (ETs) [3]
is usually not possible. Instead, the model’s structure is defined by some proper-
ties of the paths between an initiating event and associated consequences. Both
model transformations are reversible without any loss of information. A resulting
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topology, together with the conditional distributions associated with each node,
encode all required information of the original model in the resulting BN. To sup-
port reasoning under uncertainty, adapting formal methodologies like FMEA [11]
or GSN [14] is also researched by using model-to-model transformations.

Casting various modelling approaches into the same mathematical framework
allows merging them. In the case of BNs, this requires adjusting the causal
mechanisms of nodes that link transformed models. This is possible as long
as the modularity assumption (i.e. changing a local mechanism does not affect
others, e.g. parents of a node) holds. Consequently, environmental models can
be used to serve as input for standard-compliant approaches (e.g. rain and light
conditions as basic events in a FT [18]).

Figure 1 gives an informal example of how (mathematically) independent
frameworks can be transformed into BNs and combined to a single model. On
the left side of the figure, a FT is mapped into a BN according to [4]. In the
centre, an ET is transformed based on [3]. Combining FTs and ETs can be done
via BTs [10]. On the right side, a HCL model is built from the individual parts.
An environmental model with influences (Ei) is added and replaces two basic
events of the FT via the nodes E4 and E5. The top-level event of the transformed
FT is considered as initiating event of the ET with outcomes FE11a and FE11b.
FT, ET, and environmental influences together form an instantiation of the HCL
framework. Additionally, the conditional probability tables for the transformed
ET are given, showing the preservation of determinism after mapping.

Fig. 1. Informal example of how a FT and an ET can be transformed into a BN. On
the right side, both models are combined and extended by an environmental network,
forming an instantiation of the HCL framework.

2.3 Bridging the Issue of Multiple Domains

Due to the increasing complexity of technical systems (e.g. autonomous driv-
ing cars) FS and reliability analysis is non-trivial. Components of a system
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can be broadly categorized into three groups: software, hardware, or artificial
intelligence-based. Depending on the individual category, different standards like
ISO 26262 or ISO/PAS 21448, or UL 4600 might apply. Each of these standards
encourages the use of different modelling approaches. As [8,16,18] among others
point out, a combination of these methods can be reasonable.

A problem that arises when trying to merge methodologies, is how to ade-
quately link them. Interactions between components as well as between model
elements are often treated as causal. As mentioned above, BNs can be utilized to
handle such relationships in the form of causal mechanisms and therefore qualify
as a framework for a joint multi-domain, multi-model system evaluation.

With respect to the increasing popularity of Machine Learning (ML) based
components, the issue of explainability emerges. This is due to black-box learning
methods (e.g. Neural Networks) and the data used for their training.

A trend called “causal revolution” started recently in the ML community. Its
core idea is to employ causal knowledge in the form of causal graphs to train
learning algorithms more efficiently and robustly [17]. This allows working with
white-box models (i.e. causal graphs). In the context of FS and reliability, they
can serve as input to standard-compliant methodologies like FTs and may be
used to verify parts of an ML algorithm.

Causal models can also be used to interpret the underlying data and encoded
relationships (i.e. correlation and causation) between variables [15]. Causal dis-
covery describes the approach to algorithmically learn causal models from data,
by estimating the topology and conditional probability distributions of the
graph [19]. This is especially valuable in light of data-driven safety assurance,
as it allows the processing of collected data as a source of causal knowledge
(i.e. as an environmental model). As a consequence, the modelling of environ-
mental, operational, or scenario-relevant influences can be decoupled in parts
from human experts. Therefore, causal models might serve as an objective way
to address parts of scenario-based testing approaches (e.g. evaluation of sensor
data or simulation results) as outlined in ISO/PAS 21448.

As mentioned in Sect. 1, each modelling approach typically builds on different
assumptions. This ties the calculation of relevant metrics to specialized math-
ematical constructs. For example, FTs are based on boolean logic and can be
used to calculate the likelihood of component failure (e.g. top-level event) given
influencing factors. Based on boolean algebra or via a Binary Decision Diagram
(BDD), risk worth or importance measures of a component can be derived. ETs
on the other hand model logical combinations of events that lead to different con-
sequences. Corresponding likelihoods are calculated as a product of branching
probabilities based on paths between an initiating event and a consequence.

These different paradigms yield tailored and highly customized software pack-
ages. Researching combinations of these methodologies or of potential environ-
mental influences leads to a multi-tool endeavour. Even though combining dif-
ferent domains is reasonable, to the best of our knowledge, currently, no Open-
Source tool supports it. Our contribution is intended to address this demand.
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3 Package BayesianSafety

In the following, we will describe our Python package BayesianSafety. The
descriptions given below refer to FTs as an example.

3.1 Models and Their Combinations

As described by [13] a suitable combination of methodologies can jointly address
various demands of system safety. Looking at Probabilistic Safety Assessments
(PSAs) the two main frameworks used are FTA and ETA. Both analysis meth-
ods can be combined and transformed into BNs and extended in different ways
(see Sect. 2). Due to this fact, they were chosen as the core functionality of
BayesianSafety. Description and exchange of classic PSA models are supported
by the Open-PSA initiative model exchange format [7]. Relevant combinations
of the above methodologies include:

– stand-alone “classic” FT or ET,
– ET and BN (environmental influences) (see e.g. [3]),
– FT and BN (environmental influences) or common causes (see e.g. [4]),
– FT and ET (BT, see [10]), or
– FT and ET and BN (environmental influences) (HCL, see e.g. [13,18]).

BayesianSafety was developed to allow specifying models by hand if no
description file can be provided. Listing 1.1 shows the code to set up the FT
model of Fig. 1. Probability nodes (i.e. basic events) have a name parameter,
can be given a static probability of failure, and are assumed to have two states:
working and failing. A flag can be set to indicate time dependency. The prob-
ability of failure is then treated as failure rate λ for a default time behaviour
of 1 − e(−λt). Logic gates (i.e. boolean gates) are given a name, a list of parent
nodes, and a logic type to connect these arbitrary inputs.

Listing 1.1. Example listing for defining a simple FT in BayesianSafety.

1 from bayesianfaulttree.FaultTreeProbNode import
FaultTreeProbNode as FTProb

2 from bayesianfaulttree.FaultTreeLogicNode import
FaultTreeLogicNode as FTLogic

3 from bayesianfaulttree.BayesianFaultTree import
BayesianFaultTree as BFT

4
5 B_1 = FTProb(’B_1’, 0.5e−3)

6 B_2 = FTProb(’B_2’, 1.6e−3)

7 B_3 = FTProb(’B_3’, 2.7e−3)

8 B_4 = FTProb(’B_4’, 3.8e−3)

9 B_5 = FTProb(’B_5’, 4.9e−3, is_time_dependent=True)

10
11 OR_1 = FTLogic(’OR_1’, [’B_1’, ’B_2’] , ’OR’)
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12 AND = FTLogic(’AND’, [’OR_1’, ’B_3’], ’AND’)

13 OR_2 = FTLogic(’OR_2’, [’B_4’, ’B_5’], ’OR’)

14 TLE = FTLogic(’TLE’, [’AND’, ’OR_2’], ’OR’)

15
16 probability_nodes = [B_1, B_2, B_3, B_4, B_5]

17 logic_nodes = [OR_1, AND, OR_2, TLE]

18 model = BFT("Example", probability_nodes , logic_nodes)

FTs and ETs can be imported either as individual models or as a joint model
in case of a BT if a suitable Open-PSA file is available. An importer parses
the provided tree structures and preprocesses relevant information. Based on
the model type, a mapper is invoked. It instantiates a BN that serves as the
default internal model-class of BayesianSafety. A networkX DiGraph-object [9]
is used as a container for the graph representation of the BN topology. Mapping
all imported networks to a BN allows combining models and joint inference.
Listing 1.2 shows how a simple ET and FT can be imported.

Listing 1.2. Example listing for loading an ET and a FT from an Open-PSA file.

1 from bayesianeventtree.EventTreeImporter import
EventTreeImporter

2 from bayesianfaulttree.FaultTreeImporter import
FaultTreeImporter

3
4 bay_FT = FaultTreeImporter().load(’./Example.xml’)

5 bay_ET = EventTreeImporter().load(’./Example.xml’)

Working with Fault Trees. FTs can be used either as a quantitative or quali-
tative representation of a modelled system. Some basic metrics of interest include
minimal cut sets and different importance measures (e.g. Risk Reduction Worth,
Risk Achievement Worth, or Birnbaum importance). BayesianSafety supports
all of the above, including the ability to run a time simulation between a start
and end time. For a time-dependent evaluation, the respective time behaviour
of time-dependent nodes is evaluated at each time step and the resulting prob-
ability of failure is updated for each affected element in the BN. For each node
of the tree, the evolution of the probability of failure can be plotted or saved as
a figure. A FT can also be evaluated at a given mission time t.

All probability evaluations are done by inferring the BN (i.e. the transformed
model). It should be noted, that some method-specific results like nodes con-
tributing to a minimal cut set are currently calculated based on the original FT
structure (via the MOCUS algorithm) if equivalent methods using a BN are not
available.

A missing feature in most Open-Source packages is the ability to freely spec-
ify a custom time behaviour for basic events. The default assumption for an
underlying reliability function is usually to be exponential. This holds during
the system’s lifetime, but neglects for example end-of-life effects. BayesianSafety
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allows modelling time dependency for any probability node of a FT model by
specifying a custom function. Listing 1.3 gives a short example of how a full
network evaluation including the definition of a custom time behaviour can be
implemented.

Listing 1.3. Example listing for evaluating a FT where two nodes have a customized
time behaviour (i.e. sigmoid and cosine).

1 import numpy as np

2 def time_fn(time, kind="cos"):

3 if time <= 0:

4 return 0

5 sig = 1 − 1 / (np.exp(1.23e−4 ∗ time) + 1)

6 return np.cos(time) if kind == "cos" else sig

7
8 ft_model = ...

9 node_1 = ft_model.get_elem_by_name("target_node_1")

10 node_1.change_time_behaviour(time_fn, {"kind":"sigm"})

11 node_2 = ft_model.get_elem_by_name("target_node_2")

12 node_2.change_time_behaviour(time_fn)

13
14 ft_model.run_time_simulation(start_time=0, stop_time=1e5,

simulation_steps=50, plot_simulation=True)

Extension by Linking Environmental Models. Since FTs are internally
represented as BNs, combining them with environmental models can be done
straightforward. Boolean gates in a FT are interpreted as potential mounting
positions that can be extended by target nodes of one or multiple environmental
models. Additional mapping information needs to be provided to define links
between gates and external variables. In a resulting extended FT, environmental
influences are treated as new binary basic events, allowing any calculation of the
metrics mentioned above. Since environmental variables can have an arbitrary
number of states (e.g. weather with states rain, fog, and snow), one of them
needs to be selected and will be treated as “failing”. An associated probability
is then interpreted as a static probability of failure. Figure 2 shows the idea of
linking a FT with multiple environmental models.

Environmental influences may not only serve as basic events. Depending on
the modelled effects (e.g. occlusion of a camera lens due to precipitation), an
underlying assumption about the failure behaviour of a component (e.g. camera)
may change. In BayesianSafety this can be implemented by treating an environ-
mental node as a trigger and in response modifying an existing basic event based
on external influences. Consequently, a time-independent node can be given a
custom time behaviour. A modification changes the static probability of failure
or the default reliability function R(t) = e(−λt) of a node based on selected state
probabilities P (envi) of environmental nodes and predefined thresholds. Note
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Fig. 2. A FT can be combined with multiple environmental models. Adequate mapping
information needs to be provided, specifying which gates will be extended. Selected
environmental nodes are treated as new basic events in a resulting extended FT.

that nodes independent of external influences can still be modified as described
above. The following alterations are currently supported:

Replacement: R(t) → P (env)
Addition: R(t) → ω0R(t) + ωenvP (env)
Weighting: R(t) → ω0R(t)

∏
i ωiP (envi)

Rate: R(t, λ) → R(t, λ�)
Parametric: R(t, λ) → R�(t, P (env)) as a special case of “Rate”
Functional: R(t, λ) → R�(t,X) where X is a set of parameters.

3.2 Model Inference

Typical metrics calculated in FTA and ETA represent prior probabilities. Pos-
terior distributions (e.g. P (X|Y,W )) can be calculated easily due to the use of
BNs as a mathematical core framework.

In BayesianSafety, inference is tied to a single, independent BN. Queries and
their results are only computed on that network instance. In combined models,
this leads to a problem for some evaluations due to the current implementa-
tion. Suppose we want to extend a FT by linking environmental influences as
described above. The resulting composite BN is a newly instantiated model, con-
taining copies of all nodes of the FT and new binary basic events based on the
specified environmental nodes. A problematic query of interest would be, how
an observed top-level event in the FT part affects the posterior probability for
an environmental node Weather (e.g. P (Weather|TLE = failure)). Even if
Weather is formally linked to the FT, a distributional update will only consider
the newly created basic event node Weathernew = state x in the composite
BN and not the original node in the environment network. Consequently, this
means that the environmental model will not be considered at all. If an update
is required, the joint model needs to be created accordingly.



26 R. Maier and J. Mottok

BayesianSafety is developed to support causal inference based on BNs. To
do this, routines for handling interventional (e.g. P (X|do(Y ),W )) and counter-
factual (e.g. P (y′x′|x, y)) queries as described by [15] are available. For exam-
ple, interventional queries can be used to evaluate the effects of a forced event.
Imagine a redundant architecture consisting of two independent sub-systems.
P (X|do(sub1 = fail)) describes how actively disabling sub-system 1 influences
a component X and therefore partially evaluates the effectiveness of sub-system
2. In FTA, this relates to modelling the respective branches with a house event
which is set to true or false respectively.

Causal inference allows answering interventional questions like “What if com-
ponent X would fail” and counterfactuals like “Would rain have caused X to
fail, given we know it was sunny and X worked”. This may especially be relevant
for generating insights for environmental models by researching causal influence
among variables.

3.3 Technical Ecosystem

BayesianSafety is developed in Python 3.9+ and currently spans around 6500
lines of code with an average cyclomatic complexity of 4.76. Source code, includ-
ing examples treating FTA and ETA, can be found in our GitHub repository
under https://github.com/othr-las3/bayesiansafety.

Instead of implementing inference algorithms ourselves, we rely on two dif-
ferent computational back-ends, namely pgmpy [1] in version 0.1.17+ and pyA-
grum [6] in version 0.22.5+. Both provide a wide variety of approximate and
exact inference and structure learning algorithms, are actively developed, and are
established in the Open-Source PGM software community. They enable causal
inference and support other PGM families like Markov Networks.

A key feature of both packages is state-of-the-art causal discovery methods.
Consequently, this renders our package ready for an extension to provide an
end-to-end (i.e. data to insight) capability. Environmental models could then be
learned and combined with standard-compliant approaches to system safety, as
outlined throughout this paper. Relying on third-party back-ends allows focus-
ing on the implementation of required methodologies. BNs serve as generic con-
tainers to run all probability calculations on. As long as a modelling approach
can be cast into the formalisms of BNs, it is expected to be implementable in
BayesianSafety with minimal effort.

Parsed trees, as well as the underlying graph structure of a model, are inter-
nally represented as networkX DiGraph-objects [9]. NetworkX is one of the
richest libraries for managing graphs in Python and provides a vast amount of
graph algorithms. It allows plotting graphs, has export and import capabilities
to different graph exchange formats, and allows adding custom data to graph
elements. Figure 3 gives an informal overview of the ecosystem and the architec-
tural idea of BayesianSafety described above.

https://github.com/othr-las3/bayesiansafety
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Fig. 3. During inference, BayesianSafety acts as a wrapper for back-end packages
pgmpy [1] and pyAgrum [6]. Graph representations are implemented as networkX
DiGraph-objects [9] and can be loaded from Open-PSA model exchange format files.
FS and reliability methodologies like FTA or ETA and their respective algorithms can
be implemented as custom modules building on BNs as a core framework.

4 Related Work

Zurheide et al. [20] recently developed a Python package called pyBNBowtie4 to
work with BTs mapped to BNs. They support the Open-PSA exchange format5
to provide models and cast them directly into a pgmpy BayesianNetwork -object.
Technically, they build on the model-to-model transformations described in [3,
4,10] but support only parts of the arc simplifications described by [3]. Features
like Minimal-Cutset calculation in FTs are not implemented.

Open-PSA and therefore treatment and evaluation of individual FTs and ETs
are also supported by the C++-based library SCRAM. The R package FaultTree6
focuses on FTA, partially builds on SCRAM, and adds a basic graphical user
interface. Both use BDDs for the calculation of gate probabilities and efficient
inference of large models.

JReliability7 is a Java-based package that also uses BDDs to model trees that
are connected via boolean functions. It supports calculating different reliability
metrics like Birnbaum importance, Risk Reduction Worth, or Mean-Time-To-
Failure, and allows the visualization of metrics and distributions over time.

meta4ics8 is another Java-based tool for generic AND/OR-connected graphs
and can be used to identify critical nodes by calculating a custom weighting
metric. SCRAM, JReliability, and FaultTree are highly optimized to work with
FTs and support additional boolean gate types other than AND/OR. All of these
tools lack the capability to support emerging demands as described in Sect. 1.

Most publicly available software packages for risk assessment and reliabil-
ity evaluation address FTA and ETA. They are typically monolithic, rendering
extension non-trivial. Due to various languages or visualization capabilities used,

4 https://github.com/zurheide/pybnbowtie.
5 https://open-psa.github.io/joomla1.5/index.php.html.
6 https://github.com/jto888/FaultTree/.
7 https://github.com/SDARG/jreliability.
8 https://github.com/mbarrere/meta4ics.

https://github.com/zurheide/pybnbowtie
https://open-psa.github.io/joomla1.5/index.php.html
https://github.com/jto888/FaultTree/
https://github.com/SDARG/jreliability
https://github.com/mbarrere/meta4ics
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they are mostly dependent on a specific platform. Adapting them to work with
other modelling approaches is not feasible. Based on the scope of this paper and
available related work, the following properties for a modern Open-Source FS
and reliability software can be derived:

Cross-platform. The used programming language and associated third-party
libraries for implementing algorithms should be independent of a computing
platform to address a wide range of hardware and users.

Exchangable. Different algorithmic libraries (back-ends) should be available
to access required features with minimal changes to the package code.

Exact. Implemented methodologies produce the same results as their classic
(e.g. BDD) implementations.

Extensible. Implementing custom functionalities should be possible with low
effort if they can be cast to a common mathematical framework (e.g. BNs).

Uncertainty. The central mathematical framework used should allow reasoning
under uncertainty and modelling of deterministic relationships.

Modular. Standard-compliant methodologies can be used stand-alone or com-
bined with other methods or environmental models.

Data oriented. ML learning approaches, as well as treatment of environmental
data, should be possible in the same tool.

Causal. Support of causal inference to facilitate causal reasoning.

The above Open-Source packages are not intended to incorporate environ-
mental influences. A combination of models as described throughout Sect. 2 is
not possible. They lack any support for causal inference, with the only exception
being pyBNBowtie due to it using pgmpy. Neither do they have the option to be
extended by data-driven approaches.

As generic, multi-purpose PGM libraries, pgmpy and pyAgrum support mod-
elling, learning, and inference of BNs and other of the above requirements.
Therefore, they qualify as candidates to bridge multiple domains at the cost
of implementing standard-compliant methodologies by hand.

In the light of the recent trend of incorporating uncertainty and the demand
to consider environmental influences (e.g. scenarios as suggested by ISO/PAS
21448) all of the above packages lack some functionality. As a consequence,
multi-methodology approaches as encouraged by [8,18] and others require the
use of multiple software tools. Our proposed package BayesianSafety is the first
to address all of the above requirements.

5 Conclusion

Bayesian Networks are an established framework to deal with uncertainty. In the
light of researching system safety, they have desirable properties like versatility,
comprehensibility, and support of causal reasoning. In recent years, multiple
model-to-model transformations from classic analysis methodologies into BNs
have been researched. Many of these publications state that addressing causal-
ity is feasible by using PGMs. Since BNs are agnostic to what they model,
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dealing with environmental, socio-technical, or abstract influences, is possible.
This enables the combination of models with different scopes and formalisms.

In this paper, we outlined some emerging areas of interest in the FS and
reliability community (e.g. researching environmental influences and their effects
on reliability functions). Currently, no Open-Source software package is available
that satisfies desirable properties like the support of causal reasoning, the ability
to reason under uncertainty, or a combination of multi-domain models. To help
address this, we propose our Open-Source Python package BayesianSafety. To
the best of the authors knowledge, BayesianSafety is the first attempt to focus
on the above-listed requirements and is intended to fill the demand for a causal,
multi-domain, multi-model, analysis tool.

Our goal is to create a software environment, where common analysis meth-
ods can be treated together, by harmonizing the way each is processed mathe-
matically. Due to the early implementation stage, only essential functionality to
work with FTs, ETs, and environmental models is available. We plan on extend-
ing the provided capabilities as well as adding support to work with environ-
mental models based on data. We hope BayesianSafety can serve as a baseline
implementation for researching the combination of methodologies and encourage
causality-guided system safety.
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