
Mario Trapp
Francesca Saglietti
Marc Spisländer
Friedemann Bitsch (Eds.)

LN
CS

 1
34

14

Computer Safety,
Reliability, and Security
41st International Conference, SAFECOMP 2022
Munich, Germany, September 6–9, 2022
Proceedings

Lecture Notes in Computer Science 13414

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Mario Trapp • Francesca Saglietti •

Marc Spisländer • Friedemann Bitsch (Eds.)

Computer Safety,
Reliability, and Security
41st International Conference, SAFECOMP 2022
Munich, Germany, September 6–9, 2022
Proceedings

123

Editors
Mario Trapp
Fraunhofer IKS
Munich, Germany

Francesca Saglietti
University of Erlangen-Nuremberg
Erlangen, Germany

Marc Spisländer
University of Erlangen-Nuremberg
Erlangen, Germany

Friedemann Bitsch
Thales Deutschland GmbH
Ditzingen, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-14834-7 ISBN 978-3-031-14835-4 (eBook)
https://doi.org/10.1007/978-3-031-14835-4

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-6152-4121
https://doi.org/10.1007/978-3-031-14835-4

Preface

The SAFECOMP conference series was initiated in 1979 by EWICS TC7, the Tech-
nical Committee on Reliability, Safety and Security of the European Workshop on
Industrial Computer Systems, with the aim of offering a regular platform for knowledge
and technology transfer across academia, industry, research, and licensing institutions.

Since 1985, the International Conference on Safety, Reliability, and Security of
Computer-based Systems (SAFECOMP) has taken place on an annual basis, and this
year the 41st event took place in Munich under the local organization provided by the
Fraunhofer Institute of Cognitive Systems (IKS).

The reaction following our call for papers was gratifying both in terms of the
number and technical background of submissions: we received 93 full articles origi-
nating from 12 European and 10 extra-European countries, including a considerable
amount of cooperative effort across geographical and institutional boundaries.

Each article submitted was evaluated by at least three independent reviewers; the
decision on the conference program was jointly taken during the International Program
Committee meeting in April 2022. In total, 24 articles were finally accepted for pub-
lication within the present proceedings volume as well as for presentation in September
2022 during the conference.

We trust that the readers of this volume will appreciate the wide range of topics and
application domains addressed and – if not yet the case – may feel motivated to
consider joining the EWICS TC7 and SAFECOMP communities.

Our heartfelt thanks go to all who have contributed and will contribute to the success
of the SAFECOMP conferences – past, present, and future authors, reviewers, orga-
nizers, and attendees!

September 2022 Mario Trapp
Francesca Saglietti
Marc Spisländer

Friedemann Bitsch

Organization

EWICS TC7 Chair

Francesca Saglietti University of Erlangen-Nuremberg, Germany

Conference Chairs

Mario Trapp Fraunhofer Institute for Cognitive Systems, Germany
Francesca Saglietti University of Erlangen-Nuremberg, Germany

Publication Chairs

Marc Spisländer University of Erlangen-Nuremberg, Germany
Friedemann Bitsch Thales Deutschland GmbH, Germany

Industry Chair

Simon Fürst BMW, Germany

Local Organization Chair

Simon Burton Fraunhofer Institute for Cognitive Systems, Germany

Local Organization Committee

Martin Simon Fraunhofer Institute for Cognitive Systems, Germany
Eva von Wardenburg Fraunhofer Institute for Cognitive Systems, Germany

International Program Committee

Magnus Albert SICK AG, Germany
Uwe Becker Draeger Medical GmbH, Germany
Peter G. Bishop Adelard, UK
Friedemann Bitsch Thales Deutschland GmbH, Germany
Sandro Bologna Associazione Italiana Esperti Infrastrutture Critiche,

Italy
Andrea Bondavalli University of Florence, Italy
Jeroen Boydens Katholieke Universiteit Leuven, Belgium
Jens Braband Siemens AG, Germany
Simon Burton Fraunhofer Institute for Cognitive Systems, Germany
António Casimiro University of Lisbon, Portugal
Peter Daniel EWICS TC7, UK

Ewen Denney SGT/NASA Ames Research Center, USA
Felicita Di Giandomenico ISTI-CNR, Italy
Wolfgang Ehrenberger Fulda University of Applied Sciences, Germany
John Favaro Intecs, Italy
Francesco Flammini Linnaeus University, Sweden
Simon Fuerst BMW Group, Germany
Barbara Gallina Mälardalen University, Sweden
Janusz Górski Gdańsk University of Technology, Poland
Erwin Grosspietsch Euromicro, Germany
Lars Grunske Humboldt University of Berlin, Germany
Jérémie Guiochet LAAS-CNRS, France
Ibrahim Habli University of York, UK
Wolfgang Halang Fernuniversität Hagen, Germany
Maritta Heisel University of Duisburg-Essen, Germany
Andreas Heyl Robert Bosch GmbH, Germany
Yan Jia University of York, UK
Bernhard Kaiser Ansys Germany GmbH, Germany
Joost-Pieter Katoen RWTH Aachen University, Germany
Phil Koopman Carnegie Mellon University, USA
Núria Mata Fraunhofer Institute for Cognitive Systems, Germany
John McDermid University of York, UK
Frank Ortmeier Otto-von-Guericke University Magdeburg, Germany
Ganesh Pai KBR/NASA Ames Research Center, USA
Philippe Palanque ICS-IRIT, University of Toulouse, France
Yiannis Papadopoulos University of Hull, UK
Michael Paulitsch Intel, Austria
Holger Pfeifer Technical University of Munich, Germany
Peter Popov City, University of London, UK
Andrew Rae Griffith University, Australia
Matteo Rossi Politecnico di Milano, Italy
Martin Rothfelder Siemens AG, Germany
Francesca Saglietti University of Erlangen-Nuremberg, Germany
Behrooz Sangchoolie RISE Research Institutes of Sweden, Sweden
Daniel Schneider Fraunhofer Institute for Experimental

Software Engineering, Germany
Erwin Schoitsch AIT Austrian Institute of Technology, Austria
Christel Seguin Office National d’Etudes et Recherches Aérospatiales,

France
Oleg Sokolsky University of Pennsylvania, USA
Wilfried Steiner TTTech Computertechnik AG, Austria
Mark Sujan Human Factors Everywhere, UK
Kenji Taguchi CAV Technologies Co., Ltd., Japan
Stefano Tonetta Fondazione Bruno Kessler, Italy
Martin Törngren KTH Royal Institute of Technology, Sweden
Mario Trapp Fraunhofer Institute for Cognitive Systems, Germany
Elena Troubitsyna KTH Royal Institute of Technology, Sweden
Hélène Waeselynck LAAS-CNRS, France

viii Organization

Supporting Institutions

European Workshop on
Industrial Computer Systems

Technical Committee 7 on
Reliability, Safety and Security

Fraunhofer Institute for
Cognitive Systems

Chair of Software Engineering,
University of Erlangen-Nuremberg

Technical University of Munich

Thales Deutschland GmbH

Lecture Notes in Computer Science
(LNCS),
Springer Science + Business Media

Organization ix

Gesellschaft für Informatik (GI)

Informationstechnische Gesellschaft
(ITG) im VDE

Technical Group ENCRESS
in GI and ITG

Austrian Computer Society

Electronics and Software Based
Systems (ESBS) – Austria
(formerly Electronic Components and
Systems for European Leadership – Austria)

European Research Consortium for
Informatics and Mathematics

Verband Österreichischer
Software Industrie

x Organization

Contents

Safety Analysis and Certification

Analysing the Safety of Decision-Making in Autonomous Systems 3
Matt Osborne, Richard Hawkins, and John McDermid

BayesianSafety - An Open-Source Package for Causality-Guided,
Multi-model Safety Analysis . 17

Robert Maier and Jürgen Mottok

Safety Certification with the Open Source Microkernel-Based Operating
System L4Re . 31

Kai Lampka, Joel Thurlby, Adam Lackorzynski, and Marcus Hähnel

Data-Driven Inference of Fault Tree Models Exploiting Symmetry
and Modularization . 46

Lisandro Arturo Jimenez-Roa, Matthias Volk, and Mariëlle Stoelinga

Assurance Cases

ARACHNE: Automated Validation of Assurance Cases with Stochastic
Contract Networks . 65

Chanwook Oh, Nikhil Naik, Zamira Daw, Timothy E. Wang,
and Pierluigi Nuzzo

Automating Pattern Selection for Assurance Case Development
for Cyber-Physical Systems . 82

Shreyas Ramakrishna, Hyunjee Jin, Abhishek Dubey,
and Arun Ramamurthy

Generating Assurance Cases Using Workflowþ Models 97
Nicholas Annable, Thomas Chiang, Mark Lawford, Richard F. Paige,
and Alan Wassyng

Uncertainty Elicitation and Propagation in GSN Models
of Assurance Cases . 111

Yassir Idmessaoud, Didier Dubois, and Jérémie Guiochet

Fault Detection, Monitoring and Tolerance

Impact of Machine Learning on Safety Monitors. 129
Francesco Terrosi, Lorenzo Strigini, and Andrea Bondavalli

Comprehensive Analysis of Software-Based Fault Tolerance
with Arithmetic Coding for Performant Encoding of Integer Calculations 144

Marc Fischer, Oliver Riedel, and Armin Lechler

STPA-Driven Multilevel Runtime Monitoring for In-Time
Hazard Detection . 158

Smitha Gautham, Georgios Bakirtzis, Alexander Will,
Athira Varma Jayakumar, and Carl R. Elks

Security and Safety

Proposal of Cybersecurity and Safety Co-engineering Approaches
on Cyber-Physical Systems . 175

Pierre-Marie Bajan, Martin Boyer, Anouk Dubois, Jérôme Letailleur,
Kevin Mantissa, Jeremy Sobieraj, and Mohamed Tlig

On the Feasibility and Performance of Secure OPC UA Communication
with IIoT Devices . 189

Florian Kohnhäuser, Nicolas Coppik, Francisco Mendoza,
and Ankita Kumari

Fault Injection

SAILFAIL: Model-Derived Simulation-Assisted ISA-Level
Fault-Injection Platforms . 207

Christian Dietrich, Malte Bargholz, Yannick Loeck, Marcel Budoj,
Luca Nedaskowskij, and Daniel Lohmann

Quality of Fault Injection Strategies on Hardware Accelerator. 222
Iban Guinebert, Andres Barrilado, Kevin Delmas, Franck Galtié,
and Claire Pagetti

Assessment of the Impact of U-space Faulty Conditions on Drones
Conflict Rate . 237

Anamta Khan, Carlos A. Chuquitarco Jiménez, Morcillo-Pallarés Pablo,
Naghmeh Ivaki, Juan Vicente Balbastre Tejedor, and Henrique Madeira

ACTOR: Accelerating Fault Injection Campaigns Using Timeout Detection
Based on Autocorrelation . 252

Tim-Marek Thomas, Christian Dietrich, Oskar Pusz,
and Daniel Lohmann

xii Contents

Object Detection and Perception

Formally Compensating Performance Limitations for Imprecise
2D Object Detection . 269

Tobias Schuster, Emmanouil Seferis, Simon Burton,
and Chih-Hong Cheng

Architectural Patterns for Handling Runtime Uncertainty of Data-Driven
Models in Safety-Critical Perception . 284

Janek Groß, Rasmus Adler, Michael Kläs, Jan Reich, Lisa Jöckel,
and Roman Gansch

Hardware Faults that Matter: Understanding and Estimating the Safety
Impact of Hardware Faults on Object Detection DNNs 298

Syed Qutub, Florian Geissler, Yang Peng, Ralf Gräfe,
Michael Paulitsch, Gereon Hinz, and Alois Knoll

Application of STPA for the Elicitation of Safety Requirements
for a Machine Learning-Based Perception Component in Automotive 319

Esra Acar Celik, Carmen Cârlan, Asim Abdulkhaleq, Fridolin Bauer,
Martin Schels, and Henrik J. Putzer

Testing

Exploring a Maximal Number of Relevant Obstacles for Testing UAVs. 335
Tabea Schmidt, Florian Hauer, and Alexander Pretschner

Data-Driven Assessment of Parameterized Scenarios
for Autonomous Vehicles. 350

Nicola Kolb, Florian Hauer, Mojdeh Golagha,
and Alexander Pretschner

Optimising the Reliability that Can Be Claimed for a Software-Based
System Based on Failure-Free Tests of Its Components 365

Peter Bishop and Andrey Povyakalo

Author Index . 379

Contents xiii

Safety Analysis and Certification

Analysing the Safety of Decision-Making
in Autonomous Systems

Matt Osborne(B) , Richard Hawkins , and John McDermid

Assuring Autonomy International Programme, Department of Computer Science,
University of York, Deramore Lane, York YO10 5GH, UK

{matthew.osborne,richard.hawkins,john.mcdermid}@york.ac.uk

Abstract. We characterise an autonomous system as one that has the
capability to take decisions independently from human control. This
independent and autonomous decision making could give rise to new
hazards or hazard causes not present in an equivalent human-controlled
system, e.g. through lack of human real-world understanding. Despite
the increased adoption of autonomous systems there has been a dearth of
research in the area of safety analysis and assurance of decision-making
for autonomous systems. This paper is intended to be a first step to
fill this gap. We compare and contrast the differing causal models of
autonomous and non-autonomous systems, and build on existing safety
engineering techniques in order to define a process (Decision Safety Anal-
ysis) for the analysis of autonomous decision-making. We show, using a
real-world example, how this process supports the development of safety
requirements to mitigate hazardous scenarios.

Keywords: Decision-making · Autonomous systems · Safety analysis

1 Introduction

As the use of autonomous systems (AS) for safety-related tasks continues to
increase, safety-related decision-making has consequently started to transfer
from the human to the AS. There is a clear and pressing need to assure the
safety of (the AS making) those decisions. There are well established safety
analysis approaches that have been shown to be effective in assuring the safety
of traditional systems. In this paper we investigate how autonomous decision-
making challenges the use of these existing approaches [1]. We identify a lack of
understanding of how these approaches may be applied effectively to autonomous
decision-making. For example, there are existing techniques for the analysis of
human error and erroneous human decision-making but it is not clear that these
could be applied to decision-making by AS. We therefore propose a process for
analysing autonomous decision-making (Decision Safety Analysis (DSA)) that
addresses these limitations.

This work is funded by the Assuring Autonomy International Programme https://
www.york.ac.uk/assuring-autonomy.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Trapp et al. (Eds.): SAFECOMP 2022, LNCS 13414, pp. 3–16, 2022.
https://doi.org/10.1007/978-3-031-14835-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14835-4_1&domain=pdf
http://orcid.org/0000-0002-9941-4531
http://orcid.org/0000-0001-7347-3413
http://orcid.org/0000-0003-4745-4272
https://www.york.ac.uk/assuring-autonomy
https://www.york.ac.uk/assuring-autonomy
https://doi.org/10.1007/978-3-031-14835-4_1

4 M. Osborne et al.

This paper makes the following contributions:

1. We provide a process for analysing the safety of decisions made by an AS
2. We show how the process can be used to specifically focus further, efficient

safety analyses of the AS
3. We demonstrate how the outcomes of the process can help to elicit safety

requirements in mitigation of unsafe decisions that could be made by an AS.

We present the background and discuss the problem space in Sect. 2 before
presenting our proposed DSA approach in Sect. 3. We present an evaluation of
the process in Sect. 4, before describing the results, wider applications, and future
work in Sect. 5.

2 Background

AS can be characterised as systems that have the capability to take decisions
free from human control. From a safety perspective it is therefore the ability of
an AS to make safe decisions that is of primary concern. It is crucial where the
actions of an AS may lead to hazardous events, that such decisions are analysed
for their safety impact and sufficient mitigations, or barriers, put in place.

The decision-making of an AS could give rise to new causal/failure paths
that would not be present in an equivalent, human-controlled system (such as
an autonomous robot operating in a typical office environment being ‘unaware’
of the dangers presented by blind corners, or water on a floor). Alternatively,
autonomous decision-making could bring new causes to existing hazards (for
example an office robot failing to detect a door that is comprised of transparent
material). Figure 1 shows a representation of an accident model for a system.
The system is represented as an agent that must:

– Sense the environment in which it operates using exteroceptive sensors
– Understand the information provided from the sensors (and other informa-

tion) in order to create a model of the environment
– Decide how the system should respond based on its environment model
– Act in order to implement the decision made.

This is a continuous process for the system as it responds to changes in the
environment by updating its understanding in order to make new decisions. For
the case represented by the grey boxes at the top of Fig. 1, both the understand-
ing and deciding aspects are dealt with by a human who forms a mental model
of the environment from the information presented by the sensors and then,
based on that mental model, decides on the best option to ensure the system
meets its operational objectives in a sufficiently safe manner. Figure 1 illustrates
that some of the actions the human may choose could result in an accident.
The system would be designed with a combination of human and system checks
that are intended to prevent failures resulting in accident outcomes. These are
represented in Fig. 1 as barriers at multiple points in the model.

Analysing the Safety of Decision-Making in Autonomous Systems 5

Fig. 1. A causal model of accidents for different types of system

For a traditional software-controlled system, as shown in Fig. 1, information
is processed by the system (the unshaded boxes) and decisions either made by the
human, or suggested by the system, with human oversight. The decisions made
by the software are in fact pre-determined rules which have already been hard-
coded into the design by a human. Analysis and assurance of safe decisions is
primarily a human factors issue for such traditional systems - through analysis
of human behaviour and mitigation through human factors measures such as
procedures, training and supervision (although it does depend on the veracity
of information provided by the system).

Figure 1 shows a similar causal model for an AS, represented with dark boxes.
In this case, only the bottom line of the understand and decide elements are rele-
vant. Here the system has primary responsibility for understanding the environ-
ment, creating an accurate model, and making safe decisions. A key difference
here, as well as the removal of human over-sight, is the fact that the decisions
are not hard-coded at design time as they were for traditional software systems
[2], rather the system is given autonomy to determine the best action, given its
understanding of the environment. Although the level of autonomy given to an
AS can vary, we focus here on the case where there is no human oversight. From
a safety perspective this represents a significant challenge for two important
reasons.

Firstly, for traditional systems, humans have a particularly important role in
dealing with unanticipated or unusual situations that the system may encounter.
A human operator is able to use their contextual knowledge and general intelli-
gence to react safely to unexpected occurrences. This innate ability to generalise
often plays a crucial role in ensuring safe decisions are taken. Although machines
may present a high level of artificial intelligence, this intelligence is typically very

6 M. Osborne et al.

narrow in nature [15], meaning that they can perform well for very specific tasks,
but their ability to generalise to unanticipated situations is limited. From a safety
perspective this potentially opens up a large new set of hazard causes.

Secondly, safe decision-making can no longer be treated as a human factors
issue. Once the human is removed, it becomes a purely technical issue. This
requires that the safety of decision-making be brought more explicitly into the
system safety engineering process in a manner that it never was previously.
In recent decades there has been extensive research on evaluating the process
of human decision-making (such as [10–12], and [20]) and work assessing the
human-robot collaborative space (such as [14] and [6]), however these do not
help to address the challenge of autonomous decision-making, per se.

The focus of this paper is on addressing this challenge by developing an app-
roach for the safety analysis of the decision-making in AS. This analysis seeks
to understand the way in which hazards and accidents may arise from deci-
sions made by an AS, and to derive safety requirements in mitigation. Whilst
autonomous systems that are designed to operate within a controlled and con-
trollable environment (such as automated passenger railways) can reasonably
rely on ‘classical’ safety engineering techniques, a different approach is required
for assuring the safety of decision-making by AS when its operating environment
is more complex.

Although a lot of work has considered the implementation and verification of
AS decision-making, there is an assumption that what constitutes safe behaviour
is known (examples include [19] and [16] but these are by no means exceptions),
we have found very little work on safety analysis and identification of mitigations
for such systems. This paper begins to address that gap.

3 A Decision Safety Analysis Process

Key to the safe operation of an AS is the establishment of a suitably-defined
Operational Domain Model (ODM) (often referred to in the automotive industry
as an Operational Design Domain (ODD) [13]). The ODM defines the scope of
operation within which the AS is to be shown to be acceptably safe. This will
include any assumptions made, the features of the operating environment (e.g.
people, road type and layout, weather conditions) which the AS is expected to
sense, understand, and potentially interact with prior to making decisions as
it carries out its tasks. If the ODM is insufficiently defined then the AS may
encounter scenarios during its operation that were not considered during the
development of the system, and which could therefore be unsafe and for which no
assurance is provided. It is crucial therefore that all relevant aspects, features and
interactions within and of the operational domain are defined - including those
non-mission interactions [8]. Despite the importance of a sufficiently defined
ODM, the assurance of an ODM is out of the scope of this paper.

Use cases can be created for each of the tasks which identify the elements
of the ODM which the AS must understand and with which it may interact.
Examination of these use cases reveals the occasions when key decisions must be

Analysing the Safety of Decision-Making in Autonomous Systems 7

made by an AS. These decisions must be modelled and analysed to determine the
nature of any hazardous scenario that may arise as a result of the AS decision.

We consider hazardous scenarios to be special cases of the Operating Sce-
narios for the AS, which are identified as those which could result in an unsafe
outcome. ‘Scenarios’ describe the combination of the AS Operating Scenario and
the relevant environment variables. Potentially hazardous scenarios for an AS
arise due to decisions taken which are unsafe in a given environmental state
when performing a particular operating scenario (the same decisions might be
safe in other circumstances). Hazardous scenarios for the AS can therefore be
described using the general form:

<AS operating scenario><relevant environment variables>AND
<decision>, where:

– An AS Operating Scenario describes what task(s) the AS is undertaking
– A Relevant Environment Variable is one or more features of the environment

relevant to the decision point
– The Decision is the selected course of action as a result of the scenario and

relevant environment variables.

As an example, for an autonomous passenger shuttle undertaking the task of
navigating a (UK) roundabout, we can identify a decision point for whether the
shuttle should enter the roundabout. For this case, an example of a ‘relevant’
environment variable would be a cyclist on the roundabout to the right of the
AS. A pedestrian on the footpath 20 m behind the AS would not be considered
relevant as they will not influence the decision taken by the AS. Other variables
could concern the road state, or weather conditions at the time a decision is
required to be made.

Decisions taken by the AS can only be in relation to variables that the system
can control, i.e. speed and/or direction - as the environmental variables are
outside of the control of the AS. As such, the options for the passenger shuttle
at this ‘decision point’ are:

1. Enter the roundabout (at variations in speed)
2. Stop and wait.

The approach we present in this paper can be used to identify hazardous sce-
narios by considering the real world state in combination with the belief state of the
AS, and each of the options at the decision point, e.g. the 2 options for the shuttle
identified above. This analysis would thus identify hazardous scenarios such as:

– <the passenger shuttle is approaching a roundabout><with a cyclist on the
roundabout to the vehicle’s right> AND <the passenger shuttle enters the
roundabout> or,

– <the passenger shuttle is approaching a roundabout><with no cyclist
present> AND <the passenger shuttle stops and waits>.

Whilst the first case presents an obvious risk, the second case may not always
be safe, as should the AS decide to brake rapidly and unexpectedly, a hazardous
outcome may be realised in the form of a rear-end collision.

8 M. Osborne et al.

3.1 The Decision Safety Analysis Process

Before we discuss the DSA process in detail, we must first consider what we
mean by ‘decision-making’ in AS. The nature of the decisions made by AS can
vary enormously depending on the type of system and the application domain.
For example:

– An autonomous cancer-screening system decides on the appropriate patient
referral based upon information from scans and other medical data

– An autonomous vehicle decides on a safe course of action if it detects an object
in its path. The decision must take account of multiple other environmental
variables, such as the presence of other road users, and weather conditions.

For the DSA Process it is important to distinguish between what is actually
the decisions of interest for the safety analysis and what is part of the under-
standing task. This distinction can be highlighted in the second example above,
which can be split into two parts:

– Understand - is there an object in the path of the vehicle?
– Decide - what am I going to do about it?

For AS the complexity of the operating environment can have a much greater
impact on safe behaviour than for traditional systems, as this increases the
chance of unanticipated and unusual events (sometimes referred to as ‘edge
cases’). This can be a particular challenge since AS typically operate in highly
complex environments that often cannot be fully specified at design time [3].
Whilst dealing with complex environments is not limited to AS, traditional sys-
tems operating in complex environments place a lot of reliance on the human
ability to deal with any unanticipated events. With an AS we cannot rely on a
human to ensure a safe state is maintained, and must rely on the AS to respond
safely under all situations within the entire operating domain. This requires that
the analysis incorporates consideration of the operating environment in a more
systematic and explicit manner than is currently the case.

Guiochet advocates the use of Use Cases and Sequence Diagrams (and then
State Charts as required) as the models for undertaking HAZOP-UML analysis
[7]. However, we have found that these do not make good models for analysing AS
decisions as they do not make the decisions explicit, nor do they lend themselves
to methodical analysis with defined start/finish points. Instead our approach
uses Activity Diagrams for each use case (as shown in Fig. 3 for the example of
an autonomous robot) with the following explicit information included:

– Decision points (annotated ‘DP’ within the diamonds) identified from the
Use Cases and ODM. These represent the instances where a decision must be
made by an AS due to a required interaction with the environment.

– Options associated with each decision point (represented as circles). These
represent the options that an AS could select for each decision point.

– Understanding points in the use case represent the points at which the AS
requires information about a particular relevant environment variable (non
‘DP’ diamonds).

Analysing the Safety of Decision-Making in Autonomous Systems 9

In addition, for each Activity Diagram it is important to explicitly model all
relevant assumptions and preconditions as these must be considered as part of
the analysis.

It is important that the model is a complete representation of the operat-
ing scenario, particularly that the decision and understanding points have been
adequately elicited. We can gain confidence in this through utilising an explicit
domain model, but further work is required, and research such as that presented
in [17] has started to address the completeness of ODMs via modelling and
simulations, but further work is required.

Having established the Activity Diagram(s) for the system, we then analyse
that model to determine hazardous scenarios, i.e. the way in which the deci-
sion could lead to selecting an option that is unsafe given the relevant environ-
ment variables. As for many similar safety analysis tasks, we propose the use of
deviation-based analysis of those decision points in order to identify plausible
unsafe behaviours. We considered a number of existing deviation-based tech-
niques that have been applied to software-based systems and could be adapted to
decision analysis such as FFA/FHA [5], STPA [9], and HAZOP [4]. In particular
we considered HAZOP-UML [7] which was developed as a method for analysing
UML models of robot systems. In general, the use of a HAZOP-based approach
does seem reasonable, yet it does not support the analysis of the decision models
we propose, nor explicitly consider the impact of the operating domain as part
of the analysis. In addition the HAZOP-UML approach is exhaustive but unfo-
cused, and will therefore quickly lead to a state explosion requiring substantial
analysis effort without necessarily revealing the safety issues of most concern.

We have therefore developed our DSA approach to ensure the analysis is
driven by consideration of the identified decision points to establish potentially
hazardous deviations. As well as identifying hazardous scenarios associated with
decision points, our process also provides the focus for further, more detailed
analysis using, for example, HAZOP-UML. Our process is summarised in Fig. 2
and is described below. A more detailed description is provided at [18].

STEP 1. The DSA requires the identification of the relevant environment vari-
ables pertinent to the scenario under analysis. These variables are identified
through recourse to the ODM, as discussed earlier. One potential approach would
be to use [8], but the decision model we present does not presume any particular
method.

STEP 2. Decision Points are identified by considering the decisions required to
be made as a result of the interactions between the AS and the environment.
Once the decision point is identified, the options available to the AS are enu-
merated through considerations of the system variables, as discussed previously.

In the example at Table 1 in Sect. 3.2, as the AS can only amend system
variables it has control over (speed and/or direction), we defined 4 options in
this case:

1. Continue on the current path at current speed
2. Continue on the current path at reduced speed

10 M. Osborne et al.

Fig. 2. The decision point analysis process

3. Take and alternative route at current speed
4. Stop and wait.

It is now possible to create an Activity Diagram that includes Understanding
Points identified in Step 1 and Decision Points identified in Step 2. An extract
of an Activity Diagram for an example system is provided at Fig. 3.

STEP 3. The potentially hazardous scenarios must be determined (represented
in the 1st column of Table 1). This is done by firstly considering the possible
options defined at Step 2 in combination with both the real world state, and the
system belief state at the point at which that decision is made. Real world and
system belief states are often represented as Booleans. In the example we give
in Sect. 3.2, the state of ‘True’ for the real world state means a blind corner is
present, and a state of ‘True’ for the system belief means that the AS “knows”
this. The potentially hazardous scenarios will also consider false negatives (i.e.
a real world state of ‘False’ and a system belief state of ‘True’).

For the extract in Table 1 in Sect. 3.2 we can see 14 of the scenarios which are
enumerated by considering the 4 options along with the real world, and system
belief states regarding the presence of a blind corner and a static object.

STEP 4. The outcome of each potentially hazardous scenarios enumerated in
Step 3 must be determined by considering the real world impact should that
scenario manifest. For any scenarios with hazardous outcomes, the hazardous
scenarios can be specified using the general form described in Sect. 3.

STEP 5. The process then focuses on mitigating hazardous outcomes. Such
mitigations could be in the form of design changes (e.g. adding a diverse sensor),
or through derived safety requirements. These mitigations can be levied against
the sense capability, detection capability, against the decision-making algorithm
itself or on supporting infrastructure, where appropriate.

Identifying effective mitigations requires further more detailed analysis. The
hazardous scenarios defined at Step 4 are used to identify the logic nodes of
interest in the Activity Diagram (such as Understanding points) against which
a targeted analysis such as HAZOP-UML can then be applied. The extract at
Fig. 3 shows, in red font, the logical nodes of interest to which the Targeted
HAZOP will be applied.

Analysing the Safety of Decision-Making in Autonomous Systems 11

The findings of the targeted HAZOP are used to elicit further safety require-
ments to mitigate potential causes of hazardous scenarios. This targeted app-
roach to undertaking the HAZOP is explained in full and illustrated on a mobile
robot at [18].

It is only because we have already assessed the possible outcomes using DSA
that the HAZOP can be targeted in this manner. It allows us to focus the analysis
on the logic points of interest that could contribute to an erroneous decision
being taken. This approach prevents the state explosion that manifests from
applying HAZOP guidewords against every logical node in an Activity Diagram
by allowing scenarios resulting in safe (if not always efficient) outcomes to be
removed from further analysis.

In the next section we present an example of applying our approach to robots
that are designed to be used for delivering small packages within one of our
University buildings [18].

3.2 Robot Delivery System Example

We are developing a number of small robots that are capable of delivering pack-
ages around a university building. Building occupants may request a robot to
come to them anywhere in the building and deliver a package to a desired desti-
nation. The building comprises 3 floors containing offices, laboratories of varying
size, meeting/conference facilities, and various comfort/rest areas. A large goods
lift in the centre of the building provides access to all floors, and a large shared
atrium houses the reception area for visitors. The building benefits from a build-
ing management system (BMS) that provides automation and control of climate,
lighting, doors, and the lift.

Through interacting with the BMS the robot is able to open/close doors and
use the lift to move around the building. A central server (Robot HQ) is used
to coordinate the allocation of tasks amongst the multiple robots that operate
in the building at any time, but all movement around the building is controlled
locally by each individual robot. In addition to the basic delivery and messenger
tasks, the robots must interact with human occupants and other robots within
the fabric of the building. The primary overall use case (01) for the robots is
‘Package Delivery’. We broke this down to the following, more detailed use cases:

02. Request robot
03. Load package
04. Travel to destination
05. Unload package.

Within use case 04 a number of exception cases were identified, including:

A. Dynamic object in path of robot
B. Static object in path of robot
C. Forbidden zone on planned path
D. Use Lift

12 M. Osborne et al.

E. Pass through doorway
F. Blind corner on route.

Within use case 04 a number of preconditions were also identified, including:

– Precondition1: Robot is available
– Precondition2: Sender and receiver are in accessible locations
– Precondition3: Robot battery charge is sufficient for task.

The identified use cases relates to 4 different actors:

– Sender
– Receiver
– Building Management System
– Robot HQ.

Fig. 3. An extract of the decision activity diagram for use case 04 - “travel to destina-
tion”

These, along with the elements of the operating environment defined in
the ODM, assumptions, normal flows, alternative flows, and safety require-
ments/invariants represent the primary interactions that the robots make.

We have used the DSA Process to analyse the system described above. As
described in Sect. 3.1 the first thing we require is a model of the decisions taken
by the delivery robots. Figure 3 shows an example decision activity diagram
for Use Case 04. Through consideration of the interactions of the robot with the
elements of the defined ODM, a number of scenarios were identified including the
robot approaching a blind corner. By blind corner we mean one the robot cannot
“see” around, and these might be permanent, e.g. due to walls, or temporary,
e.g. due to a bag being placed against the side of a desk blocking the normal line

Analysing the Safety of Decision-Making in Autonomous Systems 13

Table 1. Extract of a decision safety analysis table

Operational scenario: travel to destination

Environment variables: <Robot approaching blind corner><Static object in path>

Potentially
hazardous
scenarios

Real world
state

System
model belief

Option Outcome Safety
Reqmt

1 T T Continue on current
path at current speed

Hazardous - collision #1
#2
#3

2 Continue on current
path at reduced speed

Hazardous - though
severity may reduce

#2

3 Take an alternative
route at current speed

Correct decision #2
#3

4 Stop and wait Safe but inefficient

5 T F Continue on current
path at current speed

Hazardous #4

6 Continue on current
path at reduced speed

Hazardous - though
severity may reduce

#5

7 Take an alternative
route at current speed

Safe - but predicated
on erroneous
understanding

#3

8 Stop and wait Safe but inefficient

9 F T Continue on current
path at current speed

Safe - but predicated
on bug in path
planning

#6

10 Continue on current
path at reduced speed

Safe - but predicated
on bug in path
planning

#6

11 Take alternative route
at current speed

Safe - but predicated
on bug in path
planning

#6

12 Stop and wait Potentially unsafe
(sudden stop)

#6

13 F F Continue on current
path at current speed

Correct decision

14 Continue on current
path at reduced speed

Safe - but predicated
on bug in path
planning

Safety requirements

1 The robot shall take into account blind corners when route planning

2 The robot shall reduce its speed to 0.25 m per second when approaching a blind corner

3 The robot shall provide audio and visual alerts when approaching a blind corner

4 The Building Management System shall enforce robot speed reductions in areas of blind corners

5 The robot shall be aware of blind corners on its planned path

6 The robot shall not falsely detect the presence of blind corners

of sight for the robot’s optical sensors. Table 1 shows the results of the analysis of
this scenario, showing 14 identified scenarios and their potential outcomes. Note
that requirement #4 deals with permanent blind corners but will be unable to
deal with temporary problems caused by placing of bags, etc. Requirement #5
requires the robot to sense blockages that create temporary blind corners – for
example determining, using a depth camera, that it cannot “see” as far as normal
in the relevant direction at this location. This is therefore a requirement on the

14 M. Osborne et al.

understanding component of the system, which also requires information about
the layout of the building (from maps or the BMS) to detect temporary blind
corners and to inform the decision-making algorithm accordingly. Details such
as the above would be added as the safety requirements are allocated to the
system components and refined.

This analysis elicited a number of hazardous scenarios, for example:

<the robot is travelling to its destination><approaching a blind corner with
a static object in its intended path> AND <the robot continues at current
speed>.

In conjunction with a targeted HAZOP we were able to identify a number of
mitigations levied against both the robots and other actors (e.g. the BMS being
required to enforce robot speed reductions in areas including permanent blind
corners). The mitigations identified from the DSA can be seen in Table 1, and
mitigations from the targeted HAZOP can be found in full at [18].

4 Process Evaluation

We have so far evaluated our DSA process in two ways. Firstly, we assessed the
usability of the approach by applying it to a real-life case study. This showed
the process was able to successfully generate a set of safety requirements in
mitigation of identified hazardous scenarios. Secondly, we have evaluated the
efficiency of the process by also carrying out a full HAZOP-UML analysis, and
comparing the effort and outputs for both the DSA and HAZOP-UML.

When we applied our DSA process to the robots, we elicited 32 safety require-
ments, of which 3 were allocated to the BMS and the rest to the robots them-
selves. The process was simple to apply using the Activity Diagrams that had
been created for the robot tasks. In carrying out this evaluation it was noted,
however that well-defined use cases and a clearly structured and complete ODM
were essential to the efficacy of the process. For example, if the ODM is missing
any of the key elements of the operating environment, this would mean that
potentially critical interactions could be missed. The challenge of specifying use
cases and ODMs is widely reported ([13] for example) and requires further work
which is outside the scope of this paper.

It was also noted that for the requirements definition phase, it is often nec-
essary to specify constraints as part of the derived safety requirements. As is
always the case for complex systems and environments, defining these safety
constraints can be challenging. For example eliciting the required range, bear-
ing, and detectable distance of static and dynamic objects will be influenced by
the size, speed, and braking capability of the AS. Defining such constraints as
part of the safety requirements is something we intend to explore further, but is
out of scope for this paper.

We have described how our process enables further focused analysis of causes
of unsafe decisions through the use of a targeted HAZOP that enabled safe sce-
narios to be excluded from the analysis. This allows a complete analysis without

Analysing the Safety of Decision-Making in Autonomous Systems 15

the need for exhaustive state coverage. In order to test this, a full HAZOP-UML
was undertaken on the entire use case for our system (considering all logic nodes
in the activity diagrams). We found that this full HAZOP analysis was a very
time consuming activity due to the expected state explosion (generating 834
lines of analysis). Despite this, it did not identify any safety requirements to
be placed on the robots in addition to those elicited much more efficiently from
applying our process and subsequent targeted HAZOP. The full use cases, DSA
results, HAZOP, and safety requirements elicited in mitigation can all be found
at [18].

5 Discussion and Conclusions

This paper has made the following contributions. Firstly, we have demonstrated
a process for analysing the safety of AS decision-making. Secondly, we have
demonstrated how the process can be used to facilitate a targeted approach
to HAZOP, that avoids analysing safe (but perhaps inefficient) outcomes and
prevents the state explosion associated with applying guidewords to every log-
ical node of a use case. Thirdly, our approach enables the elicitation of safety
requirements in mitigation of hazardous decisions made by an AS.

We have, so far, only applied the DSA approach to a single robot system
in a controllable environment, and do not yet make an argument regarding the
generalisability of our approach. In order to check the wider applicability of the
approach we are applying the process to more complex, less controllable operat-
ing domains, including outdoor operation. This will also be further extended to
consider a multi-robot system, and concurrent and consecutive decision-making.
Our current case study considers robots that operate in an environment that
includes humans, but it has not yet been applied to systems involving robot-
human collaboration (where humans work together with the robots to fulfil
tasks). We therefore also plan to apply the process to a COBOT [6] system.

We anticipate carrying out additional applications of our approach in order
to further validate its efficacy and to demonstrate its wider applicability.

References

1. Safety and ethics of autonomous systems project overview. Technical report, Royal
Academy of Engineering (2020)

2. Adler, R., Feth, P., Schneider, D.: Safety engineering for autonomous vehicles. In:
2016 46th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks Workshop (DSN-W), pp. 200–205. IEEE (2016)

3. Burton, S., Habli, I., Lawton, T., McDermid, J., Morgan, P., Porter, Z.: Mind the
gaps: assuring the safety of autonomous systems from an engineering, ethical, and
legal perspective. Artif. Intell. 279, 103201 (2020)

4. International Electrotechnical Commission: IEC 61882 (2016)
5. Ericson, C.A., et al.: Hazard Analysis Techniques for System Safety. Wiley, Hobo-

ken (2015)

16 M. Osborne et al.

6. Gleirscher, M., Johnson, N., Karachristou, P., Calinescu, R., Law, J., Clark, J.:
Challenges in the safety-security co-assurance of collaborative industrial robots.
arXiv preprint arXiv:2007.11099 (2020)

7. Guiochet, J.: Hazard analysis of human-robot interactions with HAZOP-UML. Saf.
Sci. 84, 225–237 (2016)

8. Harper, C., Caleb-Solly, P.: Towards an ontological framework for environmental
survey hazard analysis of autonomous systems. In: SafeAI@ AAAI (2021)

9. Ishimatsu, T., Leveson, N.G., Thomas, J., Katahira, M., Miyamoto, Y., Nakao, H.:
Modeling and hazard analysis using STPA (2010)

10. Kahneman, D.: Thinking, Fast and Slow. Macmillan (2011)
11. Klein, G.A., Orasanu, J., Calderwood, R., Zsambok, C.E., et al.: Decision Making

in Action: Models and Methods. Ablex Norwood, New Jersey (1993)
12. Koehler, J.J.: The influence of prior beliefs on scientific judgments of evidence

quality. Organ. Behav. Hum. Decis. Process. 56(1), 28–55 (1993)
13. Koopman, P., Fratrik, F.: How many operational design domains, objects, and

events? In: SafeAI@AAAI (2019)
14. Lesage, B.M.J.R., Alexander, R.: SASSI: safety analysis using simulation-based

situation coverage for cobot systems. In: Proceedings of SafeComp 2021, York
(2021)

15. Marcus, G., Davis, E.: Rebooting AI: Building Artificial Intelligence We Can Trust.
Vintage (2019)

16. Medrano-Berumen, C., İlhan Akbaş, M.: Validation of decision-making in artificial
intelligence-based autonomous vehicles. J. Inf. Telecommun 5(1), 83–103 (2021)

17. Oberheid, H., Hasselberg, A., Söffker, D.: Know your options-analysing human
decision making in dynamic task environments with state space methods. Hum.
Centred Autom. 285–300 (2011)

18. Osborne, M.: ISA Robot Safety of Decision Making. https://www-users.cs.york.
ac.uk/mo705/isarobot.html

19. Stansbury, R.S., Agah, A.: A robot decision making framework using constraint
programming. Artif. Intell. Rev. 38(1), 67–83 (2012)

20. Walker, G., et al.: Modelling driver decision-making at railway level crossings using
the abstraction decomposition space. Cogn. Technol. Work 23(2), 225–237 (2021)

http://arxiv.org/abs/2007.11099
https://www-users.cs.york.ac.uk/mo705/isarobot.html
https://www-users.cs.york.ac.uk/mo705/isarobot.html

BayesianSafety - An Open-Source Package
for Causality-Guided, Multi-model Safety

Analysis

Robert Maier(B) and Jürgen Mottok

Regensburg University of Applied Sciences, 93049 Regensburg, Germany
{robert.maier,juergen.mottok}@oth-regensburg.de

Abstract. Development and verification of modern, dependable auto-
motive systems require appropriate modelling approaches. Classic auto-
motive safety is described by the normative regulations ISO 26262,
its relative ISO/PAS 21448, and their respective methodologies. In
recent publications, an emerging demand to combine environmental influ-
ences, machine learning, or reasoning under uncertainty with standard-
compliant analysis techniques can be noticed. Therefore, adapting estab-
lished methods like FTA and proper tool support is necessary. We argue
that Bayesian Networks (BNs) can be used as a central component to
address and merge these demands. In this paper, we present our Open-
Source Python package BayesianSafety. First, we review how BNs relate
to data-driven methods, model-to-model transformations, and causal rea-
soning. Together with FTA and ETA, these models form the core func-
tionality of our software. After describing currently implemented fea-
tures and possibilities of combining individual modelling approaches, we
provide an informal view of the tool’s architecture and of the resulting
software ecosystem. By comparing selected publicly available safety and
reliability analysis libraries, we outline that many relevant methodolo-
gies yield specialized implementations. Finally, we show that there is
a demand for a flexible, unifying analysis tool that allows researching
system safety by using multi-model and multi-domain approaches.

Keywords: Fault Tree Analysis · Event Tree Analysis · Bayesian
Networks · Causality · Package BayesianSafety

1 Introduction

Today’s view on Functional Safety (FS) and reliability was developed over
decades. Throughout this evolution, multiple techniques to manage different
aspects of system safety emerged. Modern standards like IEC 61508 or its auto-
motive relatives ISO 26262, ISO/PAS 26448, and UL 4600 encourage and sup-
port these modelling approaches. Consequently, methodologies like Fault Tree
Analysis (FTA), Event Tree Analysis (ETA), Failure Mode and Effects Anal-
ysis (FMEA), or Goal Structuring Notation (GSN) form the basis that allows
building complex, highly dependable [2] systems like autonomous driving cars.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Trapp et al. (Eds.): SAFECOMP 2022, LNCS 13414, pp. 17–30, 2022.
https://doi.org/10.1007/978-3-031-14835-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14835-4_2&domain=pdf
http://orcid.org/0000-0002-4196-3263
http://orcid.org/0000-0002-7727-2448
https://doi.org/10.1007/978-3-031-14835-4_2

18 R. Maier and J. Mottok

Practitioners and researchers working with these modelling approaches
demand appropriate tool support. Even though there are proprietary as well
as Open-Source solutions available, most of them are optimized to work with
one methodology only.

In recent years, researchers noted that system safety is a multi-aspect endeav-
our. Feth et al. [8] state that various of the above disciplines should be combined
to form a joint safety engineering process in the automotive context. Similarly,
Mosleh et al. [13] outline that different frameworks (here FTA, a modified ETA,
and BNs) can be merged on a conceptual level. This allows addressing many
requirements such as model maintainability and justifiability, incorporation of
uncertainty, or high fidelity while staying compatible with various standards [18].

In the autonomous driving domain, research questions of interest include
how reasoning under uncertainty, handling operational and environmental con-
ditions, or a combination of abstract influences from multiple domains can be
combined with ISO 26262 or ISO/PAS 21448. Modelling uncertainty is often
addressed by resorting to BNs [12]. Moreover, Bayesian-based graphical models
allow researching causality to answer questions like “what if” and “why” [15].
BNs are commonly used in conjunction with established, standard-compliant
methods (e.g. Hybrid Causal Logic (HCL) [13]) and for model-to-model trans-
formation [4,5,11].

Usually, the various FS and reliability methodologies have their own seman-
tics, modelling assumptions, or mathematical frameworks to calculate metrics of
safety evaluation like Average Probability of Failure on Demand or Probability of
Failure per Hour. Due to this, software supporting these various methodologies
differs drastically and renders a multi-method often a multi-tool approach. Addi-
tional features, like the incorporation of environmental aspects (e.g. adapting
FTA as required by HCL) or combining various frameworks (e.g. Bow-Tie mod-
els (BTs)) are typically not supported by commercial tools like AnsysR© medini
analyze1 or Open-Source packages like SCRAM 2. Nonetheless, these capabili-
ties are of high interest to researchers and practitioners alike. Ideally, software
supporting the outlined combination of methodologies should be easy to adapt
and modify, extensible, and foremost available for all.

The contribution of this paper and associated research is an Open-Source
Python package called BayesianSafety3, which can serve as a basic implemen-
tation to address the demands outlined above. Our aim is to provide a novel,
extensible software environment with a focus on harmonizing the combination
of various modelling approaches by using BNs.

First, we will cover the basics of BNs and how they can be used as a universal
model to transform established standard-compliant methodologies. We will do so
by addressing how our currently supported modelling approaches FTA and ETA
can be mapped to BNs as a mathematical core framework. By doing so, we gain
access to methods that can learn environmental models from data, combine them

1 https://www.ansys.com/.
2 https://github.com/rakhimov/scram.
3 https://github.com/othr-las3/bayesiansafety.

https://www.ansys.com/
https://github.com/rakhimov/scram
https://github.com/othr-las3/bayesiansafety

BayesianSafety: A Causality-Guided Safety Analysis Package 19

with transformed models, and allow causal reasoning as outlined by [15]. Next,
we give a brief overview of the resulting modelling possibilities by combining
simple models and the currently implemented features of BayesianSafety. Based
on requirements for a novel FS and reliability analysis software package, we
review and compare related work. We close this paper with a summary as well
as future research and implementation intentions.

2 Preliminaries

The following section highlights the key ideas behind our proposed software
package BayesianSafety.

2.1 Bayesian Networks

Probabilistic Graphical Models (PGMs) like BNs are often used as suitable
mathematical frameworks for reasoning under uncertainty [12]. BNs are directed
acyclic graphs that are able to convey assumptions on how variables interact.
They specify and represent a joint probability distribution and allow efficient
computation of probabilistic information. When connections between variables
are given a causal (i.e. cause and effect) interpretation, they can be used as
causal models to facilitate causal reasoning [15].

Given the assumption that variables are only directly influenced by their
Markovian parents pai (i.e. immediate predecessor nodes), the underlying joint
probability distribution P (X) can be factorized as a special case of the chain
rule of probability:

P (X) =
∏

i

P (xi|pai) (1)

A conditional probability distribution can be interpreted as a causal mecha-
nism mapping the influence of parent nodes to the distribution of the child node.
Causal models allow interventions (i.e. locally changing a causal mechanism) and
estimating how probability distributions would change. These mechanisms can
be used to model stochastic as well as deterministic relationships. This property
is exploited in model-to-model transformations.

2.2 Model-to-Model Transformations

Bobbio et al. [4] show that Fault Trees (FTs) can be mapped into BNs without loss
of expressiveness. The deterministic relationship between input nodes (e.g. basic
events) and a node of interest (e.g. gate) can be modelled by adjusting the respec-
tive conditional probability distributions (i.e. implementing a truth table). In con-
trast to FTs, a straightforward topological transformation of Event Trees (ETs) [3]
is usually not possible. Instead, the model’s structure is defined by some proper-
ties of the paths between an initiating event and associated consequences. Both
model transformations are reversible without any loss of information. A resulting

20 R. Maier and J. Mottok

topology, together with the conditional distributions associated with each node,
encode all required information of the original model in the resulting BN. To sup-
port reasoning under uncertainty, adapting formal methodologies like FMEA [11]
or GSN [14] is also researched by using model-to-model transformations.

Casting various modelling approaches into the same mathematical framework
allows merging them. In the case of BNs, this requires adjusting the causal
mechanisms of nodes that link transformed models. This is possible as long
as the modularity assumption (i.e. changing a local mechanism does not affect
others, e.g. parents of a node) holds. Consequently, environmental models can
be used to serve as input for standard-compliant approaches (e.g. rain and light
conditions as basic events in a FT [18]).

Figure 1 gives an informal example of how (mathematically) independent
frameworks can be transformed into BNs and combined to a single model. On
the left side of the figure, a FT is mapped into a BN according to [4]. In the
centre, an ET is transformed based on [3]. Combining FTs and ETs can be done
via BTs [10]. On the right side, a HCL model is built from the individual parts.
An environmental model with influences (Ei) is added and replaces two basic
events of the FT via the nodes E4 and E5. The top-level event of the transformed
FT is considered as initiating event of the ET with outcomes FE11a and FE11b.
FT, ET, and environmental influences together form an instantiation of the HCL
framework. Additionally, the conditional probability tables for the transformed
ET are given, showing the preservation of determinism after mapping.

Fig. 1. Informal example of how a FT and an ET can be transformed into a BN. On
the right side, both models are combined and extended by an environmental network,
forming an instantiation of the HCL framework.

2.3 Bridging the Issue of Multiple Domains

Due to the increasing complexity of technical systems (e.g. autonomous driv-
ing cars) FS and reliability analysis is non-trivial. Components of a system

BayesianSafety: A Causality-Guided Safety Analysis Package 21

can be broadly categorized into three groups: software, hardware, or artificial
intelligence-based. Depending on the individual category, different standards like
ISO 26262 or ISO/PAS 21448, or UL 4600 might apply. Each of these standards
encourages the use of different modelling approaches. As [8,16,18] among others
point out, a combination of these methods can be reasonable.

A problem that arises when trying to merge methodologies, is how to ade-
quately link them. Interactions between components as well as between model
elements are often treated as causal. As mentioned above, BNs can be utilized to
handle such relationships in the form of causal mechanisms and therefore qualify
as a framework for a joint multi-domain, multi-model system evaluation.

With respect to the increasing popularity of Machine Learning (ML) based
components, the issue of explainability emerges. This is due to black-box learning
methods (e.g. Neural Networks) and the data used for their training.

A trend called “causal revolution” started recently in the ML community. Its
core idea is to employ causal knowledge in the form of causal graphs to train
learning algorithms more efficiently and robustly [17]. This allows working with
white-box models (i.e. causal graphs). In the context of FS and reliability, they
can serve as input to standard-compliant methodologies like FTs and may be
used to verify parts of an ML algorithm.

Causal models can also be used to interpret the underlying data and encoded
relationships (i.e. correlation and causation) between variables [15]. Causal dis-
covery describes the approach to algorithmically learn causal models from data,
by estimating the topology and conditional probability distributions of the
graph [19]. This is especially valuable in light of data-driven safety assurance,
as it allows the processing of collected data as a source of causal knowledge
(i.e. as an environmental model). As a consequence, the modelling of environ-
mental, operational, or scenario-relevant influences can be decoupled in parts
from human experts. Therefore, causal models might serve as an objective way
to address parts of scenario-based testing approaches (e.g. evaluation of sensor
data or simulation results) as outlined in ISO/PAS 21448.

As mentioned in Sect. 1, each modelling approach typically builds on different
assumptions. This ties the calculation of relevant metrics to specialized math-
ematical constructs. For example, FTs are based on boolean logic and can be
used to calculate the likelihood of component failure (e.g. top-level event) given
influencing factors. Based on boolean algebra or via a Binary Decision Diagram
(BDD), risk worth or importance measures of a component can be derived. ETs
on the other hand model logical combinations of events that lead to different con-
sequences. Corresponding likelihoods are calculated as a product of branching
probabilities based on paths between an initiating event and a consequence.

These different paradigms yield tailored and highly customized software pack-
ages. Researching combinations of these methodologies or of potential environ-
mental influences leads to a multi-tool endeavour. Even though combining dif-
ferent domains is reasonable, to the best of our knowledge, currently, no Open-
Source tool supports it. Our contribution is intended to address this demand.

22 R. Maier and J. Mottok

3 Package BayesianSafety

In the following, we will describe our Python package BayesianSafety. The
descriptions given below refer to FTs as an example.

3.1 Models and Their Combinations

As described by [13] a suitable combination of methodologies can jointly address
various demands of system safety. Looking at Probabilistic Safety Assessments
(PSAs) the two main frameworks used are FTA and ETA. Both analysis meth-
ods can be combined and transformed into BNs and extended in different ways
(see Sect. 2). Due to this fact, they were chosen as the core functionality of
BayesianSafety. Description and exchange of classic PSA models are supported
by the Open-PSA initiative model exchange format [7]. Relevant combinations
of the above methodologies include:

– stand-alone “classic” FT or ET,
– ET and BN (environmental influences) (see e.g. [3]),
– FT and BN (environmental influences) or common causes (see e.g. [4]),
– FT and ET (BT, see [10]), or
– FT and ET and BN (environmental influences) (HCL, see e.g. [13,18]).

BayesianSafety was developed to allow specifying models by hand if no
description file can be provided. Listing 1.1 shows the code to set up the FT
model of Fig. 1. Probability nodes (i.e. basic events) have a name parameter,
can be given a static probability of failure, and are assumed to have two states:
working and failing. A flag can be set to indicate time dependency. The prob-
ability of failure is then treated as failure rate λ for a default time behaviour
of 1 − e(−λt). Logic gates (i.e. boolean gates) are given a name, a list of parent
nodes, and a logic type to connect these arbitrary inputs.

Listing 1.1. Example listing for defining a simple FT in BayesianSafety.

1 from bayesianfaulttree.FaultTreeProbNode import
FaultTreeProbNode as FTProb

2 from bayesianfaulttree.FaultTreeLogicNode import
FaultTreeLogicNode as FTLogic

3 from bayesianfaulttree.BayesianFaultTree import
BayesianFaultTree as BFT

4
5 B_1 = FTProb(’B_1’, 0.5e−3)

6 B_2 = FTProb(’B_2’, 1.6e−3)

7 B_3 = FTProb(’B_3’, 2.7e−3)

8 B_4 = FTProb(’B_4’, 3.8e−3)

9 B_5 = FTProb(’B_5’, 4.9e−3, is_time_dependent=True)

10
11 OR_1 = FTLogic(’OR_1’, [’B_1’, ’B_2’] , ’OR’)

BayesianSafety: A Causality-Guided Safety Analysis Package 23

12 AND = FTLogic(’AND’, [’OR_1’, ’B_3’], ’AND’)

13 OR_2 = FTLogic(’OR_2’, [’B_4’, ’B_5’], ’OR’)

14 TLE = FTLogic(’TLE’, [’AND’, ’OR_2’], ’OR’)

15
16 probability_nodes = [B_1, B_2, B_3, B_4, B_5]

17 logic_nodes = [OR_1, AND, OR_2, TLE]

18 model = BFT("Example", probability_nodes , logic_nodes)

FTs and ETs can be imported either as individual models or as a joint model
in case of a BT if a suitable Open-PSA file is available. An importer parses
the provided tree structures and preprocesses relevant information. Based on
the model type, a mapper is invoked. It instantiates a BN that serves as the
default internal model-class of BayesianSafety. A networkX DiGraph-object [9]
is used as a container for the graph representation of the BN topology. Mapping
all imported networks to a BN allows combining models and joint inference.
Listing 1.2 shows how a simple ET and FT can be imported.

Listing 1.2. Example listing for loading an ET and a FT from an Open-PSA file.

1 from bayesianeventtree.EventTreeImporter import
EventTreeImporter

2 from bayesianfaulttree.FaultTreeImporter import
FaultTreeImporter

3
4 bay_FT = FaultTreeImporter().load(’./Example.xml’)

5 bay_ET = EventTreeImporter().load(’./Example.xml’)

Working with Fault Trees. FTs can be used either as a quantitative or quali-
tative representation of a modelled system. Some basic metrics of interest include
minimal cut sets and different importance measures (e.g. Risk Reduction Worth,
Risk Achievement Worth, or Birnbaum importance). BayesianSafety supports
all of the above, including the ability to run a time simulation between a start
and end time. For a time-dependent evaluation, the respective time behaviour
of time-dependent nodes is evaluated at each time step and the resulting prob-
ability of failure is updated for each affected element in the BN. For each node
of the tree, the evolution of the probability of failure can be plotted or saved as
a figure. A FT can also be evaluated at a given mission time t.

All probability evaluations are done by inferring the BN (i.e. the transformed
model). It should be noted, that some method-specific results like nodes con-
tributing to a minimal cut set are currently calculated based on the original FT
structure (via the MOCUS algorithm) if equivalent methods using a BN are not
available.

A missing feature in most Open-Source packages is the ability to freely spec-
ify a custom time behaviour for basic events. The default assumption for an
underlying reliability function is usually to be exponential. This holds during
the system’s lifetime, but neglects for example end-of-life effects. BayesianSafety

24 R. Maier and J. Mottok

allows modelling time dependency for any probability node of a FT model by
specifying a custom function. Listing 1.3 gives a short example of how a full
network evaluation including the definition of a custom time behaviour can be
implemented.

Listing 1.3. Example listing for evaluating a FT where two nodes have a customized
time behaviour (i.e. sigmoid and cosine).

1 import numpy as np

2 def time_fn(time, kind="cos"):

3 if time <= 0:

4 return 0

5 sig = 1 − 1 / (np.exp(1.23e−4 ∗ time) + 1)

6 return np.cos(time) if kind == "cos" else sig

7
8 ft_model = ...

9 node_1 = ft_model.get_elem_by_name("target_node_1")

10 node_1.change_time_behaviour(time_fn, {"kind":"sigm"})

11 node_2 = ft_model.get_elem_by_name("target_node_2")

12 node_2.change_time_behaviour(time_fn)

13
14 ft_model.run_time_simulation(start_time=0, stop_time=1e5,

simulation_steps=50, plot_simulation=True)

Extension by Linking Environmental Models. Since FTs are internally
represented as BNs, combining them with environmental models can be done
straightforward. Boolean gates in a FT are interpreted as potential mounting
positions that can be extended by target nodes of one or multiple environmental
models. Additional mapping information needs to be provided to define links
between gates and external variables. In a resulting extended FT, environmental
influences are treated as new binary basic events, allowing any calculation of the
metrics mentioned above. Since environmental variables can have an arbitrary
number of states (e.g. weather with states rain, fog, and snow), one of them
needs to be selected and will be treated as “failing”. An associated probability
is then interpreted as a static probability of failure. Figure 2 shows the idea of
linking a FT with multiple environmental models.

Environmental influences may not only serve as basic events. Depending on
the modelled effects (e.g. occlusion of a camera lens due to precipitation), an
underlying assumption about the failure behaviour of a component (e.g. camera)
may change. In BayesianSafety this can be implemented by treating an environ-
mental node as a trigger and in response modifying an existing basic event based
on external influences. Consequently, a time-independent node can be given a
custom time behaviour. A modification changes the static probability of failure
or the default reliability function R(t) = e(−λt) of a node based on selected state
probabilities P (envi) of environmental nodes and predefined thresholds. Note

BayesianSafety: A Causality-Guided Safety Analysis Package 25

Fig. 2. A FT can be combined with multiple environmental models. Adequate mapping
information needs to be provided, specifying which gates will be extended. Selected
environmental nodes are treated as new basic events in a resulting extended FT.

that nodes independent of external influences can still be modified as described
above. The following alterations are currently supported:

Replacement: R(t) → P (env)
Addition: R(t) → ω0R(t) + ωenvP (env)
Weighting: R(t) → ω0R(t)

∏
i ωiP (envi)

Rate: R(t, λ) → R(t, λ�)
Parametric: R(t, λ) → R�(t, P (env)) as a special case of “Rate”
Functional: R(t, λ) → R�(t,X) where X is a set of parameters.

3.2 Model Inference

Typical metrics calculated in FTA and ETA represent prior probabilities. Pos-
terior distributions (e.g. P (X|Y,W)) can be calculated easily due to the use of
BNs as a mathematical core framework.

In BayesianSafety, inference is tied to a single, independent BN. Queries and
their results are only computed on that network instance. In combined models,
this leads to a problem for some evaluations due to the current implementa-
tion. Suppose we want to extend a FT by linking environmental influences as
described above. The resulting composite BN is a newly instantiated model, con-
taining copies of all nodes of the FT and new binary basic events based on the
specified environmental nodes. A problematic query of interest would be, how
an observed top-level event in the FT part affects the posterior probability for
an environmental node Weather (e.g. P (Weather|TLE = failure)). Even if
Weather is formally linked to the FT, a distributional update will only consider
the newly created basic event node Weathernew = state x in the composite
BN and not the original node in the environment network. Consequently, this
means that the environmental model will not be considered at all. If an update
is required, the joint model needs to be created accordingly.

26 R. Maier and J. Mottok

BayesianSafety is developed to support causal inference based on BNs. To
do this, routines for handling interventional (e.g. P (X|do(Y),W)) and counter-
factual (e.g. P (y′x′|x, y)) queries as described by [15] are available. For exam-
ple, interventional queries can be used to evaluate the effects of a forced event.
Imagine a redundant architecture consisting of two independent sub-systems.
P (X|do(sub1 = fail)) describes how actively disabling sub-system 1 influences
a component X and therefore partially evaluates the effectiveness of sub-system
2. In FTA, this relates to modelling the respective branches with a house event
which is set to true or false respectively.

Causal inference allows answering interventional questions like “What if com-
ponent X would fail” and counterfactuals like “Would rain have caused X to
fail, given we know it was sunny and X worked”. This may especially be relevant
for generating insights for environmental models by researching causal influence
among variables.

3.3 Technical Ecosystem

BayesianSafety is developed in Python 3.9+ and currently spans around 6500
lines of code with an average cyclomatic complexity of 4.76. Source code, includ-
ing examples treating FTA and ETA, can be found in our GitHub repository
under https://github.com/othr-las3/bayesiansafety.

Instead of implementing inference algorithms ourselves, we rely on two dif-
ferent computational back-ends, namely pgmpy [1] in version 0.1.17+ and pyA-
grum [6] in version 0.22.5+. Both provide a wide variety of approximate and
exact inference and structure learning algorithms, are actively developed, and are
established in the Open-Source PGM software community. They enable causal
inference and support other PGM families like Markov Networks.

A key feature of both packages is state-of-the-art causal discovery methods.
Consequently, this renders our package ready for an extension to provide an
end-to-end (i.e. data to insight) capability. Environmental models could then be
learned and combined with standard-compliant approaches to system safety, as
outlined throughout this paper. Relying on third-party back-ends allows focus-
ing on the implementation of required methodologies. BNs serve as generic con-
tainers to run all probability calculations on. As long as a modelling approach
can be cast into the formalisms of BNs, it is expected to be implementable in
BayesianSafety with minimal effort.

Parsed trees, as well as the underlying graph structure of a model, are inter-
nally represented as networkX DiGraph-objects [9]. NetworkX is one of the
richest libraries for managing graphs in Python and provides a vast amount of
graph algorithms. It allows plotting graphs, has export and import capabilities
to different graph exchange formats, and allows adding custom data to graph
elements. Figure 3 gives an informal overview of the ecosystem and the architec-
tural idea of BayesianSafety described above.

https://github.com/othr-las3/bayesiansafety

BayesianSafety: A Causality-Guided Safety Analysis Package 27

Fig. 3. During inference, BayesianSafety acts as a wrapper for back-end packages
pgmpy [1] and pyAgrum [6]. Graph representations are implemented as networkX
DiGraph-objects [9] and can be loaded from Open-PSA model exchange format files.
FS and reliability methodologies like FTA or ETA and their respective algorithms can
be implemented as custom modules building on BNs as a core framework.

4 Related Work

Zurheide et al. [20] recently developed a Python package called pyBNBowtie4 to
work with BTs mapped to BNs. They support the Open-PSA exchange format5
to provide models and cast them directly into a pgmpy BayesianNetwork -object.
Technically, they build on the model-to-model transformations described in [3,
4,10] but support only parts of the arc simplifications described by [3]. Features
like Minimal-Cutset calculation in FTs are not implemented.

Open-PSA and therefore treatment and evaluation of individual FTs and ETs
are also supported by the C++-based library SCRAM. The R package FaultTree6
focuses on FTA, partially builds on SCRAM, and adds a basic graphical user
interface. Both use BDDs for the calculation of gate probabilities and efficient
inference of large models.

JReliability7 is a Java-based package that also uses BDDs to model trees that
are connected via boolean functions. It supports calculating different reliability
metrics like Birnbaum importance, Risk Reduction Worth, or Mean-Time-To-
Failure, and allows the visualization of metrics and distributions over time.

meta4ics8 is another Java-based tool for generic AND/OR-connected graphs
and can be used to identify critical nodes by calculating a custom weighting
metric. SCRAM, JReliability, and FaultTree are highly optimized to work with
FTs and support additional boolean gate types other than AND/OR. All of these
tools lack the capability to support emerging demands as described in Sect. 1.

Most publicly available software packages for risk assessment and reliabil-
ity evaluation address FTA and ETA. They are typically monolithic, rendering
extension non-trivial. Due to various languages or visualization capabilities used,

4 https://github.com/zurheide/pybnbowtie.
5 https://open-psa.github.io/joomla1.5/index.php.html.
6 https://github.com/jto888/FaultTree/.
7 https://github.com/SDARG/jreliability.
8 https://github.com/mbarrere/meta4ics.

https://github.com/zurheide/pybnbowtie
https://open-psa.github.io/joomla1.5/index.php.html
https://github.com/jto888/FaultTree/
https://github.com/SDARG/jreliability
https://github.com/mbarrere/meta4ics

28 R. Maier and J. Mottok

they are mostly dependent on a specific platform. Adapting them to work with
other modelling approaches is not feasible. Based on the scope of this paper and
available related work, the following properties for a modern Open-Source FS
and reliability software can be derived:

Cross-platform. The used programming language and associated third-party
libraries for implementing algorithms should be independent of a computing
platform to address a wide range of hardware and users.

Exchangable. Different algorithmic libraries (back-ends) should be available
to access required features with minimal changes to the package code.

Exact. Implemented methodologies produce the same results as their classic
(e.g. BDD) implementations.

Extensible. Implementing custom functionalities should be possible with low
effort if they can be cast to a common mathematical framework (e.g. BNs).

Uncertainty. The central mathematical framework used should allow reasoning
under uncertainty and modelling of deterministic relationships.

Modular. Standard-compliant methodologies can be used stand-alone or com-
bined with other methods or environmental models.

Data oriented. ML learning approaches, as well as treatment of environmental
data, should be possible in the same tool.

Causal. Support of causal inference to facilitate causal reasoning.

The above Open-Source packages are not intended to incorporate environ-
mental influences. A combination of models as described throughout Sect. 2 is
not possible. They lack any support for causal inference, with the only exception
being pyBNBowtie due to it using pgmpy. Neither do they have the option to be
extended by data-driven approaches.

As generic, multi-purpose PGM libraries, pgmpy and pyAgrum support mod-
elling, learning, and inference of BNs and other of the above requirements.
Therefore, they qualify as candidates to bridge multiple domains at the cost
of implementing standard-compliant methodologies by hand.

In the light of the recent trend of incorporating uncertainty and the demand
to consider environmental influences (e.g. scenarios as suggested by ISO/PAS
21448) all of the above packages lack some functionality. As a consequence,
multi-methodology approaches as encouraged by [8,18] and others require the
use of multiple software tools. Our proposed package BayesianSafety is the first
to address all of the above requirements.

5 Conclusion

Bayesian Networks are an established framework to deal with uncertainty. In the
light of researching system safety, they have desirable properties like versatility,
comprehensibility, and support of causal reasoning. In recent years, multiple
model-to-model transformations from classic analysis methodologies into BNs
have been researched. Many of these publications state that addressing causal-
ity is feasible by using PGMs. Since BNs are agnostic to what they model,

BayesianSafety: A Causality-Guided Safety Analysis Package 29

dealing with environmental, socio-technical, or abstract influences, is possible.
This enables the combination of models with different scopes and formalisms.

In this paper, we outlined some emerging areas of interest in the FS and
reliability community (e.g. researching environmental influences and their effects
on reliability functions). Currently, no Open-Source software package is available
that satisfies desirable properties like the support of causal reasoning, the ability
to reason under uncertainty, or a combination of multi-domain models. To help
address this, we propose our Open-Source Python package BayesianSafety. To
the best of the authors knowledge, BayesianSafety is the first attempt to focus
on the above-listed requirements and is intended to fill the demand for a causal,
multi-domain, multi-model, analysis tool.

Our goal is to create a software environment, where common analysis meth-
ods can be treated together, by harmonizing the way each is processed mathe-
matically. Due to the early implementation stage, only essential functionality to
work with FTs, ETs, and environmental models is available. We plan on extend-
ing the provided capabilities as well as adding support to work with environ-
mental models based on data. We hope BayesianSafety can serve as a baseline
implementation for researching the combination of methodologies and encourage
causality-guided system safety.

Acknowledgment. The present paper is supported by Bayerisches Staatsministerium
für Wirtschaft, Landesentwicklung und Energie through the granting of the funding
project HolmeS3 (FKZ: DIK0173/03). We thank L. Grabinger and D. Urlhart for
valuable discussions.

References

1. Ankan, A., Panda, A.: pgmpy: probabilistic graphical models using Python. In:
Proceedings of the 14th Python in Science Conference (SCIPY 2015). Citeseer
(2015)

2. Avizienis, A., Laprie, J.C., Randell, B.: Fundamental concepts of dependability.
Technical report series. Department of Computing Science (2001)

3. Bearfield, G., Marsh, W.: Generalising event trees using Bayesian networks with a
case study of train derailment. In: Winther, R., Gran, B.A., Dahll, G. (eds.) SAFE-
COMP 2005. LNCS, vol. 3688, pp. 52–66. Springer, Heidelberg (2005). https://doi.
org/10.1007/11563228_5

4. Bobbio, A., Portinale, L., Minichino, M., Ciancamerla, E.: Improving the analysis
of dependable systems by mapping fault trees into Bayesian networks. Reliab. Eng.
Syst. Saf. 71(3), 249–260 (2001). https://doi.org/10.1016/S0951-8320(00)00077-6

5. Cai, B., Liu, Y., Liu, Z., Chang, Y., Jiang, L.: Bayesian Networks for Reliabil-
ity Engineering. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-
6516-4

6. Ducamp, G., Gonzales, C., Wuillemin, P.H.: aGrUM/pyAgrum: a toolbox to
build models and algorithms for Probabilistic Graphical Models in Python. In:
10th International Conference on Probabilistic Graphical Models. Proceedings of
Machine Learning Research, Skørping, Denmark, vol. 138, pp. 609–612, September
2020. https://hal.archives-ouvertes.fr/hal-03135721

https://doi.org/10.1007/11563228_5
https://doi.org/10.1007/11563228_5
https://doi.org/10.1016/S0951-8320(00)00077-6
https://doi.org/10.1007/978-981-13-6516-4
https://doi.org/10.1007/978-981-13-6516-4
https://hal.archives-ouvertes.fr/hal-03135721

30 R. Maier and J. Mottok

7. Epstein, S., Rauzy, A., Reinhart, F.: The open PSA initiative for next generation
probabilistic safety assessment. Kerntechnik 74, 101–105 (2009). https://doi.org/
10.3139/124.110020

8. Feth, P., et al.: Multi-aspect safety engineering for highly automated driving. In:
Gallina, B., Skavhaug, A., Bitsch, F. (eds.) SAFECOMP 2018. LNCS, vol. 11093,
pp. 59–72. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99130-6_5

9. Hagberg, A., Swart, P., Chult, D.S.: Exploring network structure, dynamics, and
function using NetworkX. Technical report, Los Alamos National Lab. (LANL),
Los Alamos, NM, United States (2008)

10. Khakzad, N., Khan, F., Amyotte, P.: Dynamic safety analysis of process systems by
mapping bow-tie into Bayesian network. Process Saf. Environ. Prot. 91(1), 46–53
(2013). https://doi.org/10.1016/j.psep.2012.01.005

11. Kirchhof, M., Haas, K., Kornas, T., Thiede, S., Hirz, M., Herrmann, C.: Root
cause analysis in lithium-ion battery production with FMEA-based large-scale
Bayesian network. arXiv:2006.03610 [stat], June 2020. https://doi.org/10.20944/
preprints202012.0312.v1

12. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques. Adaptive Computation and Machine Learning, MIT Press, Cambridge
(2009)

13. Mosleh, A., Dias, A., Eghbali, G., Fazen, K.: An integrated framework for iden-
tification, classification, and assessment of aviation systems hazards. In: Spitzer,
C., Schmocker, U., Dang, V.N. (eds.) Probabilistic Safety Assessment and Man-
agement, pp. 2384–2390. Springer, London (2004). https://doi.org/10.1007/978-0-
85729-410-4_383

14. Nešić, D., Nyberg, M., Gallina, B.: A probabilistic model of belief in safety cases.
Saf. Sci. 138, 105187 (2021). https://doi.org/10.1016/j.ssci.2021.105187

15. Pearl, J.: Causality: Models, Reasoning and Inference, 2nd edn. Cambridge Uni-
versity Press, Cambridge (2009)

16. Rudolph, A., Voget, S., Mottok, J.: A consistent safety case argumentation for
artificial intelligence in safety related automotive systems. In: ERTS 2018: 9th
European Congress on Embedded Real Time Software and Systems (ERTS 2018),
Toulouse, France, January 2018

17. Schölkopf, B., et al.: Toward causal representation learning. Proc. IEEE 109, 612–
634 (2021). http://arxiv.org/abs/2102.11107

18. Thomas, S., Groth, K.: Toward a hybrid causal framework for autonomous vehicle
safety analysis. Proc. Inst. Mech. Eng. Part O J. Risk Reliab. (2021). https://doi.
org/10.1177/1748006X211043310

19. Vowels, M.J., Camgöz, N.C., Bowden, R.: D’ya like DAGs? A survey on structure
learning and causal discovery. CoRR abs/2103.02582 (2021). https://arxiv.org/
abs/2103.02582

20. Zurheide, F.T., Hermann, E., Lampesberger, H.: pyBNBowTie: Python library for
bow-tie analysis based on Bayesian networks. Procedia Comput. Sci. 180, 344–
351 (2021). https://doi.org/10.1016/j.procs.2021.01.172. Proceedings of the 2nd
International Conference on Industry 4.0 and Smart Manufacturing (ISM 2020)

https://doi.org/10.3139/124.110020
https://doi.org/10.3139/124.110020
https://doi.org/10.1007/978-3-319-99130-6_5
https://doi.org/10.1016/j.psep.2012.01.005
http://arxiv.org/abs/2006.03610
https://doi.org/10.20944/preprints202012.0312.v1
https://doi.org/10.20944/preprints202012.0312.v1
https://doi.org/10.1007/978-0-85729-410-4_383
https://doi.org/10.1007/978-0-85729-410-4_383
https://doi.org/10.1016/j.ssci.2021.105187
http://arxiv.org/abs/2102.11107
https://doi.org/10.1177/1748006X211043310
https://doi.org/10.1177/1748006X211043310
https://arxiv.org/abs/2103.02582
https://arxiv.org/abs/2103.02582
https://doi.org/10.1016/j.procs.2021.01.172

Safety Certification with the Open Source
Microkernel-Based Operating System

L4Re

Kai Lampka1,2, Joel Thurlby1, Adam Lackorzynski3,4(B) ,
and Marcus Hähnel3

1 Elektrobit Automotive GmbH, 91058 Erlangen, Germany
{kai.lampka,joel.thurlby}@elektrobit.com

2 TU Kaiserslautern, 67663 Kaiserslautern, Germany
lampka@cs.uni-kl.de

3 Kernkonzept GmbH, 01097 Dresden, Germany
{adam.lackorzynski,marcus.haehnel}@kernkonzept.com

4 TU Dresden, 01062 Dresden, Germany
adam.lackorzynski@tu-dresden.de

http://www.elektrobit.com, http://www.uni-kl.de/,

http://www.kernkonzept.com, http://www.tu-dresden.de

Abstract. We report on recent efforts to certify the open-source oper-
ating system framework L4Re [2] and its commercial variant EB corbos
Hypervisor [1]. Certification is carried out in adherence to ISO 26262
and targets an Automotive Safety Integrity Level B (ASIL-B). Unlike
existing work on OS verification [3], the presented work discusses how a
complete software system can be taken to certification. The paper iden-
tifies challenges arising from the re-use of open-source legacy software
in a safety context and provides strategies for its certification without
re-implementing major parts of the system. To achieve this, the paper
introduces a new safety architecture based on the L4 style of “system-
call forwarding”, hierarchical memory management and configuration-
based setup of inter-process communication relations. Collectively, the
proposed innovations isolate safety applications from hidden errors in
components not developed in adherence to the ISO 26262, in this case
the feature-rich software stack implementing the L4Re userland.

Keywords: Automotive safety certification · L4Re-based hypervisor ·
Microkernel · ISO 26262 · Open source software

1 Introduction

Motivation. Software development according to the ISO 26262 entails, among
other things, the application of relevant best practices for the entire V-model of
software development based on the software’s assigned safety level. For example,
with the second lowest Automotive Safety Integrity Level, ASIL-B, the ISO

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Trapp et al. (Eds.): SAFECOMP 2022, LNCS 13414, pp. 31–45, 2022.
https://doi.org/10.1007/978-3-031-14835-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14835-4_3&domain=pdf
http://orcid.org/0000-0003-4679-1728
https://doi.org/10.1007/978-3-031-14835-4_3

32 K. Lampka et al.

26262 highly recommends that not only exhaustive line coverage is provided,
but branch coverage and static code analysis as well.

For pre-existing software, the ISO 26262 standard provides software com-
ponent qualification methods as an alternative to unwarranted re-development
according to the safety standard. In this case, the safety standard recognizes
that pre-existing software may likely not have been developed with the same
methods recommended for safety-related components. To ensure that the safety
assurance is sufficient, the standard prescribes a range of measures to verify that
the resulting quality of the software components is sufficient for their use in a
safety context. Software qualification for pre-existing software can be excluded
when it can be shown that the software will not interfere with software contribut-
ing to the safety function. As safety-related development and safety qualification
can easily become insurmountably expensive, the safety functionality is reduced
to a bare minimum. In turn, mechanisms and justification must be provided
addressing why (hidden) error propagation from any unqualified component to
a safety component has been excluded. One way to do this is to ensure that
interference is strictly ruled out by the design and configuration, in hardware
and software. This is the method of choice followed in this work.

Contribution. This paper demonstrates how a complete software stack based
on an open source microkernel can be certified to the ISO 26262, without quali-
fying a majority of its pre-existing software according to the ISO 26262 standard
or even re-implementing it.

As an example we take the L4Re microkernel system as used in the com-
mercial product EB corbos Hypervisor [1] to certification. The presented app-
roach leverages IPC forwarding, static memory partitioning between safety and
quality-managed (QM) applications1 and restriction of IPC in a way that avoids
denial-of-service scenarios directed from QM applications towards safety ones.
In this way, we design a safety partition with minimal impact in L4Re and derive
arguments why software components executing in the safety partition are not
experiencing any (hidden) error propagation from the feature-rich QM software
components L4Re is commonly made of, see [9] for an overview. This differs from
traditional strategies which commonly rely on exhaustive monitoring of relevant
safety features and therefore may suffer from a performance penalty.

Related Work. L4Re is an L4-based open-source microkernel system frame-
work [2], that is composed of the L4Re microkernel and a set of user space com-
ponents and libraries, which can be used for building systems with real-time,
security, safety and virtualization requirements.

The first L4 kernel was developed by Jochen Liedtke in 1994 [10], in assem-
bly language. TU Dresden developed a kernel in C++ that was API compatible.
Later on, the L4 API evolved and different kernels were ported to other architec-
tures, such as Arm, Alpha and MIPS. The development of TU Dresden evolved
into today’s L4Re, which has been spun out to the company Kernkonzept.
1 We call software not meeting ISO 26262 requirements quality-managed (QM).

Safety Certification with L4Re 33

An important milestone in the domain of secure systems has been the formal
verification of the seL4 microkernel [7]. seL4 became the world’s first OS kernel
with a machine-checked functional correctness proof at the source-code level. It
showed that a functionally correct OS kernel is possible, something that until
then had been considered infeasible [6]. The verification work around seL4 and its
applicability to security properties shows that microkernels provide an important
building block in building secure and safe systems.

Unlike the vast body of work related to seL4, the presented work extends
beyond the microkernel and drivers. We show how a complete software stack
based on the L4-microkernel idea, including a fully fledged userland, can be taken
to certification and that the deployment of highly complex software applications
of different safety levels executing on a modern multicore processor is possible.

Proprietary systems have been following the microkernel-based principles for
similar reasons and have been certified for a wide range of use-cases.

Organization. Section 2 introduces relevant concepts from the domain of oper-
ating systems. Section 3 presents the proposed approach, where Sect. 3.1 presents
the relevant essentials of L4Re, Sect. 3.2 discusses aspects of qualification with
legacy software system and Sect. 3.3 introduces the architectural alignment and
gives evidence why freedom from interference goals are met.

2 Background Material

Microkernel-based operating systems (OS) follow a design principle that puts
all OS functionality into modules, in such a rigid fashion that even the kernel
itself is reduced to a minimal set of required features. The set of kernel features
is primarily derived from the requirements of using privilege separation features
of the hardware architecture.

With at least two privilege levels, software can be run in de-privileged mode
while the software running in the privileged mode exercises control over it. This
software component is typically called the kernel, or hypervisor. Software run-
ning in a de-privileged mode are typically called programs, applications, tasks,
or processes. The kernel provides the functionality required for ensuring isolation
between the user-level components and means for basic communication. Isola-
tion must be ensured memory-wise, using virtual memory, and temporally, using
preemption, i.e., being able to preempt execution of an application and switch-
ing to another one. Communication is provided by a mechanism called Inter-
Process-Communication (IPC), allowing applications to exchange messages and
call functions implemented in other applications (so-called servers).

Because the kernel only needs to implement this basic functionality, its size
is close to minimal and justifies the name microkernel. All other functionality is
built on top of the microkernel using small components, including drivers, file
systems, memory management and virtualization. Applications depend only on
components they use and because each module has specific responsibilities, this
results in a small Trusted-Computing-Base (TCB). This design principle supports

34 K. Lampka et al.

building secure and safe systems, as functionality only depends on software mod-
ules actually required, whilst modules themselves are isolated from each other.

3 Certification Approach

In the following we describe the architecture of a conventional L4Re system, the
qualification strategy and the challenges we faced. We then present the newly
developed safety architecture, building on the strength of the compositional nature
of the existing system while introducing new components that provide essential
freedom-from-interference guarantees while still allowing us to use the versatile
and flexible environment of the traditional L4Re system for QM applications.

3.1 Architecture of the EB Corbos Hypervisor

The EB corbos Hypervisor is based on the L4Re microkernel system initially
researched and developed at TU Dresden and now developed and commercial-
ized by Kernkonzept GmbH. The system consists of the L4Re Microkernel and
multiple L4Re userland components, as described in Sect. 2.

L4Re and Its Microkernel. The core module of the system is the microker-
nel, which is the only component running in the privileged mode of the processor.
It provides basic mechanisms for spatial isolation, temporal isolation, execution,
and communication. Spatial isolation is realized by means of virtual memory, using
the MMU (Memory Management Unit) to protect access to memory and imple-
mented inTasks. Execution is provided throughThreads. Multiple threads can run
within one task. Temporal isolation is implemented through preemptive schedul-
ing. Inter-process communication (IPC) is the principal communication mecha-
nism, both between applications and to invoke the kernel. IPC is synchronous and
un-buffered. High-bandwidth asynchronous communication can be built through
shared memory between tasks, using software interrupts as a notification facility.

The rights management of the system is based on capabilities. Capabilities are
pointers to objects, protected by the microkernel. By modeling all functionality
into objects, the objects can be pointed to by capabilities, which then act as
access rights to those objects. Calling methods of those objects, referred to as
method invocation, is a universal mechanism in the system used for both invoking
the kernel as well as invoking user-level implemented functionality.

Capabilities implement a local naming scheme and represent the state-of-the-
art in rights management systems for operating systems. The initial set of capa-
bilities for a task must be provided by the loader of the task, as with an empty set
of capabilities a task cannot communicate anywhere and thus not use any service
nor hardware. The system provides so-called factories, at both the kernel and user-
level, to create new objects, such as threads and tasks. Access rights to objects can
be passed on to other tasks by sending them to those tasks by IPC.

Memory for tasks is managed in a similar fashion, but is typically made
available through a fault-based mechanism. When a thread in a task causes a

Safety Certification with L4Re 35

page fault, the microkernel will generate a page fault IPC message to the pager
of this thread. A pager is a thread that is able to resolve a page fault by mapping
a page of memory to the faulting thread’s task such that the thread is able to
continue execution. A similar mechanism is used for exception handling.

The microkernel implements a priority-based round-robin scheduling scheme.
Each thread has a priority assigned and the thread with the highest priority runs
until its quantum runs out (the next thread with the same priority is selected),
the thread blocks through IPC, or a higher priority thread becomes ready. Upon
blocking, the next ready thread is selected.

The L4 Runtime Environment (L4Re) provides the environment to facil-
itate easy implementation of user applications on the Hypervisor. It abstracts
from the kernel’s APIs and allows to build complex use-cases. L4Re is composed
of a set of libraries and system services, among them Sigma0, Moe, Io, and Ned.

Sigma0 is the root of the pager hierarchy in L4 systems. By allowing tasks to
pass on access rights to memory pages, a hierarchy is established with Sigma0
being the root of it. Sigma0 is special for the kernel and gets all the memory
from it, allowing to build user-level memory management.

Moe The microkernel starts two initial user-level components and hands con-
trol over to them. One is the aforementioned Sigma0, the second is the boot
task known as Moe. Moe is responsible for starting the application loader
Ned and provides further basic abstractions, such as namespaces (directories
of named capabilities), dataspaces (containers for memory), boot file-system
(a special namespace of the boot modules as dataspaces), region manage-
ment (managing virtual memory within tasks), logging (multiplexing of out-
put from applications), and interfacing the kernel’s scheduler (core allocation
and scheduling parameters).

Io manages the platform’s hardware peripherals, comprising I/O memory and
interrupts. Further, it provides virtual PCI buses as well as interfaces for
clients to iterate and access I/O memory and interrupts. To realize this, it
maintains a global view of the system as well as a per-client view. The client
view is modeled around a vbus (virtual bus) which a client can query for their
peripherals.

Ned is the init process and is used as initialization component. It is started by
Moe and executes a Lua script which sets up and starts the remainder of
the system. Ned’s built-in Lua interpreter provides access to L4Re function-
alities such as starting new components and setting up their communication
channels, creating resources and setting up the environment for applications.

New services can be added by implementing new components or by exploiting
the ability to virtualize the processor and run entire OS and their userlands
inside virtual machines.

The boot process is initiated by a component called Bootstrap which is started
by the platform bootloader, e.g. u-boot. Bootstrap loads the binaries of the

36 K. Lampka et al.

L4Re Microkernel, Sigma0 and boot task to their linked locations and makes the
locations of the latter two known to the microkernel. It provides a description
of the systems memory layout and then hands over control to the microkernel.

The kernel proceeds to initialize the essential hardware and internal manage-
ment structures and loads root pager and boot task as described above.

3.2 General Thoughts on the Qualification Strategy

Since the L4Re system was not developed according to a safety standard, it must
be qualified for use in a safety-context. While the ISO 26262, part 8 provides
requirements on the qualification of pre-existing software components, which
applies to the L4Re system, the qualification process itself is in many ways
unclear. A reasonable strategy for the qualification of the L4Re system was
needed with the following options at hand: (a) Formal specification and veri-
fication of the L4Re system, (b) Qualification of the L4Re system as a single
component and (c) Qualification of the L4Re system components separately. A
detailed assessment of each of the qualification routes follows below.

Formal Specification and Verification of the L4Re System. Insights to the prac-
tical use of formal methods as a basis for OS kernel development are given in
[7]. The described development process builds around a set of formal verification
tool chains, where the high-level specification is transformed into an executable
prototype which is subject to formal verification and tool-based transformation
into C code. We identified the following obstacles:

– If tools used in software development can secretly introduce errors in the
specifications or secretly fail to identify errors in the specifications, they must
be qualified according to the ISO 26262. Depending on the tool impact and
likelihood of identifying problems in a tool, the required effort to do so can
easily become much higher by orders of magnitude compared to any effort
spent for (re-)development of the target software in accordance with the ISO
26262, part 6.

– For use in a safety-context, formal verification must address all software parts
that may impact a safety-related component running on the microkernel.
Excluding user-space components due to their complexity is not possible.

– Safety analysis of the formal specifications on the software architecture level
is still required to identify conditions that can potentially lead to violations
of assumed safety requirements.

– Modeling and analysis of non-determinism as inherent to interrupt han-
dling and concurrency is advised. For keeping the model checking problem
tractable, the model and in turn the implementation needs to be kept as sim-
ple as possible. To address this, the seL4 project focused on essential parts of
the system and used techniques relating to the bounded model checking app-
roach [4]. This clearly limits the solution space or may lead to gaps between
a model and the actual implementation of a system.

Safety Certification with L4Re 37

For the above reasons, the qualification route of [7] was not applicable in our
context and an alternative path was developed.

Qualification of L4Re as a Single Component. Qualification according to the
ISO 26262 is performed on the software component level only. Unfortunately,
the term software component is not formally defined by the standard. As a
result, the most appropriate abstraction level to qualify the L4Re system is
not immediately clear. The most straight-forward strategy would be to qualify
the L4Re system as a single software component, irrespective of its modular
structure.

Qualifying a software Safety Element out of Context consisting of a single
software component impacts the safety lifecycle significantly. In particular, the
following tailoring of the ISO 26262 safety lifecycle is sufficient: (a) Part 2, Safety
management; (b) Part 6, Specification of software safety requirements; (c) Part
8, Supporting processes.

Notably missing in this tailoring are the recommended methods for the speci-
fication and verification of the software architecture as well as the safety analysis
on the software architecture level, which reduce the risk of unwanted behavior
at run-time. As a result, a decision was taken to minimize the safety footprint
of the EB corbos Hypervisor and focus the design and verification efforts on the
critical components of the L4Re system.

Qualification of the L4Re Components Separately. The last qualification route
considered was to identify critical sub-components of the L4Re system through
software safety requirements tracing combined with dependent failure analysis
and to qualify these according to the ISO 26262, part 8. This qualification route
leads to the following ISO 26262 safety lifecycle tailoring: (a) Part 2, Safety
management; (b) Part 6, Specification of software safety requirements; (c) Part
6, Software architecture design; (d) Part 6, Software integration and verification;
(e) Part 8, Supporting processes; (f) Part 9, Automotive safety integrity level
(ASIL)-oriented and safety-oriented analyses.

This qualification route focuses re-engineering efforts to qualify software com-
ponents according to the ISO 26262, part 8, clause 12 onto those components
which have a clear impact on safety requirements allocated to the system. This
posed the challenge to re-compose the system in such a way that freedom from
interference (FFI) for individual parts can be enforced either by configuration or
by implementing new components where appropriate or limiting, resp. enriching
the feature set of the re-used ones. The results in the following chapters show
that this strategy is effective for reducing the safety footprint and thus enabling
a feasible certification by an external assessor. As a result, it was the selected
qualification route.

3.3 New Safety Architecture

As first step towards FFI between components, we introduce the concept of a
safety and a quality managed (QM) partition to L4Re. This complements the

38 K. Lampka et al.

standard view, where applications are looked at as being in general isolated from
each other. Applications of the QM partition do not contribute to any safety
function. It must be ensured that they do not interfere with the applications of
the safety partition in an unforeseen way.

A partition consists of a set of L4Re tasks, constant sets of physical mem-
ory pages and CPU cores. The partitioning concept is based on the idea that
all software executing in the safety partition is developed or qualified to the
same safety level. It is assumed that safety-related applications are developed
in such a way that timeout surveillance for IPC calls is not needed and that
data returned from a service does not need to be checked for data corruption.
As a result, an application can safely use services by another application inside
the safety partition. This strategy limits our efforts w.r.t. ensuring FFI. What
remains is the analysis and mitigation strategy for controlling potential interac-
tions between the partitions, resp. their applications. Before we carry out this
analysis, we briefly introduce the main parts of our safety partition (see Fig. 1).

Overview of Proposed Architecture. When running the Hypervisor in a
safety context, it is loaded and started by a safe bootloader (1 in Fig. 1). It
boots in a similar fashion to traditional Bootstrap as described in Sect. 3.1 but is
reduced to the minimum functionality required to load the system and provide
modules to it. In particular, the memory layout is configured statically and the
advanced features of Bootstrap such as module compression, device tree parsing,
and configuration through command-line arguments have been removed.

After being loaded and started by Bootstrap, the kernel initializes the rele-
vant hardware (e.g., interrupt controller) and creates its internal management
structures such as mapping databases and kernel memory pools. The kernel
marks memory it reserves for its own use as used in the Kernel Interface Page
(KIP) memory descriptors such that Sigma0 will not hand it out to user appli-
cations. Subsequently, the kernel creates task and thread objects for the boot
task and the root pager, maps their expected capabilities and schedules them.

For the safety partition, we designed a new partition manager called the Safe
Application Launcher Task (SALT, 3 in Fig. 1). It serves as the boot task to
the safety applications. SALT is launched in place of Moe, which is relegated to
be the boot task and abstraction provider for the QM side only (4 in Fig. 1).

Implementing a new boot task, instead of re-using Moe and Ned for the safety
partition, comes with the advantage of not being forced to qualifying the latter.
Specifically, the qualification effort would be prohibitively high. For example,
Ned’s Lua interpreter would require significant documentation and testing effort.
On the other hand, the feature set available in SALT is significantly reduced. This
is practicable, as safety functions are currently assumed to be of low complexity
and are mostly static during run-time with respect to resource allocation. They
would have limited benefit from the flexible abstractions provided by the L4Re
QM applications, which are more tailored to more complex applications running
in the QM partition and managing device access for multiple virtual machines.

Safety Certification with L4Re 39

Sigma0 initializes its memory managers for physical and I/O memory, reacts
to memory mapping requests and acts as pager for the boot task (2 in Fig. 1).
This directly implies that Sigma0 must be qualified as safety component. This
is feasible as Sigma0 only consists of a few hundred lines of C++ code and a
post-development certification is therefore economically acceptable.

Fig. 1. Safety architecture for L4Re

SALT loads the configured safety applications and maps non-overlapping
physical memory to each of them, enforcing their isolation from another. Memory
is requested from Sigma0 and guaranteed to be handed out to SALT only.

If there is need for exchanging data among applications, SALT facilitates this
by using dedicated memory for that. To do so, the safety applications reference
such memory through dedicated named sections in their ELF binary and SALT
ensures that sections with the same name receive the same physical memory. If
there is need to share data with the QM partition, the hand-over of the related
memory pages must be explicitly programmed into SALT’s integrator-provided
setup function, otherwise the memory is not visible to the QM partition.

After setting up their tasks and threads SALT launches the loaded safety
applications. Once all of them have successfully passed their initialization phase,
SALT starts Moe as the boot task of the QM partition and acts as a scheduler
proxy to the QM side of the system.

What follows is the normal boot-up of the L4Re user space, see Sect. 3.1. The
main difference concerns the fact that Sigma0 only allows Moe to acquire the
remaining parts of the memory with the safety partition being the owner of all
of the memory previously mapped to SALT. Moe’s scheduler capability invokes
SALT which restricts requests to schedule a thread to cores not occupied by

40 K. Lampka et al.

safety applications. Device memory requests from the QM partition needs also
to be routed through SALT to avoid its unintended sharing.

Spatial freedom from interference (sFFI) requires these three properties:

Isolation of private memory. No fault in any software in the QM partition
can cause the program state of any software in the safety partition to change,
with the exception of explicitly shared memory.

No starvation on memory allocation. The applications of the safety par-
tition will always be able to allocate a sufficient amount of memory, i.e., no
safety application will experience starvation on memory allocation requests.

No out-of-memory scenarios of the kernel. The kernel will always be able
to allocate objects that safety applications require.

In the following paragraphs we give justification why these properties hold.
The state of an L4Re task consists of the content of its memory, its capabil-

ities as maintained by the kernel and its threads’ execution contexts. To ensure
sFFI we need to reason over (a) absence of unintended memory manipulation,
(b) protecting access to a task’s capabilities and (c) correct context switching.

By ensuring that neither application of the safety partition, nor the kernel
erroneously give access to the task’s capabilities, item (b) is trivially met. For
safety tasks, the property is enforced by coding guidelines and peer-review. For
the kernel, it is enforced by the applied software qualification measures (static
analysis, design documentation, inspection, requirement-based testing).

Item (c) is ensured by verifying that the microkernel correctly handles thread
contexts, which once again can be established by the software qualification mea-
sures as applied for the qualification of the microkernel.

This leaves item (a) as the most challenging one, which we discuss now.

Virtual Memory. Each task is given a virtual memory address space which limits
the physical memory its threads can access. The threads of a task can only access
physical memory which has first been mapped into its address space. This is the
core feature upon which memory isolation is built. It is ensured by qualification
measures that the physical memory of a task is never mapped unintentionally
into the virtual address space of another task. The only exception to this is
the intentional sharing of memory to exchange data between applications. This
property is ensured by the microkernel as long as a task with access to a physical
memory page does not erroneously hand it out to different clients.

Single Ownership for Private Memory. To limit access to non-shared physical
memory to a single application Sigma0, which as the root of the memory hier-
archy has access to all memory, must not hand out any memory region already
mapped to a safety application to another client. By handing out memory regions
only to the first client requesting access to them and tracking this ownership
Sigma0 ensures that no memory is handed out to two clients at the same time.
Clients are identified by the label of the capability they use to access Sigma0.

Safety Certification with L4Re 41

SALT partitions the memory by requesting all needed memory on behalf of
the safety applications during startup. This includes memory explicitly shared
between tasks of the safety partition and with tasks of the QM partition. After-
wards SALT requests Sigma0 to create a new client capability that it then passes
on to Moe as the boot task of the QM partition. This allows Sigma0 to identify
Moe as a different client. As memory mapping requests from the QM partition
only occur once SALT has requested all of the memory needed by the safety
application, isolation on private memory of the safety partition is ensured.

Due to this construction Sigma0 is a safety application which handles IPC
requests from QM applications. This creates the potential for a kind of denial-
of-service attack on safety applications the threads of which are running on the
same core as Sigma0, necessitating further restrictions as presented below.

Temporal freedom from interference (tFFI) means that any error in any
QM application cannot interfere with the timing behavior of applications in the
safety partition. E.g., any undetected delay in an IPC response from a QM appli-
cation shall not result in an unmonitored deadline violation. Achieving tFFI,
however, depends in many parts on the used hardware. For example, invalida-
tion of a shared cache by a faulty QM application changes the cache miss rate
and easily increases the load on the memory bus prolonging the execution times
of safety applications in an unforeseen way [5,8]. Due to the high dependency
of SW-based solutions to such problems and the underlying hardware, tFFI is
commonly reduced to guarantees relating to the software. For maintaining the
generic character of L4Re, we follow this strategy as well and do not consider the
vast body of solutions for implementation. For eliminating tFFI at application
level, we restrict the L4Re configuration as follows:

1. Exclusive mapping of cores to safety applications
2. Independence of execution by (a) restricted IPC relation and (b) static allo-

cation of resources to safety partition

Below we will justify the restrictions introduced.

Exclusive Mapping of Cores to Safety Applications. Allowing threads of both
the QM and safety partition to run on a core can lead to CPU time stealing.
The responsiveness of a safety application running on the affected CPU may be
reduced whenever less CPU time than expected is available. Possible causes are:

IPC-induced CPU time stealing. When an L4Re application acts as a server
IPC requests sent to it are directed to the core the receiver thread is running
on. In case the receiver is not ready for serving the request immediately,
the IPC is queued and the IPC initiator is blocked. Each time a QM thread
invokes this server through an IPC request the currently running thread on
the core is preempted and the kernel either queues the IPC or schedules
the receiver thread for serving it immediately. With a large number of IPC
requests directed towards a low priority QM thread, significant CPU time

42 K. Lampka et al.

would be spent on IPC queuing, instead of being available for high priority
safety functions scheduled on that core.

Memory mapping induced CPU time stealing. When memory mappings
are altered, cores running threads of the affected task must be informed to
enforce the new mapping. To do so an inter-processor interrupt (IPI) is sent
to the relevant cores interrupting their currently running threads. Excessive
mapping and unmapping of memory yields CPU time stealing as CPU time
is spent for the IPI handler rather than for safety functions.

For suppressing the above scenarios, threads of the QM partition and the safety
partition must not share a core. This is enforced by configuration. In addition,
SALT must serve as scheduler proxy to the QM partition such that the root
task of the QM partition cannot instruct the kernel to migrate a QM thread to
a core exclusively mapped to the safety tasks. This together with Sigma0 gives
two applications of the safety partition which, besides the kernel itself, serve IPC
requests for QM applications at run-time.

Independence of Execution. Each server application can be contacted by appli-
cations which have the respective capability. IPCs block until the IPC request
has been delivered. However, for each task any thread can execute a new IPC
request even if earlier invocations of the capability by other threads are still
blocked. Consequently, a faulty QM application may instantiate a large number
of threads, each placing an IPC request on an application it holds a capability
to. This can induce the aforementioned CPU time stealing.

To avoid such scenarios, we generally forbid that safety applications can
act as servers to QM applications. A QM thread may reply to IPC calls by a
safety application but cannot hold a capability to directly communicate with
it. An exception to this are the kernel, Sigma0 and SALT. These applications
potentially act as servers or proxies to QM applications.

With the kernel, this does not pose a problem, as it is only invoked on the core
the corresponding IPC request was issued on. For Sigma0 and SALT the IPC
request is directed to the core(s) they are running on. As a result, a large number
of IPC requests placed by QM applications on them results in unaccounted CPU
time stealing. To avoid this scenario, Sigma0 and SALT must not share any
core with other safety applications. Since we are statically mapping memory to
the safety applications, they will not place any IPC request towards Sigma0 or
SALT once SALT has started. This way, we rule out that safety applications
experience unexpected delays. The respective IPC requests simply do not occur
by construction.

Handling of Devices. Drivers to the physical devices are hosted in L4Re user
applications that act as device server. Device services are provided through IPC
or shared memory. HW-rooted isolation and protection mechanisms for device
usage are offered by hardware vendor specific IP blocks, such as LifeC by Rene-
sasi, XRDC by NXP, or via I/O memory management units (IOMMUs) such
as the SMMU by ARM. The availability of HW-rooted isolation mechanism

Safety Certification with L4Re 43

is fundamental to guarantee sFFI with DMA-capable devices, as their mem-
ory accesses must be restricted when operated by QM-partition rooted device
servers.

It is also assumed that interrupt routing is configured and functions as
expected, i.e. device interrupts are delivered to the configured core. This rules
out that a device server in the QM partition can generate interrupts delivered
to a core running safety applications. The absence of storms of device interrupts
caused by device servers running in the safety application is ensured by software
design guidelines and quality assurance measures such as static analysis and
requirements-based testing.

For the device server, three scenarios must be considered: clients accessing the
server are (a) exclusively safety applications, (b) exclusively QM applications and
(c) from both partitions. Scenario (a) and (b) are in adherence with the requested
restriction we established for the IPC relation, provided the device server is part
of the same partition as its clients. With scenario (c), the restrictions postulated
for the IPC relation so far appears to be too restrictive as the mixed case would
simply be ruled out by configuration. As one may recall, it is requested that a
safety application which acts as server for any QM application and is reachable
via IPC means from QM side must not execute on the same core as any other
safety application. This is irrespective of the application being used by safety
applications or not. For easing this constraint, we request the following:

1. A device server located in the safety partition serving clients from the QM
partition must operate in polling mode when serving QM clients. No IPC
service requests from QM side are allowed other than using a reply capability.
The use of a polling period enforces an upper bound on the workload injected
by the QM clients and rules out unexpected situations of overload.

2. A device server located in the QM partition may serve both clients from
the QM and the safety partition. The clients from the safety partition must
implement timeout surveillance when placing an IPC request on the device
server. Furthermore, they must not rely on the result of that service.

The above refinement allows us to run device servers on both partitions. Still,
the question about sFFI w.r.t. I/O memory has not been touched yet. Unlike
with physical memory, Sigma0 does not track ownership for I/O memory.

Currently Sigma0 gives a guarantee that allocations never fail when sufficient
memory of the requested type is available. Tracking ownership of memory regions
requires a book-keeping facility. Allocation requests for I/O memory may lead
to a RAM allocation when a new entry in the management structure is required.
Potentially, Sigma0 could run out of internal memory and reject the mapping
with an out-of-memory error, breaking the aforementioned guarantee.

For maintaining the interface specification for QM applications while still
guaranteeing sFFI we implement a Sigma0 proxy as safety application. The
proxy gets a list of all I/O memory regions mapped to safety tasks. As all I/O
memory used by safety applications is mapped during startup, the list is effec-
tively static. Consequently, safety applications must not request I/O memory
themselves after startup. The Sigma0 proxy relays mapping requests of QM

44 K. Lampka et al.

applications to Sigma0 and rejects requests for I/O memory regions overlap-
ping with ones claimed by safety applications. As no ownership is tracked by
the Sigma0 proxy, no memory allocations are required and QM requests for I/O
memory will never fail due to an out-of-memory error. This maintains the previ-
ously mentioned allocation guarantee. Like SALT and Sigma0, the Sigma0 proxy
must also not run on a core mapped to the safety applications to guarantee tFFI.

4 Conclusion

In this paper we presented a concept to certify the pre-existing open-source
microkernel-based hypervisor L4Re according to ISO 26262 for automotive
safety, targeting ASIL-B. The presented concept builds a foundation for mixed-
criticality systems, which is enabled by the implementation of components to
support partitioning and re-organization of the boot process to prevent possi-
ble interference. This approach avoids re-implementation of the complete L4Re
system, keeping the re-engineering effort at a minimum, and prevents unneces-
sary re-certification due to local changes to the QM partition. The compositional
design of L4Re supports extension safety concept when the safety partition is
further developed.

The presented approach has been found feasible by TÜV Süd as part of a
general certification of EB corbos Hypervisor under ISO-26262.

Acknowledgments. The work is funded in part by the German Federal Ministry for
education and research, grant numbers: 16ME0450, 16ME0452, 02K18D014.

References

1. EB corbos Hypervisor. https://www.elektrobit.com. Accessed 26 May 2022
2. L4Re Runtime Environment. https://l4re.org. Accessed 26 May 2022
3. The seL4 Microkernel. https://sel4.systems. Accessed 26 May 2022
4. Biere, A., Kröning, D.: Sat-based model checking. In: Handbook of Model Check-

ing, pp. 277–303 (2018)
5. Flodin, J., Lampka, K., Yi, W.: Dynamic budgeting for settling DRAM contention

of co-running hard and soft real-time tasks. In: Proceedings of the 9th IEEE Inter-
national Symposium on Industrial Embedded Systems, SIES 2014, pp. 151–159
(2014)

6. Heiser, G.: The seL4 Microkernel An introduction. https://sel4.systems/About/
seL4-whitepaper.pdf. Accessed 26 May 2022

7. Klein, G., et al.: seL4: formal verification of an OS kernel. In: Proceedings of the
ACM SIGOPS 22nd Symposium on Operating Systems Principles, SOSP 2009, pp.
207–220. ACM, New York (2009)

8. Lampka, K., Lackorzynski, A.: Resolving contention for networks-on-chips: combin-
ing time-triggered application scheduling with dynamic budgeting of memory bus
use. In: Remke, A., Haverkort, B.R. (eds.) MMB&DFT 2016. LNCS, vol. 9629, pp.
137–152. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31559-1 12

https://www.elektrobit.com
https://l4re.org
https://sel4.systems
https://sel4.systems/About/seL4-whitepaper.pdf
https://sel4.systems/About/seL4-whitepaper.pdf
https://doi.org/10.1007/978-3-319-31559-1_12

Safety Certification with L4Re 45

9. Lampka, K., Lackorzynski, A.: Using hypervisor technology for safe and secure
deployment of high-performance multicore platforms in future vehicles. In: 26th
IEEE International Conference on Electronics, Circuits and Systems, ICECS 2019,
Genoa, Italy, 27–29 November 2019, pp. 783–786. IEEE (2019)

10. Liedtke, J.: On micro-kernel construction. In: Proceedings of the fifteenth ACM
Symposium on Operating Systems Principles, SOSP 1995, pp. 237–250. ACM, New
York (1995). http://doi.acm.org/10.1145/224056.224075

http://doi.acm.org/10.1145/224056.224075

Data-Driven Inference of Fault Tree
Models Exploiting Symmetry

and Modularization

Lisandro Arturo Jimenez-Roa1(B) , Matthias Volk1 ,
and Mariëlle Stoelinga1,2

1 Formal Methods and Tools, University of Twente, Enschede, The Netherlands
{l.jimenezroa,m.volk,m.i.a.stoelinga}@utwente.nl

2 Department of Software Science, Radboud University, Nijmegen, The Netherlands

Abstract. We present SymLearn, a method to automatically infer fault
tree (FT) models from data. SymLearn takes as input failure data of
the system components and exploits evolutionary algorithms to learn a
compact FT matching the input data. SymLearn achieves scalability by
leveraging two common phenomena in FTs: (i) We automatically iden-
tify symmetries in the failure data set, learning symmetric FT parts only
once. (ii) We partition the input data into independent modules, subdi-
viding the inference problem into smaller parts.

We validate our approach via case studies, including several truss sys-
tems, which are symmetric structures commonly found in infrastructures,
such as bridges. Our experiments show that, in most cases, the exploita-
tion of modules and symmetries accelerates the FT inference from hours
to under three minutes.

1 Introduction

Fault Tree Analysis (FTA) [23,25] is one of the most prominent methods in
reliability engineering, used on a daily basis by thousands of engineers. Fault
Trees (FTs) are a graphical model describing how failures occurring in (atomic)
system components propagate through a system and eventually lead to an overall
system failure. The quantitative and qualitative analysis of FTs is essential for
risk management of complex engineering systems.

An important challenge in FTA is the creation of faithful FT models. There-
fore, inference of FTs, also known as construction [24], synthesis [8], or induc-
tion [16], has been investigated since the 1970s. Three categories of approaches
exist: (i) Knowledge-based methods were investigated first, and are semi-
automated approaches that derives an FT from a knowledge-based representa-
tion using heuristics [3]. These deploy techniques such as decision tables [24,29],

This research has been partially funded by NWO under the grant PrimaVera number
NWA.1160.18.238 and by the ERC Consolidator grant CAESAR number 864075.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Trapp et al. (Eds.): SAFECOMP 2022, LNCS 13414, pp. 46–61, 2022.
https://doi.org/10.1007/978-3-031-14835-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14835-4_4&domain=pdf
http://orcid.org/0000-0003-3062-8408
http://orcid.org/0000-0002-3810-4185
http://orcid.org/0000-0001-6793-8165
https://doi.org/10.1007/978-3-031-14835-4_4

Data-Driven Inference of FT Models Exploiting Symmetry 47

mini FTs [21,26], and Piping and Instrumentation Diagrams [26,31]. (ii) Model-
based techniques derive an FT by translating a system model (e.g., using
AADL [11,17], Digraphs [5,12], Simulink [30], or SysML [18,30]) into a FT.

(iii) Due to the increasing availability of inspection and monitoring data,
data-driven inference methods have emerged. These automatically infer an FT
closely matching a given structured data set, exploiting techniques like Bayesian
networks [15] and genetic algorithms [10,14]. The resulting FTs closely match the
given data set but only contain events also present in the data—and therefore
may lack rare events. Nevertheless, data-driven inference can provide a good
basis for fault tree creation. A key drawback of data-driven inference methods
is that they still lack sufficient scalability for larger systems.

In this work, we tackle the scalability challenge of FT inference by exploit-
ing two concepts commonly used in FTs: symmetries and modules. Symme-
tries between components are commonly present in real-world systems, e.g.,
due to structural properties or redundancies in safety-critical systems. Modules
correspond to subsystems and allow to subdivide the inference problem into
smaller, possibly independent, problems. Our approach, called SymLearn, auto-
matically identifies symmetries and modules, and exploits them to reduce the
solution space.

We implemented the SymLearn method in Python and numerically evaluated
it in five case studies, including three truss system models, which are structural
systems typically found in civil infrastructures such as roofs, transmission tow-
ers, and bridges. We compare SymLearn to the previous FT-MOEA implemen-
tation [10], which was shown to be faster than its predecessor FT-EA [14]. Our
experiments show that: (1) SymLearn is orders of magnitude faster than FT-
MOEA if modules and symmetries can be exploited; (2) SymLearn is in some
cases slower than inference based on Boolean formulas, it yields, however, more
compact FTs than Boolean methods.

Contributions. Our main contributions are:

(i) We define modules and symmetries based on the minimal cut sets (MCSs).
(ii) We present algorithms to automatically identify modules and symmetries

from the MCSs.
(iii) We introduce SymLearn, an approach to automatically infer FTs from fail-

ure data sets by exploiting modules and symmetries.
(iv) We implemented SymLearn in Python and numerically evaluated it in sev-

eral case studies.

The implementation and all data are available at zenodo.org/record/5571811.

Related Work. An early technique for data-driven FT inference is the IFT algo-
rithm [16], which deploys Quinlan’s ID3 algorithm to induce Decision Trees.
Inspired by Causal Decision Trees, the LIFT algorithm [20] exploits the Mantel-
Haenszel test to discover dependencies between events. While most data-driven
approaches only require information about basic events, LIFT also needs infor-
mation about failures of intermediate events. Both the ILTA [27] and MILTA [28]

https://zenodo.org/record/5571811

48 L. A. Jimenez-Roa et al.

algorithms make use of Knowledge Discovery in Data sets, Interpretable Logic
Tree Analysis, and Bayesian probability rules. The method in [15] first learns a
Bayesian Network and then translates it into an FT model, using blacklists and
whitelists to define missing or present arcs. The DDFTA algorithm [13] infers
FTs from time series of failure data via binarization techniques and simplification
of Boolean equations. Approaches based on evolutionary algorithms include our
earlier work FT-EA [14] and FT-MOEA [10]. FT-MOEA uses a multi-objective
cost function, which outperforms the one-dimensional cost function in FT-EA.

Since FTs encode Boolean functions, FT inference is closely related to syn-
thesis of Boolean circuits with a minimal number of gates [9,19]. Manual sim-
plification of Boolean functions in the context of FT inference is considered
in [13]. Common automated methods for simplifying Boolean functions are the
Quine–McCluskey algorithm [4] that finds the optimal solution based on prime
implicants but only works for a few variables, and the Espresso algorithm [1] that
uses efficient heuristics, but does not guarantee finding the optimal solution.

Outline. Section 2 introduces FTs. Sect. 3 defines modules and symmetries.
Section 4 details the SymLearn approach. In Sect. 5, we evaluate SymLearn on
truss system models and discuss the results. We conclude in Sect. 6 and present
future work.

2 Fault Trees

Fault Trees. A fault tree (FT) is a directed acyclic graph that models how system
component failures occur, propagate, and can lead to a system failure [23,25].

Fig. 1. Example FT.

The leaves, called basic events (BE), model
(atomic) system components. The intermediate
nodes are equipped with a logical gate and model
how failures propagate through the system. Inter-
mediate nodes with an AND-gate fail if all suc-
cessor nodes fail, nodes with an OR-gate fail if at
least one successor node fails. An FT F fails if the
root node has failed. Figure 1 depicts an FT mod-
eling a computer. Computer is equipped with an
OR-gate, Memory and Processor with AND-gates,
circles indicate BE.

Definition 1 (Fault tree). A fault tree (FT) is a rooted directed acyclic graph
(V,E) with a function Tp : V → {BE,AND,OR} satisfying Tp(v) = BE iff v is
a leaf. The successors of a node v are called the inputs of v and their set is
denoted by I(v). All nodes in V must be reachable from the dedicated root Top.

We use BEs := {v ∈ V | Tp(v) = BE} to denote all nodes of type BE. A vector
�b = 〈b1, . . . , b|BEs|〉 ∈ {0, 1}|BEs| is called a status vector. Here bi = 1 indicates
that the i-th BE has failed, and bi = 0 that it is functioning properly, respectively.
The semantics of an FT F is given by its structure function f .

Data-Driven Inference of FT Models Exploiting Symmetry 49

Definition 2 (Semantics of FT). Given a status vector �b, the structure func-
tion f : {0, 1}|BEs| × V → {0, 1} returns the status of node v. It is given by

f(�b, v) :=

⎧
⎪⎨

⎪⎩

bi if Tp(v) = BE and v is the i-th BE,
∧

v′∈I(v) f(�b, v′) if Tp(v) = AND,
∨

v′∈I(v) f(�b, v′) if Tp(v) = OR.

We use the shorthand f(�b) := f(�b,Top). We say FT F fails for �b if f(�b) = 1. A
status vector �b can also be given as the set C = {bi ∈ �b | bi = 1} of failed BE

and we often write f(C) instead of f(�b).

Minimal Cut Sets. Minimal cut sets (MCSs) are a common representation of
the structure function f . A MCS is a minimal set of BE s.t. the FT fails.

Definition 3 ((Minimal) cut sets). A cut set for FT F is a set C ⊆ BEs
with f(C) = 1. A minimal cut set (MCS) for F is a cut set C which is minimal,
i.e., for all proper subsets C ′ � C, f(C ′) = 0 holds. We denote the set of all
minimal cuts sets for FT F by CF .

The FT in Fig. 1 has 3 MCSs: CF = {{Mem1,Mem2} , {Power} , {CPU1,CPU2}}.

3 Modules and Symmetries

Given a failure data set D, we want to find a compact FT FD which matches D.

Table 1. Example data.

M1 M2 P C1 C2 Sys.

0 0 0 0 1 0

0 0 0 1 1 1

0 0 1 0 0 1
...

...
...

...
...

...

Failure Data Set. The failure data D is given
as a labelled binary data set indicating the failure
status of each component, together with the corre-
sponding status of the overall system. Table 1 gives
an example corresponding to the FT in Fig. 1 where
M1 corresponds to Mem1, etc. We assume the data
is coherent, i.e., once the system fails, it cannot
become operational again through further compo-
nent failures, and it is noise-free, i.e., observations
with unchanged component states always yield the same system state.

We can also identify MCSs in the failure data D. A (minimal) cut set C of D

is a (minimal) set of BEs s.t. the corresponding status vector �b yields a system
failure in D. The set of all MCSs in D is denoted by CD.

Problem Statement. We want to find an FT FD s.t. the structure function f
of FD captures failure data D as accurately as possible. To assess the quality of
the resulting FT w.r.t. input data D, we use three metrics [10]:

– Size of the FT (|FD|) is the number of nodes |FD| := |V | in the FT.

50 L. A. Jimenez-Roa et al.

– Error based on data set D (φd) is the fraction of times where FD fails and
the system (according to data set D) does not, and vice versa. Let E :={
�b ∈ {0, 1}|BEs| | f(�b) �= D(�b)

}
denote the status vectors which yield different

results for FD and D. Then the error based on D is given by φd := |E|
|D| .

– Error based on the MCSs (φc) compares the set CFD
of MCSs of the FT FD

and the set of MCSs CD derived from the data D. The metric φc computes
the similarities between both sets of MCSs based on the RV-coefficient [22],
see [10] for the details.

Formal Problem. Given a failure data set D, create a (compact) FT FD

s.t. its BEs correspond to the atomic components in D and f(�b) captures
the system failures in D as accurately as possible. In other words, φc and
φd should be (close to) zero, and |FD| should be as small as possible.

In our approach, we first create CD from D and infer the FT FCD
.

Fig. 2. FT with independent modules and further partitioning. (Color figure online)

3.1 Modules

Instead of directly inferring an FT FCD
from the MCSs CD, we aim to first

partition CD into multiple parts, infer individual FTs for each of them, and then
combine the FTs into the overall FT FCD

.

Definition 4 (MCS partitioning). Let M1, . . . ,Mn ⊆ C be a partitioning of
the set C of MCSs, i.e., Mi ∩ Mj = ∅ for all i �= j and M1 ∪ · · · ∪ Mn = C. For
a partition Mi, we let BEsMi :=

⋃
C∈Mi

C denote the set of BE occurring in Mi.
BE occurring in multiple partitions are called the shared BE.

In the case of a large number of shared BE, the inferred FTs—which each
might be optimal individually—can yield an overall FT which is sub-optimal.
For example, gates with (some of the) shared BE as input might occur in multiple

Data-Driven Inference of FT Models Exploiting Symmetry 51

FTs. Thus, the goal is to find a partitioning such that the number of shared BE is
as small as possible. If no BE are shared, the resulting partitioning of BEs forms
independent modules. In FTs, (independent) modules are independent subtrees,
where only the root node is connected to other parts of the FT [7]. Modules can
therefore be thought of as coherent entities in the context of the overall system,
e.g., components. Modularization is used to simplify the FT analysis.

Definition 5 (Modules). A partitioning M1, . . . Mn of the set C of MCSs
is called a module partitioning if the corresponding BEsM1 , . . . ,BEsMn form a
partitioning of BEs. A subset M of BEs is called an independent module if it is
part of a module partitioning, i.e., all BE of M are included in MCSs of a single
Mi.

An independent module M does not share BE. Thus, the BE in M are not
connected to other parts of the FT and they belong to an independent subtree.

Example 1 (Modules). The partitioning for the FT in Fig. 2 is given by colored
boxes. The BEs {A,B,C,D,E} and {F,G,H, I,K} form independent modules.
The corresponding MCSs can be further subdivided. For instance, Partition 1.1
with {{A,C} {B,C}} and Partition 1.2 with {{B,D} , {D,E}} share BE B.

Fig. 3. SymLearn tool chain overview. Blue boxes indicate novel steps. (Color figure
online)

3.2 Symmetries

Symmetries in an FT describe components, e.g., BE or complete subtrees, that
can be swapped without changing the failure behavior of the FT. In our setting,
symmetries reduce the computational effort for inferring FTs as only one of the
sub-trees must be constructed; other subtree(s) can be copied from the (original)
subtree because of the symmetry. We define symmetries on the MCSs. Applying
a symmetry on the MCSs yields the same MCSs, i.e., swapping symmetric BE
does not change the structure function of the FT.

Definition 6 (Symmetry on MCSs). A symmetry on the set C of all MCSs
is a permutation σ : BEs → BEs which preserves C, i.e., σ(C) = C where σ(C) :=
{σ(C) | C ∈ C} and σ(C) := {σ(b) | b ∈ C}.

52 L. A. Jimenez-Roa et al.

We denote all possible symmetries on C by SC . A symmetry between sets A,B ⊆
BEs is a symmetry σ ∈ SC with σ(A) ⊆ B and σ(B) ⊆ A. Note that we define
symmetries only on BEs and not on gates. The definition is thus more general
and allows symmetries even in cases where sub-trees are not isomorphic.

Lemma 1 (Necessary condition for symmetry). If σ ∈ SC is a symmetry
on the MCSs C, then count(b) = count(σ(b)) for all b ∈ BEs, where count(b) :=
|{C ∈ C | b ∈ C}| denotes the number of occurrences of b in C.

Example 2 (Symmetry). Consider again the FT F in Fig. 2. The permutation
σ1 = (AF)(BG)(CH)(DI)(EJ) is a symmetry in F (between the independent
modules). For example, σ1({A,C}) = {F,H} ∈ CF . Symmetries within the
modules are given by σ2 = (AE)(CD) ∈ SCF and σ3 = (FJ)(HI) ∈ SCF .

4 Exploiting Modules and Symmetries in FT Inference

Our SymLearn approach is outlined in Fig. 3 and consists of 6 steps:

Step 1 computes the set of all MCSs CD associated with input data set D.
Step 2 finds a partitioning M1, . . . ,Mn of CD s.t. the corresponding BEs form

independent modules M1, . . . ,Mn. In the worst case, no proper partitioning
is possible and the independent module consists of all BEs.

Step 3 identifies the symmetries SCD
on CD. If symmetries exist between inde-

pendent modules, then only one of these modules needs to be considered in
the following. Otherwise, SymLearn directly goes to Step 5.

Step 4 tries to further split the MCSs Mi of each module Mi via a symmetry σ ∈
SCD

. The split into M1
i and M2

i should satisfy σ(M1
i) = M2

i and preferably
have a small number of shared BE. If a split is found, SymLearn recursively
starts again with Step 2 for M1

i ; otherwise it proceeds with Step 5.
Step 5 infers an FT FM for each partition M of the MCSs. Several approaches

can be used, e.g., FT-MOEA [10] or simplification of Boolean formulas [13].
Step 6 creates for each set of symmetric MCSs M2

i a corresponding symmetric
FT FM2

i
by copying the “original” FT FM1

i
and renaming the BEs according

to the symmetry σ. Last, all inferred FTs are joined under an OR-gate.

We provide details on all steps of SymLearn in the following.

Step 1: Compute Minimal Cut Sets. SymLearn starts by extracting all the
MCSs CD from the data D. We use the algorithm from [13], but employ an
improved computation of the MCSs from the cut sets. Here, we iteratively select
a cut set C with minimal cardinality and remove all cut sets that include C. The
runtime complexity of the algorithm is quadratic in D, i.e., O(D2) = O(22·|BEs|).

Data-Driven Inference of FT Models Exploiting Symmetry 53

Algorithm 1. Identifying independent modules M1, . . . ,Mn from the MCSs CD.
Input: MCSs CD.
Output: Partitioning M1, . . . , Mn of CD, corresp. independent modules M1, . . . ,Mn.

Partitioning ← {{C} | C ∈ CD}
while ∃M, M ′ ∈ Partitioning with M and M ′ sharing BE do

Partitioning ← (Partitioning \ {M, M ′}) ∪ {M ∪ M ′}
return Partitioning = {M1, . . . , Mn}, modules

{
M1 = BEsM1 , . . . ,Mn = BEsMn

}

Step 2: Identify Independent Modules. Our aim is to partition the MCSs
CD s.t. an FT for each partition can be learned individually. This allows for a
more efficient inference which could even be performed in parallel.

We start by trying to find independent modules from CD as described in
Algorithm 1. The initial partitioning uses each cut set of CD as its own partition.
If two partitions share BE, they must be merged to satisfy the constraint for
independent modules in Definition 5. We iteratively merge partitions until their
BEs are disjoint. The BEs then form the independent modules. The following
Steps 3–5 are performed for each independent module and corresponding MCSs
individually. The FTs created for the modules are combined by an OR-gate in
the end.

Example 3 (Identify independent modules). We use the MCSs CD =
{{A,C} , {B,C} , {B,D} , {D,E} , {F,H} , {G,H} , {G, I} , {I,K}} correspond-
ing to Fig. 2. Applying the algorithm, cut sets {A,C} and {B,C}, for instance,
are merged as they share BE C. In the end, the independent modules and par-
titioning are:

M1 = {A,B,C,D,E} M1 : {{A,C} {B,C} , {B,D} , {D,E}}
M2 = {F,G,H, I,K} M2 : {{F,H} {G,H} , {G, I} , {I,K}}

Extraction of BE . As an additional optimization, we automatically derive BE
which occur in all minimal cut sets of a partition. In order for the partition to
cause a system failure, all these BE must fail. Hence, they are excluded from all
MCSs and the approach continues on the reduced MCS. In the end, the excluded
BE are joined under an AND-gate with the FT resulting from the reduced MCSs.

Step 3: Identify Symmetries. Next, we identify the symmetries SCD
from CD

in a fully automated manner. The simplest way is a brute-force approach trying
out all possible permutations and checking whether they are valid symmetries
according to Definition 6. While this approach is factorial in |BEs|, we obtain
good performance in practice by exploiting two optimizations.

Symmetries Between Independent Modules. The most efficient approach is to
exploit the independent modules from the previous step. Symmetries between
two independent modules M,M′ can be quickly found by restricting the permu-
tations to only the ones matching each BE in M to one in M′.

54 L. A. Jimenez-Roa et al.

Algorithm 2. Splitting of MCS Mi into two symmetric parts M1
i and M2

i .
Input: MCS Mi, symmetry σ ∈ SCD

Output: Symmetric MCSs M1
i , M2

i with corresponding contained BE BEsM
1
i ,BEsM

2
i

M1
i ← ∅, M2

i ← ∅, BEs1 ← ∅, BEs2 ← ∅
Q ← CD

while C ∈ Q do
if C = σ(C) then return Mi, ∅,BEsMi , ∅
Q ← Q \ {C, σ(C)}
if |C ∩ BEs1| ≥ |C ∩ BEs2| then

M1
i ← M1

i ∪{C}, M2
i ← M2

i ∪{σ(C)}, BEs1 ← BEs1∪C, BEs2 ← BEs2∪σ(C)
else

M1
i ← M1

i ∪{σ(C)}, M2
i ← M2

i ∪{C}, BEs1 ← BEs1∪σ(C), BEs2 ← BEs2∪C
return M1

i , M2
i ,BEs1,BEs2

Fast Exclusion of Non-symmetric BEs. If only one independent module was
found in Step 2, then the symmetries must be computed by an exhaustive search.
However, we can exclude infeasible permutation candidates early on by using
Lemma 1. Two BE with different numbers of occurrences in CD cannot be sym-
metric and thus, all permutations containing such mappings are excluded.

Example 4 (Identify symmetries). Continuing Example 3, we find the symmetry
σ1 = (AF)(BG)(CH)(DI)(EK) between independent modules M1 and M2. As
a result, the symmetric set M2 of MCSs will not be considered in the remainder.
We continue by searching for symmetries within M1 according to M1. Candidate
permutations such as (AC) are quickly excluded, because count(A) = 1 �= 2 =
count(C). In the end, symmetry σ2 = (AE)(CD) is found.

Step 4: Split MCSs Using Symmetries. A symmetry σ found in the previous
step can be used to split the MCSs Mi. We restrict ourselves to splits into two
parts here, but more parts work in the same manner. A successful split creates
two symmetric subsets M1

i and M2
i of Mi with σ(M1

i) = M2
i .

Algorithm 2 describes the split of the MCSs Mi according to a symmetry
σ ∈ SCD

. Initially, the queue Q contains all MCSs from CD. For each MCS C
we compute the symmetric MCS σ(C). If C is symmetric to itself (C = σ(C)),
a split would add the same MCS to both parts. As this would only increase the
size of the resulting FTs, we do not proceed further. If both MCSs are distinct,
we add C to the set of MCSs with which it shares the most BE. For example, we
add C to M1

i if |C ∩ BEs1| ≥ |C ∩ BEs2|. By this choice, we ensure that adding
C to M1

i does not add too many new BE to BEs1 and we keep the number of
shared BE between BEs1 and BEs2 small.

Data-Driven Inference of FT Models Exploiting Symmetry 55

Note that the split can still yield two parts which share a significant amount
of BE. Composing the two resulting FTs can therefore yield an FT which is
larger than the single FT inferred without the split. However, the composed FT
will capture the symmetric structure present in the given MCSs.

Example 5 (Split the MCSs). We continue with symmetry σ2 = (AE)(CD) and
MCSs M1 = {{A,C} , {B,C} , {B,D} , {D,E}} from Example 4. We start the
algorithm with MCS {A,C}. The symmetric MCS is σ({A,C}) = {D,E}. The
first split yields M1

1 = {{A,C}} and M2
1 = {{D,E}}. The next MCS {B,C} is

added to M1
1 because they both share BE C. The final split is:

M1
1 = {{A,C} , {B,C}} BEs1 = {A,B,C} ,

M2
1 = {{D,E} , {B,D}} BEs2 = {B,D,E} .

The split corresponds to the purple and dark blue sub-trees in Fig. 2.

Step 5: Infer FT. If no further partitioning of the MCSs Mi w.r.t. Steps 2–4
is possible, we use existing techniques to infer an FT from the (reduced) MCSs.
SymLearn is modular and supports the use of any learning approach in this
step, for example, based on genetic algorithms [14] or Boolean logic [13]. In our
setting, we use the multi-objective evolutionary algorithm FT-MOEA [10].

FT-MOEA starts in the first generation by default with two parent FTs:
one FT consists of an AND-gate connected to all BEs, and the other one uses
an OR-gate. In each generation, several genetic operators are applied which ran-
domly modify the FT structure. Each FT is evaluated according to three metrics
given in Sect. 3: size of the FT |F|, error based on the failure data set (φd),
and error based on the set of MCSs (φc). The aim is to minimize the multi-
objective function (|F|, φd, φc) by applying the Elitist Non-dominated Sorting
Genetic Algorithm (NSGA-II) [6] and obtain the Pareto sets. Only the best can-
didates according to the metrics are then passed to the next generation. The
algorithm stops if no improvement was made in a given number of generations
and returns the FTs ordered according to the multi-objective function.

Example 6 (FT-MOEA). Given the MCS {{A,C} , {B,C}}, we use FT-MOEA
to infer a FT. The resulting FT is the sub-tree indicated by purple color in Fig. 2.

Step 6: Copy Symmetric FTs. After obtaining an FT FM for MCSs M , we
obtain the symmetric FT FM ′ for the symmetric MCSs M ′ = σ(M) by copying
FM and replacing each BE b with its symmetric BE σ(b). The original and the
symmetric FT are then joined under an OR-gate.

56 L. A. Jimenez-Roa et al.

Fig. 4. Visualization of case studies TS2, TS3 and SC.

Example 7 (Copy symmetric FT). We continue with Example 6. Copying the
purple sub-tree in Fig. 2 and applying symmetry σ2 = (AE)(CD) yields the
symmetric (dark blue) FT. Joining both FTs with an OR-gate yields Module 1.

5 Experimental Evaluation

Table 2. Overview of case studies.

Case #BEs |D| |CD|
SC 6 64 4

SS 10 1024 8

TS1 10 1024 16

TS2 24 16 777 216 26

TS3 20 1 048 576 18

We implemented the SymLearn method-
ology in a Python toolchain, available at
zenodo.org/record/5571811, and evaluate
our approach on five case studies, see
Table 2: Cases SC and SS are two small
systems, depicted in Fig. 4c (case SC) and
running example of Fig. 2 (case SS). We also
consider three truss system models.

Truss System Cases. Truss systems are commonly used in civil infrastruc-
tures such as roofs, transmission towers, and bridges, see Fig. 5a. Truss systems
are composed of elements connected by nodes, generating rigid bodies with the
elements acting under tensile stresses.

Truss systems feature a high degree of symmetry and a modular structure.
Moreover, as elaborated below, they allow us to obtain the failure data sets via
structural analysis (similar to [2]). Therefore, we consider truss systems to be a
very suitable model to evaluate SymLearn in a realistic setting.

We use three truss system variants: Cases TS1 (Fig. 5a) and TS2 (Fig. 4a)
are typical configurations in bridges, while Case TS3 (Fig. 4b) is found in roofs.
Note that Case TS1 contains no independent modules, whereas TS2 and TS3
contain four and two modules, respectively.

Generation of Failure Data Set. Based on case TS1 (Fig. 5) we explain how
we use numerical truss system models to generate complete failure data sets. TS1
consists of 10 elements (interpreted as BEs), and two symmetric loads applied on
the control nodes. We model damage by reducing close to zero the cross-sectional
area of at least one element in the truss system model, and by determining the
displacements and stresses in the components due to the applied loads at the

https://zenodo.org/record/5571811

Data-Driven Inference of FT Models Exploiting Symmetry 57

Fig. 5. Example case TS1 modeling a symmetric truss bridge system. (a) Model.
(b) Depiction of failure/no-failure states. (c) FT inferred by FT-MOEA. (d) FT inferred
by SymLearn. Top corresponds to the truss system instability. (Color figure online)

nodes of the numerical model. We generate a synthetic failure data set D by
randomly drawing 106 data points for the status of elements in the truss model
via Monte Carlo simulation, and evaluating structural instability (S.I.) based on
the displacement of control nodes.

Experimental Setup. We compare the SymLearn tool with 3 different back-
ends in Step 5, to infer the FT from data.

– FT-MOEA is used in 4 different settings: (1) All is the default setting using
both modules and symmetries; (2) No Sym is All but without symmetries;
(3) No rec. is All but without recursive calls for further sub-division; (4) FT-
MOEA is the original implementation [10] without modules and symmetries.

– Espresso translates a set of MCSs CD into a Boolean formula
∨

C∈CD

∧
b∈C b

and simplifies it via the ESPRESSO algorithm [1] available in pyeda1. The
resulting formula is then translated into an FT.

– Sympy is similar to Espresso but uses the sympy library2 for simplification.

We ran all case studies three times on a CPU with 2.3 GHz and 8 GB of RAM.

1 https://pyeda.readthedocs.io/en/latest/2llm.html.
2 https://docs.sympy.org/latest/modules/logic.html.

https://pyeda.readthedocs.io/en/latest/2llm.html
https://docs.sympy.org/latest/modules/logic.html

58 L. A. Jimenez-Roa et al.

Results. We compare the FTs for case TS1 inferred via FT-MOEA (Fig. 5c) and
via SymLearn in configuration All (Fig. 5d). Colors depict the connections of the
BEs to the components in Fig. 5a. SymLearn identified the symmetry (between
yellow and blue BE) and was able to infer the left subtree using FT-MOEA while
the right subtree was obtained by simple mirroring.

Fig. 6. Results for the case studies and different metrics: (a) error φc based on the
MCSs, (b) error φd based on data set, (c) FT size |F|, and (d) runtime.

The box charts in Fig. 6 compare the different configurations in all five cases
w.r.t. the three metrics in Sect. 3: the size |F| of the FT, the error φd based on
the failure data set, and the error φc based on the MCSs. From Fig. 6a and 6b, we
see that the SymLearn configurations based on Boolean functions as a back-end
(i.e., Espresso and Sympy) always yield an FT that exactly matches the input,
i.e., φc = φd = 0. This is expected since the Boolean logic formula perfectly
encodes all the MCSs. In contrast, the other configurations using FT-MOEA
did not always yield a completely accurate FT (i.e., φc, φd > 0.0), for example,
case TS1. The error stems from the multi-objective optimization which also aims
to provide a small FT and the evolutionary algorithm which can fall into local
optima. However, for the cases TS2 and TS3 (with independent modules), all
configurations of SymLearn (All, No Sym, No rec.) outperformed FT-MOEA by
returning an FT that accurately reflects the input (φc = φd = 0.0). This shows
the clear benefit of subdividing the problem using independent modules.

Data-Driven Inference of FT Models Exploiting Symmetry 59

Figure 6c shows the advantage of using FT-MOEA as a back-end compared to
Boolean logic, since the sizes of the returned FTs can be considerably smaller.
The FTs inferred using Espresso or Sympy can be twice as large as the ones
resulting from FT-MOEA. The reason is that for the Boolean logic formulas,
no simplifications were performed by the libraries and the resulting FTs are
therefore exactly encoding all the MCSs. Notice that the original FT-MOEA
yields smaller or equal FT sizes than any of the configurations of SymLearn. This
smaller size can however also come at the cost of losing accuracy, as demonstrated
by case TS2. The larger FTs in SymLearn mostly stem from the composition
of partitions where shared BE occur in both sub-trees, see for example Fig. 5c
and 5d. While explicitly capturing the symmetries can therefore increase the size
of the resulting FT, it also provides more insights into the system.

Figure 6d shows that SymLearn (All) runs significantly faster than FT-
MOEA alone. If independent modules are present (cases TS2, TS3, SC and SS),
SymLearn yields an FT within at most 2 min while FT-MOEA requires at least
1 h. The benefit of exploiting symmetries and modules can also be seen when
comparing configuration All to No Sym and No. rec. which both run longer.
Note that for SymLearn nearly all computation time is spent in the FT-MOEA
backend (Step 5). Computing the modules and symmetries (Steps 2–4) took
50 ms at most whereas the computation of the MCSs (Step 1) took 43 s at most
(for case TS2). Configurations based on Boolean functions always yield a result
within minutes, but yield significantly larger FTs.

6 Conclusions

We presented SymLearn, a data-driven algorithm that infers a Fault Tree model
from given failure data in a fully automatic way by identifying and exploiting
modules and symmetries. Our evaluation based on truss system models shows
that SymLearn is significantly faster than only using evolutionary algorithms
when modules and symmetries can be exploited.

In the future, we aim to further improve the scalability by optimizing the
inference process. First, the current partitioning of the MCSs requires the top
gate to be an OR-gate. We aim to support the AND-gate as well. In addition, the
inference back-end can be improved by either optimizing FT-MOEA or devel-
oping new inference approaches.

We also plan to relax restrictions on the input data. In the current approach,
the resulting FTs are only as good as the given input data, which may be incom-
plete, e.g., due to rare events not present in the data. Moreover, the input may
not completely represent the reality due to noise in the data. Hence, we aim to
extend our approach to account for missing information and noise.

Acknowledgment. We thank Milan Lopuhaä-Zwakenberg for useful comments on an
earlier version of this paper.

60 L. A. Jimenez-Roa et al.

References

1. Brayton, R.K., Hachtel, G.D., McMullen, C.T., Sangiovanni-Vincentelli, A.L.:
Logic Minimization Algorithms for VLSI Synthesis. The Springer International
Series in Engineering and Computer Science, vol. 2. Springer, New York (1984).
https://doi.org/10.1007/978-1-4613-2821-6

2. Byun, J., Song, J.: Efficient probabilistic multi-objective optimization of complex
systems using matrix-based Bayesian network. Reliab. Eng. Syst. Saf. 200, 106899
(2020)

3. Carpignano, A., Poucet, A.: Computer assisted fault tree construction: a review of
methods and concerns. RESS 44(3), 265–278 (1994)

4. Coudert, O.: Two-level logic minimization: an overview. Integration 17(2), 97–140
(1994)

5. De Vries, R.C.: An automated methodology for generating a fault tree. IEEE Trans.
Reliab. 39(1), 76–86 (1990)

6. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

7. Dutuit, Y., Rauzy, A.: A linear-time algorithm to find modules of fault trees. IEEE
Trans. Reliab. 45(3), 422–425 (1996)

8. Hunt, A., Kelly, B., Mullhi, J., Lees, F., Rushton, A.: The propagation of faults in
process plants: 6, overview of, and modelling for, fault tree synthesis. RESS 39(2),
173–194 (1993)

9. Jiang, J.H.R., Devadas, S.: Logic synthesis in a nutshell. In: Electronic Design
Automation, pp. 299–404. Elsevier, Amsterdam (2009)

10. Jimenez-Roa, L.A., Heskes, T., Tinga, T., Stoelinga, M.: Automatic infer-
ence of fault tree models via multi-objective evolutionary algorithms. CoRR
abs/2204.03743 (2022)

11. Joshi, A., Vestal, S., Binns, P.: Automatic generation of static fault trees from
AADL models (2007)

12. Lapp, S.A., Powers, G.J.: Computer-aided synthesis of fault-trees. IEEE Trans.
Reliab. 26(1), 2–13 (1977)

13. Lazarova-Molnar, S., Niloofar, P., Barta, G.K.: Data-driven fault tree modeling for
reliability assessment of cyber-physical systems. In: WSC. IEEE (2020)

14. Linard, A., Bucur, D., Stoelinga, M.: Fault trees from data: efficient learning with
an evolutionary algorithm. In: Guan, N., Katoen, J.-P., Sun, J. (eds.) SETTA 2019.
LNCS, vol. 11951, pp. 19–37. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-35540-1 2

15. Linard, A., Bueno, M.L., Bucur, D., Stoelinga, M.: Induction of fault trees through
Bayesian networks. In: ESREL, pp. 910–917. Research Publishing (2019)

16. Madden, M.G., Nolan, P.J.: Generation of fault trees from simulated incipient fault
case data. WIT Trans. Inf. Commun. Technol. 6 (1994)

17. Mahmud, N., Mian, Z.: Automatic generation of temporal fault trees from AADL
models. In: ESREL, pp. 2741–2749 (2013)

18. Mhenni, F., Nguyen, N., Choley, J.: Automatic fault tree generation from SysML
system models. In: AIM, pp. 715–720. IEEE (2014)

19. Murray, C.D., Williams, R.R.: On the (non) NP-hardness of computing circuit
complexity. Theory Comput. 13(1), 1–22 (2017)

20. Nauta, M., Bucur, D., Stoelinga, M.: LIFT: learning fault trees from observational
data. In: McIver, A., Horvath, A. (eds.) QEST 2018. LNCS, vol. 11024, pp. 306–
322. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99154-2 19

https://doi.org/10.1007/978-1-4613-2821-6
https://doi.org/10.1007/978-3-030-35540-1_2
https://doi.org/10.1007/978-3-030-35540-1_2
https://doi.org/10.1007/978-3-319-99154-2_19

Data-Driven Inference of FT Models Exploiting Symmetry 61

21. Powers, G.J., Tompkins, F.C., Jr.: Fault tree synthesis for chemical processes.
AIChE J. 20(2), 376–387 (1974)

22. Robert, P., Escoufier, Y.: A unifying tool for linear multivariate statistical methods:
the rv- coefficient. J. Roy. Stat. Soc. Ser. C (Appl. Stat.) 25(3), 257–265 (1976)

23. Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in
modeling, analysis and tools. Comput. Sci. Rev. 15, 29–62 (2015)

24. Salem, S.L., Apostolakis, G., Okrent, D.: Computer-oriented approach to fault-tree
construction. Technical report, California University (1976)

25. Stamatelatos, M., Vesely, W., Dugan, J., Fragola, J., Minarick, J., Railsback, J.:
Fault tree handbook with aerospace applications (2002)

26. Taylor, J.: An algorithm for fault-tree construction. IEEE Trans. Reliab. 31(2),
137–146 (1982)

27. Waghen, K., Ouali, M.: Interpretable logic tree analysis: a data-driven fault tree
methodology for causality analysis. Expert Syst. Appl. 136, 376–391 (2019)

28. Waghen, K., Ouali, M.: Multi-level interpretable logic tree analysis: a data-driven
approach for hierarchical causality analysis. Expert Syst. Appl. 178, 115035 (2021)

29. Wang, J., Liu, T.: A component behavioural model for automatic fault tree con-
struction. RESS 42(1), 87–100 (1993)

30. Xiang, J., Yanoo, K., Maeno, Y., Tadano, K.: Automatic synthesis of static fault
trees from system models. In: SSIRI, pp. 127–136. IEEE Computer Society (2011)

31. Xie, G., Xue, D., Xi, S.: Tree-expert: a tree-based expert system for fault tree
construction. RESS 40(3), 295–309 (1993)

Assurance Cases

ARACHNE: Automated Validation
of Assurance Cases with Stochastic

Contract Networks

Chanwook Oh1(B), Nikhil Naik1, Zamira Daw2, Timothy E. Wang2,
and Pierluigi Nuzzo1

1 University of Southern California, Los Angeles, CA, USA
{chanwooo,nikhilvn,nuzzo}@usc.edu

2 Raytheon Technologies Research Center, Berkeley, CA, USA
{zamira.daw,timothy.wang}@rtx.com

Abstract. We present ARACHNE, a framework for the automated,
compositional validation of assurance cases (ACs), i.e., structured argu-
ments about the correctness or safety of a design. ARACHNE leverages
assume-guarantee contracts, expressed in a stochastic logic formalism,
to formally capture AC claims (guarantees) subject to their contexts
(assumptions) as well as the sources of uncertainty associated with them.
Given an AC, modeled as a hierarchical network of stochastic contracts,
and a library of confidence models, expressed as a set of Bayesian net-
works, we propose a procedure that coordinates logic and Bayesian rea-
soning to check that the AC argument is sound and quantify its strength
in terms of a confidence measure. The effectiveness of our approach is
illustrated on case studies motivated by testing and validation of airborne
and automotive system software.

Keywords: Assurance cases · Confidence assessment · Bayesian
networks

1 Introduction

Stringent regulations govern the operation of software-controlled, engineered sys-
tems in safety-critical applications, and their deployments are the results of a
lengthy certification process, where a great amount of evidence about a product
and its development process is collected and presented to human evaluators to
validate if the product conforms with the qualification criteria stipulated by a
regulatory agency. Design assurance is usually advocated by arguing compli-
ance with a set of standards such as ISO-26262 [1] in the automotive and DO-
178C [2] in the aerospace industry, laying down comprehensive guidelines for
system development, testing, and certification. However, enforcing regulatory
compliance of complex cyber-physical systems operating in dynamic, uncertain
environments remains an uphill task [3]. The high cost and low flexibility of
certification processes tend to impede the timely adoptions of new technologies
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Trapp et al. (Eds.): SAFECOMP 2022, LNCS 13414, pp. 65–81, 2022.
https://doi.org/10.1007/978-3-031-14835-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14835-4_5&domain=pdf
https://doi.org/10.1007/978-3-031-14835-4_5

66 C. Oh et al.

and the recent rise of networked, artificial intelligence-enabled systems [4] brings
another dimension of design challenge.

Assurance cases (ACs) are an emerging method for providing comprehensive
and defensible arguments that a design satisfies the properties of interest [5,6].
They show the promise of bridging the gap between the body of evidence and the
assessment of the safety and dependability of a system via structured argumen-
tation that facilitates critical examination of the evidence, premises, and claims
toward the fulfillment of the system requirements. By leveraging structured lan-
guages or graphical representations [7,8], ACs enable recourse for review and
reuse of argumentation patterns to promote system correctness or establish safety
claims [9]. However, the creation of rigorous and interpretable arguments is non-
trivial, and only a number of attempts have been made toward formalisms and
tools that can assist in this task [10,11].

A major challenge in the construction and validation of ACs stems from their
inductive nature [6] and the need to combine reasoning about system properties,
often formalized by logic languages, with system and process uncertainty, often
captured by probabilistic formalisms. While grounding the texture of an AC to
the principles of logic and deductive reasoning goes a long way toward enhancing
their rigor [12], ACs conspicuously rely on confirmatory evidence. Their objective
is to convey a persuasive argument in fulfillment of a set of desired specifications
with high confidence as a result of the mitigation of multiple sources of uncer-
tainty in the environment, the system, and the development process. Combining
probabilistic inference with logic inference brings difficulties due to the differ-
ent mathematical foundations of logic and probability. Another challenge to AC
formalization lies in the highly heterogeneous nature of the evidence and the
associated sources of uncertainty, ranging from aleatoric1 to epistemic uncer-
tainty.2 As a result, the rendering of the argumentation involved in validating
the top-level claims may be susceptible to human bias [13].

This paper aims to address the above challenges by introducing ARACHNE
(Automated Rapid Assurance via Compositional and Hierarchical Net Evalua-
tion), a formal, compositional framework for representing and validating ACs.
Our contributions can be summarized as follows:

– We introduce stochastic assume-guarantee (A/G) contracts as a semantic unit
for AC representation to capture the claims and their premises as well as the
confidence associated with them. Contract operations and relations are used
to represent complex argumentation structures.

– We introduce confidence networks as a formalism to represent and quantify
the level of uncertainty and confidence associated with predicates about a
system and its development process given the available evidence.

1 Due to randomness in the system or process, often quantified via objective measures
from statistics (e.g., number of heads out of n tosses of a coin).

2 Uncertainty about the system or process (e.g., whether a coin is fair or not), often
captured by subjective measures of belief.

ARACHNE: Automated Validation of Assurance Cases 67

– We propose a decision procedure that efficiently coordinates logic and proba-
bilistic reasoning to check the validity of an argument and evaluate its overall
strength.

To the best of our knowledge, this is the first computer-aided framework for AC
validation and confidence assessment via a coordination of probabilistic reason-
ing for uncertainty quantification and logic reasoning for hierarchical refinement
of arguments.

Related Work. Graydon et al. [13] surveyed multiple proposals for quantifying
confidence in assurance arguments leveraging different uncertainty quantification
frameworks [14–18], revealing a number of potential shortcomings in existing
approaches. For example, a confidence metric may fall short of accounting for
missing or contrary information which may be masked by the overall confidence
score at the top-level claim, thus undercutting the sensitivity of the metric to
critical evidence. Similarly, assigning equal weights to all the evidence items
irrespectively of their impact on the overall system reliability may also lead to
implausible results. In this paper, we adopt Bayesian reasoning [19] for quantify-
ing confidence values. However, our method can circumvent these issues since it
does not exclusively rely on probabilistic inference to determine the confidence
of the top claim. It rather adopts a hierarchical approach where probabilis-
tic reasoning, performed locally, is combined with logic reasoning, performed
globally on the AC. Moreover, we introduce a two-stage design of the confi-
dence assessment algorithm coupling an uncertainty quantification step with a
decision-making step, offering mechanisms to appropriately weigh different evi-
dence items and discount unreliable evidence with low confidence (high risk)
levels.

Prevailing approaches to propagate probabilistic assessments through the
reasoning steps of an argument either bound the uncertainty of the conclusion
with the sum of the uncertainties of the premises, or assume that top-level claims
always follow from the conjunction of subclaims [20]. Conversely, our confidence
computation and propagation approach based on contracts can better account
for the dependencies among sources of uncertainty, the logical form of the rea-
soning steps, and their relationship with the system architecture, components,
context, and the overarching system properties.

2 Background

Assurance Cases. An assurance case (AC) is an argument constructed to
establish that a system satisfies the requirements in its operative environment
by means of hierarchical steps which map a claim to evidence via strategies
and intermediary claims [6,11]. ACs are often described using a structured lan-
guage [21] or graphical notations such as the Claims-Arguments-Evidence (CAE)
notation [7] and the Goal Structuring Notation (GSN) [8]. An AC can then be
represented as a directed acyclic graph mapping the system specification (the
top-level claim) from the root node to the leaf nodes, representing the evidence.

68 C. Oh et al.

Commercially available software tools [22,23] implement GSN (or CAE) pat-
tern libraries, providing a limited degree of automation for representation and
validation of ACs. However, some elements of the semantics in these tools are
not well-defined in their respective conventions, leaving room for an individual
developer to clarify them [6]. The characterization of refinement steps between
claims, whether they are inductive or deductive, often lacks rigor, opening the
door for confirmation bias [11]. We address these concerns by leveraging con-
tract operations to solidify the relationship between claims, allied with Bayesian
reasoning to assess their strength.

Assume-Guarantee Contracts. A/G contracts offer effective mechanisms to
analyze system requirements and behaviors in a modular way [24–27]. We use
A/G contracts as a specification formalism to represent claims about the system
as well as the contexts under which the claims must hold. An A/G contract
C is a triple (V,A,G) where V is the set of variables, A (assumptions) is a
specification for an environment over V , and G (guarantees) is a specification
for an implementation over V , representing the set of promised behaviors given
that the environment satisfies A. We omit V in the contract tuple, when this is
clear from the context.

A contract C is compatible if there exists a valid environment for it, i.e., A is
satisfiable, and consistent if there exists a valid implementation, i.e., A → G is
satisfiable. We can reason about the replaceability of a contract (or a claim) by
another contract at a different level of abstraction via the refinement relation. We
say that C2 refines C1, written C2 � C1, if and only if C2 has weaker assumptions
and stronger guarantees than C1. We can then replace C1 with C2. Contracts
C1 and C2 can also be combined using conjunction (C1 ∧ C2) and composition
(C1⊗C2) to construct a more complex claim from two simpler claims on the same
component or on different components of an argument, respectively. We refer to
the literature [24,25] for further details on the formal semantics of contracts and
their algebra.

3 Assurance Cases as Contract Networks

We propose a formal model to represent ACs where A/G contracts are used as a
semantic unit. First, we introduce a logic language for expressing A/G contracts,
then discuss the formalization of an AC as a graph of contracts.

3.1 Stochastic Propositional Logic

We introduce stochastic propositional logic (StPL) as an extension of proposi-
tional logic, building on previous notions of unification between logic and proba-
bility [28–30]. Let X = {X1, . . . , Xn} be a set of Boolean random variables (RVs)
and (Ω,F ,P) a reference probability space, where the set of outcomes Ω = A(X)
is given by the set of value assignments over X , F = 2Ω is a set of events, and
P : F → [0, 1] is the probability measure induced by the joint distribution d over

ARACHNE: Automated Validation of Assurance Cases 69

X , d : A(X) → [0, 1], with
∑

a∈A(X) d(a) = 1. StPL formulas are defined over
the set of RVs X and interpreted over the probability measure P.

Let φ be a propositional formula over X , constructed by combining the
Boolean RVs via logical connectives, e.g., X1 → (X2 ∧ X3). We denote the
Boolean values true and false by � and ⊥, respectively. We define a probabilis-
tic atomic predicate (AP) of the form φ[p] := P(φ) ≥ p, where p ∈ [0, 1] is a
probability threshold. The truth value of φ[p] is interpreted based on the satisfac-
tion of the probabilistic constraint, i.e., φ[p] = � if and only if φ = � holds with
probability larger than or equal to p. The syntax of StPL is then defined as fol-
lows: ψ := φ[p] | ¬ψ | ψ1 ∨ψ2, where ψ, ψ1, ψ2 are StPL formulas. The semantics
are defined recursively as: X |= φ[p] ↔ P(φ) ≥ p, X |= ¬ψ ↔ ¬(X |= ψ), and
X |= ψ1 ∨ ψ2 ↔ (X |= ψ1) ∨ (X |= ψ2), where ↔ is the logical bi-implication.

An StPL formula ψ can be determinized to a propositional formula ψ̃ by
replacing every probabilistic AP φ

[pi]
i in ψ with the propositional formula φi.

For example, ψ1 := (X1 ∧ X2)[0.98] ∧ (X3 ∨ X4)[0.9] can be determinized to
ψ̃1 := (X1 ∧ X2) ∧ (X3 ∨ X4).

3.2 Hierarchical Stochastic Contract Networks

We express the assumptions and guarantees of a contract using StPL formulas
to specify probabilistic behaviors over X . We denote the stochastic contract by
C = (X , ψA, ψG). The main contract operators can then be mapped to logical
operations and entailments between formulas [31]. Given a stochastic contract
C, we define the determinized version of C, denoted by C̃, as the contract whose
assumption and guarantee formulas are determinized versions of ψA and ψG, ψ̃A

and ψ̃G, respectively. Then, we can associate a notion of confidence in the claim
captured by a stochastic contract as follows.

Definition 1 (Contract Confidence). Let C = (X , ψA, ψG) be a stochastic
contract and C̃ = (X , ψ̃A, ψ̃G) be its determinized version. The confidence C(C)
in C is C(C) := P(ψ̃A → ψ̃G).

By extending a formal model developed largely concurrently in the context of
hierarchical contract-based synthesis [32], we represent an argumentation step
as a graph of interconnected stochastic contracts, termed stochastic contract
network. Let a connection be a formula of the form γi := X1 ↔ X2, establishing
that two RVs X1 and X2 are shared (or connected).

Definition 2 (Stochastic Contract Network). A stochastic contract net-
work (SCN) N is a triple (C, γ, ‖) where C = {C1, C2, · · · } is a finite set
of stochastic contracts, γ = {γ1, γ2, · · · } is a finite set of connections, and
‖∈ {⊗,∧} is a contract operation.

An SCN N is equivalent to a single contract CN = C1 ‖ · · · ‖ C|C| ‖ (�, γ1) ‖
· · · ‖ (�, γ|γ|) where |C| and |γ| are the cardinality of C and γ, respectively.
It can represent either a collection of interconnected claims on different compo-
nents of the argument (via composition) or claims on the same component (via

70 C. Oh et al.

conjunction). Further, we can relate stochastic contracts and SCNs via a weaker
notion of refinement, termed conditional refinement.

Definition 3 (Conditional Refinement). A conditional refinement R is a
tuple (Cu, ϕ, Cl) where Cu and Cl are stochastic contracts and ϕ is a propo-
sitional formula, termed context formula. Cl refines Cu in the context of ϕ,
written, Cl �ϕ Cu if and only if Cl � Cu when ϕ holds, i.e., ϕ → (Cl � Cu).

Cl may not refine Cu in general, but it does so under the restrictions imposed
by ϕ. A context formula can then be used to model, for example, a “side condi-
tion” that is necessary for the correctness of an argumentation step in an AC. The
third element Cl of a conditional refinement R can be represented as a contract
CN that is equivalent to an SCN N . In this case, we write R = (Cu, ϕ,N) with
a slight abuse of notation. Finally, stepwise refinements of higher-level claims
into lower-level claims can be captured by graphs of SCNs, termed hierarchical
stochastic contract networks.

Definition 4 (Hierarchical SCN). A hierarchical stochastic contract net-
work (HSCN) H is a triple (N0,N,R), where N0 is the top-level SCN, N =
{N1, N2, · · · } is a finite set of SCNs, and R = {R1, R2, · · · } is a finite set of
conditional refinements. Each conditional refinement in R connects a stochastic
contract in Ni ∈ N ∪ {N0} with a SCN Nj ∈ N with j �= i.

N0 in Definition 4 represents the top-level claim (contract) that is not linked
by refinement relations to a contract of any SCN in N. HSCNs are trees of
contract networks that enable relating claims at different levels of the argument
hierarchy to the argumentation steps that support them. For example, the HSCN
H = (N0, {N1}, {R0}) in Fig. 1a represents an AC that argues that a claim (con-
clusion) about a software module can be drawn from two sub-claims related to
two testing activities. The contract network N0 includes a contract, test, captur-
ing the top-level claim that “the software module meets the design criterion via
multiple testing activities,” while N1 includes two contracts test1 and test2, each
capturing the sub-claim that “the software module meets the design criterion via
testing activity 1 (or 2).” The conditional refinement R0 := (N0, ϕ0, N1) models
the fact that the claim in test is supported by an argument N1 involving two
contracts (sub-claims), test1 and test2, in a context where ϕ0 holds. Within N1,
connections between contracts are denoted by shared variables, e.g., correctSpec.
For simplicity, we represent contracts with their determinized versions. We then
resort to the stochastic versions as we assign confidence values to the contract
predicates, computed using confidence networks.

3.3 Confidence Networks

We use confidence networks to represent the sources of uncertainty in the pred-
icates about a system, its development process, and the associated evidence. In
this paper, confidence networks are implemented as Bayesian networks (BNs)
which have been used in many application domains to quantitatively reason

ARACHNE: Automated Validation of Assurance Cases 71

Fig. 1. A generic argumentation template for structural coverage formalized using an
HSCN (a) together with the associated confidence network (b).

about the confidence in assertions affected by uncertainty [33], especially in the
presence of a causal relationship between them. Models based on BNs tend to be
more compact in the number of uncertain variables than in other probabilistic
frameworks for uncertainty quantification [34]. Our framework can, however, be
extended, as future work, to incorporate other approaches, such as the one based
on Dempster-Shafer theory [15], providing confidence measures that are closely
related to probability distributions.

In a BN, the sources of uncertainty are modeled using RVs. The BN itself
is a graph representation of the joint probability distribution of a set of RVs,
associated with the graph nodes, where the edges and the associated conditional
probabilities capture the dependencies between nodes, i.e., specify whether and
by which extent two variables may affect each other’s distribution. For example,
the BN template in Fig. 1b encapsulates notions from testing to express the key
correlations between the outcome of a test and the quality of the artifacts (e.g.,
test procedure, test oracle) produced during the development and testing steps.
The confidence in the testing result (testResult) can then be computed based
on the beliefs in the quality of the testing procedure (correctProcedure), the
testing oracle (correctOracle), and the quality of the actual software module

72 C. Oh et al.

HSCN
Candidate

Valid HSCN
or

Infeasibility
Certificate

AC Logic
Soundness Checking

Confidence
Networks

Confidence Assessment

Decision
Making

Confidence
Computation

Confidence
Propagation

AC Validation

Fig. 2. AC validation methodology.

(correctModule), even if this is unknown a priori. The confidence in the oracle
depends, instead, on the uncertainty about the underlying assumptions that
support its construction or the sources of doubt that can defeat its soundness.
Similar considerations hold for the testing procedure. Finally, both the quality
of the software module (correctModule) and the test oracle (correctOracle)
depend on the quality of the requirements (correctSpec). This BN template
allows computing confidence values for some of the contracts in Fig. 1a, e.g.,
test1, test2, and associated predicates, e.g., conclusion1, correctSpec.

BNs can incorporate aleatoric and epistemic uncertainty, and allow com-
bining multiple evidence items. For example, via the conditional probability
P (conclusion|testResult), the BN template in Fig. 1b can capture the depen-
dency on the confidence in the result of the test (a source of aleatoric uncer-
tainty), as well as the belief (subjective probability) in the quality of the test
procedure, oracle, and the specification (a source of epistemic uncertainty).

Confidence networks can be constructed based on domain expert knowledge,
e.g., via an elicitation and calibration process, and can also account for lack of
knowledge, using methods from Bayesian epistemology [6,35]. The objective of
confidence models is not to approximate the “probability of correctness” (e.g.,
absence of bugs) of a design, which is difficult in practice, but rather estimate
the amount by which the evidence is convincing enough to support a claim, e.g.,
by drawing from the knowledge base underlying testing or formal verification, to
guide the construction of arguments in the direction of mitigating the underlying
sources of uncertainty or doubt.

4 Assurance Case Validation

We denote a contract of the HSCN which is not linked via conditional refinement
to any other SCN in the HSCN as an evidential contract. For example, contracts
test1, and test2 in Fig. 1a are evidential contracts, while test is not. The HSCN
validation problem can be defined as follows:

Problem 1 (HSCN Validation). Given an HSCN H = (N0,N,R) and a
library (collection) of confidence networks L, let C0 be the top-level contract in
N0 and δ∗ ∈ [0, 1] the minimum required confidence for C0. Let the contracts in
H be defined over a set of RVs X distributed according to the confidence networks
in L and let φi ∈ Ri hold for all i ∈ {1, . . . , |R|}. The HSCN validation problem
consists in verifying that C(C0) ≥ δ∗ holds.

ARACHNE: Automated Validation of Assurance Cases 73

Problem 1 simultaneously requires that: (1) the argument given by H be
sound, and (2) the confidence in the evidential contracts, inferred from the con-
fidence networks in L, be sufficient to support the top-level claim with confidence
at least δ∗. We address this problem by coordinating logic and probabilistic rea-
soning, as shown in Fig. 2.

4.1 Checking the Soundness of an HSCN

We evaluate the soundness of the logical argumentation steps by recursively
traversing the HSCN graph using a depth-first-search approach, and by check-
ing compatibility, consistency, and refinement between contracts hierarchically.
These verification tasks are translated into satisfiability problems for satisfia-
bility modulo theory (SMT) formulas in first order logic. When checking the
soundness of an evidential contract claim based on the evidence, we assume a
deterministic interpretation of the contract predicates, in which the availability
of evidence, i.e., a matching node in a confidence network, is sufficient to deter-
mine whether an assertion is true or false. For example, the confidence network
in Fig. 1b with i = 1 is a matching network for contract test1 of N1 since all the
propositions in the contract, i.e., assumption1,1, assumption1,2, correctSpec1,
and conclusion1 can be found in the confidence network. If such a network is
found in the library, then all the propositions of test1 are assumed to be true
in this phase of the validation process. If at least one of the evidential contracts
cannot be supported by evidence, the HSCN is marked as infeasible. Similarly, if
one of the refinement relations fails to hold, we return an infeasibility certificate
reporting the relation that is invalid. Otherwise, we conclude that the HSCN is
logically sound and proceed with assessing its confidence level.

4.2 Confidence Assessment

Our two-stage confidence assessment algorithm couples quantitative probabilistic
reasoning with qualitative decision-making strategies capable of appropriately
discounting unreliable evidence with low confidence levels. We adopt a hierar-
chical approach that can achieve scalability by virtue of its modularity, as further
detailed below.

Confidence Computation. For each evidential contract, we search for a
matching confidence network in the confidence library L, which we use to per-
form probabilistic inference and determine confidence values for the contract
predicates. Once a confidence network is found, we assign confidence values to
the evidential contract predicates ψ̃A (assumptions) and ψ̃A → ψ̃G (guarantees
in the context of the assumptions). For example, we obtain confidence values for
test1 in Fig. 1a using the axioms of probability and probabilistic inference on the
BN in Fig. 1b. The evidential contract then turns into the following stochastic
contract:

74 C. Oh et al.

ψA := (assumption1,1 ∧ assumption1,2 ∧ correctSpec)[0.9703]

ψG := ((assumption1,1 ∧ assumption1,2 ∧ correctSpec) → conclusion1)[0.9808],

where we use the fact that P{(assumption1,1 ∧ assumption1,2 ∧ correctSpec) →
conclusion1} = 1 − P{assumption1,1 ∧ assumption1,2 ∧ correctSpec ∧
¬conclusion1}.

Decision Making. While a confidence model is useful to perform fine-grained
comparisons and sensitivity analysis, it is affected by inaccuracies and is, in gen-
eral, not sufficient to define absolute thresholds for determining whether there
is enough evidence [13]. We address this issue by combining probabilistic rea-
soning with a decision scheme that helps determine whether there is sufficient
confidence in a claim and the claim can be used to support higher-level claims
in the argumentation hierarchy.

Our decision strategy consists of the following steps: (i) coarse-grained classi-
fication of the previously computed confidence values in the evidential contracts
according to pre-determined qualitative levels, such as Low, Medium, High; (ii)
rule-based decision about the sufficiency of the evidence by combining the qual-
itative confidence levels above. For example, a simple rule may require that
the majority of the premises must have confidence level High in the stochastic
contract network. A more systematic procedure would analyze the evidential
contract premises, to check whether the confidence in the contract assumptions
is sufficient given the available evidence, or whether there is evidence that the
guarantees may not hold. Similarly to the construction of confidence networks,
our decision strategy is the result of an elicitation and calibration process based
on expert knowledge.

Fig. 3. HSCN for the correctness of a software module and table for classifying confi-
dence levels.

ARACHNE: Automated Validation of Assurance Cases 75

Confidence Propagation. If a claim in the HSCN has high enough confidence
level, the confidence levels associated with the contract propositions can be prop-
agated upward in the HSCN until the root contract is reached. We propagate
the confidence hierarchically from a lower-level SCN to its higher-level stochastic
contract by requiring that conditional refinement hold according to the calculus
of stochastic contracts and the confidence composition rules from the confidence
models. Confidence propagation can be cast as an SMT problem including poly-
nomial arithmetic constraints on the rational numbers. Otherwise, if propagation
cannot occur, the algorithm returns an infeasibility certificate, listing the sources
of uncertainty, the gaps, and the violated rule that have made it impossible to
establish one or more claims.

5 Case Studies

We implemented ARACHNE as a Python package. SMT problems are solved
using Z3 [36], while the Python package pgmpy [37] is used to capture the
confidence networks and perform Bayesian inference. Experiments are executed
on an Intel core i7 processor with 16-GB RAM.

5.1 Software Correctness Assurance

In this case study, we illustrate the advantages of our approach by comparing it
with a confidence quantification method based on translating the entire AC into
a single BN to perform probabilistic inference monolithically [14,38] and infer
a confidence measure for the top-level claim. We validate the HSCN in Fig. 3
aiming to assess the top-level claim with a confidence level δ∗ = 0.9. Multiple
sub-claims based on formal verification, requirement, and structural test cover-
age support the top-level claim that “the software module is correct,” inspired
by the prescriptions of the DO-178C standard [2]. We assume a library of con-
fidence networks supporting all the evidential contracts, including the one in
Fig. 4, a set of thresholds for classifying confidence levels as in Fig. 3, and a deci-
sion rule requiring that all the confidence values for the premises (or sub-claims)
of a claim be High for successful confidence propagation. We place a higher
weight on the outcome of decision coverage (DC), C2 of N4, than on modified
condition/decision coverage (MCDC), C1 of N4, by using a higher threshold to
determine whether the confidence for DC (0.99) is high enough. The decision
to allocate higher weight on the outcome of DC follows from the fact that the
criteria for DC are less restrictive than those for MCDC and a lower confidence
value in the outcome of DC denotes a potential flaw in the development process.

As shown in Table 1, we introduce three scenarios assigning different confi-
dence levels to predicates DCO and MCDCO in Fig. 4, stating that “the DC (or
MCDC) testing oracle is correct,” due to the available evidence. In all scenarios,
we check the soundness of the conditional refinements by solving SMT problems
and match each evidential contract to an appropriate confidence network. For
scenario 1, ARACHNE provides a confidence value of 0.9767 while inference on

76 C. Oh et al.

Fig. 4. Confidence network for C1 and C2 of N4.

Fig. 5. A single BN used to reason about the confidence in the argument of Fig. 3.

the single BN shown in Fig. 5 yields 0.9826 for the top-level claim. In both cases,
the evidence is determined as sufficient to support the claim. In scenario 2, we
assume instead that the belief in DCO decreases, e.g., due to the realization
that an outdated oracle has been used. ARACHNE identifies the low-confidence
claim C2 of N4, which has now Medium confidence, and returns a failure due
to the violation of the decision rule. On the other hand, a method using the
single BN in Fig. 5 fails to effectively isolate the potential gap: the confidence in
the top-level claim, 0.98, is still deemed as admissible (≥0.9), and the reduced
belief in DCO gets “masked” by the overall high confidence. In scenario 3, we
assume that the belief in MCDCO increases while the one in DCO decreases
symmetrically to scenario 1. In this case, the claim on DC (C2 of N4) does not
pass ARACHNE’s threshold for sufficient confidence. The confidence level in C2

of N4 is classified as Medium and the validation leads, again, to a failure due to
violation of the decision rule. On the other hand, inference on the single BN fails
to recognize the different weights placed on DCO and MCDCO. Since the con-
fidence in the top-level claim is 0.9836, the evidence is considered as sufficient
despite the different roles played by C1 and C2 of N4 in the decision-making
process. Overall, ARACHNE can circumvent the limitations of monolithic infer-
ence, including the “masking” of weak premises (as shown in scenario 2) and the
equal weighing of evidence (as shown in scenario 3) by virtue of its hierarchical
approach and propagation strategy.

ARACHNE: Automated Validation of Assurance Cases 77

Table 1. Results for the case study on software correctness.

Scenario P(MCDCO) P(DCO) Confidence level

on C1 of N4

Confidence level

on C2 of N4

Top-claim confidence

(or failure reason)

ARACHNE Single BN

1 0.99 0.995 High (0.9900) High (0.9950) 0.9767 0.9826

2 0.99 0.97 High (0.9900) Medium (0.9701) Rule violation 0.9800

3 0.995 0.99 High (0.9950) Medium (0.9900) Rule violation 0.9836

Fig. 6. HSCN for an autonomous vehicle.

5.2 Scalable Assurance for Autonomous Driving Systems

We assess the scalability of the proposed framework by constructing an HSCN
for an autonomous vehicle, as shown in Fig. 6, inspired by some of the crite-
ria proposed in the literature [39,40] to assess safety and reliability. We again
compare our approach with a method using monolithic inference on a single BN.

In the proposed AC, system hazards are mitigated via a divide-and-conquer
approach by mitigating the hazards associated with the perception sub-system
and the driving policy sub-system. The overall confidence in the performance of
the system is then computed by combining the confidence in these two legs of
the arguments. Each component in the perception sub-system operates indepen-
dently from the other components and is subject to testing methods to assess
the performance as well as fault-tree analysis against specific hazards. The driv-
ing policy is, instead, specified by a set of rules, derived from the responsibility-
sensitive safety (RSS) model [39] to guarantee that accidents will never be caused
by the autonomous vehicle in control. We assume that each RSS-derived rule can
be independently verified by a set of formal methods.

We expand the AC in Fig. 6 horizontally or vertically. In the horizontal case,
we fix the number of argumentation layers, and increase the number of compo-
nents and RSS rules to M , which results in an increased number of contracts in
N2 and N3. The total number of contracts in the HSCN is 2M + 3. Since each
evidential contract is supported by a BN with kc nodes, a single BN modeling
the same argument has 2M(kc + 1) + 3 nodes. In the vertical case, we assume

78 C. Oh et al.

Fig. 7. Execution times for validation and confidence assessment using ARACHNE
and a single-BN approach when the HSCN is expanded horizontally (a) or vertically
(b). Runtime performance of ARACHNE for horizontally-expanded and vertically-
expanded HSCNs (c).

that the mitigation of undesirable behaviors for each component or RSS rule
hinges on the analysis of the sub-components or their associated RSS rules. The
maximum number of contracts within each contract network is now limited to
2, while the total number of argumentation layers and contracts in the HSCN
is 2 + �log2 M� and 4M + 1, respectively. In this case, the total number of the
nodes in the single BN is 2M(kc + 2) + 1.

As reported in Fig. 7a and 7b, our approach scales well with an increasing
number of components and RSS rules. Computing the confidence in the top-level
claim for up to 400 contracts takes less than 100 s. On the other hand, inference
on the single BN reaches a timeout threshold of 1 h for less than 50 contracts.
This result is consistent with the asymptotic complexity of Bayesian inference,
which is exponential in the width of the elimination order w, a measure of the
maximum number of neighbors of a BN node [41]. For example, the complexity
of variable elimination for exact Bayesian inference is O(k2ew), where k is the
number of BN nodes and w is the width of the elimination order. By virtue
of our compositional approach, confidence computations require 2M inference
tasks on BNs with a small number of nodes, bounded by kc, and a constant width
wc, which amounts to linear complexity (O(k2

cMewc)). On the other hand, the
single BNs with 2M(kc +1)+3 and 2M(kc +2)+1 nodes and maximum widths
of M and 2, respectively, for horizontally and vertically expanded arguments,
lead to the observable exponential and quadratic explosions of execution time
for inference tasks, with complexity O(k2

cM2eM) and O(k2
cM2e2), respectively.

As shown in Fig. 7c, validating HSCNs with more than 15, 000 contracts
incurs additional overhead due to the cost for finding a matching confidence
network for each evidential contract, currently based on linear search, which
becomes inefficient for large confidence libraries. Moreover, validating vertically-
expanded HSCNs takes less time than horizontally-expanded HSCNs due to the
different size of the associated SMT problems. Solving multiple smaller SMT
instances in a vertically-expanded HSCN is less expensive than solving just a few,
but larger, SMT instances in a horizontally-expanded HSCN. Overall, HSCNs

ARACHNE: Automated Validation of Assurance Cases 79

with more than 24,000 contracts, organized in 3 layers and 18 layers in the
horizontally and vertically expanded cases, respectively, and using a library of
24,000 confidence networks, can be validated in less than an hour.

6 Conclusions

We presented ARACHNE, a validation framework for assurance cases repre-
sented as networks of stochastic assume-guarantee contracts. By coordinating
logic and probabilistic reasoning, ARACHNE can circumvent the limitations
of previous approaches, such as the “masking” of low-confidence premises and
the equal weighting of claims, and shows superior scalability on case studies
motivated by safety-critical avionic and automotive applications. Future work
includes extending the framework to richer stochastic logics with temporal
modalities and exploring the relationship between confidence and costs to achieve
cost-effective arguments.

Acknowledgments. Distribution statement “A” (approved for public release, dis-
tribution unlimited). This research was developed with funding from the Defense
Advanced Research Projects Agency (DARPA), contract FA875020C0508. The views,
opinions, or findings expressed are those of the authors and should not be interpreted
as representing the official views or policies of the Department of Defense or the U.S.
Government. The authors wish to also acknowledge the partial support by the National
Science Foundation (NSF) under Awards 1839842, 1846524, and 2139982, the Office
of Naval Research (ONR) under Award N00014-20-1-2258, and the Defense Advanced
Research Projects Agency (DARPA) under Award HR00112010003.

References

1. ISO 26262:2018: Road vehicles - Functional safety. International Organization for
Standardization, Standard (2018)

2. DO-178C: Software considerations in airborne systems and equipment certification.
RTCA Inc., Standard (2011)

3. Brunner, M., Huber, M., et al.: Towards an integrated model for safety and security
requirements of cyber-physical systems. In: International Conference on Software
Quality, Reliability and Security Companion (QRS-C) (2017)

4. Lee, J., Davari, H., et al.: Industrial artificial intelligence for industry 4.0-based
manufacturing systems. Manuf. Lett. 18, 20–23 (2018)

5. Bloomfield, R., Bishop, P.: Safety and assurance cases: past, present and possible
future-an Adelard perspective. In: Dale, C., Anderson, T. (eds.) Making Systems
Safer, pp. 51–67. Springer, London (2010). https://doi.org/10.1007/978-1-84996-
086-1 4

6. Rushby, J.: The interpretation and evaluation of assurance cases. Technical report,
Computer Science Laboratory, SRI International (2015)

7. Adelard LLP: Claims, Arguments and Evidence (CAE) (2019). https://www.
adelard.com/asce/choosing-asce/cae.html

8. The Assurance Case Working Group: Goal Structuring Notation Community Stan-
dard (Version 3) (2021). https://scsc.uk/r141C

https://doi.org/10.1007/978-1-84996-086-1_4
https://doi.org/10.1007/978-1-84996-086-1_4
https://www.adelard.com/asce/choosing-asce/cae.html
https://www.adelard.com/asce/choosing-asce/cae.html
https://scsc.uk/r141C

80 C. Oh et al.

9. Hawkins, R., Habli, I., et al.: Assurance cases and prescriptive software safety
certification: a comparative study. Saf. Sci. 59, 55–71 (2013)

10. Hawkins, R., Habli, I., et al.: Weaving an assurance case from design: a model-based
approach. In: International Symposium on High Assurance Systems Engineering
(2015)

11. Bloomfield, R., Rushby, J.: Assurance 2.0, arXiv preprint arXiv:2004.10474 (2020)
12. Denney, E., Pai, G., Pohl, J.: Heterogeneous aviation safety cases: integrating the

formal and the non-formal. In: International Conference on Engineering of Complex
Computer Systems (2012)

13. Graydon, P.J., Holloway, C.M.: An investigation of proposed techniques for quan-
tifying confidence in assurance arguments. Saf. Sci. 92, 53–65 (2017)

14. Denney, E., Pai, G., Habli, I.: Towards measurement of confidence in safety cases.
In: 2011 International Symposium on Empirical Software Engineering and Mea-
surement (2011)

15. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping.
Ann. Math. Stat. 38(2), 325–339 (1967)

16. Jøsang, A.: A logic for uncertain probabilities. Int. J. Uncertain. Fuzziness Knowl.
Based Syst. 9(03), 279–311 (2001)

17. Yamamoto, S.: Assuring security through attribute GSN. In: International Confer-
ence on IT Convergence and Security (ICITCS) (2015)

18. Nair, S., Walkinshaw, N., Kelly, T.: Quantifying uncertainty in safety cases using
evidential reasoning. In: Bondavalli, A., Ceccarelli, A., Ortmeier, F. (eds.) SAFE-
COMP 2014. LNCS, vol. 8696, pp. 413–418. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-10557-4 45

19. Neapolitan, R., Neapolitan, R.: Learning Bayesian Networks. Pearson Prentice
Hall, Hoboken (2004)

20. Adams, E.W.: A Primer of Probability Logic. Center for the Study of Language
and Information (1996)

21. Holloway, C.M.: Explicate’78: uncovering the implicit assurance case in DO-178C.
In: Safety-Critical Systems Symposium 2015 (SSS 2015) (2015)

22. Denney, E., Pai, G., Pohl, J.: AdvoCATE: an assurance case automation toolset.
In: Ortmeier, F., Daniel, P. (eds.) SAFECOMP 2012. LNCS, vol. 7613, pp. 8–21.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33675-1 2

23. Fujita, H., Matsuno, Y., et al.: DS-bench toolset: tools for dependability bench-
marking with simulation and assurance. In: IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN) (2012)

24. Benveniste, A., Caillaud, B., et al.: Contracts for system design. Found. Trends
Electron. Des. Autom. 12(2–3), 124–400 (2018)

25. Bauer, S.S., et al.: Moving from specifications to contracts in component-based
design. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 43–58.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28872-2 3

26. Sangiovanni-Vincentelli, A., Damm, W., Passerone, R.: Taming Dr. Frankenstein:
contract-based design for cyber-physical systems. Eur. J. Control. 18(3), 217–238
(2012)

27. Nuzzo, P., Sangiovanni-Vincentelli, A.L., et al.: A platform-based design method-
ology with contracts and related tools for the design of cyber-physical systems. In:
Proceedings of the IEEE (2015)

28. Gaifman, H.: Concerning measures in first order calculi. Israel J. Math. 2(1), 1–18
(1964)

29. Hailperin, T.: Probability logic. Notre Dame J. Formal Logic 25(3), 198–212 (1984)

http://arxiv.org/abs/2004.10474
https://doi.org/10.1007/978-3-319-10557-4_45
https://doi.org/10.1007/978-3-319-10557-4_45
https://doi.org/10.1007/978-3-642-33675-1_2
https://doi.org/10.1007/978-3-642-28872-2_3

ARACHNE: Automated Validation of Assurance Cases 81

30. Nilsson, N.J.: Probabilistic logic. Artif. Intell. 28(1), 71–87 (1986)
31. Nuzzo, P., Li, J., et al.: Stochastic assume-guarantee contracts for cyber-physical

system design. ACM Trans. Embed. Comput. Syst. 18(1), 1–26 (2019)
32. Wang, T.E., Daw, Z., Nuzzo, P., Pinto, A.: Hierarchical contract-based synthesis

for assurance cases. In: Deshmukh, J.V., Havelund, K., Perez, I. (eds.) NASA
Formal Methods, pp. 175–192. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-06773-0 9

33. Hobbs, C., Lloyd, M.: The application of Bayesian belief networks to assurance
case preparation. In: Dale, C., Anderson, T. (eds.) Achieving Systems Safety, pp.
159–176. Springer, London (2012). https://doi.org/10.1007/978-1-4471-2494-8 12

34. Verbert, K., Babuška, R., De Schutter, B.: Bayesian and Dempster-Shafer reasoning
for knowledge-based fault diagnosis-a comparative study. Eng. Appl. Artif. Intell.
60, 136–150 (2017)

35. Bovens, L., Hartmann, S.: Bayesian Epistemology. Oxford University Press, Oxford
(2003)

36. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver (2008)
37. Ankan, A., Panda, A.: pgmpy: probabilistic graphical models using python. In:

Proceedings of the 14th Python in Science Conference (SCIPY 2015). Citeseer
(2015)

38. Zhao, X., Zhang, D., Lu, M., Zeng, F.: A new approach to assessment of confidence
in assurance cases. In: Ortmeier, F., Daniel, P. (eds.) SAFECOMP 2012. LNCS,
vol. 7613, pp. 79–91. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33675-1 7

39. Shalev-Shwartz, S., Shammah, S., Shashua, A.: On a formal model of safe and
scalable self-driving cars, arXiv preprint arXiv:1708.06374 (2017)

40. Mobileye: The Mobileye safety methodology (2021). https://www.mobileye.com/
safety-methodology/

41. Darwiche, A.: Modeling and Reasoning with Bayesian Networks. Cambridge Uni-
versity Press, Cambridge (2009)

https://doi.org/10.1007/978-3-031-06773-0_9
https://doi.org/10.1007/978-3-031-06773-0_9
https://doi.org/10.1007/978-1-4471-2494-8_12
https://doi.org/10.1007/978-3-642-33675-1_7
https://doi.org/10.1007/978-3-642-33675-1_7
http://arxiv.org/abs/1708.06374
https://www.mobileye.com/safety-methodology/
https://www.mobileye.com/safety-methodology/

Automating Pattern Selection
for Assurance Case Development

for Cyber-Physical Systems

Shreyas Ramakrishna1(B), Hyunjee Jin2, Abhishek Dubey1,
and Arun Ramamurthy2

1 Institute for Software Integrated Systems, Vanderbilt University, Nashville, USA
{shreyas.ramakrishna,abhishek.dubey}@vanderbilt.edu
2 Siemens Corporation, Technology, Princeton, NJ, USA

{hyunjee.jin,arun.ramamurthy}@siemens.com

Abstract. Assurance Cases are increasingly being required for regula-
tory acceptance of Cyber-Physical Systems. However, the ever-increasing
complexity of these systems has made the assurance cases development
complex, labor-intensive and time-consuming. Assurance case fragments
called patterns are used to handle the complexity. The state-of-the-art
approach has been to manually select generic patterns from online cat-
alogs, instantiate them with system-specific information, and assemble
them into an assurance case. While there has been some work in automat-
ing the instantiation and assembly, a less researched area is the automa-
tion of the pattern selection process, which takes a considerable amount
of the assurance case development time. To close this automation gap,
we have developed an automated pattern selection workflow that han-
dles the selection problem as a coverage problem, intending to find the
smallest set of patterns that can cover the available system artifacts.
For this, we utilize the ontology graphs of the system artifacts and the
patterns and perform graph analytics. The selected patterns are fed into
an external instantiation function to develop an assurance case. Then,
they are evaluated for coverage using two coverage metrics. An illustra-
tive autonomous vehicle example is provided, demonstrating the utility
of the proposed workflow in developing an assurance case with reduced
efforts and time compared to the manual development alternative.

Keywords: Cyber physical systems · Assurance case · Patterns ·
GSN · Optimization · Ontology · Graph isomorphism · Coverage
metrics

1 Introduction

Assurance Cases (ACs) are increasingly being required for regulatory acceptance
of Cyber-Physical Systems (CPSs) in several safety-critical applications, such as
automotive [19], aviation [8] and medical devices [9]. For example, the develop-
ment of a safety case (AC with a focus on safety) is a requirement for compliance
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Trapp et al. (Eds.): SAFECOMP 2022, LNCS 13414, pp. 82–96, 2022.
https://doi.org/10.1007/978-3-031-14835-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14835-4_6&domain=pdf
https://doi.org/10.1007/978-3-031-14835-4_6

Automating Pattern Selection for Assurance Case Development 83

CAMERA

Supervisor
SPEEDO-
METER

Navigation
(Deep Learning

Controller)

speed

Images

Heading

Waypoints

Lateral
PID

Speed
Error

Steer

Throttle

Brake

RADAR
AEBS

GPS

IMU

depth

CAMERA

MAP

Angular
Error

Brake AlarmRADAR

Longi-
tudinal

PID

Anomaly
Detectors anomaly scores

Fig. 1. (left) Image from the forward-looking camera of an autonomous vehicle in
CARLA simulation. (right) The system model of the autonomous vehicle.

with the ISO 26262 safety standard in the automotive domain [19]. An AC is a
structured argument, supported by evidence, intended to demonstrate that the
system satisfies its assurance guarantees under a particular context and under
a given set of assumptions about the behavior of the system’s components and
its operating environment [1]. Goal Structuring Notation (GSN) [15] has been a
widely used graphical modeling language used to represent an AC.

However, the increasing complexity of CPS has made the assurance pro-
cess complex, labor-intensive, and time-consuming because of the activities that
involve managing numerous requirements, curating a large number of artifacts
and evidence, developing and managing huge ACs, among others [18]. These
problems can be alleviated with an adequate tool that can partially automate
some of these activities. In this regard, several tools like Advocate [6], Reso-
lute [11], Isabelle [10], AMASS [23], among others [17] have been developed in
the recent years. In addition to managing the requirements and artifacts, these
tools utilize modular assurance arguments called assurance case patterns1 [16]
to handle the size and complexity of AC being developed. Patterns are argument
fragments that provide a partial solution for one aspect of the overall AC. They
provide a reusable structure through parameter placeholders that can be instan-
tiated with system-specific artifacts and assembled with other patterns into an
AC.

While these tools specialize in data management and automation of the instan-
tiation and assembly algorithm, an activity that has not been researched is the
automation of the pattern selection process. To contextualize the selection pro-
cess, consider the Autonomous Vehicle (AV) example in Fig. 1. Assume we want
to develop an AC with the goal that the “Automatic Emergency Braking System
(AEBS) will function satisfactorily in applying the emergency brake”, given that
the operating context is a clear day. For this, we are given an artifact database with
system architecture, component decomposition, component testing results (from
different contexts like a clear day, rainy day, night, etc.), and a pattern database
with patterns related to requirement decomposition, component decomposition,
and failures, functional decomposition, hazard decomposition, etc. The problem

1 In the rest of this paper, we will refer to “AC patterns” as “patterns”.

84 S. Ramakrishna et al.

is to select patterns that (a) support the goal and (b) have all the artifacts in the
given context required for instantiation. Typically, a designer manually compares
each pattern against the system artifacts to check if all the artifacts required for
instantiation are available [22]. It is assumed the designer has complete knowledge
of the system artifacts and is familiar with the content of the patterns and the
context to which they are applicable. However, this comparison gets complicated
and tedious for complex systems with more goals and diverse heterogeneous sys-
tem artifacts [23]. For example, in one of the recent studies, Yamamoto, Shuichiro
et al. [24] have shown that manual pattern selection took one designer 30 h (14%
of the development time) and required significant understanding about the avail-
able artifacts and patterns. Therefore, automating the selection process can aid
the assurance process.

Contributions: To close this automation gap, we have developed a workflow
that handles the selection problem as a coverage problem, intending to find
the smallest set of patterns that can cover the system artifacts. For this, we
leverage the ontology graph of the system artifacts and patterns and perform
graph analytics. We address the coverage problem using an optimization problem
setup, which is assisted by a data preparation function that utilizes a weaving
model2 [3] to generate data files, a mapping file, and an ontology graph of the
artifacts. A selection function uses the processed files and a database of patterns
to select a set of patterns, which are then plugged into an instantiation function
to develop an AC. Finally, the AC is evaluated for coverage, and a report with
information about unused artifacts and patterns is generated to aid the developer
with future refinement. To evaluate the workflow, we have integrated it with a
newly developed tool called ACCELERATE to automatically construct an AC
for an Autonomous Vehicle3 example within a CARLA simulation [7].

Outline: The rest of this paper is organized as follows. In Sect. 2, we formal-
ize assurance case patterns. In Sect. 3, we present the proposed workflow that
includes the data preparation, pattern selection, and evaluation functions to
automate the development and evaluation of an AC. In Sect. 4, we demonstrate
the utility of our workflow by an AV example in a CARLA simulation. Finally,
we present the related research in Sect. 5 followed by our conclusion in Sect. 6.

2 Assurance Case Patterns

Goal Structuring Notation uses an iterative decomposition strategy to decom-
pose the top-level system goal(s) to be proved to lower-level component goals,
often supported by evidence. Although this notation has simplified the documen-
tation of ACs, it is challenging to design monolithic GSNs for complex systems.
Patterns [16] are argument fragments that provide a partial solution for one
aspect of the overall AC. They capture common repeated argument structures

2 Captures the fine-grained relationships between different system artifacts.
3 For the CARLA AV setup, visit https://github.com/scope-lab-vu/AV-Assurance.

https://github.com/scope-lab-vu/AV-Assurance

Automating Pattern Selection for Assurance Case Development 85

and abstract system-specific argument details as placeholders with free parame-
ters to be instantiated. Patterns typically include information like name, intent,
motivation, structure, applicability, related patterns, description of the decom-
position strategy, and implementation details. In addition, Kelly has introduced
several structural and entity abstractions to the GSN modeling language for
describing a pattern [16]. Currently, there are several online catalogs [16,21,22]
with patterns in GSN format that can be readily used to design an AC.

2.1 Pattern Formalization

We adapt the formal definition of patterns as presented by Denney et al. [4] with
slight modifications, including a metadata field that holds additional information
about the pattern and a modifier function that specifies the operations that need
to be performed on the nodes. We provide a formal definition below:

Definition 1 (Pattern). A pattern P is a tuple 〈M,N , l, t, i,mul, c,mod,→〉,
where 〈N ,→〉 is a finite, directed hypergraph in which each edge has a single
source and possibly several destination targets. →: 〈N ,N〉 is the connector rela-
tion between nodes, M is the pattern metadata, and the functions l, t, p, mul,
and mod are defined below:

– M is the pattern metadata tuple 〈N,R, pl〉, where N is the name of the
pattern, R is a set of relevant patterns that share the same intent as this
pattern or patterns that can be composed with this pattern for further grow-
ing the assurance case, and pl is a dictionary that maps a system artifact
label (key) to a placeholder variable (value) that requires instantiation. The
artifact label is of the type string. An illustrative placeholder dictionary is of
the form {“system” : SM, “top-level-goals : TG”, “requirements” : SR}.

– l and t are labeling functions, where l : N → {g, s, c, a, j, e} maps each node
onto its type, namely on g (goal), s (decomposition strategy), c (context), a
(assumption), j (justification), or e (evidence).

– i is the id label of each node, i: N → id × class, which returns the identifier
and the type of each node, i.e. class = {g, s, c, a, j, e}.

– mul provides a multiplicity label for each outgoing connector. For the example
shown in Fig. 2, mul = n : RC represents a one-to-many relationship, where
n is an integer value determined by placeholder RC, such that each instance
of node S2 is related to n instances of node G4. The relationship is one-to-one
if not explicitly stated otherwise.

– mod indicates the modifying operation to be performed on a given node:
no-operation, instantiate, or develop.

In addition to the pattern entities, there are several structural rules required:

– The root node of a pattern is always a goal.
– The connectors can only go out of the goal and the strategy nodes: na → nb

⇒ l(na) ∈ {g, s}.

86 S. Ramakrishna et al.

G1: System {SM}
will satisfy high-
level requirement

{Y}

C2: Operating
Condition of the

system {C}

G2: All Hazards
associated with the

requirement are
identified and

mitigated

G3: All components
associated with
requirement is

functional

S2: Argument by
decomposing the

related
components

G4: Component {RC}
functions

satisfactorily

E1:
Component

testing
efficiency is

{RCE}

mul=n:RC

mul=n:RCE

Develop

Instantiate

A1: Hazard list
is available

Node Identifiers
G - Goals
C - Context
A - Assumption
S - Strategy
E - Evidence

Fig. 2. An example pattern based on requirements decomposition arguments.

– A strategy node cannot directly connect to another strategy node or an evi-
dence node: (na → nb) ∧ [l(na)=s] ⇒ l(nb) ∈ {g, a, c, j}.

Figure 2 illustrates an example requirements decomposition pattern based
on the formalization in Definition 1. This pattern argues for the satisfaction of
the system’s high-level requirements through the requirements decomposition
of all the associated components. A node in this pattern is represented by its
labels (e.g., G1, G2) and content with placeholders (e.g., SM, C) that can be
replaced by system-specific information. The node multiplicity (mul) is marked
on the graph edges, representing how one node is related to another. Further,
“instantiate” and “develop” are the two modifier (mod) operations that can be
performed on the nodes.

3 Pattern Selection Workflow

We present the proposed workflow that leverages an ontology graph of the system
artifacts and patterns to automatically select patterns that can be instantiated
to construct an AC. The workflow is composed of several functions that work as
follows: First, the prepare(AD,WM) function uses a weaving model (WM) to
map artifact files from the artifact database (AD) onto several data files (FD)
and a mapping file FM . Then, the function select(AD,PD) selects a set of pat-
terns PS from the pattern database (PD). The selected patterns are instantiated
and assembled into an AC using an external instantiate function. Finally, the

Automating Pattern Selection for Assurance Case Development 87

Algorithm 1. Data Preparation
1: function prepare(AD:Artifact Database,WM :weaving model)
2: FD ← {}, FM ← {}, temp ← {}
3: for each file in AD do
4: processed file ← process(file)
5: temp ← temp

⋃ {processed file}
6: end for
7: accepted files ← manual check(temp)
8: for each file in accepted files do
9: data file ← arrange(file,WM)

10: FD ← FD

⋃ {data file}
11: end for
12: place ← {}, depend ← {}, source ← {}
13: for each file in FD do
14: source ← get source query(file)
15: place ← extract(header)
16: for each entry in header do
17: result ← search(entry, FD)
18: depend ← result
19: end for
20: FM ← {place, depend, source}
21: GA ← make graph(place,depend)
22: end for
23: AD ← FM , FD, GA

24: return FM , FD

25: end function

evaluate(AC,FD, FM) function generates a report with the coverage score (CS)
and additional information to aid the evaluation and further refinement of the
AC. We discuss these functions in the rest of this section.

3.1 Data Preparation

The artifacts (e.g., goals, requirements, system models) for the assurance process
are typically curated using several engineering activities and stored in a database
AD. These activities include requirements engineering, system analysis, hazard
analysis and risk assessment, and evidence generation. The artifacts generated
from these activities are usually in heterogeneous file formats like PDF, Text,
Architecture Analysis and Design Language (AADL) and System Modeling Lan-
guage (SysML). The prepare function takes these raw artifact files to prepare the
processed files required for the pattern selection discussed in the next section.
The function performs two operations as shown in Algorithm 1.

The first operation processes relevant artifacts required for the AC into pro-
cessed data files stored in tabular format (CSV file). The function can currently
process AADL files. We are working towards automatically processing other
file formats. Then, the processed files are checked for completeness, correctness,
and relevance. The check is to ensure that only complete and essential artifacts

88 S. Ramakrishna et al.

necessary for the development of the AC are retained while discarding the non-
essential artifacts. Non-essential artifacts bloat the AD, which slows the selection
process and impacts the evaluation metrics (discussed later in Sect. 4). In the
current implementation, the checking is manually performed by a designer. We
assume the designer has complete knowledge of the system for which the AC is
being developed. The accepted files are passed through an arrange function to
generate a set of data files FD. To generate the file, we use a weaving model WM
that weaves the different artifacts and transforms them into a single model file.
The model is developed based on our domain knowledge and previous experi-
ence with CPSs. Each data file is a table where the column headers represent the
name of the artifacts, and the rows capture the content of these artifacts. Also,
each column in the data file is related to the other columns, with the relation-
ship derived using the weaving model. Finally, these accepted files are manually
tagged with labels required for the selection process. For example, the context
in which particular artifacts and evidence are applicable is one label that we
currently include.

The second operation generates a mapping file FM , which is a lookup table
of system artifacts and their ontology required to bridge the data files for the
pattern selection algorithm discussed in Sect. 3. FM holds the physical link to
the data file location obtained using a simple query to the database. It also
holds the placeholder and dependency mapping derived from an extract func-
tion, which reads the header of each data file to create an intra-file depen-
dency mapping between them. For example, one entry capturing the relation-
ship between a cause and a hazard in the dependency mapping file looks like
[cause, cause table, hazard]. If there are multiple causes for the same hazard,
they will be stored as separate entries. Next, to capture the inter-file depen-
dencies, each header (e.g., cause) is searched across every data file using a
search function. The search result is used for placeholder mapping, required
for pattern selection. For example, the search result for the cause header is
{[mitigation table, cause], [cause table, cause], [risk table, cause]}, which shows
all the other files in which the entry is present. Finally, the ontology captured
in FM is also stored as an artifact graph GA as shown in Fig. 3.

Then, we curate PD for which we gather patterns from online catalogs [16,
22] and manually re-design them using the formalization and rules discussed in
Sect. 2. While re-designing, a designer checks the language consistency across
data in the nodes. These patterns are stored in textual format (JSON) and as a
graph GP with placeholders as nodes (See Fig. 3).

3.2 Pattern Selection

As discussed earlier, the goal of the selection algorithm is to select a smallest
set of patterns PS from the database PD = {P1,P2,· · · ,Pn} that maximizes
the artifact coverage. We formulate the selection as a two-objective optimization
problem: (a) maximizing the coverage such that the placeholders of every selected
pattern have the corresponding artifact for instantiation and (b) minimizing the

Automating Pattern Selection for Assurance Case Development 89

system

subsystem system goals

subsystem
components

system
requirement

highlevel
requirement

sub-
requirement

related
components hazard

cause

risk mitigation

subsystem
components

efficiency

subsystem
components
redundancy

failure
modes

failure
mitigation

failure
modes

detectors

failure mitigation
efficiency

failure modes
detectors
efficiency

failure
modes

failure
mitigation

failure
modes

detectors

failure modes
detectors
efficiency

failure mitigation
efficiency

hazard

cause

risk mitigation

Pattern
Graphs

Artifact Graph

Pattern1 Pattern2

Fig. 3. The artifact and pattern ontology extracted for pattern selection. The selected
patterns are highlighted by thick outlines in the artifact graph.

number of patterns selected by iteratively comparing the pattern graph to the
artifact graph (See Fig. 3).

The optimization is realized using the select(PD, FM , FD) function shown
in Algorithm 2. It takes the patterns from PD, the mapping file and the data
files as inputs to select PS . The selection is performed using the findmatch,
the findconflict and the findsubgraph functions. The selected patterns are then
instantiated and assembled into an AC using an external instantiate function.
An existing algorithm [12,13] can be used for instantiation and assembly.

Next, the findcomplete(P, FM) function in Definition 2 checks if the place-
holders in the patterns have a matching entry in FM . If all the placeholders have
corresponding entries, the pattern is said to be complete, and it is added to PS .
Otherwise, the pattern is discarded from the selection process.

Definition 2 (Pattern Completeness). We say a pattern is complete if
each placeholder has a corresponding entry in FM . We define a function
findmatch(pl) that determines if a given placeholder has a corresponding entry.

90 S. Ramakrishna et al.

Algorithm 2. Pattern Selection
1: function select(PD:Pattern Database,FM :Mapping File,FD:Data Files)
2: PS ← {}, dups ← {}
3: for each pattern P ∈ PD do
4: temp ← True
5: for each placeholder p ∈ P do
6: temp ← temp ∧ findmatch(p)
7: end for
8: if temp is True then
9: PS ← PS

⋃ {P}
10: end if
11: end for
12: for each pattern P ∈ PS do
13: if findsubgraph(GA,GP) is False then
14: PS .remove(GP)
15: end if
16: end for
17: for i ← 1 to len(PS) do
18: for j ← i + 1 to len(PS) do
19: match ← findconflict(Pi,Pj)
20: if match is True then
21: dups ← dups

⋃ {Pj}
22: end if
23: end for
24: end for
25: for each entry E in dups do
26: PS .remove(E)
27: end for
28: AC ← instantiate(PS ,FM ,FD)
29: return AC
30: end function

Once PS has been selected, the findsubgraph and the findconflict functions
are used to minimize the cardinality of PS and remove duplicate patterns. First,
the findsubgraph(GA,GP i) function checks whether the artifact graph GA con-
tains a subgraph that is isomorphic to GP i, the graph of the ith pattern. Two
graphs are isomorphic (or equivalent) if their structures preserve a one-to-one
correspondence between their vertices and between their edges. For example,
in Fig. 3, pattern1 and pattern2 are isomorphic to subgraphs of GA. The non-
isomorphic patterns are removed from PS .

Next, the findconflict(P1,P2) function checks PS for redundant patterns.
For this, it performs the following steps: (a) duplication checking checks if the
patterns have the same set of placeholders requiring instantiation (see Defini-
tion 3). (b) graph checking checks if the graphs of the two patterns are isomor-
phic. While performing this, we also require data on corresponding nodes of the
patterns to be equivalent. Only if the duplication checking fails, the function

Automating Pattern Selection for Assurance Case Development 91

performs graph checking. On the whole, the function findconflict returns true
if steps (a) or (b) return true, i.e., if the patterns are redundant.

Definition 3 (Duplication Checking). We say two patterns P1 = 〈M1,
N1, l1, t1, i1,m1, s1,→1〉 and P2 = 〈M2,N2, l2, t2, i2,m2, s2,→2〉 are duplicates
if they contain exactly the same placeholders.

3.3 Coverage Evaluation

As discussed previously, automating different activities of the assurance pro-
cess reduces the development time and manual efforts. However, this gain is at
the expense of increased effort and time required to review and evaluate the
quality and correctness of the generated AC. To aid the evaluation process, the
evaluate(AC,FD, FM) function takes the AC and generates a report to provide
qualitative insights which is not available in the generated AC graphical struc-
ture. We believe this information can aid the designer in further refinement. The
report includes the coverage score, the selected and unused patterns, and the
unused artifacts. The coverage score is a tuple 〈A,S〉 of the artifact coverage
(A) and the problem coverage (S).

1) Artifact Coverage (A): The artifact coverage metric measures the propor-
tion of the artifacts available in AD that have been included in the AC. Also, a
relevance check (discussed in Sect. 3.1) on the artifact is essential for this metric
to be accurate. Besides the score itself, this metric can also be used to derive a
list of unused artifacts.

A =
Artifacts used in the AC
Artifacts available inAD (1)

2) Problem Coverage (S): The problem coverage metric quantifies the cover-
age of all the known problems affecting a system’s property (e.g., safety, availabil-
ity). Problem coverage is a tuple S = (CP1 , CP2 , · · · , CPn

) consisting of coverage
measures CPi

related to different problem classes Pi. The coverage measure is
shown in Eq. (2), and it is computed as the percentage of problems within a
given problem class which are addressed by an AC.

CPi
=

Problems from Pi addressed by the AC
Problems in Pi identified during analysis

(2)

While coverage metrics and the report can aid the refinement process by pro-
viding insights into the missing patterns or artifacts, they do not fully quantify
the quality of artifacts (e.g., evidence) required for AC selection. So, the coverage
metrics cannot solely rely on measuring the quality of the AC. A combination
of coverage and confidence metrics is needed for robust quantitative assessment.
We are therefore working towards integrating a confidence metric.

92 S. Ramakrishna et al.

4 Illustrative Example

In this section, we provide an illustrative example by applying the proposed
workflow to develop an AC for an AV in the CARLA simulator [7]. In this
example, the AV is required to navigate a town while avoiding collisions with
obstacles in its travel path. We integrate our workflow with the ACCELERATE
tool4 for pattern instantiation and assembly as shown in Fig. 4.

Requirement
Files

System
Files

Test
Cases Evidence

Artifact
Database

Pattern
Database

Pattern
Editor

Pattern
Selection

Data
Preparation

Evaluation

Instantiation
and Assembly

Certifier/
Developer

Developer

Data Files,
Mapping File

Assurance Case
Assurance

Case

Visualizer
ACCELERATE Tool

Selected
PatternsEmpty Patterns

Assurance Case Report

Data Files,
Mapping File

Raw Artifact Files
(e.g., PDF, CSV)

Mapping
File

Fully Automated Steps Partially Automated Steps

Fig. 4. The proposed pattern selection workflow integrated with the ACCELERATE
tool for AC development.

Artifacts and Patterns Preparation: We performed the analysis steps listed
in Sect. 3.1 to curate AD. We first performed a requirement and system analysis
using the given requirements document. The vehicle has three goals associated
with two system requirements and three high-level requirements, each associated
with several sub-requirements. We then designed the AV system model shown
in Fig. 1. It has a navigation component that uses three cameras, a global posi-
tioning system (GPS), an inertial measurement unit (IMU), a speedometer, and
a route planner to compute the vehicle’s next position. Then a velocity planner
calculates the average velocity needed to traverse from the current position to
the next position. The velocity and the camera images are fed to a deep-learning
controller to predict the waypoints, which are passed to a motion estimator to
compute throttle, brake, and steer errors. In addition, it has an AEBS controller
that uses two radars to raise a brake alarm on detecting obstacles. We then
performed fault analysis of the system model to identify 14 component faults
and analyzed the possible mitigation strategies. Further, we performed hazard
analysis to identify eight operational and functional hazards associated with the

4 Tool is being built as part of the DARPA ARCOS program. Check our GitHub for
release information.

Automating Pattern Selection for Assurance Case Development 93

different system components. Finally, we curated PD for which we gathered
several patterns from online catalogs [16,22] and re-designed them using the
formalization discussed in Sect. 3.2.

Results: We applied the integrated tool to develop an AC for the vehicle. We
summarize the key results in terms of the coverage metrics and the size of the
AC (computed in terms of GSN nodes) in two revisions. We used the AC report5

from “revision1” to refine the AC in “revision2”. The pattern database had seven
patterns for the selection process to choose from in these revisions. The analysis
of the revisions is: In “revision1”, four patterns were selected to develop an AC
(see Footnote 5) with 805 nodes. The evaluation function returned a coverage
score with artifact coverage of 76%, a problem coverage of [CH : 60%, CF : 100%]
with five unused artifacts. Here, CH represents the percentage of known hazards
that are covered, and CF represents the percentage of known system faults that
are covered. From the report, we analyzed the artifacts relating to failure decom-
position that was unused. So, we designed a new failure decomposition pattern
that was added to PD. Further, some of the sub-requirements associated with
the hazards were missing, which we included. In “revision2”, the selection mech-
anism selected five patterns, including the new pattern to develop an AC with
909 nodes. The refined AC had a higher coverage with an artifact coverage of
90%, a problem coverage of [CH : 85%, CF : 100%] with unused artifacts reduced
by two. We performed several iterations until all the artifacts were included in
the AC.

To estimate the time saved by the workflow, the data preparation and selec-
tion steps were first performed manually by a developer who performed the fol-
lowing tasks: re-design of patterns into the defined formalization, which took
approximately one hour, processing the artifact files, extracting the artifact
dependencies to generate an ontology file, and instantiation and assembly of the
patterns using the ACCELERATE tool. While instantiation and assembly were
performed in less than a minute, the manual selection and data curation process
took approximately three hours. Next, for comparison, we fed the manually re-
designed patterns and the artifacts to the integrated tool (See Fig. 4), which only
took close to one minute for data preparation, pattern selection, instantiation,
and assembly. Finally, to stress test the integration, we increased the artifacts
and patterns in the database. Our workflow took less than five minutes, even
for large ACs with 1500 to 3000 nodes. Significantly less manual processing was
needed when the artifact files were changed or updated. We expect the time
saving to get even more significant as the size of the artifact database grows.
However, the manual steps involved in the data preparation step are a bottleneck
for scaling the workflow, which we want to address in the future.

5 For a bird’s eye view of the “revision1” assurance case and the report, visit https://
github.com/scope-lab-vu/AV-Assurance.

https://github.com/scope-lab-vu/AV-Assurance
https://github.com/scope-lab-vu/AV-Assurance

94 S. Ramakrishna et al.

5 Related Work

The last decade has seen several tools with automation capabilities to support
different activities of the AC development process. A comprehensive survey on
these tools is available in [17]. We discuss a few of these tools that support
automation. Advocate [6] is one such tool that provides an editor for design-
ing system architectures, patterns, and automated development of ACs from
patterns. A pattern formalization and the instantiation algorithm is built into
the tool for automating pattern instantiation [4]. Here, a pattern dataset and
a parameter table are manually created to assist the instantiation algorithm.
Resolute [11] is another tool that automatically synthesizes an AC from AADL
models. Isabelle [10] is a recently developed tool with integrated formal meth-
ods for evidence generation. Assurance language and automated document pro-
cessing are a few tool features that support the development process. AMASS
tool [23] provides a partially automated heterogeneous collaborative environ-
ment that supports activities such as requirement management, artifacts and
evidence generation, pattern composition, and AC construction.

There are several independent efforts. For example, Ramakrishna et al. [20]
have presented a methodology to partially automate AC construction directly
from system models and graphs. Hawkins et al. [13] utilize the concept of model
weaving to automatically learn the artifact files from system models and use them
for instantiating patterns. The authors of [12] provide an automated mechanism
for instantiation and composition of patterns, where the artifacts are heteroge-
neous system models that are linked to represent the cross-domain relationship.
While these tools and approaches automate the instantiation and assembly of
patterns, their selection largely remains manual.

Further, evaluation is key to automating AC development. Confidence met-
rics are often used to represent the assurance deficit [14]. However, there has
been minimal work in coverage evaluation. Denney et al. [5] have presented sev-
eral coverage metrics for different system artifacts like hazards and requirements.
These metrics measure the proportion of the system artifacts used in the AC to
those available in the database. Chindamaikul et al. [2] have presented two cov-
erage metrics: a claim coverage that is similar to those in [5], and an argument
coverage metric that measures the arguments and evidence covered in the AC.
We build on prior work to provide additional coverage metrics.

6 Conclusion and Future Work

In this paper, we have presented a workflow that can automate the pattern
selection process. We formulate the selection problem as a coverage problem that
selects the smallest set of patterns that can maximally cover the available system
artifacts. The coverage problem is realized using an optimization problem that
leverages the ontology graphs of the artifacts and patterns and performs graph
analytics. The optimization is aided by an array of functions that perform data
preparation, pattern selection, and AC evaluation. These functions collectively
reduce the manual effort and time required in selecting the necessary patterns.

Automating Pattern Selection for Assurance Case Development 95

We plan to move this research in several directions. First, fully automating
the data processing function using natural language processing (NLP). Second,
design a translator to convert textual patterns into our format. Third, automate
the language check using NLP and relevance check using topic modeling [2].
Finally, include confidence metrics for AC evaluation.

Acknowledgement. The authors would like to thank Sarah C. Helble and Dennis M.
Volpano for helpful discussions and feedback. This work was supported by the DARPA
ARCOS project under Contract FA8750-20-C-0515 (ACCELERATE) and the DARPA
Assured Autonomy project. The views, opinions, and/or findings expressed are those
of the author(s) and do not necessarily reflect the views of DARPA. We would like
to thank the reviewers and editors for taking the time and effort necessary to review
the manuscript. We appreciate the valuable feedback, which helped us to improve the
quality of the manuscript.

References

1. Bishop, P., Bloomfield, R.: A methodology for safety case development. In: Safety
and Reliability, vol. 20, pp. 34–42. Taylor & Francis (2000)

2. Chindamaikul, K., Toshinori, T., Port, D., Hajimu, I.: Automatic approach to pre-
pare information for constructing an assurance case. In: International Conference
of Product Focused Software Development and Process Improvement (2014)

3. Del Fabro, M.D., et al.: Applying generic model management to data mapping. In:
BDA (2005)

4. Denney, E., Pai, G.: A formal basis for safety case patterns. In: Bitsch, F., Guiochet,
J., Kaâniche, M. (eds.) SAFECOMP 2013. LNCS, vol. 8153, pp. 21–32. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40793-2 3

5. Denney, E., Pai, G.: Automating the assembly of aviation safety cases. IEEE Trans.
Reliab. 63(4), 830–849 (2014)

6. Denney, E., Pai, G., Pohl, J.: AdvoCATE: an assurance case automation toolset.
In: Ortmeier, F., Daniel, P. (eds.) SAFECOMP 2012. LNCS, vol. 7613, pp. 8–21.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33675-1 2

7. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: Carla: an open urban
driving simulator. arXiv:1711.03938 (2017)

8. European Organisation for the Safety of Air Navigation: Safety case development
manual, version 2.2 (2006)

9. FDA: Introduction of assurance case method and its application in regulatory
science (2019). https://www.fda.gov/media/125182/download

10. Foster, S., Nemouchi, Y., O’Halloran, C., Stephenson, K., Tudor, N.: Formal model-
based assurance cases in Isabelle/SACM (2020)

11. Gacek, A., Backes, J., Cofer, D., Slind, K., Whalen, M.: Resolute: an assurance case
language for architecture models. ACM SIGAda Ada Lett. 34(3), 19–28 (2014)

12. Hartsell, C., Mahadevan, N., Dubey, A., Karsai, G.: Automated method for assur-
ance case construction from system design models. In: 2021 5th International Con-
ference on System Reliability and Safety (ICSRS), pp. 230–239 (2021)

13. Hawkins, R., Habli, I., Kolovos, D., Paige, R., Kelly, T.: Weaving an assurance case
from design: a model-based approach. In: 2015 IEEE 16th International Symposium
on High Assurance Systems Engineering, pp. 110–117. IEEE (2015)

https://doi.org/10.1007/978-3-642-40793-2_3
https://doi.org/10.1007/978-3-642-33675-1_2
http://arxiv.org/abs/1711.03938
https://www.fda.gov/media/125182/download

96 S. Ramakrishna et al.

14. Hawkins, R., Kelly, T., Knight, J., Graydon, P.: A new approach to creating clear
safety arguments. In: Dale, C., Anderson, T. (eds) Advances in Systems Safety,
pp. 3–23. Springer, London (2011). https://doi.org/10.1007/978-0-85729-133-2 1

15. Kelly, T., Weaver, R.: The goal structuring notation-a safety argument notation.
In: Proceedings of the Dependable Systems and Networks Workshop on Assurance
Cases, p. 6. Citeseer (2004)

16. Kelly, T.P.: Arguing safety: a systematic approach to managing safety cases. Ph.D.
thesis, University of York, York (1999)

17. Maksimov, M., Fung, N.L.S., Kokaly, S., Chechik, M.: Two decades of assurance
case tools: a survey. In: Gallina, B., Skavhaug, A., Schoitsch, E., Bitsch, F. (eds.)
SAFECOMP 2018. LNCS, vol. 11094, pp. 49–59. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-99229-7 6

18. Nair, S., de la Vara, J.L., Sabetzadeh, M., Falessi, D.: Evidence management for
compliance of critical systems with safety standards: a survey on the state of prac-
tice. Inf. Softw. Technol. 60, 1–15 (2015)

19. Palin, R., Ward, D., Habli, I., Rivett, R.: Iso 26262 safety cases: compliance and
assurance (2011)

20. Ramakrishna, S., Hartsell, C., Dubey, A., Pal, P., Karsai, G.: A methodology for
automating assurance case generation. arXiv preprint arXiv:2003.05388 (2020)

21. Safety-Critical Systems Club: Tiered pattern catalogue (2022). https://scsc.uk/
gsn?page=gsn%205Library%20Patterns

22. Szczygielska, M., Jarzkebowicz, A.: Assurance case patterns on-line catalogue. In:
Advances in Dependability Engineering of Complex Systems, pp. 407–417 (2017)

23. de la Vara, J.L., Parra, E., Ruiz, A., Gallina, B.: The amass tool platform: an
innovative solution for assurance and certification of cyber-physical systems. In:
REFSQ Workshops (2020)

24. Yamamoto, S., Matsuno, Y.: An evaluation of argument patterns to reduce pitfalls
of applying assurance case. In: 2013 1st International Workshop on Assurance
Cases for Software-Intensive Systems (ASSURE), pp. 12–17. IEEE (2013)

https://doi.org/10.1007/978-0-85729-133-2_1
https://doi.org/10.1007/978-3-319-99229-7_6
https://doi.org/10.1007/978-3-319-99229-7_6
http://arxiv.org/abs/2003.05388
https://scsc.uk/gsn?page=gsn%205Library%20Patterns
https://scsc.uk/gsn?page=gsn%205Library%20Patterns

Generating Assurance Cases Using
Workflow+ Models

Nicholas Annable(B) , Thomas Chiang , Mark Lawford ,
Richard F. Paige , and Alan Wassyng

McMaster Centre for Software Certification, McMaster University, Hamilton, Canada
{annablnm,chiangte,lawford,paigeri,wassyng}@mcmaster.ca

Abstract. The increasing complexity and scale of safety-critical systems
makes it challenging to perform necessary safety analyses and document
them convincingly in an assurance case. In previous work we introduced
Workflow+, a model-based framework for modelling the processes and
work products in both the development and safety assurance life cycles.
WF+ metamodels not only serve as templates that guide the develop-
ment of a safe system, they also facilitate generation of an assurance
case. In this paper, we explain the fundamentals of generating assurance
cases from WF+ models as well as the advantages of doing this. We also
discuss an initial evaluation of the application of WF+ in practice.

Keywords: Assurance case · Model driven assurance · Safety

1 Introduction

Increasingly, safety assessments are documented in (safety) assurance cases, e.g.
using Goal Structuring Notation (GSN) [13]. In [1,2,5], we proposed a safety
assurance development framework, Workflow+ (WF+), that is capable of for-
mally modelling the processes and associated data (work products) in a Safety
Engineering Process (SEP). The purpose of this framework is to plan the devel-
opment of safety-related products and to facilitate the systematic generation of
a safety assurance argument for products produced by that SEP, by use of GSN,
for example.

Motivation for the development of the WF+ framework came from identify-
ing a number of limitations associated with current assurance case methods, as
exemplified by GSN. Our primary concerns were:

• There is a lack of a systematic method for structuring assurance cases. Nota-
tions like GSN rely heavily on the experience and knowledge of the practi-
tioner. This can result in many different argument structures, even for similar
systems.

Partially supported by the Natural Sciences and Engineering Research Council of
Canada.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Trapp et al. (Eds.): SAFECOMP 2022, LNCS 13414, pp. 97–110, 2022.
https://doi.org/10.1007/978-3-031-14835-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14835-4_7&domain=pdf
http://orcid.org/0000-0003-2737-5489
http://orcid.org/0000-0003-2967-5004
http://orcid.org/0000-0003-3161-2176
http://orcid.org/0000-0002-1978-9852
http://orcid.org/0000-0003-4614-3421
https://doi.org/10.1007/978-3-031-14835-4_7

98 N. Annable et al.

• The assurance case and the SEP are separate entities. They are connected
through references, but they are not integrated. This has a negative conse-
quence in terms of traceability between the developed system and the assur-
ance case.

• The arguments in assurance cases leave information implicit. The fact that
they are developed top-down makes it difficult to check the argument, which
logically starts from the evidence and proceeds bottom-up.

• The evidence used to support claims is of very coarse granularity. Practi-
tioners often use complete documents, or sections of documents, to support
a constrained claim. This is not required by the method, but is an indirect
consequence of determining a claim and then finding evidence to support it.

This paper shows how it is possible to counter these difficulties using WF+

while achieving additional benefits. One crucial benefit is that the enhanced
traceability between process, data and argument artifacts facilitates change
impact analysis that works seamlessly throughout the process, its work prod-
ucts and the assurance case. We regard this as a prerequisite for many forms of
incremental assurance.

To illustrate how WF+ can be used to systematically generate assurance
arguments we first present a segment of a safety assurance case in a GSN-like
format. To make it realistic, the segment is based on a portion of the Hazard
Analysis and Risk Assessment (HARA) requirements in the automotive func-
tional safety standard, ISO 26262 [12]. We then show a (simplified) WF+ meta-
model for that process and illustrate how the safety argument can be generated
from the WF+ model. We highlight the advantages that this approach has over
traditional assurance methods. Finally, we briefly describe our initial evaluation
of the use of WF+ in practice, and summarize our contributions.

2 An Example in GSN

Consider Fig. 1 which shows a GSN example involving a claim regarding finding
all relevant hazards at the vehicle level. This example is based on the Hazard
Analysis and Risk Assessment (HARA) in ISO 26262-3. GSN decomposition is
typically based on experience and published patterns, but is surprisingly ad hoc.
This results in many different plausible decompositions even for similar systems.
The evidence nodes in this example are all labelled “?” to emphasize that GSN
is developed top-down and there are various ways in which evidence to support
each terminal claim can be selected [15].

The argument in the assurance case is bottom-up. Even if the assurance
case structure is developed top-down by decomposing claims into sub-claims
eventually grounded in evidence, the logical structure of the argument starts
with the evidence as premises for terminal claims. Then terminal claims act as
premises for their parent claims, and so on. So, what we should be doing if we
use GSN or similar, is to develop the argument top-down, and then “verify” the
soundness of the argument bottom-up. This is a daunting task, made even more

Generating Assurance Cases Using Workflow+ Models 99

F
ig
.
1
.
G
S
N

ex
a
m
p
le

o
f
v
eh

ic
le
-l
ev
el

h
a
za
rd

id
en
ti
fi
ca
ti
o
n

100 N. Annable et al.

complex by the fact that almost all assurance cases are not formal – the contents
of the claims and evidence are in natural language.

In practice there are different ways of creating the assurance case. One way
is to plan the assurance case, including acceptance criteria on evidence, as much
as we can ahead of development [18]. Another way is to build the assurance case
during development [8] and try to use the partially constructed assurance case
to determine what evidence needs to be produced. Both of these approaches
can help to reduce confirmation bias with respect to how well the evidence
supports the terminal claims. Unfortunately, a common approach is to develop
the assurance case after all or most of the development is complete, and then
find evidence that supports each terminal claim.

3 Generating GSN-Like Arguments from WF+

In this section we present a WF+ model of the same part of the HARA in
ISO 26262-3 as used in the GSN example in Sect. 2. We use this to illustrate what
WF+ can achieve in facilitating a systematic generation of a safety assurance
case.

To start, Fig. 2 shows a WF+ metamodel of the process and associated data
of the HARA. The model can be more detailed, but the level of detail here is
enough to show relevant aspects.

We use green classes with a stereotype to represent processes, purple classes
to represent generic processes such as reviews and their results, yellow classes
to represent product data associated with processes and green classes without a
stereotype to represent process metadata. A Query is a special type of process
that can be executed automatically to produce derived data. Directed arrows
show data flow. Multiplicities on the process end of data flow arrows constrain
the number of executions an instance is used by, and those on the data end
specify the number of instances of data used or produced per execution.

Experts in specific domains can use the WF+ framework to define WF+

metamodels that encode their knowledge on what must be done during devel-
opment to ensure safety. WF+ also supports constraints on the model designed
to ensure executions satisfy the intention of the workflow definition. The break-
through in WF+ modelling with respect to assurance was the realization that
we can use the constraints in the model to generate assurance claims.

Constraints over WF+ metamodels arise from two categories: syntactic and
semantic. Syntactic constraints require instances to be well formed, while seman-
tic constraints require instances to be semantically correct. Syntactic constraints
can be checked automatically. Semantic constraints need human intervention
typically associated with reviews.

Reviews are designed to assess data documented during the execution of a
process, for example the “NothingMissing?” attribute of [VLH Set]. They most
often produce logical values. In this case the review consists of five steps as
shown in the figure. Purple text with ports are used as a shorthand notation for
attributes output by reviews.

Generating Assurance Cases Using Workflow+ Models 101

Fig. 2. WF+ model of process and data for the HARA (Colour figure online)

[VLH Set] is necessary as a modelling artefact if we want to say anything
about the aggregated hazards, which are otherwise dealt with individually in the
model. In this case it is important to include argumentation as to why we believe
the set to be “complete”. The task of adding each [Vehicle-Level Hazard] to a
set can be easily automated with appropriate tooling by creating a new instance
of [VLH Set] and a reference to each [Vehicle-Level Hazard] belonging to [Item
Definition].

We also include validity constraints in the model shown as red “notes” with
the label “T” for True. These enable us to check that reviews produced the
desired results. They also indicate that the assurance will fail if any one of these
is recorded as False rather than True. This is illustrated in Fig. 5.

Figure 3 shows how the lowest level claims (terminal claims in a GSN-like
assurance case) are constructed systematically from the WF+ model using the
same hazard identification example we used for GSN in Sect. 2.

Note that we have not included all available detail in the WF+ model in
order to make the model more readable and to focus on the argumentation

102 N. Annable et al.

Fig. 3.WF+ model – generating lowest level (terminal) claims from constraints (Colour
figure online)

directly related to the HARA. For example we did not show details regarding
the expertise of the reviewer(s), which data is used by each step in the review or
how the method used should be documented. We have included some detail in
the reviews specifically to illustrate how the lowest level claims in the argument
tree are systematically generated from the evidence that supports them. The
sections on syntactic and semantic constraints (Sects. 3.1 and 3.2) describe how
the constraints lead to those lowest level claims. The evidence associated with
a syntactic constraint is typically tightly linked to a multiplicity constraint.
There is also (syntactic) evidence associated with more complex constraints as
indicated by the syntactic check on the completeness of the [VLH Set] in Fig. 3.
The evidence associated with a semantic constraint is the result of a review.

3.1 Syntactic Constraints

The goal of syntactic constraints is to ensure the information being reviewed
is structurally correct. They can be either multiplicity constraints or complex
constraints (e.g., OCL-specified), both of which are used in the metamodels
above. Figure 3 shows each syntactic claim as a pink “note” connected by a
dashed line to the relevant constraint.

Starting with the 1..∗ multiplicity on the association from [Item Definition] to
[Vehicle-Level Hazard], we can generate a syntactic claim that there are vehicle-
level hazards documented in a valid instance. An important benefit of syntactic

Generating Assurance Cases Using Workflow+ Models 103

constraints is that they are automatically verifiable with appropriate tooling. A
more interesting argument is related to the constraint on [VLH Set] where we
express that the set of vehicle-level hazards being evaluated for completeness
actually consists of all hazards that were identified.

On the surface, these syntactic arguments may seem redundant: it is not
possible for an instance of [Vehicle-Level Hazard] to satisfy some semantic prop-
erty if it is not defined in the first place. They are, however, still useful to be
included. Syntactic errors in complex documentation are inevitable in practice,
and these syntactic arguments provide additional confidence in the quality of
documentation. Additionally, it is common in practice for reviewers to have to
spend time working through syntactic errors in documentation or traceability
when trying to identify safety concerns. Applying these automatic checks before
documentation reaches the reviewing stage would be useful in practice. The syn-
tactic claims in this example are all direct translations of syntactic constraints
over the metamodel. In the case of multiplicities, it is easy to imagine how an
argument could be automatically generated by simply looking at associations
and making a statement based on the multiplicities and classes on either end.
To improve readability not all arguments related to multiplicities are included,
but in a more complete example each multiplicity would have a corresponding
argument. When it comes to more complex OCL-style constraints, fully auto-
matic generation of arguments may be difficult. We are exploring if these can be
automated based on patterns, or if suggestions could be made to analysts.

3.2 Semantic Constraints

Semantic claims are based on semantic constraints in the metamodel. They are
defined over the results of verification/validation processes such as reviews and
testing to ensure their output is acceptable.

There are several semantic checks within the definition of HARA itself. In
addition, ISO 26262 specifies several verification checks that ensure the work
product is semantically correct. For the sake of readability, we model only a
limited number of semantic constraints over the hazard identification process.
We chose these to illustrate how product, process and people aspects related
to assurance cases can be modelled in WF+. They are shown in Fig. 3 as the
validity constraints we saw in Fig. 2, but are now connected by dashed-lines to
semantic claims shown as red “notes”.

3.3 Deriving Higher-Level Argumentation

We can now demonstrate how the syntactic and semantic lowest level claims are
used to generate a (blue) higher-level argument about the contribution of hazard
identification to system safety. When defining constraints/claims in the previous
sections, we made an effort to ensure that related syntactic and semantic claims
always appeared alongside each other. That way, we can use the fact that the
data in the model is constrained to only allow instances that are well-formed and
semantically correct, allowing us to derive higher-level arguments about what

104 N. Annable et al.

Fig. 4. GSN-like argument segment generated from a WF+ model (Colour figure
online)

those instances guarantee. This derivation is often straightforward, as is the case
for the arguments related to [Method], where they are simply combined. In other
cases the derivation can be nontrivial, such as the derivation from arguments
related to [VLH Set], where we derive that reviewing a set of all identified vehicle-
level hazards and failing to find additional ones can indicate that the set of
hazards is complete. These nontrivial derivations depend on greater detail being
included in the model. We are exploring semi-automation of the higher level
argument. The resulting safety argument for this example is shown in Fig. 4.
The “generation” in this example was done manually, but we were careful to
do this systematically, using quite simple rules. It is also important to note
that although we have shown the “argument” separately from the WF+ model,
in reality Fig. 4 is simply an extension of Fig. 3 and retains the comprehensive
traceable links in the model. Thus, traceability is comprehensive and extends
throughout the processes, data and argument.

Comparing Figs. 1 and 4 we see that the GSN-like argument is structured in
precisely the same way in both figures. This is not surprising since we structured
the GSN assurance in Fig. 1 knowing what we had generated using WF+. The
point here was that the structure of that GSN assurance probably seemed quite
acceptable to most readers. Wording is sometimes manually changed if our rules
generate argumentation that reads in an unusual way. For example, the generated
version says “Team Members are approved...”, whereas the GSN version was
worded in the more usual way as “Team members are qualified...”.

Generating Assurance Cases Using Workflow+ Models 105

3.4 Integrating Assurance Segments

We have illustrated how a WF+ metamodel for a particular process can be used
to generate an assurance argument. The same pattern can be followed to create
WF+ metamodels of other processes and derive arguments as to how each part
contributes to the safety of the system being developed. We then have multiple
WF+ metamodels that have to be integrated so that the overall assurance case
is cohesive and convincing. This requires model management techniques, but
also direction on how they should fit together. Direction in our case is provided
by common safety practice: i) requirements will result in a safe system; ii) the
manufactured system complies with its requirements; and iii) the manufactured
system does not include “additional” behaviours that have not been justified.
The resulting process is then iterative. We start with the bottom-up results of
two or more processes and examine their top-most claims and how they can be
related, bearing in mind the overall argument. Sometimes those top-level claims
have to be “adjusted”, and this adjustment has then to be propagated down the
tree. This does not negate the advantage of the lowest level claims being “fixed”
to a large extent by the syntactic and semantic constraints in the metamodels.

3.5 Instantiating WF+ Models

When a workflow is executed, its metamodel is instantiated. Since our arguments
are based on constraints in the metamodel, arguments hold in instances as long
as the constraints they are based on are satisfied.

Fig. 5. A simplified view of an instance of the hazard identification process (Colour
figure online)

Figure 5 shows a simplified illustrative instance documenting a [Hazard Iden-
tification] process execution. We omitted most of the instance for simplicity.

106 N. Annable et al.

[Lane Keeping] is used for an execution of [Hazard Identification], and two haz-
ards, [Locked Steering] and [Camera Failure], are found. The hazard definitions
are reviewed, and it is determined that [Locked Steering] satisfies the required
properties, but [Camera Failure] does not. The completeness of the set is also
reviewed, and the reviewer found that the set is not complete. The syntactic
constraint on the association from [Item Definition] to [Vehicle-Level Hazard]
in the metamodel is satisfied, so the related claim holds in this instance and
is coloured in green. The constraints requiring the properties to be True are
satisfied for [Locked Steering], so its related claims are also coloured green. For
[Camera Failure] and [VLH Set 1] the constraints are not satisfied, so the cor-
responding claims are not satisfied. Finally, since the OCL-style syntactic con-
straint on [VLH Set] in the metamodel is satisfied, the related claim holds in
this instance and is coloured in green. Since some claims supporting the derived
claims are not satisfied, the higher-level claims are not true in this instance.
Figure 6 shows the same argument as in Fig. 5, but is presented now in GSN
format. The references in evidence nodes point to encircled numbers in Fig. 5.

This example also illustrates how the impact of changes can be made more
precise using detailed traceability. If [Lane Keeping] is changed, this change
could be propagated to other affected processes and data, and all related claims
could be marked as affected using the traceability links. Engineers could then be
directed to the processes or reviews that may need to be re-executed to resolve
issues introduced by the change.

Fig. 6. GSN version of example in Fig. 5. Numbers in evidence nodes refer to Fig. 5
(Colour figure online)

Generating Assurance Cases Using Workflow+ Models 107

4 Related Work

There is substantial literature on approaches for developing assurance cases. By
far the most common notation is the Goal Structuring Notation (GSN) [13].
There are other similar notations like Claims Arguments Evidence (CAE) [6],
but GSN is the most common in published literature [15]. A comprehensive
report on assurance cases was compiled by John Rushby, et al. [16].

While GSN and CAE offer well-defined notations for documenting assurance
cases, they provide little guidance on what claims should be included and how
they should be structured. Several papers have questioned the foundations of
assurance cases built in these notations and have aimed to mitigate their lack
of a systematic development method [18–20]. The use of patterns and templates
has helped make developing assurance cases more systematic, but in many cases
the problem has just been moved to the definition of the template itself. Our
work aims to make the entire process of creating argumentation more systematic
by basing argumentation on constraints in WF+ models. There have also been
attempts to promote the use of formal methods in assurance cases, e.g., [17]. Our
work is philosophically inspired by some of this research, but takes into account
limitations at the foundational and methodological level.

Several other papers have presented approaches for generating assurance
cases from model-based product data. AdvoCATE provides support for auto-
mated argument creation [4]. In [14] the authors discuss an approach for auto-
mated instantiation of argument patterns. A generic approach is proposed in [9]
where a weaving model is used to connect argumentation patterns to reference
information so they may be automatically instantiated. This approach is demon-
strated in [10] and [11]. There has also been work on generating argumentation
based on model-based process artefacts [7]. In these works templates or patterns
are created manually and automatically instantiated. Our work differs in that we
are investigating how templates can be generated in addition to their instances.
Discussion on the state of the art of model-based safety case generation can
be found in [21]. In this context, we aim to automate steps 2–5 of the generic
approach defined in Section III-B of [21].

5 Evaluation

5.1 Collaboration with an Industrial Partner

WF+ was developed during a multi-year collaborative project with an automo-
tive OEM. We have developed many metamodels based on ISO 26262 as well
as for safety engineering processes of our industrial partner. However, the mod-
els related to their engineering processes are proprietary. The models created
span the entire safety engineering process, from early hazard analyses to V&V.
Evaluation by the OEM focusing on accuracy of the metamodels, fidelity of the
models (in terms of accurately capturing the OEM’s safety processes), and com-
pleteness (in terms of being able to support the OEM’s modeling requirements)
is very promising, especially with regard to enabling incremental assurance using

108 N. Annable et al.

the detailed traceability inherent in WF+. One question raised by our industrial
collaborator was how those doing the everyday safety engineering work would
use WF+ models and if they would be too complex. To address this we created
mechanisms to transform WF+ models to and from familiar formats, such as
tabular representations, with the detailed traceability in the WF+ model main-
tained behind the scenes. Another question was related to the effort required
to create WF+ models. The models created can be reused for different systems,
and will be useful in the context of product lines. We already demonstrated how
successful WF+ can be in implementing change impact analyses.

5.2 Comparison with Other Approaches

The assurance case in WF+ is generated directly from the syntactic and semantic
checks that are based on the processes, associated data and constraints in the
WF+ metamodel – supplemented by well-known safety engineering principles.
The argument structure is calculated from the metamodel, and we build the
assurance case bottom-up, starting with the evidence. There are advantages in
doing this:

• The evidence directly supports the associated claim.
• The evidence is used to determine the claim, not the other way around, and

this reduces the potential for confirmation bias in constructing the argument.
• In all GSN-like assurance arguments the logical structure of the argument is

bottom-up – but the development of the argument is top-down. This is part
of the reason why GSN-like argumentation is so variable.

6 Conclusion

We have demonstrated how WF+ is used to model development and safety engi-
neering processes. The WF+ models use UML class diagrams that define data
and safety processes that operate over these data. WF+ modelling is rigorous
with well-defined semantics; admittedly, the fact that we can develop metamod-
els and their instantiations, together with their associated data, is not conceptu-
ally new. However, the fact that these models can be used to generate GSN-like
assurance arguments is new and we believe that this way of generating safety
assurance has advantages:

• Our assurance argument splits the lowest level claims into those that arise
from syntactic checks and those from semantic checks. Syntactic checks are
numerous, expensive, yet important in the documentation of evidence. Model
management can automate and record compliance with these checks.

• Traceability is extensive. It is pervasive throughout the integrated metamod-
els which link processes and their input and output data – and lead directly
to terminal claims in the assurance argument.

• The metamodel acts as a template; it is created once (at significant effort)
but is instantiated as often as needed.

Generating Assurance Cases Using Workflow+ Models 109

• The extensive traceability support and the reusable template facilitate incre-
mental assurance. It is this particular challenge that we have been working
on in our industrial collaboration.

• Model management techniques hold the promise of significant automation;
modelling tools ease the task of developing a WF+ metamodel and its nec-
essary constraints; in addition, they can check that an instance is compliant
with the metamodel.

• We have started developing initial tool support for WF+ [3]. It allows for the
development of the automated steps required for constraint checking, model
conformance, syntactic validation and more. The tooling uses the Eclipse
Modelling Framework (EMF), specifically the Ecore and Sirius technologies
available within that framework, and the Epsilon Object Language (EOL),
part of Epsilon, for implementing queries.

Future Work. As mentioned in Sect. 3.4, as a WF+ metamodel is developed
incrementally it requires the use of different model management techniques to
manage how the different pieces fit together. Tool support will enable us to
enforce conventions and modelling strategies to ensure that users develop valid
models from which rigorous assurance cases can be generated. Furthermore, the
ability to write formal constraints within the metamodel will further strengthen
both the usability of WF+ and the argumentation built from the constraints.
Finally, it would be ideal to be able to manage incremental assurance and change
propagation automatically through the model when changes are made in either
the metamodel level or its instance. This would further enhance the maintainabil-
ity of WF+, addressing reservations our industry collaborators voiced concerning
the cost of its use.

We intend to implement model management using Epsilon, for example by
using EOL to implement various change impact analysis algorithms and the
Epsilon Transformation Language to project the results of the analysis onto the
target model. Future work for tool support also includes integration with existing
engineering technologies such as Simulink, and with those used for documenta-
tion, such as Microsoft Excel.

Acknowledgment. WF+ was primarily the idea of Zinovy Diskin who led its initial
development. We also want to thank Joseph D’Ambrosio, Mehrnoosh Askarpour, Sahar
Kokaly, Lucian Patcas, Galen Ressler, Ramesh S, Sigrid Wagner, Marsha Chechik and
Alessio Disandro for their invaluable comments and suggestions.

References

1. Annable, N.: A Model-Based Approach to Formal Assurance Cases. Master’s thesis,
McSCert, Department of Computing and Software, McMaster University (2020)

2. Annable, N., Bayzat, A., Diskin, Z., Lawford, M., Paige, R., Wassyng, A.: Model-
driven safety of autonomous vehicles. In: proceedings of CSER (2020)

110 N. Annable et al.

3. Chiang, T.: Creating An Editor For The Implementation of WorkFlow+: A Frame-
work for Developing Assurance Cases. Master’s thesis, McSCert, Department of
Computing and Software, McMaster University (2021)

4. Denney, E., Pai, G.: Tool support for assurance case development. Autom. Softw.
Eng. 25(3), 435–499 (2018)

5. Diskin, Z., Annable, N., Wassyng, A., Lawford, M.: Assurance via workflow+ mod-
elling and conformance. CoRR abs/1912.09912 (2019)

6. Emmet, L.: Using claims, arguments and evidence: a pragmatic view—and tool
support in ASCE. Accessible from www.adelard.com

7. Gallina, B.: A model-driven safety certification method for process compliance. In:
2014 IEEE International Symposium on Software Reliability Engineering Work-
shops, pp. 204–209 (2014). https://doi.org/10.1109/ISSREW.2014.30

8. Graydon, P.J., Knight, J.C., Strunk, E.A.: Assurance based development of critical
systems. In: Proceedings of DSN 2007, pp. 347–357 (2007). https://doi.org/10.
1109/DSN.2007.17

9. Hawkins, R., Habli, I., Kolovos, D., Paige, R., Kelly, T.: Weaving an assurance
case from design: a model-based approach. In: IEEE HASE, pp. 110–117 (2015)

10. Hawkins, R., Kelly, T., Habli, I.: Developing assurance cases for D-MILS systems.
In: MILS@ HiPEAC (2015)

11. Hawkins, R., Richardson, T., Kelly, T.: Using process models in system assur-
ance. In: Skavhaug, A., Guiochet, J., Bitsch, F. (eds.) SAFECOMP 2016. LNCS,
vol. 9922, pp. 27–38. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
45477-1 3

12. ISO 26262: Road vehicles - Functional safety. International Organization for Stan-
dardization, Geneva, Switzerland (2018)

13. Kelly, T., Weaver, R.: The goal structuring notation-a safety argument notation.
In: Proceedings of the Dependable Systems and Networks Workshop on Assurance
Cases, p. 6. Citeseer (2004)

14. Meng, B., Paul, S., Moitra, A., Siu, K., Durling, M.: Automating the assembly of
security assurance case fragments. In: Habli, I., Sujan, M., Bitsch, F. (eds.) SAFE-
COMP 2021. LNCS, vol. 12852, pp. 101–114. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-83903-1 7

15. Nair, S., de la Vara, J.L., Sabetzadeh, M., Briand, L.C.: An extended system-
atic literature review on provision of evidence for safety certification. Inf. Softw.
Technol. 56(7), 689–717 (2014)

16. Rushby, J., Xu, X., Rangarajan, M., Weaver, T.L.: Understanding and evaluating
assurance cases. Technical report, SRI International (2015)

17. Rushby, J.M.: Formalism in safety cases. In: Dale, C., Anderson, T. (eds.) In: Dale,
C., Anderson, T. (eds) Making Systems Safer, pp. 3–17. Springer, London (2010).
https://doi.org/10.1007/978-1-84996-086-1 1

18. Wassyng, A., et al.: Can product-specific assurance case templates be used as
medical device standards? IEEE Des. Test 32(5), 45–55 (2015)

19. Wassyng, A., Maibaum, T.S.E., Lawford, M., Bherer, H.: Software certification: is
there a case against safety cases? In: 16th Monterey Workshop, pp. 206–227 (2010)

20. Wei, R., Kelly, T.P., Dai, X., Zhao, S., Hawkins, R.: Model based system assurance
using the structured assurance case metamodel. J. Syst. Softw. 154, 211–233 (2019)

21. Yan, F., Foster, S., Habli, I.: Safety case generation by model-based engineering:
state of the art and a proposal. In: Proceedings of The Eleventh International Con-
ference on Performance, Safety and Robustness in Complex Systems and Applica-
tions, International Academy, Research, and Industry Association (2021)

www.adelard.com
https://doi.org/10.1109/ISSREW.2014.30
https://doi.org/10.1109/DSN.2007.17
https://doi.org/10.1109/DSN.2007.17
https://doi.org/10.1007/978-3-319-45477-1_3
https://doi.org/10.1007/978-3-319-45477-1_3
https://doi.org/10.1007/978-3-030-83903-1_7
https://doi.org/10.1007/978-3-030-83903-1_7
https://doi.org/10.1007/978-1-84996-086-1_1

Uncertainty Elicitation and Propagation
in GSN Models of Assurance Cases

Yassir Idmessaoud1(B), Didier Dubois2, and Jérémie Guiochet1

1 LAAS-CNRS, University of Toulouse, Toulouse, France
{yassir.id-messaoud,jeremie.guiochet}@laas.fr

2 IRIT, University of Toulouse, Toulouse, France
dubois@irit.fr

Abstract. Goal structuring notation (GSN) is commonly proposed as a
structuring tool for arguing about the high-level properties (e.g. safety)
of a system. However, this approach does not include the representa-
tion of uncertainties that may affect arguments. Several works extend
this framework using uncertainty propagation methods. The ones based
on Dempster-Shafer Theory (DST) are of interest as DST can model
incomplete information. However, few works relate this approach with
a logical representation of relations between elements of GSN, which is
actually required to justify the chosen uncertainty propagation schemes.
In this paper, we improve previous proposals including a logical formal-
ism added to GSN, and an elicitation procedure for obtaining uncertainty
information from expert judgements. We briefly present an application
to a case study to validate our uncertainty propagation model in GSN
that takes into account both incomplete and conflicting information.

Keywords: Uncertainty propagation · Belief elicitation · Goal
structuring notation · Dempster-Shafer application · Safety cases

1 Introduction

Due to its expressiveness, the goal structuring notation (GSN) has became a de-
facto standard for graphical documentation of argument structures. It is notably
used to argue about the safety of critical systems. However, even a well-designed
GSN may include uncertainties that may question the final statement of the
GSN. There is a lack of consensus about how to model these uncertainties in
the argument structure. An interesting proposal [19] is to use Dempster-Shafer
Theory (DST), since incomplete information can be explicitly modeled and cal-
culated with. Several research works are investigating its use, but as presented
in [7], the proposed uncertainty propagation schemes are often not clearly jus-
tified. This is mainly due to a lack of a clear definition of the logical relations
between GSN elements. We investigate this issue in this paper, using DST and
logical representations of arguments with new propagation models. We do not

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Trapp et al. (Eds.): SAFECOMP 2022, LNCS 13414, pp. 111–125, 2022.
https://doi.org/10.1007/978-3-031-14835-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14835-4_8&domain=pdf
https://doi.org/10.1007/978-3-031-14835-4_8

112 Y. Idmessaoud et al.

replace GSN informal notation, but build a formal model on top of it to propa-
gate uncertainties. We also study how expert judgments can be elicited to feed
our models.

The paper is structured as follows. Section 2 presents background and some
related works. Sections 3 and 4 present the uncertainty propagation and elici-
tation methods respectively. Finally, Sect. 5 presents some experimental results
gained by the proposed approach.

2 Background and Related Work

Goal structuring notation (GSN) is a graphical notation/language which repre-
sents argument structures (i.e., safety and assurance cases) in form of directed
acyclic graphs (directed trees or arborescences). It breaks down a top claim,
called “goal”, into elementary sub-goals following a specific strategy and in
accordance with a particular context. Each sub-goal is associated with pieces
of evidence, called solutions, which support the conclusion. Figure 1 represents
a typical hazard avoidance GSN pattern. To be considered as “acceptably safe”
(G1) all hazards (G2 to Gn) of the system (X), listed in the context box (C1),
should be provably handled (Sn1, Sn2, ...) following the strategy (S1). How-
ever, this symbol-based language does not specify the nature of the logical links
between G1, G2, . . . Gn, nor does it capture the uncertainty that may exist in
the argument structure. Previous works [5,7] stated and discussed proposals
that deal with the issue of uncertainty. An important part of these studies use
probability theory to address it [4,8]. For instance, some authors [15] transform
GSN into a Bayesian network (BBN) and propagate probabilities accordingly.
Due to the limited expressiveness of the probabilistic framework when infor-
mation is lacking, such approaches can properly deal with uncertainties due to
aleatory phenomena, but they poorly represent epistemic uncertainties due to
incomplete information. In addition, these methods are also very greedy in terms
of data, which requires much time to collect and process.

As a generalization of probability theory, Dempster-Shafer theory [16] (DST)
offers tools to model and propagate both aleatory and epistemic uncertainty.
A mass function, or basic belief assignment (BBA), is a probability distri-
bution over the power set of the universe of possibilities (Ω), known as the
frame of discernment. Formally, a mass function m : 2Ω → [0, 1] is such that∑

E⊆Ω m(E) = 1, and m(∅) = 0. Any subset E of Ω such that m(E) > 0
is called a focal set of m. m(E) quantifies the probability that we only know
that the truth lies in E; in particular m(Ω) quantifies the amount of igno-
rance. A mass assignment induces a so-called belief function Bel : 2Ω → [0, 1],
defined by: Bel(A) =

∑
E⊆A m(E). It represents the sum of all the masses

supporting a statement A. Belief in the negation ¬A of the statement A is rep-
resented by: Disb(A) = Bel(¬A); the value Uncer(A) = 1 − Bel(A) − Disb(A)
quantifies the lack of information about A. In this paper, a conjunctive rule
of combination is used for uncertainty propagation. This rule combines multi-
ple pieces of evidence (represented by mass functions mi, with i = 1, 2, ..., n)

Uncertainty Elicitation and Propagation in GSN Models of Assurance Cases 113

Fig. 1. GSN example adapted from the Hazard Avoidance Pattern [14]

coming from independent sources of information: m∩ = m1 ⊗ m2 such that
m∩(A) =

∑
E1∩E2=A m1(E1) · m2(E2). In DST, an additional step eliminates

conflicts that may exist by means of a normalization factor (dividing m∩ by
1−m∩(∅)). This is Dempster rule of combination [16]. This step is omitted here
to indicate the presence of possibly conflicting pieces of information.

Our approach builds on some previous works (mainly [2,19]) that define a
number of argument types and associate to each of them an uncertainty prop-
agation formula in the setting of DST. However, in [2], no logical framework is
provided, which prevents a formal justification of uncertainty propagation for-
mulas. An implicit logical setting is offered in [19]. But it remains questionable
since, for instance, rules that represent the relations between premises and the
top-goal are modelled by equivalences. In our work we explicitly build propa-
gation rules on a logical framework and we adopt a more flexible format using
implications. A second issue is the elicitation process that collects information
from experts and transforms it into belief and disbelief pairs in DST. For that,
the method proposed in [2] and taken over in [19] is ad hoc. This transformation
between expert information and (belief, disbelief) pairs is not one to one when
the expert expresses no information. It yields some anomalous cases as discussed
in [9]. Finally, no proposal was given in [2] to elicit belief on rules, while in [19]
negative beliefs can be obtained, which is not acceptable. In this paper, we pro-
pose a new better-behaved elicitation approach based on the pignistic transform
proposed in [17] that solves the two last issues.

114 Y. Idmessaoud et al.

3 From GSN to Dempster-Shafer Theory

As defined by [13,14], Goal Structuring Notation (GSN) is a non-formal repre-
sentation that does not formally specify how premises support a conclusion. In
order to model such a relation, we use logical expressions. Then we shall attach
degrees of uncertainty to these logical expressions and explain how to propagate
these degrees of uncertainty in the GSN, in agreement with classical logic.

(C)
The system X is
acceptably safe

(p)
All test results
are conclusive

Fig. 2. A conclusion supported by one
premise in GSN.

(C)
The ba�ery is

acceptably safe

(p1)
The risk of chemical

leakage is treated

(p2)
The risk of explosion

is treated

Fig. 3. A conclusion supported by two
premise in GSN.

3.1 Logical Modeling of GSN

Figure 2 represents a conclusion (C) supported by a single premise (p). It
describes the situation in which the conclusion (C) is true if the premise (p)
supporting it is also true. This statement can be expressed using a logical impli-
cation connective: p ⇒ C standing for ¬p ∨ C, using negation ¬ and disjunction
∨. It is obvious that such an expression can only assert the validity of the conclu-
sion (in case p holds), i.e., whether C is provably true, not whether it is provably
false. Note that even if C can only be true or false, we may fail to know it. So
we work in a three-state universe (belief, disbelief and ignorance). To establish
disbelief in C, we need to add an implication of the form ¬p ⇒ ¬C. It describes
the situation where the conclusion (C) would be false, when the premise (p) is
false. We call such logical expressions “rules”. Those that induce belief in C are
called direct rules and those that induce disbelief are called reverse rules.

With complex systems, it is more likely to find claims supported by more than
one piece of evidence. In these cases, it is necessary to consider the relationship
between the premises that support the same claim. On the other hand, logical
implications remain the only connective that links the evidence domain to the
conclusion. Through the different GSN patterns encountered in the literature,
we can identify three types:

– Conjunctive (C-Arg): It describes the case when all premises are needed
to support the conclusion. The direct rule is obtained by translating this
definition into a logical expression: (∧n

i pi) ⇒ C. On the other hand, the
reverse one is obtained by reversing the direct one: ¬(∧n

i pi) ⇒ ¬C, which is
equivalent to ∧n

i (¬pi ⇒ ¬C), a conjunction of simple rules.

Uncertainty Elicitation and Propagation in GSN Models of Assurance Cases 115

– Disjunctive (D-Arg): It describes the case when one premise is enough
to support the whole conclusion. The corresponding rules are: ∧n

i (pi ⇒ C)
(direct), and (∧n

i ¬pi) ⇒ ¬C (reverse).
– Hybrid (H-Arg): It describes the case where each premise supports the

conclusion to some extent, but their conjunction does it to a larger extent.
This rule type could be considered as a general type which includes the two
previous ones. In fact, conjunctive and disjunctive types correspond to limit
cases of the hybrid one.

Figure 3 represents an example of the conjunctive type. To assert that the
battery is acceptably safe, all risks of chemical leakage and explosion should be
treated. It gives the expression: (p1 ∧ p2) ⇒ C. On the other hand, if one of the
risks remains present we may assert that the battery is unsafe, which gives the
expressions: ¬p1 ⇒ ¬C and ¬p2 ⇒ ¬C.

All rules defined above will be used to build our uncertainty propagation
model. Since the conjunctive and disjunctive types represent a special case of
the hybrid one, we will only present the last one. However, it is simple to deduce
their expressions from the general formula.

3.2 Uncertainty Propagation Model

In order to build our uncertainty propagation model, we define two kinds of
parameters:

– Uncertainty on premises: It is modeled as a mass function on each premise
of the argument: <m1

p, ...,m
n
p>. mi

p assigns a mass to the premise pi, one
on its negation (¬pi) and one on the tautology (Ω, representing ignorance)
summing to 1.

– Uncertainty on rules: It is used to evaluate the impact of premises on a con-
clusion. We associate a simple support function [16] to each rule r of the
argument type. Each simple support function consists in assigning a mass
mr(r) = s to the rule and another one mr(Ω) = 1 − s to the tautology,
these weights summing to 1. The set of mass functions is formally defined as:
<m⇒,mi

⇒,m⇐,mi
⇐>, where:

m⇒ and m⇐ represent, respectively, direct and reverse conjunctive mass func-
tions that assign support to rules (∧n

i pi) ⇒ C and (∧n
i ¬pi) ⇒ ¬C, respec-

tively.
mi

⇒, and mi
⇐ respectively, assign support to elementary rules pi ⇒ C and

¬pi ⇒ ¬C occurring in the disjunctive type.

Using the conjunctive rule of combination presented in Sect. 2, to merge
the masses on the rules (conjunctive and disjunctive ones) with the masses on
premises (m∩ = m⇒ ⊗ m⇐ ⊗ mi

⇒ ⊗ mi
⇐ ⊗ mi

p), we quantify the uncertainty
on the conclusion C [1]. Since we work on a two-state frame of discernment
for both premises Ωp = {pi,¬pi} and conclusion ΩC = {C,¬C}, masses and
(dis-)belief degrees on premises, rules and the conclusion are equal. For instance,

116 Y. Idmessaoud et al.

mC(C) = BelC(C) and mC(¬C) = BelC(¬C) = DisbC(C). We can prove the
following results, by projecting m∩ on the universe ΩC = {C,¬C}:

BelC(C) = Bel⇒([∧n
i=1pi] ⇒ C) ·

n∏

i=1

{Belip(pi) · [1 − Beli⇒(pi ⇒ C)]}

+ {1 −
n∏

i=1

[1 − Belip(pi) · Beli⇒(pi ⇒ C)]} (1)

DisbC(C) = Bel⇐([∧n
i=1¬pi] ⇒ ¬C) ·

n∏

i=1

{Disbi
p(pi) · [1 − Beli⇐(¬pi ⇒ ¬C)]}

+ {1 −
n∏

i=1

[1 − Disbi
p(pi) · Beli⇐(¬pi ⇒ ¬C)]} (2)

where:

– BelC(C) (resp. DisbC(C)): the degree of belief (resp. disbelief) in the con-
clusion C obtained by projection of m∩ on ΩC .

– Belip(pi) (resp. Disbi
p(pi)): the degree of belief (resp. disbelief) in the ith

premise.
– Bel⇒([∧n

i=1pi] ⇒ C) (resp. Beli⇐(¬pi ⇒ ¬C)): the degree of belief in the
direct conjunctive rule (resp. ith reverse rule).

We can notice that each formula (1) and (2) is the result of the summation
of two terms. The first part expresses a generalized conjunction (the product),
and the second part reflects a generalized disjunction (the probabilistic sum
1−(1−a)(1−b)). To extract propagation formulas for the pure conjunctive type
(C-Arg), it is enough to set to zero the masses on the direct rules (Beli⇒(pi ⇒ C))
and the mass on the conjunctive reverse rule (Bel⇐([∧n

i ¬pi] ⇒ ¬C)). Similarly,
to derive the pure disjunctive formulas (D-Arg), we set to zero the mass on the
conjunctive direct rule (Bel⇒([∧n

i=1pi] ⇒ C)) and the masses on the reverse
rules (Beli⇐(¬pi ⇒ ¬C)). We obtain:

C-Arg :
{

BelC(C) = Bel⇒([∧n
i=1pi] ⇒ C) · ∏n

i=1 Belp(pi)
DisbC(C) = 1 − ∏n

i=1[1 − Disbi
p(pi) · Beli⇐(¬pi ⇒ ¬C)]

D-Arg :
{

BelC(C) = 1 − ∏n
i=1[1 − Belip(pi) · Beli⇒(pi ⇒ C)]

DisbC(C) = Bel⇐([∧n
i=1¬pi] ⇒ ¬C) · ∏n

i=1 Disbi
p(pi)

Note that the belief (resp. disbelief) degree of the conclusion (BelC(C)) only
depends on the belief (resp. disbelief) degree of premises (Belip(pi)) and of the
corresponding direct (reverse) rules (Bel⇒ and Beli⇒).

However, we observe in some cases that the sum of belief and disbelief of
the conclusion, as calculated above, is greater than 1 which is not coherent.

Uncertainty Elicitation and Propagation in GSN Models of Assurance Cases 117

This is when the mass m∩(∅) > 0. It is then counted in both sums defining
the degrees of belief and disbelief. It indicates the presence of conflict between
premises and rules. The coherence property BelC(C) + DisbC(C) ≤ 1 always
hold if m∩(∅) = 0. If it is not null, the conflict mass (3) should be subtracted
from both belief and disbelief values, in order to get genuine contradiction-free
degrees of belief and disbelief that respect the coherence property.

In [10], we provided a recursive equation to compute mn
∩(∅) for n premises

when we know mn−1
∩ (∅):

mn
∩(∅) = Beln−1

C (C) ·mn(¬pn ∧¬C)+Disbn−1
C (C) ·mn(pn ∧C)+mn−1

∩ (∅) (3)

where:

– Beln−1
C (C) = {1 − ∏n−1

i=1 [1 − Belip(pi) · Beli⇒(pi ⇒ C)]} − mn−1
∩ (∅)

– Disbn−1
C (C) = {1 − ∏n−1

i=1 [1 − Disbi
p(pi) · Beli⇐(¬pi ⇒ ¬C)]} − mn−1

∩ (∅)
– mi(pi ∧ C) = Belip(pi) · Beli⇒(pi ⇒ C)
– mi(¬pi ∧ ¬C) = Disbi

p(pi) · Beli⇐(¬pi ⇒ ¬C)

Remark: D-Arg and C-Arg are conflict-free. Assuming that rule masses are
maximal (= 1), for n = 2 we get: BelC(C) = Bel1p(p1) · Bel2p(p2) (for C-Arg)
and BelC(C) = Bel1p(p1) + Bel2p(p2) − Bel1p(p1) · Bel2p(p2) (for D-Arg).

3.3 Belief and Disbelief Elicitation

The model of uncertainty propagation presented above requires two types
of inputs in order to compute belief and disbelief degrees of a conclusion:
Belief/Disbelief on the rules and on the premises. These two information items
will be directly collected from experts. To give their assessment about a premise
or a rule, experts are asked to fill in an evaluation matrix, presented in Fig. 4.
Each point of this matrix corresponds to a strength of decision, denoted by
Dec(A), and a degree of confidence in this decision, denoted by Conf(A)

C6: For sure

C5: Very High Confidence

C4: High Confidence

C3: Low Confidence

C2: Very Low Confidence

C1: Lack of Confidence

Fig. 4. Evaluation matrix

118 Y. Idmessaoud et al.

attached to a proposition A. In a scale of 5 equidistant items, decision describes
which side the expert leans towards: From the rejection (Dec(A) = 0) of a
claim A, to its acceptance (Dec(A) = 1). It is formally the same as a degree of
probability. On the other hand, confidence reflects the amount of information
an expert possesses that can justify a decision. There are 6 equidistant levels
of the confidence scale, from “Lack of confidence” Conf(A) = 0 to “For sure”
Conf(A) = 1.

In Fig. 5, we present four extreme expert assessments (see the black dot). The
upper matrices represent the case of total confidence. The assessor rejects (resp.
accepts) the claim in Fig. 5a (resp. 5b). It corresponds to a maximal disbelief
(resp. belief) degree. In contrast, the lower matrices represent resp. the cases of
total conflict (Fig. 5c) and ignorance (Fig. 5d). In both cases, the expert cannot
make a clear decision either because he has as a lot of information both to
support and reject the claim (Conf(A) = 1), or because he has no information
(Conf(A) = 0). In contrast to other works [2,18], we allow the assessor to use a
midpoint value (Dec(A) = 1/2) to show full hesitancy.

Fig. 5. Extreme assessments (black dot)

Uncertainty on Premises: To be used in Eqs. (1) and (2), the pair (decision,
confidence) is translated into a triple (belief, disbelief and uncertainty). To do so,
we use the formula proposed in [2], which defines confidence as the sum of belief
and disbelief degrees (Eq. (4), left). On the other hand, we consider decision as
the pignistic transform [17] that turns a mass into a probability (Eq. (4), right).
So, we solve the following system for Bel(p) and Disb(p):

Conf(p) = Bel(p) + Disb(p); Dec(p) =
1 + Bel(p) − Disb(p)

2
(4)

However, as indicated in [9], the pignistic transform can generate negative belief
and disbelief values when the pair (Dec,Conf) given by an expert lies outside

Uncertainty Elicitation and Propagation in GSN Models of Assurance Cases 119

the triangle shown in Fig. 4. Known as “Josang Triangle” [12], it represents a
constraint that brackets decision Dec(p) between two values:

1 − Conf(p)
2

≤ Dec(p) ≤ 1 + Conf(p)
2

(5)

It guarantees that all clear-cut decisions (rejection or acceptance) are made only
when the confidence level is maximal. To avoid negative belief and disbelief
values, we must adjust the decision value to respect constraint (5). Therefore,
when Dec(p) < 1−Conf(p)

2 (rejection: black dots in Fig. 4), we set Dec(p) =
1−Conf(p)

2 . On the other hand, when Dec(p) > 1+Conf(p)
2 (acceptance: grey dots

in Fig. 4), we set Dec(p) = 1+Conf(p)
2 .

Example 1. Suppose we get the following assessments on two goals (p1) and (p2):

– p1: Opposable with high confidence (Dec(p1) = 0.25, Conf(p1) = 0.6).
– p2: Acceptable with very high confidence (Dec(p2) = 1, Conf(p2) = 0.8).

To calculate Bel(pi) and Disb(pi), we write them in terms of Dec(pi) and
Conf(pi), from (4): Bel(p) = Conf(p)−1

2 +Dec(p), Disb(p) = Conf(p)+1
2 −Dec(p).

We can notice that the assessment for p1 is inside the triangle in the matrix
(Fig. 4). Hence, there is no need to adjust the values:
Bel(p1) = 0.6−1

2 +0.25 = 0.05, Disb(p1) = 0.6+1
2 − 0.25 = 0.55 and Uncer(p1) =

1 − Bel(p1) − Disb(p1) = 0.4 for the amount of ignorance.
On the other hand, the assessment for p2 is situated outside the triangle. In

this case, we can be sure that the decision degree must be adjusted in accordance
with the confidence value to get correct inputs. Before adjustment, we find a
negative value of disbelief, which does not make sense: Bel(p2) = 0.8−1

2 + 1 =
0.9 and Disb(p2) = 0.8+1

2 − 1 = −0.1. Following the description above, we
set Dec(p2) = 1+Conf(p2)

2 = 1+0.8
2 = 0.9. Then we find that Bel(p2) = 0.8,

Disb(p2) = 0 and Uncer(p2) = 1 − Bel(p2) − Disb(p2) = 0.2.

Uncertainty on Rules: Assuming clear-cut knowledge about some (or all)
premises (Belip(pi),Disbi

p(pi) ∈ {0, 1}) and total ignorance about the others
(Unceri

p(pi) = 1), we notice that BelC(C) and DisbC(C) in (1) and (2) are
equal to rule masses. For instance, in the case of a conclusion C supported by
two premises p1 and p2, assuming total acceptance of these two premises with
maximal confidence, we get: BelC(C) = Bel⇒([p1 ∧ p2] ⇒ C). While assuming
total rejection with maximal confidence of p1, and total ignorance about p2, we
get: DisbC(C) = Bel⇐(¬p1 ⇒ ¬C).

In order to collect masses on rules, under the assumption mentioned above
(sure truth, sure falsity or ignorance on premises) we use the same approach as
for eliciting uncertainty on premises. First, using the evaluation matrix (Fig. 4),
we take the expert opinions about the conclusion (which corresponds to the rules
masses under those assumptions). Then, we change them to belief values using
transformation formulas (4).

120 Y. Idmessaoud et al.

Moreover, we assume that a rule is either accepted or discarded, but not
negated. In fact, for any rule R : p ⇒ C we do not consider a positive disbelief
because this would imply a belief in ¬(p ⇒ C) = p ∧ ¬C, i.e., ¬R which is not
a rule. So we only assign mass to a rule or to the tautology; the latter is the
extent to which a rule is discarded. This constraint impacts the allowed pairs
(Dec, Conf) for the expert. The latter is constrained to choose only a decision
on the positive side (from “No decision” to “acceptable”) for direct rules. On
the contrary, (s)he can only choose a negative decision (from “rejectable” to “No
decision”) for the reverse rules. Formulas in (4) are used to derive the degrees
of belief on rules.

Example 2. Consider the case of Fig. 2:

– Direct rule (R1 : p ⇒ C): Assuming Dec(p) = 1, expert assigns “Tolerable
with high confidence” to C: Dec(C) = 0.75, Conf(C) = 0.6

– Reverse rule (R2 : ¬p ⇒ ¬C): Assuming Dec(p) = 0, expert assigns “Oppos-
able with very high confidence” to C: Dec(C) = 0.25, Conf(C) = 0.8

We can notice in this example that both cases respect the Josang constraint
(5). Hence, there is no need to adjust the decision value. Using (4) for the
direct rule R1: Bel⇒(R1) = BelC(C) = (0.6)−1

2 + (0.75) = 0.55 and we
set Bel⇒(¬R1) = 0. In the same way, for the reverse rule R2: Bel⇐(R2) =
DisbC(C) = (0.8)+1

2 − (0.25) = 0.65 and we set Bel⇐(¬R2) = 0.

4 Uncertainty Assessment Procedure

In this section, we present our approach to uncertainty propagation from
premises to the top goal of a GSN. As illustrated on Fig. 6, this procedure is
structured in two phases.

The first one, called modeling phase, collects expert opinions on rules,
expressed with qualitative scores (Dec,Conf), and translates them into numeri-
cal mass assignments to rules. It will be conducted by asking (2n+2) questions to
the assessor using the evaluation matrices, n being the number of premises. The
first (2n) questions concern masses on elementary rules (direct and reverse). For
instance, to get, respectively, the values of Beli⇐(¬pi ⇒ ¬C) and Beli⇒(pi ⇒ C)
the expert will be asked the following questions (in case n = 2):

1. Supposing no knowledge about premise p1 (resp. p2) : (Dec = 0.5, Conf = 0)
and minimal Dec value (rejectable for sure) in premise p2 (resp. p1): (Dec =
0, Conf = 1), what is your Decision/Confidence in the conclusion?

2. Supposing no knowledge about premise p1 (resp. p2): (Dec = 0.5, Conf =
0) and a maximal Dec value (acceptable for sure) concerning premise p2
(resp. p1) : (Dec = 1, Conf = 1), what is your Decision/Confidence in the
conclusion? The additional two questions concern the conjunctive rules (resp.
reverse and direct):

Uncertainty Elicitation and Propagation in GSN Models of Assurance Cases 121

3. Supposing minimal Dec value (rejectable for sure) concerning both premises
p1, p2 : (Dec = 0, Conf = 1), what is your Decision/Confidence in the con-
clusion?

4. Supposing maximal Dec value (acceptable for sure) concerning both premises
p1, p2 : (Dec = 1, Conf = 1), what is your Decision/Confidence in the con-
clusion?

We assume that once these masses on rules are evaluated, they can be used for
the considered system using the second phase explained below.

The second phase, called application phase, concerns the collection of expert
data on premises. One question per premise is then formulated to the experts:
considering the knowledge on the pieces of evidence (also called solutions in
GSN), what is your “Decision” and “Confidence” concerning premise pi?

Grouped in a questionnaire, these (3n+2) questions will be asked in form of
matrices to be filled in by the assessor (for rules, some matrices may be pre-filled,
see Fig. 6). Then, these values (on rules and premises) are used to calculate the
belief/disbelief in the conclusion (Eqs. (1) and (2)). Finally, we may transform
the resulting triple (Belief, Disbelief, Uncertainty) concerning the conclusion,
to a pair (Decision, Confidence) using formulas (4) and approximate them by
qualitative values.

Modeling phase
Ques�onnaire

Applica�on phase

Conjunc�ve rules
elicita�on

Disjunc�ve rules
elicita�on

Calculated
(Decision, Confidence)

Comb.

Fig. 6. Schema of the assessment framework for safety argument

5 Case Study

In this section, we use a portion of GSN proposed in [3] to test and validate our
uncertainty propagation approach. That study proposed a hybrid architecture
of a collision avoidance system for drones, Urban Air Mobility and Air Taxis

122 Y. Idmessaoud et al.

with horizontal automatic resolution. It is named ACAS-X (Next-Generation
Airborne Collision Avoidance System). It replaces a set of lookup tables (LUTs)
(that provide anti-collision maneuvering guidance according to the speed of the
two aircrafts, their relative positions, and the time until the loss of vertical sep-
aration occurs) by a neural network (NN) of much smaller size. In addition to
the NN-based controller, this architecture includes a safety net which contains
a portion of LUTs (already established as safe) for unsafe areas (where the NN
may give results different from those of the LUTs), and a check module which
controls the switch between these two sub-systems (NN and LUTs). The GSN
section (Fig. 7) in which we are interested, argues that “G1: Real world situa-
tions where MLM 1 is not robust are identified and mitigated”. To demonstrate
this statement, the top goal (G1) is broken down into two sub-goals (G2) and
(G3). (G2) ensures that the property was correctly defined to identify all unsafe
situations (G4) and formally checked (G6) in each of the areas (called p-boxes)
into which the input space was correctly decomposed (G5). (G3) ensures that
unsafe situations were properly mitigated via an appropriate architecture (G7).

Real-world situa�ons where the MLM is
not robust are iden�fied and mi�gated

(G1)

Ensure that all unsafe situa�ons are
correctly iden�fied and mi�gated

(ST)

All unsafe situa�ons are iden�fied
(G2) (G3)

All unsafe situa�ons iden�fied are
mi�gated

(G7)
Architecture mi�ga�on (switch to the

LUT when appropriate)
The LUT property is

correctly defined

(G4)
The LUT property is

checked in each p-box

(G6)
The input space (ODD) is correctly

decomposed to p-boxes

(G5)

Cer�fied
development

process DO178

(S4)
Formal verifica�on

results

(S3)The valida�on is trivial (it
consists of mathema�cal

decomposi�on on the
whole 3D input space)

(S2)

The valida�on of this
property is trivial

(S1)

Fig. 7. Assurance Case - ML subsystem robustness [3]

Table 1 groups the degrees of belief on the rules involved in this case. Fol-
lowing the assessment procedure above, these values are the result of a ques-
tionnaire2 answered by a safety expert about this system. We can notice that
all direct conjunctive rules receive maximal weights and the elementary rule
weights for (G1) and (G2) are null. Thus, we deduce that this GSN represent a
conjunctive type where all sub-goals are needed to support (G1). As seen in [10],

1 Machine learning Model.
2 The questionnaire is available in [11].

Uncertainty Elicitation and Propagation in GSN Models of Assurance Cases 123

C-Arg tends to propagate the premises that support the conclusion with the least
weight, increasing along with it the uncertainty level. Thus, we can explain why
we go from acceptable premises with very high confidence (G6, G7), high confi-
dence (G5) and for sure (G4) to a tolerable top goal (G1) with low confidence
(Dec = 0.692, Conf = 0.384). Graphs in Figs. 8 and 9 present, respectively, the
sensitivity of decision and confidence degrees of the conclusion (G1) to the sub-
goals (G4), (G5), (G6) and (G7). To determine the latter, we vary the value of
a premise from its minimal to its maximal value, while we keep the values of
the other premises to their base values. We can notice that all values, are indeed
included in the interval [0,1]. We can also notice that the pair (decision, confi-
dence) on the goal (G1) varies from “Rejectable for sure” (Dec = 0, Conf = 1)
to “Tolerable with high confidence” (Dec = 0.82, Conf = 0.64). The sub-goal
(G4) has the lowest influence on decision and the highest influence on confidence;
the opposite applies for sub-goal (G5).

Table 1. Elicited belief degrees on rules

Goal (Gi) Belief degree on rules

G1

(i = 2, n = 3)
Bel⇒([∧n

i Gi] ⇒ G1) = 1
Bel⇐([∧n

i ¬Gi] ⇒ ¬G1) = 1
Bel⇒(Gi ⇒ G1) = 0
Bel⇐(¬Gi ⇒ ¬G1) = 1

G2

(i = 4, n = 6)
Bel⇒([∧n

i Gi] ⇒ G2) = 1
Bel⇐([∧n

i ¬Gi] ⇒ ¬G2) = 1
Bel⇒(Gi ⇒ G2) = 0
Bel⇐(¬Gi ⇒ ¬G2) = 1

G3 Bel⇒(G7 ⇒ G3) = 1
Bel⇐(¬G7 ⇒ ¬G3) = 1

Fig. 8. Decision sensitivity on the top
goal G1

Fig. 9. Confidence sensitivity on the
top goal G1

124 Y. Idmessaoud et al.

6 Conclusion

In this paper, we propose an extensive approach to the elicitation and propa-
gation of uncertainty in a logical GSN model and report on a preliminary case
study for testing our approach. However, some issues still need to be addressed.
First of all, our propagation model does not consider all GSN components (such
as Justification, Assumption, etc.). In addition, our elicitation model seems to
encourage experts to give extreme values of (decision, confidence) so that we
often end up with a conjunctive or disjunctive type. But these two types are
not the only types that exist in literature. Finally, the transformation of expert
opinion from quantitative to qualitative values is also a source of uncertainty. In
a future work, we plan to develop a purely qualitative approach to information
fusion based on [6], and compare it to the quantitative one.

Acknowledgement. A special thanks to the authors of [3], especially to Christophe
GABREAU for answering the questionnaire concerning the assessment of the GSN
presented in our case study.

References

1. Chatalic, P., Dubois, D., Prade, H.: An approach to approximate reasoning based
on Dempster rule of combination. Int. J. Expert Syst. Res. Appl. 1, 67–85 (1987)

2. Cyra, L., Górski, J.: Support for argument structures review and assessment.
Reliab. Eng. Syst. Saf. 96(1), 26–37 (2011)

3. Damour, M., et al.: Towards certification of a reduced footprint ACAS-Xu system: a
hybrid ML-based solution. In: Habli, I., Sujan, M., Bitsch, F. (eds.) SAFECOMP
2021. LNCS, vol. 12852, pp. 34–48. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-83903-1 3

4. Denney, E., Pai, G., Habli, I.: Towards measurement of confidence in safety cases.
In: 2011 International Symposium on Empirical Software Engineering and Mea-
surement, pp. 380–383. IEEE (2011)

5. Duan, L., Rayadurgam, S., Heimdahl, M.P.E., Ayoub, A., Sokolsky, O., Lee, I.:
Reasoning about confidence and uncertainty in assurance cases: a survey. In: Huhn,
M., Williams, L. (eds.) FHIES/SEHC -2014. LNCS, vol. 9062, pp. 64–80. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63194-3 5

6. Dubois, D., Faux, F., Prade, H., Rico, A.: A possibilistic counterpart to Shafer
evidence theory. In: IEEE International Conference on Fuzzy Systems (FUZZ-
IEEE), New Orleans, LA, USA, 23–26 June 2019, pp. 1–6. IEEE (2019)

7. Graydon, P.J., Holloway, C.M.: An investigation of proposed techniques for quan-
tifying confidence in assurance arguments. Saf. Sci. 92, 53–65 (2017)

8. Guiochet, J., Do Hoang, Q.A., Kaaniche, M.: A model for safety case confidence
assessment. In: Koornneef, F., van Gulijk, C. (eds.) SAFECOMP 2015. LNCS,
vol. 9337, pp. 313–327. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24255-2 23

9. Idmessaoud, Y., Dubois, D., Guiochet, J.: Belief functions for safety arguments
confidence estimation: a comparative study. In: Davis, J., Tabia, K. (eds.) SUM
2020. LNCS (LNAI), vol. 12322, pp. 141–155. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-58449-8 10

https://doi.org/10.1007/978-3-030-83903-1_3
https://doi.org/10.1007/978-3-030-83903-1_3
https://doi.org/10.1007/978-3-319-63194-3_5
https://doi.org/10.1007/978-3-319-24255-2_23
https://doi.org/10.1007/978-3-319-24255-2_23
https://doi.org/10.1007/978-3-030-58449-8_10
https://doi.org/10.1007/978-3-030-58449-8_10

Uncertainty Elicitation and Propagation in GSN Models of Assurance Cases 125

10. Idmessaoud, Y., Dubois, D., Guiochet, J.: Quantifying confidence of safety cases
with belief functions. In: Denœux, T., Lefèvre, E., Liu, Z., Pichon, F. (eds.)
BELIEF 2021. LNCS (LNAI), vol. 12915, pp. 269–278. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-88601-1 27

11. Idmessaoud, Y., Guiochet, J., Dubois, D.: Questionnaire for estimating uncertain-
ties in assurance cases, April 2022. https://hal.laas.fr/hal-03649068

12. Jøsang, A.: Subjective Logic. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-42337-1

13. Kelly, T.: Arguing safety - a systematic approach to safety case management. Ph.D.
thesis, Department of Computer Science, University of York, UK (1998)

14. Kelly, T.P., McDermid, J.A.: Safety case construction and reuse using patterns.
In: Daniel, P. (ed.) Safe Comp 1997, pp. 55–69. Springer, London (1997). https://
doi.org/10.1007/978-1-4471-0997-6 5

15. Nešić, D., Nyberg, M., Gallina, B.: A probabilistic model of belief in safety cases.
Saf. Sci. 138, 105187 (2021)

16. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press,
Princeton (1976)

17. Smets, P.: Decision making in the TBM: the necessity of the pignistic transforma-
tion. Int. J. Approximate Reasoning 38, 133–147 (2005)

18. Wang, R., Guiochet, J., Motet, G.: Confidence assessment framework for safety
arguments. In: Tonetta, S., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2017.
LNCS, vol. 10488, pp. 55–68. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66266-4 4

19. Wang, R., Guiochet, J., Motet, G., Schön, W.: Safety case confidence propaga-
tion based on Dempster-Shafer theory. Int. J. Approximate Reasoning 107, 46–64
(2019)

https://doi.org/10.1007/978-3-030-88601-1_27
https://hal.laas.fr/hal-03649068
https://doi.org/10.1007/978-3-319-42337-1
https://doi.org/10.1007/978-3-319-42337-1
https://doi.org/10.1007/978-1-4471-0997-6_5
https://doi.org/10.1007/978-1-4471-0997-6_5
https://doi.org/10.1007/978-3-319-66266-4_4
https://doi.org/10.1007/978-3-319-66266-4_4

Fault Detection, Monitoring
and Tolerance

Impact of Machine Learning on Safety Monitors

Francesco Terrosi1(B), Lorenzo Strigini2, and Andrea Bondavalli1

1 Università degli Studi di Firenze, Firenze, Italy
{francesco.terrosi,andrea.bondavalli}@unifi.it

2 City, University of London, London, UK
strigini@csr.city.ac.uk

Abstract. Machine Learning components in safety-critical applications can per-
form some complex tasks that would be unfeasible otherwise. However, they
are also a weak point concerning safety assurance. An aspect requiring study is
how the interactions between machine-learning components and other non-ML
components evolve with training of the former. It is theoretically possible that
learning by Neural Networks may reduce the effectiveness of error checkers or
safety monitors, creating amajor complication for safety assurance.We present an
initial exploration of this problem focused on automated driving, where machine
learning is heavily used. We simulated operational testing of a standard vehicle
architecture, where a machine learning-based Controller is responsible for driv-
ing the vehicle and a separate Safety Monitor is provided to detect hazardous
situations and trigger emergency action to avoid accidents. Among the results, we
observed that indeed improving the Controller could make the SafetyMonitor less
effective; it is even possible for a training increment to make the Controller’s own
behaviour safer but the vehicle’s less safe. We discuss implications for practice
and for research.

Keywords: Safety · Autonomous vehicles · Automotive ·Machine-learning

1 Introduction

Machine Learning (ML) is bringing great changes in many embedded computing appli-
cations. In many applications, Neural Networks (NNs) generalize well from situations
encountered during training to those it will encounter during subsequent testing and,
with luck, to those it will encounter during operation. However, neural networks also
represent a weak point from the viewpoint of safety assurance. The lack of an explicit
design derived from a specification undermines the very basis of established verifica-
tion activities for critical systems: verifying with confidence that the implementation
satisfies its specifications, and the specified safety properties. An additional concern is
that established practice requires a safety-critical system to change as little as possible,
and changes to be clearly documented, to support verification towards their acceptance.
Machine learning, by contrast, encourages a development culture in which frequent
change (additional “learning”) is accepted and, due to the nature of ML, there is no
documentation of the changes that could directly support verification. Manufacturers of

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Trapp et al. (Eds.): SAFECOMP 2022, LNCS 13414, pp. 129–143, 2022.
https://doi.org/10.1007/978-3-031-14835-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14835-4_9&domain=pdf
https://doi.org/10.1007/978-3-031-14835-4_9

130 F. Terrosi et al.

autonomous vehicles are known to collect data from their fleets of vehicles under test,
and even in commercial operation, to incrementally train and improve the ML “driver”
[1–3]. Last but not least, some self-driving vehicles must satisfy extreme safety require-
ments (accident rates comparable to, or substantially better than, those of human drivers),
such that simple statistical demonstration of their satisfaction through road resting is not
feasible [9–12].

Given that we cannot trust these control systems (“Controllers”, for brevity) to be
safe enough, it is natural to apply independent safety subsystems (“Safety Monitors”
SMs, hereafter) that can detect hazardous situations, e.g., approaching collisions, and
command remedial actions such as braking, as an additional line of defense [4–7].

Ideally, a safety monitor is much simpler than a Controller, so that, once verified,
it gives strong confidence that it will perform to the level of reliability (and hence of
vehicle safety) that has been assessed. Thismay seem to offer a solution for the assurance
problem: aim for strong confidence in the safety system even if therewill be uncertainties
on the safety of the Controller by itself. Although a real safety monitor does not have
100% coverage (probability of detecting and mitigating a hazard situation, conditional
on its arising), the coverage could be assessed by extensive simulation testing. The goal
is a high enough coverage value that if one multiplies (1-coverage) times the estimate
of the rate at which the Controller allows hazardous situations to arise, the result is a
low enough rate of accidents. Even if the Controller is frequently changed, this form of
reasoning will remain valid. Estimating the twomultiplicands separately through testing
would require substantially less testing than estimating the rate of accidents directly.

This solution to the assessment difficulties is – however – illusory. The coverage of
the Safety Monitor depends on the Controller that it monitors [8]. It is possible that, as
a vehicle’s Controller improves, and even if this improvement includes its safety (i.e., if
without the help of the Safety Monitor each new version would cause fewer accidents
than the previous one), the coverage of the Safety Monitor becomes worse, because
the fewer hazard situations allowed by the Controller are increasingly of kinds with
which the Safety Monitor cannot cope. So, the whole system must be tested enough to
demonstrate that the rate of accidents would not exceed the required bound. In theory
the coverage may decrease so much that improving the Controller makes the vehicle as
a whole less safe. It would be very desirable to have a strong argument that this will not
happen [9], since this would support a sound and simple form of safety argument based
on operational testing of the vehicle.

A first step to study this possibility is the empirical study that we present here, to
answer these research questions:

1. Can one observe in practice these “unwelcome surprises” in which improving a
Controller reduces the monitor’s coverage, or even increases the vehicle’s accident
rate?

2. If so, canwe derive insights onwhat factors in the Controller’s training, the operating
environment or the safety subsystem’s design contribute to such surprises?

Our study applies these questions to a primitive simulated vehicle and its environ-
ment. The goal of this paper is to share with the community i) the methodology, so that

Impact of Machine Learning on Safety Monitors 131

it can be used and improved, ii) a proof of existence of the “unwelcome surprises”, and
iii) initial insights on what contributes to them.

2 Related Work

Research on machine learning techniques in many diverse applications, some of them
safety-critical, has proliferated in recent years [26–30]. Concerns about machine learn-
ing in safety-critical systems have led to research to develop techniques for safety and/or
explainability of ML components [32–34]. A common approach in safety-critical sys-
tems is to pair the main system Controller, which may use ML, with a Safety Monitor
which may be a human or, more commonly, a dedicated hardware-software subsystem
[13, 20, 31, 33]. Another approach, hardening and verifying the safety properties of
neural networks by developing new training algorithms and network architectures, has
proved effective in some studies [35, 38]. Unfortunately, improving ML components is
not enough by itself to prove valid safety arguments for such systems [19, 36]. Thus,
effort is also applied on how to provide sound and reasonable safety arguments of such
systems. These research efforts aim at improving the explainability of the decisions of
theML components and at designing and providing guidelines for safety/assurance cases
[19, 33, 34, 36–38].

In this rich research corpus, however, we found no studies of our topic, i.e., how
improving ML components affects the efficacy of Safety Monitors that monitor them.

3 Problem Statement

Verifying that “ultra-high” dependability requirements are satisfied is known to be a hard
problem [9–12] and the use of ML makes it even harder. The challenge of assuring the
safety properties of autonomous vehicles is, as of now, one of themain concerns delaying
their deployment [13, 14]: because it is hard to collect enough evidence to prove that
one system is “safe enough”, and because it is difficult to understand the inner process
that made a neural network take a specific decision [15]. Simulation proved effective
for training a neural network to drive, and it is one of the first steps in the development
of automated, unmanned vehicles [16–18]. However, testing an autonomous vehicle is
a hard task even with the aid of a simulated environment because i) neural networks
cannot generalize their function to every possible event, ii) it is not possible to test every
possible event and iii) designing an end-to-end design and deployment process for such
complex systems is hard [19].

In this work we are interested in studying the effects of “additional learning” of
a Controller on the coverage of the Safety Monitor (probability of detecting a hazard
situation, conditional on its arising: true positive rate of the hazard detection – and
mitigation – function). Since the probability of the SM preventing an accident depends
on the relative frequencies with which the Controller generates various types of demands
on the SM (hazardous situations for which coverage is high vs those for which coverage
is low) [8], the Controller may significantly change these probabilities as it “learns”. So,
every change in the Controller will invalidate the coverage estimate and thus any safety
argument that assumes i) unchanging coverage of the Safety Monitor or even just ii) that
more learning by the Controller implies improving system safety.

132 F. Terrosi et al.

4 System Model and Terminology

Here we describe the system model and the terminology used and define and discuss
the metrics used to measure the performance of the Safety Monitor when applied to a
learningController.We simulated the architecture depicted inFig. 1,where an end-to-end
learning Controller is paired with a Safety Monitor to make the car move safely.

The Controller is the main component of the system. Its task is to drive the car from
a starting position to a destination, obeying traffic laws and other internal rules such as
ensuring a “smooth” ride or acceptable fuel consumption. A Controller is often built
as a set of specialized modules which implement the required functions of perception,
planning, etc. This allows run-timemonitoring of the operation of eachmodule.We used
a simpler, monolithic design: the whole process from perception to motion control is
encoded into a single deep learning architecture (end-to-end learning [20]). The Con-
troller is thus a “black box”: the Safety Monitor can only react to hazardous actions of
the Controller, not to internal errors of the Controller that might lead to such actions.

Our Safety Monitor uses data from other sensors (a LiDAR) than those used by the
Controller, as recommended by good practice, to sense objects and obstacles near the
car. If the action of the Controller would cause a safety hazard (i.e., potential for a crash:
e.g., not braking when crossing the minimum safe distance from an obstacle in front),
the SM triggers emergency braking.

Fig. 1. System architecture

4.1 Terminology

Neural networks can be trained over long periods, using multiple data sets to improve
their performance. Their evolution is described by the changes in their internal parame-
ters, i.e., weights of the prediction function. We define a checkpoint as the set of weights
of the NN’s function after a series of training steps. We say: checkpointi < checkpointj
if checkpoint j is obtained from checkpoint i after a number of training steps. We define
Ci as “the Controller obtained at checkpoint i” and will refer to it just as “Controller”
when the level of training is irrelevant. Note that j > i only means that Cj had more
training than Ci, not necessarily that it performs better.

The Controller’s task is to drive the car efficiently and safely, while obeying traffic
laws. In practice in our simulation, since the car’s training was stopped at a compara-
tively immature stage, we allowed all simulated trips to continue until a crash occurred.
Since we are only interested, at this stage of the work, in safety, we define a failure of
the Controller as:

Impact of Machine Learning on Safety Monitors 133

“Any action taken by the Controller that would result in a crash”, i.e., the output of
the Controller will trigger a transition from inside to outside the space of safe states. The
safety performance of the Controller can be evaluated as a rate of accidents per km, or
per unit of time in operation, or per trip.

Whenever the Controller fails, the SM has to detect this situation and intervene as
soon as possible to prevent the imminent crash. The SM may respond correctly, which
will in some cases avert the accident and lead the system to a safe state. Obviously, the
SM can fail as well, in one of these two ways:

• It does not detect the problem (obstacle).
• It detects the obstacle and takes action, but the car still crashes.

The Safety Monitor can thus be seen as an “extended binary classifier” that classifies
the system’s state as safe or unsafe, based on the Controller’s actions and sensor data,
and takes action accordingly. Its performance can be described via a matrix, akin to the
Confusion Matrix for a classifier, but related to results of actions (e.g., success or failure
of a safety intervention) rather than just classification decisions.

4.2 Description of the State Space

We divide the state space of the system (Controller plus Safety Monitor) into:

• Safe States: all the states in which the Controller does not need the intervention of the
Safety Monitor, and the Monitor does not intervene.

• Mitigation States, in which the Controller behavior would lead to a system failure
(accident), but the Monitor correctly prevents the crash.

• False Alert States: the states in which the Controller does not need the intervention of
the Safety Monitor, but the Monitor wrongly intervenes.

• Accident States: all the states in which the Controller’s behavior leads to a crash which
are not solved by the Monitor.

The actions of the Controller cause transitions between the system states. Figure 2
is a Venn diagram representing the events “transitions from the safe state”. Areas repre-
sent event probabilities, determined by the system and its environment, and which will
normally change if the system components change (e.g., through machine learning). For
reasonably safe systems, transitions to safe states and mitigation states will be much
more likely than the others. For good availability, performance, comfort, transitions to
false alert states should also be rare.

Any further training of the Controller will change its behavior and thus the proba-
bilities associated to each transition. If the probabilities of transitions to both safe states
andmitigation states increase, system safety improves. However, it is also possible that,
even if the Controller learned to drive very safely (i.e., the probability of transitions to
safe states gets very large), transitions to accident states also become more frequent, at
the expenses of transitions to themitigation states. These two possible effects of training
that makes the Controller safer are shown in Fig. 3. Starting from the diagram in Fig. 2,
additional training may produce, among others, either one of these two Venn diagrams.

134 F. Terrosi et al.

False

Alert

Safe

Mitigation
Accident

Fig. 2. “Safe” + “False Alerts” indicates probability of the Controller continuing safe opera-
tion; the squarish rectangle on the right, “False Alerts” + “Mitigation”, represents the SM’s
interventions. The remaining white area rep resents initiation of accidents.

5 Study Method

To test the Controller at different stages of its training, we generated m checkpoints,
resulting in m Controllers C1…Cm. We tested all these on the same predefined set of
scenarios, to observe how well the ML component handles the same task (i.e., reach-
ing a target destination, via specified waypoints, given a starting position, in the same
environmental conditions) at different stages of its training. A “scenario” is defined by
the initial conditions of the environment in which the system is tested. This includes the
starting point, seeds for random number generators, a target destination and intermediate
waypoints, and environmental conditions such as weather and traffic density. Scenarios
can be made more difficult by manipulating conditions, e.g., by increasing the traffic
present in the environment or by simulating adverse weather.We call the difficulty levels
h0, h1, etc. A higher subscript represents greater difficulty: if x< y, hy is designed to be
harder than hx . We note that a level that is harder for the Controller may not be harder
for the SM monitoring that Controller in that environment.

a) Improved safety b) Decreased safety

False

Alert

Mitigation

Safe

Accident

Safe
False

Alert

Accident
Mitigation

Fig. 3. Examples of training that improves the Controller’s safety shown in Fig. 2. In case a) this
improvement reduces hazards that the SM could not mitigate; in case b) it reduces hazards that
the SM would mitigate, while adding some that the SM cannot mitigate.

5.1 Paired Tests with and Without Safety Monitor

The Controllers were first tested without the Safety Monitor in every scenario, until the
car reached the target destination, or crashed. Our setup also allows a test to be stopped
earlier, but we did not use this option.

Impact of Machine Learning on Safety Monitors 135

For every such trip, we recorded the initial conditions and the sequence of actions
chosen by the Controller; then “replayed” the run exactly, but activating the SM, to
observe whether it intervenes correctly to interrupt the specific accident sequences that
ended SM-less runs.

This setup allows one not only to observe “howgood” theSM is in preventing failures,
but also, in some cases, to understand which situations are difficult for the Controller,
and which ones are difficult for the Safety Monitor.

In more detail: in the run with the Safety Monitor, we record all the alerts it raises
in each simulation step, but with safety braking disabled until it becomes necessary to
prevent the collision that ended a specific SM-less run. To this end, we computed by
what earlier time t the hazard must be detected so that braking may prevent the accident.
We assumed that any alert raised by the Safety Monitor before time t is not necessary
and thus a false alarm. After time t, that is, during the series of simulation frames that
directly resulted in a crash, we enable emergency braking by the SM. If the imminent
collision is avoided, we terminate the run and log a successful SM intervention.

These precautions are needed because if we simply re-ran each SM-less run, from
the same initial conditions but with the SM active, the sequence of events that led to a
crash might not happen again: e.g., a false alert by the SM could slow down the car so
that it would not encounter the same hazard.

In the present study, we enabled emergency braking 2 seconds before the accident
happened; this interval was chosen based on the maximum speed (50 km/h) the car can
reach, the reaction time needed to respond to the hazard, and the distance required for
braking. In the last 2 seconds of the simulation, an alert raised by the SM will now
effectively make the car brake.

We note that with this setup our test of the Safety Monitor will omit some events of
potential interest: in reality, false alarmsmay cause accidents, e.g., if hard braking causes
the vehicle to be hit from behind. This risk complicates the task of specifying safety
monitors. This potential for the SM to cause accidents is also one way that improving the
Controller maymake the vehicle less safe, e.g., if the Controller learns “bold”maneuvers
that it would complete safely but that prompt a SM to apply potentially risky emergency
actions. We left the simulation of these more complex effects to future research; the
focus of this study was to demonstrate subtle problems in safety arguments even with a
safety monitor whose interventions are always beneficial.

5.2 Evaluation of the Components and the System (Vehicle) Safety

We define the event “a crash would occur without the SM” as “C_crash” (Controller
crash). We define classes of correct and wrong actions of the SM as follows:

• Successful Intervention (SI). Every crash prevented by the SM: the safety response of
the SM triggers a transition from a safe state to a mitigation state.

• False Alarm (FA). Each alert raised by the SM when the system is in a safe state.
• True Negative (TN). The system is in a safe state and the SM does not raise an alert.
• Crash (CR). Every crash not prevented by the Safety Monitor, i.e., there is a transition
from a safe state to an accident state.

136 F. Terrosi et al.

From the recorded counts of these events, we derived safety measures of interest.
First, we computed the Coverage (COV) of the SM, the ratio between the number of
crashes avoided by the SM and the number of crashes that the Controller would cause
if the SM were not present, that is:

COV = number of SIs

number of C_crashes
(1)

We also compare the rate of occurrence of accidents per kilometer caused by the
Controller without a Safety Monitor:

P(C_crash) = number of C_crashes

kilometers driven
(2)

with the rate when the SM is active:

P(crash) = number of Crashes

kilometers driven
(3)

We also measure (but did not analyze in detail) the False Alarm Rate:

FAR = number of FAs

number of FAs + number of TNs
(4)

The SM may raise a false alarm at any time during a simulation run, while the
Coverage is measured on the number of crashes, which happen once per run at most.

These measures are sufficient for answering the immediate questions of this study.
This simulation setup allows one also to assess, for instance, Mean Distance Between
Accidents,Mean Time BetweenAccidents and Reliability Functions related to accidents
and False Alarms.

Another study of interest would consider the severity of accidents. For example, a
crash at 10 km/h against a fence may be flagged as a less serious failure than hitting a
group of pedestrians at 50 km/h. These data can be used to observe correlations between
failure modes and difficulty levels that may be counterintuitive, such as a Controller that
crashes more frequently with vehicles when the number of pedestrians is increased.

6 Details of the Simulation

6.1 CARLA Simulator

We used CARLA 0.8.4 [21], an open-source simulator, sponsored by Intel and Toyota
among others. It provides a realistic urban environment and was developed specifically
to train and test autonomous vehicles controlled by ML components. It allows full
customization and control over vehicles, pedestrians,weather, and sensors. In this version
of CARLA there are four sensors:

• Scene Final Camera: provides a view of the scene like that produced by ordinary
cameras

Impact of Machine Learning on Safety Monitors 137

• Depth Map Camera: provides a depth mapping of the objects in the environment.
• Semantic Segmentation Camera: it paints object pertaining to different classes (e.g.,
vehicles and pedestrians) with different colors.

• LiDAR sensor: Light Detection and Ranging creating a 3D map of the surroundings.

The Depth Map Camera and the Semantic Segmentation Camera provide ground
truth values for depth mapping and object classification. The ray-cast based LiDAR
provided by CARLA was tuned to simulate a slightly modified version of the HDL-64E
Velodyne LiDAR. The modifications were necessary because of the computational cost
required to simulate a real LiDAR.

6.2 Implementation of the Controller and Safety Monitor

The Controller was implemented using the implementation of the Deep Deterministic
Policy Gradient (DDPG) algorithm [22], provided by Coach, a framework for reinforce-
ment learning developed by Intel’s AI Labs [23]. The DDPG algorithm was chosen
because it is specifically designed for environments with a continuous action space,
such as the one we study, and it proved to perform well in driving tasks.

The Safety Monitor, implemented using the Point Cloud Library [24], is based in
part on E. Bozkurt’s project “Lidar Obstacle Detection”, available on GitHub [25]. It
implements a safety braking function using non-ML processing of data from the LiDAR
sensor tomap the environment.Using two consecutivemeasurements, it can track objects
in the environment and estimate the relative speed of objects in front of the car. Thus, it
is possible to implement a safety routine based on the braking distance between the car
and the object detected, and their relative speed. To test the efficacy of the whole safety
routine (not only the ability of the SM to raise an alert) the runs previously recorded
without the SM are repeated with it, rather than just replaying the LiDAR data from
them to the Safety Monitor to record the alerts raised.

6.3 Structure of the Study

We collected 5 checkpoints from the training activity: Controllers C1 to C5. CARLA
offers 150 predefined locations in the city. For each one of these, we created a trip
specification that started from it andhad to travel through a randomly selected sequenceof
15 other locations (the latest one being the destination of that trip). Each trip specification
was then combined with 4 different traffic conditions, or “difficulty levels”, h0, h1, h2,
h3, to vary the difficulty of the Controller’s task:

h0) Default: the map is generated with 30 pedestrians and 15 vehicles.
h1) Pedestrians: the number of pedestrians in the map is doubled.
h2) Vehicles: the number of vehicles in the map is twice that in h0.
h3) Pedestrians and Vehicles: both pedestrians and vehicles are twice as many as in h0.

From each combination of trip specification and difficulty levels we created 4 sce-
narios by applying different Random Number Generator seeds in CARLA. We thus had
4 × 150 × 4 = 2400 test scenarios, on which each Controller Ci was tested with and

138 F. Terrosi et al.

without the Safety Monitor. A SM-less run ends when a collision happens, or the car
reaches its destination (passing by the intermediate waypoints). The paired run with SM
is ended at the same point, as explained in Sect. 5.1.

The simulation runs at a fixed time step of 10 Frames Per Second, so the number of
simulation steps createdper secondof simulated time is an invariant. This avoids potential
accuracy problems with timing and measurements and gives a reference time-base to
compute time-dependent metrics.

7 Results of the Simulation

7.1 Controller

Table 1 shows the rates of occurrence of crashes of Controllers C1 to C5, operating,
without the SM, at the four levels of environment difficulty.

One sees that there is safety improvement from C1 to C5: e.g., the rate at difficulty h0
improved from 0.95 for C1 to 0.29 for C5, although the improvement is non-monotonic
(e.g., C3 is less safe than C2). Moreover, the way we manipulated difficulty from h0 to
h3 appears effective: it actually makes the environment more difficult for the Controller,
as P(C_crash)hi < P(C_crash)hj if j > i, for all Controllers (except for C2 performing
slightly better in h1 than in h0).

7.2 Safety Monitor

The Safety Monitor was tested with the procedure described in Sect. 5.2.
Table 2 shows the COV, and FAR of the SM combined with each Controller, for each

difficulty level. We observe that as the Controller was trained, the coverage of the SM
remained almost unchanged between C1 and C2, decreased for C3, increased again a bit
with C4 and drastically dropped with C5. Decreased coverage of the SM represents the
fact that among the hazardous situations created by the Controller, a larger fraction is
harder for the SM to mitigate successfully.

These data confirm that the efficacy of an unchanging SM may depend heavily
on the behavior of the Controller, that is, for a ML component, on its training level.
With training, the Controller learns to handle by itself some or most of the situations
that previously required the SM to intervene; but the fewer hazardous situations it now
creates may be too hard for the SM to handle, reducing its effectiveness.

7.3 Whole-Vehicle Evaluation

Table 3 shows the following measures: the rate of occurrence (per km) of crashes if
Controller is operating without SM, P(C_crash) (from Table 1), the coverage of the
SM (from Table 2), and the rate of occurrence (per km) of crashes with the SM active,
P(crash). These three rows are repeated for each difficulty level, h0,…,h3.

Impact of Machine Learning on Safety Monitors 139

Table 1. Rate of occurrence P(C_crash),
per kilometer, of crashes caused by the
Controller, in each difficulty level.

C1 C2 C3 C4 C5

h0 0.95 0.5 0.66 0.54 0.29
h1 0.95 0.48 0.68 0.64 0.32
h2 0.96 0.69 0.76 0.79 0.51
h3 0.97 0.74 0.79 0.8 0.55

Table 2. Coverage and false alarm rate of the SM
paired with each Controller

C1 C2 C3 C4 C5

h0
COV 0.76 0.76 0.69 0.72 0.57
FAR 0.005 0.007 0.007 0.008 0.006

h1
COV 0.73 0.73 0.7 0.66 0.54
FAR 0.005 0.007 0.007 0.008 0.005

h2
COV 0.71 0.75 0.71 0.73 0.6
FAR 0.004 0.009 0.009 0.01 0.008

h3
COV 0.73 0.74 0.7 0.7 0.6
FAR 0.004 0.009 0.008 0.01 0.008

Looking at the first two rows, P(C_crash) and COV, for any difficulty level, we see
that between the worst and best Controller C1 and C5, both decrease: as the Controller
learned to cause fewer accidents, it reduced the ability of the SM to prevent an accident.
Suchpatterns of contrasting changes appear repeatedly in the table. For example, between
the two best Controllers, C2 and C5, we observe that for any difficulty level, P(C_crash)
improved but COV becameworse: PC5(C_crash)< PC2(C_crash) but COVC2 >COVC5.
E.g., at difficulty h0, the additional training that resulted in a 42% improvement of the
Controller (PC2(C_crash) = 0.5 but PC5(C_crash) = 0.29) caused a reduction of almost
25% in the coverage of the SM (COVC2 = 0.76 > COVC5 = 0.57). Thus, using the
coverage measured on a version of the Controller to estimate the accident rate for a
different version may err on the side of optimism.

Table 3. Essential measures of vehicle safety and SM efficacy at different stages of training of
the Controller

C1 C2 C3 C4 C5

h0

P(C_crash) 0.95 0.5 0.66 0.54 0.29
COV 0.76 0.76 0.69 0.72 0.57

P(crash) 0.228 0.12 0.2046 0.1512 0.1247

h1

P(C_crash) 0.95 0.48 0.68 0.64 0.32
COV 0.73 0.73 0.7 0.66 0.54

P(crash) 0.2565 0.1296 0.204 0.2176 0.1472

h2

P(C_crash) 0.96 0.69 0.76 0.79 0.51
COV 0.71 0.75 0.71 0.73 0.6

P(crash) 0.2784 0.1725 0.2204 0.2133 0.204

h3

P(C_crash) 0.97 0.74 0.79 0.8 0.55
COV 0.73 0.74 0.7 0.7 0.6

P(crash) 0.2619 0.1924 0.237 0.24 0.22

140 F. Terrosi et al.

Next, we can compare the first and third rows for each difficulty level: the rate of
occurrence of crashes without the SM, P(C_crash), against the rate of occurrence of
crashes for the complete vehicle (C plus SM), P(crash):

1. adding our SM to any version of the Controller reduces the probability of crash if
compared to that of the Controller alone.

2. This confirms that our SM is effective. Indeed, this simulation setup is such that it
allows the SM to prevent crashes but not cause them, as explained in Sect. 5.1.

3. but making the Controller safer has in certain cases made the vehicle less safe.

E.g., Controller C5 without SM is safer than C2, but with the SM, the vehicle with
Controller C5 crashes more often that with Controller C2. The worst case is for difficulty
h2: C5 by itself would cause 26% fewer crashes than C2, but C5 with the SM causes
18% crashes more than C2 with SM. The system was safer with C2 thanks to the greater
efficacy of SM with that Controller, that is, thanks to C2’s flaws “favouring” those
accidents that the SM can prevent. Point 2 above indeed proves that, in certain situations,
the decreased coverage of the SM may outstrip the Controller improvement and reduce
overall vehicle safety. Table 4 highlights this by showing accident rates obtained for
the vehicle with C2, with C5, and in a hypothetical calculation for C5 under the wrong
assumption of unchanging coverage, i.e., multiplying the SM coverage measured with
C2 by PC5(C_crash). The wrong assumption would lead to an underestimation of the
accident rate by 39%.

Table 4. Accident rates (per km, averaged over difficulty levels) of the system for different con-
figurations: C2+ SM,C5+ SM (observed values), and for the system under the wrong assumption
of unchanging coverage of the SM.

C2 + SM C5 + SM C5 with COV2

P(crash)=P(C_crash)(1-COV) 0.154 0.174 0.1066

8 Concluding Remarks

We have shown an empirical example of how an error checker’s (our SM’s) efficacy may
change when the system that it monitors changes (“learns”). The essential conclusions
are that:

1. In this study the safety monitor made safer every version of the monitored system,
yet it may be less effective on an improved version of the monitored system (one that
is safer than the previous version, without the safety monitor).

2. this reduction of coverage may be so large that the new, improved version of the
monitored system may be less safe, when paired with the safety monitor, than the
earlier, worse version was, when paired with the same safety monitor.

Impact of Machine Learning on Safety Monitors 141

With the frequent, hard-to-analyze changes typical in the development of machine learn-
ing systems, the implication is that architectures that pair ML components with safety
monitors need joint quantitative assessment of the entire architecture at every change
of the ML component, a much more onerous process than separate assessment of the
ML-based part alone and of the safety monitor, as is often advocated.

Our very basic experiment does not prove that such “unwelcome surprises” will be
common in real-life systems, or in autonomous cars in particular; nor that they will be
rare. It proves instead that safety arguments cannot assume them to be rare or impossible.
We ran the simulations on an “immature” simulated car, allowing us to count large
numbers of events that in a real, mature products would very rare. Thus, the car was
unsafe from the start, improved very quickly and yet was still unrealistically unsafe at
the point where we took the final set of measurements. We do not propose the numbers
we report as generalizable to any real-world situation, but rather as a proof of existence
of the phenomena of concern, lest they be thought possible “only in theory”.

These early observations suggest directions for future work including: applying this
methodology tomore thoroughly trained Controllers, with repeated training, to study the
likelihoods of the various possible trends in how improvements to the Controller affect
SM coverage; studying how variations in training strategy affect these likelihoods (e.g.,
would using SM alerts as input in the training, to make the Controller safer, exacerbate
the reduction in SM coverage?); a more complete simulation design that allows for
SM-caused accidents; more detailed measurement to study various trade-offs involving
severity of accident, ride comfort, energy efficiency.

Acknowledgements. Strigini’s workwas supported in part by ICRI-SAVe, the Intel Collaborative
Research Institute on Safe Automated Vehicles. The authors are grateful to Peter Bishop for his
insightful comments on the results.

References

1. WAYMO: Technology. https://waymo.com/tech/. Accessed 23 Dec 2021
2. NVIDIA: Training AI for Self-Driving Vehicles: the challenge of scale. https://developer.nvi

dia.com. Accessed 23 Dec 2021
3. Drago Anguelov (Waymo): MIT Self-Driving Cars (2019)
4. WAYMO: Waymo Safety Report (2021)
5. UNECE: UN Regulation on Advanced Emergency Braking Systems for cars to significantly

reduce crashes (2019)
6. EU: Road safety: commission welcomes agreement on new EU rules to help save lives (2019)
7. American Safety Council – Should Autonomous Emergency Braking be Mandatory?
8. Popov, P., Strigini, L.: Assessing asymmetric fault-tolerant software. ISSRE, IEEE (2010)
9. Zhao, X. et al.: Assessing safety-critical systems from operational testing: a study on

autonomous vehicles. Inform. Software Technol. 128, 106393 (2020)
10. Littlewood, B., Strigini, L.: Validation of ultrahigh dependability for software-based systems.

Commun. ACM 36, 69–80 (1993)
11. Butler, R.W., Finelli, G.B.: The infeasibility of quantifying the reliability of life-critical real-

time software. IEEE Trans. Software Eng. 19(1), 3–12 (1993)

https://waymo.com/tech/
https://developer.nvidia.com

142 F. Terrosi et al.

12. Kalra, N., Paddock, S.M.: Driving to safety: how many miles of driving would it take to
demonstrate autonomous vehicle reliability? Transportation Research Part A: Policy and
Practice (2016)

13. Koopman, P., Wagner, M.: Autonomous vehicle safety: an interdisciplinary challenge. IEEE
Intell. Transp. Syst. Magaz. 9, 90–96 (2017)

14. Varshney, K.R.: Engineering safety in machine learning. IEEE ITA (2016)
15. Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: High confidence

predictions for unrecognizable images. CVPR, IEEE, pp. 427–436 (2015)
16. Zhao, D., et al.: Autonomous driving simulation for unmanned vehicles. In: IEEE Winter

Conference on Applications of Computer Vision, pp. 185–190 (2015)
17. Baltodano, S., et al.: The RRADS platform: a real road autonomous driving simulator. In:

Proceedings of AUTOUI, pp. 281–288 (2015)
18. Osiński, B., et al.: Simulation-based reinforcement learning for real-world autonomous

driving. IEEE ICRA, pp. 6411–6418 (2020)
19. Koopman, P., Wagner, M.: Challenges in autonomous vehicle testing and validation. SAE Int.

J. Transp. Saf. 4(1), 15–24 (2016)
20. Grigorescu, S., et al.: A survey of deep learning techniques for autonomous driving. J. Field

Robot. 37(3), 362–386 (2020)
21. Dosovitskiy, A., et al.: CARLA: an open urban driving simulator. CoRL, pp. 1–16 (2017)
22. Lillicrap, T.P., et al.: Continuous Control with Reinforcement Learning. arXiv:150902971

(2015)
23. Caspi, I., Leibovich, G., Novik, G., Endrawis, S.: Reinforcement Learning Coach (2017)
24. Rusu, R.B., Cousins, S.: 3d is here: Point cloud library (pcl). IEEE ICRA, pp. 1–4 (2011)
25. Bozkurt, E.: LidarObstacleDetection (2019). https://github.com/enginBozkurt/
26. Greengard, S.: Gaming machine learning. Commun. ACM 60.12 (2017)
27. Singh, N., et al.: Facial recognition using deep learning. In: Jain, V., Chaudhary, G., Tapla-

macioglu, M., Agarwal, M. (eds.) Advances in Data Sciences, Security and Applications,
LNEE, vol. 612, pp. 375–382. Springer, Singapore (2020). https://doi.org/10.1007/978-981-
15-0372-6_30

28. Rao, Q., Jelena F.: Deep learning for self-driving cars: Chances and challenges. SEFAIS 2018
29. Ravi, M., Kantheti, S.C.: Application of artificial intelligence in healthcare: chances and

challenges. Curr. J. Appl. Sci. Technol. (2021)
30. Hoang, D.-T., Kang, H.-J.: A survey on deep learning based bearing fault diagnosis.

Neurocomputing 335, 327–335 (2019)
31. Jesse, L., et al.: Towards fully autonomous driving: Systems and algorithms. In: 2011 IEEE

Intelligent Vehicles Symposium (IV). IEEE (2011)
32. Koorosh, A., et al.: SafeML: Safety monitoring of machine learning classifiers through sta-

tistical difference measures. In: Zeller, M., Höfig, K. (eds.) IMBSA, LNPSE, vol. 12297.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58920-2_13

33. Kurd, Z., Kelly, T., Austin, J.: Developing artificial neural networks for safety critical systems.
Neural Comput. Appl. 16(1), 11–19 (2007)

34. Randy, G., et al.: Explainable AI: the new 42? In: Holzinger, A., Kieseberg, P., Tjoa, A.,
Weippl, E. (eds.) CD-MAKE, LNISA, vol. 11015. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-99740-7_21

35. Cheng, C.-H.: Safety-aware hardening of 3D object detection neural network systems. In:
Casimiro, A., Ortmeier, F., Bitsch, F., Ferreira, P. (eds.) SAFECOMP, LNPSE, vol. 12234.
Springer, Cham, 2020. https://doi.org/10.1007/978-3-030-54549-9_14

36. Koopman, P., et al.: Credible autonomy safety argumentation. SCSC, UK (2019)

https://github.com/enginBozkurt/
https://doi.org/10.1007/978-981-15-0372-6_30
https://doi.org/10.1007/978-3-030-58920-2_13
https://doi.org/10.1007/978-3-319-99740-7_21
https://doi.org/10.1007/978-3-030-54549-9_14

Impact of Machine Learning on Safety Monitors 143

37. Gauerhof, L., Munk, P., Burton, S.: Structuring validation targets of a machine learning func-
tion applied to automated driving. In: Gallina, B., Skavhaug, A., Bitsch, F. (eds.) SAFECOMP
2018. LNCS, vol. 11093, pp. 45–58. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-99130-6_4

38. Huang, X., et al.: A survey of safety and trustworthiness of deep neural networks: verification,
testing, adversarial attack and defence, and interpretability. Comput. Sci. Rev. 37, 100270
(2020)

https://doi.org/10.1007/978-3-319-99130-6_4

Comprehensive Analysis
of Software-Based Fault Tolerance

with Arithmetic Coding for Performant
Encoding of Integer Calculations

Marc Fischer(B) , Oliver Riedel , and Armin Lechler

Institute for Control Engineering of Machine Tools and Manufacturing Units,
University of Stuttgart, 70174 Stuttgart, Germany

marc.fischer@isw.uni-stuttgart.de

Abstract. Safety-critical systems are becoming more complex with use
cases like autonomous driving or human-robot collaboration. Therefore,
the performance impact of software-based fault-tolerance methods is
challenging. Using software-based fault tolerance is an attractive app-
roach because commercial off-the-shelf hardware can be used. One possi-
bility to implement software-based fault tolerance are arithmetic codes,
already used in safety-critical products. Recently, AN codes have received
particular attention; however, they have a significant performance impact
in complex safety applications that require 64-bit wide integer calcula-
tions. Therefore, we comprehensively analyze different arithmetic codes
in this work to identify the best suitable 64-bit integer support. We
identify the ones’ complement as the best matching encoding strategy
through new code metrics, fault simulations, and performance analysis.
We validate our results by applying ones’ complement coding to a sam-
ple algorithm. Performance measurements and fault injection simulation
confirm our results.

Keywords: Arithmetic coding · Fault tolerance · Ones’ complement

1 Introduction

Unreliability of hardware is an ever-increasing problem for systems depending on
hardware. Not only do safety-critical systems face the challenge of dealing with
unreliability, but others like Google’s cloud farms face this issue as well, according
to a new report [14]. One reason for hardware unreliability are hardware faults
caused by various impacts in the lifetime of hardware from specification and
implementation over fabrication to the run-time [4]. The faults can manifest in
form of errors, e.g., a flipped bit. Therefore, typically, bit-flip or stuck-at fault
models are used to describe the impact of a hardware fault on gate-level [4]. The
errors can further lead to system failure. Hardware faults are typically classified
by their duration into permanent, transient, and intermittent faults [2].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Trapp et al. (Eds.): SAFECOMP 2022, LNCS 13414, pp. 144–157, 2022.
https://doi.org/10.1007/978-3-031-14835-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14835-4_10&domain=pdf
http://orcid.org/0000-0001-8789-9597
http://orcid.org/0000-0002-1883-6813
http://orcid.org/0000-0002-4073-1487
https://doi.org/10.1007/978-3-031-14835-4_10

Comprehensive Analysis of Software-Based Fault Tolerance 145

Permanent faults continuously affect the system and can be caused by phys-
ical impacts during the operation phase of hardware like electromigration, gate
oxide breakdown, shorts, or broken interconnections. Furthermore, permanent
faults can be induced during chip fabrication due to the difficulties with decreas-
ing structure sizes [4,24]. Transient faults occur for a short time only and are
caused, for example, by radiation, extreme temperatures, noisy power supply,
and electrostatic discharge [24]. Intermittent faults also occur for a short time
but periodically [4,24].

1.1 Fault Tolerance

In safety-critical systems, the handling of hardware faults, also called fault toler-
ance, is required by standards like IEC-61508 as a system failure leads to injury
or death of humans or the damage to machines or the environment. Fault toler-
ance is always based on redundancy [12]. Koren et al. [12] distinguishes between
Hardware, Software, Time, and Information redundancy. In domains like manu-
facturing, aerospace, or automotive the use of hardware redundancy is common.
Multiple physical copies of the hardware are provided, which requires the devel-
opment of specialized hardware, introducing high costs and reducing flexibility
[20]. Therefore, the use of commercial off-the-shelf (COTS) hardware in safety-
critical systems is favored but requires other types of redundancy [17,21].

We now provide a more profound insight into requirements and other redun-
dancy methods enabling fault tolerance with COTS. First, the requirement
of handling permanent, transient, and intermittent faults must be considered.
Moreover, the redundancy method must be easily applicable for the end-user,
in the best case automatically, and the implementation effort should be low.
Moreover, use cases like collision detection within human-robot collaboration
[10], cable-driven parallel robot simulators [6], or autonomous driving require
complex safety functions with high computational cost and precision. Therefore,
an essential requirement is the performant support of high precision, e.g., 64-bit
processing of integers.

Time redundancy is defined as the repeated computation of software. Thus,
only transient faults are detectable because permanent faults influence each com-
putation equally, rendering detection impossible. Nevertheless, time redundancy
can be used if combined with other redundancy forms. Software redundancy is
often divided into single and multi-version [4,12]. Single-version methods extend
the functionality of the software to detect hardware faults like time checking,
reasonableness checks, reversal checks, or structural checks [4]. The multi-version
method uses multiple but different software versions where different teams, differ-
ent languages, or different algorithms achieve the diversity [4]. The multi-version
method can detect transient, permanent, and intermittent faults, but the effort
for developing independent versions is high. Information redundancy adds infor-
mation to a given value v by encoding it to the codeword vc. Many coding
techniques are available and used, e.g., in storage systems or communication.
One group of codes are arithmetic codes which preserve the codes after arith-
metic operations [4]. This feature enables performant and automated encoding

146 M. Fischer et al.

of any algorithms consisting of arithmetic operations, such as shown in, e.g.,
[13,24,27].

1.2 Arithmetic Coding

Different codes exist within the arithmetic codes, which differ in the detection
rate of hardware faults and the performance overhead. In the last few years
mainly AN codes were analyzed in literature [8,9,13,16,22,23,27]. AN codes
are successfully applied in safety-critical products of SIListra Systems [27]. The
usage of AN codes requires more bits. In general a doubling of the used integer
width is performed. A high-performance overhead follows when 64-bit integers
are doubled to 128-bit on a 64-bit hardware platform because 128-bit calculations
are realized in software with multiple 64-bit operations on such platforms. The
literature does not address this problem adequately and no viable AN codes with
performant support of 64-bit integer calculations can be found. The Residue and
Inverse-Residual-Codes are named as an alternative to AN codes in the litera-
ture. However, no details about detection capabilities and performance overhead
are given when using them for the encoding of a whole software [1,4,12,15,24].
Another possibility for arithmetic codes is the use of the complement [19, p. 21].

1.3 Contribution

Therefore, this paper makes a detailed comparison of arithmetic codings. First, a
general strategy is presented in Sect. 2 to develop and analyze arithmetic codes.
This strategy also gives other researchers guidance to evaluate works in this
field. Next, we give insight into the implementation of every arithmetic coding
in Sect. 3 and give the most performant alternatives where operations are not
supported. In Sect. 4 the detection capabilities of the encodings are analyzed
with the code distance and fault simulation. To the best of our knowledge, we
are the first to analyze metrics for the combination of redundant execution and
information diversity with arithmetic codings. Furthermore, in Sect. 5, we give a
consistent comparison of the performance overhead of the different codings. The
ones’ complement has outstanding detection capabilities and generally lower per-
formance overhead. Especially the 64-bit calculations have a lower performance
impact. Hence, we experimentally validate the usage of the ones’ complement
with example algorithms in Sect. 6.

2 Encoding Strategy

Identifying the best suitable encoding for a specific use case requires a strategy.
Therefore, we want to give guidance in identifying encoding methods by the
following steps:

1. Identify arithmetic coding requirements: Arithmetic codes have advan-
tages when used on arithmetic operations. If only data elements need to be
encoded, other codes such as cyclic codes are a better option [4]. Thus, the
necessity of arithmetic coding must be checked first.

Comprehensive Analysis of Software-Based Fault Tolerance 147

2. Identifying hardware fault types: Next, the types of hardware faults must
be identified to evaluate the behavior on upper system levels. Typically, per-
manent, intermittent, and transient faults are assumed in the literature. The
faults can propagate through the systems, which lead to bit-flips and stuck-at
faults on gate-level [4]. In this paper, we consider permanent, intermittent,
and transient faults, too.

3. Identifying a software-level error model: When hardware faults are
propagated through the system, they can cause software-level errors. An
error model on the software level simplifies the application of codings.
The encoding must cover all software-level errors. In literature, the errors
exchanged operand, exchanged operator, faulty operation, lost update, and
modified operand are often used and are introduced by Forin [8]. In this paper,
we assume this error model, too. The model does not cover control-flow errors.
Therefore, additional methods must be used to detect control-flow errors, e.g.,
[25], but this is not considered in our work.

4. Determining detection rate of hardware faults: In safety-critical sys-
tems, a minimum detection rate or availability is required. For example, in
the IEC 61508 standard, a minimum safe failure fraction of 99% is demanded
when using non-redundant hardware [11]. The detection rate can be analyzed
theoretically with metrics like the hamming distance or code distance [4], or
by residual error estimation like in [7]. We suggest a theoretical analysis of the
coding method before the implementation. Furthermore, experimental fault
injection experiments are often used in literature, for example, in [13,24] and
should be used as an overall validation for the encoding approach.

5. Implementation and application: Implementing and applying the coding
on programs must be evaluated together. The arithmetic code can be applied
in different development stages and software levels. We distinguish compile-
time and run-time for the development stages and instruction, function, and
program-level for the software levels [20,24]. In the rest of the paper, we focus
on compile-time approaches because the performance overhead of run-time
using an interpreter is higher [24]. Furthermore, we use the program-level and
apply the encoding on the source code because the human readability is high.
Implementing an encoding requires a careful analysis of edge cases like over-
flow behavior or edge values and analysis for adapting the arithmetic opera-
tion due to particular behavior of the chosen coding like the required division
by A in the multiplication of the AN-Coding. Special handling of edge cases
or adaption of arithmetic operations increases the performance overhead. On
some operations, the arithmetic codings cannot be applied in general, e.g.,
for the bitwise AND and OR. In this case, alternatives must be found, like
replacing them with other operations or doing a reversal check. Safety-critical
systems must meet real-time constraints with short response times. Thus, low-
performance impact is needed. In a previous work, a procedure to identify the
most performant implementation for floating-point operations is presented [6],
which can be used similarly for integer operations.

6. Developing a check mechanism: Every encoding strategy needs a check
mechanism to detect errors in the software execution. For AN codes, one

148 M. Fischer et al.

method is the usage of an accumulator where the result of an operation is
added to the accumulator [13,24]. The accumulator can be checked for divis-
ibility by the encoding constant A. Others like [9,27] check only the output
values at the end of the program execution, which reduces the performance
impact.

7. Performance evaluation: The performance overhead is an essential metric
for selecting an arithmetic code. Comparing single instructions gives funda-
mental insight into the overhead, but realistic algorithms must be used for
realistic results.

3 Comparison of Arithmetic Codes and Their
Implementations

Before we analyze the detection capabilities and the performance overhead, we
give a detailed overview over each encoding and their implementation. If an
operation is not supported, we give an alternative method. Arithmetic codes are
divided into separate and non-separate codes [1].

3.1 AN Codes

AN codes belong to the non-separate codes and are formed by multiplying a
value v ∈ N by the constant A ∈ N. The encoded value is denoted by vc. Due
to the multiplication, the encoded value is longer than the original value. In
practice, this means doubling the integer width, e.g., from 32-bit integer to 64-
bit integer. Schiffel states that AN codes cannot detect all types of faults and
suggests the extension by ANB- or ANBD-codes [24]. In contrast to that, oth-
ers solve the problem by using a duplicated execution where both channels are
encoded differently [13,27]. The former method has better performance than the
suggested ANBD-Codes from Schiffel. We call AN codes with duplicated execu-
tion separate AN codes. Schiffel [24] provides a good overview of implementing
AN codes. Bitwise and logic operations cannot be encoded directly. For our tests,
we replace the bitwise logic operations with De Morgan’s laws, which are equiv-
alent expressions for logical operations. The shift operations are replaced with
multiplication and division and the logic operations are replaced with multiplica-
tion or division [24]. The comparison operators work on encoded values directly
but must be adapt to return an encoded result. The division is adapted by the
multiplication with A. The multiplication requires adaption due to the overflow
behavior and the constant A. We remove A by decoding the second operand and
use the same overflow correction as Schiffel.

mul(xc, yc)c = xc · y − x · y
2bitwidth

· (2bitwidth · A) (1)

The subtraction must handle underflow behavior, but the addition and the mod-
ulo can be used directly.

Comprehensive Analysis of Software-Based Fault Tolerance 149

3.2 Residue-Codes

The residue code forms the residuum of a value for encoding values so that vc =
v mod A. The inverse residue code from [1] is formed by vc = A − (v mod A).
The residuum is a surjective function and, therefore, we cannot decode values
uniquely. Thus, decoding values is not possible. Some arithmetic operations on
encoded values require over- and underflow handling, which can be handled solely
with the uncoded values. Thus, the implementation must process a tuple (v, vc)
of the uncoded and coded values. Therefore, two independent channels cannot
be realized. Bitwise and logic operators are not supported and can be replaced
similar to the AN codes. The rest of the operations must be adapted, or the
overflow and underflow behavior must be handled.

3.3 Complement-Codes

The idea behind the complement is to use the signed representation to encode
values. The most common way of representing signed numbers is the two’s com-
plement because the same unsigned circuits for addition and subtraction can be
used, and for the multiplication, only minor changes are needed [19]. Two other
major systems are the ones’ complement and the magnitude. Standard hardware
does not support arithmetic operations in the magnitude system. Therefore, we
do not consider it further.

A signed number is formed in the ones’ complement by inverting each bit of
the corresponding positive number. The two’s complement is defined by adding
1 to the ones’ complement.

The two’s complement can be used for encoding values on standard systems
with two’s complement support. Similar to the other codes, adaption is required.
For the signed multiplication and division, the sign of the result must be changed.
The unsigned division and the unsigned modulo are not supported, and therefore,
we use reversal checks instead. The comparisons and logic operations can operate
directly with the encoded values, however the result is uncoded and hence must
be encoded. The bitwise AND, OR, and XOR are not supported but can be
replaced with De Morgan’s laws. The XOR can be replaced with a reversal
check. The left shift can be used directly on encoded values, but the right shift
is not supported. We replace the right shift with division.

The ones’ complement can also be used on standard systems but needs more
adaption. A correction by +1 respectively −1 is required for addition and sub-
traction. Multiplication, division, and modulo are not supported. Therefore, we
transfer the encoded values in the two’s complement. After calculating, the values
are transferred back in the ones’ complement. As stated previously, the transfer
is given by adding 1 to the ones’ complement. The comparisons operations can
operate directly on the encoded values, but require an encoding of the results sim-
ilarly to the two’s complement, and the logic operations are transformed in the
two’s complement. The bitwise AND and OR are modified based on De Morgan’s
laws so that v1 ∧ v2 operates on encoded values with v1,c ∨ v2,c because vc = v.
The XOR operation only needs changed sign. The NOT operation works directly

150 M. Fischer et al.

on encoded values, whereas the shift operations are not supported. Therefore,
the shift operations are transformed in the two’s complement.

3.4 Comparison

In Table 1, an overview of arithmetic codes and their encoding capability of all
operations is given. We distinguish the signedness because there are differences
for some operations.

Table 1. Overview over all operations and their encoding capability

1’s Complement 2’s Complement AN Residual

Unsign. Sign. Unsign. Sign. Unsign. Sign. Unsign. Sign.

Arith.

+ Adapt. Adapt. Direct Direct Direct Direct OF corr. OF corr.

- Adapt. Adapt. Direct Direct UF corr. Direct UF corr. UF corr.

× No No Adapt. Adapt. Adapt. Adapt. OF corr. OF corr.

/ No No No Adapt. Adapt. Adapt. No No

mod No No No Direct Direct Direct No No

Comp.

== Adapt. Adapt. Adapt. Adapt. Adapt. Adapt. Adapt. Adapt.

!= Adapt. Adapt. Adapt. Adapt. Adapt. Adapt. Adapt. Adapt.

< Adapt. Adapt. Adapt. Adapt. Adapt. Adapt. No No

> Adapt. Adapt. Adapt. Adapt. Adapt. Adapt. No No

<= Adapt. Adapt. Adapt. Adapt. Adapt. Adapt. No No

>= Adapt. Adapt. Adapt. Adapt. Adapt. Adapt. No No

Bitwise

AND No No No No No No No No

OR No No No No No No No No

XOR Adapt. Adapt. No No No No No No

NOT Direct Direct Adaption Adaption No No No No

<< No No Direct Direct No No No No

>> No - No - No - No -

Logic

LAND Adapt. Adapt. Adapt. Adapt. No No No No

LOR Adapt. Adapt. Adapt. Adapt. No No No No

LNOT Adapt. Adapt. Adapt. Adapt. No No No No

4 Fault Detection Capabilities

In this section, we analyze the fault detection capability of each arithmetic cod-
ing1. Transient, intermittent, and permanent faults must be detected. Thereby,
the detection capability depends on the encoding constant A. Schiffel [24] and
Ulbrich [28] state that traditional metrics like the code distance cannot be
used directly to identify the fault detection capability of a non-separate code.

1 The source code of all analyses and measurements in this paper can be found at
https://github.com/iswunistuttgart/arithmetic-coding-int.

https://github.com/iswunistuttgart/arithmetic-coding-int

Comprehensive Analysis of Software-Based Fault Tolerance 151

They use experimental fault simulation to identify the best constant A. The code
distance Cd,n of non-separate codes is the minimum hamming distance between
any two distinct pairs of encoded values [4].

The code distance cannot be used with the definition above for separate
codes. Instead, we define the code distance for separate codes Cd,s as the mini-
mum hamming distance of each tuple (v, vc). Further, we use the average Ham-
ming distance Hd and the quotient Hd

maxHd
as another metric. This allows us to

select the best A when multiple code distances with the same value exist. In
Table 2 the metrics are evaluated for each coding.

Table 2. Metrics for the different codings on 8 bit integers

Coding 1’s comp. 2’s comp. AN sep. Residue Inv. residue

A – – 255 1 255

Cd 8 0 7 0 0

Hd 8.00 6.01 10.02 4.00 7.97
Hd

maxHd
1 0.75 0.62 0.5 0.996

We use 8 bit width integers for calculating the metrics. We argue that the
results can be generalized to wider integers. The ones’ complement has the best
detection capabilities where each tuple has a Cd,s = 8. The two’s complement has
a code distance Cd,n = 0 because the value 0 and the signed maximum value have
the same binary representation. The other values have a higher code distance
with an average of 6. The separate AN codes are calculated on 16-bit integers
because the AN-Coding requires an up-scaling to 16-bit while encoding. The best
results are given for A = 255, the maximum value of 8 bit wide integers. The
results for the residue and inverse reside codes confirm Avizienis [1] statement
that the inverse residue code has better detection capabilities.

Next, we simulate transient and permanent faults on the codes and count the
undetected faults, also called silent data corruption (SDC). With the results, we
want to validate the significance of the metrics for separate codes. Table 3 shows
the results. We flip all possible bit patterns on each encoded and unencoded
value for transient fault simulation and count the SDCs. With separate codes,
transient faults can always be detected if the coding is an injective function. This
is because only one duplication can be corrupted independent of the number of
flipped bits. The residuum is a surjective function and cannot detect all transient
faults. We stuck all possible bit patterns on each encoded and unencoded pair
for permanent fault simulation and counted the SDCs. The simulation shows
that the highest possible Cd and Hd for the one’s complement can detect all
permanent fault types. Furthermore, it can be seen that a quotient Hd

maxHd
closer

to 1 has fewer undetected permanent faults.

152 M. Fischer et al.

Table 3. Fault simulation for the different codings on 8 bit integers

Trans. SDCs Perm. SDCs

1’s comp. 0 0

2’s comp. 0 6.31 · 103
AN sep. 0 1.77 · 105 (A = 255)

Residue 6.53 ·104 (A = 1)

2 (A = 255)

1.29 · 106 (A = 1)

1.50 · 107 (A = 255)

Inv. residue 2 (A = 255) 255 (A = 255)

5 Performance Overhead

In this section, we analyze the performance impact of the different codings.
First, we compare the performance impact on single operations. We use a real-
time Linux system with an Intel i7-4790K CPU @ 4.00 GHz and 16 GB RAM
and execute each operation 2.5 · 105 times on an isolated core with real-time
priorities.

The time for execution is measured, and the median of multiple runs is calcu-
lated. With these results, the slowdown S is calculated as S = tencoded

tnative
. In Fig. 1

the slowdown of the AN-Coding, Complement-Coding, and Residue-Coding is
shown. The tencoded is the time for executing the operation in the encoded chan-
nel and native channel.

Fig. 1. Slowdown of each operation of different arithmetic codings

Comprehensive Analysis of Software-Based Fault Tolerance 153

The overhead for 64-bit AN-Coding and Residue-Coding is higher than the
64-bit Complement-Coding because the AN-Coding requires a doubling of the
integer width to 128-bit, which has lower performance. Furthermore, the mean
slowdown of the ones’ complement is with 2.2 for 32-bit and 2.3 for 64-bit
lower compared to the two’s complement with 2.7 and 2.8. The Residue-Coding
requires complex overflow correction, so the performance overhead is higher than
the AN-Coding. The slowdown of our codings is also lower than the ANB-Coding
of Schiffel [24, p. 73].

For more realistic comparison, real-world algorithms must be used as stated
in Sect. 2. The results depend on the algorithm. Therefore, in the next Section,
matrix multiplication is used as a real-world algorithm.

6 Evaluation and Experimental Validation of the Ones’
Complement

The comparison of the different arithmetic codings is now followed by an exper-
imental evaluation.

6.1 Evaluation

We identified the ones’ complement as the best suiting arithmetic coding with
performant coding of 64-bit integers for the following reasons:

– In contrast to the other codings, it can detect all permanent faults if the faults
are manifested as stuck-at errors on data values. This is due to the inversion
of the bit pattern.

– The performance overhead is significantly lower compared to the AN-Coding
and Residue-Coding for 64-bit, but also for 32-bit. This is because AN-Coding
and Residue-Coding require more overflow and underflow corrections, and
AN-Coding requires a doubling of the integer width. Furthermore, the mean
overhead is slightly lower than the two’s complement.

– The calculation of the redundant channels can be independently compared to
the residue codes.

In the next section, we experimentally validate the ones’ complement by
applying it on an example algorithm. The performance overhead is measured
and a fault injection simulation shows the fault detection capabilities.

6.2 Experimental Validation

We use a matrix multiplication of 64-bit integer values with dimensions of
100 × 100 as an example algorithm. We encode the algorithm with an auto-
matic source-to-source approach based on the python library pycparser2, which
was already used in our previous work [6]. We use the same procedure as in

2 https://github.com/eliben/pycparser.

https://github.com/eliben/pycparser

154 M. Fischer et al.

Sect. 5 to measure the performance impact. In Table 4 the performance impact
is shown. The slowdown of 6.34 for an 64-bit calculation is even lower compared
to the 32-bit AN and ANBD-Coding of Schiffel [24], and comparable to the 32-bit
Delta-Encoding of Kuvaiskii [13]. To the best of our knowledge, no performance
measurements for 64-bit calculations can be found.

Table 4. Performance comparison of native execution and encoding with the ones’
complement

Native 1’s complement

Median execution time 2.67 ms 16.9 ms

Slowdown 1 6.34

Moreover, we test the fault detection rate with stimulative fault injection.
The Intel Pin-Tool3 and the bit-flip injector (BFI) plug-in4 is used, which is
already applied in [6,7,13]. In Fig. 2 the results of the fault injection simulation
are shown.

Permanent fault inj.

SDC:383 SDC:0

Native AC
0

1000

2000

3000

4000

5000

6000

Transient fault inj.

SDC:1172 SDC:0

Native AC

Masked AC-detected OS-detected Hang SDC

Fig. 2. Results of the fault injection simulation

We conducted 6000 experiments with randomly injected faults. For perma-
nent faults random bits were either stucked at 0 or 1. For transient faults random
bits were flipped. The results of the fault injections are divided into the follow-
ing categories: masked, hang up the program (Hang), detected by the operating
system (OS), detected by the arithmetic coding (AC), and not detected but

3 https://software.intel.com/en-us/articles/pintool.
4 https://bitbucket.org/db7/bfi.

https://software.intel.com/en-us/articles/pintool
https://bitbucket.org/db7/bfi

Comprehensive Analysis of Software-Based Fault Tolerance 155

influences the result (SDC). All injected faults are detected by the encoded
program, which confirms our analysis in Sect. 4. Although the statement of an
experimental validation is limited to the tested inputs and errors, it gives a good
indication of the general detection capability. Comparing the results with similar
experimental validations in the literature [13,22,24] our detection capability is
better.

6.3 Outlook for Future Validation

To enable the usage in safety-certified products a formal validation must be used.
In particular, the fault detection capability must be formally determined. Due
to the complexity of electronic systems, a formal validation could be based on an
error model like the model in Sect. 2. For each encoded operation, evidence must
be given for the rate of SDCs over all possible input values and error possibilities.

7 Related Works

Works like [8,9,13,22,23,27] do not take the performance impact of 64-bit inte-
gers into account. Oh et al. [16] names the non-doubling of the integer width
instead of checking for overflows during compile time. But this only works for
small As. We close this gap and make a comprehensive analysis with different
codings of the performance impact for 64-bit integers processing.

In current literature related to fault-tolerance like [4,12,15], the usage of the
complement as arithmetic coding is not known. Surveys like [20,26] also focus
on redundancy on different architectural layers but do not take the complement
into account. Only Engel [5] gives a detailed analysis on using the ones’ and
two’s complement by diversified redundancy on assembler and C-Level. Engel
gives only some basic assumptions on the detection capabilities. In contrast to
Engel, we calculate metrics and do fault simulation to determine the detection
capabilities. Oh et al. [16] show weak points for the two’s complement on stuck-
at faults, which is why they suggest separate AN codes. A comprehensive and
comparable analysis of the performance overhead cannot be found in the liter-
ature. Only non-comparable experiments are given for single arithmetic codes
like in [13,24].

The selection of the best constant A is addressed in many works for non-
separate AN-Coding like [3,24,28]. These works use metrics, e.g., the code dis-
tance for estimating the detection capabilities for each constant A. Also, for
residue codes, the selection of A is analyzed [18]. For separate codings, no general
comparison on the detection capabilities is given in the literature. In contrast, in
this work we introduce an adapted code distance for separate codings and make
a general comparison.

8 Conclusion

The rise in complexity of safety-critical systems requires performant fault toler-
ance methods. For software-based arithmetic coding, the current commonly used

156 M. Fischer et al.

AN-Coding lack performant support of 64-bit integer calculations. Therefore, a
comprehensive analysis of arithmetic coding as a fault-tolerance method is made
in this work. First, a general encoding strategy is introduced to enable a struc-
tured analysis and development of arithmetic codes. Based on this strategy, AN,
Residue, and Complement-Codes are analyzed according to their implementation
possibilities, their fault detection capabilities, and their performance overhead.
We identified the ones’ complement as the best suiting strategy for arithmetic
coding because the performance overhead is lower and the detection capabili-
ties are higher compared for the other methods. The effectiveness of the ones’
complement is validated with an automatically encoded example algorithm. The
slowdown of 6.34 for 64-bit integer calculations is even better than the results
in the literature for AN-Coding. A fault injection simulation showed that every
fault could be detected.

References

1. Avizienis, A.: Arithmetic error codes: cost and effectiveness studies for application
in digital system design. IEEE Trans. Comput. C-20(11), 1322–1331 (1971)

2. Aviziens, A.: Fault-tolerant systems. IEEE Trans. Comput. C-25(12), 1304–1312
(1976)

3. Braun, J., Mottok, J.: The myths of coded processing. In: 17th International Con-
ference on High Performance Computing and Communications, pp. 1637–1644.
IEEE (2015)

4. Dubrova, E.: Fault-Tolerant Design. Springer, New York (2013). https://doi.org/
10.1007/978-1-4614-2113-9

5. Engel, H.: Data flow transformations to detect results which are corrupted by
hardware faults. In: IEEE High-Assurance Systems Engineering Workshop, pp.
279–285. IEEE Computer Society Press (1997)

6. Fischer, M., Riedel, O., Lechler, A.: Arithmetic coding for floating-points and ele-
mentary mathematical functions. In: 5th International Conference on System Reli-
ability and Safety (ICSRS), pp. 270–275. IEEE (2021)

7. Fischer, M., Riedel, O., Lechler, A., Verl, A.: Arithmetic coding for floating-point
numbers. In: IEEE Conference on Dependable and Secure Computing (DSC), pp.
01–08. IEEE (2021)

8. Forin, P.: Vital coded microprocessor principles and application for various transit
systems. IFAC Proc. Vol. 23(2), 79–84 (1990)

9. Früchtl, M.: Sicherheit eingebetteter Systeme auf Basis arithmetischer Codierun-
gen. Ph.D. thesis, Universität Kassel, Kassel (2014)

10. Haddadin, S., de Luca, A., Albu-Schaffer, A.: Robot collisions: a survey on detec-
tion, isolation, and identification. IEEE Trans. Robot. 33(6), 1292–1312 (2017)

11. ISO/IEC: IEC 61508-2 functional safety of electrical/electronic/programmable
electronic safety-related systems - part 2: requirements for electri-
cal/electronic/programmable electronic safety-related systems

12. Koren, I., Krishna, C.M.: Fault-Tolerant Systems. Elsevier Morgan Kaufmann,
Amsterdam (2007)

13. Kuvaiskii, D., Fetzer, C.: Delta-encoding: practical encoded processing. In: 2015
45th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN 2014), pp. 13–24. IEEE Computer Society (2015)

https://doi.org/10.1007/978-1-4614-2113-9
https://doi.org/10.1007/978-1-4614-2113-9

Comprehensive Analysis of Software-Based Fault Tolerance 157

14. Kwan, D., Shtoyk, K., Serebryany, K., Lifantsev, M.L., Hochschild, P.: SiliFuzz:
fuzzing CPUs by proxy. Technical report, Google (2021)

15. Mukherjee, S.: Architecture Design for Soft Errors. Elsevier, Burlington (2008)
16. Oh, N., Mitra, S., McCluskey, E.J.: ED4I: error detection by diverse data and

duplicated instructions. IEEE Trans. Comput. 51(2), 180–199 (2002)
17. O’Halloran, M., Hall, J.G., Rapanotti, L.: Safety engineering with COTS compo-

nents. Reliab. Eng. Syst. Saf. 160, 54–66 (2017)
18. Omidi, R., Towhidy, A., Mohammadi, K.: A survey on the best choice for modulus

of residue code. Indones. J. Electr. Eng. Inform. (IJEEI) 7(4), 734–741 (2020)
19. Omondi, A.R.: Cryptography Arithmetic: Algorithms and Hardware Architectures.

Advances in Information Security, vol. 77. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-34142-8

20. Osinski, L., Langer, T., Mottok, J.: A survey of fault tolerance approaches at
different architecture levels. In: Trinitis, C., Pionteck, T. (eds.) ARCS 2017. VDE
Verlag GmbH (2017)

21. Profeta, J.A., et al.: Safety-critical systems built with COTS. Computer 29(11),
54–60 (1996)

22. Reis, G.A., Chang, J., August, D.I.: Automatic instruction-level software-only
recovery. In: International Conference on Dependable Systems and Networks, pp.
83–92. IEEE Computer Society (2006)

23. Reis, G.A., Chang, J., Vachharajani, N., Rangan, R., August, D.I.: SWIFT: soft-
ware implemented fault tolerance. In: International Symposium on Code Genera-
tion and Optimization, pp. 243–254. IEEE Computer Society (2005)

24. Schiffel, U.: Hardware error detection using AN-codes. Ph.D. thesis, Technischen
Universität Dresden, Dresden (2011)

25. Schuster, S., Ulbrich, P., Stilkerich, I., Dietrich, C., Schröder-Preikschat, W.:
Demystifying soft-error mitigation by control-flow checking - a new perspective
on its effectiveness. ACM Trans. Embed. Comput. Syst. 16(5s), 1–19 (2017)

26. Srikanth, S., Deng, B., Conte, T.M.: A brief survey of non-residue based compu-
tational error correction (2016)

27. Süßkraut, M., Schmitt, A., Kaienburg, J.: Safe program execution with diversified
encoding. In: Proceedings of the 13th Embedded World Conference (2015)

28. Ulbrich, P.: Ganzheitliche Fehlertoleranz in eingebetteten Softwaresystemen. Ph.D.
thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) (2014)

https://doi.org/10.1007/978-3-030-34142-8
https://doi.org/10.1007/978-3-030-34142-8

STPA-Driven Multilevel Runtime
Monitoring for In-Time Hazard Detection

Smitha Gautham1(B), Georgios Bakirtzis2, Alexander Will1,
Athira Varma Jayakumar1, and Carl R. Elks1

1 Virginia Commonwealth University, Richmond, VA, USA
{gauthamsm,willar,jayakumarar,crelks}@vcu.edu

2 The University of Texas at Austin, Austin, TX, USA
bakirtzis@utexas.edu

Abstract. Runtime verification or runtime monitoring equips safety-
critical cyber-physical systems to augment design assurance measures
and ensure operational safety and security. Cyber-physical systems have
interaction failures, attack surfaces, and attack vectors resulting in unan-
ticipated hazards and loss scenarios. These interaction failures pose chal-
lenges to runtime verification regarding monitoring specifications and
monitoring placements for in-time detection of hazards. We develop
a well-formed workflow model that connects system theoretic process
analysis, commonly referred to as STPA, hazard causation information
to lower-level runtime monitoring to detect hazards at the operational
phase. Specifically, our model follows the DepDevOps paradigm to pro-
vide evidence and insights to runtime monitoring on what to monitor,
where to monitor, and the monitoring context. We demonstrate and
evaluate the value of multilevel monitors by injecting hazards on an
autonomous emergency braking system model.

Keywords: Dynamic safety management · Cyber-physical systems ·
STPA · Runtime verification · Runtime monitors · Hazard analysis

1 Introduction

Cyber-physical systems (CPS) are increasingly challenging to assess at design
time with respect to system errors or hazards that could pose unacceptable safety
risks during operation [16]. These challenges lead to the need for new meth-
ods allowing for a continuum between design time and runtime or operational
assurance [7]. Safety and security assurance at design level must be extendable
to the runtime domain, creating a shared responsibility for reducing the risk
during deployment. These emerging methods include dynamic safety manage-
ment [22], DepDevOps (dependable development operations continuum) [3], sys-
tematic safety and security assessment processes such as STPA (system-theoretic
process analysis) and STAMP (systems-theoretic accident model and processes),
and MissionAware [2].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Trapp et al. (Eds.): SAFECOMP 2022, LNCS 13414, pp. 158–172, 2022.
https://doi.org/10.1007/978-3-031-14835-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14835-4_11&domain=pdf
https://doi.org/10.1007/978-3-031-14835-4_11

STPA-Driven Multilevel Runtime Monitoring 159

One emerging solution to help with the DepDevOps continuum is runtime
monitoring or verification that observes system behavior and provides assurance
of safety and security during the operational phase [3,12]. Runtime verifica-
tion uses a monitor that observes the execution behavior of a target system. A
monitor is concerned with detecting violations or satisfactions of properties (e.g.,
safety, security, functional, timeliness, to name a few) during the operation phase
of a CPS. Execution trace information (i.e., states, function variables, decision
predicates, etc.) is extracted directly from the CPS and forwarded to the mon-
itor, where temporal logic expressions, called critical properties, are elaborated
with this trace data for an on-the-fly verification of system behavior.

To have effective runtime monitors, identifying critical properties to detect
hazards (what to monitor) and efficiently placing monitors where hazards may
originate (where to monitor) is crucial. However, most runtime monitoring frame-
works for CPS emphasize how to monitor [18]. That is, runtime monitoring
languages and tools primarily focus on (1) the expressiveness of the runtime ver-
ification language to capture complex properties, and (2) instrumenting a system
to extract traces for monitoring, assuming the what to monitor comes from some
higher-level safety analysis process or methodology. Integrating system-level haz-
ard analysis processes with runtime monitor design is essential for “end-to-end”
functional safety assessment standards such as IEC-61508 and ISO 26262 that
require traceable safety assurance evidence from requirements to design to imple-
mentation.

Contributions. Our paper develops a well-formed workflow model which con-
nects STPA hazard analysis information to lower level runtime monitoring used
to detect hazards at the operational phase. Specifically, our model follows the
DepDevOps paradigm to provide evidence and insights to runtime monitoring
on: (1) what to monitor, (2) where to monitor, and (3) the context of the moni-
toring. Our work addresses the gap between safety analysis and runtime monitor
formulation.

In particular, we simulate hazard scenarios specified by STPA using model-
based design and engineering (MBDE) tools, in our case MathWorks Simulink,
to understand the boundary where a system can transition from a safe into
an unsafe state. During hazard analysis, simulating hazard scenarios can reveal
losses and their causal factors. We can thereby design well-informed context-
aware runtime monitors to augment verification and validation (V&V) performed
at design time.

Related Work. STPA has been used extensively in avionics and automotive
applications to study unsafe interactions among system components and how
such interactions can result in unsafe control actions (UCAs) that may lead
to system failures [13]. STPA indicates that a UCA may result from multiple
causal factors at different layers in a CPS. For efficient detection of these causal
factors, we developed a multilevel runtime monitoring framework to support in-
time anomaly detection. In-time detection is the ability to detect hazard states
before they lead to an accident and provide time for mitigation of the hazard.
Multilevel monitoring was inspired by the fact that there is no single monitor

160 S. Gautham et al.

type to solve in-time hazard detection problems of CPS. Instead, several types
of monitors are usually needed to address this challenge [9].

STPA-driven runtime monitor design to ensure safety (and security) dur-
ing the operational phase is an important and emerging research area. STPA is
used to analyze unsafe system contexts in medical CPS to develop runtime safety
monitors [1,24]. In addition, work in the runtime monitoring domain emphasizes
accuracy and integration over formal property development, whether by moni-
toring CPS [19] or by adding safety checking to a pre-existing system, such as
monitoring distributed algorithms [14]. Properties for autonomous vehicle mon-
itoring are derived from analyzing prior test results rather than being developed
during the design process [23]. We, instead, integrate runtime verification into
CPS by creating properties through hazard analysis built into system design.

Service-oriented component fault trees are used for property derivation for
runtime monitors with safety in mind [17]. Runtime monitors focus on the fault-
tolerant qualities [10] rather than emphasizing property generation, whereas
property generation is our primary focus. Design-time safety measures that use
STPA and model-based system engineering similar to our autonomous emer-
gency braking (AEB) case study could incorporate our methods for runtime
assurance [6]. Attacks occur in hardware, communication, and processing levels
within complex systems [4], and using monitors at multiple system levels can
increase causal factor awareness [5,8].

2 STPA-Driven Runtime Monitor Design

An important motivation for this work is to explore an integrative approach to in-
time hazard detection and informed risk that incorporates system level analysis
into the design of monitoring architectures. Accordingly, we develop a STPA-
driven model-based process for identifying and simulating hazard scenarios for
designing multilevel runtime monitors (Fig. 1).

2.1 Losses, Hazards and Unsafe Control Actions

A CPS consists of multiple coordinating components, continuously sensing and
processing inputs from the physical domain and human users, and performing
software-intensive tasks to produce time-critical outputs. This complex interac-
tion among system components at specific system states increases the possibility
of transitioning a system from a safe operating region G into an unsafe hazard
space Ḡ. We denote all the identified hazards as H = {H1,H2,H3 · · · Hn}. Such
hazards can result in losses L = {L1, L2, L3 · · · Lm} that include loss of life,
damage to property, to name a couple. Higher-level safety constraints (system
constraints) ϕs are derived from hazard analysis. These safety constraints result
in safety requirements Rs that inform the system development stage.

We denote the finite set of all possible control actions as Σ. Σ is continu-
ously influenced by the vehicle, environmental and operational context CO of the
system. The context CO is a critical element in determining if a control action

STPA-Driven Multilevel Runtime Monitoring 161

Fig. 1. STPA-driven runtime monitor generation.

is safe or unsafe. For example, consider a scenario where the road conditions
must be considered to determine the time at which braking should be applied
to avoid a collision. A braking action applied at a given time t may be safe to
avoid a collision. Whereas if there are snowy road conditions, braking action
applied at the same time t may be unable to avoid a collision. An earlier braking
action or a collection of actions may be needed for it to be safe in a particular
scenario. Therefore, in this context of snowy road conditions, the time when
braking is applied determines if the braking action was safe or unsafe. Thus, we
denote Σ(CO) = μ(CO) ∪ α(CO) where μ is the set of unsafe and α the set of
safe control actions. UCAs from μ can drive the system to a hazardous state Ḡ.
Every specific hazard Hi can be related to a finite subset of UCAs denoted by
uk, where uk ⊆ μ.

Safety constraints ϕc (sometimes called controller constraints) and safety
requirements Rc are defined at the controller level. Although ϕc are typically
incorporated into a design to prevent a hazard, there can be faults/attacks during
operation that can violate the safety requirements Rc imposed by the designer.
Furthermore, in some scenarios, ϕc cannot be enforced in a system. Runtime
safety assurance via monitors is important for promptly detecting safety con-
straints and requirements violations to prevent a hazard.

2.2 Causal Factors and Relation to Multilevel Monitoring

Finding the possible causes for a specific UCA μi ∈ ui is an essential step
in preventing a hazard Hi. When a violation is detected, providing a timely
safe control action αi can prevent a system from transitioning into the unsafe
operating region Ḡ, consequently avoiding a hazard.

We denote the causes for a UCA μi as a causal factor cf . Causal factors cf are
directly related to a given UCA μi ∈ ui (Fig. 1), where in a given context CO a

162 S. Gautham et al.

causal factor cf causes the UCA μi and may lead to the associated hazard Hi. To
determine causal factors cf for each UCA μi we define loss scenarios, which reveal
the context CO in which hazard Hi may occur. The context has a set of variables
V which can take multiple values depending on the system state or environment
or vehicle conditions, a set of assumptions A made on certain variable values,
and a set of system conditions C based on the variables and assumptions [21].
A unique combination of deviation in values for the variables V with a violation
of assumptions A related to a condition C forms the basis for a causal factor
cf for a hazardous control action μi. Thus, the context can be expressed as
a mapping CO : V × A × C → cf . Once causal factor analysis is complete,
low-level component constraints ϕl are generated to define the boundary for
safe operation at the component level. Components can be both hardware and
software, i.e. functional modules such as controllers and other subsystems such as
communication buses, sensors etc. in a CPS. Fault/hazard injection approaches
are used to strategically inject faults to simulate the deviation in V, A, and C to
create loss scenarios and test the boundaries of these constraints.

Further, the causal factors can specifically be related to one of the levels or
layers in a multilevel view of the system. STPA provides suggestions for classifi-
cation of causal factors for hazards that can occur at multiple levels, including
controller-based (inadequate control algorithm, flawed control algorithm), input-
based (unsafe data from other controllers, failure of sensor inputs), and control
path-based (network delays, flaws in data process algorithm in a controller) [13].
For our multilevel monitoring structure, we define the following levels: unsafe
data D, unsafe processing δ, and unsafe behavior in the communication path
η. The causal factors related to unsafe inputs to a controller from sensors, user
inputs, or input from another controller as well as unexpected/incorrect data pat-
terns are D = {d1, d2, · · · , dn}, where D ∈ V × A. The causal factors related to
flaws in the control algorithm and incorrect functional behavior in the controller
are δ = {δ1, δ2, · · · , δn}, where δ ∈ V ×A×C. The causal factors related to flaws
in the control path through which inputs/outputs are communicated between
the subsystems are η = {η1, η2, · · · , ηn}, where η ∈ V × A × C. For timely detec-
tion of such causal factors before they result in a UCA μi, we believe that a
viable approach is to employ monitors at these various levels of processing and
integration where the vulnerabilities originate.

2.3 Multilevel Runtime Monitoring Framework

Multi-level monitoring extends traditional runtime verification or monitoring
by providing a monitor classification or organization schema that maps moni-
tor types to various functions or components in distributed real-time architec-
tures [9]. In this work, we augment a multi-level monitoring framework [8] as
it directly addresses monitoring CPS from multiple layer perspectives. A mon-
itor Ma observes streams of time stamped information from a target CPS. A
stream, denoted as Sa = Sa(t − m), · · · ,Sa(t − 2),Sa(t − 1),Sa(t), where Sa is a
sequence of time-stamped information, from the past m instances starting with
Sa(t − m) and ending at the current instance Sa(t). The a subscript denotes

STPA-Driven Multilevel Runtime Monitoring 163

a stream associated with a specific part of the system. We denote the set of
all streams from different parts of a CPS as S, in particular, Sa ∈ S for all
streams Sa.

The streams of information that we want to verify as being compliant to safe
operation requirements can be represented as a monitorable property P derived
from component constraints ϕl. The property P, also referred to as a monitor
specification, is a checking condition that represents the conditions given by a
context CO ⊆ V × A × C (Fig. 1), and is most often expressed in temporal logic.
Thus, in multi-level monitoring, a monitor of a specific type placed at a specified
level detects unsafe or hazardous conditions for the stream it is observing. We
classify monitors (and their associated properties) as data, network, or functional
monitor types depending on the causal factors cf and the possible location of
emerging hazard states given by STPA. We consider the following three types
of monitoring for CPS: input-output (I/O) data-oriented monitors of type Md,
network-oriented monitors of type Mη, functional monitors of type Mδ.

– Data Monitor Md observes streams of data from sensors and actuators
that provide an interface to the physical environment, signals behavior of a
controller and verifies the data integrity. The causal factors related to D, i.e.
unsafe input from sensors or from other controllers are verified by Md.

– Network Monitor Mη verifies the integrity of the data received by the
communication layer by observing streams of information from the network
layer. They check for signal faults, incorrect signaling protocol, timing delays
etc. They observe the causal factors related to η, i.e. unsafe control path.

– Functional Monitor Mδ verifies properties for the system’s functional
behavior. For example, the relation between input and output of a controller
is verified by a functional correctness property. In particular, Mδ observe
the causal factors related to δ, i.e., an unsafe control algorithm, by observing
streams of information consisting of system states, internal variables, memory
read/writes, and event counts.

3 Monitoring an AEB Controller

A simplified AEB system model [15] is a representative system for studying the
methodology for STPA-driven runtime monitor design (Fig. 2). The output of
the AEB controller determines the braking state that decelerates the ego car,
which is a car with autonomous features.

A model of the vehicle dynamics module was considered whose output—
together with the scenario under consideration—determines the inputs to the
radar and vision sensors. The outputs of these sensors are fused to estimate
the relative distance and relative velocity between the ego car and the “most
important object” (MIO). The MIO is not always the lead car. For example, if a
pedestrian comes in front of the ego car, this would be the MIO. Based on these
inputs (distance and velocity relative to the MIO), the AEB controller estimates
the braking state (Fig. 2). When the ego car is at a safe distance but gets closer

164 S. Gautham et al.

Tracking and
Sensor Fusion

Radar

Prediction time

Vision

Curvature

Speed
Controller

CAN bus communication
outputs
braking
& AEB status

reads
relative distance
& relative velocity

reads
AEB status

AEB
Controller

outputs
relative distance
& relative velocity

outputs
throttle signal

Brake Actuator Throttle Body

reads
braking

reads
throttle signal

physical interfacephysical interface Vehicle dynamics
(plant)

mechanical
subsystems

perception
subsystems

Functional
Monitor

Functional
Monitor

Network Monitor

outputssignal
reads

Data Monitor

Fig. 2. Schematic of an autonomous emergency braking (AEB) system.

than required for safe operation, an alert, forward collision warning, is issued. If
the driver does not brake or the braking is insufficient, then the AEB engages
the “stage I” partial braking (PB1) at a certain critical relative distance. If this
does not suffice, “stage II” partial braking (PB2) is applied at a closer relative
distance, and then full braking (FB) is engaged. This action decelerates the car
to avoid a collision characterized by a minimum headway distance when the
velocity of the ego car reaches zero. Runtime monitors of data, network and
functional types are placed at different levels in a CPS (Fig. 2).

3.1 STPA for AEB

Losses and Hazards. From our analysis, we consider the losses L that must
not occur, and the hazards H related to the losses L are described below. These
form the foundation for producing UCAs (Fig. 6). For some of the hazards, we
mention sub-hazards to cover different cases. Some illustrative subsets of losses
and hazards:

L-1 Loss of life or injury due to collision
L-2 Loss via damage to the vehicle or property (repair, fines etc.)
L-3 Loss of reputation

H-1 Unsafe headway distance to the MIO [L-1, L-2, L-3]
H-1.1 Unsafe headway distance to vehicles, pedestrians [L-1, L-2, L-3]
H-1.2 Unsafe headway distance to sidewalks, curb etc. [L-2, L-3]
H-2 Vehicle is traveling at an inappropriate speed. [L-1, L-2, L-3]

Higher-level system constraints ϕs are derived from rephrasing of the hazard
statements as a binding mandatory requirement. For example, the system con-
straint for the hazard H-1 is: “SC1

system (ϕs) The Ego car must always maintain
a safe distance to the MIO.”

STPA-Driven Multilevel Runtime Monitoring 165

Fig. 3. STPA control structure diagram for AEB system.

Control Structure Diagram. The STPA control structure diagram shows all
the components in the AEB system along with vehicle dynamics and environ-
mental factors. It is a hierarchical control structure with a human driver at the
top, brake and throttle controllers in the middle, and mechanical components
such as the throttle body and brake pedal at the bottom of the diagram.

Next, we identify UCAs from μ that can occur in the AEB system. This
step occurs after loss and hazard determination because UCAs from μ directly
cause hazards (Fig. 6). The AEB controller provides a braking signal to the brake
pedal, an AEBstatus signal to the speed controller, and forward collision warning
(FCW) to the driver (Fig. 3). Braking is a deceleration signal with different brak-
ing levels PB1, PB2, and FB (Sect. 3). Whenever the AEB controller activates
the brakes, the AEBstatus signal indicates to the speed controller the braking
level applied. AEBstatus 1 indicates “Partial Braking I”, AEBstatus 2 indicates
“Partial Braking II”, and AEBstatus 3 indicates “Full Braking”, all as applied by
the AEB. Based on the AEBstatus, the speed controller provides or ceases to
provide an acceleration signal to the throttle.

Identifying Unsafe Control Actions (UCAs). Based on the control struc-
ture diagram analysis, we illustrate a subset of UCAs (Table 1). As an example,
we state the controller constraint ϕc for UCA 1: “SC1

controller (ϕc) AEB must
provide a braking signal when MIO is approaching the Ego car and AEB detects
an imminent collision [UCA 1].” Here, braking and detection of imminent col-
lision are AEB’s control actions. Finding incorrect or untimely control actions

166 S. Gautham et al.

Table 1. Partial list of unsafe control actions in the AEB system.

can guide designers towards finding comprehensive loss scenarios and low-level
safety requirements for braking and correct detection of imminent collision.

3.2 Loss Scenarios and Causal Factors as Design Guides
for Multilevel Runtime Monitoring

Causal factors for a UCA μi provide insights on complex subsystem interac-
tions and failure patterns that are critical in developing component-level safety
constraints ϕl. These low-level component constraints ϕl are vital for detection
of fault/attack and possible isolation of the causal factors. As a case study, we
identify the potential causal factors that result in unsafe braking by the AEB
controller and unsafe throttle action by the speed controller. Causal factors for
UCAs could be due to a) failures related to the controller, b) inadequate con-
trol algorithm, c) unsafe control inputs, and d) inadequate process model as
described in the STPA handbook [13]. To determine the causal factors, Fig. 6
explains that we must describe loss scenarios based on each UCA in μ as to
both realize the context CO and formulate each of the different causal factors
cf . For the AEB system, we describe two scenarios which describe the context
CO for unsafe braking UCA. In each scenario we identify the component level
safety constraints ϕl based on the illustrated causal factor cf along with the
runtime verification properties used to detect the causal factor cf . We express
the monitor properties using event calculus temporal formal language [20].

Scenario 1: Safe Braking Distance. The vehicle is operating and begins
approaching an MIO. The AEB applies braking in accordance with its control
algorithm and updates the AEBstatus to a non-zero number corresponding to
the level of braking applied. The speed controller applies throttle and ignores

STPA-Driven Multilevel Runtime Monitoring 167

Fig. 4. Localized monitors at each level are beneficial (Scenario 1).

the change in AEBstatus. If the speed controller continues acceleration while
braking is occurring, the braking components experience undue strain and may
fail, leading to potential unsafe headway [H-2] and collision [L-1]. The rationale
for simultaneous braking and acceleration from the speed controller’s perspective
varies depending on the context CO in the scenarios. Potential causes include:

Scenario 1a. The speed controller has an inadequate control algorithm and
does not release the throttle when the AEBstatus is non-zero.

Scenario 1b. The communication between the AEB and the speed controller is
delayed. Thus, the speed controller is not aware of the change in AEBstatus,
and it keeps the throttle on when the AEBstatus is non-zero.

Scenario 1c. The AEB does not properly update AEBstatus signal, even after
beginning braking [UCA-6,7]. Thus, the speed controller believes the AEB is
not braking and keeps the throttle on when the AEBstatus is non-zero.

The context in the scenario can be expressed as a function of V, A and C [21].
For example in scenario 1, throttle and AEBstatus are the variables V, the
assumption A is that the input AEBstatus is accurate and the vehicle is in
motion. “Release throttle when AEBstatus is non-zero” is the condition C. The
component-level safety constraints and their corresponding properties are listed
below:

SC1
component (ϕl). The Speed Controller should release the throttle when the

AEBstatus is non-zero.

Property 1 (Detects inadequate control algorithm in speed controller (Sce-
nario 1a)). “If AEBstatus is equal to 1, 2, or 3, the throttle should be released.”
This ensures that the car throttle is not engaged when the brake is engaged by
the AEB,

Happens(AEBstatus = 1 ∨ 2 ∨ 3, T) ⇒ HoldsAt(ThrottleRelease, T).

168 S. Gautham et al.

Fig. 5. Multilevel monitoring for in-time detection (Scenario 2).

SC2
component (ϕl). The data packet’s arrival rate via the CAN bus should have

an acceptable delay.

Property 2 (Detects flaw in control path to speed controller (Scenario 1b)). “The
time interval between two successive packet arrival via the CAN bus should be
less than Tsafe.” This condition ensures that the consecutive packets PacketA and
PacketB should arrive at time Ta and Tb respectively, where Td = Tb −Ta should
satisfy the condition Td < Tsafe, Happens(PacketA, Ta) ∧ Happens(PacketB , Tb).

SC3
component (ϕl). When the AEB controller begins the braking action, the

AEBstatus should be updated accordingly.

Property 3 (Detects inadequate control algorithm in AEB (Scenario 1c)). “If
deceleration is greater than Dsafe m/s2, the AEBstatus should be non-zero.” This
property ensures that the AEBstatus corresponds to the AEB controller’s cur-
rent braking signal, Happens(Deceleration > Dsafe, T) ⇒ HoldsAt(AEBstatus 	=
0, T).

Scenario 2: Communication Delay. The vehicle is operating and begins to
approach an MIO. There is a communication delay in sending the relative dis-
tance and relative velocity signals from the Tracking and Sensor Fusion module to
the AEB controller resulting in delayed calculation of Time To Collision (TTC).
Because of this, sufficient and timely braking is not applied. The component level
safety constraints and runtime property based on this scenario were formulated
similar to Scenario 1b to detect delay in communication in the CAN bus.

Hazard Injection and Monitor Detection. Using a model-based fault injec-
tion toolbox [11], faults and attacks were injected strategically to simulate the
loss scenarios 1 and 2. STPA provides a systematic method to analyze the sys-
tem and identify loss scenarios. After identifying loss scenarios, we explore the
adequacy of the causal factor analysis by property-based hazard injection [11].

STPA-Driven Multilevel Runtime Monitoring 169

Fig. 6. Deriving multilevel runtime monitor properties from STPA for AEB system
(numbers denote the order of the workflow).

For the first scenario, faults were injected on the AEBstatus signal in the
AEB controller (Scenario 1c). Although the AEB controller provides braking
action, the speed controller is unaware of the braking and continues to apply
throttle due to the fault. This results in simultaneous braking and acceleration
of the vehicle, thus causing the unsafe headway distance hazard [H-1]. The head-
way reduces to 1.9m at 4 s (Fig. 4) (safe headway distance should be at least
2.4m). The functional monitor at the AEB controller detects the fault much
earlier than the occurrence of the hazard. This error is detectable only by hav-
ing a localized monitor at the AEB controller. The functional monitor at the
speed controller and the network monitor do not detect such a fault, as a fault
on AEBstatus neither changes the functionality of the speed controller nor the
network behavior. Thus, having local monitors at each level is beneficial in early
detection and isolation of faults/attacks.

For the second scenario, we emulate a malicious node attack where spo-
radic messages on the CAN bus causes delay in the communication of packets
between the tracking and sensor fusion module and the AEB controller. The
network-level monitor detects this scenario (Fig. 5). A message injection attack
at the network layer also results in violation of a functional property in the
AEB controller which verifies the control algorithm at the AEB controller level.

170 S. Gautham et al.

The AEB controller decides on the level of braking based on “time to collision”
and “stopping time” (time from starting braking to coming to a complete stop).
An attack on the network layer results in violation of the functional property
when TTC < stoppingtime, ego car velocity should be decreasing, thus demon-
strating error propagation from one layer to another. While our simulation exam-
ple confirms that the error is caught both by the network monitor and the func-
tional monitor, the simulation shows that the network monitor detects the error
much earlier than the functional monitor at the AEB controller. This use case
scenario validates the in-time early detection of the emerging hazard before error
propagation reaches the system’s output boundaries. In fact, when a property
violation goes unnoticed at one level, they are often detected by another monitor
in the hierarchy as effects propagate, thus improving hazard detection coverage.

The workflow integrates requirement elicitation through STPA into the direct
creation of runtime monitors by decomposing the causal factors at different sys-
tem levels on the basis of component safety constraints (Fig. 6). There is an
iterative feedback for refinement of safety constraints after hazard injection.

4 Conclusion

We developed an integrative approach to in-time hazard detection that incorpo-
rates system-level analysis into the design of runtime monitoring architectures.
Integrative approaches to runtime monitoring for hazard detection in CPS are
needed to augment the technical basis for DepDevOps style methods. We demon-
strated that the systematic nature of STPA hazard analysis is beneficial in deriv-
ing and refining multilevel monitoring properties related to causal factors. By
developing monitors across multiple system levels, we can accurately detect the
origin of a hazard even when it propagates errors across different CPS levels.

In other words, when faults go undetected at their original location, moni-
tors at other system levels can detect propagated errors, thus increasing hazard
detection coverage. We also found that MBDE methods and tools significantly
improve the productivity of STPA and assist in evaluating runtime monitoring
schemes for hazard coverage and refinement.

References

1. Ahmed, B.: Synthesis of a Context-Aware Safety Monitor for an Artificial Pancreas
System. Master’s thesis, University of Virginia (2019)

2. Bakirtzis, G., Carter, B.T., Fleming, C.H., Elks, C.R.: MISSION AWARE:
evidence-based, mission-centric cybersecurity analysis. arXiv:1712.01448 [cs.CR]
(2017)

3. Combemale, B., Wimmer, M.: Towards a model-based DevOps for cyber-physical
systems. In: Bruel, J.-M., Mazzara, M., Meyer, B. (eds.) DEVOPS 2019. LNCS,
vol. 12055, pp. 84–94. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
39306-9_6

http://arxiv.org/abs/1712.01448
https://doi.org/10.1007/978-3-030-39306-9_6
https://doi.org/10.1007/978-3-030-39306-9_6

STPA-Driven Multilevel Runtime Monitoring 171

4. Cui, J., Liew, L.S., Sabaliauskaite, G., Zhou, F.: A review on safety failures, security
attacks, and available countermeasures for autonomous vehicles. Ad Hoc Netw.
(2019). https://doi.org/10.1016/j.adhoc.2018.12.006

5. Daian, P., Shiraishi, S., Iwai, A., Manja, B., Rosu, G.: RV-ECU: maximum assur-
ance in-vehicle safety monitoring. SAE Techn. Paper Ser. (2016). https://doi.org/
10.4271/2016-01-0126

6. Duan, J.: Improved systemic hazard analysis integrating with systems engineer-
ing approach for vehicle autonomous emergency braking system. ASME J. Risk
Uncertain. Part B (2022). https://doi.org/10.1115/1.4051780

7. Fremont, D.J., Sangiovanni-Vincentelli, A.L., Seshia, S.A.: Safety in autonomous
driving: can tools offer guarantees? In: Proceedings of the 58th ACM/IEEE
Design Automation Conference (DAC 2021). IEEE (2021). https://doi.org/10.
1109/DAC18074.2021.9586292

8. Gautham, S., Jayakumar, A.V., Elks, C.: Multilevel runtime security and safety
monitoring for cyber physical systems using model-based engineering. In: Casimiro,
A., Ortmeier, F., Schoitsch, E., Bitsch, F., Ferreira, P. (eds.) SAFECOMP 2020.
LNCS, vol. 12235, pp. 193–204. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-55583-2_14

9. Goodloe, A.E., Pike, L.: Monitoring distributed real-time systems: a survey and
future directions. Technical report CR-2010-216724, NASA (2010)

10. Haupt, N.B., Liggesmeyer, P.: A runtime safety monitoring approach for adaptable
autonomous systems. In: Romanovsky, A., Troubitsyna, E., Gashi, I., Schoitsch,
E., Bitsch, F. (eds.) SAFECOMP 2019. LNCS, vol. 11699, pp. 166–177. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26250-1_13

11. Jayakumar, A.V., Elks, C.: Property-based fault injection: a novel approach to
model-based fault injection for safety critical systems. In: Zeller, M., Höfig, K.
(eds.) IMBSA 2020. LNCS, vol. 12297, pp. 115–129. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-58920-2_8

12. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Alge-
braic Methods Program. (2009). https://doi.org/10.1016/j.jlap.2008.08.004

13. Leveson, N., Thomas, J.P.: STPA handbook (2018)
14. Liu, Y.A., Stoller, S.D.: Assurance of distributed algorithms and systems: runtime

checking of safety and liveness. In: Deshmukh, J., Ničković, D. (eds.) RV 2020.
LNCS, vol. 12399, pp. 47–66. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-60508-7_3

15. Mathworks: Autonomous emergency braking with sensor fusion (2021). https://
www.mathworks.com/help/driving/ug/autonomous-emergency-braking-with-
sensor-fusion.html

16. Redfield, S.A., Seto, M.L.: Verification challenges for autonomous systems. In:
Lawless, W.F., Mittu, R., Sofge, D., Russell, S. (eds.) Autonomy and Artificial
Intelligence: A Threat or Savior?, pp. 103–127. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-59719-5_5

17. Reich, J., et al.: Engineering of runtime safety monitors for cyber-physical systems
with digital dependability identities. In: Casimiro, A., Ortmeier, F., Bitsch, F.,
Ferreira, P. (eds.) SAFECOMP 2020. LNCS, vol. 12234, pp. 3–17. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-54549-9_1

18. Sánchez, C., et al.: A survey of challenges for runtime verification from advanced
application domains (beyond software). Form. Methods Syst. Des. 1–57 (2019).
https://doi.org/10.1007/s10703-019-00337-w

https://doi.org/10.1016/j.adhoc.2018.12.006
https://doi.org/10.4271/2016-01-0126
https://doi.org/10.4271/2016-01-0126
https://doi.org/10.1115/1.4051780
https://doi.org/10.1109/DAC18074.2021.9586292
https://doi.org/10.1109/DAC18074.2021.9586292
https://doi.org/10.1007/978-3-030-55583-2_14
https://doi.org/10.1007/978-3-030-55583-2_14
https://doi.org/10.1007/978-3-030-26250-1_13
https://doi.org/10.1007/978-3-030-58920-2_8
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1007/978-3-030-60508-7_3
https://doi.org/10.1007/978-3-030-60508-7_3
https://www.mathworks.com/help/driving/ug/autonomous-emergency-braking-with-sensor-fusion.html
https://www.mathworks.com/help/driving/ug/autonomous-emergency-braking-with-sensor-fusion.html
https://www.mathworks.com/help/driving/ug/autonomous-emergency-braking-with-sensor-fusion.html
https://doi.org/10.1007/978-3-319-59719-5_5
https://doi.org/10.1007/978-3-319-59719-5_5
https://doi.org/10.1007/978-3-030-54549-9_1
https://doi.org/10.1007/s10703-019-00337-w

172 S. Gautham et al.

19. Schwenger, M.: Monitoring cyber-physical systems: from design to integration. In:
Deshmukh, J., Ničković, D. (eds.) RV 2020. LNCS, vol. 12399, pp. 87–106. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-60508-7_5

20. Shanahan, M.: The event calculus explained. In: Wooldridge, M.J., Veloso, M.
(eds.) Artificial Intelligence Today. LNCS (LNAI), vol. 1600, pp. 409–430. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48317-9_17

21. Thomas, J.: Extending and automating a systems-theoretic hazard analysis for
requirements generation and analysis. Ph.D. thesis, MIT (2013)

22. Trapp, M., Schneider, D., Weiss, G.: Towards safety-awareness and dynamic safety
management. In: Proceedings of the 14th European Dependable Computing Con-
ference (EDCC 2018) (2018). https://doi.org/10.1109/EDCC.2018.00027

23. Zapridou, E., Bartocci, E., Katsaros, P.: Runtime verification of autonomous driv-
ing systems in CARLA. In: Deshmukh, J., Ničković, D. (eds.) RV 2020. LNCS,
vol. 12399, pp. 172–183. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-60508-7_9

24. Zhou, X., Ahmed, B., Aylor, J.H., Asare, P., Alemzadeh, H.: Data-driven design
of context-aware monitors for hazard prediction in artificial pancreas systems. In:
Proceedings of the 51st Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks, (DSN 2021). IEEE (2021). https://doi.org/10.1109/
DSN48987.2021.00058

https://doi.org/10.1007/978-3-030-60508-7_5
https://doi.org/10.1007/3-540-48317-9_17
https://doi.org/10.1109/EDCC.2018.00027
https://doi.org/10.1007/978-3-030-60508-7_9
https://doi.org/10.1007/978-3-030-60508-7_9
https://doi.org/10.1109/DSN48987.2021.00058
https://doi.org/10.1109/DSN48987.2021.00058

Security and Safety

Proposal of Cybersecurity and Safety
Co-engineering Approaches
on Cyber-Physical Systems

Pierre-Marie Bajan(B), Martin Boyer, Anouk Dubois, Jérôme Letailleur,
Kevin Mantissa, Jeremy Sobieraj, and Mohamed Tlig

Institute of Research Technology SystemX, Palaiseau, France
{pierre-marie.bajan,martin.boyer,anouk.dubois,jerome.letailleur,

kevin.mantissa,jeremy.sobieraj,mohamed.tlig}@irt-systemx.fr
https://www.irt-systemx.fr/en/

Abstract. Cybersecurity and Safety co-engineering is at the heart of
various ongoing works for the industry and deals with highly complex
and connected systems. However, as this topic grows, few shared method-
ologies, standards and organizations exist to enable this co-engineering
process. In this context, we had the opportunity to bring together both
a Safety and a Cybersecurity team to work on methods of collaboration.
This resulted in mutually sharing methods and tools between both teams,
as well as experiencing the challenges of co-engineering. In this article, we
suggest two types of approaches encouraging Cybersecurity and Safety
co-engineering and interactions. In the first approach, a Safety team con-
tributes to Cybersecurity activities as defined by EBIOS RM methodol-
ogy. In the second approach, a Cybersecurity team contributes to Safety
inputs for the Safety demonstration. Those approaches are mainly based
on the ISO 26262 automotive standard and the EBIOS RM methodology,
but they can be extended to any type of context. Alongside the proposed
approaches, we suggest orientations and perspectives for future works.

Keywords: Cyber-Physical Systems · Safety · Cybersecurity ·
Co-engineering · EBIOS RM

1 Introduction

Cyber-Physical Systems (CPS) are an integral part of domains that have a strong
impact on society, the economy and the environment. In order to guarantee the
robustness of such systems, they must respect two main criteria: Safety and
Security. We define these concepts as follows: Safety aims at protecting people
against accidental and involuntary acts (failures, misuses, etc.), Security aims at
protecting people and assets against malicious and voluntary acts (attacks).

This research work has been carried out within the framework of IRT SystemX, Paris-
Saclay, France, and therefore granted with public funds within the scope of the French
Program “Investissements d’Avenir”. Authors are listed alphabetically by last name.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Trapp et al. (Eds.): SAFECOMP 2022, LNCS 13414, pp. 175–188, 2022.
https://doi.org/10.1007/978-3-031-14835-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14835-4_12&domain=pdf
https://doi.org/10.1007/978-3-031-14835-4_12

176 P.-M. Bajan et al.

While today’s industries are well aware of the need of co-engineering and look
for initiatives, Safety and Security have historically been carried out separately.
Indeed, Safety is essential for risky systems in sensitive fields like aeronautics,
aerospace, automotive, nuclear, etc. As for Security, it evolved over time with the
notion of Cybersecurity threats appearing shortly after the arrival of Internet.
Today, the Safe-by-design mindset is the norm in aeronautic and automotive
fields. However, the concept of Secure-by-design is not as widespread. The hack
of the Jeep Cherokee [18] and the recent Log4Shell vulnerability affecting the
Java Log4j utility [1] show the need to improve the application of Cybersecurity
best practices and to consider Cybersecurity issues starting from the concept
phase. The idea of proposing a secure and safe system appeared as the correct
path forward, but the implementation encountered some difficulties due to the
differences in approaches.

The objective of this article is to highlight the possible links between Cyber-
security and Safety activities and to propose a co-engineering process. First,
we present the state of the art of the Cybersecurity/Safety co-engineering
approaches as well as the positioning of standards on such approaches (Sect. 2).
Then, we study several ways to improve Cybersecurity/Safety co-engineering,
based on observations from previous works that used the Cybersecurity risk
analysis method EBIOS RM. We explain in detail its concepts and mechanisms
(Sect. 3). Afterwards, we present our two approaches of Cybersecurity/Safety co-
engineering (Sect. 4). Finally, we conclude with considerations on the relevance
of these approaches and present the remaining challenges (Sect. 5).

2 State of the Art

The question of Cybersecurity/Safety co-engineering is an ongoing issue to
address by using different means.

2.1 Standards

The article [14] lists several standards regarding co-engineering in various fields
(automotive, aviation, space, railway, medical, and nuclear) and highlights that
several standards for Safety and Cybersecurity have been developed while keep-
ing each domain independent.

However, the boundaries between Safety and Cybersecurity in the normative
environment are fading away. The authors of [5] pinpoint this evolution and the
progressive emergence of overlaps in Safety and Cybersecurity activities in the
context of CPS. In this particular context, they consider that the conventional
Safety domain should evolve to include “Security for Safety” considerations in
its scope. “Security for Safety” consists in identifying and dealing with Cyber-
security threats that can lead to Safety issues.

For example, concerning Safety, the 2010 version of the IEC 61508 [8] stan-
dard addresses the inclusion of scenarios with malicious intent in the Safety risk
analysis (including cyberattacks). The 2018 update of the automotive Safety

Proposal of Cybersecurity and Safety Co-engineering Approaches on CPS 177

standard ISO 26262 [9] includes an annex regarding potential collaboration with
Cybersecurity. While these standards do not provide practical processes to inte-
grate Cybersecurity with Safety, they reveal a gradual evolution regarding the
need for coordination between the two domains.

In the railway field, from the Cybersecurity viewpoint, the TS 50701:2021
standard [4] represents a significant step towards facilitating Cybersecu-
rity/Safety co-engineering: it relies on the EN 50126 [6] lifecycle used in railway
Safety to establish the activities in railway Cybersecurity. Among the propo-
sitions, it suggests hints on how to handle Cybersecurity activities in regard
to Safety. It also defines a Cybersecurity Case according to the model of the
Safety Case in EN 50129 [7], which takes into account safety-related high-level
objectives. The TS 50701 views co-engineering as the proper coordination of life-
cycles, activities and establishing proper interfaces, rather than fully integrating
Safety with Cybersecurity. Indeed, integration can negatively impact the two
domains and their approval process, with a risk of higher costs in resources and
re-certification.

2.2 Co-engineering Methods

Beyond standards, independent initiatives and methods have been developed.
The authors of [11] deliver the most detailed and complete co-engineering method
classification to date. In 2020, nearly 70 methods have been studied and classi-
fied according to different categories (application fields, method type, scalabil-
ity, etc.). Among those methods, some apply a “Security for Safety” approach,
while others combine Safety and Cybersecurity results at specific development
stages [3]. This is the case for the following methods:

– SAHARA [12]: a risk analysis tool based on the Hazard Analysis and
Risk Assessment (HARA) method (Safety) and the STRIDE method
(Cybersecurity).

– Six-Step-Model [16]: a risk modeling method where the Safety and Cyber-
security teams define links between several aspects of the system (functions,
structure, failures, attacks, countermeasures) in order to solve conflicts.

– KAOS [15]: a definition of system requirements based on GORE (Goal-
Oriented Requirements Engineering), applicable in the context of a Cyberse-
curity/Safety approach.

2.3 Positioning

From the standards and methods discussed previously, we make the following
observations:

– Position of standards: more and more standards in Safety and Cybersecurity
identify synergies between these two aspects. While some initiatives propose
tangible co-engineering processes in standards like the SAE J3061 [17], the
transition into international standards is not always done or built upon. The

178 P.-M. Bajan et al.

ISO/SAE 21434 [10], which today supersedes and abandons the aspects of
co-engineering of SAE J3061, is an example of this phenomenon: Safety and
Cybersecurity are still kept independent in the normative environment.

– Absence of a universal methodology : we lack a generic methodology applicable
to every field.

– Teams interactions: few methods consider the different interactions between
the Cybersecurity and the Safety teams. The AQUAS project, concluded in
2020, explores and details the methods first proposed by the SAE J3061 in
the deliverable [2].

– Verification & Validation (V&V) activities: most of the contributions deal
with the co-engineering activities in the design phase. The AQUAS project is
among the ones to also explore the potential synergies of Cybersecurity and
Safety in V&V.

The first three observations pinpoint the challenge to find a complete Cyber-
security/Safety methodology that improves communication and interactions
between both teams. Regarding the V&V treatment in Cybersecurity/Safety
co-engineering, the authors of [19] indicate that there are more potential syner-
gies during the V&V phase (right side of the V-Model) than during the design
phase (left side of the V-Model), as shown in Fig. 1. However, we think it is cru-
cial to properly identify the synergies in the design phase, in order to be more
robust during the V&V phase. Thus, we focus strictly on the design phase with
two approaches for Cybersecurity/Safety co-engineering, as described in Sect. 4
of this article.

Fig. 1. Cybersecurity and safety synergies in simplified V-model (from [19])

3 EBIOS RM Method

We assume in this paper that ISO 26262 standard is well known worldwide,
which is not the case for EBIOS RM. Thus in this section, we introduce this
methodology which is essential for the understanding of our propositions.

Proposal of Cybersecurity and Safety Co-engineering Approaches on CPS 179

3.1 Introduction

To study the possible convergences and divergences of Safety and Cybersecurity
risk analysis methods, we choose a Cybersecurity method as a starting point. We
select EBIOS Risk Manager, or EBIOS RM [13], as a Cybersecurity risk analysis
method for two reasons. We are familiar with this method from its use in various
projects, thus providing us with feedback and use cases to draw inspiration for
improvements upon. Besides, EBIOS RM is useful to identify key issues and is
adaptable to various contexts.

EBIOS RM is a risk analysis method created by the French Cybersecurity
national agency, ANSSI, in 1995. This methodology, first known as EBIOS, had
major updates in 2004 and 2010 before finally changing to EBIOS RM in 2018.
It is actively recommended by ANSSI to French companies to raise awareness of
the Cybersecurity threats. It is also indicated as a potential method for Cyber-
security risks management in the TS 50701 standard.

3.2 Five Workshops of EBIOS RM

EBIOS RM is divided into five consecutive workshops and proposes alternative
methods for some specific steps to match the need of the contributors. EBIOS
RM does not prohibit the use of custom methods as long as they reach the
intended goals.

Scope and Cybersecurity Baseline. The first workshop consists in the def-
inition of the scope of the analysis, the norms and the regulations constraining
the object of the study. This workshop is divided into four steps:

1. We identify the goals of the analysis, the scope of the object of study, the
contributors responsible for each workshop and the overall planning.

2. We identify the most important functions and/or components of the system.
The goal is to identify five to ten items that would be the targets of attackers
and are vital to the system. Those items are called business assets. We identify
the contributors responsible for each business asset.

3. For each business asset, we identify feared events (defined in EBIOS RM).
They are adverse consequences to a business asset due to the violation of
one of its Cybersecurity criteria (availability, integrity, confidentiality, etc.).
For example, a feared event for a given business asset could be its temporary
unavailability (violation of availability) and the resulting consequence.

4. Finally, we determine the security baseline in which we identify all of the
Cybersecurity reference standards applicable to the system. We then deter-
mine for each standard their implementation status (applied without restric-
tions, applied with restrictions, and not applied) along with justifications.

Risk Origins. The second workshop consists in the identification of attackers’
profile and motivation for targeting the system. This workshop is divided into
three steps:

180 P.-M. Bajan et al.

1. We identify the risk origins (RO) and the target objectives (TO) of the poten-
tial attackers of the system. EBIOS RM provides a reference list of RO and
TO which the workshop contributors can choose from.

2. We create pairs of RO/TO (e.g., organized crime / lucrative goal) and we
evaluate the relevance of each pair to the system. The recommended criteria
are: the motivation of the RO/TO pair, its resources, and how active it is in
the industry.

3. Based on the previous evaluation, we select a few RO/TO pairs for the rest
of the analysis. The recommended number is three to six pairs.

Strategic Scenarios. The third workshop consists in the elaboration of high-
level attack scenarios known as strategic scenarios. The strategic scenarios are
used to determine the severity of an attack. This workshop also identifies critical
stakeholders and suggests measures to reduce their criticality. This workshop is
divided in three steps:

1. We list all the stakeholders of the system and identify those that are deemed
critical. A critical stakeholder is a stakeholder likely to be used as a vector
for an attack. EBIOS RM proposes a set of criteria and a methodology to
establish a threat level for each stakeholder. The stakeholders with the highest
threat level are deemed critical stakeholders.

2. We identify strategic scenarios. For each RO/TO pair, we determine which
business assets would be targeted and if specific critical stakeholders may be
considered to do so. Each of those constitute a simplified attack path and thus
a strategic scenario. We then evaluate the severity of each strategic scenario.

3. We propose Cybersecurity measures to reduce the threat level of each critical
stakeholders to a level considered as acceptable by the workshop contributors.

Operational Scenarios. The fourth workshop consists in the elaboration of
detailed attack scenarios called operational scenarios and in the evaluation of
the likelihood of success of each operational scenario. This workshop is divided
in two steps:

1. We identify operational scenarios, i.e. attack paths elaborated from the pre-
vious strategic scenarios. An operational scenario uses the same attack vector
and targets the same business asset as the reference strategic scenario but
provides additional information on the supporting assets targeted, the tech-
niques used, etc. Operational scenarios can be represented by graphs or attack
diagrams.

2. We evaluate the likelihood of success of each operational scenario. It identifies
how likely an operational scenario can succeed if it actually happened. EBIOS
RM suggests three different methods with various degrees of complexity.

Risk Treatment. The fifth and last workshop consists in the synthesis of
the risks scenarios, establishing a risk treatment strategy and setting up the
framework to monitor risks. This workshop is divided in four steps:

Proposal of Cybersecurity and Safety Co-engineering Approaches on CPS 181

1. We first validate an initial risk mapping consensus among all evaluators. A
risk scenario score is the combination of the severity of its strategic scenario
and the likelihood of its operational scenario. We establish the risk score of
all identified risk scenarios.

2. We establish a risk treatment strategy so that each risk scenario is covered to
reach an acceptable level of risk.

3. We verify that the risk treatment strategy can meet our goal. We deduce the
residual risk scores by assessing the risk score of each risk scenario if the
corresponding risk treatment strategy is applied.

4. We establish a steering committee and steering indicators to periodically ver-
ify that the risk treatment strategy is correctly applied and documented.

4 Cybersecurity/Safety Co-engineering: Two Approaches

The following section presents the results of activities we conducted regarding
Cybersecurity/Safety co-engineering. We had an initial exchange where both
Safety and Cybersecurity teams presented their respective methods, standards
and tools. The idea is to improve the understanding of one another’s con-
cepts in order to identify and deal with potential misconceptions. Following this
exchange, we identified opportunities of co-engineering collaborations. We syn-
thetize the results of our co-engineering workshops in the approaches presented
in this paper.

Based on the current state of the art, and the existing EBIOS RM method-
ology presented in Sect. 3, we propose two approaches of Cybersecurity/Safety
co-engineering. The first approach presents how the Safety team can contribute
to EBIOS RM workshops, while the second approach presents how the Cyber-
security team can contribute to building the Safety demonstration.

4.1 First Approach: Safety Contributions to Cybersecurity EBIOS
RM Workshops

Our approach is not limited to simple exchanges of work products between the
teams. Through our own experience, it is essential that both teams educate each
other on their respective work processes and issues. This can be done through
close interactions between teams, like in-person workshops.

For each of the five workshops of EBIOS RM, we identify safety-related
activities that can be conducted in parallel to the regular activities of EBIOS
RM.

First Workshop: Scope and Cybersecurity Baseline. In the first workshop
of EBIOS RM, we identify four potential Safety contributions as illustrated in
Fig. 2:

1. The Safety team provides their Safety Management Plan to help the Cyber-
security team specify the technical perimeter of the study. The Safety team
also helps to identify the safety-related functions and stakeholders in the scope
shared by both teams.

182 P.-M. Bajan et al.

2. The Safety team performs a Safety Risk criteria analysis to identify additional
Cybersecurity criteria (e.g., traceability, performance, quality of service, etc.)
that are safety-relevant.

3. The Safety team advises on missing feared events from their own list of haz-
ardous events and Safety Goals.

4. The Safety team identifies supporting assets associated to Safety functions in
the technical perimeter of the Cybersecurity team.

Fig. 2. Safety contributions to workshop 1 of EBIOS RM

Second Workshop: Risk Origins. In the second workshop of EBIOS RM,
we identify three potential Safety contributions illustrated in Fig. 3:

– The Safety team is an active contributor to the discussion of the risk origins
(RO) and their target objectives (TO).

– The Safety team also provides insights during the evaluation of the RO/TO
pairs. They can contest or confirm individual scores of RO/TO pairs like their
motivation or activity in the sector based on their own experience.

– The Safety team can be informed on the selected RO/TO pairs.

Fig. 3. Safety contributions to workshop 2 of EBIOS RM

Third Workshop: Strategic Scenarios. In the third workshop of EBIOS
RM, we identify four potential Safety contributions, as illustrated in Fig. 4:

– The Safety team provides their list of stakeholders for the shared study
perimeter.

– The Safety team can be informed on the list of strategic scenarios.
– The Safety team includes and traces the Cybersecurity measures that impact

its perimeter.
– The Safety team can be informed on receiving the list of critical stakeholders

and their residual threat levels.

Proposal of Cybersecurity and Safety Co-engineering Approaches on CPS 183

Fig. 4. Safety contributions to workshop 3 of EBIOS RM

Fourth Workshop: Operational Scenarios. The fourth workshop is dedi-
cated to the identification and evaluation of operational scenarios. We identify
synergies with the fault tree analysis in Safety. The interactions between Safety
and Cybersecurity are described in Fig. 5: operational scenarios can serve as sup-
port for devising “Cybersecurity-related branches” in the fault tree. Additionally,
the likelihood assessment of operational scenarios can be used as a qualitative
metric to assess if those Cybersecurity-related branches need to be considered
in the fault tree.

Fig. 5. Safety contributions to workshop 4 of EBIOS RM

Fifth Workshop: Risk Treatment. In the fifth and last workshop of EBIOS
RM, we identify three potential Safety contributions, as illustrated in Fig. 6:

– The Safety team lists the Cybersecurity measures impacting its perimeter.
– The Safety team can be informed on potential residual risks identified by the

Cybersecurity team.
– The Security Continuous Improvement Plan of the Cybersecurity team

ensures that collaboration between the Safety and Cybersecurity teams con-
tinues during the development and exploitation phases. Indeed, new Cyber-
security threats are likely to emerge and present Safety stakes. Thus, the
Safety team must systematically analyse the impacts of those Cybersecurity
risks with a dedicated Safety Impact Analysis and a Risk Action Plan when
needed.

4.2 Second Approach: Contributions of Cybersecurity to the Safety
Demonstration

Prior to recent standards like TS 50701:2021 and EN 50129:2018, the Safety
methodology would not consider Cybersecurity threats in the context of the
Safety demonstration. Indeed, in Safety scenarios, the human actor is supposed

184 P.-M. Bajan et al.

Fig. 6. Safety contributions to workshop 5 of EBIOS RM

to act in good faith. Thus, intentional attacks are not considered. However,
with more and more connected systems, a change of paradigm is necessary.
Consequently, in an approach coherent with the aforementioned standard, we
propose to integrate Cybersecurity in the Safety demonstration while detailing
how Cybersecurity and Safety work products could interact.

We identify three steps, each one corresponding to a key stage of the V-Model,
where interactions between Safety and Cybersecurity can occur. We focus strictly
on the design phase of the V-Model, which is covered by these steps.

Study Perimeter. Figure 7 represents the first step of our approach: the iden-
tification of the study perimeter. The Cybersecurity and Safety teams start by
defining their respective study perimeter. If the system under study is based on
a similar project, we can perform an impact analysis to deduce the elements that
can be reused. Otherwise, such an impact analysis can be skipped. The Safety
team defines the Safety Management Plan, which summarizes the global Safety
organization, system perimeter and stakeholders of the study. Meanwhile, the
Cybersecurity team defines a technical perimeter and identifies business assets
relevant to that perimeter. Both teams then agree on a mutual study perime-
ter for future activities and select from that perimeter the business assets with
Safety impacts.

Fig. 7. Cybersecurity and safety interrelations for safety demonstration: study
perimeter

Proposal of Cybersecurity and Safety Co-engineering Approaches on CPS 185

Risk Analysis. Figure 8 presents our co-engineering approach during the life
cycle of Safety and Cybersecurity risk analyses. To illustrate those exchanges
(e.g. discussions, sharing of work products), we consider for instance a Safety risk
analysis based on HARA and a Cybersecurity risk analysis based on EBIOS RM.
Based on an initial input from the Safety team, the Cybersecurity team submits
relevant elements from their risk analysis (feared events, strategic scenarios, etc.).
The Safety team reviews those elements and integrates the impacting elements
to the Safety risk analysis. This is done through eight steps:

1. The Safety team produces a list of hazardous events for the Cybersecurity
team.

2. The Cybersecurity team identifies a list of Cybersecurity Feared Events (CFE)
that are relevant to the hazardous events.

3. The Safety team identifies the CFE that are not traced in the hazardous
events.

4. The Cybersecurity team also proposes a list of strategic scenarios based on
the CFE selected in step 2.

5. The Safety team verifies the strategic scenarios likely to pose a Safety threat.
6. The Cybersecurity team proposes a list of operational scenarios based on the

strategic scenarios selected in step 4.
7. The Cybersecurity team also provides the list of Cybersecurity measures asso-

ciated to operational scenarios of step 6.
8. The Safety team analyses and gives their feedback on the Cybersecurity con-

tributions resulted in steps 6 and 7.

These co-engineering exchanges are crucial for the Safety team to improve the
robustness of their risk analysis. They must take place before the conclusion of
the Safety risk analysis. With this approach, we want to highlight the added
value of Cybersecurity experts’ feedback to the Safety risk analysis.

Fig. 8. Cybersecurity and safety interrelations for safety demonstration: risk analysis

186 P.-M. Bajan et al.

Specification and Requirements Implementation. After identifying rele-
vant risk scenarios, we present our approach for the treatment of Safety require-
ments and Cybersecurity measures in Fig. 9. The Safety team identifies Safety
Goals that are high-level requirements that ensure the Safety of the system. From
these Safety Goals, the Safety team provides the initial Safety requirements. The
Cybersecurity and Safety teams select from the initial Cybersecurity measures
those that are related to Safety issues. Those measures may entail conflicts,
for which Safety and Cybersecurity must define best practices and a reactive
treatment process. The resolution of conflicts and the potential addition of new
elements lead to an update of Cybersecurity measures and Safety requirements.
Additional Cybersecurity requirements can be traced to Safety requirements.
The implementation of these requirements and measures are key issues for a safe
and secure system.

Fig. 9. Cybersecurity and safety interrelations for safety demonstration: requirements
specification and implementation

Although we consider this approach from the viewpoint of Safety, the intro-
duction of TS 50701 in Cybersecurity also makes it possible to integrate the
Cybersecurity case in these activities.

5 Conclusion

In this paper, we presented two approaches: (i) an approach to integrate the
inputs of the Safety team into an EBIOS RM risk analysis and (ii) another
approach to include the inputs of the Cybersecurity team into a Safety demon-
stration. Those approaches highlight key Cybersecurity/Safety co-engineering
contributions that can provide richer and more robust inputs to both Cyberse-
curity and Safety risk analyses. The step-by-step application of those approaches,
mainly based on ISO 26262 and EBIOS RM, are compatible with other stan-
dards and are a good start for discussions between the Safety and Cybersecurity
teams. Developing these approaches helped us to identify some key challenges
and open questions that can guide future works on the topic.

Proposal of Cybersecurity and Safety Co-engineering Approaches on CPS 187

Indeed, we observe that both teams need to be familiar with their respective
vocabulary and concepts. Several key concepts like the security criteria (avail-
ability, traceability, etc.) or the hazardous and feared events can be interpreted
differently by each team. The need for common language enabling proper under-
standing is also identified by the UK Code of Practice of Cyber Security and
Safety [20] as a key challenge.

Besides, it is important to consider if we should unify similar concepts or
keep them separated. Should hazardous events take into account the harm
caused by malicious actors? Should Fault trees integrate dedicated branches
for Cybersecurity-related Base events with malicious actors?

Finally, we keep in mind that these approaches, deduced from use cases, still
need to be confronted with practical industrial contexts. We expect that Cyber-
security/Safety co-engineering can function properly only if industrial actors
are willing to integrate the efforts of Safety and Cybersecurity teams. Euro-
pean initiatives, like the AQUAS project, along with others funded by the EU
ARTEMIS/ECSEL JU, managed to achieve positive results on this topic. We
also observe a rapid development of the normative environment, with the TS
50701:2021 Cybersecurity standard and the EN 50129:2018 Safety standard used
in railway, which represent a significant step towards this goal.

References

1. Critical java flaw puts millions of organisations at risk. Netw. Secur. 2021(12), 1–2
(2021)

2. Aggregated Quality Assurance in Systems (AQUAS) Project: D3.2 combined
safety, security and performance analysis and assessment techniques - preliminary.
Technical report (2019)

3. Boyer, M., Chelim, T., Sobieraj, J.: Hybridization of safety and security for the
design and validation of autonomous vehicles: where are we? In: ESREL 2021–31st
European Safety and Reliability Conference (2021)

4. BSI: Pd clc/ts 50701: Railway applications - cybersecurity. En (2021)
5. Carreras Guzman, N.H., Kozine, I., Lundteigen, M.A.: An integrated safety and

security analysis for cyber-physical harm scenarios. Saf. Sci. 144, 105458 (2021)
6. CENELEC: NF EN 50126-1: Railway applications - the specification and demon-

stration of reliability, availability, maintainability and safety (RAMS) - part 1:
Generic RAMS process. En (2017)

7. CENELEC: Nf en 50129: Railway applications - communication, signalling and
processing systems - safety related electronic systems for signalling. En (2018)

8. IEC: IEC 61508:2010 functional safety of electrical/electronic/programmable elec-
tronic safety-related systems. IEC (2010)

9. ISO 26262–1:2018: Road vehicles - functional safety. Standard, International Orga-
nization for Standardization, Geneva, CH (2018)

10. ISO/SAE 21434:2021: Road vehicles - cybersecurity engineering. Standard, Inter-
national Organization for Standardization, Geneva, CH (2021)

11. Kavallieratos, G., Katsikas, S., Gkioulos, V.: Cybersecurity and safety co-
engineering of cyberphysical systems - a comprehensive survey. Future Internet
12, 65 (2020)

188 P.-M. Bajan et al.

12. Macher, G., Höller, A., Sporer, H., Armengaud, E., Kreiner, C.: A combined safety-
hazards and security-threat analysis method for automotive systems. In: Koorn-
neef, F., van Gulijk, C. (eds.) SAFECOMP 2015. LNCS, vol. 9338, pp. 237–250.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24249-1 21

13. National Cybersecurity Agency of France (ANSSI): EBIOS Risk Manager - The
method, https://www.ssi.gouv.fr/en/guide/ebios-risk-manager-the-method/

14. Paul, S., et al.: Recommendations for security and safety co-engineering (release
n◦3) - part a. Technical report (2016)

15. Ponsard, C., Dallons, G., Massonet, P.: Goal-oriented co-engineering of security
and safety requirements in cyber-physical systems. In: Skavhaug, A., Guiochet, J.,
Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2016. LNCS, vol. 9923, pp. 334–345.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45480-1 27

16. Sabaliauskaite, G., Adepu, S., Mathur, A.: A six-step model for safety and security
analysis of cyber-physical systems. In: Havarneanu, G., Setola, R., Nassopoulos,
H., Wolthusen, S. (eds.) CRITIS 2016. LNCS, vol. 10242, pp. 189–200. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-71368-7 16

17. SAE International: Cybersecurity guidebook for cyber-physical vehicle systems
(stabilized December 2021). Technical report (2021)

18. Sengupta, J., Ruj, S., Bit, S.D.: A comprehensive survey on attacks, security issues
and blockchain solutions for IoT and IIoT. J. Netw. Comput. App. 149, 102481
(2020)

19. Skoglund, M., Warg, F., Sangchoolie, B.: In search of synergies in a multi-concern
development lifecycle: safety and cybersecurity. In: Gallina, B., Skavhaug, A.,
Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2018. LNCS, vol. 11094, pp. 302–313.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99229-7 26

20. The Institution of Engineering and Technology: Code of practice: Cyber security
and safety. Technical report (2020)

https://doi.org/10.1007/978-3-319-24249-1_21
https://www.ssi.gouv.fr/en/guide/ebios-risk-manager-the-method/
https://doi.org/10.1007/978-3-319-45480-1_27
https://doi.org/10.1007/978-3-319-71368-7_16
https://doi.org/10.1007/978-3-319-99229-7_26

On the Feasibility and Performance
of Secure OPC UA Communication

with IIoT Devices

Florian Kohnhäuser1(B), Nicolas Coppik1, Francisco Mendoza1,
and Ankita Kumari2

1 ABB Corporate Research Center, 68526 Ladenburg, Germany
{florian.kohnhaeuser,nicolas.coppik,francisco.mendoza}@de.abb.com

2 Department of Informatics, Technical University of Munich, Munich, Germany

Abstract. OPC UA is an evolving communication protocol for indus-
trial automation and the Industrial Internet of Things (IIoT). To protect
against network attacks, OPC UA has built-in security mechanisms that
can ensure the communication authenticity, integrity, and confidential-
ity. Since IIoT devices may be battery-powered, built into tiny chas-
sis, or operate in hazardous environments, OPC UA must be suited for
resource-constrained devices with limited power consumption and com-
putational resources. However, secure OPC UA communication with such
resource-constrained devices has not been investigated so far. This prac-
tical experience report analyzes the feasibility and performance of secure
OPC UA communication with IIoT devices. To this end, an OPC UA
server is implemented on an exemplifying resource-constrained indus-
trial device. The implementation process presented several challenges,
including adapting a lightweight cryptographic library to the peculiari-
ties of OPC UA. To investigate under which conditions secure OPC UA
communication is realizable, the runtime overhead, memory footprint,
and power consumption are evaluated and discussed for various usage
scenarios. The evaluation reveals certain bottlenecks, such as long con-
nection times, low number of parallel sessions, limited concurrency, and
high memory demands. Based on the evaluation, recommendations on
the software, hardware, and usage scenarios are given.

Keywords: Industrial Internet of Things · Secure communication ·
OPC UA · Resource-constrained · Embedded systems · Performance

1 Introduction

The industrial automation sector is facing a digital transformation, in which
the communication capabilities of industrial devices, such as sensors and actu-
ators, are being greatly expanded [13]. A key technology for communication
between such devices is the Open Platform Communications Unified Architec-
ture (OPC UA) [8]. OPC UA is a comparatively new industrial protocol for

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Trapp et al. (Eds.): SAFECOMP 2022, LNCS 13414, pp. 189–203, 2022.
https://doi.org/10.1007/978-3-031-14835-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14835-4_13&domain=pdf
https://doi.org/10.1007/978-3-031-14835-4_13

190 F. Kohnhäuser et al.

machine-to-machine (M2M) communication, which is currently becoming an
integral part of industrial automation systems. To face the increasing risk of
cyberattacks on industrial systems, OPC UA has been specifically designed with
security in mind. With its built-in security mechanisms, OPC UA can protect
the authenticity, integrity, and confidentiality of communication between devices.
Nevertheless, these security mechanisms introduce additional computational and
memory overhead. Commodity computers have enough resources to deal with
this overhead, but IIoT devices are typically small embedded systems with lim-
ited computing resources, memory, and power consumption. This is because IIoT
devices are often limited in size, need to operate in hazardous environments, or
are battery-powered. As OPC UA should, in particular, be suited for the IIoT,
it is crucial that its security mechanisms can also be applied to such devices.
However, the feasibility, bottlenecks, and implications of secure OPC UA com-
munication with resource-constrained devices have not been investigated so far.

Contribution. In this practical experience report, we analyze the feasibility and
implications of secure OPC UA communication on resource-constrained indus-
trial devices. As a target evaluation platform, we use a typical IIoT device with
an 80 MHz ARM Cortex-M4 CPU, 2 MB Flash memory, 640 KB RAM, and an
Ethernet-APL interface, which serves as power supply and communication inter-
face. On this device, we implement an OPC UA server based on the High Per-
formance SDK from Unified Automation [20]. To implement security, we replace
the original cryptographic library with the lightweight MbedTLS library [1]. As
MbedTLS is not adapted to the peculiarities of OPC UA security, this involves
a challenging adaption process. In our evaluation, we analyze the runtime over-
head, memory usage, and power consumption of secure OPC UA communication
between a PC client and the IIoT device. In addition, we investigate different
usage scenarios, such as connecting to the device, reading values, or subscribing
to multiple values, both for single connections and multiple parallel connections
to the device. Our evaluation shows that secure OPC UA communication with
resource-constrained industrial devices is feasible and the power consumption
is low enough to allow for a certification in hazardous environments. However,
we also identify several bottlenecks and limitations that need to be considered.
Finally, we provide recommendations on the software, hardware, and usage sce-
narios for secure OPC UA communication with IIoT devices.

Outline. This report is organized as follows. Section 2 explains the basics of
OPC UA security. Section 3 summarizes related works. Section 4 describes the
implementation and evaluation platform. Section 5 shows the performance mea-
surements, which are discussed in Sect. 6. Section 7 concludes the report.

2 Background

The Open Platform Communications Unified Architecture (OPC UA) [8] is a
platform-independent and service-oriented standard for M2M communication.
It aims at addressing all sorts of industrial components, from smallest sensors

Performance of Secure OPC UA Communication with IIoT Devices 191

Fig. 1. Establishing a secure OPC UA connection between a client and server [12]

and actuators up to cloud applications. OPC UA is the first widely-deployed
industrial protocol with built-in and attested security [6]. It specifies three secu-
rity modes for secure communication between OPC UA devices: None (unpro-
tected), Sign (authenticated), and SignAndEncrypt (authenticated and confi-
dential communication) [16]. When establishing connections, clients and servers
use OPC UA Application Instance Certificates for mutual authentication, which
are X.509 compliant digital certificates. To verify received certificates, devices
maintain a Trust List of trustworthy certificates. A client trusts a server if the
server can authenticate itself with a certificate that the client can verify based
on its Trust List, and vice versa. During the initial handshake, client and server
derive symmetric keys that are used to authenticate (Sign), or to authenticate
and encrypt (SignAndEncrypt) messages. This process is shown in Fig. 1.

The specific cryptographic algorithms used to realize the security modes are
defined by security policies and negotiated during the initial handshake. In the
current specification (Version 1.4), there are four policies: None, Aes128-Sha256-
RsaOaep, Basic256Sha256, and Aes256-Sha256-RsaPss. Accordingly, OPC UA
uses RSA to authenticate communication partners and exchange cryptographic
nonces and SHA-based HMACs to derive symmetric keys. The symmetric keys
are subsequently used by AES in CBC-mode and SHA-based HMACs to protect
the communication confidentiality, integrity, and authenticity.

Note that, while OPC UA also defines alternative transport protocols and
offers an additional publish/subscribe mode with different security mechanisms,
this report focuses on the client/server mode over binary TCP, which is the most
established OPC UA communication paradigm.

3 Related Works

The performance of OPC UA has been analyzed in several studies. Most stud-
ies focus on the client/server mode [3–5,7,15,22], which is the most established

192 F. Kohnhäuser et al.

operational mode for OPC UA. For the more recent and less common OPC UA
publish/subscribe mode, there are are fewer implementations and performance
analyses available [2,14,18,19]. OPC UA performance analyses typically inves-
tigate CPU and network utilization, memory consumption, and cycle times for
varying amounts of connected clients, subscribed values, query intervals, device
types, and OPC UA SDKs.

Few performance studies regard secure OPC UA communication. Vazquez [22]
measured the times for retrieving values from an OPC UA server implemented on
two different Windows PCs. The cycle time for reading a value ranged between
1.9 ms and 4.1 ms and increased by circa 8% in case of secured communication.
Cho and Jeong [5] measured the times for retrieving values from a server running
on a Cubieboard6, which features an ARM A9 quad core CPU. The response time
increased from circa 1.2mswithout security to 2.4 mswith security. Burger et al. [2]
measured the CPU utilization when requesting values with varying frequency and
security profiles from a Raspberry Pi Zero OPC UA server. On this server, the
CPU utilization only slightly increases in case of activated security, e.g., from 50%
to 60% with 10 clients and 10,000 signals per second.

Among the performance studies regarding OPC UA security, none specifi-
cally focuses on the performance evaluation of secured communication. Existing
works only measure a single aspect like response time [5,22] or CPU utiliza-
tion [2], such that a comparison of multiple parameters is missing. Furthermore,
important performance values like connection time, memory footprint, power
consumption, or key and certificate generation time have not been investigated so
far. In addition, none of the existing works implemented and evaluated OPC UA
security on resource-constrained embedded devices. The most constrained device
for measurements regarding security has been a Raspberry Pi Zero [2], with a
1 GHz single-core ARM11 CPU and 512 MB RAM, while the most constrained
device for measurements without security has been a WAGO-750-860 fieldbus
controller [7], which provides a 44-MHz ARM7 CPU and 16 MB of RAM.

4 Evaluation Platform

In this section, we first describe the hardware of our evaluation platform, includ-
ing the measurement setup, and then explain our software implementation.

4.1 Hardware and Measurement Setup

As an exemplifying industrial IoT device, we use a prototype development board,
which is henceforth referred to as “APL board”. It is an Ethernet-APL proto-
type device based on an early version of the IEEE 802.3cg-2019 (10BASE-T1L)
standard [10], an emerging communication technology for industrial automa-
tion that supplies power and a 10 Mbps Ethernet communication channel over
a 2-wire physical layer. The APL board includes an STM32L4S5QII3P MCU

Performance of Secure OPC UA Communication with IIoT Devices 193

from STMicroelectronics as the main computing unit. The MCU features a 32-
bit ARM Cortex-M4 CPU clocked at 80 MHz with 640 KB RAM and 2 MB
Flash memory. Although the MCU provides a hardware accelerator for AES-
128, AES-256, and SHA-256 operations, we implement all security mechanisms
in software. We decided against using the hardware accelerator, as neither AES
nor SHA operations were performance bottlenecks in our evaluation. In addition,
the APL board has a built-in 32 MB data Flash, on which we implemented a
filesystem for OPC UA certificate storage. Please note that with these resources,
the APL board falls into the category of a resource-constrained embedded sys-
tem, according to RFC 7228.

We implemented an OPC UA server on the APL board, as described in the
next section. The APL board is connected to a prototype APL switch, which
in turn is connected to a server over a 1 Gbps Ethernet connection. The server
runs Windows Server 2019 on an Intel Core i9-7940X with 64 GB RAM and
uses the UaExpert OPC UA client from Unified Automation [21]. For our power
measurements, we additionally put a N6705B Power Analyzer from Keysight
Technologies between the APL switch and our evaluation platform, the APL
board. Figure 2 illustrates our measurement setup.

Fig. 2. Measurement setup Fig. 3. Software components

4.2 Software Implementation

Software Components. Our implementation uses the software components shown
in Fig. 3. The main open-source software (OSS) components are the FreeRTOS
real-time operating system, the lwIP TCP/IP stack, the littleFS file system,
and the MbedTLS cryptographic library. We implemented the OPC UA server
based on the Unified Automation High Performance SDK in Version 1.5.1 [20],
which is henceforth referred to as HP SDK. We chose the HP SDK, as it is
specifically designed for smallest devices and the IoT. Implementing the server

194 F. Kohnhäuser et al.

required several changes to the OSS components and a new implementation of
the OPC UA device address space. Most challenging was the implementation
of an MbedTLS backend for the HP SDK, which is needed to implement all
OPC UA security mechanisms on the APL board, as described below.

MbedTLS Backend Implementation. To support secure OPC UA communication,
the HP SDK relies on third-party libraries that provide cryptographic operations
as well as certificate parsing and validation. The SDK allows the use of different
backends to interface with different cryptographic libraries, but only OpenSSL is
fully supported. Unfortunately, OpenSSL turned out to be too big for our APL
board. Therefore, we chose the lightweight MbedTLS library [1], which offers a
much smaller resource footprint than OpenSSL. This decision entailed several
changes to the MbedTLS backend of the HP SDK.

First, missing functionality in the HP SDK MbedTLS backend had to
be implemented, primarily related to certificate validation, such as checking
extended key usage attributes or verifying signatures in self-signed certificates.

Second, numerous changes were required to work around limitations of the
MbedTLS library related to certificate parsing and validation. For instance,
MbedTLS does not provide access to certain certificate fields, such as the subject
and authority key identifiers or parts of the subject alternative name field. The
latter is particularly problematic, since parsing URIs from the subject alterna-
tive name field is necessary to establish secure OPC UA communication. The
certificate creation APIs have similar limitations. For example, MbedTLS does
not provide a way to set the extended key usage when creating a new certificate.
We implemented the missing functionality using the MbedTLS ASN.1 and X.509
parsing and generation functions.

Finally, workarounds and additional checks were required for cases in which
MbedTLS does not behave as expected by the SDK during certificate valida-
tion. For instance, MbedTLS cannot be configured to treat missing CRLs as an
error. For such cases, we implemented additional checks in the backend prior to
invoking MbedTLS certificate validation functions. We also encountered difficul-
ties related to the verification of certificate chains. If an intermediate Certificate
Authority (CA) certificate is included in the trust list, MbedTLS does not con-
struct a full chain to the root certificate. We worked around this by detecting
cases in which the first certificate in the chain built by MbedTLS is not self-
signed (and therefore not a root certificate), temporarily modifying the trust list
to omit this certificate, and starting a second validation from the intermediary
certificate.

We were able to implement all our adaptions in the MbedTLS backend of
the HP SDK, without modifying MbedTLS itself. Our implementation passes
the HP SDK test suite and was provided to Unified Automation, who intend to
release it as an official part of the upcoming HP SDK (Version 1.6).

Performance of Secure OPC UA Communication with IIoT Devices 195

5 Evaluation

In this section, we present the results of measuring the runtime overhead, mem-
ory footprint, and power consumption for various security-related operations in
OPC UA: the key & certificate generation, connect operation, read operation,
and multiple subscriptions for connections to a single client or multiple clients.

5.1 Key and Certificate Generation

The RSA key length determines the security level. Today a key length of at least
2048-bit is recommended and in the next decades (or for very high security) 4096-
bit is expected to become the standard [11]. Generating keys and certificates is a
one-time effort. They are stored in the certificate store, and not regenerated on
subsequent server starts. We measured the time required to generate keys and
certificates for three different RSA key lengths: 1024, 2048, and 4096 bit. For
each key length, we performed 100 measurements.

Table 1. Key and certificate generation times for different RSA key sizes

Key length Mean Standard deviation Median MAD

1024 4.76 s 2.33 s 4.21 s 1.52 s

2048 49.75 s 34.62 s 40.11 s 20.59 s

4096 608.10 s 383.48 s 542.83 s 221.80 s

As reported in Table 1, the time required to generate keys and certificates
increases substantially with increasing key sizes, with each doubling of the key
size increasing the mean key generation time more than tenfold. While the times
for 1024- and 2048-bit keys are below one minute, generating keys and certificates
using a 4096-bit key length takes, on average, over ten minutes. We can also
observe substantial variations between runs. For 4096-bit keys, this results in
runtimes differing by tens of minutes.

5.2 Connect

We measured the time it took for a client to connect to the server and be ready to
receive values. Table 2 and Fig. 4 show the connection time for different security
policies as well as for different client and server key sizes (generated individually
upfront). Each of the nine measurements was averaged based on a set of 8 runs.
As opposed to the key & certificate generation times, the connection times varied
very little over the runs, which is to protect against timing attacks.

Our measurements reveal a huge difference between disabled security, where
clients could connect in less than 70 ms, and enabled security, where clients
needed multiple seconds to connect to the server. Interestingly, increasing the

196 F. Kohnhäuser et al.

server key size had higher impact on the connection times than increasing the
client key size. This is because the server, or client, key size determines the key
length with which the server, or client, executes the slow RSA encrypt and RSA
verify operations during connect. Since the APL board (server) is significantly
slower than the PC (client), the server key size thus impacts connection times
most. Moreover, even with disabled security, certificates are exchanged during a
connect and have an impact on connection times depending on the key sizes.

Table 2. Average connection time for different key sizes with and w/o security

Server key size Security policy Client key size

1024 2048 4096

1024 Basic256Sha256 1.47 s 1.74 s 3.28 s

2048 Basic256Sha256 3.82 s 4.17 s 5.41 s

4096 Basic256Sha256 12.36 s 12.67 s 18.04 s

1024 None 0.06 s 0.06 s 0.06 s

2048 None 0.06 s 0.06 s 0.06 s

4096 None 0.07 s 0.07 s 0.07 s

Basic256Sha256 None

1024 2048 4096 1024 2048 4096
0.00

0.02

0.04

0.06

0

5

10

15

Server Key Size

Ti
m

e
(s

)

Client Key Size

1024

2048

4096

Fig. 4. Time to connect to the server with increasing server and client key size

5.3 Read Operations

We measured the time for reading a value of type float for 1000 cycles with
the UaExpert Performance View. Table 3 shows the average, minimum, and
maximum read time for different security modes. Compared with disabled secu-
rity, the additional overhead for reading a value when protecting authenticity
(Sign) amounts to 46.7%, and reaches 60.3% when protecting authenticity and
confidentiality (SignAndEncrypt). Although this may seem significant percent-
agewise, it amounts to a runtime overhead of just 1.5 ms (Sign) and 1.9 ms
(SignAndEncrypt). In addition, minimum and maximum values show that there
are only small variations and few outliers between individual read operations.

Performance of Secure OPC UA Communication with IIoT Devices 197

Writing values to the server showed similar runtimes. Thus, reading and writing
values is more than 3 orders of magnitude faster than connecting to the device.

Furthermore, we measured read times with multiple clients. In Fig. 5, a sec-
ond client starts reading values from the server at around cycle 250. As shown,
the read time directly jumps from circa 5.1 ms to 9.0 ms, but then remains rel-
atively constant. This surprised us, as we expected the read time to double, as
opposed to the actual increase of only 76.5%.

Table 3. Reading a value 1000 times with different security policies and modes

Security policy Mode Avg read Min read Max read

None - 3.17 ms 2.78 ms 5.14 ms

Basic256SHA256 Sign 4.65 ms 4.21 ms 6.26 ms

Basic256SHA256 SignAndEncrypt 5.08 ms 4.75 ms 8.93 ms

Fig. 5. Two clients reading values from the server at the same time

Finally, we investigated scenarios, in which a client connects to the server
while another client is requesting values from it. As illustrated in Fig. 6, we
observed that during the connect operation, the read operation is blocked for
multiple seconds on two occasions: first for circa 3.5 s and shortly afterwards
again for 0.7 s. This is due to the high computational load that a connect opera-
tion entails and the limited concurrency that the HP SDK provides. For certain
industrial use cases, these blocking times are unacceptable. Furthermore, they
allow an attacker to perform fake connects to maliciously block the device, result-
ing in a denial of service of the device. In Sect. 6, we analyze the underlying issue
that leads to the blocking and describe measures to solve it. Once the second
client has connected, reading values is as fast as before. Thus, the average read
time for all 2000 cycles increases only slightly from 5.5 ms to 9.7 ms.

198 F. Kohnhäuser et al.

Fig. 6. Connecting while another client is reading from the server

5.4 Subscriptions

We assessed the performance of subscriptions by measuring the CPU load with
different numbers of subscriptions per client. In addition, we varied the sampling
and publishing intervals. As shown in Fig. 7, the CPU load is highly dependent
on these factors. With enabled security, the load reaches 100% in case the sam-
pling interval is reduced to 10 ms in case of 40 subscriptions. With so many
subscriptions, the server fails to deliver all of them within time to the client
and instead only provides updates for a subset of circa 10 subscriptions. In case
security is disabled, the CPU load is significantly lower. Even with a publishing
interval of 10 ms, the load reaches just 85%. When two clients subscribe to val-
ues, the CPU load is very similar to when a single client subscribes to the sum
of the values of both clients. However, for sampling and publishing intervals of
10 ms, the load is always 100%, irrespective of the number of subscriptions.

Clients: 1,
Security: Basic256Sha256

Clients: 1,
Security: None

Clients: 2
Security: Basic256Sha256

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
0

25

50

75

100

Subscriptions

C
PU

 L
oa

d
(%

)

Interval (ms)

10

30

50

100

200

250

Fig. 7. Comparison of CPU load with increasing number of subscriptions

5.5 Memory Footprint

We measured the memory footprint of our implementation in two dimension:
static and dynamic memory consumption. The static memory comprises all data
allocated before runtime, such as the text, data, and BSS segment. It is obtained
from Atollic TrueStudio for STM32 using the static stack and build analyzer.
Figure 8 shows that security mechanisms in our implementation increase the
Flash memory consumption by 400 KB and the static RAM consumption by
20 KB. The additional memory consumption can be attributed to the MbedTLS
library [1] and the file system for certificate storage.

Performance of Secure OPC UA Communication with IIoT Devices 199

152.76 KiB

1895.24 KiB

580.8 KiB

1467.2 KiB
403.28 KiB

236.72 KiB

423.71 KiB

216.29 KiB

Flash RAM
with security without security with security without security

Free

Used

Fig. 8. Static Flash and RAM consumption with and without security

The dynamic memory contains all data allocated at runtime, i.e., stack and
heap. As opposed to the static memory consumption, the dynamic memory con-
sumption is much harder to measure, since it is determined by the usage scenario
and time of measurement. To assess the maximum memory consumption at run-
time, we limited the stack and heap size and investigated out-of-memory errors.
We observed that the dynamic memory consumption is highly dependent on the
number of connected clients. For three clients, we estimate the total dynamic
memory consumption at roughly 270 KB.

5.6 Power Consumption

The peak power consumption we measured for the APL board is 395 mW.
This value is well below the 500 mW required for a certification according to
IEC 60079-47 [10], which allows the usage in hazardous areas with explosive
atmospheres. In fact, with this power consumption, even a more powerful MCU
or crypto accelerator could be used on the APL board while still achieving the
certification. The peak power consumption of 395 mW is reached when clients
connect to the APL board and the MCU is operating at full load. Interestingly,
communication does not impact the power consumption as much as computa-
tional load. For instance, when clients repeatedly request values from the APL
board over a secure connection, the power consumption peaks at 390 mW. In idle
mode the power consumption is slightly lower and oscillates between 350 mW
and 372 mW, with an average at 361 mW. As shown in Fig. 9, the MCU con-
sumes only a small fraction of the total power budget (<7%). Since all security
mechanisms are implemented in software and processed by the MCU, this is why
security entails a small overhead on the power consumption.

APL-related components (267 mW)

FPGA (33 mW)

MCU (27 mW)

Other components (58 mW)

Fig. 9. Power budget distribution of the APL board (100% = 395 mW)

200 F. Kohnhäuser et al.

6 Implications and Discussion

Our evaluation shows that secure OPC UA communication is feasible with
resource-constrained industrial devices. However, when choosing the hardware
and developing its software, the following four key aspects should be considered:

Concurrency for Crypto Operations. The HP SDK implements a scheduler that
performs context switches to achieve asynchronous operations, required to han-
dle connections for multiple OPC UA clients. The lowest granularity of schedul-
ing happens on a function call level, so the scheduler cannot perform a context
switch before the currently executing function has returned. If functions con-
sume large amounts of computing time, this can be problematic. This is the case
for asymmetric crypto operations, which are performed when establishing a new
connection with an OPC UA client. For instance, an RSA-2048-bit sign opera-
tion consumes multiple seconds on our evaluation system, during which the HP
SDK is blocked. This leads to issues when a client performs an operation on the
server, such as reading a value, while a second client attempts to connect to the
server. In this case, the connection of the first client freezes until the necessary
cryptographic operations for connecting the second client have finished.

To fix this issue, it would be necessary to improve concurrency for cryp-
tographic operations. Long-running operations would need to be paused and
continued later. This way, the HP SDK could serve other clients while a client
is connecting. According to the documentation, the HP SDK already has the
necessary foundation to implement this1.

Hardware Acceleration for Asymmetric Crypto Operations. While implementing
concurrency for crypto operations would prevent connection attempts blocking
all other operations on the server, it would not resolve the underlying issue,
namely the fact that connecting to the server requires several seconds. On the
contrary, pausing crypto operations to serve other clients would further increase
connection times.

Long connection times can be addressed with a hardware accelerator for
cryptographic operations, to which the HP SDK could delegate cryptographic
computations while continung OPC UA communication. To this end, the crypto
backend of the HP SDK would need to be modified by replacing function calls
to the MbedTLS library with commands to the hardware chip.

However, not all cryptographic hardware accelerators are suited for OPC UA.
To speed-up connection times, RSA operations must be supported, ideally with
a key size of 2048-bit and 4096-bit. Support for AES and SHA2 is less important.
Delegating these crypto operations to a hardware chip could speed-up OPC UA
read and write operations, but their runtime overhead is already quite low (circa
2 ms as shown in Sect. 5.3).

In the near future, OPC UA will also support elliptic curves as an alterna-
tive to RSA [17]. In detail, the elliptic curves P256, P384, P256R1, P384R1,
Curve25519, and Curve448 will be supported. ECC algorithms are typically

1 See “Asynchronous Crypto and PKI APIs” in [20]

Performance of Secure OPC UA Communication with IIoT Devices 201

faster than RSA, which will make establishing connections faster. Nevertheless,
even with ECC crypto, we expect connection times to constitute the bottleneck
in OPC UA communication. For this reason, choosing a cryptographic hardware
accelerator that supports a broad range of the above-mentioned ECC algorithms
will make the OPC UA server future-ready.

Sufficient Flash Memory and RAM. Beyond sufficient computational power,
memory demands constitute another concern. Our evaluation shows that 2 MB
Flash memory turned out to be just enough to store an OPC UA server with
security mechanisms, with only 153 KB being left on Flash. However, industrial
devices often support multiple protocols like PROFINET or Ethernet/IP. Thus,
Flash memory must be dimensioned to store further protocol implementations.

In addition, we also reached the limit of the available RAM on our evaluation
platform. As each connected client consumed a significant amount of heap mem-
ory, we were unable to connect more than a handful of clients with the available
640 KB of RAM. Depending on the use case, additional RAM may be needed
to support more concurrent client connections.

Secure Hardware Storage for OPC UA Keys. Our implementation saves OPC UA
keys in the file system. This is not ideal for security, since an adversary who gets
access to the file system can exfiltrate the private OPC UA key. In addition,
industrial standards, e.g., IEC 62443 [9], may mandate the secure storage of
keys to fulfill a certain target security level.

A more secure way would be storing OPC UA keys in a secure hardware
storage like a Trusted Platform Module (TPM). The HP SDK would utilize the
key by using the API of the hardware storage. The required changes would be
realizable with minor effort due to the modular architecture of the HP SDK.

7 Conclusion

In this practical experience report, we investigated under which conditions secure
OPC UA communication is realizable on resource-constrained industrial devices.
We implemented an OPC UA server on an 80 MHz ARM Cortex-M4 CPU with
2 MB Flash and 640 KB RAM. This required several changes to the underlying
OPC UA SDK, especially for realizing OPC UA security mechanisms with the
constrained resources. Our evaluation showed that secure OPC UA communi-
cation on such a resource-constrained device is feasible. The latency introduced
by security in typical use cases is revealed as acceptable, since read and write
operations increased from circa 3 ms to 5 ms in our experiments. The power con-
sumption overhead for security is minimal, which enables a certification for use
in hazardous environments. However, other findings also raise concerns, primar-
ily the lack of concurrency and large delays for establishing secure connections.
We identified two ways to fix this issue. First, modifying the OPC UA SDK
to support pausing cryptographic operations, which would prevent connection
attempts from blocking the device. Second, employing a hardware accelerator
for RSA (today) and ECC (near future), which would reduce connection times.

202 F. Kohnhäuser et al.

Another concern is the memory consumption. The 2 MB Flash memory and
640 KB RAM were just enough to achieve secure OPC UA connections with a
handful of connected clients. Thus, more Flash and RAM are needed, if addi-
tional concurrent client connections or additional communication protocols (e.g.,
PROFINET or Ethernet/IP) must be supported.

References

1. ARM Limited: Mbed TLS (previously PolarSSL) (2022). https://tls.mbed.org/
2. Burger, A., Koziolek, H., Rückert, J., Platenius-Mohr, M., Stomberg, G.: Bottle-

neck identification and performance modeling of OPC UA communication models.
In: ACM/SPEC International Conference on Performance Engineering (2019)

3. Cavalieri, S., Cutuli, G.: Performance evaluation of OPC UA. In: 2010 IEEE 15th
conference on emerging technologies & factory automation (ETFA). IEEE (2010)

4. Cenedese, A., Frodella, M., Tramarin, F., Vitturi, S.: Comparative assessment
of different OPC UA open-source stacks for embedded systems. In: 2019 24th
IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA), pp. 1127–1134. IEEE (2019)

5. Cho, H., Jeong, J.: Implementation and performance analysis of power and cost-
reduced OPC UA gateway for industrial IoT platforms. In: 2018 28th International
Telecommunication Networks and Applications Conference (ITNAC). IEEE (2018)

6. Federal Office for Information Security (BSI): OPC UA Security Analysis. Ger-
many, Bonn, Germany, April 2017

7. Grüner, S., Pfrommer, J., Palm, F.: Restful industrial communication with OPC
UA. IEEE Trans. Ind. Inform. 12(5), 1832–1841 (2016)

8. International Electrotechnical Commission (IEC): IEC TR 62541 (2016)
9. International Electrotechnical Commission (IEC): IEC 62443 (2018)

10. International Electrotechnical Commission (IEC): IEC 60079-47 Explosive atmo-
spheres - Part 47: Equipment protection by 2-Wire Intrinsically Safe Ethernet
concept (2-WISE) (2021)

11. Kiviharju, M.: On the fog of RSA key lengths: verifying public key cryptography
strength recommendations. In: 2017 International Conference on Military Commu-
nications and Information Systems (ICMCIS), pp. 1–8. IEEE (2017)

12. Kohnhäuser, F., Meier, D., Patzer, F., Finster, S.: On the security of IIoT deploy-
ments: an investigation of secure provisioning solutions for OPC UA. IEEE Access
9, 99299–99311 (2021)

13. Lasi, H., Fettke, P., Kemper, H.-G., Feld, T., Hoffmann, M.: Industry 4.0. Bus.
Inf. Syst. Eng. 6(4), 239–242 (2014). https://doi.org/10.1007/s12599-014-0334-4

14. Morato, A., Vitturi, S., Tramarin, F., Cenedese, A.: Assessment of different OPC
UA implementations for industrial IoT-based measurement applications. IEEE
Trans. Instrum. Measur. 70, 1–11 (2020)

15. Mühlbauer, N., Kirdan, E., Pahl, M.O., Carle, G.: Open-source OPC UA secu-
rity and scalability. In: 2020 25th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), vol. 1, pp. 262–269. IEEE (2020)

16. OPC Foundation: OPC 10000-2 Unified Architecture Part 2 Security Model (2015)
17. OPC Foundation: OPC 10001-4 Unified Architecture Amendment 4 ECC (2020)
18. Pfrommer, J., Ebner, A., Ravikumar, S., Karunakaran, B.: Open source OPC UA

PubSub over TSN for realtime industrial communication. In: 2018 IEEE 23rd Inter-
national Conference on Emerging Technologies and Factory Automation (ETFA),
vol. 1, pp. 1087–1090. IEEE (2018)

https://tls.mbed.org/
https://doi.org/10.1007/s12599-014-0334-4

Performance of Secure OPC UA Communication with IIoT Devices 203

19. Profanter, S., Tekat, A., Dorofeev, K., Rickert, M., Knoll, A.: OPC UA versus
ROS, DDS, and MQTT: performance evaluation of industry 4.0 protocols. In:
2019 IEEE International Conference on Industrial Technology (ICIT), pp. 955–
962. IEEE (2019)

20. Unified Automation: High Performance OPC UA Server SDK (2022). https://
unified-automation.com/products/server-sdk/highperf-ua-server-sdk.html

21. Unified Automation: UaExpert - A Full-Featured OPC UA Client (2022). https://
unified-automation.com/products/development-tools/uaexpert.html

22. Vázquez, F.G.: Test platform for the performance evaluation of opc-ua servers
for fast data transfer between intelligent equipment. In: The fourth international
conference on intelligent systems and applications. p. 193 (2015)

https://unified-automation.com/products/server-sdk/highperf-ua-server-sdk.html
https://unified-automation.com/products/server-sdk/highperf-ua-server-sdk.html
https://unified-automation.com/products/development-tools/uaexpert.html
https://unified-automation.com/products/development-tools/uaexpert.html

Fault Injection

SAILFAIL: Model-Derived
Simulation-Assisted ISA-Level

Fault-Injection Platforms

Christian Dietrich1(B), Malte Bargholz2, Yannick Loeck1, Marcel Budoj2,
Luca Nedaskowskij2, and Daniel Lohmann2

1 Technische Universität Hamburg, Hamburg, Germany
christian.dietrich@tuhh.de

2 Leibniz Universität Hannover, Hanover, Germany

Abstract. For systematic f ault injection (FI), we deterministically re-
execute a program, introduce faults, and observe the program outcome
to assess its resilience in the presence of transient hardware faults. For
this, simulation-assisted ISA-level FI provides a good trade-off between
result quality and the required time to execute the FI campaign. How-
ever, for each architecture, this requires a specialized ISA simulator with
tracing, injection, and error observation capabilities; a dependency that
not only increases the bar for the exploration of ISA-level hardening
mechanisms, but which can also deviate from the behavior of the actual
hardware, especially when an error propagates through the system and
triggers semantic edge cases.

With SailFAIL, we propose a model-driven approach to derive FI
platforms from Sail models, which formally describe the ISA semantics.
Based on two existing (RISC-V, CHERI RISC-V) and one newly intro-
duced (AVR) Sail models, we use the Sail toolchain to derive emulators
that we combine with the FAIL* framework into multiple new FI plat-
forms. Furthermore, we extend Sail to automatically introduce bit-wise
dynamic register tracing into the emulator, which enables us to harvest
bit-wise access information that we use to improve the well-known def-use
pruning technique. Thereby, we further reduce the number of necessary
injections by up to 19%.

Keywords: ISA-level fault injection · Transient hardware faults ·
Simulation-assisted fault injection

1 Introduction

Shrinking transistor sizes and lowering operating voltages make transient hard-
ware faults, where bits in a machine’s dynamic state randomly flip, not only
a challenge for safety-critical systems [5,7,18] but, increasingly, also for cloud
providers [13]. Functional safety standards (e.g., ISO 26262 [15]) already reflect
this and recommend explicit measures to assess (and possibly mitigate) the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Trapp et al. (Eds.): SAFECOMP 2022, LNCS 13414, pp. 207–221, 2022.
https://doi.org/10.1007/978-3-031-14835-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14835-4_14&domain=pdf
https://doi.org/10.1007/978-3-031-14835-4_14

208 C. Dietrich et al.

effects of single-event upsets (SEUs) causing transient hardware faults (soft
errors) [16] on the functional safety of the system. One possibility to assess
a system’s resilience is a systematic f ault injection (FI) campaign [23] of the
program-under-test (PUT), where many (or even all) of the possible faults for
a single execution are injected into different program re-runs, while the injec-
tion platform classifies the subsequent behavior (e.g., benign fault, silent-data
corruption (SDC)). Such precise failure classification does not only quantify the
program resilience, but also guides the introduction of mitigation techniques [14].

Fig. 1. Overview of SailFAIL

For the injection platform, three solution classes emerged: (1) Software-
Implemented FI (SWIFI) [3,24] runs a pre-injected version of the program on the
final target platform, leveraging high injection speeds. (2) Simulation-Assisted FI
(SAFI) [10,12,23] uses a low-level architecture simulator (e.g., ISA- or flip-flop
level) to inject and observe the executing program “from beneath”, which eases
parallelization of the campaign. (3) Hardware-Assisted FI (HAFI) [6,9] is similar
to SAFI, but loads an instrumented netlist of the target platform loaded into
an FPGAs, which allows for gate-level FI at reasonable speeds. While Software-
Implemented FI (SWIFI)’s pre-injected programs only behave similar (e.g., dif-
ferent code and data layout) to the PUT and HAFI can be parallelized only up
to the number of available FPGAs/LUTs, SAFI provides a compromise between
campaign run time and result quality.

Still, SAFI requires an instrumented simulator that provides hooks and call-
backs for tracing, fault injection, and behavior observation. Often, SAFI plat-
forms extend existing simulators, like Bochs [23] or gem5 [26], which shortens
development times but bears the risk that the used simulator differs in subtle
details from the actual target platform, which can skew the FI results.

Therefore, with SailFAIL, we propose (see Fig. 1) to derive SAFI platforms
from a formal description of the ISA semantic, which allows for easier valida-
tion and verification. We chose Sail [1], since Sail models cannot only be trans-
lated to theorem prover definitions, but the Sail toolchain can already compile a
model to a sequential C emulator. Furthermore, we leverage the existing FAIL*

SailFAIL 209

toolchain and combine the generated emulator with FAIL*’s injection and exper-
iment infrastructure. Due to our model-driven approach, we can automatically
introduce callbacks during this compilation process, which not only limits the
required model modifications but also allows for a fine-grained observation of
the PUT down to the bit level. All in all, we are able to provide five new FAIL*
backends for RISC-V (32/64 bits), CHERI RISC-V (32/64 bits), and AVR 8-bit
microcontrollers.
The contributions of this paper are as follows:

– We derive ISA-level FI platforms from two existing and one newly developed
Sail ISA models. In total, we provide five new FI backends.

– We extend the Sail toolchain to provide for automatically instrumented bit-
precise register access tracing.

– We propose bit-wise def-use fault space pruning for partially interpreted reg-
ister accesses.

The rest of the paper is structured as follows: In Sect. 2, we provide the necessary
background on FAIL* and Sail, before we describe the SailFAIL approach in
Sect. 3. In Sect. 4, we perform an evaluation of the resulting FI platforms against
the existing FAIL* backend for IA-32 and quantify the benefits of our automatic
register-tracing transformation, before we conclude in Sect. 5.

2 Background

SailFAIL integrates formal models of the ISA semantic with the existing SAFI
framework FAIL* to provide different systematic FI platforms. As our ISA-
modeling language, we chose Sail [1], whose toolchain provides versatile back-
ends, including the automatic derivation of ISA-level emulators. Furthermore,
different high-quality ISA models (e.g., ARMv8.5, RISC-V, MIPS) with and
without the HW-enabled capability extension CHERI [4], which inspired ARM’s
Morrello CPU extension, are available.

2.1 Systematic Fault Injection

For the systematic FI of transient hardware faults in the volatile machine state,
we execute three steps (see Fig. 1, left): (1) trace a fault-free program execution
as the golden run, which spans up the fault space (FS) of all potential faults
(one fault per time and bit, uniformly distributed). (2) prune the FS [11,20,25]
to plan a representative subset of faults as pilot injections. (3) re-execute the
program deterministically, inject the planned pilots, and classify the following
program behavior. While this results in a precise (and even complete) picture
of a program’s resilience on the chosen level, it is not only time-consuming, but
it also requires a specially-instrumented execution platform for steps 1 and 3,
which must be able to record the program state, inject faults into the executing
program, and observe the continued behavior.

210 C. Dietrich et al.

For the result interpretation, we have to use metrics that incorporate not only
failure counts but also the fault-space size [22]. Otherwise, the results, especially
from software-level FI, can deviate substantially from the actual failure behav-
ior [5,19,21] of the hardware. However, it was shown [21] that ISA-level injection,
if interpreted correctly, is well suited to select the most resilient algorithm vari-
ant.

2.2 Sail: ISA Modeling Language

Sail is a special-purpose modeling language for ISA-semantic description, that
comes with a toolchain to analyze and translate models to different representa-
tions. In its core, the Sail language is a dependently-typed and statically-checked
first-order imperative language with strong pattern-matching capabilities that
mimics existing industry ISA pseudocode. Sail’s main design goal was to create
a language that is expressive enough to densely describe ISA semantics but also
limited enough to allow for easy translation. For example, Sail does not support
higher-order functions.

Fig. 2. Sail Fragment of the rcall Instruction in our AVR model

In a Sail model, registers, which are essentially global variables, contain the
model state. Sail supports enums, bit vectors, bit fields, and arbitrary-precision
integers as scalar types, while complex types like dynamic lists, vectors, structs
and tagged unions are also available. However, most complex and nested types,
beyond a simple vector of bitvectors, are quite unusual for typing registers, as the
model resembles a hardware implementation. In Fig. 2, we present the relative-
call instruction from our own AVR model. PC and nextPC are 22-bit registers
and hold the current and the subsequently following program counter, while SP
holds the stack pointer and is 16 bits wide.

Sail allows for scattered function definitions that use pattern matching on
their argument values. In the example, we show one clause of the decode()

SailFAIL 211

function that decodes rcall instructions. When the opcode starts with the pat-
tern 1101, this clause captures the remaining 12 argument bits in offset and
returns the decoded instruction. In the corresponding execute() clause, we push
the return address onto the stack, and perform a PC-relative jump. Sail also sup-
ports slicing of bit vectors and has a built-in abstraction for memory, which is
accessed through write_dmem().

For generating a sequential C emulator, the Sail toolchain maps registers to
global variables and collects all clauses for a function before translating it to a
C function. Scalar types and bitvectors, if smaller than 128 bits, are mapped
to C integers; bitfields and other complex type become specialized structs with
generated accessor functions.

2.3 FAIL*: Fault Injection Leveraged

FAIL* [23] is a versatile FI platform for the injection of transient hardware faults
on the ISA level that is designed to support multiple, simulator- and hardware-
debugger–based, injection backends (see Fig. 1). At the moment, FAIL* already
has support for Bochs (IA-32), Gem5 (ARM), and OpenOCD (ARM HW) and
some experimental and less mature backends (Qemu, Trace32 Tri-Core simula-
tor). Furthermore, FAIL* not only handles the FI itself, but also provides the
necessary tooling to record the golden-run trace, plan injections, and to run and
distribute the FI campaign onto multiple workers.

For providing high-speed tracing and FI, FAIL* directly links its client library
into the simulator binary: FAIL* creates a second co-routine within the simulator
process, which alternates its execution with the simulator’s control-flow thread.
On specific events, the (modified) simulator switches to the co-routine, which is
able to inspect and manipulate the machine state before handing back control.
Furthermore, to speed up injections [2], back ends can also support saving and
restoring the machine state.

For its functionality, FAIL* relies on callbacks within the simulator to inform
the client library about events, provide access to the machine state, and for (re-
)storing the machine state. For the existing backends, this hand-crafted connec-
tion between FAIL* and the simulator is often rather brittle, which increases
the burden of updating the simulator. FAIL*, for example, still ships with a
rather ancient version of Bochs 2.4.6 (2011), while 2.7 (August 2021) is already
available.

While FAIL* records memory accesses for the golden run, it uses a differ-
ent route to plan CPU-register injections: FAIL* disassembles (with LLVM or
libcapstone) the program binary, and inspects the list of read and written regis-
ters for each traced instruction. While such detailed instruction summaries are
consistently available for COTS architectures, a hardware developer interested
in resilient ISA design would have to maintain, both, the ISA-extension and the
FI platform and keep them in sync. Therefore, dynamic register-access tracing,
where the FI platform itself records which registers are read, would be beneficial
for exploring alternative designs.

212 C. Dietrich et al.

3 The SAILFAIL Approach

To speed up FI-platform development, we propose SailFAIL, a methodology to
derive FI platforms from Sail models. Thereby, we not only provide more faith-
ful ISA-level execution platforms for SAFI, but become able to modify the Sail
compiler to unleash dynamic register tracing : The SailFAIL-derived simulators
dynamically report register reads and writes, down to individual bit-field mem-
bers, which allows for bit-wise def-use pruning of partially interpreted registers
(e.g., status registers). Furthermore, we extend FAIL* to systematically support
backends with multiple types of memory throughout the complete FI toolchain.

3.1 Connecting Sail and FAIL*

Although Sail is designed as an ISA modeling language, it has no built-in notion
of traps, executed instructions, or the current program counter, and does not dis-
tinguish between ISA-defined and model-specific registers. While this leaves more
room for model designers, it requires SailFAIL to use manually inserted call-
backs to indicate the current progress of the execution. Table 1 gives an overview
about the necessary state-transition callbacks. However, since these callbacks are
directly inserted into the ISA model, they can co-evolve with the model instead
of being managed separately, as currently done in FAIL*.

Table 1. Callbacks that the emulator calls to inform FAIL* about the execution
progress.

willExecute(PC) Indicate the next program counter to execute
executeRequests() Give FAIL* the chance to save and restore the machine

state
setIF({true, false}) Indicate that following memory-accesses stem from the

instruction fetch
onTrap(num) A synchronous trap occured
onInterrupt(num, nmi) An (non-maskable) interrupt occured
didExecute(PC, opcode) Execution of instruction did finish

For memory accesses, we also rely on explicitly inserted callbacks (onMemory
Read(), onMemoryWrite()) to report to FAIL*. While a generic modification of
Sail’s memory abstraction would have been possible, explicit hooks allow us to
gather additional information, like the type of accessed memory (i.e., RAM or
flash), that is only available within the model.

For register FI, we must have read/write access to all ISA-visible regis-
ters (e.g., general-purpose registers, program counter. . .). For this, we manually
curate a register mapping with one line for each register to connect the global
variables in the C emulator with the FAIL* machinery. From these mappings, we

SailFAIL 213

automatically derive the register-access functions and generate the machine-state
checkpointing functionality.

We also explored the possibility of automatically exporting such mappings
from the Sail compiler. However, since Sail does not distinguish between model-
internal and ISA-visible registers, we decided to stick with the curated variant
for now. This also has the benefit of making it easier to support registers whose
ISA-level format does not match the format within the model. For example, the
CHERI RISC-V model stores capabilities in a decoded form, whereby we have
to en-/decode them on access.

3.2 Systematic Register Access Tracing

While deriving emulators from formal ISA models, which are easier to validate,
already increases the faith in the FI platform, we can harvest more benefits from
this model-driven approach. Since registers are a core concept of Sail, SailFAIL
is able to use a modified Sail compiler that inserts fine-grained register access
tracing into the emulator. Thereby, we no longer require a disassembler, but
also gain access to dynamic and more fine-grained tracing information: Even if
an instruction statically depends on a register, it does not necessarily interpret
all bits or read it in a specific context. For example, some instructions inter-
pret/update only some bits of the machine status word and the exception table
base register is only of interest in case of a trap.

To provide detailed access information, including a bit mask of potentially
interpreted bits, we modified the C backend of the Sail compiler to insert code
at every variable access, which covers all (global) register and (local) variable
accesses. However, since Sail supports references to registers and nested data
types, correlating an access back to a register definition is not straight-forward.
To solve this, we search, before each access, for the memory addresses of accessed
values in the previously mentioned register mapping (see Sect. 3.1), which also
stores pointers to the mapped global variables. On match, SailFAIL reports the
dynamically occurred access to FAIL*, whereby we can cover all ISA registers
and report only those accesses that actually occurred.

Nevertheless, there are several challenging patterns in Sail’s generated emula-
tors: For accesses to nested register (e.g., within a struct), the emulator creates a
temporary copy (with a different address), performs the access, and writes back the
result. To catch these accesses, we let the emulator create temporary mappings for
the life-time of the copy. Furthermore, we precisely track bit field accesses, which
the emulator implements in specialized accessor functions that extract and update
specific bits: For each accessor,we calculate an accessmask, let the accessor identify
the accessed register through the register mapping, and report register and access
mask to FAIL*. Thereby, SailFAIL is able to provide precise access information
for bit fields, which we subsequently use to reduce the number of necessary FIs.

3.3 Bit-Wise Def-Use Pruning

FS size is a major problem for systematic FI that aims for a high, or even com-
plete, coverage of all faults in the FS. Naively, we would have to inject every

214 C. Dietrich et al.

bit of information in every cycle, which quickly becomes infeasible for realis-
tic programs. Therefore, fault-pruning methods, which form sets of equivalent
faults that all show the same erroneous behavior on injection, are used. For each
equivalence set, one pilot injection is performed as a representative.

Of these methods, def-use-pruning [11,25] is the most established one. For a
specific fault location, we partition the time axis at read and write events into
compact intervals. As faulty information only becomes active on access, every
fault within the interval can act as a representative injection, whose failure clas-
sification can be projected onto all members of the interval. Even more, intervals
that are closed by a write event are surely benign and require no injection. For
example, Fig. 3a shows a 4-bit, 10 cycle FS for a processor’s status register SREG
(40 faults). As there are 4 read events (after cycle 0, 2, 4, 8), def-use pruning
would schedule 16 injections for complete FS coverage. In a recent work [20],
we also made def-use-pruning aware of the program’s data-flow to form two-
dimensional equivalence intervals.

Fig. 3. Bit-Wise Def-Use Pruning. For Sail bit fields, SailFAIL records access bit-
masks for each read/write event, whereby a more precise def-use pruning is possible.

SailFAIL 215

However, as touched on before, instructions do not necessarily access or over-
write all bits of a register. For example, the first access to SREG in Fig. 3a, only
reads bit 1 and writes bits 0 and 1; bits 2 and 3 remain untouched, whereby
no injection for these bits is necessary at cycle 0. For bit 3, no injection is even
necessary at all, as it is overwritten after cycle 2. In total, with the recorded
access-mask information, only 7 injections are really required to cover the pre-
sented FS.

To incorporate the access masks, we extend the byte-granular def-use pruning
of FAIL* (see Fig. 3b): For each coarse-grained fault location, we keep a FIFO
stack that holds previous read/write events with a bit-mask of still open equiv-
alence intervals. For each access in the golden run, we search the access history
backwards for masks that overlap with the current access mask. On match, we
report an interval (new_interval()) between the previous (prev.time) and the
current access (event.time) with the overlapping bit mask. Since we close those
reported intervals in previous accesses, we can drop old events (not shown) such
that the stack for a register never grows larger than the register width.

3.4 Virtual Fault Spaces

With the flexibility of SailFAIL’s model-driven approach, the FI platform has
the chance to support a wide range of processors. However, this also requires uni-
fied support for the different state holding elements (i.e., registers, RAM, EEP-
ROM, flash. . .). Therefore, we introduce the virtual fault space, which maps the
different kinds of memory into a unified FS abstraction, on which we can carry
out FS analyses, the fault pruning and the campaign management. Thereby,
SailFAIL is able to handle different architectures, even with experimental ISA
extensions, with the same toolchain and the same database schema.

In essence, the virtual fault space maps different fault locations within the
target architecture into a linear address space for which we use 64-bit-wide
addresses. While recording the golden run, we translate accesses into this unified
FS, let FAIL* work on this representation, and only map the FS address back
to the actual emulator register (and its corresponding global variable) at injec-
tion time. In this translation step, we are also able to provide a dense encoding
for unusual kinds of memory. For example, the CHERI RISC-V 32-bit architec-
ture stores one out-of-band tag bit for every 64 bits of memory to ensure the
“unforgeable” attribute of capabilities. With the virtual fault space, we are able
to densely store those tag bits in a separate FS region instead of supporting
65-bit memory throughout the whole FI toolchain.

4 Evaluation

We used SailFAIL with three Sail models (RISC-V, CHERI RISC-V, AVR),
whereof the two RISC-V models were built by the Sail developers [1] and the
AVR model was developed by us. Since the RISC-V models have configurable bit
widths (32/64 bits), we provide five new backends for FAIL*. After developing

216 C. Dietrich et al.

SailFAIL for the RISC-V FI platforms, it took one developer day to derive
the AVR FI platform. In the following, we will quantify the efficiency of these
backends, report on the coverage of the dynamic register tracing, and show the
potential saving of bit-wise pruning for bit-packed CPU registers.

4.1 Simulation Overheads

For systematic SAFI, the simulation platform executes the same program, over
and over again, potentially millions of times. Thereby, the run-time-overheads
for checkpointing and instruction simulation become critical properties for Sail-
FAIL’s applicability. Therefore, we quantify these overheads by comparing the
existing IA-32 backend (Bochs), which is FAIL*’s most mature platform, with
our backends for RISC-V 32-bit, which comes closest to IA-32, and AVR. Fur-
thermore, we perform golden-run tracing with Spike1, the reference ISA simula-
tor for RISC-V. We executed all benchmarks on a 48-core (96 HW threads) Intel
Xeon Gold 6262 CPU with 2.10GHz and 373 GiB of RAM, within a Debian 11.0
Docker container, which we made publicly available [8] to ease the reproduction
of our results.

For the benchmark, we execute the golden run trace step, which includes
starting the simulator, saving a machine state checkpoint, and performing a
fault-free execution of the program, while recording program counter (PC) and
memory accesses. We focus on the tracing step here, since fault-injected execu-
tions are all purposefully different from each other. However, since each FI run
consists of checkpoint restoration and program execution, we believe that the
results are transferable.

Fig. 4. Simulation performance

1 https://github.com/riscv-software-src/riscv-isa-sim.

https://github.com/riscv-software-src/riscv-isa-sim

SailFAIL 217

Our PUT calculates the CRC32 checksum over the first 8000 iteratively cal-
culated Fibonacci numbers (overflowed at 32 bits). This program requires almost
the same number of instructions on RISC-V and IA-32 (488K instr.). For the
single-threaded tracing, we record the number of simulated instructions and the
run-time of the executing simulator and show the achieved simulation perfor-
mance in Fig. 4.

Without dynamic register tracing, our RISC-V 32-bit emulator achieves 13%
of the performance of Bochs (and Spike), which simulate at around 1.2MHz. For
the considerably simpler 8-bit AVR architecture, SailFAIL achieves 327KHz.
With dynamic register tracing, which is only required for golden run tracing
and can be disabled for the actual FI, the simulation frequency is at 11KHz
(RISC-V) and 23KHz (AVR).

The less-desirable performance results of Sail-generated simulators have two
origins: (1) Quality of the model: As the authors admit, the RISC-V model has
“many opportunities for optimisation” [17] as it only achieves around 300KHz
without instruction tracing. (2) Sail’s C-emulator backend: Although our AVR
model is a straight-forward implementation of a rather simple 8-bit ISA, its
performance is still by a factor of three from Bochs and Spike. From this, we
conclude that the translation from Sail to C is not yet fully optimized. Never-
theless, unlike hand-optimized per-ISA backends, all SailFAILFI platforms will
automatically become faster with improvements to the Sail toolchain.

For checkpoint saving, Bochs requires 0.54 s, while the RISC-V emulator only
requires 0.024 s. These long checkpointing times stem from the fact that Bochs
is not only a CPU emulator, but emulates a whole execution platform including
periphery. This is also reflected in Boch’s startup time of 3.82 s, which makes
checkpointing absolutely necessary for reasonable FI times. With SailFAIL,
the 0.011 s setup time is even faster than saving the checkpoint. So, while the
hand-optimized simulator will outperform Sail’s generated one in the long run,
SailFAIL can already be faster for short running programs.

4.2 Register Trace Coverage

To validate our register tracing approach, we compare the recorded register
accesses to the result of FAIL*’s trace analysis, which statically extracts reg-
ister access patterns from the disassembled binary. At the very least, SailFAIL
must record all accesses that can be also be statically extractable. For RISC-V
32-bit, we traced the mentioned program for the first 500 Fibonacci numbers
(30 510 instructions), loaded the golden run into the database, and executed
(bit-wise) def-use pruning.

218 C. Dietrich et al.

In total, the disassembler approach reported 2.58 ·105 register byte accesses2,
while SailFAIL reported 6.27 · 105 accesses. SailFAIL faithfully covered all
statically inferred register accesses, but moreover found accesses to six additional
architecture-specific registers (MISA, MSTATUS, MIP, MIE, MCYCLE, MTIME), which
the CPU implicitly uses to decide on the instruction semantic and interruptions.
While these registers are not listed in the disassembler information, SailFAIL
makes it possible to also cover them in a FI campaign.

4.3 Efficiency Improvements by Bit-Wise Pruning

Our bit-wise pruning method, combined with the fine-grained access information,
allows SailFAIL to cover partially read/written registers without planning a FI
for each bit in each accessed register. As the disassembler-based approach would
only report full-width accesses to those six registers, the byte-granular def-use
pruning method would require 4.43 · 106 pilot injections into the registers. By
taking the access masks into account, we are able to reduce this number to
3.58 · 106 (−19.28%).

For the CRC32-Fibonacci program on AVR (N = 500, 85 511 instructions),
the situation looks similar: a disassembler-based approach would require 9.42·105
single-bit register injections, while SailFAIL plans 7.9·105 injections (−16.16%).
For AVR, this reduction stems from the 8-bit wide SREG register, which, in con-
trast to RISC-V’s machine status word, is essential to the instruction semantic
as it stores condition codes. From 21 000 SREG reads, our dynamic tracing
recorded that 96.4% interpreted a single bit and 3.6% accessed two bits. Unlike
a byte-wise def-user pruner, which would plan 8 injections per access, our bit-
wise pruning only plans one resp. two injections.

4.4 Case Study: SDC Counts for Bubblesort

To demonstrate the flexibility of SailFAIL, we execute a comparative FI cam-
paign to quantify the resilience of different bubblesort implementations on differ-
ent RISC-V derivatives. With bubblesort, we sort ten integers (register width)
that are stored in a static array, a single-linked list, and a double-linked list;
for the CHERI variants, the link pointers were capability-protected. Besides
RISC-V and CHERI-enabled RISC-V, we also execute our benchmarks on a
CHERI-RISC-V variant that we extended with parity-protected capabilities. We
also compare the 32-bit and 64-bit ISA variants. We chose these benchmark
(variants) as we expect that capabilities, which also provide hardware-enforced
bounds checking, positively influence the SDC rate.

2 FAIL* splits up an access to a 32-bit register in four 4-byte accesses.

SailFAIL 219

Fig. 5. SDCs for different bubblesort implementations

With our toolchain, we covered the full FS for memory and registers and
show the weighted absolute failure counts [22] for the SDC class in Fig. 5. In
total, this comparative campaign requires six different FI platforms; each with
tooling for tracing, pruning, campaign coordination, and analysis. With Sail-
FAIL, we could provide these toolchains from two basic Sail models with a small
modification to the CHERI RISC-V model.

From the results, we can deduce the following observations: (1) If using static
arrays, the protection from capabilities does not outweigh the increased attack
surface that is induced by managing those capabilities. (2) Our parity exten-
sion improves the SDC rate of CHERI RISC-V ISA always and up to 12%. (3)
Although doubling the size of the sorted integers from 32 to 64 bit, the SDC does
not increase linearly but between 33% (Single Linked List on RISC-V) and 60%
(Static Array on RISC-V). (4) Using double-linked list instead of single-linked
lists the SDC rate decreases for CHERI-protected ISAs, while it increases for
the RISC-V without capabilities.

5 Conclusion

With SailFAIL, we derived five new simulation-assisted FI platforms from three
formal ISA models written in the Sail modeling language. With limited man-
ual effort, we combined automatically generated C emulators with the FAIL*
toolchain, whereby SailFAIL supports all phases of systematic FI campaigns
(tracing, injection planing, and injection). We also modified the Sail compiler
and let the emulator dynamically record register accesses, down to the level of
individual bits. In combination with our bit-wise def-use pruning, we were able
to cover implicitly used architectural registers (e.g., machine status words) while
reducing necessary injections by up to 19%. In a case study FI, we compared
different (CHERI) RISC-V ISAs and showed that parity-checked capabilities
improved the SDC rate by up to 12%.

220 C. Dietrich et al.

References

1. Armstrong, A., et al.: ISA semantics for ARMv8-A, RISC-V, and CHERI-MIPS.
In: Proceedings of 46th ACM SIGPLAN Symposium on Principles of Programming
Languages, January 2019. https://doi.org/10.1145/3290384

2. Berrojo, L., et al.: New techniques for speeding-up fault-injection campaigns. In:
Design, Automation and Test in Europe Conference and Exhibition 2002 (DATE
2002), pp. 847–852, Washington, DC, USA. IEEE Computer Society Press (2002).
https://doi.org/10.1109/DATE.2002.998398

3. Carreira, J., Madeira, H., Silva, J.G., Silva, J.G.: Xception: software fault injection
and monitoring in processor functional units. In: Proceedings of the Conference
on Dependable Computing for Critical Applications (DCCA 1995), pp. 135–149,
September 1995

4. Chisnall, D., et al.: Beyond the PDP-11: architectural support for a memory-safe
C abstract machine. In: Proceedings of the Second International Conference on
Architectual Support for Programming Languages and Operating Systems. ACM,
New York (2015). https://doi.org/10.1145/2694344.2694367

5. Cho, H., Mirkhani, S., Cher, C.Y., Abraham, J.A., Mitra, S.: Quantitative evalu-
ation of soft error injection techniques for robust system design. In: Proceedings
of the 50th Annual Design Automation Conference, pp. 1–10 (2013). https://doi.
org/10.1145/2463209.2488859

6. Civera, P., Macchiarulo, L., Rebaudengo, M., Reorda, M.S., Violante, M.: An
FPGA-based approach for speeding-up fault injection campaigns on safety-critical
circuits. J. Electron. Test. 18(3), 261–271 (2002). https://doi.org/10.1023/A:
1015079004512

7. Constantinescu, C.: Trends and challenges in VLSI circuit reliability. IEEE Micro
23(4), 14–19 (2003). https://doi.org/10.1109/MM.2003.1225959. ISSN 0272-1732

8. Dietrich, C., Bargholz, M., Loeck, Y., Budoj, M., Nedaskowskij, L., Lohmann, D.:
SailFail: Model-Derived Simulation-Assisted ISA- Level Fault-Injection Platforms
(Software Artifact), May 2022. https://doi.org/10.5281/zenodo.6553206

9. Entrena, L., Garcia-Valderas, M., Fernandez-Cardenal, R., Lindoso, A., Portela,
M., Lopez-Ongil, C.: Soft error sensitivity evaluation of microprocessors by multi-
level emulation-based fault injection. IEEE Trans. Comput. 61(3), 313–322 (2012).
https://doi.org/10.1109/TC.2010.262. ISSN 0018-9340

10. Guan, Q., Debardeleben, N., Blanchard, S., Fu, S.: F-SEFI: a fine-grained soft
error fault injection tool for profiling application vulnerability. In: 2014 IEEE 28th
International Parallel and Distributed Processing Symposium, pp. 1245–1254, May
2014. https://doi.org/10.1109/IPDPS.2014.128

11. Guthoff, J., Sieh, V.: Combining software-implemented and simulation-based fault
injection into a single fault injection method. In: Proceedings of the 25rd Interna-
tional Symposium on Fault-Tolerant Computing (FTCS-25), pp. 196–206. IEEE
Computer Society Press, June 1995. https://doi.org/10.1109/FTCS.1995.466978

12. Hari, S.K.S., Adve, S.V., Naeimi, H., Ramachandran, P.: Relyzer: exploiting
application-level fault equivalence to analyze application resiliency to transient
faults. In: Proceedings of the 17th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS 2012). ACM
Press, New York (2012). https://doi.org/10.1145/2150976.2150990. ISBN 978-1-
4503-0759-8

13. Hochschild, P.H., et al.: Cores that don’t count. In: Proceedings of the Workshop
on Hot Topics in Operating Systems, pp. 9–16 (2021)

https://doi.org/10.1145/3290384
https://doi.org/10.1109/DATE.2002.998398
https://doi.org/10.1145/2694344.2694367
https://doi.org/10.1145/2463209.2488859
https://doi.org/10.1145/2463209.2488859
https://doi.org/10.1023/A:1015079004512
https://doi.org/10.1023/A:1015079004512
https://doi.org/10.1109/MM.2003.1225959
https://doi.org/10.5281/zenodo.6553206
https://doi.org/10.1109/TC.2010.262
https://doi.org/10.1109/IPDPS.2014.128
https://doi.org/10.1109/FTCS.1995.466978
https://doi.org/10.1145/2150976.2150990

SailFAIL 221

14. Hoffmann, M., Ulbrich, P., Dietrich, C., Schirmeier, H., Lohmann, D., Schröder-
Preikschat, W.: A practitioner’s guide to software-based soft-error mitigation using
AN-codes. In: Proceedings of the 15th IEEE International Symposium on High-
Assurance Systems Engineering (HASE 2014), pp. 33–40. IEEE Computer Society
Press, January 2014. https://doi.org/10.1109/HASE.2014.14. ISBN 978-1-4799-
3465-2

15. ISO 26262-9:2018: Road vehicles - Functional safety - Part 9: Automotive Safety
Integrity Level (ASIL)-oriented and safety-oriented analyses. International Orga-
nization for Standardization, Geneva, Switzerland (2018)

16. Mukherjee, S.: Architecture Design for Soft Errors. Morgan Kaufmann Publishers
Inc., San Francisco (2008). ISBN 978-0-12-369529-1

17. Mundkur, P., et al.: RISCV sail model. https://github.com/riscv/sail-riscv.
Accessed 04 Feb 2022

18. Nassif, S.R., Mehta, N., Cao, Y.: A resilience roadmap. In: Design, Automation Test
in Europe Conference Exhibition (DATE 2010), pp. 1011–1016 (2010). https://doi.
org/10.1109/DATE.2010.5456958

19. Papadimitriou, G., Gizopoulos, D.: Demystifying the system vulnerability stack:
transient fault effects across the layers. In: 48th ACM/IEEE Annual International
Symposium on Computer Architecture, ISCA 2021, Valencia, Spain, 14–18 June
2021, pp. 902–915 (2021). https://doi.org/10.1109/ISCA52012.2021.00075

20. Pusz, O., Dietrich, C., Lohmann, D.: Data-flow-sensitive fault-space pruning for
the injection of transient hardware faults. In: Proceedings of the 2021 ACM SIG-
PLAN/SIGBED Conference on Languages, Compilers and Tools for Embedded
Systems (LCTES 2021), pp. 97–109. ACM Press, New York, June 2021. https://
doi.org/10.1145/3461648.3463851

21. Schirmeier, H., Breddemann, M.: Quantitative cross-layer evaluation of transient-
fault injection techniques for algorithm comparison. In: 15th European Dependable
Computing Conference, EDCC 2019, Naples, Italy, 17–20 September 2019, pp. 15–
22 (2019). https://doi.org/10.1109/EDCC.2019.00016

22. Schirmeier, H., Borchert, C., Spinczyk, O.: Avoiding pitfalls in fault-injection
based comparison of program susceptibility to soft errors. In: Proceedings of the
45th International Conference on Dependable Systems and Networks (DSN 2015),
Washington, DC, USA. IEEE Computer Society Press, June 2015. https://doi.org/
10.1109/DSN.2015.44

23. Schirmeier, H., Hoffmann, M., Dietrich, C., Lenz, M., Lohmann, D., Spinczyk,
O.: FAIL*: an open and versatile fault-injection framework for the assessment of
software-implemented hardware fault tolerance. In: Sens, P. (ed.) Proceedings of
the 11th European Dependable Computing Conference (EDCC 2015), pp. 245–255,
September 2015. https://doi.org/10.1109/EDCC.2015.28

24. Skarin, D., Barbosa, R., Karlsson, J.: GOOFI-2: a tool for experimental dependabil-
ity assessment. In: Proceedings of the 39th International Conference on Dependable
Systems and Networks (DSN 2009), pp. 557–562. IEEE Computer Society Press,
June 2010. https://doi.org/10.1109/DSN.2010.5544265

25. Smith, D.T., Johnson, B.W., Profeta, J.A., Bozzolo, D.G.: A method to determine
equivalent fault classes for permanent and transient faults. In: Annual Reliabil-
ity and Maintainability Symposium 1995 Proceedings, pp. 418–424. IEEE (1995).
https://doi.org/10.1109/RAMS.1995.513278

26. Venkatagiri, R., et al.: gem5-approxilyzer: an open-source tool for application-level
soft error analysis. In: 2019 49th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pp. 214–221 (2019). https://doi.org/
10.1109/DSN.2019.00033

https://doi.org/10.1109/HASE.2014.14
https://github.com/riscv/sail-riscv
https://doi.org/10.1109/DATE.2010.5456958
https://doi.org/10.1109/DATE.2010.5456958
https://doi.org/10.1109/ISCA52012.2021.00075
https://doi.org/10.1145/3461648.3463851
https://doi.org/10.1145/3461648.3463851
https://doi.org/10.1109/EDCC.2019.00016
https://doi.org/10.1109/DSN.2015.44
https://doi.org/10.1109/DSN.2015.44
https://doi.org/10.1109/EDCC.2015.28
https://doi.org/10.1109/DSN.2010.5544265
https://doi.org/10.1109/RAMS.1995.513278
https://doi.org/10.1109/DSN.2019.00033
https://doi.org/10.1109/DSN.2019.00033

Quality of Fault Injection Strategies
on Hardware Accelerator

Iban Guinebert1(B), Andres Barrilado2, Kevin Delmas1 , Franck Galtié2,
and Claire Pagetti1

1 ONERA, 2 Avenue Edouard Belin, 31000 Toulouse, France
iban.guinebert@onera.fr

2 NXP Semiconductors, 134 Avenue du Général Eisenhower, 31100 Toulouse, France

Abstract. Safety-critical systems require understanding and mitigating
the behavior of processors in case of failures. In order to analyze and ver-
ify hardware architectures, intensive fault injection campaigns are made.
This work focuses on assessing the quality of fault injection strategies.
The idea is to identify all failure scenarios associated to a hardware
accelerator and estimate the coverage associated to a strategy. We have
applied the approach on a leNet5 streaming architecture accelerator.

Keywords: Formal modelling of hardware · Failure modes · Fault
injection

1 Introduction

In the automotive domain, ISO 26262 [19] is the standard defining the func-
tional safety process. Among the objectives, any semiconductor component (e.g.
processor) must be able to detect and mitigate hardware failures that have an
impact on the safety of the function running on it.

1.1 Context

The traditional approach [7] to develop ISO26262 compliant processors consists
of (1) identifying the failure modes, (2) defining an adequate detection mecha-
nism that permits to detect hardware failures at run-time and (3) realizing inten-
sive fault injection campaigns to verify and validate the design. A classical detec-
tion mechanism consists of duplicating the computing units and of comparing
each instruction in lock step manner [18]. If this solution has worked perfectly so
far, the introduction of hardware accelerator to execute more demanding appli-
cations (such as machine learning applications) changes the situation. Indeed,
duplicating all computing units would imply the use of a large amount of silicon
space and require a lot of power as illustrated by the system-on-a-chip of Tesla
[31]. Thus, in the future, new detection strategies will have to be defined.

In any case, verification and validation activities are of paramount impor-
tance to assess the quality of a detection mechanism, i.e. does it lead indeed to
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Trapp et al. (Eds.): SAFECOMP 2022, LNCS 13414, pp. 222–236, 2022.
https://doi.org/10.1007/978-3-031-14835-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14835-4_15&domain=pdf
http://orcid.org/0000-0002-7654-0332
http://orcid.org/0000-0001-7265-1839
https://doi.org/10.1007/978-3-031-14835-4_15

Quality of Fault Injection Strategies 223

the expected detection capacity? These V & V activities start by understanding in
depth the failure scenarios, in particular by identifying the safety impact of fail-
ures combinations. Then, intensive and representative fault injection campaigns
must be defined in order to stress the architecture when activating the failure
scenarios. We focus on hardware-level fault injection because this encompasses
real abnormal behaviors. Most of the works propose random fault injection [26],
which is insufficient to provide a full coverage of all failure scenarios. On the
other hand, realizing naive exhaustive fault injection campaigns is unrealistic
as it could take too much time (e.g. one year). Thus, we propose to explore
tractable exhaustive/systematic analyses.

1.2 Contributions

A fault injection campaign is composed of a fault injection strategy (specifying
where to inject the faults and how to code them) and of an activation strategy
(indicating how to identify and generate a set of representative covering inputs).
The activation strategy is outside the scope of the present article, the interested
reader can find numerous methods (like [15]) addressing the Automatic Test Pat-
tern Generation problem (ATPG). The purpose of the present work is to help
assess the quality of fault injection strategies. For this purpose, we first define a
formalization of the hardware behavior (Sect. 2) under normal circumstances or
under fault. Then, we proposed a methodology (Sect. 3) to identify and quanti-
tatively evaluate the failure scenarios involving a SDC (silent data corruption)
failure. We define a coverage metric for fault injection strategies with respect to
the full set of failure scenarios. We applied the methodology (Sects. 2.3 and 4)
on a leNet5 streaming architecture accelerator and compared the quality of
three injection strategies.

2 Abstract Semantics of Hardware Architecture

In the following we define an abstraction of hardware architectures that allows
to describe the behavior of circuits at the Register Transfer Level (RTL).

2.1 Semantics of Atomic Components

The hardware is composed of several components where the smallest units are
the atomic components. The design is hierarchical, meaning that a component
contains several (atomic or non-atomic) components. The description consists
of the combination of two parts: the topology details the components and their
connections, whereas the dynamic details the data flow driving the communi-
cation between or within components. We consider typical atomic components
building modern hardware.

Definition 1 (Atomic component). An atomic component c is:

– either combinational (e.g. mult, add, max); in this case it applies an opera-
tion on several inputs and computes several outputs;

224 I. Guinebert et al.

– or a register of size breg; in this case it can store some data of size ≤ breg
bits. A register has one input and possibly more than one output if the data
is required by several components.

The set of atomic components is denoted by C.

We abstract from the complex logic of the hardware design in order to only
represent the behavior by its data-flow. The logic is encoded by some inputs to
be instantiated for each specific hardware. The formalization reuses the notion
of flow, à la lustre [17] or à la tagged signal model [24]. We consider finite
executions of a program that traverse some components and terminate. The
next execution will start after the end of the previous execution.

Definition 2 (Flow). A flow f = ((tk, dk))k<N is a finite sequence of pairs
where tk ∈ N is a time stamp and dk ∈ R is the value of f at time tk. The time
stamps of f are accessed by the function Tf (k) = tk for k < N . The values dk
are all encoded with the same fixed number of bits denoted by bf . The length of
a flow f (i.e. the number of elements of f) is accessible by length(f).

The set of flows is denoted by F . Two flows f and f ′ are synchronous, denoted
by f �� f ′, if and only if Tf = Tf ′ .

Definition 3 (Input/output flows associated to a component). Let c be a
component with nin(c) inputs (resp. nout(c) outputs); we denote by (c.ini)i<nin(c)

(resp. (c.outi)i<nout(c)
) the flows associated to these inputs (resp. outputs).

The input and output flows of combinational components are all synchronous.
Indeed, the computation is considered to be instantaneous because the propa-
gation delay within those components is less than a clock period.

Property 1 (Combinational components semantics). Let c be a combinational
component, then ∀i < nin(c), j < nout(c): c.ini �� c.outj .

The registers store data and cannot be read instantaneously. Data within the
register is pushed out by the input flow. So when data arrives, it is stored until
a new one overwrites it. In that case, a reader can read any instance between
two successive data writings.

Definition 4 (Shift function). Let f = ((tk, dk))k<N ∈ F , let I ⊆ [0, N [
denote a finite subset of indices, let (ek)k∈I denote a sequence of integers. The
function shftf is defined by shftf (I, (ek)k∈I) = ((Tf (k) + ek, dk))k∈I .

Definition 5 (Register semantics). A register r = (Ok, (ej)j∈Ok
)k<nout(r)

is defined by Ok denoting the set of indices of data dj that can be read from
r.outk and (ej)j∈Ok

the delays before reading the data dj. For an input flow
f = r.in = ((tk, dk))k<N , the semantics of r is: for all p < nout(r), r.outp =
shftf (Op, (ek)k∈Op

). The following constraints must hold for the delays: for all
k ∈ Op, 1 ≤ ek and for all k ∈ Op \ {N − 1}, ek ≤ Tf (k + 1) − Tf (k).

Quality of Fault Injection Strategies 225

2.2 Semantics of Components

A design consists in assembling components by connecting them or grouping
them in higher-level components.

Property 2 (Communicating components). Let c1, c2 be two components (atomic
or not) such that ∃i, j : c1.outi is connected to c2.inj . Then, c1.outi = c2.inj .

Property 3 (Hierarchical components). Let c be a hierarchical component. Let
c1 be a component inside c such that ∃i, j : c.ini (resp. c.outi) is connected to
c1.inj (resp. c1.outj). Then c.ini = c1.inj (resp. c.outi = c1.outj).

Example 1 (Example of non-atomic component). Let c1 and c2 two components
within a component c as presented in Fig. 1. According to Properties 2 and 3,
∀i ∈ [0, 3]: c.ini = c1.ini and c2.ini = c1.outi; ∀i ∈ [0, 1]: c.outi = c2.outi.

C1 C2

in0
in1
in2
in3

out0
out1

Fig. 1. Hierarchical component

r 0 r 1 r 2 r 3 r nin0

out0
out1

out2

Fig. 2. Example of an extractor

Extractors are very common components, they consist of a series of connected
registers that allow to select from an input flow the sub-set of data needed by
other components (see Fig. 2).

Definition 6 (Extractors). An extractor e = (rp)p<Ne
is defined by a series

of Ne connected registers rp. We assume that the first output flow of each register
is connected to the next register, i.e. for p < Ne − 1, rp.out0 is connected to
rp+1.in. Note that atomic registers are a particular case of extractors where
Ne = 1.

Property 4 (Sub-flow extracted by an extractor). For an extractor e = (rp)p<Ne
,

we can reconstruct the indices Ip of the data extracted from the input flow r0.in
that are output by each register rp. Let rp = (Op

k, (ej)j∈Op
k
)k<nout(rp), let Op

k(i)
(resp. Ipk(i)) the function returning the i-th element of the sorted set Op

k (resp.
Ipk). First we decompose Ip per output flow, thus Ip = ∪k<nout(rp)I

p
k . Then, for

all p < Ne − 1 and k < nout(rp), we can compute Ipk knowing the sets (Oi
j)i,j (or

vice versa, compute Op
k knowing the sets (Iij)i,j) as follows:

– For r0, by Definition 5, the indices I0k extracted from r0.in are directly given
by O0

k. So ∀k < nout(r0), I0k = O0
k;

– The indices extracted for rp.out0 are those required for the outputs of rp+1.
So ∀p < Ne − 1, Ip0 =

⋃
k<nout(rp+1)

Ip+1
k ;

226 I. Guinebert et al.

Fig. 3. Execution of
Example 2

Fig. 4. leNet5 hardware implementation

– The indices extracted for rp.outk are those extracted by rp−1 and required
for Op

k. So ∀p < Ne, k < nout(rp), Ipk = {Ip−1
0 (i)|i ∈ Op

k};
– The indices extracted for rp.outk are those extracted by rp−1 required for rp.

So ∀p < Ne, k ≤ nout(rp), O
p
k = {i < |Ip−1

0 | ∣
∣ Ip−1

0 (i) ∈ Ipk}.

Example 2 (Sub-flow extracted by an extractor). Let us compute the semantics
of the extractor of Fig. 2 when Ne = 3 (the extractor is composed of 3 registers).
r0 has 2 output flows with for the first output O0

0 = {2} and e2 = 1; the second
O0

1 = {1, 2} with e1 = Tr0.in(2) − Tr0.in(1) and e2 = 1. r1 has 1 output flow
with O1

0 = {0} and e0 = 1. r2 has 1 output flow with O2
0 = {0} and e0 = 1. The

execution when r0.in = (1, d0)(4, d1)(7, d2) is given in Fig. 3. Let us illustrate
the Property 4 by computing first the sets Ipk . For p = 0, I00 = O0

0 = {2}
and I01 = O0

1 = {1, 2}. For p = 1, I10 = {I00 (i)|i ∈ O1
0} = {2}. For p = 2,

I20 = {I10 (i)|i ∈ O2
0} = {2}

Let us illustrate the Property 4 by computing the sets Op
k. We do not need

all sets Ipk because some can be reconstructed. For p = 0, we can compute I10 =
I20 = {2} and I00 = I10 ∪ I20 = {2} thus O0

0 = I00 = {2} and O0
1 = I01 = {1, 2}. For

p = 1, O1
0 = {i < 1|I00 (i) ∈ I10} = {0}. For p = 0, O2

0 = {i < 1|I10 (i) ∈ I20} = {0}.

2.3 Application of the Semantics to a Streaming Architecture

A streaming architecture is a very simple hardware where the function to be
implemented is directly mapped as a set of blocks. We have implemented the
leNet5 [22] with Haddoc2 [2] as shown in Fig. 4. leNet5 is a convolutional
neural network (CNN) trained to recognize handwritten digits between 0 and 9
from the MNIST [23] dataset. A CNN [1,22] is a deep neural network composed of
successive convolution and pooling layers, sometimes followed by fully connected
layers. Input and output of CNNs (resp. of each layer) are multidimensional
vectors also called tensors.

Due to lack of space, we only present how convolutions have been coded in
the leNet5 hardware and their semantics. Note that the hardware architectures
and semantics of other layers are quite similar to the convolutions. Our convolu-
tion hardware is composed of several extractors (see Fig. 5), the role of which is
to extract from the input tensor the values that will be used during the convo-
lution. From the tensor stored in the extractors, the convolution for one feature
map is computed by means of several multipliers and one adder adding all the

Quality of Fault Injection Strategies 227

multiplication results (see Fig. 6); this is often referred to as a dot product. On
the output side, a max implements the ReLU function.

Fig. 5. Extractor for the kth channel Fig. 6. A convolution for one feature
map

Definition 7 (Convolution extractor). The input tensor of the convolu-
tion is Tin = (hin, win, cin) where hin is the height, win the width and cin
the number of channels (or feature maps). A convolution layer starts with
cin convolution extractors (cf. Definition 6) e = (rp)p<Ne

. Let us denote
by hs, ws, hp, wp, wker, hker ∈ N the hyperparameters of the convolution where
(hs, ws) are the vertical and horizontal stride parameters, (hp, wp) are the ver-
tical and horizontal padding parameters, (hker, wker) are the height and width of
the kernel. Then

– Ne = (win(hker − 1) + wker)
– for all p ≤ Ne, if p ∈ {c + winl | c ≤ wker − 1, l ≤ hker − 1} then nout(rp) = 2

else nout(rp) = 1.
– we denote wout = win+2wp−wker

ws
+1 and hout = hin+2hp−hker

hs
+1. Note that the

parameters win, hin, hs, ws, hp, wp, wker, hker are chosen such that wout, hout ∈
N.

• Op
k can be computed (cf. Property 4) from INe−1

0 = (wsc +
lhswin)c<wout,l<hout

and from all p < Ne such that nout(rp) = 2,
Ip1 = (Ne − 1 − p + wsc + lhswin)c<wout,l<hout

.
• The delays are defined as follows: for all j ∈ Op

k if j < length(rp.in) then
ej = Trp.in(j + 1) − Trp.in(j) otherwise ej = Trp.in(j) + 1.

Definition 8 (Dot product). After the cin extractors, there are cout dot prod-
ucts as shown in Fig. 6. Each dot product d contains Nd = cin×wker×hker multi-
pliers (multp)p<Nd

. Each multiplier is followed by a register rp = (Op
0 , (ei)i∈Op

0
).

The outputs of the (rp)p<Nd
are connected to an adder add followed by a register

radd = (O0, (ei)i∈O0). The dot product semantics is given by:

1. ∀p < Nd, multp.in = extr.outp, rp.in = multp.out and add.inp = rp.out;
2. ∀p < Nd, Op

0 = O0 = {0, . . . , length(extr.outp) − 1}
3. for all register r of d, if i < length(r.in) − 1 then ei = Tr.in(i + 1) − Tr.in

otherwise ei = Tr.in(i) + 1

228 I. Guinebert et al.

Property 5 (Validation). An abstract model of a system or an architecture is
necessary for analyses, but it is mandatory for the model to represent correctly
and accurately the system i.e. the model must be a valid representation of the
architecture. In order to ensure this, we compared the flows of the defined com-
ponents and layers obtained with the formalization against those obtained using
RTL simulation with leNet5 parameters and inputs.

3 Methodology

The methodology for assessing the quality of a fault injection strategy relies
first on the identification of the failure modes and the failure scenarios. Then,
it is possible to count the number of faults to be injected to cover the full
spectrum of possible failure scenarios. This first enumeration can be seen as
a naive estimation. Successively, the definition of equivalence rules may help
reduce the number of fault injections while preserving the same level of coverage
(see Definition 14).

3.1 Fault Model

A fault model addresses the way a component is expected to fail [21]. This can
also be referred to as a failure mode [33].

Definition 9 (Failure mode). A failure mode is defined by a type, a location
(i.e. spatial location within a hardware), a time of activation (i.e. logical time
when the failure mode is activated) and a duration (i.e. number of logical instants
when the failure mode remains activated).

There are several types of fault models for VLSI circuits [5]. In this work, we
focus on silent data corruptions (SDC) because they can have a severe functional
safety impact, they are the hardest to detect and are predominant compared to
non-SDC failures. We consider the two main types of SDC failure modes [4,16].

Definition 10 (Stuck-at X). A permanent stuck-at X (SX) models a defect
where a flow is erroneously connected to logical level X where X ∈ {0, 1}. The
location of a stuck-at is on a bit b of some input/output flow of an atomic com-
ponent c. We assume stuck-at faults to be activated at t = 0 and because they
are permanent, their duration is infinite.

Let f = ((tk, dk))k<N a flow, a stuck-at SX f,b on f at bit b, modifies f into
((tk, d∗

k))k<N where d∗
k is the modified value of dk.

Definition 11 (Bit-flip). A transient bit-flip (BF) is a bit inversion of a stored
data. It is located on a bit b stored in a register r = (Ok, (ei)i∈Ok

)k<nout(rp).
It is activated at time t and is assumed (without loss of generality) to last
1 time unit. A bit-flip on r, denoted BF r,b,t, modifies the values stored from
input flow r.in at t and has an effect on the output flows r.outk if t belongs
to [Tr.in(i), Tr.in(i) + ei] and i ∈ Ok. We denote the modified value r.outk =
((t0, d0, . . . , (ti, d∗

i), . . . , (tn, dn)) where n = |Ok|− 1 and d∗
i is the modified value

of di. Otherwise, there is no effect on r.outk.

Quality of Fault Injection Strategies 229

3.2 Identification of Failures Scenarios

We have to identify the set of failure scenarios, where a failure scenario is a
combination of failures. According to ISO26262, single-point failure scenarios
(i.e. involving a unique failure mode) must be studied in priority in automotive
systems. This is the reason why we focus on them only.

Property 6 (Failure scenarios). The set of single-point failure scenarios is FM =⋃
c∈C FM (c). Since we consider two types of failure modes, this can be refined as

for all c ∈ C FM (c) = S1 (c) ∪ S0 (c) ∪ BF (c) where SX (c) is the set of stuck-at
X and BF (c) is the set of bit-flips that may occur on c.

Indeed, it is sufficient to enumerate the failure scenarios per atomic component
and concatenate the resulting list.

Definition 12 (Stuck-at X identification). Let c ∈ C be an atomic compo-
nent. Then SX (c) =

⋃
io∈{in,out},k<nio(c),b<bc.iok

{SX c.iok,b}.

Combinational components are only subject to stuck-at because they take no
(RTL logical) time to execute. To compute BF (r), we need to know all the
activation times where a data has been stored and will be read.

Property 7 (Bit-flip identification). Let r = (Ok, (ekj)j∈Ok
)k<nout(r) be a register

and r.in = ((ti, di))k<N its input flow. We define the set of time intervals Vr

where a bit-flip may have an impact on data. Let Ei = {0} ∪k<nout(rp),i∈Ok
{eki }

be the set of delays for the i-th data read, Ei(j) the j-th element of the sorted
set Ei then Vr = ∪i<N,j<|Ei|−1{[ti +Ei(j), ti +Ei(j +1)]}. Injecting a bit-flip at
any t of a given interval will result in the same corruption. So the set of bit-flip
is BF (r) =

⋃
[t,t′]∈Vr,b<br

{BF r,b,t}.

Example 3 (Bit-flip identification). Let us consider the register r0 of the Example
2, we have E0 = {0}, E1 = {0, 3}, E2 = {0, 1, 2} so Vr0 = {[4, 7], [7, 8], [8, 9]}. A
bit-flip occurring during [4, 7] corrupts d1 on r0.out0. A bit-flip occurring during
[7, 8] corrupts d2 on r0.out0 and r0.out1. Finally, a bit-flip occurring during [4, 7]
corrupts d2 on r0.out1.

3.3 Coverage/Fault Collapsing

The purpose of the methodology is to assess the quality of a fault injection strat-
egy. The quality consists in estimating how many single-point failure scenarios
have been really triggered by the strategy among the exhaustive set identified
by the Property 6. This problem shares some commonality with fault collapsing
[9], a method used to reduce the number of faults to inject by merging those pro-
ducing exactly the same safety impact. We were inspired by the collapsing rules
of [8]. We define an equivalence relation, valid for any input, that characterizes
the effect of failures on a component.

230 I. Guinebert et al.

Definition 13 (Failure mode equivalence). For a component c and two fail-
ure modes fm1 and fm2, fm1 and fm2 are equivalent for c, denoted fm1 ≡c fm2,
iff for all possible values c.in0, . . . , c.innin(c), the flows output by c under a fm
(denoted fm(c, c.in0, . . . , c.innin(c)).outk) are the same for fm1 and fm2, i.e. for all
k < nout(c), fm1(c, c.in0, . . . , c.innin(c)).outk = fm2(c, c.in0, . . . , c.innin(c)).outk.

Thanks to this relation, it will be possible to identify failure modes having
(or never having) equivalent impacts. We define specific rules inducing failure
mode equivalence; these rules, however, may not identify all equivalent failure
modes (Figs. 7, 8 and 9).

Rule 1 (Connected flows). Let c1, c2 be two connected components with
c1.out0 connected to c2.in0 (fixing the port id to 0 and the number of connected
ports does not change the genericity of the rule) and let c be the assembly com-
ponent incorporating the connection c1, c2. Let fm1 a failure mode the effect of
which is impacting several output flows of c1.

1. if c1.out0 is the only output corrupted by fm1 that is if nout(c1) = 1 or fm1 ≡c1

SX c1.out0,b (resp. fm1 ≡c1 BF c1.out0,b,t) then fm1 ≡c fm2 where fm2 ≡c2

SX c2.in0,b (resp. BF c2.in0,b,t);
2. otherwise, several outputs are corrupted and the connected component c2

interacting with one output cannot emulate all the corruptions. Thus, for
all fm2 ∈ {SX c2.in0,b′ ,BF c2.in0,b′,t′}, fm1 	≡c fm2

Fig. 7. Rule 1 Fig. 8. Rule 2 Fig. 9. Rule 3

Rule 2 (Registers). Let r be a register, then the rules are almost the same as
for Rule 1. A failure mode affecting r can affect none or a subset of the outputs
of r.

– stuck-at always affects all the outputs. Thus, if nout(r) = 1 we have SX r.in0,b

≡r SX r.out0,b. Otherwise, we have SX r.in0,b 	≡r SX r.outj ,b′

– bit-flip at time t only affects the outputs that can be read at t. Thus,
• if exactly one output r.outk contains the corrupted data di of in that is

Ei = {eki } then ∃![t − a, t + b] ∈ Vr and BF r.in,b,t ≡r BF r.outk,b,ti+eki
;

• otherwise several outputs are corrupted and there is no equivalence, that
is BF r.in,b,t 	≡r BF r.outk,b′,t′ .

Rule 3 (Failure modes equivalence on combinational components).
Let c be a combinational component. For all i < nin(c) and j < nout(c), for all
fm1 ∈ {SX c.ini,b,BF c.ini,b,t} and fm2 ∈ {SX c.outj ,b,BF c.outj ,b,t}, fm1 	≡c fm2.

Quality of Fault Injection Strategies 231

Thanks to the equivalence rules we can define the coverage of a fault injection
campaign.

Definition 14 (Coverage). Let FM P ⊆ FM be the subset of fault injections
of a campaign P on a component c, and ≡∗

c the reflexive and transitive closure
of ≡c then the coverage of P (denoted Cov(P,FM)) is:

Cov(P ,FM) =
|{fm ∈ FM |∃fm ′ ∈ FM P , fm ≡∗

c fm ′}|
|FM |

4 Experiments

The methodology has been applied on the leNet5 hardware defined in Sect. 2.3.
As identified in the Sect. 5, many fault injection strategies have been proposed
for DNN accelerators. We selected three of them:

– Input Registers: failure modes are injected at the interface of each layer.
Such a strategy is inspired from the activation layer fault injection of [28];

– First Registers: failure modes are injected on the first register of each
extractor. This strategy extends the previous one considering not only input
registers. Note that a single register between two combinational components
is an extractor.

– Combinational Registers: failure modes are injected in all registers pro-
viding at least one output to a combinational component. This strategy is a
deterministic version of the fault injection strategy of [30].

The coverage rules, defined in Sect. 3.3, have been implemented in a Scala
code executed on an Intel-i7 CPU @2.9 GHz 8 GB RAM. This code can be easily
adapted to assess the coverage on another streaming-based DNN accelerator.

Table 1 provides the fault coverage of each fault injection strategy per layer
type (convolution, pooling, sequencer, and fully connected layers). Moreover, the
estimated fault injection execution time provided by the Table 1 is extrapolated
from a saboteur-based fault injection platform similar to [3] and implemented on
a Xilinx Virtex Ultrascale (XCVU440). The average injection time for a SX f,b or

Table 1. Coverage and execution time estimations for one activation

FM Strategy Layers Total Estimated

execution

time

(h:mm:ss)

Coverage

assessment

time (s)

Conv Pool FC Seq

SX Input Registers 1% 7% 0% 15% <1% 0:00:01 3.7.10−2

First Registers 81% 14% 85% 15% 81% 0:02:50 3.9.10−2

Combinational Registers 83% 21% 87% 15% 83% 0:03:02 2.2.10−2

BF Input Registers 3% 94% 0% 100% 11% 0:02:35 23.1

First Registers 76% 100% 100% 100% 81% 3:27:41 23.6

Combinational Registers 100% 100% 100% 100% 100% 3:44:13 145.4

232 I. Guinebert et al.

BF f,b,t has been estimated at 1.2ms for one full inference of the leNet5 on an
image of the MNIST test dataset. Finally, the coverage assessment time column
provides the processing time of the Scala code.

The input registers strategy reaches a poor coverage (11%) for BF and almost
no coverage (<1%) for SX . The coverage is especially poor on the convolution
(1% for SX , 3% for BF) and fully connected (0% for SX , 0% for BF) layers.
These results suggest that DNN model-level (and software) injection may not
be sufficient to ensure a significant coverage of hardware accelerator’s internal
faults. Indeed, the effects of an internal fault may not be equivalent to a failure
at a layer interface.

The two other strategies provide considerably better BF (resp. 81% and
100%) and SX (resp. 81% and 83%) coverage. Obviously, this high coverage
comes with an explosion of the estimated execution time (from 2 minutes for
BF with input registers strategy to almost 4 hours with the combinational regis-
ters strategy). This result highlights the classical quality/efficiency trade-off that
must be considered during the definition of a fault injection strategy.

Since the rules defined in Sect. 3.3 do not capture all equivalent failure
modes, the coverage obtained is an under-approximation of the actual cover-
age. Nonetheless, this under-approximation is still able to ensure that all failure
modes are covered by the last injection strategy.

5 Related Work

Abstract Model of Hardware Platform. The formalization of VHDL/verilog
hardware descriptions has been widely studied in the literature. Many of the
proposed formal semantics for VHDL can be found in [20]. These semantics can
abstract the hardware component either as a state/transition system – typically
timed automata – enabling to perform formal verification with temporal logic like
[6]; or as a data processing flow – typically flow graphs like [29]. We focused on the
propagation and final effects of a failure of the system components. That is why,
like [29], the formalization of Sect. 2 represents only the data flow processing,
the control logic being captured by the parametric definition of the registers (see
Definition 5) and of their assembly (e.g. see Definition 6).

Fault Injection Strategies. As identified by [14], due to the tremendous com-
plexity of industrial circuits, the number of failure modes in modern digital
circuits makes naive systematic fault injection intractable. To tackle this issue,
fault injection strategies provide guidelines to inject a fraction of the possible
failure modes, small enough to be performed in a reasonable amount of time.
This selection method can be statistical like [10] or systematic like [11]. In both
cases, the quality of these methods should be demonstrated.

Statistical Assessment of Fault Injection Strategies. A way to assess the
quality is to derive statistical confidence bounds on the fault injection campaign,
knowing the failure mode distribution density. The method [25] identifies the
number of scenarios that should be sampled and tested to achieve a given error

Quality of Fault Injection Strategies 233

margin and level of confidence. This approach is totally agnostic of the actual
system under test, and needs an a priori estimation of the proportion (called
p) of failure modes leading to a failure of the system. Due to the lack of in-
operation feedback on DNN accelerator, the method must be applied by using
a default (pessimistic) value of p. As identified by [32], doing so deeply weakens
the benefit of the approach (requiring to inject 18% of the total number of
failure modes to obtain a 10−3 error margin). Other methods such as [27] use
the architecture of the system to identify the component failures that may lead
to a system failure. More precisely the method of [27] can be used to identify,
knowing the activation of the system, the bits within the architecture that can
affect the system outputs (ACE bits). The authors propose to derive from it a
statistical indicator assuming that failures are uniformly distributed. The main
limitations of this method are the exclusive consideration of BF failure modes
and the quality assessment the injection strategy based on a given activation,
i.e. an image for leNet5.

Formal Assessment of Fault Injection Strategies. Another way to assess
the quality of the approach is to formalize and analyze the notion of failure
mode equivalence classes. To define these classes, the method proposed in [8]
defines a list of equivalence rules for microprocessor’s internal failure modes. It
also relies on the notion of data life instants to identify which BF may have
an impact. The authors of [12] propose a way to identify these life instants
with VHDL behavioral simulation. This method only requests one simulation
to identify all the life instants resulting in a system failure. Nevertheless, the
activation must be known to assess these critical life instants. So, unlike our
method, the quality is only assessed for a given activation. Eventually, methods
like [13] use formal methods (like SAT solvers) to assess the equivalence between
failure modes. More precisely, the authors of [13] focus their work on permanent
failure modes of gate-level combinational circuits. The formal methods are used
to decide whether the resulting circuit (whose semantics has been altered) is
semantically equivalent to the initial one. A failure mode is said equivalent to
another one if and only if their impacts will be semantically equivalent whatever
the activation. The notion of equivalence presented in Sect. 3.3 is inspired from
this work. Nevertheless, we have adapted the equivalence rules to our description
level (operation-level components) and considered the transient and permanent
failure modes of sequential components.

6 Conclusion

We defined a generic method to assess the quality of a fault injection strategy for
a given hardware. This consists in assessing how many failure scenarios equiva-
lence sets have been explored. The coverage of a fault injection strategy requests
a deep knowledge of both the behavior of the hardware accelerator and the fault
model (and the effects of these faults). That is why this kind of framework may
help the designer to assess efficiently (the coverage assessment execution time

234 I. Guinebert et al.

requires at most few minutes) the trade-off between the coverage and the effi-
ciency of the strategy adopted. It shall be pointed out that depending on the
actual implementation, some single point failures at physical-level may result in
multiple failures at our abstraction level. Indeed, several atomic components may
use a common cell (e.g. LUT cell) and this may lead to common cause problems.
Nonetheless, these kinds of problems are known and are handled afterwards with
a common cause analysis. In the future, we plan to generalize our approach by
integrating more complex failure modes and lowering the level of abstraction.
We will evaluate the scalability of our approach on industrial accelerators. We
also plan to combine the identification of optimal fault injection strategies with
ATPG and to use our formalization to generate optimal strategies, that are
covering and efficient.

Acknowledgement. The research has benefited from the AI Interdisciplinary Insti-
tute ANITI. ANITI is funded by the French program “Investing for the Future – PIA3”
under the Grant agreement No ANR-19-PI3A-0004.

References

1. Abdelouahab, K., Pelcat, M., Serot, J., Berry, F.: Accelerating CNN inference on
FPGAs: a survey. arXiv:1806.01683 (2018)

2. Abdelouahab, K., Pelcat, M., Serot, J., Bourrasset, C., Berry, F.: Tactics to directly
map CNN graphs on embedded FPGAs. IEEE Embed. Syst. Lett. 9, 1–4 (2017)

3. Abideen, Z.U., Rashid, M.: EFIC-ME: a fast emulation based fault injection control
and monitoring enhancement. IEEE Access 8, 207705–207716 (2020)

4. Abraham, J.A., Fuchs, W.K.: Fault and error models for VLSI. Proc. IEEE 74(5),
639–654 (1986)

5. Avizienis, A., Laprie, J., Randell, B., Landwehr, C.: Basic concepts and taxonomy
of dependable and secure computing. IEEE Trans. Depend. Secur. Comput. 1(1),
11–33 (2004)

6. Bara, A., Bazargan-Sabet, P., Chevallier, R., Encrenaz, E., Ledu, D., Renault, P.:
Formal verification of timed VHDL programs. In: 2010 Forum on Specification &
Design Languages (FDL 2010), pp. 1–6. IET (2010)

7. Benso, A., Bosio, A., Di Carlo, S., Mariani, R.: A Functional verification based
fault injection environment. In: 22nd IEEE International Symposium on Defect
and Fault-Tolerance in VLSI Systems (DFT 2007), pp. 114–122 (Sep 2007)

8. Benso, A., Rebaudengo, M., Impagliazzo, L., Marmo, P.: Fault-list collapsing
for fault-injection experiments. In: Annual Reliability and Maintainability Sym-
posium. 1998 Proceedings. International Symposium on Product Quality and
Integrity, pp. 383–388, January 1998

9. Berrojo, L., et al.: New techniques for speeding-up fault-injection campaigns. In:
Automation and Test in Europe Conference and Exhibition Proceedings 2002
Design, pp. 847–852, March 2002

10. Berrojo, L., et al.: New techniques for speeding-up fault-injection campaigns. In:
Automation and Test in Europe Conference and Exhibition Proceedings 2002
Design, pp. 847–852, March 2002

11. Chen, J., Lee, C., Shen, W.: Single-fault fault-collapsing analysis in sequential
logic circuits. IEEE Trans. Comput. Aid. Des. Integr. Circ. Syst. 10(12), 1559–
1568 (1991)

http://arxiv.org/abs/1806.01683

Quality of Fault Injection Strategies 235

12. Chibani, K., Portolan, M., Leveugle, R.: Evaluating application-aware soft error
effects in digital circuits without fault injections or probabilistic computations. In:
2016 IEEE 22nd International Symposium on On-Line Testing and Robust System
Design (IOLTS), pp. 54–59, July 2016

13. Dao, A.Q., Lin, M.P.H., Mishchenko, A.: SAT-based fault equivalence checking in
functional safety verification. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst.
37(12), 3198–3205 (2018)

14. Ebrahimi, M., Sayed, N., Rashvand, M., Tahoori, M.B.: Fault injection accelera-
tion by architectural importance sampling. In: 2015 International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS), pp. 212–219,
October 2015

15. Eggersglüß, S., Schmitz, K., Krenz-B̊åath, R., Drechsler, R.: On optimization-based
ATPG and its application for highly compacted test sets. IEEE Trans. Comput.-
Aid. Des. Integr. Circ. Syst. 35(12), 2104–2117 (2016)

16. Eghbal, A., Yaghini, P.M., Bagherzadeh, N., Khayambashi, M.: Analytical fault
tolerance assessment and metrics for TSV-Based 3D network-on-chip. IEEE Trans.
Comput. 64(12), 3591–3604 (2015)

17. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data flow
programming language LUSTRE. Proc. IEEE 79(9), 1305–1320 (1991)

18. Iturbe, X., Venu, B., Ozer, E., Das, S.: A triple core lock-step (TCLS) ARM®
cortex®-R5 processor for safety-critical and ultra-reliable applications. In: 2016
46th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks Workshop (DSN-W), pp. 246–249 (2016)

19. Jeon, S.H., Cho, J.H., Jung, Y., Park, S., Han, T.M.: Automotive hardware devel-
opment according to ISO 26262. In: 13th International Conference on Advanced
Communication Technology (ICACT2011), pp. 588–592, February 2011

20. Kloos, C.D., Breuer, P.: Formal semantics for VHDL, vol. 307. Springer, New York
(2012). https://doi.org/10.1007/978-1-4615-2237-9

21. Koopman, P.J.: Lost message and system failures. Embed. Syst. Program. 9, 38–52
(1996)

22. LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition.
Neural Comput. 1(4), 541–551 (1989)

23. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

24. Lee, E.A., Sangiovanni-Vincentelli, A.: A framework for comparing models of com-
putation. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 17(12), 1217–1229
(1998)

25. Leveugle, R., Calvez, A., Maistri, P., Vanhauwaert, P.: Statistical fault injection:
quantified error and confidence. In: Automation Test in Europe Conference Exhi-
bition 2009 Design, pp. 502–506, April 2009

26. Mittal, S.: A survey on modeling and improving reliability of DNN algorithms and
accelerators. J. Syst. Architect. 104, 101689 (2020)

27. Mukherjee, S., Weaver, C., Emer, J., Reinhardt, S., Austin, T.: A system-
atic methodology to compute the architectural vulnerability factors for a high-
performance microprocessor. In: Proceedings. 36th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, 2003. MICRO-36, pp. 29–40, December
2003

28. Neggaz, M.A., Alouani, I., Lorenzo, P.R., Niar, S.: A reliability study on CNNs
for critical embedded systems. In: 2018 IEEE 36th International Conference on
Computer Design (ICCD), pp. 476–479, October 2018

https://doi.org/10.1007/978-1-4615-2237-9

236 I. Guinebert et al.

29. Reetz, R., Schneider, K., Kropf, T.: Formal specification in VHDL for hardware
verification. In: Proceedings Design, Automation and Test in Europe, pp. 257–263.
IEEE (1998)

30. Salami, B., Unsal, O.S., Kestelman, A.C.: On the resilience of RTL NN accelerators:
fault characterization and Mitigation. In: 2018 30th International Symposium on
Computer Architecture and High Performance Computing (SBAC-PAD), pp. 322–
329, September 2018

31. Talpes, E., et al.: Compute solution for tesla’s full self-driving computer. IEEE
Micro 40(2), 25–35 (2020)

32. Tuzov, I., de Andrés, D., Ruiz, J.C.: Accurate robustness assessment of HDL mod-
els through iterative statistical fault injection. In: 2018 14th European Dependable
Computing Conference (EDCC), pp. 1–8, September 2018

33. Villemeur, A.: Reliability, Availability, Maintainability and Safety Assessment, vol.
1. Wiley, Methods and Techniques (1991)

Assessment of the Impact of U-space
Faulty Conditions on Drones

Conflict Rate

Anamta Khan1(B), Carlos A. Chuquitarco Jiménez2, Morcillo-Pallarés Pablo2,
Naghmeh Ivaki1, Juan Vicente Balbastre Tejedor2, and Henrique Madeira1

1 CISUC, Department of Informatics Engineering, University of Coimbra,
Coimbra, Portugal

{anamta,naghmeh,henrique}@dei.uc.pt
2 Universitat Politècnica de València, València, Spain

{carchuji,pabmorpa,jbalbast}@upv.edu.es

Abstract. Unmanned Aerial Vehicles (UAVs) have gained notable
importance in civil airspace. To ensure their safe operation, U-space ser-
vices are being defined. We argue that the target level of safety of UAS
can be threatened by faults, abnormal conditions, and security attacks.
In this paper, we propose a fault-injection-based approach to build a
framework to allow the safety assessment of UAS under these condi-
tions. We created a simulation-based setup to mimic a realistic scenario
to study the impact of these conditions on UAS conflict metrics and
surveillance performance metrics. Results show a correlation between
the faults (impairments) introduced and the degradation of some perfor-
mance metrics indicating the quality of the measured trajectory by the
U-space. These metrics can be used by the UAV conflict management
service to ensure UAS safe operation.

Keywords: UAS · U-space · Target level of safety · Fault injection

1 Introduction

Although Unmanned Aircraft Systems (UAS) [7] were significantly used in some
military operations in the 1990s (Gulf War I), it was not until the beginning
of the 21st century when the interest in this technology showed up in the civil
world. Nowadays, there is a huge expectation of a variety of potential professional
uses in many fields (e.g., urban mobility, delivery, public safety and security).

One of the main hazards to the operation of UAS is nearby UAS and manned
aircraft with which they may collide, especially in urban scenarios where a high
density of UASs is likely. To mitigate the risk of mid-air collisions, the UAS traf-
fic management (UTM) concept was conceived in the early 2010s “to support
the real-time or near-real-time organization, coordination, and management of
UA operations” [15]. The UTM concept is currently being developed and imple-
mented in many countries around the World.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Trapp et al. (Eds.): SAFECOMP 2022, LNCS 13414, pp. 237–251, 2022.
https://doi.org/10.1007/978-3-031-14835-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14835-4_16&domain=pdf
https://doi.org/10.1007/978-3-031-14835-4_16

238 A. Khan et al.

The European implementation of the UTM concept is the U-space, a set of
services relying on a high level of digitalization and automation of functions,
whether they are onboard, or are part of the ground-based environment [23],
allowing the safe and efficient operation of a large number of UASs (especially,
but not only, in urban VLL (very low level)). The maturity achieved by several
U-space services [24] led the European Commission to lay down a regulatory
framework for the U-space [1–3], hereinafter referred to as “the U-space regu-
lation”. The U-space regulation introduces the “U-space airspace” concept as a
designated portion of the airspace where U-space services are provided by U-
space service providers (USSP) and used by UASs operators when planning and
conducting flights therein.

1.1 Conflict Management by the U-space

Conflict management is one of the safety pillars in aviation, aiming at limiting
the risk of collision between aircraft and hazards to an agreed level deemed as
acceptable [17]. When the hazard is another aircraft, a conflict is defined as a
predicted converging of aircraft in space and time which constitutes a violation
of a given set of separation minima, which are the minimum distance between
aircrafts that maintain the risk of collision at an acceptable level of safety [16].

The U-space tackles conflicts between aircraft at two levels (1) strategic
and (2) tactical . At the strategic level, UASs operators have to submit their
flight plans, including the 4D trajectory of the UAS during the entire mission,
to the Flight Authorisation Service, which checks whether it intersects both in
space and time with trajectories in already approved flight plans.

At the tactical level, UASs have to submit their position, speed, and orienta-
tion to the Network Identification Service in real-time. The Traffic Information
Service receives UAS information from the Network Identification Service and
makes this information available to UASs operators, which have to take the rele-
vant action to avoid any collision hazard. Although not required by the U-space
regulation, a conflict detection capability can be added to the Traffic Informa-
tion Service to serve as a safety net alerting pilots when a predefined separation
threshold is infringed. In future U-space implementations, it is expected that
tactical conflicts will be tackled by a Tactical Conflict Resolution service [7]
that will apply a stepped process for conflict resolution.

1.2 Safety Assessment in the U-space

Safety is the cornerstone of aviation. The usual way to express the safety goal
is the Target Level of Safety (TLS), which represents the level of risk as
the number of risk events divided by an exposure unit. In manned aviation,
the risk event used to express TLS is accidents, whereas the exposure units can
be either flight-hours for en-route aircraft or movements for taking-off, landing,
and taxiing aircraft. Defining TLS for UASs is still controversial, and there is no
common agreement either on the risk event or the exposure time. We will use

Assessment of the Impact of U-space Faulty Conditions 239

mid-air conflicts per flight hour as the primary safety measure. Although
other risks (e.g., direct ground impacts) could also affect safety, mid-air conflicts
per flight hour is the common TLS measure often used by U-space projects.

The ultimate purpose of the U-space is to guarantee safe and efficient access of
UASs to the airspace. From the safety perspective, the U-space raises mitigation
barriers between UASs and hazards both at strategic and tactical levels, as
described in Sect. 1.1. When designating a part of the national airspace as U-
space airspace, competent authorities are required by the U-space regulation to
assess the effectiveness of these barriers in that local scenario by means of a risk
assessment meant. This assessment is a twofold process encompassing both (1)
a success approach and (2) a failure approach. The success approach aims
at demonstrating that U-space services can mitigate risks posed by pre-existing
hazards, i.e., those arising during usual aviation operations under normal or
abnormal conditions (rare external events that can negatively affect safety).
The failure approach is conducted to assess how system-generated failures affect
safety. Due to the complexity of the aviation system, most of this risk assessment
is qualitative and based on experts’ judgment. However, whenever a quantitative
approach is possible, it should be applied.

This paper presents a fault-injection-based approach to quantitatively assess
the effect of abnormal and faulty conditions (some of them caused by security
issues) to the effectiveness of the tactical barrier provided by the U-space to
mitigate the collision risk. The research is focused on the detection of the conflict,
which is the first and most critical step in the tactical conflict resolution process
as described in Sect. 1.1 (non-detected conflicts will never be solved). Hence, the
number of conflicts will be used instead of the number of collisions as a measure
of the risk. The results show the importance of considering abnormal, faulty,
and security conditions in the safety assessment of UASs and U-space services.
Moreover, the results prove the effectiveness of our approach.

2 Related Work

This section reviews the related work on the safety assessment of UAVs and, in
particular, fault-injection-based assessment of UAVs.

2.1 Safety Assessment of UAVs

For assessment of UAVs operations management systems like the U-space ser-
vices, the Joint Authorities on Rulemaking for Unmanned Systems (JARUS)
[18] developed a risk-based methodology as Specific Operations Risk Assessment
(SORA), which determines the safety level required for these operations consid-
ering both drone and ground stakeholders [21]. Then, U-space safety assess-
ment (MEDUSA) is developed, which identifies and mitigates the relevant risks
of drone operations supported by U-Space services by integrating the SESAR
safety principles for the overall airspace system with the SORA approach that
is focused on risk assessment of individual missions [4].

240 A. Khan et al.

In addition to the above analytical approaches, we can find efforts in the
literature that experimentally assess the safety (or security) of UAVs operations.
A UAVs safety assessment approach is presented in [8], where a series of attacks
(e.g., DoS) were injected into a real commercial drone to show how easily one
can remotely control or bring the UAV down. In a similar study [13], a De-
Authentication attack is emulated to demonstrate that anyone with access to
a computer could potentially take down a drone. Similar studies are performed
in [26] and [14] aiming to assess the security of commercially available drones.
They present several security vulnerabilities found in drones and exploit them
through a series of attacks (e.g., De-Authentication attack and buffer overflow).

2.2 Fault Injection for Safety Assessment

In a study [19] to create fault tolerance for UAVs, the authors created a Hardware
in Loop Simulation (HILS) environment and studied three subsystems (Naviga-
tion, GPS, and transmission) injecting two types of faults (failure and signal
strength), thus in a total of 6 faults to identify mitigation and define recovery
mechanism for them. A similar study [12] using Simulink identified two common
difficulties: a) in general, there are not enough fault samples in historical data to
make it possible to cover most fault modes in UAVs; b) test flights does not offer
a realistic way to identify and study these faults. The approach in this paper
helps to solve both of the identified challenges in this study by using simulations
to inject faults and study the impacts without using real vehicles. In a similar
approach as previous works [20], the authors analyze the effects of GPS spoofing
on drones through a series of tests in a HILS environment.

An attempt to study the impact of faults and also verify HILS environments
is presented in [25]. The authors created their own simulator for fault injection
purposes and also verified its accuracy, showing that the results of fault injection
in simulation models (such as done in our paper) can be considered very close to
real-world scenarios. Another recent fault injection platform [5], is using a very
similar simulation model as in our approach, with PX4, Dronekit, and ArduPilot
instead of Gazebo. It considers nine fault types including GPS faults (5 faults
types) and Actuator Faults (4 faults types).

3 Approach and Experimental Setup

To verify and validate the behaviour of UAVs in faulty conditions, this work
aims at creating a software-based fault injection framework providing all nec-
essary tools for running experiments in faulty conditions. To achieve that, the
following steps are required: i) definition and characterization of the system
under assessment (SUA) and its environment (this is required for the definition
of the missions); ii) identification and characterization of failure scenarios, help-
ing to create a representative and fault model which is as complete as possible;
iii) definition of safety assessment metrics for analysis of the obtained results,

Assessment of the Impact of U-space Faulty Conditions 241

and finally iv) design and implementation of fault injection framework that can
be served in diverse types of UAV systems within diverse missions.

To realize the first step, it is important to identify diverse representative
drone models in terms of hardware and software suitable for different applica-
tion scenarios. It is also necessary to analyze, compare and identify the critical
components of autonomous drones. Then, for each application scenario, it is
needed to identify the most important environmental parameters. These help
to define a set of realistic and representative missions, which are used as the
workload for the experiments.

In the second step, a field data analysis is performed to identify and char-
acterize the failure scenarios for the SUA, resulting in the definition of a fault
model.

The third step is to identify the metrics allowing us to qualify and quantify
the impact of each fault/failure/threat. This step is done by adapting the concept
of surveillance performance monitoring from manned aviation to the U-space
framework. As a result, we defined a set of metrics that evaluate the surveillance
system performance quality. In parallel, a computation of the number of conflicts
is done to assess and set safety thresholds for these metrics.

Finally, the last step is focused on the definition, design, and implementation
and required techniques and tools for i) defining fault injection campaigns (e.g.,
software faults, security attacks, and network issues), ii) running the missions,
iii) injecting the faults, iv) obtaining an analyzing the results.

When these essential requirements are met, experiments can be run. To assess
the impact of faulty conditions, two sets of experiments need to be executed:
fault free runs (Gold runs) and Faulty runs. The results obtained from
gold runs are used as an oracle to assess the impact level of the injected faults.

3.1 Scenarios and Missions

In order to define a representative scenario with representative missions, we
need to define the characteristics of the scenario, including i) dimensions of the
area, ii) number of UASs per hour, and iii) type of trajectory to be followed.

Fig. 1. General view of the scenario generated for the assessment

242 A. Khan et al.

These features are introduced in a trajectory generation software, namely BB-
Planner, which generates a trajectory for each selected UASs. A file with all the
necessary parameters and way-points (WPs) is generated for each trajectory.

In this work, we generated one scenario for running the experiments. This
scenario is defined in an area of high-density controlled air traffic in the urban
center of Valencia, Spain. It was designed to represent one of the most representa-
tive scenarios defined in [6] and also to meet with a TLS of 10E–6 fatalities/hour.
The simulated zone covers an area of 25 km2 with a height limit of 120 m (VLL)
and a density of 28 UAS/h (i.e., 28 missions). Multirotor UAS of several cat-
egories with different power and velocity were used. Figure 1 shows a general
view of the scenario generated for this study, where each line represents a UAS
mission. The whole scenario takes about 1 h to be completed.

3.2 Fault/Failure Model

Nowadays, GPS is the only surveillance system regulated for drones. Also, it has
been shown that GPS is a highly vulnerable component [22] whose failures can
lead to many conflicts, crashes, and even casualties. In the U-space framework,
GPS information encapsulated in a surveillance data packet transmitted through
the Network Identification Service is the only source of surveillance available for
UTM. For these reasons, we selected GPS as the most critical component of
UAV systems to be used as the target for our fault injection campaigns.

In this experiment, 14 fault/failure types were identified, taking into con-
sideration 3 different condition types, i) Faulty Conditions (i.e., internal GPS
failure or reception of incorrect data); ii) Abnormal Conditions caused by exter-
nal factors (e.g., unavailability of GPS signals), and iii) Security conditions (e.g.,
hijacking), which are the most common conditions that a drone’s GPS may face.
The list of 14 fault/failure types is presented below:

1. Fixed Valid Values: Fixed valid value as GPS sensor input for Latitude,
Longitude and Altitude (faulty and security conditions)

2. Fixed Invalid Values: Fixed invalid value as GPS sensor input for Lati-
tude, Longitude and Altitude (faulty and security conditions)

3. Missing Values: Not receiving input values from GPS sensor (faulty and
Abnormal conditions)

4. Freeze Values: Receiving same frozen GPS sensor input values for Latitude,
Longitude and Altitude (faulty and Abnormal conditions)

5. Random Value: Receiving valid random GPS sensor input values for Lat-
itude, Longitude and Altitude (faulty and Abnormal conditions)

6. Min Value: Receiving valid minimum GPS sensor input values for Latitude,
Longitude and Altitude individually per fault (faulty conditions)

7. Max Value: Receiving valid maximum GPS sensor input values for Lati-
tude, Longitude and Altitude individually per fault (faulty conditions)

8. Fixed Noise: Receiving a fixed value of noise in GPS sensor input values
for Latitude, Longitude and Altitude (faulty and Abnormal conditions)

Assessment of the Impact of U-space Faulty Conditions 243

9. Random Noise: Receiving a random value (in range) of noise in GPS sensor
input values for Latitude and Longitude (faulty and Abnormal conditions)

10. Random Latitude: Receiving a random value in GPS sensor input values
for Latitude (faulty and security conditions)

11. Random Longitude: Receiving a random value in GPS sensor input values
for Longitude (faulty and security conditions)

12. Random Position: Receiving a random value in GPS sensor input values
for Latitude, Longitude and Altitude (faulty and security conditions)

13. Slow Force Landing: Forcing a drone to land by slowly increasing it’s GPS
sensor input values for Altitude (security conditions)

14. Hijack: Forcing the drone to move/land by tampering with its GPS sensor
input values for Latitude, Longitude and Altitude (security conditions)

For each fault/failure type, the fault injection experiment is conducted for 4
different durations (namely, 2, 5, 10, and 30 s). Each fault instance was injected
in the tactical phase at a random time between 30 s to 60 s after the completion
of take-off. More than one test case was tested for some fault types (e.g., Random
Noise). The result is a total of 74 cases to be studied.

3.3 Safety Assessment Metrics

As described in Sect. 1.2, evaluating the TLS is fundamental in civil aviation
safety. Since it is not possible to obtain this variable directly (as one metric),
this study focuses on metrics related to conflict detection. In this study, two
sets of safety assessment metrics are defined: i) conflict metrics and ii) surveil-
lance performance metrics. The conflicts metrics are defined to assess and
set safety thresholds (e.g., separation minima) and the surveillance performance
metrics are considered to assess and evaluate the effect of the impairment on the
aeronautical surveillance service. The conflict metrics defined are as follows:

– Number of conflicts: Is calculated as the number of times the separation
volume of each UAS is intersected by the separation volume of a different
UAS. This calculation is performed pairwise, and the number of conflicts is
independent of the duration of the conflicts, 5 s being the minimum duration
to consider a positive conflict.

– Frequency of conflicts (conflicts/h): Is calculated as the ratio of the total
number of conflicts of the selected scenario divided by the sum of the total
flight time of all UAS. These values indicate, together with the traffic density
and the selected area, how effective the selected separation is.

To calculate the surveillance performance metrics, a Surveillance Per-
formance Monitoring Tool is used, which works based on some generic speci-
fications and requirements for Air Traffic Control (ATC) surveillance systems
[11].The performance-based surveillance approach aims to evaluate surveillance
systems in a technology-agnostic way.

The tool compares the data provided by the surveillance systems (in this case,
it is just the system that provides the U-space Network Identification surveillance

244 A. Khan et al.

service) with the high-quality trajectories computed from the received teleme-
try. To statistically obtain relevant performance metrics, a minimum of 50,000
position data cases are needed.

The telemetry received from the UAVs must be suitable in various aspects
for the UTM system that want to use it. The data must be delivered with
certain minimum conditions of completeness, codification, precision, update rate,
latency, and integrity. These requirements can be reduced to a set of performance
metrics [9,10] that are defined as follows:

– Probability of Update (PU): This metric refers to the probability that
a True Target Report (TR) is associated with a reference trajectory within
an Update Interval (UI) defined by the user (one second in this case). A
True Target Report is a target report whose positioning distance between the
position measurement in a time and the position in the reference trajectory at
the same time is below a threshold. The UI is a requirement of the application
in which this data is used, in this case, 1 s.

– Probability of Long Gap (PLG): This metric refers to the probability of
not receiving a True TR during a number of UIs greater than or equal to n.

– Probability of False Track (PFT): This metric refers to the probability
of having a false track in a trajectory. A false track is defined as a consecutive
number of false target reports (3 TRs in this study) correlated in the 3D
space. A False Target Report is a target report in which the distance between
the position of a UAV in a faulty trajectory and its position in the reference
trajectory is higher than a certain threshold.

3.4 Experimental Framework

Figure 2 presents a general view of the process followed to run the whole exper-
iment from the definition of flight plans to analysis of the results.

The BBPlanner generates flight plans/missions for a given scenario. The gen-
erated missions are executed within the fault injection environment. The gener-
ated telemetry in this environment is then transmitted to the Conflict Compu-
tation module (running on BBPlanner) and the Surveillance Performance Mon-
itoring Tool for calculation of the safety assessment metrics. This setup intends
to emulate a non-real-time U-space [6] architecture with the minimum modules
and interfaces needed to make a safety assessment. This justifies the existence
of Tracker between the telemetry source and the conflict detection module.

Fig. 2. General experimentation setup

Assessment of the Impact of U-space Faulty Conditions 245

Fig. 3. Detailed view of the fault injection environment.

Fault Injection Environment, whose overall view is presented in Fig. 3, con-
tains all required components for the definition of a fault injection campaign,
the injection of faults, the execution of the missions on several UAVs, the extrac-
tion of flight logs, and the analysis of the trajectories. All these components are
completely developed, deployed, and running within a VMware ESXi virtualized
environment.

The fault injection campaigns are defined on the fault inject tool (VM1). The
defined faults will either be injected into the UAVs flight controller (currently
only PX4 is supported by our fault injection environment) or into communication
network (not done in this study) through the network emulator (VM3) which is
triggered after receiving the fault injection command through a communication
middleware (VM2). The UAVs are all running on a simulation environment
created using Gazebo and PX4. Currently five machines (VM4 to VM8), each
one with the capacity of running multiple UAVs, are dedicated to the UAVs. The
tracking system (including a tracker, core brokers, edge brokers are running on
VM9 to VM11) consumes the generated telemetry of UAVs for the calculation
of the safety assessment metrics.

4 Results and Analysis of the Results

The effect of the impairments injection can be directly seen comparing the faulty
trajectories against the gold trajectories. Although a straightforward and quan-
titative analysis of the impact of faults could be done, this may not represent
the real effects of impairments from a UTM point of view. A more thorough
study in two perspectives in line with the U-space concept of operations [7] was
carried out. Thus, this approach intends, on one hand, to assess and analyse
the impairment effects on a UAS conflict detection tool and on a surveillance
performance evaluation tool and, on the other hand, to relate the assessment
done for each tool to find a preliminary set of metrics values in the surveillance
performance metrics that may lead to a safety action concerning UAS separation
management/conflict management.

246 A. Khan et al.

4.1 Assessment of the Impact on the Conflicts

In order to make the trajectories as realistic as possible, they are processed by a
Kalman filter before being consumed by the conflict-counting algorithm. We do it
to simulate the behaviour of a real UAS tracker. The effects of impairment/faults
are reflected in the results in which the fault injection duration is of 2 s, where
the difference between the faulty and gold run are practically negligible and
do not affect the system (because the Kalman filter absorbs the effect of short
duration failures). In Fig. 4, the difference in the number of conflicts between
the faulty run and the Gold run, does not exceed 2 conflicts in any of the studied
cases. This maximum value occurs in the case of minimum altitude error, the
rest of values varies between 1 or 0.

The results obtained for fault injection duration of 5 and 10 s (Figs. 5 and
6) shows that the number of conflicts increases significantly when Minimum
Lat/Lon and Maximum Lat/Lon fault types are injected. This is because, at
the same instant of time, all the drones move in the same direction, resulting in
drones’ trajectories approaching each other and thus increasing the number of
conflicts. In the cases in which the position of the drones is modified, such as
random lat/lon and random position fault types, a similar effect is observed, but
the number of conflicts is not as high as in the previous cases. Since the values
selected for these cases are random, the directions the drones will take are highly
dependent on these points.

The results for the fault injection duration of 30 s (Fig. 7) show that the
impact of previously mentioned fault types (Minimum Lat/Lon and Maximum
Lat/Lon) becomes even more significant when the fault is injected for a longer
period of time. For instance, in the case of Random Lat/Lon, the number of
conflicts increases from 21 to 45 with a fault duration of 30 s.

From the results presented in Fig. 7, we also observed that the fault type
of Missing Values causes a significant decrease in the number of conflicts when
compared to the gold run results. This happens due to the fact that the PX4
position estimate falls below acceptable levels, which is caused by GPS loss
(injected fault). This triggers the Position Loss Failsafe, causing UAVs to descend
to the ground, aborting the mission.

Fixe
d

Vali
d

Valu
es

Fixe
d

In
va

lid
 V

alu
es

Fre
ez

e
Valu

es

Ran
do

m
 V

alu
es

M
ini

m
um

 L
at

/L
on

M
ax

im
um

 L
at

/L
on

M
ini

m
um

 A
ltit

ud
e

M
ax

im
um

 A
ltit

ud
e

M
iss

ing
 va

lue
s

Ran
do

m
 L

at
/L

on

Ran
do

m
 P

os
itio

n

Hija
ck

ed
-s

pe
cif

ied
 p

os
itio

n

Slow
 F

or
ce

 L
an

din
g

Fixe
d

Nois
e

Ran
do

m
 N

ois
e

(s
m

all
)

Ran
do

m
 N

ois
e

(v
er

y s
m

all
)

Ran
do

m
 N

ois
e

(la
rg

e)

Ran
do

m
 N

ois
e

(v
er

y l
ar

ge
)

0

50

100

150

200

250
Fault time:2 seconds

Faulty runs - Num. of conflicts
Gold run - Num. of conflicts
Faulty runs- Freq. of conflict (conflict/h)
Gold run - Freq. of conflict (conflict/h)

Fig. 4. Impact on conflict metrics (fault
injection duration: 2 s)

Fixe
d

Vali
d

Valu
es

Fixe
d

In
va

lid
 V

alu
es

Fre
ez

e
Valu

es

Ran
do

m
 V

alu
es

M
ini

m
um

 L
at

/L
on

M
ax

im
um

 L
at

/L
on

M
ini

m
um

 A
ltit

ud
e

M
ax

im
um

 A
ltit

ud
e

M
iss

ing
 va

lue
s

Ran
do

m
 L

at
/L

on

Ran
do

m
 P

os
itio

n

Hija
ck

ed
-s

pe
cif

ied
 p

os
itio

n

Slow
 F

or
ce

 L
an

din
g

Fixe
d

Nois
e

Ran
do

m
 N

ois
e

(s
m

all
)

Ran
do

m
 N

ois
e

(v
er

y s
m

all
)

Ran
do

m
 N

ois
e

(la
rg

e)

Ran
do

m
 N

ois
e

(v
er

y l
ar

ge
)

0

50

100

150

200

250
Fault time:5 seconds

Faulty runs - Num. of conflicts
Gold run - Num. of conflicts
Faulty runs- Freq. of conflict (conflict/h)
Gold run - Freq. of conflict (conflict/h)

Fig. 5. Impact on conflict metrics (fault
injection duration: 5 s)

Assessment of the Impact of U-space Faulty Conditions 247

Fixe
d

Vali
d

Valu
es

Fixe
d

In
va

lid
 V

alu
es

Fre
ez

e
Valu

es

Ran
do

m
 V

alu
es

M
ini

m
um

 L
at

/L
on

M
ax

im
um

 L
at

/L
on

M
ini

m
um

 A
ltit

ud
e

M
ax

im
um

 A
ltit

ud
e

M
iss

ing
 va

lue
s

Ran
do

m
 L

at
/L

on

Ran
do

m
 P

os
itio

n

Hija
ck

ed
-s

pe
cif

ied
 p

os
itio

n

Slow
 F

or
ce

 L
an

din
g

Fixe
d

Nois
e

Ran
do

m
 N

ois
e

(s
m

all
)

Ran
do

m
 N

ois
e

(v
er

y s
m

all
)

Ran
do

m
 N

ois
e

(la
rg

e)
0

50

100

150

200

250
Fault time:10 seconds

Faulty runs - Num. of conflicts
Gold run - Num. of conflicts
Faulty runs- Freq. of conflict (conflict/h)
Gold run - Freq. of conflict (conflict/h)

Fig. 6. Impact on conflict metrics (fault
injection duration: 10 s)

Fixe
d

Vali
d

Valu
es

Fixe
d

In
va

lid
 V

alu
es

Fre
ez

e
Valu

es

Ran
do

m
 V

alu
es

M
ini

m
um

 L
at

/L
on

M
ax

im
um

 L
at

/L
on

M
ini

m
um

 A
ltit

ud
e

M
ax

im
um

 A
ltit

ud
e

M
iss

ing
 va

lue
s

Ran
do

m
 L

at
/L

on

Ran
do

m
 P

os
itio

n

Hija
ck

ed
-s

pe
cif

ied
 p

os
itio

n

Slow
 F

or
ce

 L
an

din
g

Fixe
d

Nois
e

Ran
do

m
 N

ois
e

(s
m

all
)

Ran
do

m
 N

ois
e

(v
er

y s
m

all
)

Ran
do

m
 N

ois
e

(la
rg

e)

Ran
do

m
 N

ois
e

(v
er

y l
ar

ge
)

0

50

100

150

200

250
Fault time:30 seconds

Faulty runs - Num. of conflicts
Gold run - Num. of conflicts
Faulty runs- Freq. of conflict (conflict/h)
Gold run - Freq. of conflict (conflict/h)

Fig. 7. Impact on conflict metrics (fault
injection duration: 30 s)

The rest of the fault types shown in the figures are not affecting the conflict
metrics to the same extent as those analyzed in this section. This is due, on the
one hand, to smoothing of the trajectories by the Kalman filtering that Tracker
uses internally and, on the other hand, to the conflict algorithm, in which a
conflict must last for at least 5 s to be considered as a positive conflict.

4.2 Assessment of the Impact on the Surveillance Performance

Figure 8 shows the impact of injected fault types on the Probability of Update for
various fault injection durations. The probability of update depends on several
factors: lost/incomplete/damaged reports/packages, latency, jitter, and, to a less
important extent, positioning error. Here, this metric is mainly affected by GPS
errors caused either by faulty, abnormal, or security conditions.

The results show that most of the fault types (Valid/Invalid Fixed Values;
Random values, position, latitude, and longitude; Min/Max latitude, longitude
and altitude; Random noise (large), and the Hijack), even when injected for a
short period of time, had an impact on this metric, and the impact increased by
increasing the fault injection duration.

The degradation of the performance metrics happens due to the fact that
these impairments increase the positioning error greatly. The impact on this
metric is even more significant when the fault injection duration goes above 30 s.
In these cases the PU falls below 90%. In contrast, Freeze Values, Minimum
Altitude, Slow Force Landing, Small Fixed Noise, and Small Random Noise faults
do not affect this metric critically.

Figure 9 presents the impact of impairments on Probability of Long Gap
(PLG). When the “gap” between true TRs becomes beyond 3UI or 4UI, we
consider it a sensitive situation as the UI is equal to 1 s, and the maximum
speed considered for each drone in this study is up to 20 m/s. The results show
a similar impact on PLG when compared to PU. The reference values (based on
gold runs) for this metric are around 0.03%. Therefore, when faults are injected
for more than 2 s, this metric hardly meets the requirement for TLS.

Figure 10 presents the impact of the injected faults on the Probability of
False Track (PFT). This metric is only affected by the positioning error and,

248 A. Khan et al.

Fixe
d

Vali
d

Valu
es

Fixe
d

In
va

lid
 V

alu
es

Fre
ez

e
Valu

es

Ran
do

m
 V

alu
es

M
ini

m
um

 L
at

/L
on

M
ax

im
um

 L
at

/L
on

M
ini

m
um

 A
ltit

ud
e

M
ax

im
um

 A
ltit

ud
e

M
iss

ing
 V

alu
es

Ran
do

m
 L

at
/L

on

Ran
do

m
 P

os
itio

n

Hija
ck

ed
-s

pe
cif

ied
 p

os
itio

n

Slow
 F

or
ce

 L
an

din
g

Fixe
d

Nois
e

Ran
do

m
 N

ois
e

(s
m

all
)

Ran
do

m
 N

ois
e

(v
er

y s
m

all
)

Ran
do

m
 N

ois
e

(la
rg

e)

Ran
do

m
 N

ois
e

(v
er

y l
ar

ge
)

0.92

0.94

0.96

0.98

1

P
ro

ba
bi

lit
y

of
 U

pd
at

e
P.Update/ Fault time

2 s
5 s
10 s
30 s

Fig. 8. Probability of update

Fixe
d

Vali
d

Valu
es

Fixe
d

In
va

lid
 V

alu
es

Fre
ez

e
Valu

es

Ran
do

m
 V

alu
es

M
ini

m
um

 L
at

/L
on

M
ax

im
um

 L
at

/L
on

M
ini

m
um

 A
ltit

ud
e

M
ax

im
um

 A
ltit

ud
e

M
iss

ing
 V

alu
es

Ran
do

m
 L

at
/L

on

Ran
do

m
 P

os
itio

n

Hija
ck

ed
-s

pe
cif

ied
 p

os
itio

n

Slow
 F

or
ce

 L
an

din
g

Fixe
d

Nois
e

Ran
do

m
 N

ois
e

(s
m

all
)

Ran
do

m
 N

ois
e

(v
er

y s
m

all
)

Ran
do

m
 N

ois
e

(la
rg

e)

Ran
do

m
 N

ois
e

(v
er

y l
ar

ge
)

0

0.02

0.04

0.06

0.08

P
ro

ba
bi

lit
y

of
 L

on
g

G
ap

 >
 4

U
I

P. Long Gap > 4UI/ Fault time

2 s
5 s
10 s
30 s

Fig. 9. Probability of long gap

Fixe
d

Vali
d

Valu
es

Fixe
d

In
va

lid
 V

alu
es

Fre
ez

e
Valu

es

Ran
do

m
 V

alu
es

M
ini

m
um

 L
at

/L
on

M
ax

im
um

 L
at

/L
on

M
ini

m
um

 A
ltit

ud
e

M
ax

im
um

 A
ltit

ud
e

M
iss

ing
 V

alu
es

Ran
do

m
 L

at
/L

on

Ran
do

m
 P

os
itio

n

Hija
ck

ed
-s

pe
cif

ied
 p

os
itio

n

Slow
 F

or
ce

 L
an

din
g

Fixe
d

Nois
e

Ran
do

m
 N

ois
e

(s
m

all
)

Ran
do

m
 N

ois
e

(v
er

y s
m

all
)

Ran
do

m
 N

ois
e

(la
rg

e)

Ran
do

m
 N

ois
e

(v
er

y l
ar

ge
)

0

1

2

3

4

5

6

P
ro

ba
ili

ty
 o

f F
al

se
 T

ra
ck

10-5 PFT/ Fault time

2 s
5 s
10 s
30 s

Fig. 10. Impact on probability of false tracks

by definition, indicates how likely it is that there is a given time-correlated spatial
error bias on a given sensor. Thus, small random values injected into latitude,
longitude, and altitude do not affect PFT significantly. The impact becomes
severe when large random values are injected. No negative effect is observed
in the case of Freeze Values, Minimum Altitude, and Fixed Noise faults. This
happened because no positioning error is injected with the freeze and missing
values. In the other cases, the injected values are not high enough to observe
any false telemetry report in the faulty runs.

4.3 Discussion

Considering that the faults analyzed in this study are worst-case scenarios, it is
interesting to relate the results obtained in Sects. 4.1 and 4.2 to suggest thresh-
old values or at least a range for the surveillance performance metrics. Values
selected are the following: PU = [0.995–0.987], PLG = [0.001–0.0128], PFT =
[4.956E-6–1.197E–5]. These ranges were selected, taking into account the worst
case in the conflict assessment. The conflict metrics are defined for a defined
level of safety (TLS). An increase of 5% in the frequency of conflict is con-
sidered unacceptable. This increase, for the worst cases, happens between the
faults of duration between 2 and 5 s. Since the PU is the most sensitive metric

Assessment of the Impact of U-space Faulty Conditions 249

(as being affected by various impairments), it is more likely that this metric is
the factor that triggers an alert on the degradation of the surveillance service
and its possible effect on the overall safety of the airspace volume analyzed.
This alert would lead to a conflict management action taken by the USSP and
the pilots/operators in charge of the corresponding UAS. As is proposed in [6]
the USSP would receive the surveillance degradation alert and consequently
would update the separation minima between drones. Updating the minimum
separation between drones would instantly increase conflicts between drones in
operation and then reduce them by mechanism targeting the appropriate level of
security. This is because when a drone has a conflict, the pilot/operator receives
an alert from the USSP that must resolve by a deconflict decision through their
own judgment or by an indication provided by the USSP.

5 Threats to Validity

Although the results of this study are very representative for realistic scenarios,
there are some limitations that could be taken into consideration for future
studies. To verify the results and compare them among each other, the study
uses a single scenario. Despite the scenario being pragmatic, in future studies,
more scenarios can be experimented with and can be compared with each other.
This study also considers the same drone model in each experiment and uses
a single flight mode; in future studies, diverse types of UAVs can be observed
with multiple flight modes. This study only considers GPS faults, but it would
be really insightful to include different communication cases (e.g., latency).

6 Conclusion

Aiming to assess conflict and surveillance performance of the U-space services
through qualitative analysis, a fault-injection-based framework was developed to
simulate drone flights and emulate 14 types of faulty/abnormal/security issues
concerning the UAV GPS module in realistic scenarios. The results suggest that
these conditions significantly impact both the conflict and surveillance perfor-
mance metrics. Internal GPS failures such as maximum values and missing values
(which forced the drone to land) tend to have a greater impact on conflict met-
rics. On the other hand, it has also been observed that a short duration of such
faults/failures does not affect the metrics. However, a longer duration, such as
30 s or more, has a significant impact, especially on surveillance performance
metrics. The framework developed and results give us indications on how the
U-space services can collaborate to continuously monitor the communications
and surveillance systems in order to manage conflicts to supports safe UAV
operations.

Acknowledgment. This work was partially funded by the European Union in the
scope of the BUBBLES Project (SESAR JU, 2020), funded in the scope of the SESAR
Joint Undertaking (SESAR JU), under the Horizon 2020 Research and Innovation
Program (agreement number 893206).

250 A. Khan et al.

References

1. Commission Delegated Regulation (EU) 2021/664 of 22 April 2021 on a regulatory
framework for the U-space. OJ 64. 23 April 2019

2. Commission Delegated Regulation (EU) 2021/665 of 22 April 2021 amending
Implementing Regulation (EU) 2017/373. OJ 64, 23 April 2019

3. Commission Delegated Regulation (EU) 2021/665 of 22 April 2021 amending Reg-
ulation (EU) No 923/2012 as regards requirements for manned aviation operating
in U-space. OJ 64, 23 April 2019

4. Barrado, C., et al.: U-space concept of operations: a key enabler for opening
airspace to emerging low-altitude operations. Aerospace 7(3), 24 (2020)

5. Bo, C., Benkuan, W., Yuntong, M., Yu, P.: A fault injection platform for multi-
rotor UAV PHM. In: IEEE International Conference on Electronic Measurement
Instruments (ICEMI) (2019)

6. Bubbles: Bubbles project. https://bubbles-project.eu/
7. CORUS project: U-space Concept of Operations. SESAR JU (2019)
8. Deligne, E.: ARDrone corruption. J. Comput. Virol. 8, 5–27 (2012)
9. EUROCAE: ED-129B: Technical specification for a 1090 MHz extended squitter

ADS-B ground system (2016)
10. EUROCAE: ED-142A: Technical specification for a wide area multilateration

GroundSystem with composite surveillance functionality (2019)
11. EUROCAE: ED-261-1: Safety and performance requirements standard for a

generic surveillance system (GEN-SUR SPR). www.eurocae.net/news/posts/2020/
january/eurocae-open-consultation-ed-261-1/

12. Gong, S., et al.: Hardware-in-the-loop simulation of UAV for fault injection. In:
2019 Prognostics and System Health Management Conference (PHM-Qingdao)
(2019)

13. Gordon, J., Kraj, V., Hwang, J.H., Raja, A.: A security assessment for consumer
WIFI drones. In: IEEE International Conference on Industrial Internet (ICII)
(2019)

14. Hooper, M., et al.: Securing commercial WIFI-based UAVs from common secu-
rity attacks. In: MILCOM 2016–2016 IEEE Military Communications Conference.
IEEE (2016)

15. International Civil Aviation Organisation: Unmanned Aircraft Systems Traffic
Management (UTM) - A Common Framework with Core Principles for Global
Harmonization, 3rd edn. International Civil Aviation Organisation (2020)

16. International Civil Aviation Organisation: ICAO Doc. 9426 Air Traffic Services
Planning Manual (1992)

17. International Civil Aviation Organisation: ICAO Doc. 9854 Global Air Traffic Man-
agement Operational Concept. International Civil Aviation Organisation (2005)

18. JARUS: JAR doc 06 SORA. http://jarus-rpas.org/content/jar-doc-06-sora-
package

19. Kumar Chandhrasekaran, V., Choi, E.: Fault tolerance system for UAV using hard-
ware in the loop simulation. In: 4th International Conference on New Trends in
Information Science and Service Science (2010)

20. Mendes, D., Ivaki, N., Madeira, H.: Effects of GPS spoofing on unmanned aerial
vehicles. In: 2018 IEEE 23rd Pacific Rim International Symposium on Dependable
Computing (PRDC). IEEE (2018)

21. Miles, T., Suarez, B., Kunzi, F., Jackson, R.: SORA application to large RPAS
flight plans. In: IEEE/AIAA 38th Digital Avionics Systems Conference (DASC)
(2019)

https://bubbles-project.eu/
www.eurocae.net/news/posts/2020/january/eurocae-open-consultation-ed-261-1/
www.eurocae.net/news/posts/2020/january/eurocae-open-consultation-ed-261-1/
http://jarus-rpas.org/content/jar-doc-06-sora-package
http://jarus-rpas.org/content/jar-doc-06-sora-package

Assessment of the Impact of U-space Faulty Conditions 251

22. Nighswander, T., Ledvina, B., Diamond, J., Brumley, R., Brumley, D.: GPS soft-
ware attacks. In: Proceedings of the 2012 ACM Conference on Computer and
Communications Security. Association for Computing Machinery (2012)

23. SESAR JU: U-space blueprint. SESAR JU (2017)
24. SESAR JU: Consolidated report on SESAR U-space research and innovation

results. SESAR JU (2020)
25. Wen, J., Wang, H., Zhang, M., Li, D., Wu, J.: Design of a real-time UAV fault

injection simulation system. In: IEEE International Conference Unmanned Systems
(ICUS) (2019)

26. Lakew Yihunie, F., Singh, A.K., Bhatia, S.: Assessing and exploiting security
vulnerabilities of unmanned aerial vehicles. In: Somani, A.K., Shekhawat, R.S.,
Mundra, A., Srivastava, S., Verma, V.K. (eds.) Smart Systems and IoT: Inno-
vations in Computing. SIST, vol. 141, pp. 701–710. Springer, Singapore (2020).
https://doi.org/10.1007/978-981-13-8406-6 66

https://doi.org/10.1007/978-981-13-8406-6_66

ACTOR: Accelerating Fault Injection
Campaigns Using Timeout Detection

Based on Autocorrelation

Tim-Marek Thomas1(B), Christian Dietrich2(B), Oskar Pusz1,
and Daniel Lohmann1

1 Leibniz Universität Hannover, Hanover, Germany
{thomas,pusz,lohmann}@sra.uni-hannover.de

2 Technische Universität Hamburg, Hamburg, Germany
christian.dietrich@tuhh.de

Abstract. Fault-injection (FI) campaigns provide an in-depth resilience
analysis of safety-critical systems in the presence of transient hardware
faults. However, FI campaigns require many independent injection exper-
iments and, combined, long run times, especially if we aim for a high
coverage of the fault space. Besides reducing the number of pilot injec-
tions (e.g., with def-use pruning) in the first place, we can also speed up
the overall campaign by speeding up individual experiments. From our
experiments, we see that the timeout failure class is especially important
here: Although timeouts account only for 8% (QSort) of the injections,
they require 32% of the campaign run time.

In this paper, we analyze and discuss the nature of timeouts as a fail-
ure class, and reason about the general design of dynamic timeout detec-
tors. Based on those insights, we propose ACTOR, a method to iden-
tify and abort stuck experiments early by performing autocorrelation on
the branch-target history. Applied to seven MiBench benchmarks, we can
reduce the number of executed post-injection instructions by up to 30%,
which translates into an end-to-end saving of 27%. Thereby, the absolute
classification error of experiments as timeouts was always less than 0.5%.

1 Introduction

Functional safety standards, such as ISO 26262 or IEC 61508 [14,15], demand
that we assess (and, if necessary, mitigate) the effects of transient hardware faults
(soft errors) on our systems. As soft errors are rare in reality [21,28], we often use
fault injection (FI) [1,29] to quantify the resilience of a program. Unlike radia-
tion or heat experiments [9], which are probabilistic by nature, FI also gives us the
chance to gain systematic insights as we can inject different faults into repeated
re-executions of the same program. By observing the resulting erroneous misbe-
havior(s), we can classify the failure of the system-under-test (SUT) and provide
a summarized overview. Figure 1a shows the (unweighted) failure classification for
seven MiBench [10] benchmarks if injected on the ISA level.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Trapp et al. (Eds.): SAFECOMP 2022, LNCS 13414, pp. 252–266, 2022.
https://doi.org/10.1007/978-3-031-14835-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14835-4_17&domain=pdf
https://doi.org/10.1007/978-3-031-14835-4_17

ACTOR 253

Fig. 1. Injection count vs. simulated executions

If the campaign designer wants to cover the entire fault space (FS), which
gives the most comprehensive picture of the potential misbehavior, we have to
execute millions of injections. Even after applying standard fault-pruning meth-
ods [11,27], our benchmarks require 2.8·107 injections. For these, our simulation-
assisted FI platform [25] executed 1.3·1012 instructions after the injection, which
took us around 13 CPU days (at 1.16MHz simulation rate). And although FI
sampling [8] can reduce the number of injections, long-running programs with a
large state will still require many independent injections.

Whenever the injected program execution deviates from the golden run (i.e.,
the fault is not benign), this typically also impacts its execution time, that is,
the time it takes until the error is detected and the simulation terminates with a
failure classification. However, the different failure classes can differ significantly
in their share of the simulation time (see Fig. 1b): For example, although 15.6%
of all QSort injections yield a trap (e.g., division by zero), they only account for
0.4% of the simulated instructions, so apparently, trap errors are detected early.
On the other hand, timeout faults are detected late: 8.1% of faults in QSort
account for 32.3% of the simulated instructions.

Timeout is meant to catch fault-induced endless loops and is a special failure
class: It does not convey a ground truth, as deriving the ground truth would
imply a solution for the halting problem. Instead, we need to heuristically classify
an experiment as a timeout (and abort the simulation) by invoking the timeout-
handler after some time tinv ∈ [t1,∞), with t1 being the fault-free execution
time. The selection of tinv is a tradeoff between accidentally misclassifying longer-
running experiments as timeout (false positives) and prolonging simulation time
(as each true positive runs until tinv).1 The common approach is to select tinv by
stretching the execution time t1 by a timeout factor. This factor is arbitrary by

1 In hard real-time settings, the situation is somewhat different: Here, the respective
task’s deadline would actually define a ground truth for timeout errors and, thus,
also the upper bound for tinv. However, depending on the tightness of the deadline,
this might still prolong the simulation time too much.

254 T.-M. Thomas et al.

definition; in the literature, commonly a factor between two and five is chosen
without any further justification [17,23,24], some even suggest a factor of ten
[6]! Following this, we assume the apparently most common factor of three (i.e.,
tinv = 3t1) throughout this paper, which, for our above campaign, let to 3.6
CPU days for alleged endless loops to complete. To sum up: Timeout detection
is notoriously imprecise, while accounting for a considerable share of simulation
time in FI campaigns.

About This Paper. We propose and analyze Autocorrelation-based Timeout
Restriction (ACTOR), an approach for dynamic timeout prediction that mit-
igates the costs of timeouts. ACTOR employs a low-overhead autocorrelation-
based predictor that classifies faults early on as timeouts by observing the jump
patterns of the continued execution, thereby reducing the overall campaign time.
In particular, we claim the following contributions:

– We analyze the nature of the timeout failure class, reason about the maxi-
mal achievable savings of any timeout detector, and give guidelines for their
design.

– We propose and implement autocorrelation to heuristically detect faulty exe-
cutions that will lead to a timeout.

– We evaluate our ACTOR prototype on seven MiBench benchmarks and quan-
tify the achieved end-to-end savings (up to 27.6%) and the classification error.

The rest of the paper is structured as follows: In Sect. 2, we describe our
fault-injection model and discuss the problem of timeout detection. Sourced by
those insights, we design ACTOR in Sect. 3 and evaluate it in Sect. 4. After the
discussion of our results (Sect. 5) and the related work (Sect. 6), we conclude this
paper in Sect. 7.

2 Problem Analysis

In a nutshell, we aim to reduce FI-campaign run times by detecting experiments
that are most likely to result in a timeout early and abort their continuation.
For this, we will first describe our targeted models of FI campaigns and reason
afterwards in general about timeout detectors.

2.1 Fault-Injection Model

ACTOR targets systematic FI campaigns, were a single deterministic program
run on a specific system is examined for its resiliency. For this, we record a fault-
free golden run of the SUT and plan a number of faults that cover the (partial
or complete) FS. The start of the golden run is t0, its end is t1. Each fault is
identified by its fault location (e.g., register r0 bit 3) and its relative fault time
tf (i.e., tf = t0 + a, t0 ≤ tf ≤ t1).

ACTOR 255

For injecting a specific fault, the FI platform (e.g., a modified ×86 emulator)
forwards the program to the fault time and injects the fault (e.g., toggling one or
multiple fault-location bits). Depending on the FI platform, forwarding is made
more efficient using checkpointing [3,18] or (hardware-assisted) break points [26].
In contrast, we cannot speedup the post-injection execution as the faulty control
flow can deviate from the golden run. Therefore, this paper looks only on the
time-budget spent after injecting the fault.

After injection, the platform continues the SUT, observes its behavior, and
comes to a failure classification. While such classification is always application-
specific, the classes benign, silent-data corruption (SDC), trap, and timeout are
commonly used.

For our approach, we furthermore assume that the FI platform can report
the last m jumps. This can either be done via actively recording jumps (in a
simulator) or by a hardware-implemented branch-history buffer. Without loss of
generality, we explore the ACTOR approach on an ISA-level fault injection.

2.2 Timeout Detectors

Fig. 2. Running experiments for QSort and the influence of the timeout-detector
quality

As already mentioned, timeout is a special failure class as the FI platform can-
not surely classify stuck programs into one of the other classes. Therefore, the
campaign designer must define a timeout detector that classifies the currently
injection as a timeout.

These detectors can either be static and ignore the current system state
or they are dynamic and make a heuristic decision. Furthermore, the detector-
invocation time tinv can either be relative to the FI time tf (e.g., 50 cycles after
injection, tinv = tf + 50), absolute with regard to the golden run (e.g., 300%
of the normal run time, tinv = 3t1), or continuously applied after injection.

256 T.-M. Thomas et al.

Also, any real-world detector induces an overhead and will produce incorrect
results (as they can only be a heuristic).

Usually, campaign designers define that executions that take N -times longer
(usually N = 2 . . . 10 [6,17,23,24]) than the golden-run length are considered as
a timeout. In our taxonomy, this is a static detector with an absolute invocation
point at N · t1, whose true positive (TP) and false positive (FP) rate is 1.

To give you a better intuition, Fig. 2a shows a stacked histogram of the FI-
experiment “population” (for QSort). Thereby, the population is the number of
parallel running experiments that execute at a given point if we would start them
all in parallel. For example, at t0 + 20000, we execute one million experiments
and from those 9.4% will still execute at 3t1. Please note that this graph ramps
up until t1 as we only consider the post-injection time. Furthermore, the integral
over Fig. 2a is the total number of executed post-injection instructions (i.e., the
minimal campaign time) that, if broken down by resulting failure class, has been
shown in Fig. 1b.

For QSort and the static 3t1 detector, we spend 32% of the campaign time for
executing stuck programs. With the (hypothetical) timeout detector called OPT
(relative, TP = 1, FP = 0), which surely stops all timeouts at fault time tinv = tf,
we reach the theoretical optimum. In Fig. 2a, OPT removes the complete blue
area. Between these extremes (OPT and 3t1), we will now explore the possible
design space of dynamic detectors. Hence, the dynamic detectors are an addition
to the static 3t1 detector, which keeps experiments surely bounded.

First, we ask when to invoke a detector and if its invocation should be rel-
ative to fault-time. For this, we look at the population size at a given t and its
composition. Shortly after t1, executions that masked the fault or that incor-
porated it into their outputs without running longer terminate. For QSort, the
population shrinks by around 80% from its maximum, while the share of timeout
experiments rises from below 10% to over 80%. Please note that these experi-
ments check their result within the simulator, whereby the described drop does
not happen immediately at t1. As every detector has overhead, which multiplies
with the population size, the timeout-detection cost drops significantly after t1,
which results in larger end-to-end savings.

Furthermore, real-world detectors will have a FP rate > 0 that, if applied to
a population with many non-stuck experiments, will lead to a large number of
false positives (FPs). As FPs skew the failure classification, we consider them to
be more important than false negatives (FNs), which only prolong the campaign.
To illustrate this, Fig. 2b (upper half) shows the influence of the FP rate for an
absolute detector on the percentage of false decisions. Before t1, a detector that
is 90% correct makes wrong decisions in about 9% of the cases, while after t1,
even a detector that labels all experiments as timeout (FP = 1) quickly becomes
usable. Even better for detectors that have a lower FP rate. Therefore, we argue
that detectors should be invoked after t1, which also rules out relative detectors
as they would often become active before t1.

On the other hand, we should invoke the detector as early as possible to
maximize its effect and avoid executing stuck programs. For this, Fig. 2b (lower
half) shows the campaign-time reduction that absolute detectors with different

ACTOR 257

TP rates can achieve over the 3t1 detector. Before t1, which we already ruled
out, an absolute detector cannot help much as many timeout experiments have
not started yet. However, with progressing time, we lose saving potential (Lost
Cycles) as the 3t1 limit comes closer and closer. Nevertheless, we also see that
right after t1 even detectors that achieve only a TP rate of 80% save 20% of our
overall campaign run time. Please also note that absolute detectors invoked at
or after t1 have a benchmark-specific maximum that they can reach. For QSort,
this upper limit is at 80% of OPT’s savings.

To conclude our considerations: We should use absolute timeout detectors
that we invoke shortly after t1, where they cannot do much harm, even if they
have a high FP rate. At this point, even if they are bad at detecting stuck
programs (low TP rate), their saving potential is still high.

3 Timeout Detection Using Autocorrelation

The core idea of ACTOR is that stuck programs will probably execute in a
(rather tight) loop, whereby their instruction stream becomes periodic. If the
observed periodicity exceeds a certain threshold, which we have to choose above
the periodicities of the fault-free execution, we abort the FI experiment and
classify it as a timeout although we have not waited until 3t1. We base our
detector on Ibing et al. [16], who use autocorrelation on the branch-target his-
tory to detect stuck executions on the fly. We adapt this technique for the FI
context to achieve actual end-to-end savings and chose parameters for the specific
benchmark.

Fig. 3. Autocorrelation for branch-target history. b(m) is the latest branch, while b(1)
is the oldest recorded branch. For lag 1–3, we cannot fit a periodic pattern, while with
lag 4, the pattern continues throughout the branch-target history.

First, we want to give you a brief overview of the autocorrelation, which is
often used in signal processing and statistical analysis, in the context of detecting
periodic infinite loops [16]. The authors of this article apply discrete autocor-
relation on the branch-target history instead of the full program trace, since
the sequence of jump targets is sufficient to reconstruct the full path through a
program. At a certain point in time, we look at the last m branches and com-
pare the recorded branch-target sequence with a time-lagged version of itself.

258 T.-M. Thomas et al.

The discrete autocorrelation can be simplified to a recursion Rbb(l,m), where l
is the currently examined lag :

Rbb(l,m) =

{
Rbb(l,m − l) + 1, if b(m) = b(m − l)
0, else

(1)

In a nutshell, we count, beginning from the last taken branch (b(m)), how
often we can jump l branches backwards in time before we hit a branch target
unequal to b(m). If we repeat this with different lags (e.g., l ∈ [1, 64]) on a
fixed branch history, we end up with a vector of autocorrelation values �Rbb(m).
For example, in Fig. 3, the program is stuck within an endless loop that takes
alternating conditional branches with each iteration. As the last branch target c
is taken every 4 jumps, we end up with �Rbb = 〈0, 0, 0, 4〉. If the autocorrelation
value exceeds a given threshold T , it can be classified as a timeout.

3.1 Adaption as Timeout Detector

To use autocorrelation as an absolute, dynamic timeout detector, we have to
make adaptions and choose parameters. A static 3t1 detector is used as a fall-
back for potential false negatives. The main problem with the integration is the
overhead of the detector and detection latency, as both are crucial to achieve
actual end-to-end savings.

First, we have to decide on the history length and when to execute the
autocorrelation (AC). Ibing et al. [16], which looked at natively run programs,
used the binary-instrumentation package Pin [22] to hook all branches. They
ran the autocorrelation continuously on every branch and, for a history length
of 100, they report slowdown factors of 100× to 225×, which would diminish all
savings that we could achieve with a timeout detector.

Therefore, guided by our discussion of timeout detectors (see Sect. 2.2), we
diverge in several points from Ibing et al.: (1) Since recording branches will
slowdown most FI platforms, we only start recording branches at t1 where the
execution’s population starts to dwindle quickly (see Fig. 2a). (2) From thereon,
we record branches until the branch-history buffer is filled up to a certain level
and then execute the autocorrelation exactly once. This bounds the overhead
per experiment but comes at the cost of detecting less timeouts. If ACTOR does
not detect a timeout, no further overheads are induced afterwards. Now, we only
have to choose three parameters: the history length, the maximal lag lmax, and
the threshold T at which we classify an experiment as a timeout.

For the history length m, we look at the development of the population
size (Fig. 2a). As we have argued that time detector should run shortly after
t1, we choose to run the detector-invocation point at around 1.2t1. To achieve
this, we derive the size of the history buffer from the average-branch density
and the length of the golden run. For example, for a benchmark where every
tenth instruction is a branch and t1 = 1000 instrs., we set the history length to
0.2 · 1000

10 = 20 branches. Please note that, since the faulty programs can deviate
from the original program, the branch buffer can be filled before or after 1.2t1.

ACTOR 259

The second parameter that we have to choose is the maximal lag lmax. With
a large lmax, our detector becomes sensitive to patterns with a larger periodicity,
which we expect to result in more brittle decisions (higher FP rate). For example,
with a lag of 128, ACTOR could detect periodic sequences that repeat only every
128 branches. Therefore, we choose our maximum lag to be 16, which also is in
concordance with our goal of detecting tight loops.

At the threshold T , we classify an experiment as a timeout, which challenges
us to choose T such that ACTOR does not trigger on regular program behavior
but is still able to detect timeouts. Since Ibing et al. [16] did not restrict the
history length, they could use a rather large threshold (i.e., T = 500) that
was applied regardless of the lag. However, with our fixed-sized history length,
Rbb(l,m) is always less than �m/l�, whereby the need for a lag-specific threshold
vector �T = (T1, . . . , Tlmax), which we will compare against �Rbb(m), arises. If any
observed value surpasses its threshold, we report a timeout.

Tl = 1 + max
s∈[0,(|H|−m)]

Rbb(l,H[s, s + m]) (2)

To calculate Tl for lag l, we find the maximum Rbb value that we observe
if we perform autocorrelation on the golden run and increase it by 1. For this,
we shift an m-sized window over the branch-target history H of the golden run
and calculate the autocorrelation. With the resulting �T , ACTOR cannot trigger
if confronted with a regular program run even if the injected fault shifts the
execution beyond t1.

3.2 FAIL* Integration

We integrated the ACTOR approach in the simulation-assisted open-source FI
framework FAIL* [25], which provides infrastructure for golden-run tracing, fault
planning, distributed and parallelized campaign execution, and result analysis.
FAIL* utilizes the independence of injections using a client-server-architecture
to highly parallelize FI campaigns. We integrated ACTOR into the IA-32 injec-
tor client, which is based on the Bochs simulator [19]. With a deterministic timer
breakpoint, we start recording the branch-target history at t1, whereby we use the
FAIL* infrastructure to record branches directly from Bochs’ simulator loop which
keeps the overheads as low as possible. The source code is publicly available.2

4 Evaluation

With our evaluation, we demonstrate that ACTOR is able to reduce the end-to-
end campaign run-times without skewing the result statistic towards the timeout
class. We use the classification results and the campaign run time of the static
3t1 detector as the ground truth and the baseline. We also show the theoretical
optimum that OPT would achieve (see Sect. 2) if invoked at injection time tf
(OPTtf) and compare ACTOR to a static detector invoked at 1.2t1.
2 https://doi.org/10.5281/zenodo.6534708.

https://doi.org/10.5281/zenodo.6534708

260 T.-M. Thomas et al.

Table 1. Quality of the failure classification. For each failure class, we report the
relative classification error compared to a static 3t1 timeout detector. For ACTOR,
we report the TP and FP rates, the percentage of experiments involving a detector
invocation (Inv.). For comparison, we also show the classification error in percentage
points that a 1.2t1 detector would exhibit.

Benchmark Classification error [Δ%] 1.2t1 detector ACTOR detector
Ben. SDC Trap TO TO [Δ%] Inv. TPR FPR

BitCount +0.00 −0.02 +0.00 +0.02 +0.04 4.69% 98.51% 93.40%

BitCount-TMR −0.21 −0.01 +0.00 +0.22 +38.14 43.86% 86.12% 0.59%

QSort −0.05 −0.35 −0.03 +0.43 +1.41 9.01% 88.55% 37.72%

SHA +0.00 −0.16 −0.11 +0.27 +13.75 27.50% 99.75% 42.29%

Blowfish (enc) −0.06 −0.12 −0.01 +0.19 +0.31 8.37% 98.27% 82.40%

Blowfish (dec) −0.07 −0.13 +0.00 +0.20 +0.28 8.21% 96.76% 84.12%

AES (enc) −0.03 −0.26 −0.11 +0.40 +0.46 5.63% 99.92% 56.39%

AES (dec) −0.07 −0.08 −0.03 +0.19 +1.49 8.51% 85.65% 5.27%

We ran seven benchmarks from the automotive and security branch of the
MiBench [10] benchmark suite on FAIL*’s IA-32 backend (Bochs). Additionally,
ACTOR was also applied to a modified BitCount benchmark using triple modular
redundancy (TMR). As a fault model for this evaluation, we use uniformly-
distributed single-bit flips in registers and memory, and classify the failure into
benign, SDC, trap, and timeout (TO). For the evaluation, we also record whether
a timeout was detected by ACTOR or by the static fall-back 3t1 detector. We
performed the FIs on a 17-node Intel X5650 @ 2.67GHz (12 cores) cluster,
leading to 204 simultaneously run simulations. Timestamps were both taken in
simulated instructions and in wall-clock time.

First, we look at the influence of ACTOR on the failure-classification statistic
(see Table 1, Δ%). In total, we see that ACTOR has only a small impact on
the failure classification over all benchmarks and that it shifts less than 0.5%
of all FIs from another failure class into the timeout class. We also see that
our invocation strategy (at around 1.2t1) successfully restricts the usage of the
ACTOR detector to less than 10% of all experiments. Only for SHA, which
exhibits a high number of long-running timeouts (see Fig. 1a), and BitCount-
TMR, which naturally has a longer runtime when one of the results is corrupted,
our detector is invoked more often. Furthermore, the ACTOR detector is very
good (TPR > 85%) at aborting experiments that would still execute at 3t1. In
all cases, the static 1.2t1 detector, which is invoked at around the same time as
ACTOR, shifts more experiments into the TO class.

However, the FP rate of our ACTOR detector varies widely between 1 to 94%,
which means that ACTOR marks experiments as timeouts although they would
eventually result in a different classification before 3t1. We still achieve good
results for the classification error for two reasons: (1) we invoke the detector
only on a small share of experiments (see Table 1, Inv.), and (2) from these

ACTOR 261

experiments, only a small share will yield a non-timeout (e.g. Fig. 2a). Therefore,
even a large FP rate yields small changes in the result. We will discuss the FP-
rate issue in more detail in Sect. 5.

Table 2. Campaign run-time reductions. Besides the achieved end-to-end savings (w/
overheads), we show the reduction of simulator time for ACTOR, the OPTtf -detector,
and a 1.2t1 detector. We also quantify the autocorrelation with the history length
(H-Ln.), the average abort lag lavg, and the run-time cost.

Benchmark Autocorrelation Sim. post-inj. instr. [%] E2E saving
H-Ln. lavg Cost ACTOR 1.2t1 OPTtf

BitCount 2 705 4.0 64 µs −13.1 −17.3 −25.2 −12.66%
BitCount-TMR 5 296 4.6 62 µs −9.9 −14.6 −21.1 −7.39%
QSort 1 385 1.6 53 µs −19.5 −23.3 −32.3 −16.07%
SHA 1 766 1.0 68 µs −30.6 −44.4 −61.7 −27.64%
Blowfish (enc) 1 019 9.6 67 µs −16.1 −20.7 −28.7 −15.91%
Blowfish (dec) 981 9.5 65 µs −15.8 −20.4 −28.4 −15.72%
AES (enc) 851 1.0 47 µs −17.2 −16.0 −22.2 −17.59%
AES (dec) 794 1.0 38 µs −13.1 −14.5 −20.1 −12.24%

In Table 2, we show the run-time savings that ACTOR achieves by aborting
experiments early. For the number of simulated post-injection instructions, we
reduce the campaign run time by at least 9.9% and by up to 30%. In comparison
to the theoretical optimum (OPT), ACTOR achieves a respectable reduction,
although it is invoked on average 0.7t1 time units later. In direct competition with
a 1.2t1 detector, which acts around the same time as ACTOR, we stay within
5% points (except for SHA). Please note, that ACTOR sometimes reaches bigger
savings than the static detector since executions that are stuck in a tight loop
often fill the history buffer before 1.2t1.

We are able to translate these simulation-time reduction into actual end-to-
end savings for the campaign run time by at least 9.9% and up to 30%. This
success is rooted in two design decisions: (1) The AC itself is fast (<70µs)
since we bound the lag and the branch-target history and we invoke the AC
exactly once. (2) Recording the branch-target history within the simulator loop
reduces the simulation frequency by 28%. However, as we only activate this
in the interval [1.0, 1.2] · t1, the simulation-time reductions translate well into
end-to-end savings.

5 Discussion

Clearly, the decision between aborting an experiment as a timeout and contin-
uing its execution (also beyond 3t1) is a trade-off between campaign run-time

262 T.-M. Thomas et al.

and result quality. In essence, for programs without a hard deadline, no timeout
detector can distinguish between stuck programs that will never halt and faulty-
programs that execute for a (very) long but bounded time. So, in general, there
is no ground truth for timeout detection but only similarity between different
timeout detectors. Therefore, the absolute share of timeouts is a source of uncer-
tainty in the resilience assessment of a program and the campaign designer has
to decide whether the observed uncertainty is acceptable in the current design
stage.

Without ACTOR, the only way to reduce the number of timeouts and to
classify more experiments as non-timeouts is to prolong the observation time.
With ACTOR, we are able to achieve campaign run-times similar to an aggres-
sive 1.2t1 detector (see Table 2), but at timeout rates close to the 3t1 detector
(see Table 1). For example, in the best case (SHA), we produce 13% points less
timeouts than 1.2t1 while the end-to-end campaign run time reduces by 27%.
Therefore, a viable route for a campaign designer is to use ACTOR in combina-
tion with a 3t1 fall-back detector. If the timeout rate exceeds his safety margins,
e.g. those required by a certain standard, he can re-run aborted experiments
with an ACTOR-variant that gets activated later (e.g., 1.4t1).

The other important aspect to discuss is the widely varying FP rate of our
AC-based detector, which sometimes results in high (>80%) FP rates. These FPs
stem from the detection principle of ACTOR to abort highly periodic executions.
For our non-TMR benchmarks, which perform no error mitigation, timeouts
occur if the injected fault hits a loop counter that prolongs the execution by a
certain time depending on the flipped bit: least-significant bit (LSB) flips pro-
long the execution only slightly, while a most-significant bit (MSB) hit results in
a large number of additional iterations. While both injections result in a highly-
periodic branch pattern, which triggers ACTOR, some experiments still termi-
nate before 3t1. In our eyes, the categorization of those injections as timeouts at
3t1 is quite arbitrary as they could still terminate with an SDC or a benign after
this static time mark. We basically chose 3t1 as our “ground truth”, because it
best reflects the numbers commonly reported in the literature [6,17,23,24].

To put these results in more context, we build the TMR-protected variant
of BitCount, which actively schedules a third execution on a detected error,
whereby 86% of the executions at 1.2t1 will terminate before 3t1. While this is
a similar execution-prolongation pattern as a loop-counter injection, ACTOR is
able to differentiate with a very low FPR of 0.59% between the third execution
and a behavior that leads to a timeout. Therefore, we conclude that ACTOR is
well suited to work on benchmarks with enabled mitigation techniques – which
are of special interest for the campaign designers.

ACTOR is furthermore limited to FI scenarios where a fault-free execution
trace is available, which we use to derive the detector parameters (H and �T).
If those parameters can be chosen otherwise, ACTOR can also be used without
a trace. Furthermore, we found the third parameter lmax = 16 worked quite
well for our benchmarks. However, for SUTs with many convoluted loops and
conditional branches a higher limit could be chosen to detect more timeouts.

ACTOR 263

A threat to the external validity is our limited selection of benchmarks, which
we chose from the automotive and security branch of the MiBench suite [10] and
which is generally considered to be representative for applications in safety-
critical environments. We also evaluated ACTOR only on the ISA level. How-
ever, ACTOR can be generalized to other levels (e.g., RTL, gates) as long as a
mechanism to collect branch targets (i.e., branch-target buffer) is available.

6 Related Work

ACTOR is a fault-outcome prediction, which makes heuristic decisions about
the outcome of a running experiment. To our knowledge, ACTOR is the first
attempt at dynamic timeout detection for the FI of transient hardware faults into
running programs; usually timeout detectors with a static execution budget [24]
are used. Nevertheless, others have proposed outcome-prediction strategies for
other failure classes. For example, SmartInjector [20] chooses predictor instruc-
tions and trigger values for which the predictor instruction will produce a benign
or SDC result. During the FI experiment, when the faulty control-flow reaches a
predictor instruction, they compare the actual value to trigger value and abort
the experiment in case. On the gate level, we [7] have proposed fault-masking
terms to detect benign faults within the first cycle after injection. GangES [13]
runs several FI experiments in parallel and looks for equal execution states in
different experiments. If two experiments have the same state, only one exper-
iment is completed and its outcome is transferred to the other. However, they
only perform matching for a limited time after injection, whereby their measures
become ineffective for experiments that become stuck late.

In a broader sense, infinite loops can, as discussed throughout the paper,
be detected by autocorrelation [16], although the original 100× to 225× over-
head makes the unmodified approach unsuitable for FI. Another approach is
Looper [4], which use an SMT theorem solver to generate non-termination for-
mulas, which are checked at run-time. However, they also report prohibitive
run-time overheads of up to 10 000×. The third route is to detect recurring pro-
gram states, which was done by Carbin et al. [5]. They record the whole program
state and report an infinite loop if that state did not change in between two loop
iterations. However, for our FI benchmarks, we have observed that timeouts
often continue to change their program state (e.g., decrementing a faulty loop
counter).

Fault pruning, which reduces the number of planned faults by choosing pilot
injections that represent a group of faults, are a different way to speed up FI
campaigns. These techniques are complementary to ACTOR. Bartsch et al. [2]
have proposed a static program analysis based on unrolled data-flow graphs
(“program netlists”) that finds faults that will surely become benign. Relyzer by
Hari et al. [12] applies heuristic known-outcome pruning to reduce the amount
of experiments but is only able to find benign, SDC and trap experiments.

264 T.-M. Thomas et al.

7 Conclusion

With this paper, we investigate on the nature of the failure classification timeout
in the context of FI campaigns for transient hardware faults. We observe that
timeouts require an over-proportional large amount of execution time, which
makes them a prime target for experiment-speedup techniques. From our anal-
ysis, we derive that timeout detectors should execute shortly after the fault-free
program run-time to achieve the highest end-to-end savings while limiting their
negative effect of the failure classification.

Based on this, we present ACTOR, an autocorrelation-based dynamic time-
out detector that detects highly-periodic branch patterns and aborts the FI
experiment early if it exceeds thresholds we derive from the golden run. Applied
to seven benchmarks from the MiBench benchmark suite, ACTOR achieves end-
to-end savings that range from 7.4% up to 27.6% in comparison to a static time-
out detector. Thereby, ACTOR maintains a low classification error of less than
0.5% points and a high (>85%) true-positive rate for experiments that can be
stopped early.

References

1. Arlat, J., et al.: Fault injection for dependability validation: a methodology and
some applications. IEEE Trans. Softw. Eng. 16(2), 166–182 (1990). https://doi.
org/10.1109/32.44380. ISSN: 0098-5589

2. Bartsch, C., Villarraga, C., Stoffel, D., Kunz, W.: A HW/SW cross-layer approach
for determining application-redundant hardware faults in embedded systems. J.
Electron. Test. 33(1), 77–92 (2017). https://doi.org/10.1007/s10836-017-5643-3

3. Berrojo, L., et al.: New techniques for speeding-up fault-injection campaigns. In:
Design, Automation and Test in Europe Conference and Exhibition, pp. 847–852.
IEEE (2002)

4. Burnim, J., Jalbert, N., Stergiou, C., Sen, K.: Looper: lightweight detection of
infinite loops at runtime. In: Automated Software Engineering (ASE 2009), pp.
161–169. IEEE Computer Society (2009). https://doi.org/10.1109/ASE.2009.87

5. Carbin, M., Misailovic, S., Kling, M., Rinard, M.C.: Detecting and escaping infinite
loops with jolt. In: Mezini, M. (ed.) ECOOP 2011. LNCS, vol. 6813, pp. 609–633.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22655-7_28

6. Di Leo, D., Ayatolahi, F., Sangchoolie, B., Karlsson, J., Johansson, R.: On the
impact of hardware faults – an investigation of the relationship between workload
inputs and failure mode distributions. In: Ortmeier, F., Daniel, P. (eds.) SAFE-
COMP 2012. LNCS, vol. 7612, pp. 198–209. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-33678-2_17 ISBN: 978-3-642-33678-2

7. Dietrich, C., Schmider, A., Pusz, O., Payá-Vayá, G., Lohmann, D.: Cross-layer
fault-space pruning for hardware-assisted fault injection. In: 55th Annual Design
Automation Conference (DAC 2018). ACM Press (2018). https://doi.org/10.1145/
3195970.3196019. ISBN: 978-1-4503-5700-5/18/06

8. Ebrahimi, M., Sayed, N., Rashvand, M., Tahoori, M.B.: Fault injection accelera-
tion by architectural importance sampling. In: Hardware/Software Codesign and
System Synthesis (CODES+ISSS), pp. 212–219. IEEE (2015). https://doi.org/10.
1109/CODESISSS.2015.7331384

https://doi.org/10.1109/32.44380
https://doi.org/10.1109/32.44380
https://doi.org/10.1007/s10836-017-5643-3
https://doi.org/10.1109/ASE.2009.87
https://doi.org/10.1007/978-3-642-22655-7_28
https://doi.org/10.1007/978-3-642-33678-2_17
https://doi.org/10.1007/978-3-642-33678-2_17
https://doi.org/10.1145/3195970.3196019
https://doi.org/10.1145/3195970.3196019
https://doi.org/10.1109/CODESISSS.2015.7331384
https://doi.org/10.1109/CODESISSS.2015.7331384

ACTOR 265

9. Gunneflo, U., Karlsson, J., Torin, J.: Evaluation of error detection schemes using
fault injection by heavy-ion radiation. In: 19th International Symposium on Fault-
Tolerant Computing (FTCS-2019), pp. 340–347. IEEE Computer Society Press,
June 1989. https://doi.org/10.1109/FTCS.1989.105590

10. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown,
R.B.: MiBench: a free, commercially representative embedded benchmark suite.
In: Fourth Annual IEEE International Workshop on Workload Characterization,
WWC-4, pp. 3–14, December 2001. https://doi.org/10.1109/WWC.2001.990739

11. Guthoff, J., Sieh, V.: Combining software-implemented and simulation-based fault
injection into a single fault injection method. In: 25nd International Symposium
on Fault-Tolerant Computing (FTCS-25), pp. 196–206. IEEE Computer Society
Press, June 1995. https://doi.org/10.1109/FTCS.1995.466978

12. Hari, S.K.S., Adve, S.V., Naeimi, H., Ramachandran, P.: Relyzer: exploiting
application-level fault equivalence to analyze application resiliency to transient
faults. ACM SIGPLAN Not. 47, 123–134 (2012). https://doi.org/10.1145/2189750.
2150990

13. Hari, S.K.S., Venkatagiri, R., Adve, S.V., Naeimi, H.: GangES: Gang error simula-
tion for hardware resiliency evaluation. In: ACM/IEEE 41st International Sympo-
sium on Computer Architecture, ISCA 2014, Minneapolis, MN, USA, 14–18 June
2014, pp. 61–72. IEEE Computer Society (2014). https://doi.org/10.1109/ISCA.
2014.6853212

14. IEC. IEC 61508 - Functional safety of electrical/electronic/programmable elec-
tronic safety-related systems. International Electrotechnical Commission, Decem-
ber 1998

15. ISO 26262-9: ISO 26262-9:2011: Road vehicles - functional safety - part 9: auto-
motive safety integrity level (ASIL)-oriented and safety-oriented analyses. Interna-
tional Organization for Standardization, Geneva, Switzerland (2011)

16. Ibing, A., Kirsch, J., Panny, L.: Autocorrelation-based detection of infinite loops
at runtime. In: IEEE International Conference on Dependable, Autonomic and
Secure Computing, pp. 368–375. IEEE Computer Society (2016). https://doi.org/
10.1109/DASC-PICom-DataCom-CyberSciTec.2016.78

17. Kaliorakis, M., Tselonis, S., Chatzidimitriou, A., Foutris, N., Gizopoulos, D.: Differ-
ential fault injection on microarchitectural simulators. In: 2015 IEEE International
Symposium on Workload Characterization, IISWC 2015, Atlanta, GA, USA, 4–6
October 2015, pp. 172–182. IEEE Computer Society (2015). https://doi.org/10.
1109/IISWC.2015.28

18. King, S.T., Dunlap, G.W., Chen, P.M.: Debugging operating systems with time-
traveling virtual machines (awarded general track best paper award!). In: 2005
USENIX Annual Technical Conference, pp. 1–15 (2005). http://www.usenix.org/
events/usenix05/tech/general/king.html

19. Lawton, K.P.: Bochs: a portable PC emulator for Unix/X. Linux J. (29), 7 (1996)
20. Li, J., Tan, Q.: SmartInjector: exploiting intelligent fault injection for SDC rate

analysis. In: Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT 2013), pp. 236–242. IEEE Computer Society Press, October 2013. https://
doi.org/10.1109/DFT.2013.6653612

21. Li, X., Huang, M.C., Shen, K., Chu, L.: A realistic evaluation of memory
hardware errors and software system susceptibility. In: 2010 USENIX Annual
Technical Conference (2010). https://www.usenix.org/conference/usenix-atc-10/
realistic-evaluation-memory-hardware-errors-and-software-system

22. Luk, C.-K., et al.: Pin: building customized program analysis tools with dynamic
instrumentation. ACM SIGPLAN Not. 40(6), 190–200 (2005)

https://doi.org/10.1109/FTCS.1989.105590
https://doi.org/10.1109/WWC.2001.990739
https://doi.org/10.1109/FTCS.1995.466978
https://doi.org/10.1145/2189750.2150990
https://doi.org/10.1145/2189750.2150990
https://doi.org/10.1109/ISCA.2014.6853212
https://doi.org/10.1109/ISCA.2014.6853212
https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2016.78
https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2016.78
https://doi.org/10.1109/IISWC.2015.28
https://doi.org/10.1109/IISWC.2015.28
http://www.usenix.org/events/usenix05/tech/general/king.html
http://www.usenix.org/events/usenix05/tech/general/king.html
https://doi.org/10.1109/DFT.2013.6653612
https://doi.org/10.1109/DFT.2013.6653612
https://www.usenix.org/conference/usenix-atc-10/realistic-evaluation-memory-hardware-errors-and-software-system
https://www.usenix.org/conference/usenix-atc-10/realistic-evaluation-memory-hardware-errors-and-software-system

266 T.-M. Thomas et al.

23. Mansour, W., Velazco, R.: SEU fault-injection in VHDL-based processors: a case
study. In: 13th Latin American Test Workshop (LATW 2012), pp. 1–5. IEEE Com-
puter Society (2012). https://doi.org/10.1109/LATW.2012.6261258

24. Schirmeier, H., Breddemann, M.: Quantitative cross-layer evaluation of transient-
fault injection techniques for algorithm comparison. In: 15th European Dependable
Computing Conference, EDCC, pp. 15–22 (2019). https://doi.org/10.1109/EDCC.
2019.00016

25. Schirmeier, H., Hoffmann, M., Dietrich, C., Lenz, M., Lohmann, D., Spinczyk,
O.: FAIL*: an open and versatile fault-injection framework for the assessment of
software-implemented hardware fault tolerance. In: Sens, P. (ed.) 11th European
Dependable Computing Conference (EDCC 2015), pp. 245–255, September 2015.
https://doi.org/10.1109/EDCC.2015.28

26. Schirmeier, H., Rademacher, L., Spinczyk, O.: Smart-hopping: highly efficient ISA-
level fault injection on real hardware. In: 19th IEEE European Test Symposium
(ETS 2014). IEEE Computer Society Press, May 2014

27. Smith, D.T., Johnson, B.W., Profeta, J.A., Bozzolo, D.G.: A method to deter-
mine equivalent fault classes for permanent and transient faults. In: Reliability
and Maintainability Symposium, pp. 418–424. IEEE (1995). https://doi.org/10.
1109/RAMS.1995.513278

28. Sridharan, V., Stearley, J., DeBardeleben, N., Blanchard, S., Gurumurthi, S.: Feng
shui of supercomputer memory: positional effects in DRAM and SRAM faults. In:
High Performance Computing, Networking, Storage and Analysis, SC 2013, pp.
22:1–22:11. ACM Press, New York (2013). ISBN: 978-1-4503-2378-9. https://doi.
org/10.1145/2503210.2503257

29. Ziade, H., Ayoubi, R.A., Velazco, R.: A survey on fault injection techniques. Intl.
Arab J. Inf. Technol. 1(2), 171–186 (2004)

https://doi.org/10.1109/LATW.2012.6261258
https://doi.org/10.1109/EDCC.2019.00016
https://doi.org/10.1109/EDCC.2019.00016
https://doi.org/10.1109/EDCC.2015.28
https://doi.org/10.1109/RAMS.1995.513278
https://doi.org/10.1109/RAMS.1995.513278
https://doi.org/10.1145/2503210.2503257
https://doi.org/10.1145/2503210.2503257

Object Detection and Perception

Formally Compensating Performance
Limitations for Imprecise 2D Object

Detection

Tobias Schuster, Emmanouil Seferis, Simon Burton, and Chih-Hong Cheng(B)

Fraunhofer Institute for Cognitive Systems, Hansastr. 32, 80686 Munich, Germany
{tobias.schuster,emmanouil.seferis,simon.burton,

chih-hong.cheng}@iks.fraunhofer.de

Abstract. In this paper, we consider the imperfection within machine
learning-based 2D object detection and its impact on safety. We address
a special sub-type of performance limitations related to the misalignment
of bounding-box predictions to the ground truth: the prediction bound-
ing box cannot be perfectly aligned with the ground truth. We formally
prove the minimum required bounding box enlargement factor to cover
the ground truth. We then demonstrate that this factor can be mathe-
matically adjusted to a smaller value, provided that the motion planner
uses a fixed-length buffer in making its decisions. Finally, observing the
difference between an empirically measured enlargement factor and our
formally derived worst-case enlargement factor offers an interesting con-
nection between quantitative evidence (demonstrated by statistics) and
qualitative evidence (demonstrated by worst-case analysis) when arguing
safety-relevant properties of machine learning functions.

Keywords: Safety · Object detection · Deep learning · Post-processing

1 Introduction

Safety has become a crucial factor in the deployment of automated driving (AD)
functions. Deep neural networks (DNNs) are widely used to implement key mod-
ules of AD functions such as object detection. It is thus essential to systemati-
cally analyze the impact of performance limitations of DNNs on the safety of the
system. The objective must be to understand residual performance limitations
of the DNN-based models such that these can be minimised during design or
compensated for in the system architecture such that they do not lead to an
unreasonable risk of hazardous system failures.

In this paper, we consider a specific class of performance limitations,
namely bounding box non-alignment in 2D object detection. Bounding box

T. Schuster and E. Seferis—Equal contribution.
This work is funded by the Bavarian Ministry for Economic Affairs, Regional Devel-
opment and Energy as part of a project to support the thematic development of the
Fraunhofer Institute for Cognitive Systems.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Trapp et al. (Eds.): SAFECOMP 2022, LNCS 13414, pp. 269–283, 2022.
https://doi.org/10.1007/978-3-031-14835-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14835-4_18&domain=pdf
https://doi.org/10.1007/978-3-031-14835-4_18

270 T. Schuster et al.

non-alignment refers to the property where the prediction does not suitably
cover the object. This may result in safety risks, as any object not surrounded
by the prediction bounding box can be viewed as empty space, thereby induc-
ing the risk of collision. This property is typically measured during training of
the model by computing the Intersection-over-Union (IoU) ratio between the
ground-truth (GT) label bounding box and the predicted bounding box. Pro-
vided that the degree of non-alignment is bounded, which can be characterized
by the computed IoU ratio always being larger than a constant α, the key con-
tribution of this paper is to formally derive the minimum required enlargement
factor to be imposed on the prediction bounding box to fully cover the GT
label. As a consequence, by adding a conservative post-processor after the DNN
to enlarge the prediction bounding box using the derived enlargement factor, the
imprecision (to the degree governed by α) may be assumed not to have a safety
impact. The value α may be observed from the collected data and acts as a Safety
Performance Indicator (as specified in UL4600 [10]) due to the connection with
the bounding box enlargement1. The observed value α can also be further cat-
egorized depending on the operational design domain (e.g., subject to weather
conditions) and the distance to the object, thereby creating a fine-grained and
dynamically adjusted enlargement factor.

Subsequently, we consider the problem of choosing an optimal factor for
bounding-box enlargement. Following the practical observation that the motion
planner always reserves a fixed width as a safety buffer, one can utilize the buffer
and employ a smaller enlargement, provided that the combined effect of the
bounding box enlargement (from the safety post-processor) and the buffer from
the motion planner is larger than the computed bound. We show that such a
sound estimation that ensures sufficient bounding-box coverage is conditional on
an assumption over the maximum width of the detected object type (e.g., car).

Finally, we compare the formally derived enlargement factor with an enlarge-
ment factor directly measured from the training data, following the methodology
in [4]. There can be many interpretations of the difference between the two. The
measured enlargement factor to cover the GT label bounding box is smaller,
as the formal derivation considers the worst case scenario while the worst case
scenario may not be present in the training dataset. However, considering the
distance between the measured mean enlargement factor to the worst-case com-
puted factor also offers an interesting link between the quantitative evidence
(as supported by statistics) and the qualitative evidence (as supported by the
worst-case analysis), as the gap can be further rewritten by the multiple of the
standard deviation σ measured from data.

The rest of the paper is structured as follows. After reviewing related work
in Sect. 2, in Sect. 3 we summarize the basic principles of the conservative post-
processing algorithm. In Sect. 4 we derive the connection between IoU and safety

1 Precisely, when the DNN has not-so-good performance where within the collected
dataset the observed intersection-over-union α is small, one needs to enlarge the
bounding box more conservatively to ensure box coverage.

Compensating Performance Limitations for Imprecise 2D Object Detection 271

and subsequently in Sect. 5, we consider the situation where motion planners
also reserve some buffer to compensate the imprecision. Finally, we evaluate
the result by comparing the formal result with the data-driven approach using
a case study in Sect. 6, and conclude in Sect. 7 by outlining further research
opportunities.

2 Related Work

The safety of DNN-based systems is currently being addressed from a number of
different perspectives; we recommend readers to a current survey [5] conducted
by the German national project KI-Absicherung for an overview. On the method-
ology side, many results on safety argumentation use semi-formal/structural
notations with variations on argumentation strategies (to list a few [2,8,15,19]).
The value of these results is the development of generic safety argumentation
structures, where the purpose of this paper is to demonstrate implementation
aspects for a specific type of performance insufficiencies. For DNN testing, apart
from proposing concrete testing techniques [14], another key direction is to intro-
duce novel coverage criteria where the goal is to include diversified test cases
such that the computed coverage is sufficiently high. For white box coverage cri-
teria, neuron coverage [13] and extensions (e.g., SS-coverage [17]) motivated by
MC/DC coverage in classical software have been proposed. For black box cover-
age criteria, various approaches apply combinatorial testing [1,3] to argue about
the relative completeness of the test data. Readers are referred to Section 5.1 of
a recent survey paper [6] for an overview of existing results in coverage-driven
testing. However, the key issue for these coverage criteria is that they do not
have a direct connection to safety, which is in many cases task-specific. Very
recently, Lyssenko et al. [12] proposed to include a task-oriented relevance fac-
tor in the evaluation of DNNs. They used the distance from the sensor to the
object to derive a relevance metric based on the IoU with a focus on semantic
segmentation. Additionally, Volk et al. [18] defined a comprehensive safety score
by considering various factors such as quality, relevance, and reaction time. The
safety score is based on extending the basic IoU value. Again, to be used in safety
argumentation, these metrics need to be connected to concrete performance lim-
itations and to concrete applications, as suggested in safety standards such as
ISO 21448 [7]. Our result overcomes the above mentioned limitation: even for the
commonly used IoU metric, we can establish a precise and mathematically sound
connection with the safety goal by properly restricting ourselves to a particular
performance limitation of non-aligning bounding boxes.

Finally, the recent work from Cheng et al. [4] initiated the concept of safety
post-processing attached to the standard post-processor to address the insuf-
ficiency of imprecise prediction. In [4], the enlargement threshold is estimated
based on the data. This is in contrast to the concept stated in this paper where
the enlargement factor is computed using worst-case analysis. The safety guar-
antee of the data-driven approach is conditional to an assumption on the gen-
eralizability between in-sample and out-of-sample data; this is not the case for

272 T. Schuster et al.

Fig. 1. The safety post-processor is inserted between the object detector and the
motion planner. Here sensor fusion is omitted for simplicity purposes; the basic prin-
ciple still applies when sensor fusion modules are introduced.

our worst-case derivation. The data-driven and the logical approach complement
each other; in our experiments we also consider their connection.

3 Data-Driven Safe Post-processing in Addressing 2D
Object Detection Imprecision

We first review the commonly used definition of the IoU between two rectangles.

Definition 1. Given two 2D rectangles RA and RB, the intersection-over-union
is defined to be the ratio between the overlapping area of RA and RB (nominator)
and the union area of RA and RB (denominator), where area(R) denotes the area
of some region R on the 2D plane.

IoU(RA,RB) =
area(RA ∩ RB)
area(RA ∪ RB)

(1)

Within 2D object detection, the two rectangles used for calculating the IoU
are the prediction bounding box RPR and the associated GT bounding box RGT .
We also assume that all considered bounding boxes are horizontally laid out
rectangles, i.e., all rectangles are axis-aligned.

We now summarize the principle of safe post-processors (SPP) as defined
in [4] using Fig. 1, where introducing the post-processor between object detector
and motion planner is meant to compensate the performance insufficiency caused
by non-alignment between prediction bounding box and the GT label bounding box.
While the general principle is applicable also for 3D detection, in this paper we
restrict ourselves to the discussion on 2D front-view detection.

1. For each image collected in the training dataset, and for each predicted bound-
ing box (RPRi

) that only partially covers the associated GT bounding box
RGTi

but has IoU(RPRi
,RGTi

) ≥ α, the minimum enlargement factor required
to enclose the GT bounding box is measured. An illustration is shown in
Fig. 3, where RPR does not enclose RGT : RPR can be properly enlarged to
RPR′ , and the enlargement factor from RPR to RPR′ is the ratio of the two
widths (or two heights) between the two rectangles.

Compensating Performance Limitations for Imprecise 2D Object Detection 273

Fig. 2. A rectangle R (left), and it’s k-expansion R′ (right)

2. Aggregate the enlargement factor for all images in the training dataset and
for all bounding boxes analyzed in the previous step. This can be done by
taking the maximum value, in the following denoted as kmax,data, or by taking
the mean value kμ,data plus some additional buffer if desired.

3. Finally, add an SPP unit after the standard bounding box detector, as illus-
trated in Fig. 1. During operation, for each image captured by the camera
sensor, the SPP always enlarges each predicted bounding box by the factor
computed in the previous step.

This method for determining the enlargement factor is learned/measured from
the training data, while in the following section we will describe a method that
computes the required enlargement factor by conservatively considering, under
the condition where IoU(RPR,RGT) ≥ α, all possible overlapping scenarios.

4 Mathematically Associating the IoU Metric and Safety

In this section, we present the key result of the paper, namely the formal deriva-
tion of the minimum enlargement factor required to fully cover the ground truth
bounding box (a situation we refer to as “safe” w.r.t. the coverage of the GT
bounding boxes) under the condition IoU ≥ α, by considering the theoretical
worst case scenario.

4.1 The Mathematical Connection Between IoU and Safety

We first formally define the enlargement factor with the help of Fig. 2. Consider
a rectangle R with center O, half-width w and half-height h, as depicted on the
left of Fig. 2. Then the definition of an enlargement factor can be stated using
Definition 2. The enlarged rectangle R′ is shown on the right of Fig. 2. Note that
this is equivalent to multiplying the length and width of R by k, while keeping
the center fixed.

Definition 2. The k-expansion (k ≥ 1) transforms a rectangle R to a new rect-
angle R′ by keeping the center O fixed while multiplying w, h by k, i.e., w′ = k ·w,
h′ = k · h. The value k is called the enlargement factor.

274 T. Schuster et al.

Fig. 3. The ground-truth labeling bounding
box RGT , prediction RPR, and the k-expanded
prediction RPR′ that covers RGT .

Fig. 4. A special case where RGT

and RPR have the same height.

Assuming that no safety-aware post-processing exists, a complete enclosure
of an object (in training or testing, an object is represented by the GT label)
by the predicted bounding box is necessary to achieve safe detection. However,
when considering a safety-aware post-processing step that enlarges the predicted
bounding box by a certain margin, the risk due to a small amount of imprecision
in detection can be compensated by the enlargement strategy. As a consequence,
the IoU metric could still be used to determine a safe detection and leads to the
following research question:

Question 1. Within 2D object detection, assume that a ground-truth label RGT

is intersecting with the prediction RPR, both as horizontally laid out rectangles
as shown in Fig. 3, with an IoU(RGT ,RPR) ≥ α, where α ∈ (0, 1]. What is the
minimum k-expansion to be applied on RPR such that it can fully cover RGT ?

We introduce the following example as a special case, which is later used in
answering Question 1.

Example 1. Consider the ground-truth label RGT , and the prediction RPR that
is fully covered by RGT and only deviates from RGT in one direction as depicted
in Fig. 4. Let the width of RGT to be l and the height to be h and let the
prediction width be αl with α ≤ 1. What is the minimum k-expansion so that
the k-expanded RPR covers RGT ?

Solution to Example 1. Note that the height dimension is already covered, there-
fore, we focus on the width. Currently, the half-width of RPR is w = αl

2 . In order
to cover RGT , the half-width w of RPR has to increase by the distance l − αl, to
reach the bottom-right corner of RGT to cover it. Thus, the new half-width will
be w′ = w + (l − αl), and the minimum k value is:

k =
w′

w
=

αl
2 + l − αl

αl
2

=
2 − α

α

Moreover, noticing that the IoU in this case is exactly α, we can also express k
in terms of the IoU:

k =
2 − IoU(RPR,RGT)
IoU(RPR,RGT)

(2)

��

Compensating Performance Limitations for Imprecise 2D Object Detection 275

Before extending the previous example to the general case of Question 1, we
introduce the following Lemma 1, which states that an axis-aligned rectangle
contained in a larger axis-aligned rectangle will still be contained when enlarg-
ing both rectangles by the same factor k ≥ 1. This is based on the fact that
the expansion does not change the center for R′ and R. Therefore, when both
rectangles enlarge themselves by an identical constant factor, the original area
containment relation remains. The complete proof can be found in the extended
version [16].

Lemma 1. Consider an axis-aligned rectangle R, and a second axis-aligned rect-
angle R′ that contains R. The region containment relation holds subject to the
k-expansion, i.e., the k-expanded R will still be contained in the k-expanded R′,
for any k ≥ 1.

We now state the main theorem and its proof answering Question 1, where
it turns out that the situation stated in Example 1 actually characterizes the
theoretical worst case scenario concerning the prediction bounding box and the
GT label.

Theorem 1. Let α ∈ (0, 1] be a constant, and let RPR and RGT be the axis-
aligned prediction and ground-truth bounding boxes that satisfy the following
constraint:

IoU(RPR,RGT) ≥ α

Then the minimum required k-expansion for RPR to cover RGT is characterized
by k = 2−α

α .

Proof. There are many different cases for the intersection and union between the
prediction and the GT rectangles (e.g., prediction overlapping with GT, predic-
tion completely inside GT, etc.). Therefore, we start the proof by considering
the relation between the GT label and the intersection, not the prediction. This
leads to a simplified sub-problem which we can easily solve to find the required k
value. Subsequently, by using Lemma 1, we extrapolate from the intersection to
the prediction bounding box and finally we show the tightness of the result.

We denote the intersection of RGT and RPR as RI , and their union by RU .
Moreover, we denote the areas of RGT , RI and RU as area(RGT), area(RI) and
area(RU). From Definition 1 of the IoU, we derive:

IoU(RGT ,RPR) =
area(RI)
area(RU)

≥ α (3)

Since area(RU) is always larger or equal to area(RGT), we derive:

α ≤ IoU(RGT ,RPR) =
area(RI)
area(RU)

≤ area(RI)
area(RGT)

⇔ area(RGT) ≤ area(RI)
α

(4)

Consider now the intersection and the GT label as shown in Fig. 5. Note
that Fig. 5 represents only one case; in fact, the only prerequisite for the proof

276 T. Schuster et al.

Fig. 5. Example ground-truth (black)
and intersection (blue) rectangle.
(Color figure online)

Fig. 6. The two line segments xGT , xI and the
distance d between their (right) endpoints.

is that the intersection is contained in RGT -its exact location does not change
the proof. Let xGT and yGT be the width and height of RGT , and let xI and
yI be the width and height of the intersection RI respectively (s. Fig. 5). Let
rx = xGT /xI be the ratio of the widths of RGT and RI , and ry = yGT /yI the
ratio of the heights of RGT and RI . Then, the area of RGT in terms of rx, ry is
given by Eq. 5.

area(RGT) = xGT · yGT = rxxI · ryyI = rxry(xI · yI) = rxryarea(RI) (5)

From Eq. 4 it is known that area(RGT) ≤ area(RI)/α, thus, combining it with
Eq. 5, we get Formula 6.

area(RGT) = rxryarea(RI) ≤ area(RI)
α

⇔ rxry ≤ 1
α

(6)

That is, the product of rx, ry is bounded by 1
α . Since rx ≥ 1, ry ≥ 1 (the

intersection is contained in GT and cannot be larger than GT), the maximum
value one can take for one of these ratios is 1

α . Without loss of generality, we
consider the width (the proof can be derived for the height in the same way).
That is, xGT is at most xI

α due to the following inequality:

xGT = rxxI ≤ 1
α

· xI =
xI

α
(7)

Given the above result, how much do we need to k-expand xI in order to
cover xGT ? Now, we can focus solely on the line segments xGT and xI , as shown
in Fig. 6. For xI to cover xGT , we must add the distance d from the endpoint of
xI up to the endpoint of xGT . This distance is at most d ≤ dmax = xGT − xI ,
since xI is contained within xGT , and the maximum possible distance occurs
when xI and xGT align on one side. Therefore, the original half-width wI = xI

2
of the intersection must increase at most by a distance dmax = xGT −xI , leading
in the worst case (i.e. in the case requiring maximal enlargement) to the following
enlarged half-width obtained by Formula 7:

w′
I ≤ wI + dmax = wI + xGT − xI ≤ wI + xI(

1
α

− 1) ⇒

w′
I,max = wI + xI(

1
α

− 1)
(8)

Compensating Performance Limitations for Imprecise 2D Object Detection 277

With this, the worst-case expansion factor k for RI to cover RGT will be

k =
w′

I,max

wI
=

wI + xI(1
α − 1)

wI
⇒

k =
xI

2 + xI(1
α − 1)

xI

2

⇔

k =
xI + 2xI(1

α − 1)
xI

⇔

k = 1 + 2(
1
α

− 1) =
2
α

− 1 ⇔

k =
2 − α

α

(9)

Now, the rectangle that should be expanded is the prediction RPR, not the
intersection RI . However, due to Lemma 1, since RPR contains the intersec-
tion RI , the k-expanded RPR will contain the k-expanded intersection, which in
turn contains RGT . Thus, expanding RPR by k can also cover RGT in all cases.

Finally, the bound k obtained in Eq. 9 for expanding RPR is tight, since there
are cases such as Example 1 where k = 2−α

α is necessary. ��
The consequence of Theorem 1 is that by inverting Question 1, one can

compute a safe IoU threshold based on a fixed k value2. From now on, the
theoretically derived k value using Theorem 1 will be denoted as kmath.

Note that Theorem 1 considers the expansion for a single object. The validity
of the argument does not change when one has multiple objects that overlap: If
every object is fully covered by its bounding box, then object coverage is again
ensured.

5 Connecting Motion Planners with Safety
Post-processing

In this section, we present the mathematical relation between motion planning
and safety-aware post-processing. As can be seen in Fig. 1, after the prediction
bounding boxes are enlarged by the SPP, the enlarged predictions are then passed
to the motion planner that can also add a physical buffer before planning the
trajectory. However, the formally derived k value in Sect. 4.1 assumes no extra
motion planner buffer to be applied to the enlarged bounding box. If the motion
planner always adds a physical buffer to the enlarged bounding box, it is not
required to apply the SPP with a k value following Theorem 1. More precisely,
as long as the effect of the SPP and the motion planner is larger than the k
value from Theorem 1, the prediction can be considered safe.

Precisely, let kres,W be the (residual) enlargement factor for the width (sim-
ilar methodology is equally applicable to height) when considering the physical

2 Due to space limits, we refer readers to the extended version [16] for further details.

278 T. Schuster et al.

buffer XW to be added by the motion planner to each bounding box on both
sides, as seen in Fig. 7. Furthermore, we consider that a prediction bounding box
RPR of an object has an initial physical width of W . After applying kres,W , the
new width is W ·kres,W . Finally, considering the motion planner buffer, the final
width is 2XW + Wkres,W . Then, the effect of SPP and motion planner can be
characterized by Eq. 10, which requires that the total enlargement factor due to
the SPP and the motion planner exceeds the given enlargement threshold kmath

derived from Theorem 1. For simplicity, in this paper we further assume that all
objects as well as the point-of-view are placed on a flat surface environment.

2XW+Wkres,W

2
W
2

≥ kmath ⇔

2XW

W
+ kres,W ≥ kmath

(10)

Fig. 7. Motion planner buffer enlarge-
ment on top of safety post-processing.
RPR denotes the predicted bounding
box, RPR′ the k-expanded RPR and
RPR′′ the RPR′ with additional motion
planner buffer XW .

Further, by transforming Eq. 10 we
derive the kres,W value to be used by
the SPP in Eq. 11. As one can see, the
smallest kres,W enabling object coverage
is determined by the lower bound of com-
bined enlargement k as well as the phys-
ical motion planner buffer XW , and is
conditional on an assumption over the
maximum observed width Wmax of the
detected object type, e.g.,“car”. Further-
more, note that the SPP does not decrease
the bounding box size, leading to the
constraint in Eq. 12. Combining Eqs. 11
and 12 leads to the minimum kres,W

ensuring object coverage and denoted as
kres,W,min, which is determined in Eq. 13.

kres,W ≥ kmath − 2XW

W
(11)

kres,W ≥ 1 (12)

kres,W,min = max

(
kmath − 2XW

Wmax
, 1

)
(13)

Situations when Wmax appears can be computed analytically. Consider the
identified object to be of class “car”. One can derive that the largest observed
width occurs when a “car” object satisfies the following two conditions:

– The car’s diagonal has maximum length.
– The car’s diagonal is oriented 90 degree towards the ego vehicle’s front-facing

axis.

Compensating Performance Limitations for Imprecise 2D Object Detection 279

As an example, let the physical buffer be XW = 50 cm and kmath(α = 0.5) =
3. According to German traffic law, the largest “car” has a width of 250 cm
and a length of 700 cm. Therefore, the largest observed object width will be
the diagonal, i.e., Wmax,car =

√
7002 + 2502 = 743 cm.3 These considerations

result in the enlargement factor kres,W,min,car = 2.87 for the object with type
“car”. For any other “car” object with an observed width W ′

car ≤ Wmax,car, the
combined enlargement is larger or equal to kmath.

2XW

W ′
car

+ kres,W,min,car ≥ 2XW

Wmax,car
+ kres,W,min,car = kmath (14)

Here we omit further details, but a similar analysis technique can be applied
for the height of the detected objects. Finally, the similar analysis technique is
also applicable for data-driven SPP as stated in Sect. 3: instead of taking the
formally derived kmath in Theorem 1, one simply replaces kmath by a measured
value such as kmax,data.

6 Evaluation

We perform an empirical study to understand the difference between an empir-
ically measured enlargement factor (s. Sect. 3) and our formally derived worst-
case enlargement factor (using Theorem 1). On the whole, this offers an interest-
ing connection between the quantitative evidence (demonstrated by statistics)
and qualitative evidence (demonstrated by worst-case analysis).

For the case study, we choose YOLO V5s [9], a single-stage object detec-
tor pretrained on the COCO dataset [11]. Moreover, we use a small automotive
image dataset4 generated with the CARLA5 simulator, containing 820 training
images and 208 test images with objects of the classes bike, motorbike, traffic
light, traffic sign and vehicle which was split into car and truck. The dataset is
generated via driving in autopilot, taking images from the ego vehicle’s perspec-
tive and the bounding box labels were generated from the semantic segmentation
information, successively manually adjusted and corrected. All other hyperpa-
rameters maintain their default values (and are not tuned as we are not interested
in finding the best model but rather want to show the connection between IoU
and safety). For training and validation, we apply a 90–10 split, resulting in
738 and 82 images for the respective datasets. For generating the predictions
on the training dataset, we set the standard post-processing parameters confi-
dence threshold and non-maximum suppression threshold to be 0.5. Based on
3 Based on the analysis, for low IoU values, the required expansion factors can be

very large. For example, for α = 0.4, Eq. 9 would give an enlargement factor of
kmath = 4, thus a vehicle with a bounding box of length w = 5m would be enlarged
to w′ = 20m, which is forbiddingly large in practice. Hence, for meaningful practical
applications, the implication of our result is the need of high IoUs within the collected
dataset.

4 https://github.com/DanielHfnr/Carla-Object-Detection-Dataset.
5 https://carla.org/.

https://github.com/DanielHfnr/Carla-Object-Detection-Dataset
https://carla.org/

280 T. Schuster et al.

Table 1. The formally derived and measured k values for the object class “car”.

IoU 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

kmath 19.000 9.000 5.667 4.000 3.000 2.333 1.857 1.500 1.222

kmax,W,data 4.400 2.360 2.360 2.360 2.261 2.000 1.588 1.444 1.128

kµ,W,data 1.083 1.078 1.078 1.078 1.075 1.070 1.057 1.044 1.023

σW,data 0.176 0.130 0.130 0.129 0.118 0.105 0.078 0.058 0.030

kµ,W,data + 3σW,data 1.612 1.468 1.468 1.464 1.428 1.383 1.291 1.216 1.112

kµ,W,data + 6σW,data 2.141 1.857 1.857 1.850 1.780 1.697 1.524 1.389 1.202

the above configuration, for a given IoU threshold value α from 0.1 to 0.9, we
have conducted the following experiments for the width of the object class “car”:

1. Mathematical worst-case enlargement factor. First, we derive the math-
ematical worst-case k value kmath following Theorem 1 where no physical
buffer is assigned. The results are reflected in the first row of Table 1.

2. Data-enabled worst-case enlargement factor. We further use the
method in Sect. 3 to derive the measured worst-case k value where no phys-
ical buffer is assigned. kmax,W,data records the maximum observed enlarge-
ment factor for width in the second row of Table 1.

3. Data-enabled average enlargement factor. We again use the method in
Sect. 3 to derive the measured average k value kμ,W,data and the standard
deviation σW,data for width where no physical buffer is assigned. They are
recorded in Table 1, row three and four. Additionally, we record the measured
average k value plus three times the standard deviation (kμ,W,data+3σW,data)
and plus six times the standard deviation (kμ,W,data +6σW,data), with values
stored in Table 1, row five and six.

4. Combined effect of SPP and motion planner. Lastly, we investigate the
combination of SPP and motion planner buffer by analyzing the influence
of the physical buffer for width XW on the kres,W,min values.

Mathematical and Measured Enlargement Factors. We first compare the
measured and formally derived k values by comparing the first and the second
rows of Table 1.

Without surprise, we can observe that kmath > kmax,W,data, i.e., all k val-
ues observed on the data are lower than the theoretical ones. This is expected
since the mathematically derived k-expansion factor provably considers all pos-
sible cases, but these worst cases rarely appear in reality. Moreover, one can
observe that for an increasing IoU threshold, the measured values kmax,W,data

and kμ,W,data decrease, similarly to the mathematical value kmath, as the pre-
dicted bounding boxes deviate less from the GT bounding box with increasing
IoU. Additionally, we observe the following points:

1. For high IoU thresholds such as 0.8 or 0.9, the measured worst case
value kmax,W,data and kμ,W,data + 6σW,data are only slightly lower than the

Compensating Performance Limitations for Imprecise 2D Object Detection 281

Fig. 8. Histogram of kW,data values for
class “car” at IoU ≥ 0.5.

Fig. 9. The relation between kres,W,min

and XW for class “car” with respect to
varying IoU values.

theoretical worst case value kmath. Considering low IoU values such as 0.1
or 0.2, we observe the opposite; the measured worst case value kmax,W,data

and kμ,W,data + 6σW,data are significantly lower than the theoretical worst
case kmath.6

2. From the distribution of measured k values kW,data, e.g. for IoU ≥ 0.5 in
Fig. 8, we can observe that it is a one-sided distribution with the majority of
values close to one. Still, the probability of requiring a large k value is low.

3. We see that for any IoU threshold, the distance between kmath and kmax,W,data

is always larger than three standard deviations σW,data, except for IoU ≥ 0.8.

Connecting SPP and Motion Planner. We present the results of experi-
ment 4 on the connection between the SPP and the motion planner buffer. For
different IoU thresholds and kmath values, assuming a maximum observed “car”
width of Wmax,car = 7.43m, we can derive kres,W,min,car as a function of the
physical buffer XW using Eq. 13. The result is visualized by Fig. 9, where we
plot kres,W,min,car with respect to XW for various IoU thresholds.

From Fig. 9, we can observe that kres,W,min,car = 1 when the physical buffer
exceeds a certain value. Indeed, as we can also see from Eq. 13, when the physi-
cal buffer becomes large enough and surpasses a threshold XW,thres, the motion
planner is by itself sufficient to ensure object coverage, and no further enlarge-
ment by the SPP module is required. Otherwise, without a physical buffer, the
enlargement is purely based on the SPP module. Moreover, we can see that
this threshold value XW,thres is larger for lower IoU values. This is also rea-
sonable, since for a small IoU, a larger physical buffer is necessary to ensure
object coverage. Finally, for large IoU values such as IoU ≥ 0.9, a physical buffer

6 If we assume that the occurrence of bounding box non-alignment is a random vari-
able, and the measured mean and variance match the real ones, then from Cheby-
shev’s inequality we know that the probability of exceeding 6σW,data is below 2.78%.

282 T. Schuster et al.

of XW,thres = 0.82m or larger can already ensure object coverage. This sup-
ports the observation that when the prediction has reached a certain precision,
commonly used buffers such as 1 meter are sufficient to ensure object coverage.

7 Concluding Remarks

In this paper, we presented a formal approach to counteract the DNN perfor-
mance insufficiency regarding bounding box non-alignment. The result is subject
to the condition that the non-alignment is under control, i.e., characterized by
the computed IoU being always larger than a fixed threshold α. Practically, the
decision of the threshold is measured from the collected data at a given confi-
dence level. Based on the threshold, the main result of this paper (Theorem 1)
provides a criterion to conservatively enlarge the prediction bounding box via
an additional post-processing step after DNN-based object detection, in order
to safely cover the object. We further studied the case when the motion planner
also reserves some buffer, where the introduced post-processing and the buffer
should altogether achieve the expansion governed by Theorem 1. Altogether, the
merit of Theorem 1 is to connect the performance of the DNN (characterized
by the value α) with safety (by appropriately enlarging the bounding box or the
motion planner buffer). Having such a unified analysis ensures that the resulting
system is not acting overly conservatively without considering the capabilities
of other components. Finally, our empirical evaluation on a simulation-based
dataset showed that the mathematically derived expansion factor was mostly
larger than the one empirically measured by one standard deviation.

This work continues our vision of offering a rigorous methodology to sys-
tematically analyze performance limitations for DNNs and subsequently provide
counter-measures that are rooted in scientific rigor. We conclude by outlining
some research directions currently under investigation: (a) Consider the impact
of the IoU threshold and the post-processor with other types of DNN insuffi-
ciencies such as false negatives (disappearing objects) or false positives (ghost
objects). (b) Extend the formalism by considering the interplay among multiple
perception pipelines and the resulting sensor fusion. (c) Extend the theoretical
framework to also cover DNN insufficiencies in 3D object detection. (d) Consider
a fine-grained IoU metric and the corresponding worst-case expansion that is less
conservative.

References

1. Abrecht, S., Gauerhof, L., Gladisch, C., Groh, K., Heinzemann, C., Woehrle, M.:
Testing deep learning-based visual perception for automated driving. ACM Trans.
Cyber-Phys. Syst. 5(4), 1–28 (2021)

2. Burton, S., Gauerhof, L., Heinzemann, C.: Making the case for safety of machine
learning in highly automated driving. In: Tonetta, S., Schoitsch, E., Bitsch, F.
(eds.) SAFECOMP 2017. LNCS, vol. 10489, pp. 5–16. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-66284-8 1

https://doi.org/10.1007/978-3-319-66284-8_1

Compensating Performance Limitations for Imprecise 2D Object Detection 283

3. Cheng, C.-H., Huang, C.-H., Yasuoka, H.: Quantitative Projection Coverage for
Testing ML-enabled Autonomous Systems. In: Lahiri, S.K., Wang, C. (eds.) ATVA
2018. LNCS, vol. 11138, pp. 126–142. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-01090-4 8

4. Cheng, C.H., Schuster, T., Burton, S.: Logically sound arguments for the effective-
ness of ML safety measures. arXiv preprint arXiv:2111.02649 (2021)

5. Houben, S., et al.: Inspect, understand, overcome: a survey of practical methods
for AI safety. arXiv preprint arXiv:2104.14235 (2021)

6. Huang, X., et al.: A survey of safety and trustworthiness of deep neural networks:
Verification, testing, adversarial attack and defence, and interpretability. Comput.
Sci. Rev. 37, 100270 (2020)

7. Safety of the intended functionality - SOTIF (ISO/DIS 21448). Standard, Interna-
tional Organization for Standardization (2021)

8. Jia, Y., Lawton, T., McDermid, J., Rojas, E., Habli, I.: A framework for assur-
ance of medication safety using machine learning. arXiv preprint arXiv:2101.05620
(2021)

9. Jocher, G., et al.: ultralytics/yolov5: v4.0 - nn.SiLU() activations, weights & biases
logging, PyTorch hub integration, https://zenodo.org/record/4418161

10. Koopman, P., Ferrell, U., Fratrik, F., Wagner, M.: A safety standard approach
for fully autonomous vehicles. In: Romanovsky, A., Troubitsyna, E., Gashi, I.,
Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2019. LNCS, vol. 11699, pp. 326–332.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26250-1 26

11. Lin, T., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla,
T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1 48

12. Lyssenko, M., Gladisch, C., Heinzemann, C., Woehrle, M., Triebel, R.: From evalu-
ation to verification: towards task-oriented relevance metrics for pedestrian detec-
tion in safety-critical domains. In: CVPR Workshop, pp. 38–45. IEEE (2021)

13. Pei, K., Cao, Y., Yang, J., Jana, S.: DeepXplore: automated whitebox testing of
deep learning systems. In: SOSP, pp. 1–18. ACM (2017)

14. Pezzementi, Z., et al.: Putting image manipulations in context: robustness testing
for safe perception. In: SSRR. pp. 1–8. IEEE (2018)

15. Salay, R., Czarnecki, K., Kuwajima, H., Yasuoka, H., Nakae, T., Abdelzad, V.,
Huang, C., Kahn, M., Nguyen, V.D.: The missing link: Developing a safety case
for perception components in automated driving. arXiv preprint arXiv:2108.13294
(2021)

16. Schuster, T., Seferis, E., Burton, S., Cheng, C.H.: Unaligned but safe-formally
compensating performance limitations for imprecise 2D object detection. arXiv
preprint arXiv:2202.05123 (2022)

17. Sun, Y., Huang, X., Kroening, D., Sharp, J., Hill, M., Ashmore, R.: Structural
test coverage criteria for deep neural networks. In: ACM TECS, vol. 18, pp. 1–23
(2019)

18. Volk, G., Gamerdinger, J., Bernuth, A.v., Bringmann, O.: A comprehensive safety
metric to evaluate perception in autonomous systems. In: ITSC, pp. 1–8. IEEE
(2020)

19. Zhao, X., et al.: A Safety Framework for Critical Systems Utilising Deep Neural
Networks. In: Casimiro, A., Ortmeier, F., Bitsch, F., Ferreira, P. (eds.) SAFE-
COMP 2020. LNCS, vol. 12234, pp. 244–259. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-54549-9 16

https://doi.org/10.1007/978-3-030-01090-4_8
https://doi.org/10.1007/978-3-030-01090-4_8
http://arxiv.org/abs/2111.02649
http://arxiv.org/abs/2104.14235
http://arxiv.org/abs/2101.05620
https://zenodo.org/record/4418161
https://doi.org/10.1007/978-3-030-26250-1_26
https://doi.org/10.1007/978-3-319-10602-1_48
http://arxiv.org/abs/2108.13294
http://arxiv.org/abs/2202.05123
https://doi.org/10.1007/978-3-030-54549-9_16
https://doi.org/10.1007/978-3-030-54549-9_16

Architectural Patterns for Handling Runtime
Uncertainty of Data-Driven Models

in Safety-Critical Perception

Janek Groß1(B), Rasmus Adler1 , Michael Kläs1, Jan Reich1 , Lisa Jöckel1,
and Roman Gansch2

1 Fraunhofer IESE, Kaiserslautern, Germany
{janek.gross,rasmus.adler,michael.klaes,jan.reich,

lisa.joeckel}@iese.fraunhofer.de
2 Corporate Research, Robert Bosch GmbH, Renningen, Germany

roman.gansch@de.bosch.com

Abstract. Data-driven models (DDM) based on machine learning and other AI
techniques play an important role in the perception of increasingly autonomous
systems. Due to the merely implicit definition of their behavior mainly based on
the data used for training, DDM outputs are subject to uncertainty. This poses
a challenge with respect to the realization of safety-critical perception tasks by
means ofDDMs.A promising approach to tackling this challenge is to estimate the
uncertainty in the current situation during operation and adapt the system behavior
accordingly. In previous work, we focused on runtime estimation of uncertainty
and discussed approaches for handling uncertainty estimations. In this paper, we
present additional architectural patterns for handling uncertainty. Furthermore, we
evaluate the four patterns qualitatively and quantitatively with respect to safety
and performance gains. For the quantitative evaluation, we consider a distance
controller for vehicle platooning where performance gains are measured by con-
sidering how much the distance can be reduced in different operational situations.
We conclude that the consideration of context information concerning the driving
situation makes it possible to accept more or less uncertainty depending on the
inherent risk of the situation, which results in performance gains.

Keywords: Uncertainty quantification · Architectural patterns · Machine
learning · Safety · Autonomous systems

1 Introduction

Data-driven models (DDM) based on machine learning are an enabler for many innova-
tions. A huge field of application concerns the perception of the environment in increas-
ingly autonomous systems. Considering self-driving road vehicles, DDMs can be used,
for instance, to detect and classify traffic participants or road signs. The main issue that
limits the usage of DDMs for such perception tasks is the assurance of safety. A solution

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Trapp et al. (Eds.): SAFECOMP 2022, LNCS 13414, pp. 284–297, 2022.
https://doi.org/10.1007/978-3-031-14835-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14835-4_19&domain=pdf
http://orcid.org/0000-0002-7482-7102
http://orcid.org/0000-0003-1269-8429
https://doi.org/10.1007/978-3-031-14835-4_19

Architectural Patterns for Handling Runtime 285

that would make it possible to use DDMs for realizing safety-critical functionalities
would be extremely valuable for all industries dealing with safety.

Amajor safety concern is that DDMoutputs are subject to uncertainty due to implicit
behavioral definitions based on available training data. One promising approach to
address this safety concern is to estimate the uncertainty for a particular output dur-
ing operation and to handle it by adapting the system behavior. This approach leads to
two related challenges. The first one is how to determine uncertainty during operation in
a dependable way. The second one is how to handle estimated uncertainties by means of
behavior adaptations.Most existingwork focuses on thefirst challenge. In previouswork,
we also already proposed and evaluated a solution for estimating uncertainties during
operation [1–4]. Therefore, this paper focuses on the second challenge, i.e., uncertainty
handling and the interface to uncertainty estimation. In a previous paper, we elaborated
one possible solution for handling uncertainties [5]. In this paper, we systematically
derive alternative patterns and evaluate them by means of a simple application example.

As for the application, we will consider a distance controller for keeping a safety dis-
tance between two vehicles. Traditionally, such a distance controller is realized without
any DDM. Thus, we use this traditional approach as a reference baseline and evalu-
ate how much we could reduce the distance if we use a DDM to consider additional
information; namely, the friction coefficient of the leading vehicle. Traditionally, a fixed
worst-case value would be defined for this friction coefficient. We hypothesize that
using a dynamically estimated value instead of the worst-case value bears utility poten-
tial. However, using a DDM comes with uncertainties in the predicted friction value.
Therefore, the achievable utility gain varies depending on the level of uncertainty that is
realistically expectable and acceptable, but also on the architectural pattern we apply to
handle uncertainty at runtime. This raises the research questions we address in this work:
RQ1 – What are general patterns for dealing with DDM-related runtime uncertainty on
an architectural level? RQ2 – Which advantages and disadvantages does each pattern
have compared to (a) using worst-case approximation and (b) situation-independent
uncertainty estimates obtained at design time? RQ3 – How do relevant parameters such
as the prediction performance of the DDM and the accepted level of uncertainty affect
the perceived utility gain?

This paper offers the following contributions to answer these questions: (1) system-
atically derived architectural patterns to deal with DDM-related uncertainty and (2) an
initial evaluation of these patterns. The evaluation comprises (a) an implementation of
the distance controller example; (b) an analysis of our implementation by means of an
evaluation of the impact of parameters such as the degree of accepted uncertainty; and
(c) a comparison and discussion of the different patterns.

The paper is structured as follows: First, we will discuss related work and provide
a quantitative definition of uncertainty. Second, we will introduce the running example.
Third, we will answer RQ1 and describe the architectural patterns for handling uncer-
tainty. Fourth, we will present our approach for evaluating the patterns by means of the
example. Finally, we will present the evaluation results and use them to answer the RQ2
and RQ3 before concluding the paper.

286 J. Groß et al.

2 Related Work

Our proposed patterns for handling uncertainty estimates at runtime are related to
approaches that can provide these uncertainty estimates. They complement each other
like error detection and error handling. Our work is more closely related to approaches
that estimate uncertainties during operation for a concrete DDM output. However, there
is also a link to approaches that estimate a situation-independent general uncertainty
value at design time, e.g., by statistical testing, because the patterns are also applicable
if the uncertainty is assumed constant. Uncertainty estimates during operation can be
determined, e.g., by extending existing models like Bayesian neural networks or deep
ensembles [6], or by using model-agnostic approaches like uncertainty wrappers [1].
The latter considers a required confidence level in the uncertainty estimates, which is
preferable for safety-related contexts.

A basis for combining approaches for uncertainty estimation with approaches for
uncertainty handling is a clear interfacewith an unambiguous definition of uncertainty. In
previous work, we related uncertainty to the probability that DDM output or a statement
about the outcome is not correct [1]. More formally, uncertainty is the complement of
certainty, where certainty is a lower bound on the probability of correctness justifiable on
a given level of confidence considering the current state of knowledge. In the following,
we will use the term data-driven component (DDC) for a component that comprises a
DDM but enhances the DDM output with uncertainty information.

In this paper, we relate uncertainty to a certain safety-critical failure mode like ‘too
high’ or ‘too low’ for a given output of a DDM. Our estimated uncertainty is thus related
to the probability of a failure mode. Hereby, 100% uncertainty means that we do not
know at all whether the failure mode is present, whereas 100% failure probability means
that the failure mode is definitely there.

Our patterns for handling uncertainty abstract from the causes that contribute to
uncertainty. Their application is thus not limited to DDCs and also relates to the han-
dling of random events in the environment or other kinds of random events considered
in existing safety standards such as IEC 61508. However, following traditional safety
standards, it is not common to estimate failure probabilities during operation. Safety
analyses such as fault tree analyses are used at design time to identify the relationship
between causes and top-level system failures and perform related probabilistic reasoning.
For instance, the occurrence probability of every cause is estimated and the occurrence
probability of the top-level failure is derived. However, in practice, all this is done at
design time. The concept of component fault trees [7] supports automation of such anal-
yses by modularizing fault trees and making them composable so that compositional
fault trees can be generated and analyzed when components are composed into systems
at design time. In the context of the DEIS project [8], related runtime analyses concepts
were developed, but this work did not consider DDCs. Accordingly, runtime estimation
of uncertainty was not considered and all probabilities of causal events were statically
defined at design time.

As mentioned above, uncertainty estimation and uncertainty handling complement
each other like error detection and error handling. In this sense, the patterns for handling

Architectural Patterns for Handling Runtime 287

uncertainty are related to error handling. The latter can be seen as a special case of uncer-
tainty handling that considers only the uncertainty values 0 and 1. Reactions concerning
values in between are not considered. We address this gap with our approach.

Salay et al. propose toworkwith an impreciseworldmodel comprising a set of precise
worldmodels to handle uncertainties in perception, yet they do not further elaborate their
idea by proposing an architectural pattern that could serve as a reference to implement
their approach, neither do they investigate validity of assumptions or implications on
performance [9]. Henne et al. proposed an architectural pattern for handling uncertainties
at different stages of the perception chain [10]. These uncertainties are fed into a dynamic
dependability management component that merges outputs from the perception chain
and froma verified low-performance safety path. Compared to our patterns, this pattern is
at a much higher level of abstraction. For instance, it does not describe which uncertainty
information is delivered and how it is processed.

The Situation-Aware Dynamic Risk Assessment (SINADRA) approach uses
Bayesian networks to determine the likelihood that a possible system behavior in the cur-
rent operational situation will lead to an accident [11]. This approach is related to some
patterns that allow dynamic adaptation of a threshold for acceptable uncertainty and can
be used as an alternative solution to our patterns. The estimated uncertainties could be
fed into Bayesian networks, so the accident likelihood would consider not only uncer-
tainties due to the behavior of other traffic participants and other environmental aspects
but also the uncertainty that environmental aspects might not be perceived correctly.

As our patterns are not limited to the handling of uncertainties of DDCs, many
approaches for estimatingperceptionuncertainties couldbe compatiblewith our patterns.
However, most approaches focus on design-time estimation of uncertainty. For instance,
the work in [12] presents an approach for expressing perception uncertainties of LIDAR
by means of Bayesian networks.

3 Example Use Case

As an example for explaining and evaluating our patterns, we will consider a vehicle
function intended to ensure a safe distance to the vehicle in front. We will denote by dsafe
the safety-related distance required to avoid collisions; it is determined by the following
rule from [13]:

dsafe =
[
vFρ + 1

2
amax,acc,Fρ2 +

(
vF + ρamax,acc,F

)2
2amin,brake,F

− v2L
2amax,brake,L

]
+

(1)

where [x]+ := max{x, 0}.
The first three terms together represent the stopping distance of the follower vehicle

considering (i) the reaction distance based on follower speed vF and reaction time ρ that
is required until the follower can initiate the brakingmaneuver after the leader has started
to brake, (ii) the acceleration distance (assuming the follower constantly accelerates with
amax,acc,F during reaction time), and (iii) the follower braking distance when the follower
constantly brakes with deceleration amin,brake,F . The last term represents the leader’s
braking distance. To estimate the safe distance dsafe, we subtract the leader’s braking

288 J. Groß et al.

distance from the follower’s stopping distance. Using this formula, we can formalize the
safety constraint ‘keep a safe distance’ with dcurrent ≥ dsafe where dcurrent refers to the
current distance. To discuss the handling of uncertainties, we focus on the road friction
coefficient of the leading vehicle μL , which affects the lead vehicle’s traction during
braking. We assume that the leader’s road friction is estimated by means of a DDC, e.g.,
one of those used in the context of [14] or [15]. The following two equations concretize
the physical relationship between amax,brake,L from the safe distance formula and the
friction coefficient μL.

amax,brake,L = min

(
Fb,traction,limit,L

mL
,
Fb,brakesystem,limit,L

mL

)
(2)

Fb,traction,limit = mL · g · μL (3)

In general, the effective maximum leader deceleration limit amax,brake,L is influenced
by all driving resistance forces acting in the longitudinal direction (brake system, brake
force, air resistance, rolling resistance, road inclination resistance). For the sake of exem-
plification, Eq. (2) only considers the effective deceleration to be bound by themaximum
brake force Fb,brakesystem,limit,L the brake system is capable of generating at the wheels,
and the traction limit Fb,traction,limit,L determining how much of the generated force can
be transferred effectively to the road. Since the stronger of the two forces overcomes the
weaker one, the slippage either of the brakes or of the tires on the road is zero at any
moment in time. Thus, only the weaker of the two forces limits the overall brakeforce
and the maximal deceleration is calculated using the minimum of the two force values.
While the brake system’s limit is mainly influenced by construction, brake pad wear,
and the pedal force a driver is likely to apply, the traction limit depends on the vehicle’s
mass mL , the gravitational constant g, and the friction coefficient μL . We assume that
the friction coefficient μL of the leading vehicle is estimated by a DDM and thus subject
to uncertainty. In previous work [5], we argued that it is reasonable to use a DDM, apart
from the safety challenge that we address with our approach.

In order to apply our architectural patterns, we consider the architecture depicted in
Fig. 1, which shall ensure the safety constraint dcurrent ≥ d

∧

safe as a starting point; hereby,

d
∧

safe denotes the “determined safety distance”, i.e. the value obtained when determining
dsafe on the basis of uncertainty-affected parameters.

Fig. 1. Architectural perspective on the function ensuring the safety distance constraint

Architectural Patterns for Handling Runtime 289

A ‘safety distance controller’ receives the current distance and determined safety
distance as input. It checks whether the current distance approaches the safety distance
and sends, if required, brake commands so that the current distance does not go below
the safety distance. For this purpose, the RSS framework [13] defines the concept of
‘proper response’ to ensure that the safety distance constraint is met.

The current distance is measured directly, whereas the safety distance is derived
according to the formulas mentioned above. High-integrity distance measurements are
possible with radar sensors and are already used in series, e.g., in adaptive cruise control
systems. Accordingly, one component determines the required parameters like μL and
another component calculates the safety distance from these values.

The critical failure mode of the estimated friction coefficient μL of the leading
vehicle is ‘too low’ because the braking capability of the leading vehicle would be
underestimated, causing the safety distance to be underestimated as well. Accordingly,
we focus on the uncertainty with respect to this critical failure mode.

4 Architectural Patterns for Dealing with Uncertainty

In this section, we addressRQ1 ‘What are general patterns for dealingwith DDM-related
runtime uncertainty at an architectural level?’ by proposing and discussing patterns for
handling uncertainty. We consider the robotic paradigm sense-plan-act and focus on
the uncertainty that a safety-critical failure mode in the sensing or perception of the
environment is present. In our example case, the uncertainty that the determined friction
coefficientμL of the leading vehicle has the failure mode ‘too low’ causes an uncertainty
regarding the fulfillment of the safety constraint. The objective of all patterns is to limit
this uncertainty to an acceptable level. For the remainder of this workwewill focus onμL

as the uncertainty-affected variable and assume that other variables are either measured
with perfect accuracy or are worst-case estimates.We only consider established platoons
and disregard situations where a platoon is formed or dissolved.

Next, we will first systematically derive the patterns and then briefly discuss
implications if we need to deal with multiple uncertain variables.

We see two elementary design decisions for the patterns. The first one addresses
the interface, i.e., whether we provide a single value x and related uncertainty u or an
uncertainty distribution regarding possible values u(x). The second decision addresses
whether we assume a fixed target for the degree of acceptable uncertainty uacceptable or
consider the option that uacceptable depends on further situational information y.

In our further discussion, we will focus on the resulting alternative uncertainty han-
dlers, which are illustrated in Fig. 2, and which would be placed between the sensing
component providing the required information and the decision component using it. In
our example architecture given in Fig. 1, it would be placed between the DDC providing
μL and the component determining the safety distance.

The uncertainty supervisor shown in the top-left part of Fig. 2 receives an input
x that is estimated by a DDC. Furthermore, it receives an uncertainty u representing
the uncertainty that x has a certain failure mode. It compares this uncertainty u with a
fixed threshold uacceptable defining what is acceptable from a safety perspective. If the
uncertainty is not acceptable, it overwrites the input variable x by a default value, e.g.,

290 J. Groß et al.

the worst-case value. In our example, the variable x would be the friction coefficient
μL and the uncertainty u would refer to the failure mode ‘too low’. As default value,
we would choose a value we can assure to be the highest value (μmax) that the leading
vehicle could encounter in the intended usage context.

Uncertainty supervisor

If u>uacceptable
then xsafe = …
else xsafe = xx

xsafe

u
Adapt ive uncertainty supervisor

Case y=1
if u>uacceptable1 then xsafe =…

Case y=2
if u>uacceptable2 then xsafe =…x

x

y
u

Safety margin selector

Choose xsafe
where u = uacceptable

u(x)

Adapt ive safety margin selector

Case y=1
choose xsafe where u=uacceptable1

Case y=2
choose xsafe where u=uacceptable2

u(x)

x

y

Variable value x with related uncertainty value u

Complete uncertainty dist ribut ion u(x)

Fixed uncertainty threshold Input -dependent uncertainty threshold

Input variable
that is est imated by
a DDM with a safety
margin (e.g., µL)

Uncertainty that
the input variable
has a failure
(e.g. is too low)

xsafe

xsafe

xsafe

Uncertainty that x has
a “ too low failure”

1
u(x)

x
highest possible

value for x
(worst case)

value selected by
the safety margin

selector

most
likely
value

safety margin

Fig. 2. Checker options to implement the four architectural patterns for handling uncertainty

The adaptive uncertainty supervisor in the top-right part of Fig. 2 has an additional
input y that is used to adapt the acceptable uncertainty threshold. This can make sense
because the safety criticality of the DDC output may depend on the current operational
situation. In our example of assuring a safe distance, a rear-end collision would be less
severe if the vehicle speed is very low. Accordingly, one could think of two safety goals
addressing different situations with different integrity levels and values for uacceptable.
If we apply this approach, we need to consider that situations must not be too fine-
grained as described in clause 6.4.2.7, part 3 of ISO 26262: ‘It shall be ensured that the
chosen level of detail of the list of operational situations does not lead to an inappropriate
lowering of the ASIL [of the corresponding safety goals].’

The safety margin selector in the lower-left part of Fig. 2 receives an uncertainty
distribution, which is also illustrated in the figure. The x-axis refers to value x, e.g., the
friction coefficientμL . The y-axis assigns to each x-value the associated uncertainty u(x).
In our example, u(x) would be the uncertainty concerning the failure mode ‘too low’.
This implies that higher x values have lower uncertainties and the highest practically

Architectural Patterns for Handling Runtime 291

possible x value μmax has uncertainty zero. Based on this distribution, the safety margin
selectors choose the x such that u(x) ≤ uacceptable.

The adaptive safety margin selector in the lower-right part finally combines an
uncertainty distribution with an adaptable uncertainty threshold.

So far, we have assumed that only the friction coefficient of the leading vehicle is
estimated by aDDM.Yet, we can apply the patterns in the sameway for further uncertain
variables when assigning uncertainty to them.

Considering uncertainties from many variables, (static) budgeting of the uncertainty
threshold would lead to behavior that is not optimal in all situations. If we consider
uncertainty supervisors, in some situations some variablesmight not need the uncertainty
budget that has been assigned to them, while other variables would be overwritten as
they are just above the uncertainty threshold. If we consider safety margin selectors, we
may have a similar effect, as the safety margins are not selected optimally. An approach
to overcoming this issue is to propagate the uncertainties and then apply an uncertainty
handler after all uncertainties are combined. In our example, an uncertainty handler for
d
∧

safe would replace an uncertainty handler for μL and further input variables.
However, this requires that the ‘determine safe distance’ component appropriately

integrates the different variables and their uncertainties in the calculation of dsafe.

5 Simulation-Based Evaluation Approach

In this section we describe how we simulated the application of the previously derived
patterns to answer RQ 2 and RQ 3 in Sect. 6. To answer our RQs in the example use-case,
we need to evaluate the impact that each pattern has on the safety distance d

∧

safe when
we estimate the leader’s friction coefficient μL by means of a DDC and use the patterns
to deal with related uncertainties. For this purpose, we need to generate the parameter
values from which we can calculate dsafe. In the following, we will thus first provide
an overview of our approach to generating this information. Then we will describe the
assumptions we made, i.e., the values of the constants and the anticipated distributions.
Finally, we will report on technical aspects of our implementation.

Overview –Figure 3 illustrates the data flowof the implemented simulation approach.
As shown in the left part, we use two random variables called Weather Conditions and
Behavioral Conditions as input to allow for a variation of the considered situations.
TheWeather Conditions are used to generate situational friction information and related
uncertainty information as we assume that the friction depends on the situational weather
conditions. We vary the estimated friction value E[μ] as well as the related dispersion σ

to get a situational probability distribution. We define a situational uncertainty threshold
uacceptable in case a human is actively supervising the vehicle because we assume that
supervision allows for less strict uncertainty thresholds. The generated information is
used to apply the different patterns and calculate their output, namely the friction coef-
ficient μ

∧

safe. As illustrated in Fig. 3, we also use the Behavioral Conditions to generate
velocity values for both vehicles. These velocity values are used together with μsafe
and the predefined Safety Distance Parameters to compute the minimum required safety
distance d

∧

safe.

292 J. Groß et al.

Fig. 3. Overview of the implementation approach for answering the research questions

Assumptions – Discussing the underlying simulation assumptions, we start from
the bottom left in Fig. 3 where we defined several distributions that characterize the
simulated situations. To generate the vehicle velocities from the Behavioral Conditions,
we assumed a discrete distribution of velocities between 60 and 80 km/h in order to
comply with speed limits for commercial vehicles on German highways. We considered
only situations with established platoons where both vehicles drive at the same speed.
For specifying the acceptable uncertainty, we assumed a distribution where the driver
supervises the distance controller 50% of the operating time and uacceptable = 10−5 in
case of supervision and 10−6 in case of no supervision.

TheWeather Conditions are defined by a discrete unidimensional distribution. This
distribution describes multiple degrees of one of the four conditions: (i) dry weather, (ii)
light rain, (iii) snow, and (iv) heavy rain/freezing rain with a respective frequency of 300,
100, 60, and 5 days per year. For the distribution of Situational Friction coefficients,
we considered empirical friction measurements [16] and assumed the road conditions
dry asphalt, wet asphalt, snow/wet leaves, glaze/aquaplaning with the respective friction
coefficients 0.8, 0.64, 0.41, and 0.14. To achieve a more fine-grained distribution, we
used friction values in steps of 0.05 and derived the corresponding likelihoods from the
Weather Conditions distribution through linear interpolation.

Architectural Patterns for Handling Runtime 293

To model the inaccuracy of the DDM-based friction predictions, we assumed unob-
servable random variables including events like sensor noise or road surface irregulari-
ties leading to disparities. For simplicity, we assumed independent unobservable random
variables that influence the DDM friction prediction uncertainty. According to the cen-
tral limit theorem, the distribution of the mean of n independent and integrable random
variables converges to the normal distribution with increasing n. Thus, we assumed that
the friction coefficients are normally distributed with expected situational friction E[μ]
as mean and situational dispersion σ as standard deviation. However, both the maxi-
mal and minimal friction on the road are limited by physical constraints. We therefore
assumed μ = 0.1 as the lower limit and μ = 1.1 as the upper limit and cut off the normal
distribution at these limits. The dispersion σ is assumed to decrease linearly with better
weather conditions and higher friction values with a maximum dispersion of σ = 0.075
for glaze and a minimum of σ = 0.02 under perfect road conditions.

Further assumptions relate to the simulated DDC and the architectural patterns them-
selves. For the two uncertainty supervisors, the DDC returns a pair (μL, u) consisting
of the prediction and a corresponding uncertainty value. The uncertainty is computed
using the cumulative distribution function F of the situation-dependent friction distri-
bution where u = P(μ > μL) = 1 − F(μL). We considered a safety margin �μ with
μL = μpredicted + �μ which is determined by a grid search optimization on the safety
distance. Thereby, we chose the �μ value that minimizes the expected safety distance
over all situations. For the safety margin selector patterns, the DDC returns the inverse
of the complete uncertainty function (1 − F)−1.

For the Safety Distance Parameters that we considered as constants, we assumed a
maximum acceleration of the following vehicle of accf = 2 m

s2
and the gravity accelera-

tion of g = 9.81 m
s2
. To simulate both a highly efficient and a human-like reaction time,

we ran our simulation with either ρ = 0.1 s for use case A or ρ = 0.8 s for use case B.
Implementation – We used the programming language Python3 [17] and Jupyter

Notebooks [18] in a web-based development environment supported by interactive wid-
gets using the ipywidgets library. Using these widgets, interactive plots were created in
combination with the matplotlib [19] library for rapid prototyping. The implemented
probability distributions are specified using NumPy [20] and SciPy [21], two libraries
for linear algebra, statistics, and scientific computing in Python.

6 Study Results and Discussion

In this section, we will present and discuss the results of our simulation study based on
the study design and implementation presented in the previous section.

RQ2 – Comparison of patterns with static approaches – To estimate the expected
utility gain from dynamic handling of uncertainty and to compare the patterns for two
anticipated use cases A and B, the expected utility, measured as the expected reduction in
the required safety distance d

∧

safe, was determined using the assumed distributions over
the situational and behavioral distributions as introduced above. The observed expected
friction E(μ

∧

L) and distances E(d
∧

safe) are summarized in Table 1.

294 J. Groß et al.

Table 1. Comparison between different patterns for uncertainty handling of estimated friction
values. The columns contain safety distance calculations for use case A - platooning with a low
latency distance controller and use case B - platooning with human reaction time. Distances
are compared between scenarios that use (a) the worst-case assumption, (b) static design time
uncertainty estimates and (c) the four proposed patterns for dynamic uncertainty handling at
runtime. Each cell contains the expected minimum required safety distance and the corresponding
expected minimum safety friction that is assumed for the leading vehicle (lower is better).

Expected safety distance (expected safety friction)
Use Case A – Platooning
reaction time ρ = 100 ms

Use Case B – Default
reaction time ρ = 800 ms

(a) Worst-case 14.670 m
(1.100)

33.350 m
(1.100)

(b) DDC with static
uncertainty estimate

13.727 m
(1.060)

32.407 m
(1.060)

(c) DDC with dynamic
uncertainty estimates

Single value(,) Distribution() Single value(,) Distribution()
Constant threshold 12.649 m

(1.011)
10.638 m
(0.922)

31.329 m
(1.011)

29.318 m
(0.922)

Input-dependent() 12.305 m
(1.000)

10.364 m
(0.913)

30.985 m
(1.000)

29.044 m
(0.913)

Interpretation: As expected, the worst-case baseline performed worse than all other
patterns in terms of utility in both use cases. Considering uncertainty at design time
with a situation-independent uncertainty estimate provides some benefits compared to
this baseline but is outperformed by any of the dynamic situation-aware uncertainty
patterns. For the dynamic patterns, the use of an input-dependent acceptable uncertainty
threshold uacceptable led to utility improvements as well as to propagating uncertainty as
a distribution u(μL) instead of a single value.

The magnitude of improvement differs depending on the use case. For use case A,
which focuses on platooningwith a highly efficient solutionwith short reaction times, the
best solution reduced the average requirement on dsafe by ~29%. For use case B, which
focuses on default driver assistance with a more relaxed requirement on the reaction
time, the reduction was only ~13%, which could increase the capacity on the road under
optimal conditions by approximately the same amount.

RQ3 – Sensitivity analysis of the results – To understand the impact on key param-
eters of the perceived simulation outcomes, we conducted a sensitivity analysis. Sensi-
tivity analysis hereby refers to an analysis that is applied to determine how an output
variable is affected by changes in one or more input variables.We investigated the effects
of choosing different thresholds for the accepted uncertainty uacceptable and varied the
dispersion σ of the predicted friction values μL provided by the DDC. This corresponds
to using a DDM in the DDC that is either more or less accurate in its predictions. Figure 4

Architectural Patterns for Handling Runtime 295

provides the results of the sensitivity analysis with respect to the acceptable uncertainty
uacceptable considering situations that differ regarding the friction μL.

Fig. 4. Sensitivity of the safety distance to the accepted uncertainty threshold for multiple levels
of dispersion σ . In the first row the proposed margin selector and uncertainty supervisor patterns
are compared. In the second row, the safety distance is computed only using the margin selector.

Interpretation: The results in the first row of Fig. 4 illustrate that margin selectors
are more flexible compared to supervisors in dealing with different thresholds on the
accepted uncertainty. In the case of μ = 0.9 and σ = 0.1, the patterns do not yield any
benefit over the worst-case assumption. The results in the second row of Fig. 4 indicate
that the safety distance requirement is less sensitive to DDCs that have a low accuracy,
i.e., a high dispersion σ . For stricter, i.e., lower, acceptable uncertainty thresholds, such
DDCsdonot outperform theworst-case baseline, yet they aremore sensitive to changes in
the threshold on the accepted uncertainty. On the other hand, for very accurate DDCs, the
safety distance requirement is significantly reduced and the reduction is hardly affected
by the acceptable uncertainty threshold.

In conclusion, the use of an input-dependent acceptable uncertainty threshold is most
beneficial for DDCs with higher dispersion. On the other hand, DDC-based predictions
can becomeuseless in some situations, e.g., if there are strict thresholds for the acceptable
uncertainty and at the same time their predictions have high dispersion.

296 J. Groß et al.

7 Summary and Conclusion

We proposed novel safety patterns for handling runtime estimations of uncertainty, as
they can be provided, for example, by uncertainty wrappers [1]. The patterns support the
usage ofDDCs to estimate safety-relevant information about the current situation instead
of working with static worst-case assumptions. We observed that the consideration of
context information of the driving situation makes it possible to accept more or less
uncertainty depending on the inherent risk of the situation. This can lead to a gain
in utility, e.g., a reduction of the necessary distance between two vehicles in vehicle
platooning. However, the utility gain depends on the concrete application of the patterns.
Even for the concrete example of vehicle platooning and DDC-based friction estimation,
it is hardly possible to predict the gain in utility manually. For this reason, we developed
a tool that allowed us to perform some utility analyses and to quantify the utility gain for
the platooning example depending on assumed parameters such as the assumed threshold
for acceptable uncertainty. By these means, we were able to analyze under which main
assumptions the application of the patterns is reasonable.

We conclude that such analyses can provide essential support for early design
decisions in the design of increasingly autonomous systems in complex environments
because we believe that runtime estimation and handling of uncertainties is neces-
sary to overcome worst-case approximations that would lead to unacceptable util-
ity/performance, especially if the situation context indicates a low risk situation. For this
reason, we see the patterns as part of a promising solution to solve this huge challenge
by relating the probabilistic target values for safety-relevant functions to uncertainties
of DDCs and the confidence that uncertainties are not underestimated.

An open issue in this regard is the consideration of stochastic dependencies between
uncertainties estimated in different time steps. Further open issues concern the stochastic
dependencies between uncertainties of different DDCs.

References

1. Kläs, M., Sembach, L.: Uncertainty wrappers for data-driven models – increase the trans-
parency of AI/ML-based models through enrichment with dependable situation-aware uncer-
tainty estimates. In: 2nd InternationalWorkshop on Artificial Intelligence Safety Engineering
(WAISE 2019). Turku, Finland (2019)

2. Kläs, M., Jöckel, L.: A framework for building uncertainty wrappers for AI/ML-based
data-driven components. In: 3rd International Workshop on Artificial Intelligence Safety
Engineering (WAISE) (2020)

3. Jöckel, L., Kläs, M.: Could we relieve AI/ML models of the responsibility of providing
dependable uncertainty estimates? A study on outside-model uncertainty estimates. In: 40th
Int. Conference on Computer Safety, Reliability and Security, SafeComp 2021. York, United
Kingdom (2021)

4. Gerber, P., Jöckel, L., Kläs, M.: A study on mitigating hard boundaries of decision-tree-based
uncertainty estimates for AI models. In: Safe AI @ AAAI2022, Virtual (2022)

5. Kläs, M., Adler, R., Sorokos, I., Jöckel, L., Reich, J.: Handling uncertainties of data-
driven models in compliance with safety constraints for autonomous behaviour. In: European
Dependable Computing Conference (EDDC) (2021)

Architectural Patterns for Handling Runtime 297

6. Arnez, F., Espinoza, H., Radermacher, A., Terrier, F.: A comparison of uncertainty estimation
approaches in deep learning components for autonomous vehicle applications. In: Workshop
in Artificial Intelligence Safety (AISafety) (2020)

7. Kaiser, B., et al.: Advances in component fault trees. In: ESREL (2018)
8. Kabir, S., et al.: A runtime safety analysis concept for open adaptive systems. In: 6th

International Symposium on Model-Based Safety and Assessment. Thessaloniki, Greece
(2019)

9. Salay, R., Czarnecki, K., Elli, M., Alvarez, I., Sedwards, S., Weast, J.: PURSS: towards per-
ceptual uncertainty aware responsibility sensitive safety with ML. In: SafeAI @ AAAI2020.
New York (2020)

10. Henne,M., Schwaiger,A., Roscher,K.,Weiß,G.: Benchmarking uncertainty estimationmeth-
ods for deep learning with safety-related metrics. In: Proceedings of the Workshop on Arti-
ficial Intelligence Safety, co-located with 34th AAAI Conference on Artificial Intelligence,
SafeAI@AAAI 2020. New York, USA (2020)

11. Reich, J., Trapp, M.: SINADRA: towards a framework for assurable situation-aware
dynamic risk assessment of autonomous vehicles. In: 16th European Dependable Computing
Conference (EDCC). Munich, Germany (2020)

12. Adee, A., Gansch, R., Liggesmeyer, P.: Systematic modeling approach for environmen-
tal perception limitations in automated driving. In: 17th European Dependable Computing
Conference (EDCC). Munich, Germany (2021)

13. Shalev-Shwartz, S., Shammah, S., Shashua, A.: On a formal model of safe and scalable
self-driving cars. arXiv preprint (2017)

14. Hartmann, B., Eckert, A.: Road condition observer as a new part of active driving safety.
ATZelektronik worldwide 12(5), 34–37 (2017)

15. Predictive road condition services, Robert Bosch GmbH, 2022. https://www.bosch-mob
ility-solutions.com/en/solutions/automated-driving/predictive-road-condition-services/.
Accessed 22 02 2022

16. Wassertheurer, B.: Reifenmodellierung für die Fahrdynamiksimulation auf Schnee, Eis und
nasser Fahrbahn, Karlsruhe. KIT Scientific Publishing, Germany (2020)

17. Van Rossum, G., Drake, F.: Python 3 Reference Manual. CreateSpace, Scotts Valley, CA
(2009)

18. Kluyver, T., et al.: Jupyter Notebooks-a publishing format for reproducible computational
workflows. In: 20th International Conference on Electronic Publishing. Göttingen, Germany
(2016)

19. Hunter, J.D.: Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9(03), 90–95 (2007)
20. Harris, C.R., et al.: Array programming with NumPy. Nature 585(7825), 357–362 (2020)
21. Virtanen, P., et al.: SciPy 1.0: fundamental algorithms for scientific computing in Python.

Nat. Meth. 17(3), 261–272 (2020)

https://www.bosch-mobility-solutions.com/en/solutions/automated-driving/predictive-road-condition-services/

Hardware Faults that Matter:
Understanding and Estimating the Safety

Impact of Hardware Faults on Object
Detection DNNs

Syed Qutub1(B) , Florian Geissler1 , Yang Peng1 , Ralf Gräfe1,
Michael Paulitsch1 , Gereon Hinz2, and Alois Knoll2

1 Dependability Research Lab, Intel Labs, Munich, Germany
syed.qutub@intel.com

2 Technical University of Munich, Munich, Germany

Abstract. Object detection neural network models need to perform reli-
ably in highly dynamic and safety-critical environments like automated
driving or robotics. Therefore, it is paramount to verify the robustness of
the detection under unexpected hardware faults like soft errors that can
impact a system’s perception module. Standard metrics based on average
precision produce model vulnerability estimates at the object level rather
than at an image level. As we show in this paper, this does not provide an
intuitive or representative indicator of the safety-related impact of silent
data corruption caused by bit flips in the underlying memory but can lead
to an over- or underestimation of typical fault-induced hazards. With an
eye towards safety-related real-time applications, we propose a new met-
ric IVMOD (Image-wise Vulnerability Metric for Object Detection) to
quantify vulnerability based on an incorrect image-wise object detection
due to false positive (FPs) or false negative (FNs) objects, combined
with a severity analysis. The evaluation of several representative object
detection models shows that even a single bit flip can lead to a severe
silent data corruption event with potentially critical safety implications,
with e.g., up to �100 FPs generated, or up to ∼90% of true positives
(TPs) lost in an image. Furthermore, with a single stuck-at-1 fault, an
entire sequence of images can be affected, causing temporally persistent
ghost detections that can be mistaken for actual objects (covering up to
∼83% of the image). Furthermore, actual objects in the scene are con-
tinuously missed (up to ∼64% of TPs are lost). Our work establishes a
detailed understanding of the safety-related vulnerability of such critical
workloads against hardware faults.

1 Introduction

Research communities seek to make the deployment of general artificial intelli-
gence (AI) and deep neural networks (DNNs) used in everyday life as dependable
as possible. Significant emphasis is placed on handling corrupted input (e.g. due

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Trapp et al. (Eds.): SAFECOMP 2022, LNCS 13414, pp. 298–318, 2022.
https://doi.org/10.1007/978-3-031-14835-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14835-4_20&domain=pdf
http://orcid.org/0000-0002-7124-1835
http://orcid.org/0000-0002-9776-9603
http://orcid.org/0000-0003-2592-3760
http://orcid.org/0000-0002-9241-5806
https://doi.org/10.1007/978-3-031-14835-4_20

Hardware Faults that Matter 299

to visual artifacts or to attacks) provided to the model. However, less effort has
been dedicated to studying corruptions of the internal state of the model itself,
most importantly caused by faults in the underlying hardware. Such faults can
occur naturally, such as memory corruption induced by external (e.g., cosmic
neutron) radiation or electric leaking in the circuitry itself, typically manifested
as bit flips or stuck-at-0/1 s in the memory elements [1,16], which may alter
the DNN model parameters (weight faults) or the intermediate states (neuron
faults). Platform faults can also impact the input while it is held in memory,
yet this work focuses on the computational part of the DNN as our goal is
to estimate the vulnerability of the model. The impact of these faults is often
unpredictable in systems with large complexity. Alterations can be of transient
or permanent nature: Transient faults have a short life span of the order of a few
clock cycles and are therefore harder to detect by the system. On the contrary,
permanent faults may silently corrupt the system output for a longer period.
Memory protection techniques like error correcting code (ECC) can mitigate the
risk of hardware faults [20]; however, they are typically applied only to selected
elements to avoid significant cost overheads. Given the rise in technology scaling
with smaller node sizes and larger memory areas, future platforms are expected
to become even more vulnerable to hardware faults [20].

Object detection DNNs are among the most common examples of highly
safety-critical DNN applications as they are in autonomous vehicles or in medi-
cal image analysis. Typically, autonomous systems process events based on per-
ception techniques. Hence, it is critically important that any potential hazards
does not impact the system-level evaluation of events. While the chances for a
hardware fault to occur (for example, the chance of a neutron radiation event
hitting a memory element) can be estimated statistically, it remains unclear
how to quantify the safety-related impact of the failure of a DNN applied for
the purpose of object detection. In contrast to simpler classification problems,
the model output here typically consists of a multitude of bounding boxes and
classes per image, of which a subset can be altered in the presence of a fault while
others remain intact, see Fig. 1. We find that commonly used average precision
(AP) [19] metrics inappropriately rely on the count of false objects irrespective
of their interrelations (grouping in the same image or distributed across multiple
frames). In real-time applications of DNNs, it further matters if the corrupted
output is volatile or temporally stable across multiple input frames. The user
is typically behind a tracking module that can regularize instantaneous alter-
ations. We, therefore, see the need to establish a safety-related assessment of
the vulnerability of object detection workloads under soft errors. Depending on
the specifications from safety assessment, we adopt a generalized notion of a
safety hazard as a perturbation that causes a potentially unsafe decision by the
end-user of the object detection module.

Therefore, we introduce two variants of the metric IVMOD (Image-wise Vul-
nerability Metric for Object Detection), namely IVMODSDC in case of an image-
wise silent data corruption (SDC), and IVMODDUE in case of detectable uncor-
rectable errors (DUE)s.

300 S. Qutub et al.

(a) Inference from Yolov3 model and Kitti dataset

(b) Inference from Faster-RCNN model and Kitti dataset

Fig. 1. Examples of the impact of a single neuron bit flip (at bit position b and layer
index l, see image insets). TPs are marked by green, FPs by red and FNs by blue rect-
angles, comparing the fault-free (top) and the faulty (bottom) predictions. In example
(a) multiple FPs are generated right in front of the ego vehicle, while in (b) all previous
detections are erased due to the fault. (Color figure online)

Hardware Faults that Matter 301

In this paper, we discuss the characteristics of the AP-based metrics in detail
when used to quantify a model’s vulnerability. For example, AP50 is found to be
hypersensitive to rare single corruption events compared to an evaluation at the
image level. Our work supports maintaining the relationship of the system-level
hazard evaluation to the impact of any hardware faults. We find that a hardware
fault - if it hits the crucial bits of either neuron or weight - can silently lead to
excessive amounts of additional false positives (FPs) and increase the rate of
false negatives (FNs) misses. We further study the impact of permanent faults
in a real-time situation by considering continuous video sequences and observing
a significant frequency that the error manifestation persists for a critical time
interval.

In summary, this paper makes the following contributions:

• We demonstrate that AP-based metrics lead to misleading vulnerability esti-
mates for object detection DNN models (Sect. 4.1).

• We propose an SCD-based/DUE-based metric IVMOD to quantify the vul-
nerability of object detection DNN models under hardware faults (Sect. 4.2).

• We evaluate the vulnerability of various representative object detection DNN
models using the proposed IVMOD, illustrating the probability of a single
bit flip resulting in a potentially safety-critical event (Sect. 5.1).

• For each such event, we propose various quantitative metrics to estimate the
impact severity for typical safety-critical applications (Sect. 5.2).

• We extend our image-based evaluation to a video-based safety-critical system
and measure the vulnerability of temporal persistency (AFPblob and AFNblob)
due to a permanent fault, by tracking the FPs and FNs across multiple video
frames (Sect. 6).

2 Related Work

The effort to estimate the vulnerability or resilience of the DNNs against hard-
ware faults affecting the model has been explored recently to study the safety
criticality of a model when used in real-time operation.

To this extent, faults are injected in DNNs during inference either at the
application layer on weights/neurons [6,16], or by neutron beam experiments
([4,9], black-box techniques). Authors of Ref. [2,16] considered transient faults,
which are multiple event upsets occurring in data or buffers of DNN accelerators.
Many prior works claimed DNNs to have inherent tolerance towards faults. Li
et al. [2] studied the vulnerability of DNNs by injecting faults in data paths and
buffers with different data type levels and quantified it in the form of SDC prob-
abilities and FIT (failure in time) rates. It is seen that errors in buffers propagate
to multiple locations compared to errors in data-path. These works estimated
the resiliency of the model by injecting multiple fault injections during the feed-
forward inference. This analysis is limited to image classification models like
AlexNet [14], VGG [24], and ResNets [7]. Our analysis does not characterize the
faults in buffer and faults in the data-path. We assume the faults will propagate

302 S. Qutub et al.

to the application layer, which may impact either the weights or the neurons.
Hence we analyze them independently, assuming equal probabilities. The Ares
framework [21] demonstrated that activations (neurons) in image classification
networks are 50× more resilient than weights. These works focus mainly on fault
models involving multiple bit flips captured by bit error rate (BER). There is lim-
ited research done on understanding the vulnerability of object detection DNNs.
The work in Ref. [4] quantified the architectural vulnerability factor (AVF) of
Yolov3 using metrics like SDC AVF, DUE AVF, and FIT rates. This work stud-
ies fault propagation by injecting a random value in the selected register file
and not flipping a bit. The authors argue that not all SDCs are critical, given
that change in objects’ confidence scores after injecting faults is tolerable. The
definition of SDC used in this work is not straightforward. They use the preci-
sion and recall values computed at the object level by combining all the images,
obscuring the actual vulnerability. The vulnerability of object detection DNNs is
studied by injecting faults using neutron beam [18]. The authors analyzed both
transient and permanent faults but not on continuous video sequences. Also, the
dataset considered in these experiments was primarily limited to only one object
per image. Also, they injected faults into the input image. We limit our fault
injections to neurons and weights and only to convolution layers of the DNNs as
the fully connected layers did not change much of the observed data. We believe
fault-injected images do not fall into the category of the model vulnerability.
They rather find their place in adversarial input space within various adverse
fault/noise models. The results obtained from many of these works are not easy
to compare as the failure and SDC definitions differ and do not follow standard
baseline. To our best knowledge, our paper is the first to demonstrate vulnera-
bilities of the object detection models in detail using the proposed (IVMOD)
metrics to measure the severities at the image level. Also, we introduce a new
metrics AFPblob and AFNblob quantifying the area occupancy of FP/FN blobs,
which is essential to establish the safety criticality of the object detection models
concerning specific real-time applications.

3 Preliminaries

3.1 Hardware Faults Vocabulary

Our fault injection technique includes transient and permanent faults. Transient
faults refer to random bit flips (0→1 or 1→0) of a randomly chosen bit, which
occur during a single image inference and are removed afterward. Permanent
faults are modeled as stuck-at-0 and stuck-at-1 errors, meaning that a bit remains
consistently in state ‘0’ or ‘1’ without reacting on intended updates. Those faults
are assumed to persist across many image inferences. We inject faults either
into intermediate computational states of the network (neurons) or into the
parameters (weights) of the DNN model, focusing only on convolutional layers,
which constitutes a significant part of all operations in the studied DNNs. Both
types of faults represent bit flip in the respective memory elements, holding
either temporary states such as intermediate network layer outputs or learned

Hardware Faults that Matter 303

and statically stored network parameters. A fault can potentially induce critical
alterations of the model predictions, measured by IVMODSDC or IVMODDUE
as shown in Eq. 1.

3.2 Experimental Setup: Models, Datasets and System

We use standard object detection models - Yolov3 [22], RetinaNet [17], Faster-
RCNN (F-RCNN [23]) - together with the test datasets CoCo2017 [19], Kitti
[5] and Lyft [12]. We retrained Yolov3 on the Kitti and Lyft dataset, and the
Faster-RCNN model on Kitti for comparative experiments. We used open-source
trained weights for the rest of the models and datasets. The base performances of
these models in terms of AP50 and mAP can be found in Fig. 3. The parameter
configurations used for these models (NMS threshold, confidence score, etc.) are
taken from the original publications. Since fault injection is compute-intensive,
we select a subset of 1000 images for each dataset to perform the transient fault
analysis and use a single Lyft sequence of 126 images for the permanent fault
analysis. All experiments adopt a single-precision floating-point format (FP32)
according to the IEEE754 standard [10]. Our conclusions also apply to other
floating-point formats with the same number of exponent bits, such as BF16
[11], since no relevant effect was observed from fault injections in mantissa bits.

4 Methodology of Vulnerability Estimation

4.1 Issues with Average Precision

In object detection, evaluation and benchmarking methods are most commonly
selected from the family of average precision (AP)-based metrics (in combination
with specific IoU thresholds such as AP50 or mAP). Libraries such as CoCo API
[19] perform the following relevant steps to obtain AP values from a set of object
predictions: i) ground truth and the predicted objects are collected in groups of
the same class label, ii) within a group, the predicted objects are sorted w.r.t
their confidence scores, iii) the sorted predictions are consecutively assigned to
the ground truth objects within the same class group, using an appropriate IoU
threshold, iv) precision and recall (PR) curves are evaluated sequentially through
the confidence-ranked TP, FP, and FN objects, v) the class-wise AP is calculated
as the area under the interpolated PR curve of a class, and vi) the overall AP is
determined as the average of the class-wise AP values.

It has been pointed out that such AP metrics can lead to non-intuitive results
in the detection performance of a model on a specific data set [22]. In the follow-
ing, we illustrate that an AP-based evaluation can be misleading when estimating
the vulnerability of a model against corruption events such as soft errors in a
safety-critical real-time context concerning the probability and severity of cor-
ruption. Corruption events lead to additional FP and FN objects merged into or
eliminated from the healthy list of detected objects. We identified the following
issues when trying to quantify model vulnerability based on AP metrics:

304 S. Qutub et al.

Fig. 2. Simulation of the effect of fault injection on the AP metric. Here, an artificial
data set of 100 objects was generated, where each object was classified as TP with a
chance of 0.7 or as a FN otherwise. In addition, FPs were created with a rate of 0.3
per true detection. Both TPs and FPs are assigned random confidence values between
0.7 and 1. To this setup (a), additional FPs simulating the effect of fault injection
were augmented or existing TPs were randomly eliminated to model fault-induced
FNs ((b)–(d)). The diagrams show the PR curves and the effect of fault injection on
them. Number and confidence range of the faulty objects are given in the insets.

• Object-level evaluation: The AP is calculated on an object level, i.e., the
amount of TP, FP, FN objects accumulated across all images is used for
evaluation. This does not consider how corrupted boxes are distributed across
images, i.e., one image with a large number of fault-induced FP detections
can have the same effect as many corrupted images with few FP detections
each. From a real-time safety perspective, however, the amount of corrupted
image frames is typically relevant, as this may determine, for example, the
robustness of a video stream used for environment perception.

• Dependency of PR on confidence: Due to the sequential and integration-
based characteristic of the average precision, the fault-induced FP object’s
impact depends highly on those sample’s confidence. This does not reflect
the potential safety relevance a low-confidence FP object may have, see more
below.

• Dependency of box assignment on confidence: The strict confidence
ranking can, in some cases, lead to a non-optimal global assignment of bound-
ing boxes. For example, a better matching box might have slightly lower
confidence than a global optimization would demand.

• Class-wise average: Common and rare classes have the same weight in
the overall AP metric. However, their detection performance and vulnerabil-
ity can be quite different as they typically relate to the samples the model
encountered during training.

In particular, the second point above is non-intuitive; we therefore illustrate this
in more detail in Fig. 2 with the help of a generic example from a randomly
generated data set of 100 objects. Additional FPs with low confidence compared
to the reference set of objects have a negligible impact on the metric as they get
appended to the tail of the PR curve, even when numerous and potentially safety-
critical. On the contrary, few high-confidence FP objects can lead to significant
drops in the AP as those samples get sorted in at the head of the PR curve to

Hardware Faults that Matter 305

lower it. Fault-induced FNs reduce the area under the PR curve by pushing the
samples towards smaller recalls.

4.2 Proposed Metrics: IVMOD

We introduce IVMOD metrics to measure the image-wise vulnerability of the
object detection DNNs. Our evaluation strategy described in the following seeks
to counter the issues with AP-based metrics described in the last section in order
to reflect vulnerability estimation better addressing safety targets. In particular,
our approach is characterized by:

• Image-level evaluation: We evaluate vulnerability on an image level
instead of an object level. This approach reflects that those faults jeopar-
dize safety applications that silently alter the free and occupied space by
inducing false detections in an image, particularly sequences thereof, even
if such an alteration involves only few false objects per frame. We register
image-wise SDC and DUE events, see Sect. 4.2, to determine the probability
of a relevant fault impact. The severity of the latter is evaluated separately
in terms of the amount of induced FPs and FNs. Due to their image-based
character, IVMODSDC and IVMODDUE metrics are naturally independent of
the object confidences.

• Confidence-independent box assignment: False-positive objects can be
critical whether they have high or low confidence, which is masked in the AP
metric. We apply a different assignment scheme for FPs and FNs that omits
confidence ranking and hence makes the model vulnerability metric indepen-
dent of the confidence of FPs, see Sect. 4.2. The assignment strategy can also
be varied to relax class correspondence requirements, which are often overem-
phasized from a safety perspective. The system can perform at degraded level
if its sure of object location and not much about the class.

• Class-independent average: We evaluate the overall sample mean instead
of the mean of individual class categories to reflect typical imbalances in the
data set concerning object classes.

Assignment Policy. In contrast to the sequential and class-wise matching
described in Sect. 4.1, we calculate the cost matrix from a set of predictions
and ground truth objects for a single image. The cost for matching objects is
the IoU between the bounding boxes. If the IoU is below the specified threshold
IoUeval = 0.5, or if the classes of the two objects are not the same, we assign
a maximum cost. To analyze the relevance of exact class predictions for an
application, we can harden or soften the class matching from a one-to-one cor-
respondence to compatible class clusters or neglect class matching altogether.
A Hungarian association algorithm [15] is then deployed to obtain the global
optimal cost assignment. As usual, the number of accepted matches per image
represents the true positive (TP) cases. False detections are registered in the
following cases: i) a FP and a simultaneous FN detection occurs if the IoU with

306 S. Qutub et al.

the assigned ground truth object is below the threshold, independent of the pre-
dicted class, or if the IoU is sufficiently large, but the classes are not compatible,
ii) a single FP occurs if there is a predicted object that cannot be assigned to
any ground truth object with acceptable costs, iii) a single FN occurs if there
is a non-assigned ground truth object. Figure 1 shows an illustrative example
of assigned TP, FP, FN boxes. In our setup, we clip predicted bounding boxes
reaching out of the image dimensions – e.g., due to faults – to the actual image
boundaries.

IVMOD (IVMODSDC and IVMODDUE). We define the IVMODSDC rate
as the ratio of events where a fault during inference causes a silent corruption
of an image and the total number of image inferences. IVMODSDC is an SDC
defined as a change in either of the TP, FP, or FN count of the respective image,
compared to the original fault-free prediction, given that no irregular NaN (not
a number) or Inf (infinite) values occur during the inference as shown in Eq. 1.
Since TPs and FNs are complementary to each other, we can eliminate either
TP or FN in IVMODSDC in Eq. 1. On the other hand, the IVMODDUE rate
is the ratio of events where irregular NaN or Inf values are generated during
inference and detected inside the layers or in the predicted output due to the
injected fault in the respective image during inference and are computed using
the Eq. 1. As DUE events are naturally detectable, they typically are less critical
than SDC events. Explicitly,

IVMODSDC =
1
N

N∑

i=1

{[
(FPorig)i �= (FPcorr)i ∨ (FNorig)i �= (FNcorr)i

]
∧ ¬Infi ∧ ¬NaN

}
,

IVMODDUE =
1
N

N∑

i=1

[Infi ∨ NaNi] .

(1)

5 Transient Faults

Our evaluation concept is guided by the assumption that in safety-critical appli-
cations, both the miss of any existing object as well as the creation of any false
positive object can be potentially hazardous. Therefore, we consider the prob-
ability that such an SDC event occurs and our primary metrics IVMODSDC
and IVMODDUE (Eq. 1) captures the vulnerability of a model. For transient
faults, this evaluation is performed in Sect. 5.1. Accordingly, we independently
inject 50,000 random single-bit flips in neurons and weights at each inference of
the chosen test datasets. Subsequently, Sect. 5.2 discusses the severity of each
of those SDC events in terms of the average impact of additional FP and FN
objects, their size, and confidence. If a specific use case is given, the factors of
probability and severity can be used to derive the risk of an error [13].

Hardware Faults that Matter 307

(a) Neuron faults

(b) Weight faults

Fig. 3. Key metrics to interpret the vulnerability of object detection DNNs in the
presence of transient hardware faults: (left) AP50, (center) mAP, (right) error rate,
distinguishing IVMODSDC and IVMODDUE. We study both neuron faults (a) and
weight faults (b).

5.1 Corruption Probability

Fig. 4. Example of the AP50 PR curves
of few classes from Yolov3 and Kitti in the
fault free and faulty cases.

In Fig. 3, we present the fault injec-
tion campaigns of all studied networks,
comparing the typical benchmark met-
rics AP-50 and mAP to the IVMODSDC
and IVMODDUE rate as defined in
Sect. 4.2. Both Yolov3 and RetinaNet
show a significant change in the AP-
50 and mAP metrics under the injected
neuron and weight faults: The accuracy
can drop as much as from 89.4% to
34.4% (AP-50) due to a single weight
fault in the scenario of Yolov3 and
Kitti. On the other hand, F-RCNN does
not showcase much sensitivity to the
injected faults (�0.8% change in AP-
50). At the same time, the IVMODSDC rates vary between 0.4% and 1.8% (neu-
ron faults), and from 1.5% to 4.2% (weight faults). This discrepancy illustrates
the need for a more realistic vulnerability estimate. As shown below, in Table 1,
fault injections in Yolov3 and RetinaNet tend to produce many FPs with sta-
tistically increased confidence. This leads to a drastic shift of the PR curves, as
shown in the example in Fig. 4, where only 3.2% out of 1000 samples have cor-
rupted prediction (demonstrated the similar effect in Fig. 2(c)). Rare classes are

308 S. Qutub et al.

susceptible to such faults, diminishing the class-averaged metric further. Since
the induced false objects are concentrated on only a few images, the AP metric
exaggerates the safety-related vulnerability of the model under software errors
(see also the discussion in Sect. 4.1).

In contrast, the F-RCNN model architecture appears to be very robust
against the generation of FPs (see Table 1). Predictions made in the presence of
a soft error have nearly the same confidence as in the fault-free case. However,
faults do disturb the detection of objects as a significant portion of FNs appear
(on average between 10–33%). Nevertheless, the AP metrics for FRCNN under
fault injection are hardly affected: We observe very few accuracies drops for
both neurons and weights. At the same time about 0.4–0.7% (1.5–1.8%) of the
images see silent data corruption. In this case, the AP-based metric is masking
the potentially safety-critical impact of underlying faults. We further observe
that for Yolov3, IVMODDUE events are generated in ∼0.9% of the neuron injec-
tion cases, while in RetinaNet and F-RCNN and for weight injections, those are
negligible (�0.1%). We conclude that the Yolov3 architecture stimulates neuron
values that have a higher chance if being flipped to a configuration encoded as
NaN or Inf (in FP32, all exponential bits have to be in state ‘1’), compared to
RetinaNet and F-RCNN. The weight values of all networks, on the other hand,
are closely centered around zero, which makes it very unlikely to reach a NaN
or Inf bit configuration [6] (typically MSB and at least another exponential bit
are in state ‘0’ at the same time). We observe that the faults injected in weights
at any bit of FP32 cause higher IVMODSDC rates than the faults injected at
the neuron level. They showcase ∼2× more adverse effects on predictions than
faults injected at the neuron level.

5.2 Corruption Severity
We next aimed to understand how faults leading to IVMODSDC events corrupt
images and how the severity of an IVMODSDC event on a potential safety-critical
application can be estimated. Even though the relevance of a safety feature
may depend on the specific application, we identified the following fundamental
features to serve as a specific indicative measure of an SDC fault severity, see
Table 1:
• The average number of FP objects induced by a given IVMODSDC fault and

the proportion of boxes lost due to a fault, referred to as ΔFP and ΔFNn,
respectively as described in Eq. 2 (subscript ‘n’ represents normalization as
the upper limit of FNs is known, in contrast to FPs).

• The average size of objects in the presence and absence of SDC (avg(size))
since a significant change of the object size can be safety-critical,

• The average area of the image that is erroneously occupied due to IVMODSDC
induced FP objects (AFPblob) and the average portion of the vacant area
created by not detecting the objects due to IVMODSDC faults (AFNblob).

• The average confidence of objects in the presence and absence of IVMODSDC,
avg(conf).

We motivate this choice more in the following subsections.

Hardware Faults that Matter 309

Table 1. Severity features averaged over all IVMODSDC events.

Yolo+Coco Yolo+Kitti Yolo+Lyft Retina+Coco F-RCNN+Coco F-RCNN+Kitti

Neurons:
avg(ΔF P) 333 36 174 33 0 0
avg(ΔF Nn)(%) 42.2 41.3 46.6 16.1 25.3 33.3
avg(conf)
(corr, orig)

0.99, 0.52 0.99, 0.51 0.99, 0.65 0.79, 0.11 0.73, 0.73 0.90, 0.89

avg(size)/1e3px
(corr, orig)

4.3, 11.2 34.5, 2.3 17.8, 7.3 5.6, 20.3 17.0, 18.6 6.3, 6.8

Afp-occ(%) 36.8 62.5 59.8 0.7 1.7 0.0
Afn-vac(%) 4.0 5.1 4.8 53.1 41.1 39.8
Weights:
avg(ΔF P) 198 59 145 7 0 0
avg(ΔF Nn)(%) 23.3 21.7 21.3 4.0 9.6 29.6
avg(conf)
(corr, orig)

1.00, 0.53 1.00, 0.52 1.00, 0.65 0.62, 0.11 0.72, 0.73 0.89, 0.88

avg(size)/1e3px
(corr, orig)

5.5, 12.1 21.4, 2.5 30.8, 6.9 7.9, 19.8 10.0, 15.0 4.9, 5.0

Afp-occ(%) 40.1 81.0 79.1 1.5 0.3 0.0
Afn-vac(%) 15.1 2.5 6.8 42.3 77.8 85.8

Fault-Induced Object Generation and Loss. Object detection is commonly
used in scenarios where the number of objects, combined with their location and
class, is input to safety-critical decision making. Examples include face detection
or vehicle counting in traffic surveillance, automated driving, or medical object
detection. Therefore, to assess IVMODSDC severity, we quantify the impact of a
fault injection by the differences (a loss in TPs equals the gain in FNs)

ΔFP = (FPcorr − FPorig) ,

ΔFNn = (TPorig − TPcorr)/TPorig,
(2)

In Table 1, we observe that all Yolov3 and RetinaNet scenarios exhibit large num-
bers of fault-induced FPs (�100 in Yolov3 and Coco experiments). For neuron
faults, the generation of FPs is, on average, more pronounced. Furthermore, the
normalized FN rates show that already a single fault can cause a significant loss
of accurate positive detections. Average FN rates are higher for neuron faults
than weight faults and reach averages up to 47% (Yolov3 and Lyft). F-RCNN
models are robust against the generation of FP objects but not immune against
fault-induced misses (e.g. Fig. 1b). The number of generated FPs and FNs varies
in a broad sample range, up to the maximum limit of allowed detections (here
1000), due to the inhomogeneous impact of flips in different bit positions (see
Sect. 5.3). In some situations, additional objects created by faults will match
actual ground truth objects, leading to a negative FP or FN difference. This
effect originates from the imperfect performance of the original fault-free model
and is tolerated here due to the minor impact. By relaxing the class matching
constraints from one-to-one correspondence to no class matching, we can further
segment the type of FPs that the IVMODSDC events cause. It appears that sit-
uations where an FP is due to a change in the class label only or due to a shift

310 S. Qutub et al.

of the bounding box only (on average �3 for Yolo models, 0 for others). In most
cases, both the bounding box gets shifted, and the class labels is mixed up, or
predicted objects cannot be matched with any ground truth object at all.

Object Size and Confidence. Box sizes and confidence values are other sever-
ity indicators since large erroneous objects take up a more significant portion of
the image space, and high-confidence objects might be handled with priority in
some use cases. Table 1 shows the change of the average box size and confidence
of all model detections across the identified IVMODSDC events. In most mod-
els, the typical box size is reduced in the presence of faults, which is partially
due to the creation of boxes with zero width or height. However, there are also
scenarios where faults tend to induce overly large objects (Yolov3 and Kitti,
Lyft, see Table 1) that can even fill the entire picture. An object’s average confi-
dence score after fault injection significantly increases in the scenario of Yolov3
and RetinaNet, while there is hardly any impact on F-RCNN predictions. This
explains why confidence-sensitive metrics based on AP react differently to fault
injections in the respective architectures; see the discussion in Sect. 4.1.

Area Occupancy. safety-related decision-making in a dynamic environment is
most importantly based on the detected free and occupied space. For example,
an automated vehicle will determine a driving path depending on the detected
drivable space. A large number of false-positive objects, even when small in size,
can, in combination, cover a significant portion of the image, which will leave
only little free space. On the opposite, in some situations, they may overlay
each other and occupy only a little space. To reflect a realistic severity of free
space, we first cluster all FP and FN objects to blobs by projecting them to a
binary space of occupancy and vacancy (see Fig. 6). As we are only interested
in fault-induced false objects, our blobs for a given frame at time t are defined
as follows:

FPblob = I(detcorr − detorig),
FNblob = I(detorig − detcorr).

(3)

AFPblob = |FPblob|/Aimage,

AFNblob = |FNblob|/|I(detorig)|. (4)

In Eq. 3, det denotes the set of all detected bounding boxes (TP and FP), and
I(x) represents the pixel-wise projection to binary occupancy space, i.e., for any
pixel u in a blob x it is I(u < 0) = 0, I(u ≥ 0) = 1 (see Fig. 6). We define the
occupancy coefficients in Eq. 4, where Aimage is the size of the image in pixels and
| . . . | denotes the sum of all nonzero pixels in a blob. In Table 1, we see Yolo+Kitti
creates significantly less ΔFP than Yolo+CoCo, but the average AFPblob , in this
case, is ∼2x greater than AFPblob of Yolo+CoCo. This can even be observed
using the feature avg(size)/1e3 (average size of bounding boxes of all the detec-
tions combined - TPs+FPs). In the case of Yolo+Kitti, the avg(size)/1e3 is 15x

Hardware Faults that Matter 311

(a) FP Neurons (b) FP Weights

(c) FN Neurons (d) FN Weights

Fig. 5. Bit-wise analysis of the severity of IVMODSDC events. Diagrams show the FP
difference (a), (b) and FN rates (c), (d) for neurons and weights, respectively. Bit 31st

is the sign bit, 30th bit being the most significant bit and 23rd bit is the lowest bit of
exponent part.

and ∼8x larger than its original detections when a fault is injected in neurons
and weights. This implies that ΔFP alone cannot determine the safety impact
during an IVMODSDC event. Similarly, F-RCNN creates no ΔFP , but large free
space ΔFNn by missing the TPs. F-RCNN+Kitti, when induced with weight
faults, is more safety-critical as the AFNblob is highest compared to other studied
models. Furthermore, in case of neuron faults, the RetinaNet and F-RCNN have
higher AFNblob .

5.3 Bit-Wise Analysis of False Object Count

The severity of an IVMODSDC event typically depends on the magnitude of the
altered values, where values with a considerable absolute value are more likely
to propagate and disrupt the network predictions [6,8,16]. Therefore, the sever-
ity features are expected to form a non-uniform distribution depending on the
flipped bit position. To gain a better intuition, we here choose to present a bit-
wise analysis of the ΔFP and ΔFNn samples during the IVMODSDC events. To
quantify the impact of bits, we define the bit-averaged false-positive difference,
bitavg(ΔFP), which intuitively tells us how many FPs an SDC event with a
particular bit position induces, on average. Similarly, for FNs, the normalized
bit-averaged difference, bitavg(ΔFNn), represents what portion of the originally
detected objects disappears due to an SDC event with a specific bit position.

312 S. Qutub et al.

In Fig. 5, we observe that, for neuron faults, those additional FPs are typically
caused by bitflips in either of the three highest exponential bits, as long as those
do not lead to DUE instead. For weight faults, we find a situation similar to
classifier networks where the specific value range of weights centered around
zero is encoded in bit constellations where the MSB is in state ‘0’ while the next
higher exponential non-MSB bits are in state ‘1’, see Ref. [6]. This explains why
almost only MSB flips induce large values and IVMODSDC (with a high number
of FPs). Given the respective relevant neuron and weight bit flips, the ΔFNn
ratio is increased up to ∼90% (meaning that portion of all true positive detec-
tions is lost), in particular, due to MSB and other high exponential bit flips, in
some of the models (see Fig. 5(c),(d)). We observe that FN alterations can, to
some extent, be induced also by lower exponential bits.

(a) orig (b) corr (c) FPblob (d) FNblob

Fig. 6. Illustration of the clustering of bounding boxes to binary occupancy blobs. In
this example we find from (c) and (d) that AFPblob = 33.3%, AFNblob = 7.5% (white
pixels indicate space occupied by fault FPs).

6 Permanent Faults

Our analysis in this section aims to understand whether permanent stuck-at
faults (see Sect. 3.1) leads to temporally consistent errors on an object level lead-
ing to continuous failure. The object detection model typically receives sequential
images from a continuous video stream in real time applications. We assume a
permanent hardware fault hitting the inference module which in turn causes per-
sistent miss detections on consecutive images. In this case, they will appear either
as ghost objects in the output (as FPs) or lead to a consecutive miss of an object
(as FNs) - both situations can be highly safety-critical. A perception pipeline
typically also includes a tracking module for detected objects, which can then be
used to predict an object’s trajectory and make an informed decision concerning
the next maneuver of the vehicle. Therefore, we simulate a simple tracking of
instantaneous fault-induced FPs and FNs clusters to determine whether they
would be persistent in a realistic scenario. For the analysis in this section, we
use Yolov3 and the Lyft data set. This is the only dataset used in our analysis
that provides consecutive images from video sequences (Lyft sequence of the
CAM_FRONT channel featuring 126 frames is considered). From our experi-
ments with transient faults injections in Sect. 5, we understand that no effect
is observed by altering mantissa bits or by flips in the direction ′1′ → ′0′ since

Hardware Faults that Matter 313

frame t=94 frame t=96 frame t=98
o
ri
g
d
t

c
o
rr

d
t

F
P
-b

lo
b

Fig. 7. Pixel wise tracking of FP blobs. First row: orig dt are fault free detections.
Second row: corr dt are faulty detections. Third row are tracked FP-blobs (white pixels
are occupied by FP blobs).

frame t=40 frame t=42 frame t=44

o
ri
g
d
t

c
o
rr

d
t

F
N
-b

lo
b

Fig. 8. Pixel wise tracking of FN blobs. First row: orig dt are fault free detections.
Second row: corr dt are faulty detections. Third row are tracked FN-blobs (white pixels
is the free space created by FNs).

this does not generate large values. Therefore, the experiments of this section
are accelerated by using only stuck-at-1 faults in the exponential bits of FP32.
However, results have been rescaled to account for the probability of injections

314 S. Qutub et al.

(a) Average area occupancy by FP-blob (b) Average area occupancy by FN-blob

Fig. 9. Tracking of FP- and FN-blob area

(a) FP (b) FP Neurons (c) FP Weights

(d) FN (e) FN Neurons (f) FN Weights

Fig. 10. Vulnerability of Yolov3 and Lyft for permanent faults.

in all 32 bits. In this section, we designed an experiment where we inject each of
1000 single random permanent faults (exponential bits) at neurons and weights
independently for the above considered sequence to understand its safety impact.

6.1 Evaluating Fault Persistence

We track the movement of blobs (Eq. 3) using a simple pixel-wise M/N tracking
scheme [3]. The proposed tracker incorporates the following criteria to establish
that a given pixel of FP or FN blob is persistent, at a given frame t: i) The pixel
occupied in at least M/N consecutive frames. (if it is also occupied in the current
frame, this corresponds to t track update; otherwise it is a coasting track), ii) If
the occupancy of that pixel in the last N frames is below M, we check the vicin-
ity around that pixel for past occupancy. Deploying a simplified unidirectional
motion model, we register a persistent dynamic pixel for the current frame if

Hardware Faults that Matter 315

occupancies above M are found in the past N frames in a close enough (here 50
pixel, abbr. px) vicinity.

For FN blobs, we omit coasting due to the nature of detection misses. After
registering the persistent pixels computed by the pixel-wise tracker, the occupied
(AFPblob) or free-space (AFNblob) area is calculated using Eq. 4. The tracking
parameters are chosen as (10/15): The upper frame number is hereby estimated
from a critical time of reaction to a persistent false target (≈0.5 s) and the frame
rate of the Lyft sequence (30 Hz), leading to N = 0.5 s·30 s−1 = 15 key sequential
frames. This estimated upper number can be application specific relevant to its
safety specifications.

6.2 Corruption Probability and Severity

In Fig. 7 and Fig. 8, we show examples of persistent FP and FN blobs in selected
frames. The occupied (AFPblob) and free (AFNblob) space of an entire video
sequence is presented in Fig. 9a and Fig. 9b. For orientation, we also give the area
difference between original and ground truth predictions (Fig. 9), AFPref_blob =
|I(detorig − gt)|/Aimage and AFNref_blob = |I(gt − detorig)|/|I(detorig)| (where
gt is ground truth). We neglect these contributions originating from the model
imperfection as it is a function of training and is found to be small (in the above
examples <1%) compared to the fault-induced occupancy (∼66% and ∼62%,
respectively). The example demonstrates that tracked FP blobs may persist
across the entire image sequence and occupy a significant amount of free space.
Similarly, a significant portion of the image can be lost persistently across the
sequence (it reaches as high as ∼96%). Our statistical evaluation from 1000 per-
manent fault injections on the selected image sequence is given in Fig. 10 for FP
and FN. The Fig. 10(a) and (d) shows both the SDC probability (in the form of
persistant occurance) and the severity ((b)–(c), (e)–(f)) in detail. We register an
SDC for a given fault if any persistent FP or FN is found during the sequence
with a severity of at least level L. The severity L is quantified as the average area
occupied by the blob (for FP normalized by the image size, for FN by the TP
blob size, see above). The severity levels are varied from 0% to 15% in Fig. 10 to
illustrate the effect of softening or hardening of the safety requirements. As the
severity of a fault is again expected to depend on the bit position of the injected
fault, we present both bit-selected and bit-averaged numbers in Fig. 10(b,c,e,f).

In this figure, the permanent faults in neurons and weights have a probability
of 1.8% and 3% to create persistent ghost FP objects with a minimal area of
L > 0, respectively. With L >15% of an image area, this reduces to 0.9% and
2.9%, respectively. On average, faults hitting MSB bit in weights on this model
have 96% probability to manifest into a persistent FP blob of area >81%. On
the other hand, persistent FN blobs incorrectly indicating vacant spaces occur
with a much lower chance. Bitflips cause persistent objects only in the highest
exponential bits in case of neurons or in the MSB bits in the case of weights. This
observation is consistent with the findings from transient faults in Sect. 5. Using
the given area occupancy metrics, permanent weight faults have a higher severity

316 S. Qutub et al.

than neuron faults; in particular, weight faults on average induce massive ghost
FP blobs of >83% of the image area.

7 Conclusion

This work points out the challenges in estimating the vulnerability of object
detection models under bit flip faults. Average precision-based metrics are either
very sensitive or not sensitive to the corruption events, which can be misleading
in a safety context. For example, for F-RCNN+Kitti, neuron injections experi-
ments showed almost no impact (<0.1%) in the AP50 and mAP metrics. Using
the image-based evaluation metric IVMOD proposed here, however, we see that
0.7% of all images lose substantial amounts (>30%) of the total TP detections
due to a single bit flip. The evaluation method presented in this work allows us
to come to a vulnerability estimate better addressing safety targets. Given the
IVMODSDC probabilities and severities (see Fig. 3 and Table 1), we conclude
that the chances of safety-related corruptions due to soft errors are minor to
moderate (0.4%–4.2%) in the studied setups. IVMODSDC events due to weight
faults are about two times as likely as neuron faults. However, if SDC occurs, the
severity can be grave. The IVMOD metric should always be considered in com-
bination with severity features for safety purposes. This is because IVMOD does
not quantify the severity, but only considers the existence of false and missed
bounding boxes. Our metric is defined relative to the original performance. This
means that even if a fault also acts in a beneficial way, i.e. fixing some FP or
FN occurrences, it will be categorized as a SDC here. We estimated this severity
with the help of different safety-related features. We observed that high bits of
the exponent of floating point numbers, when hit by either neuron or weight
faults, can lead to a significant increase in ΔFP and ΔFNn. This effect is also
translated into an average occupancy value that reflects the area portion of the
image that is critically altered by a fault. We find that large average occupancies
(up to AFPblob ∼ 81% for FP and AFNblob ∼ 86% for FN) are common, reflect-
ing significant safety hazards. Finally, we studied the use case of a sequential
real-time image sequence from Lyft to show that permanent stuck-at faults on
neurons or at weights can induce FP objects covering as much as ∼83% of the
image area, creating dangerous ghost objects. Similarly, up to ∼63% of the TP
area in the scene can be missed. Overall, the weight faults are more likely impact-
ful than neuron faults and have a higher severity in area occupancy (except for
permanent FNs).

Acknowledgment. This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No 956123.
Our research was partially funded by the Federal Ministry of Transport and Digital
Infrastructure of Germany in the project Providentia++ (01MM19008).

Hardware Faults that Matter 317

References

1. Athavale, J., Baldovin, A., Graefe, R., Paulitsch, M., Rosales, R.: AI and reliability
trends in safety-critical autonomous systems on ground and air. In: Proceedings
- 50th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN-W 2020 (2020)

2. Beyer, M., et al.: Fault Injectors for TensorFlow: evaluation of the impact of ran-
dom hardware faults on deep CNNs. In: 30th European Safety and Reliability
Conference, ESREL 2020 and 15th Probabilistic Safety Assessment and Manage-
ment Conference, PSAM 2020 (2020)

3. Blackman, S., Popoli, R.: Design and Analysis of Modern Tracking Systems (Artech
House Radar Library). Artech House (1999)

4. Dos Santos, F.F., Navaux, P., Carro, L., Rech, P.: Impact of reduced precision in
the reliability of deep neural networks for object detection. In: Proceedings of the
European Test Workshop (2019)

5. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI
dataset. Int. J. Robot. Res. 32, 1231–1237 (2013)

6. Geissler, F., et al.: Towards a safety case for hardware fault tolerance in convolu-
tional neural networks using activation range supervision. In: Proceedings of the
Workshop on Artificial Intelligence Safety 2021 co-located with the Thirtieth Inter-
national Joint Conference on Artificial Intelligence (IJCAI 2021), Virtual, August
2021 (2021)

7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(2016)

8. Hong, S., Frigo, P., Kaya, Y., Giuffrida, C., Dumitras, T.: Terminal brain damage:
exposing the graceless degradation in deep neural networks under hardware fault
attacks. In: Proceedings of the 28th USENIX Security Symposium (2019)

9. Hou, X., Breier, J., Jap, D., Ma, L., Bhasin, S., Liu, Y.: Security evaluation of
deep neural network resistance against laser fault injection. In: Proceedings of
the International Symposium on the Physical and Failure Analysis of Integrated
Circuits, IPFA (2020)

10. IEEE: 754-2019 - IEEE Standard for Floating-Point Arithmetic. Tech. rep. (2019)
11. Intel Corporation: bfloat16 - Hardware Numerics Definition. Tech. rep. (2018)
12. Kesten, R., et al.: Level 5 perception dataset 2020 (2019)
13. Koopman, P., Osyk, B.: Safety argument considerations for public road testing of

autonomous vehicles. SAE Technical Papers, April 2019
14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-

volutional neural networks. Advances in Neural Information Processing Systems
(2012)

15. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res.
Logist. Q. 2, 83–97 (1955)

16. Li, G., et al.: Understanding error propagation in Deep learning Neural Network
(DNN) accelerators and applications. In: Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and Analysis, SC
2017. Association for Computing Machinery, Inc. (2017)

17. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object
detection. IEEE Trans. Pattern Anal. Mach. Intell. 42, 318–327 (2020)

18. Lotfi, A., et al.: Resiliency of automotive object detection networks on GPU archi-
tectures. In: Proceedings - International Test Conference (2019)

318 S. Qutub et al.

19. Microsoft: Coco 2017 dataset (2017)
20. Neale, A., Sachdev, M.: Neutron radiation induced soft error rates for an adjacent-

ECC protected SRAM in 28 nm CMOS. IEEE Trans. Nucl. Sci. 66, 1912–
1917(2016)

21. Reagen, B., et al.: Ares: a framework for quantifying the resilience of deep neural
networks. In: Proceedings - Design Automation Conference (2018)

22. Redmon, J., Farhadi, A.: YOLOv3: An Incremental Improvement (2018)
23. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object

detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell.
36 (2017)

24. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: 3rd International Conference on Learning Representations,
ICLR 2015 - Conference Track Proceedings (2015)

Application of STPA for the Elicitation
of Safety Requirements for a Machine
Learning-Based Perception Component

in Automotive

Esra Acar Celik1(B), Carmen Cârlan2, Asim Abdulkhaleq3, Fridolin Bauer4,
Martin Schels5, and Henrik J. Putzer1

1 fortiss Research Institute of the Free State of Bavaria, Munich, Germany
{acarcelik,putzer}@fortiss.org

2 Edge Case Research GmbH, Munich, Germany
ccarlan@ecr.ai

3 Robert Bosch GmbH, Stuttgart, Germany
Asim.Abdulkhaleq@de.bosch.com
4 BMW AG, Munich, Germany
Fridolin.Bauer@bmwgroup.com

5 Continental AG, Regensburg, Germany
martin.schels@continental-corporation.com

Abstract. Approaches based on Machine Learning (ML) provide novel
and promising solutions to implement safety-critical functions in the field
of autonomous driving. Establishing assurance in these ML components
through safety requirements is critical, as the failure of these components
may lead to hazardous events such as pedestrians being hit by the ego
vehicle due to an erroneous output of an ML component (e.g., a pedes-
trian not being detected in a safety-critical region). In this paper, we
present our experience with applying the System-Theoretic Process Anal-
ysis (STPA) approach for an ML-based perception component within a
pedestrian collision avoidance system. STPA is integrated into the safety
life cycle of functional safety (regulated by ISO 26262) complemented
with safety of the intended functionality (regulated by ISO/FDIS 21448)
in order to elicit safety requirements. These requirements are derived
from STPA unsafe control actions and loss scenarios, thus enabling the
traceability from hazards to ML safety requirements. For specifying loss
scenarios, we propose to refer to erroneous outputs of the ML component
due to the ML functional insufficiencies, while adhering to the guidelines
of the STPA handbook.

Keywords: Safety requirements · Machine Learning · Functional
insufficiencies · STPA · ISO 26262 · ISO/FDIS 21448

1 Introduction

The safety life cycle of ISO 26262 [6] encompasses the main safety activities to
design the system so that the consequences of internal malfunctions that may
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Trapp et al. (Eds.): SAFECOMP 2022, LNCS 13414, pp. 319–332, 2022.
https://doi.org/10.1007/978-3-031-14835-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14835-4_21&domain=pdf
https://doi.org/10.1007/978-3-031-14835-4_21

320 E. Acar Celik et al.

occur in the system components are mitigated. However, for Autonomous Driv-
ing (AD) systems addressing hazards caused by component faults is not enough,
as such systems heavily rely on sensors (leading to high-dimensional inputs)
and on dynamically evolving data sets (e.g., for training neural networks) in an
open world context [9]. Consequently, the activities recommended by ISO/FDIS
21448 [7] shall also be executed to address the risk associated with functional
insufficiencies. According to ISO/FDIS 21448, functional insufficiencies refer
to the insufficiencies of the specification of the intended functionality at vehi-
cle level, or the insufficiencies of the specification or performance limitations
of system elements [7]. Performance limitation is a limitation of the technical
capability and insufficiency of specification is a possibly incomplete specification
leading to a hazardous behavior in combination with one or more triggering con-
ditions [7]. Here, triggering conditions refer to specific conditions of a scenario
that serve as an initiator for a subsequent system reaction contributing to either
a hazardous behavior or an inability to prevent or detect and mitigate a reason-
ably foreseeable indirect misuse [7]. However, providing a complete specification
of a Deep Neural Network (DNN) is hard to achieve, mainly due to the black
box nature of these algorithms.

For the elicitation of safety requirements in a systematic manner, one can
execute one or more state-of-the-art safety analyses. Traditional safety analysis
methods are based on the reliability theory, and are not adequate to address
hazards related to Safety Of The Intended Functionality (SOTIF) and caused
by human errors, dysfunctional component interactions or ML functional insuffi-
ciencies [1]. STPA is a more recent hazard analysis technique based on the system
and control theory, and is more than a mere fault analysis as it also addresses
types of hazardous causes in the absence of failure [11,12]. In the case of ML
components, classical fault definitions do not apply, but the output of an ML
component can be safety critical when used as input to a controller (e.g., “Pedes-
trian Avoidance Controller” in Fig. 3). Consequently, as also stated in ISO/FDIS
21448, STPA is an appropriate candidate for the analysis of functional insuffi-
ciencies that may be root causes for hazardous events. A more comprehensive
comparison between STPA and other safety analyses can be found in [16]. The
main contributions of the paper can be summarized as follows:

– Integration of STPA into the safety life cycle of ISO 26262 and ISO/FDIS
21448: In order to address both functional safety and SOTIF, we follow the
reference safety life cycle from ISO 26262 and complement each phase in this
life cycle with ISO/FDIS 21448 specific activities (similarly to Becker et al. [3]
and Kirovskii et al. [9]). The STPA technique is then integrated into this life
cycle for the elicitation of safety requirements in a systematic manner. The
STPA integration is necessary due to the following reasons: (1) ISO 26262
does not explicitly mention how to deal with deep learning algorithms; (2)
The complementary ISO/FDIS 21448 provides no guidance on how to derive
safety measures from system level to algorithm level. The presented approach
that integrates STPA into the safety life cycle addresses this gap and enables

Application of STPA for Safety Requirements of Machine Learning 321

the provision of traceability from hazards to safety requirements assigned to
DNN components.

– Elicitation of safety requirements based on ML safety concerns: We provide
guidance for identifying SOTIF-specific loss scenarios via STPA based on
DNN safety concerns that are defined as the root causes of DNN functional
insufficiencies in [18].

– Guideline for defining safety-relevant metrics for ML safety requirements:
We discuss how to define safety-relevant metrics for exemplary ML safety
requirements that are derived from DNN safety concerns using STPA.

The paper is organized as follows. Section 2 explores recent developments
that have been proposed for the safety assurance of ML components in the field
of AD. In Sect. 3, we introduce our approach for the elicitation of ML safety
requirements while using STPA and how it is applied for a pedestrian detection
Learning Enabled Component (LEC). Finally, we present concluding remarks
and future directions to expand our approach in Sect. 4.

2 Related Work

On the one hand, Abdulkhaleq et al. [1] discuss the usability of STPA for the exe-
cution of certain activities within the ISO 26262 life cycle and present a concept
to extend the safety scope of ISO 26262 and to support the Hazard Analysis and
Risk Assessment (HARA) process. On the other hand, Zhang et al. [19] propose
an approach for identifying and evaluating SOTIF-relevant hazardous factors via
STPA. In contrast to these works, we focus on SOTIF-related triggering con-
ditions associated to DNN functional limitations. Kramer et al. [10] provide an
integrated method for the safety assessment of AD functions, which covers both
aspects of functional safety and SOTIF. They also provide a functional insuffi-
ciency and causal chain analysis technique to identify and model SOTIF-related
hazards. Still, their approach addresses system level, whereas our focus is on the
level of ML.

In addition, there is ongoing research on deriving safety requirements for
ML and/or providing a traceable link between system level and component
level safety requirements. For example, Gauerhof et al. [5] provide a traceable
link between system level safety requirements and ML safety requirements that
address data management, and model learning stages of the ML life cycle for
pedestrian detection at crossings. The paper focuses mainly on the derivation
and the sufficiency of data management requirements that target different con-
cerns of the data used in the generation of ML models. Similarly, Salay et al. [13]
address the missing link between system level safety requirements and compo-
nent level performance requirements using a so-called “linkage argument” that
connects component related claim at system level to component level argument.
Further, Schwalbe et al. [15] present an assurance case to argue about confidence
for ML components and propose a pattern to structure the part of a safety argu-
ment specific to DNNs with a case study based on pedestrian detection. They
suggest to derive DNN-related safety requirements from types of DNN-specific

322 E. Acar Celik et al.

functional insufficiencies along with a structure for evidences related to these
insufficiencies. The main difference from our work is that they focus on the com-
pleteness of safety requirements on DNN level and provide no traceable link
between system level and component level safety requirements.

Complementary to existing works, we present a systematic approach that
integrates STPA into the safety life cycle of ISO 26262 and ISO/FDIS 21448 to
elicit safety requirements for an ML-based perception function. Our approach
uses STPA for the identification of SOTIF-related triggering conditions based on
ML functional insufficiencies and safety concerns. To the best of our knowledge,
no systematic guidance exists on how to derive safety requirements based on
ML functional insufficiencies and ML safety concerns for ML-based perception
components from system level safety requirements.

3 Safety Requirement Elicitation for Pedestrian
Detection Component

In this section, we present our approach for integrating STPA into the combined
safety life cycle of ISO 26262 and ISO/FDIS 21448, and show how we used the
presented approach to derive safety requirements for an ML-based perception
function of a pedestrian collision avoidance system. More specifically, this func-
tion is a DNN-based component that is assumed to be embedded in an SAE
Level 4 autonomous vehicle. In Subsect. 3.1, the integration of STPA into the
combined safety life cycle is presented. The elicitation of safety requirements
based on the proposed approach is presented in Subsect. 3.2 and guidance on
safety-relevant metrics for derived ML safety requirements is provided in Sub-
sect. 3.3. Finally, in Subsect. 3.4, based on the experiences gained in the KI
Absicherung project1, we discuss open points that should be addressed in the
future for the safety assurance of systems with LECs.

3.1 Integrating STPA into the Safety Life Cycle of ISO 26262
and ISO/FDIS 21448

We integrate the safety assurance activities recommended by ISO 26262 and
ISO/FDIS 21448 by complementing each phase in the ISO 26262 safety life
cycle with ISO/FDIS 21448 specific activities, similarly to Becker et al. [3] and
Kirovskii et al. [9]. In Fig. 1, we present how we also integrate STPA activities
into this combined safety life cycle.

As shown in Fig. 1, the first two phases of STPA, namely define the purpose
of the analysis and model the control structure, have overlapping activities with
clause 5 and clause 6 in ISO/FDIS 21448, and part 3–5 and part 3–6 in the
ISO 26262 safety life cycle. The aim of the phase of defining the purpose of the
analysis is to identify hazards and safety constraints, whereas the modeling the
control structure can be seen as a part of specification and design (ISO/FDIS
21448), or item definition (ISO 26262).
1 https://www.ki-absicherung-projekt.de/.

https://www.ki-absicherung-projekt.de/

Application of STPA for Safety Requirements of Machine Learning 323

Fig. 1. Pillars of the proposed integrated assurance approach

The next phase of STPA, namely identify unsafe control actions - Step 1 in
Fig. 1, overlaps with the execution of safety analysis (part 3–7) as recommended
by ISO 26262 and with the identification and evaluation of triggering conditions
recommended by ISO/FDIS 21448 (clause 7). The aim of STPA, part 3–7 of
ISO 26262 and clause 7 of ISO/FDIS 21448 is similar, namely to identify the
causal factors of hazardous events. While in the scope of ISO/FDIS 21448, causal
factors related to algorithms, sensors and actuators are identified, in the scope
of ISO 26262, hazardous events caused by the occurrence/presence of hardware,
software, communication, or integration faults are identified.

The final phase of STPA, namely identify loss scenarios - Step 2 in Fig. 1,
aims at identifying the causal factors that can lead to unsafe control actions
(UCAs), i.e., loss scenarios [12]. In order to prevent the occurrence of loss scenar-
ios, we define safety requirements. In this activity of definition of safety require-
ments, clause 8 of ISO/FDIS 21448 overlaps with part 4–6 of ISO 26262. The
remaining activities from ISO 26262 and ISO/FDIS 21448 are not discussed as
they are out of the scope of this paper. However, ISO/FDIS 21448 explains
how SOTIF activities including verification and validation are aligned with ISO
26262.

3.2 Case Study: Deriving Safety Requirements of a Perception
Component with STPA

In this subsection, we explore the application of the proposed method, where
STPA is used as the safety analysis method for an ML-based perception com-
ponent. Safety requirements for the considered component are derived from
identified UCAs and loss scenarios. The identification of STPA loss scenarios
helps identifying SOTIF-related unsafe scenarios, thus reducing the number of
unknown unsafe scenarios. Known unsafe scenarios can be then eliminated by
the implementation of a safety concept in the scope of ISO 26262 (part 3–7 and

324 E. Acar Celik et al.

4–6), or of functional modifications in the scope of ISO/FDIS 21448 (clause 8).
In Fig. 2, we show how a top-level safety goal of the system boils down to ML
safety requirements.

Fig. 2. Goal Structuring Notation (GSN) showing the derivation of ML safety require-
ments using STPA

Inspired by the work of Abdulkhaleq et al. [1], in Fig. 1 we present how
STPA can support the systematic refinement of hazards to safety requirements.
However, since the scope of this paper is to provide the safety assurance of a
DNN component, in contrast to [1] we mainly focus on SOTIF-related triggering
conditions associated to DNN functional limitations. In addition, we propose our
own approach for specifying loss scenarios, while basing our usage of STPA on
the guidelines from the STPA Handbook [12].

In the initial phase of STPA, losses, system level hazards and constraints are
identified. For our use case (i.e., pedestrian detection), we define the following
losses/harms: (1) L01 : Loss of life or serious injury to people, and (2) L02 : Dam-
age to the vehicle or objects outside the vehicle. Then, based on the addressed
losses along with the item definition and the possible operational situations, we
determine relevant hazardous events and their consequences (severity, exposure,
controllability as described by ISO 26262): (1) H01 : Collision with pedestri-
ans when driving with velocity greater than 10 km/h in urban area (S1–S3 -
depending on velocity, E4, C3), and (2) H02 : Collision with trailing vehicle due
to unnecessary braking (S1–S2 - depending on velocity, E4, C2/C3). In the sec-
ond phase of STPA, a highly abstract system architecture (from a functional
point of view), having a control structure and used for the safety analysis, is
modelled. Figure 3 shows the control structure modelled for our use case.

Based on the modelled control structure and the identified hazards, UCAs are
defined in the third phase of the STPA by using guiding words provided in the
STPA handbook (i.e., provided, not provided, too soon/too late/out of sequence,
stopped too soon/applied too long). A UCA is a control action that will lead
to a hazard in a particular context and worst-case environment [12]. We define
the following exemplifying UCAs for our use case: (1) UCA02: The “Pedestrian
Avoidance Controller” does not provide brake when pedestrian present in the

Application of STPA for Safety Requirements of Machine Learning 325

Fig. 3. STPA control structure presenting the system architecture of the pedestrian
collision avoidance system. “Detect zones” information consists of velocity-dependent
reachability zones of the ego vehicle in which the system should accurately detect all
pedestrians.

must-detect area corresponding to current velocity - traced back to H01 ; and
(2) UCA03: The “Pedestrian Avoidance Controller” provides brake when not
needed - traced back to H02. Here, must-detect area is a safety-critical region
defined according to the field of view of the camera and a braking distance
according to the effective braking deacceleration defining the radius of the must-
detect area. This area is then used to determine safety-relevant pedestrians (i.e.,
pedestrians that shall be detected by the DNN component). From each UCA, a
functional safety requirement (FSR) is derived by inverting the UCA. Each FSR
is then refined to technical safety requirements based on the system architecture,
control structure and its effect chain.

In the last phase of the STPA analysis, the possible causes of the UCAs
are identified as loss scenarios. The STPA handbook provides guidelines on how
to identify such loss scenarios and an inadequate process model is stated as a
possible cause of UCAs in the handbook [12]. In this work, LECs implementing
perception functionality are treated as part of the process model of a decision
making controller. As such, we are interested in identifying when the controller
receives incorrect feedback from an inadequate process model, namely the LEC

326 E. Acar Celik et al.

(e.g., false negative in must-detect area). We present our own solution for speci-
fying such loss scenarios. Based on the work of Willers et al. [18], we specify an
STPA loss scenario involving a DNN component as shown in Fig. 4. A trigger-
ing condition leads to an erroneous DNN output given the inherited functional
insufficiencies of the DNN component, when occurring in the context of a certain
operational situation. As a result, this erroneous output becomes a causal factor
of hazardous behavior. It is worth noting that the triggering condition is part
of the operational situation, refining its specification. When specifying loss sce-
narios, ISO/FDIS 21448 states that insufficiency conditions are first identified
and then causal factors leading to these conditions (e.g., functional insufficiency,
triggering condition) are determined [7]. Our proposal for the specification of
loss scenarios aligns with these ISO/FDIS 21448 recommendations (i.e., insuffi-
ciency condition can be interpreted as erroneous DNN output and the remaining
elements of a loss scenario in Fig. 4 (e.g., safety concerns, triggering condition)
correspond to what is called STPA causal factors in ISO/FDIS 21448).

Fig. 4. The relation between safety concerns, functional insufficiencies, triggering con-
dition, and unsafe control actions

To reason about different types of erroneous output of DNNs, we use domain
knowledge about DNNs and adapt the service failure taxonomy proposed by
Avizienis et al. [2] to DNNs. Consequently, we realize a taxonomy for erroneous
DNN outputs, which can be seen in Fig. 5. According to this taxonomy, the fol-
lowing types of erroneous outputs of DNNs are claimed to cause the occurrence
of a UCA: (1) The controller receives incorrect feedback from the DNN com-
ponent, (2) the controller does not receive feedback from the DNN component
when needed (i.e., receives a delayed feedback).

Fig. 5. Taxonomy of erroneous DNN outputs

Application of STPA for Safety Requirements of Machine Learning 327

There are different possible triggering conditions for incorrect feedback (out-
put) from the DNN, namely the occurrence of:

– SOTIF Factors: The occurrence of triggering conditions, in the context in
which the DNN component has certain functional insufficiencies caused by
safety concerns.

– ISO 26262 Functional Safety Factors: Software faults in the software
implementation of the DNN model. UCAs based on these factors are consid-
ered as violating functional safety (FuSa).

Exemplifying ISO/FDIS 21448 and ISO 26262 related loss scenarios for our use
case are the following: (1) ISO/FDIS 21448: Performance limiting factors such as
strong occlusion of pedestrians and low contrast of people in camera image due to
environmental conditions; (2) ISO 26262: Hardware or software fault occurring
in the camera sensor or lack of efficiency. As shown in Fig. 4, erroneous DNN
outputs are triggered due to DNN functional insufficiencies. In this paper, we
consider insufficient generalization capability [14] as the functional insufficiency
of DNN and use the DNN safety concerns that are defined by [8] as the root
causes of this functional insufficiency.

Table 1. ISO/FDIS 21448 and ISO 26262 relevant exemplary loss scenarios: LS016,
LS017 and LS024 are ISO/FDIS 21448 relevant, whereas LS030 is an ISO 26262 rele-
vant one (OS: Operational Situation, OS1: Pedestrians in must-detect area; Pedestrian
Collision Avoidance system is enabled, FN: DNN provides a false negative output, TL:
DNN provides bounding boxes too late.)

ID Safety concerns Triggering condition OS Erroneous output

LS016 Brittleness of DNNs Presence of natural
noise

OS1 FN

LS017 Brittleness of DNNs Presence of natural
adversarial attacks

OS1 FN

LS024 Unreliable confidence
information Unknown
behavior in rare critical
situations Brittleness of
DNNs Missing label
details or meta-labels

Strong occlusion of
pedestrians

OS1 FN

LS030 N/A Lack of efficiency OS1 TL

In the light of the discussion above, we provide exemplifying loss scenarios
both for ISO/FDIS 21448 and ISO 26262 for our use case in Table 1. To prevent
the occurrence of the identified loss scenarios, which would imply the occurrence
of UCAs causing harm, a safety requirement shall be derived from each identified
loss scenario and the derived requirement can be allocated to system components,
where one safety requirement may address several loss scenarios. In Table 2, we
provide exemplifying ML safety requirements (MLSRs) derived for our use case.

328 E. Acar Celik et al.

Table 2. Exemplary safety requirements derived by the proposed approach

ID Requirement Text Related Loss Scenario

MLSR12 The 2D bounding box detector shall
detect pedestrians if a foreseeable type of
perturbation is present (e.g., strong rain,
dirt on sensor, noise due to
electromagnetic interference below high
voltage lines, ...).

LS016

MLSR13 The 2D bounding box detector shall
detect pedestrians if known adversarial
attacks are present.

LS017

MLSR08 The 2D bounding box detector shall
detect pedestrians if they are partially
occluded.

LS024

MLSR05 The 2D bounding box detector shall
detect pedestrians with a processing time
per frame of at most 40 ms (due to
camera frame rate of 25 Hz)

LS030

3.3 Defining Safety-Relevant Metrics

According to ISO/FDIS 21448, the definition of acceptance criteria (e.g., a val-
idation target) is required in the development process of AD systems. Such
acceptance criteria could be the minimum length of the required endurance run
combined with a maximum number of observed failures for each type (e.g., false
positives, false negatives) [7]. Therefore, for each DNN safety requirement, a
safety-relevant metric should be defined. Safety-relevant metrics are basically
performance metrics that enable to evaluate safety requirements (i.e., that are
used for safety assurance). For example, our derived safety requirements such
as MLSR12 address ML safety concerns but they provide no explicit reference
to any specific metric (Table 2 and Table 3). In this work, we determine the
safety-relevant metrics based on the addressed safety concerns along with trig-
gering conditions. This enables the linkage between the derived SOTIF ML
requirements to the properties of ML components such as performance and, as
a result, to have a holistic view that combines top-down and bottom-up assur-
ance approaches for ML-based systems. A top-down approach refers to a safety
argument that begins with system level hazards and continues with the deriva-
tion and the refinement of safety requirements from system level to component
level. A bottom-up approach, on the other hand, refers to the incorporation of
the properties of ML components into the system safety case. We perform the
connection of top-down and bottom-up approaches by the use of safety con-
cerns as being a part of STPA loss scenarios (Fig. 4). Therefore, in order to
determine which evidences can be used to meet a safety requirement assigned
to an ML component, we focus on evidences that can be generated to mitigate

Application of STPA for Safety Requirements of Machine Learning 329

related safety concerns. More specifically, metrics are defined based on mecha-
nisms and methods that address the safety concerns along with related triggering
conditions. These metrics can then be used as safety measures for fault removal,
tolerance, prevention and forecasting. In Table 3, we provide exemplary MLSRs
with related safety concerns and safety-relevant metrics.

Table 3. Exemplary MLSRs with related safety concerns and safety-relevant metrics.

Requirements Safety concerns Safety-relevant metrics

MLSR12 (foreseeable
type of perturbation is
present)
MLSR13 (known
adversarial attacks are
present)

Brittleness of DNNs – Robustness metric = correla-
tion between performance metric
and image metric measuring the
degree of perturbation (specifics
depend on perturbation type)
– Robustness under domain shift
– ...

MLSR08 (pedestrian
is partially occluded)

– Unreliable confidence
information
– Unknown behavior in
rare critical situations
– Brittleness of DNNs
– Missing label details
or meta-labels

Occlusion sensitivity ...

The safety-relevant metrics outlined in Table 3 are defined in the context of
the KI Absicherung project and providing details about each metric is beyond
the scope of this paper. However, as shown in Table 3, these metrics are deter-
mined mainly based on the safety concern being addressed by the MLSR and
related triggering condition. MLSR12 and MLSR13 are related to the safety
concern of brittleness of DNNs and the related triggering condition is the pres-
ence of perturbation (noise or adversarial attacks). Therefore, robustness related
metrics are suggested to support these MLSRs in the safety argument. Similarly,
MLSR08 is related to the following safety concerns: Unreliable confidence infor-
mation, unknown behavior in rare critical situations, brittleness of DNNs and
missing label details or meta-labels. The triggering condition for MLSR08 is the
strong occlusion of pedestrians. As a result, metrics that address the sensitivity
to occluded objects of a DNN model are used to support this safety requirement.

3.4 Discussion

Failure Modes and Effects Analysis (FMEA) and Fault Tree Analysis (FTA) are
both recommended by ISO 26262 as safety analysis methods and they mainly
focus on the analysis of safety-critical Electrical/Electronic (E/E) failures based
on the available design of the system. STPA, on the other hand, is a method
which is used to design a system while regarding the safety concerns at an early

330 E. Acar Celik et al.

stage of the development process (safety by design) and it does not only focus on
the E/E failures of the system, but also on hazardous behaviors in the absence
of the E/E failures and the interaction between the system and its environment.
Therefore, in line with what ISO/FDIS 21448 recommends, in this paper we
proposed an approach using STPA during the execution of a safety life cycle
which entails both ISO 26262 and SOTIF activities, and our approach mainly
focuses on hazardous behaviors which are not related to the E/E failures. Still, in
a real world context, all these approaches are applicable at different steps within
the safety life cycle. For example, STPA is applicable at the concept phase part
3 of ISO 26262 to derive the hazardous events including SOTIF (ML algorithms)
hazardous events, whereas FTA and FMEA can be applied at the part 9 of ISO
26262 to identify the failure and faults of system components.

Within the context of elicitation of safety requirements for ML components,
the definition of acceptance criteria was one of the major topics discussed during
the KI Absicherung project. More specifically, the discussion point was how to
map the system target level of safety (acceptable risk) to safety metrics at the
level of ML component as discussed in the previous subsection. Arguing whether
an autonomous vehicle with LECs meets quantitative safety targets (acceptable
risk) is still a largely open research question addressed in some studies [4] [17].
Vaicenavicius et al. [17] decompose the validation target defined for the percep-
tion function into two, namely: (1) the performance of the perception function
of the system, and (2) properties of the environment. The properties of the
environment can be seen as the environmental factors to be considered such as
the average number of pedestrians expected for the pedestrian detection func-
tion. Berk et al. [4] provide a much clearer system-component linking compared
to [17]. They state that an overall approval criterion for the system is that the
sum of the failure rates of the perception (λ per), planning (λ func), and actua-
tion subsystems (λ actu) is smaller than a given threshold rate (determined by
the target safety level of the system) [4]. The rate of failures of the perception
(λ per) is decomposed into overall rate of perception errors (i.e., false positives
and false negatives) and safety-criticality of a perception error that is defined
as high, medium and low depending on the location of the error in the field
of view [4]. For instance, perception errors directly in front of the ego vehicle
can heuristically be estimated to be more safety critical than perception errors
occurring further away [4]. A comprehensive approach that would both target
different phases of ML life cycle (as in [5]) and that enables definition of a target
safety at system level (via an acceptable risk) using component level performance
requirements (as in [4]) seems to be a promising way to proceed and to extend
our current approach.

4 Conclusion

In this paper, we presented an approach that applies STPA for the elicitation of
safety requirements for an ML component implementing an AD function. The
approach integrates STPA activities into the functional safety and SOTIF activi-
ties, and enables the traceability from hazards to safety requirements assigned to

Application of STPA for Safety Requirements of Machine Learning 331

DNN components. While adhering to the guidelines from the STPA handbook,
loss scenarios are specified in a novel way by referring to erroneous DNN outputs
due to DNN functional insufficiencies. In addition, we briefly discuss the usage
of safety-relevant metrics that target the DNN safety concerns as performance
evidence. In order to facilitate the understanding of the approach, we discuss
its usage within the KI Absicherung project. However, the approach is agnostic
to a specific project and is applicable to a diverse set of scenarios in which ML
components are integrated into a safety-critical system.

One interesting and important line of future work would be providing a link
between the SOTIF-related risk at vehicle level and the performance require-
ments at component level in order to define acceptance criteria for ML safety
requirements. Another significant future work would be to investigate how
process-related requirements such as adhering to data labeling guidelines can be
incorporated into the safety argumentation of the system as indirect evidences.

Acknowledgement. The research leading to these results is funded by the German
Federal Ministry for Economic Affairs and Energy within the project “KI Absicherung
- Safe AI for Automated Driving”. The authors would like to thank the consortium
for the successful cooperation. C. Cârlan worked on this paper during her time as a
researcher at fortiss Research Institute of the Free State of Bavaria.

References

1. Abdulkhaleq, A., Wagner, S., Lammering, D., Boehmert, H., Blueher, P.: Using
STPA in compliance with ISO 26262 for developing a safe architecture for fully
automated vehicles. In: Automotive - Safety & Security. LNI, vol. P-269, pp. 149–
162. Gesellschaft für Informatik, Bonn (2017)

2. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE Trans. Depend. Secur. Comput.
1(1), 11–33 (2004)

3. Becker, C., Brewer, J.C., Yount, L., et al.: Safety of the intended functionality of
lane-centering and lane-changing maneuvers of a generic level 3 highway chauffeur
system. Tech. rep, US National Highway Traffic Safety Administration (2020)

4. Berk, M., Schubert, O., Kroll, H.M., Buschardt, B., Straub, D.: Assessing the safety
of environment perception in automated driving vehicles. SAE Int. J. Transp. Saf.
8(1), 49–74 (2020)

5. Gauerhof, L., Hawkins, R., Picardi, C., Paterson, C., Hagiwara, Y., Habli, I.:
Assuring the safety of machine learning for pedestrian detection at crossings. In:
Casimiro, A., Ortmeier, F., Bitsch, F., Ferreira, P. (eds.) SAFECOMP 2020. LNCS,
vol. 12234, pp. 197–212. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-54549-9 13

6. ISO: ISO 26262 - Road vehicles - Functional safety (2011)
7. ISO: ISO/FDIS 21448 - Road vehicles - Safety of the intended functionality (2022)
8. KI-Familie Newsletter, https://ki-familie.vdali.de/ki-newsletter-nr-2/ki-

absicherung-dnn-specific-safety-concerns
9. Kirovskii, O.M., Gorelov, V.A.: Driver assistance systems: analysis, tests and the

safety case. ISO 26262 and ISO PAS 21448. IOP Conf. Ser. Mater. Sci. Eng. 534,
012019 (2019)

https://doi.org/10.1007/978-3-030-54549-9_13
https://doi.org/10.1007/978-3-030-54549-9_13
https://ki-familie.vdali.de/ki-newsletter-nr-2/ki-absicherung-dnn-specific-safety-concerns
https://ki-familie.vdali.de/ki-newsletter-nr-2/ki-absicherung-dnn-specific-safety-concerns

332 E. Acar Celik et al.

10. Kramer, B., Neurohr, C., Büker, M., Böde, E., Fränzle, M., Damm, W.: Identifi-
cation and quantification of hazardous scenarios for automated driving. In: Zeller,
M., Höfig, K. (eds.) IMBSA 2020. LNCS, vol. 12297, pp. 163–178. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-58920-2 11

11. Leveson, N.G.: Engineering a Safer World: Systems Thinking Applied to Safety.
The MIT Press, Cambridge (2016)

12. Leveson, N.G., Thomas, J.P.: STPA Handbook. MIT Partnership for Systems
Approaches to Safety and Security (PSASS) (2018)

13. Salay, R., et al.: The missing link: Developing a safety case for perception compo-
nents in automated driving. arXiv:2108.13294 (2021)

14. Sämann, T., Schlicht, P., Hüger, F.: Strategy to increase the safety of a DNN-based
perception for had systems. arXiv:2002.08935 (2020)

15. Schwalbe, G., et al.: Structuring the safety argumentation for deep neural net-
work based perception in automotive applications. In: Casimiro, A., Ortmeier,
F., Schoitsch, E., Bitsch, F., Ferreira, P. (eds.) SAFECOMP 2020. LNCS, vol.
12235, pp. 383–394. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
55583-2 29

16. Sulaman, S.M., Beer, A., Felderer, M., Höst, M.: Comparison of the FMEA and
STPA safety analysis methods-a case study. Softw. Qual. J. 27(1), 349–387 (2019)

17. Vaicenavicius, J., Wiklund, T., Grigaitė, A., Kalkauskas, A., Vysniauskas, I.,
Keen, S.: Self-driving car safety quantification via component-level analysis.
arXiv:2009.01119 (2020)

18. Willers, O., Sudholt, S., Raafatnia, S., Abrecht, S.: Safety concerns and mitigation
approaches regarding the use of deep learning in safety-critical perception tasks.
arXiv:2001.08001 (2020)

19. Zhang, S., Tang, T., Liu, J.: A hazard analysis approach for the SOTIF in intelligent
railway driving assistance systems using stpa and complex network. Appl. Sci.
11(16), 7714 (2021)

https://doi.org/10.1007/978-3-030-58920-2_11
http://arxiv.org/abs/2108.13294
http://arxiv.org/abs/2002.08935
https://doi.org/10.1007/978-3-030-55583-2_29
https://doi.org/10.1007/978-3-030-55583-2_29
http://arxiv.org/abs/2009.01119
http://arxiv.org/abs/2001.08001

Testing

Exploring a Maximal Number of Relevant
Obstacles for Testing UAVs

Tabea Schmidt(B), Florian Hauer, and Alexander Pretschner

Department of Informatics, Technical University of Munich, Munich, Germany
{tabea.schmidt,florian.hauer,alexander.pretschner}@tum.de

Abstract. Autonomously operating Unmanned Aerial Vehicles (UAVs)
must behave safely while performing their missions. For assessing the
safe behavior of a UAV, scenario-based testing provides valuable insights
into the UAV’s behavior in various situations. However, we can always
create new challenging situations to test by adding new obstacles to the
UAV’s environment. For reasons of practicality and cost, we need to focus
on those that represent relevant situations for the system under test. In
this work, we present an automated approach for exploring a maximal
number of relevant obstacles for testing the safe behavior of UAVs. We
evaluate our approach using different optimization algorithms to validate
our results and understand which technique is more suited. Since we can
base our understanding of challenging situations for the UAV on vari-
ous fault hypotheses, we further display the effect of collecting different
parameter values of the UAV. Our experiments show the applicability of
the proposed methodology and imply that the MOEA/D optimization
algorithm performs better than NSGAII for the proposed approach. Fur-
ther, the results indicate that a maximum of M = 5 or M = 8 obstacles
are relevant for the system under test, depending on the applied fault
hypothesis. Based on these results, we can effectively limit the number
of situations for testing the system under test by excluding those with
more than M obstacles.

Keywords: Scenario-based testing · Unmanned Aerial Vehicles ·
Safety

1 Introduction

Companies such as Amazon [22] or Zipline [20] are actively working on
autonomously operating Unmanned Aerial Vehicles (UAVs). Since these systems
will operate more often in populated areas in the near future, we need to ensure
that they behave safely during operation. Recent work has shown that scenario-
based testing [6] provides valuable insights into the safe behavior of autonomous
cars [7,13] and UAVs [21]. In scenario-based testing, the System Under Test
(SUT) is tested in typical situations that it might encounter. For autonomous
cars, we have a good intuition and understanding of the nature of these typi-
cal traffic situations. Further, available traffic rules and road elements provide a
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Trapp et al. (Eds.): SAFECOMP 2022, LNCS 13414, pp. 335–349, 2022.
https://doi.org/10.1007/978-3-031-14835-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14835-4_22&domain=pdf
https://doi.org/10.1007/978-3-031-14835-4_22

336 T. Schmidt et al.

rigid structure for these situations. In contrast, UAVs operate in the open field
and have a wide range of possible missions and environments that we need to
consider in these typical situations. A quadcopter with the mission to transport
a package to a destination point while encountering three obstacles and medium
wind conditions is an example of such a typical situation for a UAV. By adding
further obstacles to the environment of the UAV in these typical situations, we
can create a new situation that might be challenging for the UAV. Thus, we need
to test the UAV’s behavior in each of these novel situations. As it is infeasible
to test a UAV in infinitely many typical situations, we have to derive a complete
list of relevant situations. As a first step towards acquiring such a comprehensive
list, we propose investigating the maximal number of relevant obstacles that we
need to consider when testing the safe behavior of UAVs. In related work, the
authors of [3,4,9,15,23] derive typical situations for autonomous cars or UAVs
based on ontologies that describe the various aspects of these situations. They
focus on the structure of these situations or specific use cases and do not con-
centrate on the completeness of the derived situations. As an alternative, the
authors of [8,14,24] propose statistical approaches to explore the completeness
and diversity of collected data. Since we still lack high amounts of data for testing
UAVs to apply these approaches, we aim to focus instead on the relevant typical
situations themselves. In addition, we are not aware of a test ending criterion
for scenario-based testing of UAVs that would inherently provide insight into a
maximal number of relevant obstacles. In this work, we aim to investigate the
upper bound of the number of obstacles that we need to consider when testing
UAVs. In this way, we provide a first step for deriving a comprehensive list of
relevant typical situations for testing the safe behavior of UAVs.

The contribution of this paper is an automated approach for exploring a
maximal number of relevant obstacles for UAVs. With our proposed approach,
we can effectively limit the number of typical situations in which we need to test
the safe behavior of UAVs. Our work, thus, provides the basis for a complete
collection of relevant situations for testing UAVs. We further present experimen-
tal results to show the applicability of the proposed approach for two different
optimization algorithms and various collected parameter values.

We present an overview of the process for testing UAVs with scenario-based
testing in Sect. 2. Section 3 provides an automated approach for exploring the
maximal number of relevant obstacles, whereas Sect. 4 presents experimental
results. Section 5 discusses related work before Sect. 6 concludes.

2 Scenario-Based Testing of UAVs

Following the terminology in [18], we differentiate between logical and concrete
scenarios for scenario-based testing. Logical scenarios represent typical situations
the UAV will encounter in the real world and incorporate n parameters P =
{p1, p2, . . . , pn}, such as characteristics of the obstacles or the wind conditions
in the logical scenarios. By assigning specific values to these parameters P , we
can create various concrete scenarios that resemble possible real-world situations
for the given logical scenario and constitute test cases for the SUT.

Exploring a Maximal Number of Relevant Obstacles for Testing UAVs 337

Fig. 1. Overview of the process for testing the safe behavior of UAVs with scenario-
based testing. This work provides a basis for the highlighted activity.

In Fig. 1, we present an outline for testing the safe behavior of UAVs with
scenario-based testing. First, we need to derive logical scenarios 1 in which we
aim to test the UAV’s behavior. We can acquire these logical scenarios by (a)
clustering real-flight data [12] we collected beforehand or by (b) deriving them
from mental models of challenging situations presented by experts, literature, or
specifications. As a result of this first step, we gain a list of logical scenarios 2 .
However, we can only ensure a safe behavior of a UAV when we test its behavior
in all relevant situations that it might encounter. Thus, in the next step, we
need to investigate whether we know all logical scenarios 3 and, therefore, all
relevant situations to test the UAV’s behavior. If we have enough confidence
in knowing all relevant logical scenarios for our aspired safety argumentation,
we can generate test cases for these scenarios in the next step. Note that this
is an active research area and that we might only be able to give such confi-
dence to a certain degree. Otherwise, we have to go back to step 1 and derive
more logical scenarios until we are sufficiently confident that we have gathered
a suitable list of logical scenarios for the SUT. Since it is infeasible to test all
concrete scenarios of each logical scenario, we need to select “good” test cases
that represent challenging situations for the UAV for each logical scenario in
the test case generation step 4 . [19] argues that “good” test cases are those
test cases that are able to reveal potential faults in the SUT. In these “good”
test cases, a correct UAV behaves safely, whereas a faulty one behaves unsafely.
As a result of step 4 , we gain “good” test cases 5 that represent challenging
situations for our SUT with the help of optimization algorithms, as presented in
[21]. Finally, we need to ensure that we tested the SUT for each logical scenario
sufficiently 6 to expect a safe behavior of the UAV in the concrete scenarios
of each logical scenario. Evaluating the quality of the generated test cases by
different optimization algorithms will be an essential part of this step. If we are
not sufficiently sure that we tested each logical scenario adequately, we need to
create additional test cases 4 before stopping the testing process.

In this work, we focus on step 3 by investigating the maximal number of
relevant obstacles to incorporate in logical scenarios for UAVs. Finding this upper

338 T. Schmidt et al.

bound of obstacles provides a basis for deriving a comprehensive list of relevant
logical scenarios. Based on this work, we would like to acquire a comprehensive
list of logical scenarios for testing UAVs in future work and investigate step 6
to create a test ending criterion for testing the safe behavior of UAVs.

3 Automated Derivation of a Maximal Number
of Relevant Obstacles

As presented in step 3 in Fig. 1, we need to be sufficiently confident in having
found a complete list of logical scenarios to ensure the safe behavior of the
tested UAV in all relevant situations. Thus, we need to provide lower and upper
bounds for the parameters that characterize logical scenarios for UAVs, such as
the number of included obstacles, the minimum and maximum wind force, or the
number of wind directions to consider. If we lack expert knowledge about these
bounds, we need to investigate the influence of different bounds on the UAV’s
behavior experimentally. In this work, we present an automated approach for
finding such bounds with the example of investigating an upper bound for the
number of obstacles to consider in logical scenarios for UAVs. As we limit the
number of logical scenarios to test, this approach provides a first step toward
acquiring a comprehensive and finite list of logical scenarios.

3.1 Relevant Obstacles for the UAV

When limiting the number of obstacles in a logical scenario, we can discard those
obstacles that do not impact the behavior and trajectory planning of the UAV,
e.g., ones located 100m away. Relevant obstacles can influence the UAV’s behav-
ior and reside in its surrounding area. During the UAV’s flight, the relevance of
obstacles changes dynamically and depends, among others, on the UAV’s type,
size, and velocity. While the relevance of specific obstacles changes over time, we
can derive a maximal number of relevant ones at each timestamp. In this work,
we aim to obtain, for a given SUT, an upper bound for this number of relevant
obstacles. In our proposed approach, we investigate the impact of a number of
relevant obstacles N on the UAV’s behavior independent of a given logical sce-
nario. This independence is possible since we aim to explore how many obstacles
have an effect on the UAV’s behavior and do not aim to test the safe behavior
of the UAV directly. After deriving a maximal number M of relevant obstacles
that generally affect the UAV’s behavior, we can create various logical scenarios
for the tested system in the next step. In these logical scenarios, we incorporate
0 to M obstacles, various missions, and different environmental effects, such as
weather effects or terrains, to thoroughly investigate the UAV’s safe behavior. As
an advantage of our proposed approach, we limit the number of relevant logical
scenarios by excluding those with more than M obstacles.

Exploring a Maximal Number of Relevant Obstacles for Testing UAVs 339

3.2 Parameter Values Describing the UAV’s Behavior

For investigating the UAV’s behavior in a black-box manner, we focus on exter-
nally observable system states. The number of obstacles in the surrounding area
of the UAV influences the range of these observable values. Additional obsta-
cles are relevant for the UAV if they introduce new challenging situations. The
pitch, roll, and yaw values of the UAV, which represent its orientation, are an
example of a precise external description of the UAV’s state. The rationale for
using these values for our proposed approach is the fault hypothesis that we can
represent challenging situations for the UAV by extreme orientation values. As
an example, the following two ideas contribute to such a fault hypothesis: (a)
extreme orientation values lead to temporarily unstable positions of the UAV,
which might lead to control loss and a crash of the UAV; (b) when avoiding
obstacles, more extreme orientations of the UAV are needed. Following this fault
hypothesis, we investigate whether additional obstacles force the UAV into a new
extreme orientation that it does not encounter for fewer obstacles. In case the
UAV should perform maneuvers with extreme orientations as part of its mission,
the orientation values of the UAV might not represent a suitable indicator for
challenging situations. In this case, other parameter values such as the linear
or angular velocity of the UAV might be more convenient. However, the pro-
posed methodology is independent of the used parameter values. We show this
in our experiments in Sect. 4 by investigating the performance of our proposed
approach for orientation and linear velocity values of the UAV. In the follow-
ing, we explain our proposed approach by using orientation values as exemplary
parameter values.

3.3 Process Overview of the Automated Derivation of a Maximal
Number of Relevant Obstacles

In general, our proposed methodology works as follows: We investigate the effect
of different UAV starting positions and obstacle positions on the UAV’s behavior
by collecting the UAV’s orientation values for each number of obstacles N . We
further use an optimization algorithm to find challenging situations in which we
can observe new extreme orientations of the UAV. A more detailed overview of
this approach is provided in Fig. 2 and described subsequently. Note that this
approach depicts one step towards deriving a complete list of logical scenarios,
which presents step 3 in Fig. 1, and does not represent an approach for gen-
erating “good” test cases for testing the safe behavior of UAVs directly which
depicts step 4 in Fig. 1.

As the first step in our approach, the optimization algorithm generates a
population of candidates A . These candidates B represent concrete scenarios
with specific parameter values from the search space, which contains all possible
parameter values of a logical scenario. An example for a concrete scenario is the
following: the UAV has the mission to fly to a target point starting at position
(x = −3.0, y = 1.3, z = 0.0) and avoiding obstacles at positions (x = 5.0,
y = −3.4, z = 1.0) and (x = 7.1, y = 2.5, z = 1.2). We describe an exemplary

340 T. Schmidt et al.

Start

End

A
B

C

DPopula�on
genera�on

Hull

Popula�on
candidates

Evalua�on
E

F

GH

I

Orienta�on
values

Simula�on run &
data collec�on

Environment
building

Hull update

Fitness func�on
evalua�on

Control flow
Data flow Resource

Ac�vity

Fig. 2. Overview of the automated approach for exploring a maximal number of rele-
vant obstacles for the system under test.

search space for our approach in the subsequent subsection. Next, the optimiza-
tion algorithm evaluates the generated candidates. In this evaluation step C ,
we build the simulation world D according to the parameter values of each can-
didate and place the UAV and the obstacles at their corresponding positions.
Then, the UAV receives and starts its mission, e.g., to fly to the destination
point. Throughout the simulation, we collect the UAV’s orientation represent-
ing its pitch, roll, and yaw angles E . As mentioned earlier, we can also record
other parameter values such as the UAV’s velocity in this step. After the simu-
lation has finished, the optimization algorithm needs to evaluate the quality of
each candidate F . This quality depends on the goal of the optimization and is
described by the fitness function. We present potential fitness functions for our
approach in the subsequent subsection. As a result of the evaluation step C , we
gain the detected orientation values G of all candidates of this population. We
store the discovered pitch, roll, and yaw values of all populations in a convex hull
H . After evaluating a population C , we update this hull with the orientation
values found in the current population I . Finally, the algorithm checks whether
the termination criterion is met after the current population. If this is the case,
the process stops for the currently regarded number of obstacles N . Otherwise,
the algorithm generates a new population A and proceeds further.

We execute the complete process depicted in Fig. 2 for each number of obsta-
cles N to detect a convergence of the results. When investigating the UAV’s
behavior for an additional obstacle N + 1, we should observe new extreme ori-
entation values compared with those collected for N obstacles. However, we will
detect fewer and fewer new orientations for an increasing number of obstacles
N . If we discover no new orientations for N+1 obstacles, the additional obstacle
does not influence the UAV’s behavior.

Exploring a Maximal Number of Relevant Obstacles for Testing UAVs 341

start_x [-4.0, -2.0] obst_x [4.0, 8.0]

UAV

obst_h
[1.0, 5.0]

obst_w
[0.5, 4.0]

x

yz

obst_z
[0.0, 5.0]

obst_y
[-4.0, 4.0]

Fig. 3. Visualization of an exemplary search space for our approach. The UAV starts
in the left orange area, flies through the middle blue area that includes the obstacles,
and lands at the target point marked with an X. (Color figure online)

3.4 Search Space and Fitness Function

When we explore the search space of all possible candidates for our proposed
approach, we need to consider the UAV and the obstacles. Figure 3 outlines an
exemplary search space for our approach. In the depicted scenario, the UAV has
the mission to fly to the destination point marked with an X. For each candi-
date, the optimization algorithm can choose a starting position of the UAV in the
orange area on the left. Additionally, we enable the algorithm to adapt the x-, y-,
and z-position of the static obstacles as well as their width and height for each
candidate. Note that this search space describes only static obstacles of a specific
form for simplicity of presentation. We can easily extend the search space for
dynamic obstacles by including their velocity and trajectory points. To enable
the optimization algorithm to produce adequate candidates, we need to set the
fitness function f accordingly. In this work, we aim to discover whether addi-
tional obstacles introduce new challenging situations to the tested UAV. Thus,
we search for concrete scenarios that provide new extreme parameter values that
represent challenging situations for the SUT. These new extreme parameter val-
ues increase the volume of the convex hull storing all parameter values. Thus,
we search for concrete scenarios that produce new extreme parameter values
and compare the volume v of the existing hull h with the volume v of the hull
extended with these new parameter values hnew:

f = v(hnew) − v(h)

In our search, we aim to maximize the fitness values of the produced candidates
to find new extreme orientation values. We can apply this fitness function for all
kinds of collected parameter values, e.g., finding extreme orientation values or
extreme velocity values. Note that this is not the only possible fitness function.
Other alternatives might be to maximize the average distance of the detected
new parameter values to the hull or to maximize the distance of the discovered

342 T. Schmidt et al.

parameter values from one population to the hull. As a termination criterion for
the search, we suggest to stop testing for a given number of obstacles N when
(a) a population does not produce any new orientation values outside of the hull,
(b) no crashes with obstacles occurred in this population, and (c) we executed
a minimum of 500 evaluations.

4 Experiments

To show the applicability of our proposed approach for exploring a maximal
number of relevant obstacles, we apply it to an open-source UAV in our exper-
iments. We present the results of these experiments for two different optimiza-
tion algorithms and when considering orientation or linear velocity values. As
optimization algorithms, we compare the Multiobjective Evolutionary Algo-
rithm Based on Decomposition (MOEA/D) [25] and the Non-dominated Sorting
Genetic Algorithm II (NSGAII) [10]. We chose NSGAII since it generally pro-
vides decent results, as presented in [1,2], and effectively generates test cases
for testing the safe behavior of UAVs in the current literature [21,26]. Since our
optimization problem is dynamic, we evaluate MOEA/D as an alternative since
it achieves the best optimization results when considering constraint dynamic
problems according to the benchmark of [11].

4.1 Experimental Setup and Implementation

Since we aim to investigate the effect of two different optimization algorithms,
we use the jMetalPy framework [5], which provides implementations for both
algorithms. For MOEA/D, we use Tschebycheff as the aggregation function,
while we apply SBX Crossover and Binary Tournament Selection for NSGAII.
We set the population size for these two algorithms to 100 as this number showed
the best performance in pre-experiments, where we investigated population sizes
of 25, 50, and 100. In our experiments, we use the simulation environment Gazebo
[16] for simulating the behavior of the obstacle avoidance extension of the PX4
drone [17]. In the simulations, this UAV flies autonomously to the specified target
point while avoiding the obstacles on its path. We generate concrete scenarios
for the logical scenario and search space depicted in Fig. 3 in our experiments.
Note that we use only static obstacles for simplicity of presentation. Nonetheless,
we can also apply our approach to dynamic obstacles by extending the search
space with their velocity and trajectory points. Further, we use the termination
criterion specified in Sect. 3.4, which states that we stop when we (a) detect
no new parameter values outside the hull in the current population, (b) we
discover no crashes in this population, and (c) we performed a minimum of 500
evaluations.

In our experiments, we collect the UAV’s orientation or linear velocity values
from concrete scenarios in which the UAV is in control and does not crash into
any obstacle. As the open-source UAV produces a random set of parameter
values that do not state anything about the challenge of the provided situation

Exploring a Maximal Number of Relevant Obstacles for Testing UAVs 343

when it is out of control, we discard these situations to enable a clean collection
of extreme parameter values. For the same reason, we exclude those concrete
scenarios in which the UAV crashes without the present obstacles influencing
the crash and loses control of its movements after the collision. Thus, if we
can exclude that any of the obstacles had an influence on the crash, we exclude
this concrete scenario. If we were testing the safe behavior of UAVs directly, such
collisions would be particularly interesting. However, since we instead investigate
the relevance of obstacles, we are dependent on not collecting a random set
of parameter values caused without environmental impact. Thus, we exclude
these cases to ensure a clean acquisition of parameter values. Note that we still
catch the impact of the additional obstacle, if existing, as we collect the UAV’s
orientation in other concrete scenarios with the same amount of obstacles and
include the crash information into our termination criterion. In the future, we
would like to expand our experiments by investigating the performance of other
optimization algorithms, including dynamic obstacles in the UAV’s environment,
and performing multiple runs per optimization algorithm to gain more robust
results.

4.2 Experimental Results

Table 1 depicts the results of our experiments for the two optimization algorithms
MOEA/D and NSGAII and when collecting orientation or linear velocity values.
For each number of obstacles N ∈ {1, 2, ..., 15}, the table depicts the percentage
volume increase vi to the previous hull:

vi = (v(hnew) − v(h))/v(h)

Since we build the first hull for N = 0 obstacles, we do not provide a vol-
ume increase for this N . When investigating the UAV’s orientation values,
MOEA/D converges after N = 8 obstacles with our proposed methodology,
whereas NSGAII still produces a small number of new extreme orientation val-
ues for higher amounts of obstacles. When considering the linear velocity of the
UAV, both algorithms converge for N = 5 relevant obstacles.

4.3 Discussion

For deriving a maximal number of relevant obstacles for testing the safe behavior
of UAVs, we investigate the performance of the heuristic optimization algorithms
MOEA/D and NSGAII in our experiments. While investigating the UAV’s ori-
entation, NSGAII does not converge to a maximal number of relevant obstacles.
On the other hand, our experimental results for MOEA/D provide a maximal
number of M = 8 relevant obstacles for the SUT. We derive this resulting number
of relevant obstacles based on the fault hypothesis that extreme orientations of
the UAV represent challenging situations. Note that the correctness of this fault
hypothesis is dependent on the SUT. Figure 4 presents the plots of the convex
hull that MOEA/D creates and updates when inspecting orientation values for

344 T. Schmidt et al.

Table 1. The percentage volume increase vi [%] for different amounts of obstacles N
when applying MOEA/D and NSGAII. Further, the table depicts the effect of collecting
orientation or linear velocity values for the system under test.

MOEA/D NSGAII
N Orientation vi Lin. Velocity vi N Orientation vi Lin. Velocity vi

1 15.78 8.32 1 147.11 0.08
2 110.49 0.48 2 0.00 0.00
3 0.00 0.00 3 9.37 0.00
4 0.00 0.00 4 14.96 12.07
5 7.95 0.06 5 1.38 28.15
6 0.01 0.00 6 0.00 0.00
7 4.01 0.00 7 5.00 0.00
8 0.01 0.00 8 0.00 0.00
9 0.00 0.00 9 1.39 0.00

10 0.00 0.00 10 0.00 0.00
11 0.00 0.00 11 0.00 0.00
12 0.00 0.00 12 0.31 0.00
13 0.00 0.00 13 0.00 0.00
14 0.00 0.00 14 0.22 0.00
15 0.00 0.00 15 1.26 0.00

N ∈ {1, 2, ..., 8} obstacles. Note that the obstacles are only implicitly depicted
in these plots as they influence the range of the orientation values. The newly
discovered extreme orientation values for each N are depicted in pale blue and
show the increase in the hull’s volume. Further, the plots show in black the hull
that our approach created for N − 1 obstacles.

When collecting linear velocity values, no new extreme orientation values—
and thus challenging situations—are discovered for more than M = 5 obstacles
with both algorithms. These results indicate that only M = 5 obstacles are
relevant for the tested UAV when assuming that challenging situations are pre-
sented by extreme linear velocity values of the UAV. Further, we can discover
a difference between the two optimization algorithms. MOEA/D collects most
of the new extreme linear velocity values for N = 1 obstacles, while NSGAII
acquires them mainly for N ∈ {4, 5} obstacles.

In our experiments, both algorithms find challenging situations for the UAV
and converge after a small number of obstacles, with the exception of NSGAII for
orientation values. These experimental results show the applicability of our pro-
posed approach for deriving a maximal number of obstacles. The results further
indicate that MOEA/D is more suited for our approach than NSGAII since it
detects new extreme parameter values for fewer obstacles more effectively. This
early detection of new extreme parameter values enables MOEA/D to converge

Exploring a Maximal Number of Relevant Obstacles for Testing UAVs 345

(a) N = 1 obstacles (b) N = 2 obstacles (c) N = 3 obstacles

(d) N = 4 obstacles (e) N = 5 obstacles (f) N = 6 obstacles

(g) N = 7 obstacles (h) N = 8 obstacles

Fig. 4. The convex hulls created by MOEA/D for N ∈ {1, 2, ..., 8} obstacles depicting
the detected orientation values. We display the newly discovered extreme orientation
values for N obstacles in pale blue and the existing ones for N − 1 obstacles in black.
(Color figure online)

faster and consistently provide a maximal number of relevant obstacles. These
characteristics fit very well for our approach as a fast convergence rate reduces
the additional cost that we need to investigate to find an upper bound for the
number of relevant obstacles and to limit the number of logical scenarios to test.
Further, MOEA/D’s reliability to detect an upper bound for the number of rel-
evant obstacles is essential as without such an upper bound we cannot limit the
number of logical scenarios. A reason for the better performance of MOEA/D
might be that it inherently can handle dynamic optimization problems better
than NSGAII.

In addition, we provide experimental results for different parameter values to
guide the search for challenging situations. Whether orientation or linear velocity

346 T. Schmidt et al.

values are more suited is system-specific and depends on the underlying fault
hypothesis for the SUT. Overall, the results indicate that we need to consider
a maximum of M = 5 or M = 8 relevant obstacles in logical scenarios for our
SUT depending on the used fault hypothesis. As an advantage of our proposed
approach, the described process needs to be executed only once for each system
version. In the next step, we can use the resulting insights to create logical
scenarios for this system version that include 0 to M obstacles. Therefore, we
can effectively limit the number of relevant logical scenarios by excluding those
with more than M = 5 or M = 8 obstacles for our SUT. This reduction provides
a basis for a complete collection of relevant situations for testing the safe behavior
of our SUT. In future work, we aim to derive such a comprehensive list of logical
scenarios by investigating additional relevant parameters for testing UAVs, such
as the terrain, wind force, or fogginess of the environment.

4.4 Threats to Validity

Since we evaluate the performance of the optimization algorithms for exploring
a maximal number of obstacles for the PX4 drone only, our evaluation results
might not generalize to all other UAV systems. When investigating a maximal
number of obstacles for a SUT, we need to choose the collected parameter val-
ues system-specifically and dependent on the underlying fault hypothesis for
challenging situations for this SUT. Further, we focus on static obstacles for
the simplicity of presentation in this work. We decrease the threats to internal
validity in our experiments by using existing implementations of the optimiza-
tion algorithms and by evaluating an open-source UAV. Further, we execute
all simulations in isolated Docker containers to lower unwanted environmental
effects.

5 Related Work

Several papers investigate the research area of deriving a (complete) list of log-
ical scenarios in the context of autonomous driving. The authors of [15,23] fur-
ther introduce ontologies for particular use cases for UAVs. To the best of our
knowledge, no work about a complete list of logical scenarios for testing the safe
behavior of UAVs exists yet. The authors of [3,4,9,15,23] derive logical scenar-
ios based on existing ontologies. [3] concentrates on the positional and temporal
descriptions of the elements of logical scenarios, whereas [4] focuses on describ-
ing the various layers of a logical scenario for autonomous cars. The authors
of [9] specify that logical scenarios should include the environment, activities,
events, and triggers. All mentioned ontologies concentrate on the structure of
existing knowledge about logical scenarios for autonomous cars but do not pro-
vide completeness measures for their ontologies. Thus, the problem of deriving
a complete list of logical scenarios remains an open issue for these approaches.
In the context of UAVs, [15] specifies an ontology for UAV flight control and
management systems, and [23] provides an ontology for modeling accessible air-
craft resources for reconnaissance missions. Since both ontologies depict logical

Exploring a Maximal Number of Relevant Obstacles for Testing UAVs 347

scenarios for specific use cases for UAVs, we can use them as a basis for deriv-
ing a complete list of UAVs. However, due to their limitation to one use case,
they cannot provide such a list by themselves. As an alternative, the authors of
[8,14,24] propose statistical approaches to explore the completeness and diversity
of collected data. In [8], the authors investigate the completeness of the collected
data by analyzing the density of several parameters. The authors of [14] use an
instance of the Coupon Collector’s Problem to indicate whether more real-world
data needs to be collected, whereas [24] provides a statistical assessment of the
diversity of gathered data. These statistical approaches focus on the data from
which we can derive logical scenarios. Even though such data exists in large
amounts for autonomous cars, it lacks for UAVs. Thus, we focus on the logical
scenarios themselves instead of the data from which we can derive them. As a
first step towards providing a complete list of logical scenarios for testing the
safe behavior of UAVs, we explore a maximal number of relevant obstacles in
this work. To the best of our knowledge, no related work about investigating
such a maximal number for testing UAVs exists yet.

6 Conclusion

We outlined the challenge of deriving a complete list of logical scenarios for test-
ing the safe behavior of UAVs. This work presents a solution to one part of this
challenge by exploring the maximal number of obstacles that we need to con-
sider in these logical scenarios for a given SUT. With our proposed approach, we
investigate the effect of increasing numbers of obstacles on the UAV’s behavior
and search for challenging situations for the UAV. In our experiments, we com-
pare the performance of the optimization algorithms MOEA/D and NSGAII
and the effect of considering orientation or linear velocity values of the UAV.
The experimental results show the applicability of the proposed approach and
indicate that MOEA/D is more suited. Whether we should consider orientation
or linear velocity values is system-specific and depends on the underlying fault
hypothesis for challenging situations for the SUT. Finally, the experiments show
that a maximal number of M = 5 or M = 8 obstacles is relevant for the SUT,
depending on the applied fault hypothesis. Next, we can create logical scenarios
for our SUT that include 0 to M obstacles. Thus, we effectively limit the number
of logical scenarios to test by excluding those with more than M obstacles. Note
that we focus on static obstacles in our experiments for simplicity of presenta-
tion. However, we can also apply our approach to dynamic obstacles by including
their velocities and trajectory points in the search space. As an advantage, our
proposed methodology needs to be executed only once for each system version.
In the future, we aim to expand our experiments to include dynamic obstacles
and investigate the performance of other optimization algorithms such as Parti-
cle Swarm Optimization or Bayesian Optimization. Further, we plan to derive a
complete list of logical scenarios based on the results of this work by exploring
additional relevant parameters for testing UAVs, such as the terrain, wind force,
or fogginess of the UAV’s environment.

348 T. Schmidt et al.

References

1. Ali, S., Briand, L.C., Hemmati, H., Panesar-Walawege, R.K.: A systematic review
of the application and empirical investigation of search-based test case generation.
IEEE Trans. Software Eng. 36(6), 742–762 (2009)

2. Arrieta, A., et al.: Search-based test case generation for cyber-physical systems.
In: 2017 IEEE Congress on Evolutionary Computation, pp. 688–697. IEEE (2017)

3. Bach, J., Otten, S., Sax, E.: Model based scenario specification for development and
test of automated driving functions. In: 2016 IEEE Intelligent Vehicles Symposium,
pp. 1149–1155. IEEE (2016)

4. Bagschik, G., Menzel, T., Maurer, M.: Ontology based scene creation for the devel-
opment of automated vehicles. In: 2018 IEEE Intelligent Vehicles Symposium, pp.
1813–1820. IEEE (2018)

5. Benitez-Hidalgo, A., et al.: jMetalPy: a python framework for multi-objective opti-
mization with metaheuristics. Swarm Evol. Comput. 51, 100598 (2019)

6. Cem Kaner, J.: An introduction to scenario testing. Florida Institute of Technology,
Melbourne, pp. 1–13 (2013)

7. De Gelder, E., Paardekooper, J.P.: Assessment of automated driving systems using
real-life scenarios. In: 2017 IEEE Intelligent Vehicles Symposium, pp. 589–594.
IEEE (2017)

8. De Gelder, E., Paardekooper, J.P., Op den Camp, O., De Schutter, B.: Safety
assessment of automated vehicles: how to determine whether we have collected
enough field data? Traffic Inj. Prev. 20, S162–S170 (2019)

9. De Gelder, E., et al.: Ontology for scenarios for the assessment of automated vehi-
cles. arXiv preprint arXiv:2001.11507 (2020)

10. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

11. Grudniewski, P., Sobey, A.: Benchmarking the performance of genetic algorithms
on constrained dynamic problems. Nat. Comput. 1–17 (2020). https://doi.org/10.
1007/s11047-020-09799-y

12. Hauer, F., Gerostathopoulos, I., Schmidt, T., Pretschner, A.: Clustering traffic sce-
narios using mental models as little as possible. In: 2020 IEEE Intelligent Vehicles
Symposium, pp. 1007–1012. IEEE (2020)

13. Hauer, F., Pretschner, A., Holzmüller, B.: Fitness functions for testing automated
and autonomous driving systems. In: Romanovsky, A., Troubitsyna, E., Bitsch, F.
(eds.) SAFECOMP 2019. LNCS, vol. 11698, pp. 69–84. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26601-1_5

14. Hauer, F., Schmidt, T., Holzmüller, B., Pretschner, A.: Did we test all scenarios
for automated and autonomous driving systems? In: 2019 IEEE Intelligent Trans-
portation Systems Conference, pp. 2950–2955. IEEE (2019)

15. Hu, X., Liu, J.: Ontology construction and evaluation of UAV FCMS software
requirement elicitation considering geographic environment factors. IEEE Access
8, 106165–106182 (2020)

16. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source
multi-robot simulator. In: International Conference on Intelligent Robots and Sys-
tems, vol. 3, pp. 2149–2154. IEEE (2004)

17. Meier, L., Honegger, D., Pollefeys, M.: PX4: a node-based multithreaded open
source robotics framework for deeply embedded platforms. In: 2015 IEEE Interna-
tional Conference on Robotics and Automation, pp. 6235–6240. IEEE (2015)

http://arxiv.org/abs/2001.11507
https://doi.org/10.1007/s11047-020-09799-y
https://doi.org/10.1007/s11047-020-09799-y
https://doi.org/10.1007/978-3-030-26601-1_5

Exploring a Maximal Number of Relevant Obstacles for Testing UAVs 349

18. Menzel, T., Bagschik, G., Maurer, M.: Scenarios for development, test and vali-
dation of automated vehicles. In: 2018 IEEE Intelligent Vehicles Symposium, pp.
1821–1827. IEEE (2018)

19. Pretschner, A.: Defect-based testing. Dependable Softw. Syst. Eng. 84 (2015)
20. Rosen, J.W.: Zipline’s ambitious medical drone delivery in Africa. MIT Technology

Review, 8 June 2017 (2017)
21. Schmidt, T., Hauer, F., Pretschner, A.: Understanding safety for unmanned aerial

vehicles in urban environments. In: 2021 IEEE Intelligent Vehicles Symposium, pp.
638–643. IEEE (2021)

22. Singireddy, S.R.R., Daim, T.U.: Technology roadmap: drone delivery – amazon
prime air. In: Daim, T.U., Chan, L., Estep, J. (eds.) Infrastructure and Technol-
ogy Management. ITKM, pp. 387–412. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-68987-6_13

23. Smirnov, D., Stutz, P.: Use case driven approach for ontology-based modeling of
reconnaissance resources on-board UAVs using OWL. In: 2017 IEEE Aerospace
Conference, pp. 1–17. IEEE (2017)

24. Wang, W., Liu, C., Zhao, D.: How much data are enough? A statistical approach
with case study on longitudinal driving behavior. IEEE Trans. Intell. Veh. 2(2),
85–98 (2017)

25. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

26. Zou, X., Alexander, R., McDermid, J.: Testing method for multi-UAV conflict
resolution using agent-based simulation and multi-objective search. J. Aerosp. Inf.
Syst. 13(5), 191–203 (2016)

https://doi.org/10.1007/978-3-319-68987-6_13
https://doi.org/10.1007/978-3-319-68987-6_13

Data-Driven Assessment of Parameterized
Scenarios for Autonomous Vehicles

Nicola Kolb1(B), Florian Hauer1, Mojdeh Golagha2, and Alexander Pretschner1

1 Technical University of Munich, Arcisstraße 21, 80333 Munich, Germany
{nicola.kolb,florian.hauer,alexander.pretschner}@tum.de

2 fortiss, Guerickestraße 25, 80805 Munich, Germany
golagha@fortiss.org

Abstract. Highly automated and autonomous driving systems are usu-
ally tested for their safe behavior using a so-called scenario-based testing
approach. A common practice is to let experts create parameterized sce-
narios by selecting and varying parameters of a given scenario type, e.g.,
the initial speed of the participating vehicles. By assigning concrete val-
ues to the selected parameters, scenario instances are generated, which
may be used as test scenarios for the driving system under test (SUT).
For the generation of test cases, parameterized scenarios typically serve
as input. Most works assume parameterized scenarios to be given with-
out evaluating their quality. However, a parameterized scenario may be
insufficient, leading to inadequately and incomplete generated test cases,
unreliable test results, and even incorrect conclusions about the safety of
the SUT. As contribution of this work, we present a quality criterion and
a novel data-driven assurance approach to assess parameterized scenar-
ios. We consider the quality of a parameterized scenario to be acceptable
if it contains at least all scenario instances collected in real traffic for the
studied scenario type. For this containment check, search-based tech-
niques are used. We show experiments for a parameterized lane change
scenario using 6736 lane change recordings from real traffic for the assess-
ment. The experiment results show that in addition to shortcomings of
a parameterized scenario, those of the simulation setup can be revealed.

Keywords: Parameterized scenario validation · Autonomous driving ·
Multi-objective search

1 Introduction

Since testing safety-critical highly automated and autonomous driving systems
solely by real test drives is not feasible [18,32], they are usually tested in simu-
lation using scenario-based testing. Experts make use of so-called scenario types
[25], which textually describe recurring traffic situations, e.g.: A vehicle (SUT)
follows another vehicle on the right lane of a two-lane highway until it performs a
lane change onto the left lane into the gap between two more vehicles. There are
many different instances of such scenario types such as lane changes at various
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Trapp et al. (Eds.): SAFECOMP 2022, LNCS 13414, pp. 350–364, 2022.
https://doi.org/10.1007/978-3-031-14835-4_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14835-4_23&domain=pdf
https://doi.org/10.1007/978-3-031-14835-4_23

Data-Driven Assessment of Parameterized Scenarios 351

velocities and gap sizes. This is why it is common practice in industry and exist-
ing works (see [28] for a survey) to operationalize scenario types to parameterized
scenarios [25]. The idea is to describe parts of the scenario (e.g. starting posi-
tions) by parameters. Assigning concrete values to each such parameter yields
a scenario instance. The goal of scenario-based testing is to identify instances
that stress the SUT (e.g. by causing it to nearly crash) and to evaluate for these
instances the behavior of the SUT w.r.t. safety. Besides others, one common app-
roach is to apply search-based test case generation. The parameterized scenario
with its parameter domains serves as search space for search-based test case
generation, where each element in the search space is a potential test scenario,
i.e. a test case. By search, “good” test scenarios can be found, where a “good”
scenario is one in which a faulty system violates safety [15,21]. Demonstrating
that the system works as expected in challenging scenario instances increases
confidence in the system [20].

Parameter
Lower
Bound

Upper
Bound

Starting positions: sci(t0) [m]
Starting velocity of ci: vi(t0) [km/h]
Starting velocity of e: ve(t0) [km/h]

0
60
60

500
180
180

Fig. 1. Parameterized scenario with parameters incl. domains (prev. shown in [16])

An exemplifying parameterized scenario for the scenario type described above
can be seen in Fig. 1. Several aspects of this scenario are parameterized, namely
the starting positions and starting velocities of the vehicles c1 − c3 as well as the
starting velocity of the ego vehicle e (SUT).

Creating such parameterized scenarios is currently a mostly manual process,
conducted by experts based on their experience and mental models. Some works
even suggest trial and error [13]. The problem is that usually such parame-
terized scenarios are not adequately evaluated. The parameters, the parameter
domains, or the design of the non-parameterized part of the parameterized sce-
nario may be inadequate. For instance, the parameter domains may be too nar-
row, such that during test case generation no good test cases are found for a
particular scenario type. This may lead to the dangerous misconception that the
SUT is safe, since no test cases could be found where safety is violated. How-
ever, with wider parameter domains, there would have been such test cases with
a safety violation. As the parameterized scenario is a crucial input for test case
generation techniques, its quality assessment is a necessary basis to allow valid
interpretations on the SUT’s safe behavior. Most works in the domain of testing
automated and autonomous driving systems consider parameterized scenarios as
given without investigating their quality. To the best of our knowledge, there is
no quality criterion nor approach to measure if a given parameterized scenario
is “acceptable” or not.

The contribution of this paper is twofold: (1) we define a quality criterion
for parameterized scenarios in the domain of autonomous driving. To do so, we

352 N. Kolb et al.

make use of recorded scenario instances that have been collected in real traffic: A
parameterized scenario is acceptable if it contains all recorded scenario instances
for the respective scenario type. (2) We also propose an automated, data-driven
approach for validating such parameterized scenarios. Our approach receives as
input the parameterized scenario as well as real traffic data of the respective
scenario type. The goal is to check whether the parameterized scenario contains
the recorded scenario instances of real traffic. Using search-based techniques,
the approach aims to find a suitable scenario instance in the huge search space
spanned by the parameterized scenario that reflects a recorded scenario instance
respectively. If the parameterized scenario does not contain all recorded scenario
instances, it either needs to be revised or an argumentation is necessary for each
non-contained recorded scenario instance addressing why it may be ignored. If
it contains all instances from real traffic, the parameterized scenario is deemed
“acceptable”. Note that this assessment is relative to data: if the data is bad (e.g.
not comprehensive or diverse enough), the assessment will not yield meaningful
results as usual with all data-driven approaches. We evaluate our approach using
the parameterized lane change scenario of Fig. 1, 6736 recorded traffic instances
of a lane change, and around 106 simulation runs during search. Also note that
test case generation is not part of this work. We use search to identify if the
parameterized scenario contains scenario instances recorded in real traffic, not
to generate test cases.

2 Scenario-Based Testing

Scenario-based testing aims at increasing the confidence that the SUT is working
safely in different traffic situations. Figure 2 provides an overview of the related
steps of scenario-based testing. Initially, experts derive 1 scenario types 2 [25].
These are structured descriptions of recurring traffic scenarios. The idea is to
partition [10,19] the operational design domain of an automated or autonomous
driving system into such scenario types. For this derivation, experts use both
potentially available specifications and requirements 3 as well as their mental
model 4 of the traffic and the SUT. Literature suggests several ways to support
experts with the derivation of scenario types, e.g. by using ontologies [4,12] as
well as data-driven approaches, e.g. [14,31,34].

Fig. 2. Abstract depiction of the scenario-based testing process (prev. shown in [16])

Data-Driven Assessment of Parameterized Scenarios 353

Once the scenario type derivation is complete [16], experts create 5 param-
eterized scenarios 6 for the scenario types [24], again using their mental model
and experience. Similar to existing works [2,15,25,26], we define a parameter-
ized scenario as (F, P,D). We call F the non-parameterized part of the scenario.
P describes the scenario elements that are parameterized by the parameters
pi ∈ P, i = 1...n = |P | with corresponding domains di ∈ D. The domains span a
huge space A = d1 × d2 × ... × dn−1 × dn ⊆ R

n of scenario instances a ∈ A [25].
This work aims at the automated assessment 7 of the quality of the derived

parameterized scenarios (see Sect. 3) using real traffic data 8 . Based on the
assessment result 9 , the test case generation follows 10 or insufficient param-
eterized scenarios get reworked similarly to the creation before. Literature pro-
vides a vast number of approaches that use parameterized scenarios for test case
generation yielding “good” test cases 11 (see [28]).

3 Parameterized Scenario Assessment

3.1 Extracting Relevant Information from Traffic Data

Recorded traffic data usually contains vehicle trajectories (incl. positions, veloci-
ties, and accelerations) in form of timeseries. The goal is to filter these timeseries
for scenario instances of the scenario type for which the parameterized scenario
has been created and is being assessed for “acceptability”. For filtering, we follow
a rule-based approach, i.e. for each vehicle that appears in the data, its trajec-
tory is analyzed for the respective scenario type, for instance “if the position of
the vehicle indicates that the vehicle crosses the lane markings, a lane change is
detected”. Similar rules can be applied to ensure other aspects of the scenario
type. Once the respective instances of the scenario type are identified within the
data, characteristic values are extracted from the timeseries of these instances
as commonly done by existing works (see e.g. [11]). Note that the kind of char-
acteristic values heavily depends on the scenario type. We follow this strategy
in the presented approach, i.e. for our example scenario type, the size of the gap
as well as the velocities of the ego vehicle and of the front vehicle of the gap
are extracted as characteristic values. Assuming that m characteristic values are
chosen, the result of the data filtering process will be an m-dimensional point
cloud B. Each point b ∈ B represents one recorded scenario instance. Let bi with
i from 1 to m denote the characteristic values for the selected scenario instance
b. Evidently, this resulting point cloud B is only meaningful if there is sufficient
and representative data. In [11], it is discussed how much traffic data is needed
to achieve a good representation for a scenario type.

3.2 Containment of a Single Recorded Scenario Instance

The aim is to assess if a selected concrete scenario instance a ∈ A, characterized
by its concrete parameter values, reflects a recorded scenario instance b. The
concrete parameter values of a selected a generally encode information about

354 N. Kolb et al.

the structure of the scenario, but not about the actual behavior of the scenario
participants. The latter only becomes apparent during the simulation of a and is
encoded by the selected characteristic values, allowing a comparison of scenario
instances in this regard. Simulating a yields a b̃. Simulation is done by putting
the driving system in the scenario instance and recording the trajectory of all
scenario participants during the simulation. Given these trajectories, the same
characteristic values can be extracted as done for the traffic-recorded scenario
instances. A parameterized scenario instance a recreates a recorded scenario
instance b, if

∣
∣
∣bi − b̃i

∣
∣
∣ < ε for some small predefined ε (depending on the use

case considered), meaning that the data produced by simulating a produced
characteristic values in b̃ very similar to b. If there is such a scenario instance
a in the parameterized scenario search space A, we say that the parameterized
scenario contains b. Further, if there is such an a ∈ A for every recorded scenario
instance b ∈ B, we deem the parameterized scenario to be “acceptable”. This
raises the question: how do we find in the parameter space of the parameterized
scenario a scenario instance a that recreates the recorded scenario instance b
given there exists one?

We suggest multi-objective search in the following way: Let the search-based
technique select a somewhat arbitrary a, simulate it, and compute the difference∣
∣
∣bi − b̃i

∣
∣
∣. If it is smaller than ε for all bi, the search is done: a recreates b. Oth-

erwise, the search-based technique will try another a′. Continue until a suitable
a′′ is found or the budget of available trials is spent. Search-based techniques
require a fitness function, which we suggest to create as follows: For each of the
m dimensions of b, one fitness value is computed by comparing the desired value
bi of a b ∈ B with the observed value b̃i produced by an instance a ∈ A during
simulation. The final fitness function F looks as follows: F = [f1 ... fm] with

fi =

{∣
∣
∣bi − b̃i

∣
∣
∣ ,

∣
∣
∣bi − b̃i

∣
∣
∣ > ε

0, otherwise

Note: If some b̃i cannot be observed in a simulated scenario instance a, e.g. the
velocity of the ego vehicle during a lane change cannot be observed if there is no
lane change, the respective fi evaluates to ∞ (fi is to be minimized). Besides,
we chose difference per characteristic value over an aggregated distance, e.g.
euclidean distance, since it provides the search with more detailed information.

3.3 Containment of Many Recorded Scenario Instances

The intuitive approach to assess the containment of all recorded scenario
instances consists in applying the presented method in Sect. 3.2 to all these
instances. The result of the assessment will tell which recorded scenario instances
are and which are not contained in the parameterized scenario. However, B may
contain thousands of instances [11]. For every one, a search has to be executed,
each needing many computationally expensive simulation executions. Overall,

Data-Driven Assessment of Parameterized Scenarios 355

this is infeasible and not necessary, since many scenario instances b may be very
similar to each other, e.g. lane changes at nearly the same velocities.

Thus, we aim at a reduction in the number of searches. This needs to be
done with great care in order not to lose interpretability and reliability of the
overall assessment of the parameterized scenario. Simply choosing an arbitrary
low amount of random b ∈ B and assessing their containment will not yield
an interpretable nor a reliable result. Instead, we suggest a structured selection
that considers recorded scenario instances at the extremes and representative
recorded scenario instances in between the extremes.

The recorded scenario instances b ∈ B describe a point cloud in a m-
dimensional space. The points that lay on the outside of the point cloud are
the extreme recorded scenario instances, e.g. very low or high velocities during
a lane change. They can be identified by computing the multi-dimensional con-
vex hull of the point cloud using QuickHull [5]. To provide reliable information
about all the non-extreme points inside the convex hull, representatives need to
be selected. For this, the inner points are clustered using classic k-means and a
knee/elbow detector [30] to set the number of clusters. The characteristic values
bi are used as features for the clustering. From each cluster, the recorded scenario
instance that is nearest to the cluster center is selected as representative. Thus,
the overall number of searches is reduced to the number of recorded scenario
instances on the convex hull plus the number of clusters.

4 Experiments

4.1 Parameterized Scenario

We apply the presented approach to the parameterized scenario described in
Fig. 1: The driving system is tested in a scenario where the ego vehicle e drives
on the right lane of a two lane highway. After approaching another vehicle c3, e
changes to the left lane in the gap between the vehicles c1 and c2. The parame-
terized scenario consists of three parts: (1) the non-parameterized part, (2) the
seven parameters, (3) their domains (see Fig. 1), which span a seven-dimensional
space of test cases. The vehicles start with a parameterized velocity at a param-
eterized longitudinal position. The ego vehicle’s starting position is always 0.
Note: the parameterized scenario to be assessed is assumed to have been defined
by experts.

4.2 Traffic Data

To determine the point cloud B, the highD dataset [22] is used for our experi-
ments. It contains German highway traffic data, which has been recorded from a
bird’s-eye perspective with a drone-mounted camera. The following characteris-
tic values m are filtered from the recorded data (see Fig. 3), inspired by [11,29]:
One might be interested in the velocities of the ego vehicle ve(tlc) and of the
front vehicle of the gap vc1(tlc) at the moment tlc when e is changing lanes, i.e.

356 N. Kolb et al.

char. values min max μ σ med

dg [m] 12.6 400.9 132.7 69.0 120.0
vc1(tlc) [km/h] 29.6 196.7 112.7 17.0 114.6
ve(tlc) [km/h] 27.5 171.1 113.1 15.7 115.0

Fig. 3. Example scenario with three characteristic values (dg, ve(tlc), vc1(tlc)) (left)
and statistical information about extracted scenario instances (right) - μ denotes mean;
σ denotes standard deviation, med denotes median

when e is at least half way on the target lane. Considered relevant is also the gap
size dg = sc1(tlc) − sc2(tlc). More complex models may be used as well, e.g. [33].

The extraction of the lane change scenario instances is done in a rule-based
way, i.e. whenever the ego vehicle performs a lane change with the desired
three vehicles around it, we extract the characteristic values. Within the highD
dataset, we could find 6736 lane changes of the presented form (see aggregated
information in Table in Fig. 3). To assess whether this is a sufficient amount
of data to yield a meaningful representation of real traffic, literature provides
statistical models [11], which is not focus of this work. We used all the data to
which we had access.

Not unusual for German highways, the data (cf. Table in Fig. 3) contains lane
changes at close to 200 km/h as well as lane changes at traffic jam velocities, i.e.
velocities below 60 km/h. The mean velocities μ are around 113 km/h. Note
that the considerably high gap sizes with a mean of 132 m are resulting from
the fact that the highD data [22] has been recorded on a 420 m highway section
allowing for such large gaps. To the best of our knowledge there exists no common
understanding of how large such a gap may be to be still considered as a gap.
To avoid inadequate assumptions, we allow for such large gaps.

4.3 Points to Be Reproduced

The 6736 identified lane change scenario instances (see points in Fig. 4) need
to be reduced to a representative amount of relevant instances, for which the
containment check can be performed via search (see Sect. 3.3).

For the computation of the convex hull we make use of Quickhull [5]. The
result can be seen as black lines connecting the points on the hull in Fig. 4. There
are 40 points on the hull which represent - with regard to the characteristic values
- the extreme lane changes and thus are considerably far away from the majority
of the other points. The remaining 6696 points are clustered using classic k-
means based on the three characteristic values as features. To choose an adequate
number of clusters without human influence, we let a knee/elbow detector [30]
decide. Applied to the 6696 points, 14 clusters are yielded (see colored point
groups in Fig. 4). For each cluster, the point closest to the cluster center is used
as representative. This results in a total of 54 (40 + 14) points for the following
containment check. This subset of 54 points is denoted as B′ ⊆ B.

Data-Driven Assessment of Parameterized Scenarios 357

Fig. 4. 6736 lane changes: 40 points form the convex hull in black, the remaining 6696
points are grouped into 14 clusters within the convex hull

4.4 Fitness Function for Re-creation

The multi-objective fitness function that allows a search-based technique to
search for a parameterized scenario instance a that recreates b consists of four
objective functions. Since the subset of points b ∈ B′ have three dimensions, the
template of Sect. 3.2 is used for three objective functions. The fourth objective
function ensures that the identified lane changes in b̃ correspond to the situation
as depicted in Fig. 3. For this we followed the method suggested in [15]: f4 is
set to a high value of 10000 if the ego vehicle does not perform a lane change
within the scenario instance. If there is a lane change, but not into the gap, then
the further away the lane change happened from the gap, the higher the fitness
value. Otherwise, if the scenario instance is of the correct form, the fitness value
is 0. The objective functions f1/2/3 work as described in Sect. 3.2 and ensure that
a suitable lane change is found. However, they got slightly modified: If there is
no lane change in the gap (f4 > 0), then one cannot measure the characteristic
values and, thus, the fitness is set to a high value of 10000. The final fitness F
function is F = [f1 f2 f3 f4] with b ∈ B′ and with

fi
i∈{1,2,3}

=

⎧

⎪⎪⎨

⎪⎪⎩

10000, f4 �= 0
⎧

⎨

⎩

∣
∣
∣b̃i − bi

∣
∣
∣ , f4 = 0 and

∣
∣
∣b̃i − bi

∣
∣
∣ > ε = 0.05 ∗ bi

0, f4 = 0 and
∣
∣
∣b̃i − bi

∣
∣
∣ ≤ ε = 0.05 ∗ bi

f4 =

⎧

⎪⎪⎨

⎪⎪⎩

10000, e does not change lanes
{∣

∣
∣
sc1 (tlc)+sc2 (tlc)

2 − se(tlc)
∣
∣
∣ , e changes lanes but not into the gap

0, e changes lanes into the gap

The search-based technique will try to minimize the multi-objective function
F . First, the value of f4 will go to 0, before f1/2/3 will get closer and closer to 0.

358 N. Kolb et al.

Note that multiple scenario instances might be contained in the parameterized
scenario that yield the desired F = [0 0 0 0].

4.5 Simulation Setup

For the simulation of the driving scenario (including the environment) we use
CarMaker of IPG Automotive in connection with Matlab Simulink. The driving
system is a highway driving system that decides on which lane to drive including
lane changes, and tries to keep sufficient safety distance to surrounding vehicles;
it is based on [27]. For the search we used the optimizer NSGA-II [7]. For each
of the 54 (40 hull + 14 cluster points) recreation searches, we gave the optimizer
a budget of 1875 simulation executions for a total of about 105 simulations. We
repeated the experiments several times to rule out randomization effects resulting
in ∼106 simulations. A comparison with other search techniques is not provided,
as the focus is not on search performance, but on showing the soundness of this
novel approach.

4.6 Experiment Results

Figure 5 shows which cluster and hull points could be recreated and which could
not - the latter must be inspected manually in any case. In practice, an expert
needs to either reject the parameterized scenario, because it does not contain all
relevant lane changes from real data, or argue why it seems acceptable that some
recorded scenario instance is not contained in the parameterized scenario. We
showcase this analysis for some exemplifying points to demonstrate the types of
insufficiencies the presented approach is able to detect.

Fig. 5. Search results: blue points could be recreated, red not (Color figure online)

Data-Driven Assessment of Parameterized Scenarios 359

Parameter Domains Too Narrow: In Fig. 3 and Fig. 5, there is one extreme
lane change scenario instance (a hull point) where the front vehicle c1 is supposed
to drive at 29.6 km/h when the ego vehicle’s lane change happens. The parameter
domains of the parameterized scenario only consider starting velocities for c1
within 60 and 180 km/h (see Fig. 1). Since we configured the driver model of c1
to keep, as far as safety permits, the starting velocity, the intuitive explanation
seems to be that the parameter domains of the parameterized scenario are too
narrow. Note that such a simple explanation is oftentimes not possible, when
the characteristic values are less intuitive, as for example in [33].

Non-parameterized Scenario Part Not Adequate: Also the non-parame-
terized part may cause issues. For instance, in our case the parameterized sce-
nario contains two vehicles on the left lane. Depending on their starting posi-
tions, the one is c1 and the other c2. Since their driver model is configured to keep
safety distances, c2 cannot drive faster than c1 no matter which target velocities
are selected as starting velocities. On the other hand, a faster c2 will approach
c1 and eventually reduce its velocity to the velocity of c1. For the presented
experiment, this hinders recreation of some of the recorded scenario instances
with small gap size, since c2 will adjust its speed and distance depending on the
speed of c1. This shows that even with supposedly correct parameter domains,
some instances may still not be contained in the parameterized scenario. This is
hardly - if at all - detectable by an expert, but by the presented approach.

Simulation Models Not Suitable: In Fig. 5, there are multiple scenario
instances where the front vehicle c1 is supposed to drive at high velocities. How-
ever, the underlying driving model for traffic vehicles c1/2/3 within CarMaker
(version 8.1.1) is not designed to drive faster than 120 km/h in default mode.
Even though the parameterized scenario may be adequate, unsuitable simulation
models may still hinder containment of all scenario instances.

Scenario Design Not Suitable for Specific System: In Fig. 3 and Fig. 5,
there are some lane change scenario instances where the driving system is sup-
posed to perform a lane change into very narrow gaps. In reality, human drivers
(as recorded in the dataset) perform high-velocity lane changes into such narrow
gaps. However, the specific system used for the experiments is rather safety-
conservative and cannot simply be triggered to perform lane changes into such a
narrow gap. Thus, the parameterized scenario will not contain such lane changes.
This does not necessarily mean that the parameterized scenario’s quality is bad.
The inspecting expert may accept that these lane changes are not contained.

4.7 Discussion

Search-based techniques are chosen as an approach to deal with the high-dimen-
sional and complex search space. On the other hand, no simple relationship
between parameter values and characteristic values of a scenario instance can
be derived without simulation. The presented approach not only can detect
problems concerning the description of the parameterized scenario itself, but

360 N. Kolb et al.

also issues with the simulation models as well as suitability issues that relate to
the specific SUT. However, even if all relevant scenario instances are contained,
the parameterized scenario may still not be complete. The traffic data may simply
not be representative and lack some rare special cases.

Yet, if not all relevant recorded scenario instances are contained, the parame-
terized scenario may still be valid, if the expert can argue why the non-contained
recorded scenario instances do not necessarily have to be contained. In the pre-
sented example, the velocities lower bound is set to 60 km/h; any situation below
this limit is considered as a traffic jam, which is tested using other parameter-
ized scenarios. In such a case, non-contained lane change scenario instances below
60 km/h may be ignored. Without the presented approach it is usually unknown
whether something is missing in the parameter space of the parameterized sce-
nario. The presented approach enforces a structured validation and alerts the
expert. Bad mistakes are ruled out, providing confidence and a basis for safety
argumentation for the testing and release processes.

4.8 Limitations

Clearly, the presented experiments only consider a single source of data (highD
dataset) that may or may not be representative, a single scenario type, selected
characteristic values and a single driving system. Further evaluation is needed
to understand how the approach works, e.g. for data from other highways or city
centers, for other scenario types, and other driving systems. Similarly, search-
based techniques might not be fully appropriate: While the approach involves
considerable efforts, search-based techniques are based on heuristics which may
or may not be suitable for specific parameterized scenarios’ search spaces and
fitness functions. Thus, the search as applied in this work may face the same issue
as in other works: it may or may not find suitable scenario instances in the search
spaces derived from parameterized scenarios. The search may mistakenly suggest
that a recorded scenario instance is not contained in the parameterized scenario.
While this may be inconvenient, the approach is still reliable in the following way:
The presented approach can mistakenly reject a sound parameterized scenario,
but it cannot not mistakenly accept it within the scope of realization (e.g. with
regard to the selected characteristic values). In case of acceptance, we can base
a safety argumentation on this result. If it is rejected, an expert may either
argue that potentially non-contained recorded scenario instances do not matter,
or re-run the search with a different configuration.

5 Related Work

Although a plethora of work on scenario-based testing exists, the number of
papers addressing the derivation and quality of parameterized scenarios is scarce.

In [25], the different notions of scenarios have been introduced. The impor-
tance of parameterized scenarios is stated and fundamental concepts are pre-
sented. In their follow-up works, the authors make methodological suggestions

Data-Driven Assessment of Parameterized Scenarios 361

on how to first derive scenario types [4] before refining them to parameterized
scenarios [24]. Those are steps 1 and 5 in Fig. 2, which are preliminary steps to
the presented approach, but do not provide an assessment technique for param-
eterized scenarios.

In [33], characteristic values for lane changes are used to create a parame-
terized scenario and to determine parameter domains (step 5 in Fig. 2). The
authors make use of traffic data to determine critical test cases for this param-
eterized scenario (step 10 in Fig. 2). This work is related, but does not provide
an assessment approach for the parameterized scenarios.

Existing works address how to determine whether enough data has been
collected to capture all scenario types [16] and all variations of a scenario type
[11]. Such works are important as they can be used to supplement the presented
approach: If the traffic data used for the presented assessment of parameterized
scenario is complete, the presented assessment becomes more meaningful. The
parameterized scenario assessment is not in the focus of their works.

Many existing works, e.g. [1–3,6,9,13,15,23] (see [15,28] for an overview), use
search-based techniques for test case generation (step 10 in Fig. 2). In contrast,
our approach does not use search-based techniques for test case generation, but
for recreation of recorded scenario instances of real traffic to determine whether
they are contained in the examined parameterized scenario. Another line of work
[8,17] aims at processing natural language police reports to reconstruct crashes.
Their “reconstruction” is different from the “reconstruction” of our work in that
they make use of path planners to find trajectories that lead to the target crashes.
This is not possible for our setting, since we cannot pre-plan or influence the
trajectory of the SUT. Additionally, their approach does not allow to assess the
quality of parameterized scenarios.

All these works address important challenges in the scenario-based testing
domain, leaving the quality assessment of parameterized scenarios unaddressed.

6 Conclusion

We argue that parameterized scenarios are the basis for scenario-based test case
generation. Hence, their quality is fundamental, otherwise no “good” test cases
can be generated which is, however, crucial for the safety argumentation of the
SUT. So far, existing works do not provide a quality criterion nor the means
to assess the quality of parameterized scenarios. This work contributes to such
a novel data-driven criterion and assurance approach. It analyzes whether a
parameterized scenario contains recorded scenario instances of the considered
scenario type. Based on the analysis, a parameterized scenario can be deemed
acceptable or not acceptable in terms of its quality.

The experiments show that the presented approach can detect issues resulting
from (1) the parameterized and (2) non-parameterized part of the parameterized
scenario as well as from (3) insufficient simulation models and (4) inadequate sce-
nario design for the SUT. Even though the containment of real traffic instances
is not a guarantee that a parameterized scenario is perfect, the presented qual-
ity assessment criterion and approach can increase confidence that no crucial

362 N. Kolb et al.

mistakes were made during creation - representing an important step for safety
argumentation of such systems.

References

1. Abdessalem, R.B., Nejati, S., Briand, L., Stifter, T.: Testing vision-based control
systems using learnable evolutionary algorithms. In: Proceedings of the 40th Inter-
national Conference on Software Engineering (ICSE), pp. 1016–1026. ACM (2018)

2. Abdessalem, R.B., Nejati, S., Briand, L.C., Stifter, T.: Testing advanced driver
assistance systems using multi-objective search and neural networks. In: 31st
IEEE/ACM International Conference on Automated Software Engineering, pp.
63–74 (2016)

3. Abdessalem, R.B., Panichella, A., Nejati, S., Briand, L.C., Stifter, T.: Testing
autonomous cars for feature interaction failures using many-objective search. In:
33rd ACM/IEEE International Conference on Automated Software Engineering,
pp. 143–154 (2018)

4. Bagschik, G., Menzel, T., Maurer, M.: Ontology based scene creation for the devel-
opment of automated vehicles. In: IEEE Intelligent Vehicles Symposium (IV), pp.
1813–1820. IEEE (2018)

5. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex
hulls. ACM Trans. Math. Softw. (TOMS) 22(4), 469–483 (1996)

6. Calò, A., Arcaini, P., Ali, S., Hauer, F., Ishikawa, F.: Generating avoidable collision
scenarios for testing autonomous driving systems. In: 13th International Conference
on Software Testing, Validation and Verification (ICST), pp. 375–386. IEEE (2020)

7. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

8. Gambi, A., Huynh, T., Fraser, G.: Generating effective test cases for self-driving
cars from police reports. In: Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pp. 257–267 (2019)

9. Gambi, A., Mueller, M., Fraser, G.: Automatically testing self-driving cars with
search-based procedural content generation. In: Proceedings of the 28th ACM SIG-
SOFT International Symposium on Software Testing and Analysis, pp. 318–328
(2019)

10. Gauerhof, L., Munk, P., Burton, S.: Structuring validation targets of a machine
learning function applied to automated driving. In: Gallina, B., Skavhaug, A.,
Bitsch, F. (eds.) SAFECOMP 2018. LNCS, vol. 11093, pp. 45–58. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-99130-6 4

11. de Gelder, E., Paardekooper, J., Op den Camp, O., De Schutter, B.: Safety assess-
ment of automated vehicles: how to determine whether we have collected enough
field data? Traffic Inj. Prev. 20(sup1), S162–S170 (2019)

12. de Gelder, E., et al.: Ontology for scenarios for the assessment of automated vehi-
cles. arXiv preprint arXiv:2001.11507 (2020)

13. Gladisch, C., Heinz, T., Heinzemann, C., Oehlerking, J., von Vietinghoff, A.,
Pfitzer, T.: Experience paper: search-based testing in automated driving control
applications. In: 34th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE), pp. 26–37. IEEE (2019)

14. Hauer, F., Gerostathopoulos, I., Schmidt, T., Pretschner, A.: Clustering traffic
scenarios using mental models as little as possible. In: IEEE Intelligent Vehicles
Symposium (IV), pp. 1007–1012. IEEE (2020)

https://doi.org/10.1007/978-3-319-99130-6_4
http://arxiv.org/abs/2001.11507

Data-Driven Assessment of Parameterized Scenarios 363

15. Hauer, F., Pretschner, A., Holzmüller, B.: Fitness functions for testing automated
and autonomous driving systems. In: Romanovsky, A., Troubitsyna, E., Bitsch, F.
(eds.) SAFECOMP 2019. LNCS, vol. 11698, pp. 69–84. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26601-1 5

16. Hauer, F., Schmidt, T., Holzmüller, B., Pretschner, A.: Did we test all scenarios for
automated and autonomous driving systems? In: IEEE Intelligent Transportation
Systems Conference (ITSC), pp. 2950–2955. IEEE (2019)

17. Huynh, T., Gambi, A., Fraser, G.: AC3R: automatically reconstructing car crashes
from police reports. In: 2019 IEEE/ACM 41st International Conference on Software
Engineering: Companion Proceedings (ICSE-Companion), pp. 31–34. IEEE (2019)

18. Kalra, N., Paddock, S.M.: Driving to safety: how many miles of driving would it
take to demonstrate autonomous vehicle reliability? Transp. Res. Part A Policy
Pract. 94, 182–193 (2016)

19. Koopman, P., Fratrik, F.: How many operational design domains, objects, and
events? In: AAAI Workshop on Artificial Intelligence Safety (2019)

20. Koopman, P., Kane, A., Black, J.: Credible autonomy safety argumentation. In:
27th Safety-Critical Systems Symposium (2019)

21. Koopman, P., Wagner, M.: Challenges in autonomous vehicle testing and valida-
tion. SAE Int. J. Transp. Saf. 4(1), 15–24 (2016)

22. Krajewski, R., Bock, J., Kloeker, L., Eckstein, L.: The highD dataset: a drone
dataset of naturalistic vehicle trajectories on German highways for validation of
highly automated driving systems. In: IEEE Intelligent Transportation Systems
Conference (ITSC), pp. 2118–2125 (2018)

23. Li, G., et al.: AV-FUZZER: finding safety violations in autonomous driving
systems. In: 31st International Symposium on Software Reliability Engineering
(ISSRE), pp. 25–36. IEEE (2020)

24. Menzel, T., Bagschik, G., Isensee, L., Schomburg, A., Maurer, M.: From functional
to logical scenarios: detailing a keyword-based scenario description for execution
in a simulation environment. In: IEEE Intelligent Vehicles Symposium (IV), pp.
2383–2390 (2019)

25. Menzel, T., Bagschik, G., Maurer, M.: Scenarios for development, test and vali-
dation of automated vehicles. In: IEEE Intelligent Vehicles Symposium (IV), pp.
1821–1827 (2018)

26. Mullins, G.E., Stankiewicz, P.G., Gupta, S.K.: Automated generation of diverse
and challenging scenarios for test and evaluation of autonomous vehicles. In: IEEE
International Conference on Robotics and Automation (ICRA), pp. 1443–1450
(2017)

27. Nilsson, J., Silvlin, J., Brannstrom, M., Coelingh, E., Fredriksson, J.: If, when, and
how to perform lane change maneuvers on highways. IEEE Intell. Transp. Syst.
Mag. 8(4), 68–78 (2016)

28. Riedmaier, S., Ponn, T., Ludwig, D., Schick, B., Diermeyer, F.: Survey on scenario-
based safety assessment of automated vehicles. IEEE Access 8, 87456–87477 (2020)

29. Roesener, C., et al.: A comprehensive evaluation approach for highly automated
driving. In: 25th International Technical Conference on the Enhanced Safety of
Vehicles (ESV) National Highway Traffic Safety Administration (2017)

30. Satopaa, V., Albrecht, J., Irwin, D., Raghavan, B.: Finding a “kneedle” in a
haystack: detecting knee points in system behavior. In: IEEE International Con-
ference on Distributed Computing Systems Workshops, pp. 166–171 (2011)

31. Tkachenko, P., Zhou, J., del Re, L.: Unsupervised clustering of highway motion
patterns. In: IEEE Intelligent Transportation Systems Conference, pp. 2337–2342
(2019)

https://doi.org/10.1007/978-3-030-26601-1_5

364 N. Kolb et al.

32. Wachenfeld, W., Winner, H.: The release of autonomous vehicles. In: Maurer,
M., Gerdes, J.C., Lenz, B., Winner, H. (eds.) Autonomous Driving, pp. 425–449.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-48847-8 21

33. Zhou, J., del Re, L.: Identification of critical cases of ADAS safety by FOT based
parameterization of a catalogue. In: IEEE Asian Control Conference, pp. 453–458
(2017)

34. Zhou, J., del Re, L.: Reduced complexity safety testing for ADAS & ADF. IFAC-
PapersOnLine 50(1), 5985–5990 (2017)

https://doi.org/10.1007/978-3-662-48847-8_21

Optimising the Reliability that Can Be
Claimed for a Software-Based System
Based on Failure-Free Tests of Its

Components

Peter Bishop1,2(B) and Andrey Povyakalo1

1 City, University of London, London, UK
{p.bishop,A.A.Povyakalo}@city.ac.uk

2 Adelard, NCC Group, London, UK
pgb@adelard.com

Abstract. This paper describes a numerical method for optimising the
conservative confidence bound on the reliability of a system based on sta-
tistical testing of its individual components. It provides an alternative
to the sub-optimal test plan algorithms identified by the authors in an
earlier research paper. For a given maximum number of component tests,
this numerical method can derive an optimal test plan for any arbitrary
system structure.

The optimisation method is based on linear programming which is
more efficient than the alternative integer programming approach. In
addition, the optimisation process need only be performed once for any
given system structure as the solution can be re-used to compute an
optimal integer test plan for a different maximum number of component
tests. This approach might have broader application to other optimisa-
tion problems.

Keywords: Statistical testing · Confidence bounds · Software
reliability · Fault tolerance · Linear programming

1 Introduction

Statistical testing [4,8,10] provides a direct estimate of the software probability
of failure on demand (pfd) of a demand-based system to some confidence bound,
and it is recommended in functional safety standards such as IEC 61508 [6]. The
standard approach to deriving a confidence bound on the pfd of a software-based
system is to perform statistical testing on the whole system as a “black-box”. In
practice, performing tests on the entire system may be infeasible for logistical
reasons, such as lack of availability of all component subsystems at the same
time during implementation. For example, the statistical tests performed on the
Sizewell B computer-based Primary Protection System (PPS) were performed on
a single hardware division of the PPS, while the complete fault tolerant system
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Trapp et al. (Eds.): SAFECOMP 2022, LNCS 13414, pp. 365–378, 2022.
https://doi.org/10.1007/978-3-031-14835-4_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14835-4_24&domain=pdf
https://doi.org/10.1007/978-3-031-14835-4_24

366 P. Bishop and A. Povyakalo

consists of four divisions with 2-out-of-4 voting [5]. Similar constraints exist for
the statistical testing of the Hinkley Point C protection system [9].

To address the constraint, testing can be restricted to a single component
within the system architectures provided the fault tolerance mechanisms are
pre-defined and static, i.e. there is no dependency between components (such
as dynamic fail-over schemes). A general method was developed for deriving
a conservative confidence bound based on independent statistical tests applied
(with zero failures) to individual software-based components within the system
[1]. The approach is completely general – it can be used to derive a conservative
pfd bound for any system architecture (represented by a structure function) for
a given component test plan.

The choice of component test plan affects the pfd bound that can be claimed
under worst case failure dependency conditions. The paper showed that for sym-
metrical architectures (like r-out-of-m vote structures), an even split of N tests
between components always produces the optimal pfd bound, where:

1. if all components have identical software, subjecting each component to N/m
tests produces the same pfd bound as subjecting the full system to N tests;

2. if the software in each component is not identical, subjecting each component
to N/m tests produces the same pfd bound as subjecting the full system to
N(m − r + 1)/m tests.

The first result is unsurprising. If all components have the same software, iden-
tical defects will be present in every component – so it does not matter which
component is tested, the system pfd is determined by the total of number of
tests in all m components.

The second result is counter-intuitive, as a complete system with diverse com-
ponents would have the same pfd bound as a non-diverse system when tested
as a “black-box”. The difference arises because the components are tested sep-
arately. A worst case example of non-identical failure dependency is shown in
Fig. 1 for a 2-out-of-3 vote structure. In this case, there is a common fault in
just two of the components, so only the combined number of tests performed on
components c1 and c2 determine the upper confidence bound on the system pfd.

Fig. 1. Worst failure dependency example: non-identical software. The dark patches
represent defective regions in the input space of two components.

Optimising the Reliability that Can Be Claimed 367

There are other possible common failure mode states like {c1, c3} or {c2, c3},
however in all cases, it was shown in [1] that the system pfd is determined by the
two least tested components, and more generally for a r-out-of-m structure, the
system pfd is determined by smallest total of tests in (m − r + 1) components.

As a result, the optimal test plan is an even split of the available tests across
the components, i.e. if N tests are available, N/m tests are allocated to each
component.

Deriving optimal test plans for arbitrary, asymmetric structures was more
challenging. Two sub-optimal test plan strategies were identified in [1] that are
optimal for some asymmetric structures – but not in general.

This paper presents an alternative to the test plan algorithms described in [1]
that derives an optimal test plan using linear programming. We first summarise
the main elements of the theory presented in [1], and then present our alternative
method for generating an optimal test plan using numerical methods.

2 Confidence Bounds from Component Tests

Failure-free testing over m individual components can be characterised by a test
plan vector

n = (n1, n2, . . . , nm)′ (1)

where m is a number of components, nj is the number of (failure-free) tests for
component j, and the total number of tests is

N =
m∑

j=1

nj . (2)

Failures of the overall system can be characterised by minimal cutsets where
failure of all components in any minimal cutset will cause a system failure.

A general proof given in [1] shows that, for any structure characterised by a
set X of minimal cutsets, the (1 − α) upper confidence bound qs for the system
pfd can be conservatively approximated as

qs ≤ min
(

ln(1/α)
Nmin

, 1
)

(3)

where Nmin is the smallest total number of component tests in a minimal cutset,
i.e.:

Nmin = min
∀x∈X

∑

i∈x

ni (4)

where i ∈ x identifies the components in minimal cutset x.
For example, a 2-out-of-3 vote structure with diverse components has three

minimal cutsets {c1, c2}, {c2, c3} and {c1, c3} so

Nmin = min(n1 + n2, n2 + n3, n1 + n3).

368 P. Bishop and A. Povyakalo

For a 2-out-of-3 vote structure with identical components, the software failures
in all components coincide, so there is only one minimal cutset: {c1, c2, c3} and

Nmin = (n1 + n2 + n3) = N.

The optimal test plans and confidence bounds derived in [1] for some common
symmetrical structures are summarised in Table 1.

Table 1. Optimum test plan and confidence bounds for symmetrical structures

Structure Software nj Nmin Confidence bound

Series (m-out-of-m) Diverse N
m

N
m

m
N

ln 1
α

Vote (r-out-of-m) Diverse N
m

(m−r+1)N
m

m
(m−r+1)N

ln 1
α

Vote (r-out-of-m) Identical Any split N 1
N

ln 1
α

Vote (1-out-of-m) Either Any split N 1
N

ln 1
α

The “series” structure is a chain of m components where the failure of any
component causes system failure, so all m components must be functional for
the system to be functional.

The “vote” structure (assuming voter correctness) combines the outputs of
m components so that only r components need to be functional for the overall
system to be functional.

It can be seen that for symmetrical structures, it is always optimal to appor-
tion the N tests equally across the m components.

3 Optimising Test Plans for Asymmetric Structures

An asymmetric structure has a variable number of components in its minimal
cutsets, such as the reliability block diagram (RBD) shown in Fig. 2.

For such structures, explicit test plan optimisation is needed to ensure that
the maximum value of Nmin is obtained.

It was shown in [1] that it should always be possible to construct an allocation
of component tests such that:

Nmin ≥ N/kp. (5)

where kp is the length of the shortest possible success path.
For example, in Fig. 2, the dashed lines denote the shortest success paths

where kp = 3.
Two sub-optimal allocation plans where identified in [1] that always satisfy

this constraint:

– Single shortest path, where N/kp tests are allocated equally to all components
on just one shortest success path.

Optimising the Reliability that Can Be Claimed 369

Fig. 2. Reliability block diagram. The dashed lines are the shortest success paths

– Balanced shortest path, where the number of tests per component is propor-
tional to the number of shortest success paths that include the component.

Both allocation methods are optimal for cases where each component appears
only once in the RBD. The balanced path test plan also produces the optimal
result for symmetric r-out-of-m vote structures (where the same component is
present in more than one RBD branch).

Figure 3 shows the result of applying the balanced path allocation procedure
to the RBD shown in Fig. 2.

Fig. 3. Allocation of tests to components. The dashed lines are example minimal cutsets
(there are further minimal cutsets).

Component c1 has twice as many tests as the other shortest path components
(because it is present in two shortest paths). It can be seen that the total number
of tests in all minimal cutsets is the same (N/3).

Components c6, c7 and c8 have no tests and could potentially fail on every
demand, but this test plan is optimal because it maximises the number of tests
in each cutset and hence the system reliability that can be claimed.

It proved to be more difficult to identify a general optimal test allocation
strategy that was applicable to any arbitrary asymmetric structure. While fur-
ther test plan allocation algorithms were examined, it was always possible to
identify a counter-example structure where the allocation would be sub-optimal.

370 P. Bishop and A. Povyakalo

An exact optimal test plan could be produced using integer programming
(optimisation of an objective function where the input variables are constrained
to be discrete integer values [2]), but this solution approach is NP hard [12].

We chose a less computationally expensive approach that has been used in
other application contexts (e.g. [3,7]) where the integer optimisation problem is
mapped to the continuous domain, optimised using linear programming, and the
results converted back to discrete integer values.

In our solution approach, we represent the component tests as continuous-
valued fractions of the total number of tests, maximise the Nmin fraction using
linear programming, then convert the optimal continuous test plan fractions back
to a discrete integer test values for each component. The approach is described
in more detail in the section below, and an example R [11] script implementation
of the method is given in Appendix A.

4 Test Plan Optimisation Using Linear Programming

Let us introduce the following notation

m is the number of components;
f = (f1, f2, . . . , fm)′ ∈ R

m is the fraction of tests allocated to each component,
i.e. fj = nj/N, j = 1..m;

s is the number of minimal cutsets;
1s = (1, 1, . . . , 1)′ is a unit vector of size s;
Y is a s × m incidence matrix for minimal cutsets where yij = 1 if component

cj belongs to minimal cutset i, yij = 0 otherwise.

In order to maximise Nmin for a given N , we are looking for the optimal test
plan among all test plans that allocate the same fraction of tests g to all minimal
cutsets in Y , by solving the following linear programming (LP) problem:

g → max (6)
given

Y · f = g · 1s; (7)
m∑

j=1

fj = 1; (8)

fj ≥ 0, j = 1..m, (9)

where Y ·f is the matrix product of matrix Y and vector f that computes the sum
of the component test fractions for every cutset, hence constraint (7) requires
that

∑m
j=1(yij .fj) = g, i = 1..s.

We can now eliminate variable g by defining the following terms:

h = f/g (10)
H = 1/g. (11)

Optimising the Reliability that Can Be Claimed 371

Rewriting the LP problem in these terms, g is maximised when H is min-
imised, i.e.:

m∑

j=1

hj = H → min (12)

given
Y · h = 1s; (13)
hj ≥ 0, j = 1..m. (14)

A simplex LP solver algorithm can be used to derive the solution to this
problem. Conceptually, the feasible region for the solution is a multi-dimensional
polyhedron where each face represents a different constraint. The simplex algo-
rithm finds the optimal solution by locating a vertex of the polyhedron (the
initial feasible point) and moving to the next vertex along an edge that is closer
to the optimal value (in our case, the minimum value of H). In practice how-
ever, the solver can sometimes fail to find a solution when equality constraints
are used – probably because it fails to generate an initial feasible point. To
resolve the issue, we noted that H reaches its unconstrained minimum when
hj = 0, j = 1..m. Therefore, equality constraint (13) can be replaced with an
inequality constraint Y ·h ≥ 1. This makes no difference to the final solution as
the optimisation seeks to minimise H, so the final solution will still satisfy the
constraint Y · h = 1. Thus, the LP problem can be reformulated as follows.

∑

j

hj = H → min (15)

given
Y · h ≥ 1s; (16)
hj ≥ 0, j = 1..m. (17)

This optimisation problem can solved by an R script that calls the LP solver
simplex() as shown in Appendix A.

The resultant optimal test allocation fractions for the components are:

fop = hop/Hop (18)

and the optimal minimal cutset fraction gop is:

gop = 1/Hop. (19)

As in general these fractions are real values, the optimal apportionment of com-
ponent tests i.e., n = fopN can be non-integer. An integer component test allo-
cation can be derived by first finding the smallest number of tests, N0, where all
component test fractions scale to integer values, i.e.

�fopN0� = fopN0. (20)

372 P. Bishop and A. Povyakalo

N0 can be found by incrementing an integer number k by 1 until all the
products k · fj , j = 1..m become integer.

It follows that the plan for a total number of tests

N− = N − (N mod N0) (21)

is always integer because it is a multiple of N0.
If there is an option to add extra tests to the plan, one can consider a test

plan for N+ tests where
N+ = N− + N0. (22)

However, we know that the change in Nmin between the plans for N− and
N+ could be greater than one, i.e.

(N+
min − N−

min) ≥ 1. (23)

For example, if we start with the integer test plan for N− and add one test to
the kp components on a single shortest success path, Nmin increases by one. If
N0 > kp we know this solution is also an integer plan so the increase in Nmin

must be greater than 1.
For structures where N0 > kp, there will be intermediate integer test plans

between N− and N+ where the non-zero component tests in each minimal cutset
are not exactly equal, but the test plan still maximises the value of Nmin for a
given number of tests N .

In principle, there can be structures where N0 � kp, e.g. structures where
the denominators of the component test fractions are differing prime numbers,
so there could be an arbitrarily large number of intermediate test plans between
a pair of perfectly balanced test plans with N− and N+ tests.

It would be possible derive optimal intermediate test plans where the non-
zero component tests in the cutset are unequal, but this would require an entirely
different, more complex algorithm (e.g. using integer programming). In practice,
it is simpler to round up the fractional component tests to the next whole integer,
i.e.

n↑ = 	fopN
; (24)

N↑
min = min(Y · n↑); (25)

N↑ =
∑

n↑. (26)

This plan for N↑ tests will include no more than m redundant tests to achieve
the same Nmin as a fully optimised integer test plan.

5 Example

Let us consider an example asymmetric structure with the reliability block dia-
gram (RBD) given in Fig. 4.

Optimising the Reliability that Can Be Claimed 373

Fig. 4. Example asymmetric RBD

Its minimal cutsets are:

{c1, c2}
{c2, c3}
{c1, c3, c4}
{c5}

and its minimal cutset incidence matrix Y is shown in Table 2, where a “1” in a
row indicates that the component is included in the minimal cutset.

Table 2. Minimal cutset incidence matrix

Cutset Component j

x 1 2 3 4 5

1 1 1 0 0 0

2 0 1 1 0 0

3 1 0 1 1 0

4 0 0 0 0 1

For this minimal cutset incidence matrix, the R script (see Appendix A)
generates the following optimal test allocation fractions:

f1 f2 f3 f4 f5 gop

0.2 0.2 0.2 0.0 0.4 0.4

where zero tests are allocated to component c4.
For this plan, sequential search gives N0 = 5. Therefore, for a test campaign

with a total number of tests N = 20003, the number of tests for an exact integer
test plan is

N− = 20003 − (20003 mod 5) = 20000 (27)

374 P. Bishop and A. Povyakalo

with the following allocation of tests to components

n1 n2 n3 n4 n5 N−

4000 4000 4000 0 8000 20000

where the least number of tests allocated to any minimal cutset is

Nmin = gopN
− = 8000.

The R script also generates a rounded-up test plan where the test allocation
is:

n↑
1 n↑

2 n↑
3 n↑

4 n↑
5 N↑

4001 4001 4001 0 8001 20004

and the least number of tests allocated to any minimal cutset is

N↑
min = min(Y · n↑)) = 8001.

This is not completely optimal because Nmin = 8001 is possible with a test
plan where N = 20003 by mapping the same test fraction values to different
integer values, as shown the test plan below (the reduced tests are italicised).

n1 n2 n3 n4 n5 N

4001 4001 4000 0 8001 20003

It can be seen that the simplified integerisation strategy of rounding up to
the next integer only has a marginal impact on the number of tests required to
achieve a given Nmin value. It also allows test plans to be generated for every
Nmin value.

The choice of integerisation strategy only makes a marginal difference to the
optimality of the plan. The main gain is achieved by identifying the optimal
test fractions. For example, if we use the sub-optimal strategy proposed in [1] of
allocating N/kp tests equally to components on a single shortest success path,
such as (c1, c2, c5), then kp = 3. This is clearly sub-optimal as the least tested
cutsets only have Nmin = �N/kp� = �20003/3� = 6667 tests.

Optimising the Reliability that Can Be Claimed 375

6 Discussion and Conclusions

In this paper, we have extended the test planning approach described in [1] so
that optimal test plans can be produced for arbitrary structures by optimising
test plans in the continuous domain. The fractions generated in the continuous
domain are independent of the number of tests, so they only need to be generated
once for any given structure. An integer test plan can be recalculated from these
fractions for any given test budget – reducing the computing resources needed
for a new plan.

We identified two options for converting the test fractions to integer compo-
nent test values. The simplest method is to round up fractional values to the
next whole integer. While not strictly optimal in all cases, there is only a min-
imal (and bounded) increase in the number of tests required to demonstrate a
given confidence bound.

Other integer conversion methods are possible but the differences are
marginal – the optimisation is primarily achieved by identifying the optimal
test fractions.

In principle, it would be possible to create a library of optimal test plan
solutions for different structures that can be converted to integer test plans
for any specified total number of component tests. This approach might have
broader application to other optimisation problems.

A Test Plan Optimisation R Script

The test plan optimisation approach was implemented using the standard sim-
plex solver available in the R statistical analysis library. The use of the test plan
optimiser is illustrated using the non-symmetric structure shown in Fig. 4.

library("boot")

#--
lptplan_example <- function(N, alpha)
N - total number of tests (default 20003)
alpha = 1 - confidence level (default 0.05)
#--

lptplan_example <- function(
N=20003,
alpha = 0.05
)

376 P. Bishop and A. Povyakalo

{
minimal cutset matrix

cutsets <- matrix(
c(
1,1,0,0,0, # cutset: C1, C2
0,1,1,0,0, # cutset: C2, C3
1,0,1,1,0, # cutset: C1, C3, C4
0,0,0,0,1 # cutset: C5
), 4, 5,
byrow=TRUE
)

Generate optimised test plan
print (lptestplan(cutsets, N, alpha))

}

#---
lptestplan <- function(Y, N, alpha)
Y incidence matrix for the minimal cutsets
columns represent components
rows represent cutsets
N total number of tests
alpha = 1 - confidence level
#---

lptestplan <- function(Y, N, alpha)
{
Number of components

m <- ncol(Y)

Number of minimal cutsets
s <- nrow(Y)

Unit vectors
uvm <- rep(1,m)
uvs <- rep(1,s)

Solve LP
lp0 <- simplex(

a = uvm,
A3 = Y,
b3 = uvs

)
H <- as.numeric(lp0$value)
h <- lp0$soln

Optimising the Reliability that Can Be Claimed 377

Optimal cutset test fraction
g <- 1/H

Optimal component test fractions
f <- h * g

Find exact integer test plan (<= N)
k <- 1
r <- 1
while(r>0){

r <- sum ((f*k)%%1)
if(r>0) k <- k+1

}
N0 <- k
N_minus <- N - (N%%N0)

Generate exact integer test plan
N_min <- N_minus * g
n <- N_minus * f

Calculate upper confidence bound
q_u <- log(1/alpha)/N_min

Generate rounded-up integer test plan (>=N)
n_up <- ceiling(N * f)
N_min_up <- min(Y %*% n_up)
N_up <- sum(n_up)

Calculate rounded-up upper confidence bound
q_u_up <- log(1/alpha)/N_min_up

Return optimised results
return
(

list(
cutsets=Y,
alpha = alpha,
component_fractions = f,
cutset_fraction = g,
N = N,
N0 = N0,
N_minus = N_minus,
lptest_plan = n,
N_min = N_min,

378 P. Bishop and A. Povyakalo

q_u = q_u,
N_up=N_up,
lptest_plan_up=n_up,
N_min_up=N_min_up,
q_u_up = q_u_up
)

)
}

References

1. Bishop, P., Povyakalo, A.: A conservative confidence bound for the probability
of failure on demand of a software-based system based on failure-free tests of its
components. Reliab. Eng. Syst. Saf. 203, 107060 (2020)

2. Dantzig, G.B., Thapa, M.N.: Linear Programming 1: Introduction. Springer, Hei-
delberg (2006). https://doi.org/10.1007/b97672

3. Dommel, H.W., Tinney, W.F.: Optimal power flow solutions. IEEE Trans. Power
Appar. Syst. 10, 1866–1876 (1968)

4. Ehrenberger, W.: Statistical testing of real time software. In: Quirk, W.J. (ed.) Ver-
ification and Validation of Real-Time Software, pp. 147–178. Springer, Heidelberg
(1985). https://doi.org/10.1007/978-3-642-70224-2 5

5. Hunns, D., Wainwright, N.: Software-based protection for Sizewell B: the regu-
lator’s perspective. In: 1992 International Conference on Electrical and Control
Aspects of the Sizewell B PWR, pp. 198–203. IET (1992)

6. IEC: Functional safety of electrical/electronical/programmable electronic safety-
related systems, Ed. 2, IEC 61508:2010 (2010)

7. King, T., Barrett, C., Tinelli, C.: Leveraging linear and mixed integer programming
for SMT. In: 2014 Formal Methods in Computer-Aided Design (FMCAD), pp. 139–
146. IEEE (2014)

8. May, J., Hughes, G., Lunn, A.: Reliability estimation from appropriate testing of
plant protection software. Softw. Eng. J. 10(6), 206–218 (1995)

9. NNB: Hinkley Point C pre-construction safety report 3 public version. Technical
report, NNB Generation Company (HPC) Ltd. (2017)

10. Parnas, D.L., Asmis, G., Madey, J.: Assessment of safety-critical software in nuclear
power plants. Nucl. Saf. 32(2), 189–198 (1991)

11. Rizzo, M.L.: Statistical Computing with R. CRC Press, New York (2019)
12. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Hoboken (1998)

https://doi.org/10.1007/b97672
https://doi.org/10.1007/978-3-642-70224-2_5

Author Index

Abdulkhaleq, Asim 319
Acar Celik, Esra 319
Adler, Rasmus 284
Annable, Nicholas 97

Bajan, Pierre-Marie 175
Bakirtzis, Georgios 158
Bargholz, Malte 207
Barrilado, Andres 222
Bauer, Fridolin 319
Bishop, Peter 365
Bondavalli, Andrea 129
Boyer, Martin 175
Budoj, Marcel 207
Burton, Simon 269

Cârlan, Carmen 319
Cheng, Chih-Hong 269
Chiang, Thomas 97
Coppik, Nicolas 189

Daw, Zamira 65
Delmas, Kevin 222
Dietrich, Christian 207, 252
Dubey, Abhishek 82
Dubois, Anouk 175
Dubois, Didier 111

Elks, Carl R. 158

Fischer, Marc 144

Galtié, Franck 222
Gansch, Roman 284
Gautham, Smitha 158
Geissler, Florian 298
Golagha, Mojdeh 350
Gräfe, Ralf 298
Groß, Janek 284
Guinebert, Iban 222
Guiochet, Jérémie 111

Hähnel, Marcus 31
Hauer, Florian 335, 350

Hawkins, Richard 3
Hinz, Gereon 298

Idmessaoud, Yassir 111
Ivaki, Naghmeh 237

Jayakumar, Athira Varma 158
Jiménez, Carlos A. Chuquitarco 237
Jimenez-Roa, Lisandro Arturo 46
Jin, Hyunjee 82
Jöckel, Lisa 284

Khan, Anamta 237
Kläs, Michael 284
Knoll, Alois 298
Kohnhäuser, Florian 189
Kolb, Nicola 350
Kumari, Ankita 189

Lackorzynski, Adam 31
Lampka, Kai 31
Lawford, Mark 97
Lechler, Armin 144
Letailleur, Jérôme 175
Loeck, Yannick 207
Lohmann, Daniel 207, 252

Madeira, Henrique 237
Maier, Robert 17
Mantissa, Kevin 175
McDermid, John 3
Mendoza, Francisco 189
Mottok, Jürgen 17

Naik, Nikhil 65
Nedaskowskij, Luca 207
Nuzzo, Pierluigi 65

Oh, Chanwook 65
Osborne, Matt 3

Pablo, Morcillo-Pallarés 237
Pagetti, Claire 222
Paige, Richard F. 97
Paulitsch, Michael 298

380 Author Index

Peng, Yang 298
Povyakalo, Andrey 365
Pretschner, Alexander 335, 350
Pusz, Oskar 252
Putzer, Henrik J. 319

Qutub, Syed 298

Ramakrishna, Shreyas 82
Ramamurthy, Arun 82
Reich, Jan 284
Riedel, Oliver 144

Schels, Martin 319
Schmidt, Tabea 335
Schuster, Tobias 269

Seferis, Emmanouil 269
Sobieraj, Jeremy 175
Stoelinga, Mariëlle 46
Strigini, Lorenzo 129

Tejedor, Juan Vicente Balbastre 237
Terrosi, Francesco 129
Thomas, Tim-Marek 252
Thurlby, Joel 31
Tlig, Mohamed 175

Volk, Matthias 46

Wang, Timothy E. 65
Wassyng, Alan 97
Will, Alexander 158

	Preface
	Organization
	Contents
	Safety Analysis and Certification
	Analysing the Safety of Decision-Making in Autonomous Systems
	1 Introduction
	2 Background
	3 A Decision Safety Analysis Process
	3.1 The Decision Safety Analysis Process
	3.2 Robot Delivery System Example

	4 Process Evaluation
	5 Discussion and Conclusions
	References

	BayesianSafety - An Open-Source Package for Causality-Guided, Multi-model Safety Analysis
	1 Introduction
	2 Preliminaries
	2.1 Bayesian Networks
	2.2 Model-to-Model Transformations
	2.3 Bridging the Issue of Multiple Domains

	3 Package BayesianSafety
	3.1 Models and Their Combinations
	3.2 Model Inference
	3.3 Technical Ecosystem

	4 Related Work
	5 Conclusion
	References

	Safety Certification with the Open Source Microkernel-Based Operating System L4Re
	1 Introduction
	2 Background Material
	3 Certification Approach
	3.1 Architecture of the EB Corbos Hypervisor
	3.2 General Thoughts on the Qualification Strategy
	3.3 New Safety Architecture

	4 Conclusion
	References

	Data-Driven Inference of Fault Tree Models Exploiting Symmetry and Modularization
	1 Introduction
	2 Fault Trees
	3 Modules and Symmetries
	3.1 Modules
	3.2 Symmetries

	4 Exploiting Modules and Symmetries in FT Inference
	5 Experimental Evaluation
	6 Conclusions
	References

	Assurance Cases
	ARACHNE: Automated Validation of Assurance Cases with Stochastic Contract Networks
	1 Introduction
	2 Background
	3 Assurance Cases as Contract Networks
	3.1 Stochastic Propositional Logic
	3.2 Hierarchical Stochastic Contract Networks
	3.3 Confidence Networks

	4 Assurance Case Validation
	4.1 Checking the Soundness of an HSCN
	4.2 Confidence Assessment

	5 Case Studies
	5.1 Software Correctness Assurance
	5.2 Scalable Assurance for Autonomous Driving Systems

	6 Conclusions
	References

	Automating Pattern Selection for Assurance Case Development for Cyber-Physical Systems
	1 Introduction
	2 Assurance Case Patterns
	2.1 Pattern Formalization

	3 Pattern Selection Workflow
	3.1 Data Preparation
	3.2 Pattern Selection
	3.3 Coverage Evaluation

	4 Illustrative Example
	5 Related Work
	6 Conclusion and Future Work
	References

	Generating Assurance Cases Using Workflow+ Models
	1 Introduction
	2 An Example in GSN
	3 Generating GSN-Like Arguments from WF+
	3.1 Syntactic Constraints
	3.2 Semantic Constraints
	3.3 Deriving Higher-Level Argumentation
	3.4 Integrating Assurance Segments
	3.5 Instantiating WF+ Models

	4 Related Work
	5 Evaluation
	5.1 Collaboration with an Industrial Partner
	5.2 Comparison with Other Approaches

	6 Conclusion
	References

	Uncertainty Elicitation and Propagation in GSN Models of Assurance Cases
	1 Introduction
	2 Background and Related Work
	3 From GSN to Dempster-Shafer Theory
	3.1 Logical Modeling of GSN
	3.2 Uncertainty Propagation Model
	3.3 Belief and Disbelief Elicitation

	4 Uncertainty Assessment Procedure
	5 Case Study
	6 Conclusion
	References

	Fault Detection, Monitoring and Tolerance
	Impact of Machine Learning on Safety Monitors
	1 Introduction
	2 Related Work
	3 Problem Statement
	4 System Model and Terminology
	4.1 Terminology
	4.2 Description of the State Space

	5 Study Method
	5.1 Paired Tests with and Without Safety Monitor
	5.2 Evaluation of the Components and the System (Vehicle) Safety

	6 Details of the Simulation
	6.1 CARLA Simulator
	6.2 Implementation of the Controller and Safety Monitor
	6.3 Structure of the Study

	7 Results of the Simulation
	7.1 Controller
	7.2 Safety Monitor
	7.3 Whole-Vehicle Evaluation

	8 Concluding Remarks
	References

	Comprehensive Analysis of Software-Based Fault Tolerance with Arithmetic Coding for Performant Encoding of Integer Calculations
	1 Introduction
	1.1 Fault Tolerance
	1.2 Arithmetic Coding
	1.3 Contribution

	2 Encoding Strategy
	3 Comparison of Arithmetic Codes and Their Implementations
	3.1 AN Codes
	3.2 Residue-Codes
	3.3 Complement-Codes
	3.4 Comparison

	4 Fault Detection Capabilities
	5 Performance Overhead
	6 Evaluation and Experimental Validation of the Ones' Complement
	6.1 Evaluation
	6.2 Experimental Validation
	6.3 Outlook for Future Validation

	7 Related Works
	8 Conclusion
	References

	STPA-Driven Multilevel Runtime Monitoring for In-Time Hazard Detection
	1 Introduction
	2 STPA-Driven Runtime Monitor Design
	2.1 Losses, Hazards and Unsafe Control Actions
	2.2 Causal Factors and Relation to Multilevel Monitoring
	2.3 Multilevel Runtime Monitoring Framework

	3 Monitoring an AEB Controller
	3.1 STPA for AEB
	3.2 Loss Scenarios and Causal Factors as Design Guides for Multilevel Runtime Monitoring

	4 Conclusion
	References

	Security and Safety
	Proposal of Cybersecurity and Safety Co-engineering Approaches on Cyber-Physical Systems
	1 Introduction
	2 State of the Art
	2.1 Standards
	2.2 Co-engineering Methods
	2.3 Positioning

	3 EBIOS RM Method
	3.1 Introduction
	3.2 Five Workshops of EBIOS RM

	4 Cybersecurity/Safety Co-engineering: Two Approaches
	4.1 First Approach: Safety Contributions to Cybersecurity EBIOS RM Workshops
	4.2 Second Approach: Contributions of Cybersecurity to the Safety Demonstration

	5 Conclusion
	References

	On the Feasibility and Performance of Secure OPC UA Communication with IIoT Devices
	1 Introduction
	2 Background
	3 Related Works
	4 Evaluation Platform
	4.1 Hardware and Measurement Setup
	4.2 Software Implementation

	5 Evaluation
	5.1 Key and Certificate Generation
	5.2 Connect
	5.3 Read Operations
	5.4 Subscriptions
	5.5 Memory Footprint
	5.6 Power Consumption

	6 Implications and Discussion
	7 Conclusion
	References

	Fault Injection
	SailFAIL: Model-Derived Simulation-Assisted ISA-Level Fault-Injection Platforms
	1 Introduction
	2 Background
	2.1 Systematic Fault Injection
	2.2 Sail: ISA Modeling Language
	2.3 FAIL*: Fault Injection Leveraged

	3 The SailFAIL Approach
	3.1 Connecting Sail and FAIL*
	3.2 Systematic Register Access Tracing
	3.3 Bit-Wise Def-Use Pruning
	3.4 Virtual Fault Spaces

	4 Evaluation
	4.1 Simulation Overheads
	4.2 Register Trace Coverage
	4.3 Efficiency Improvements by Bit-Wise Pruning
	4.4 Case Study: SDC Counts for Bubblesort

	5 Conclusion
	References

	Quality of Fault Injection Strategies on Hardware Accelerator
	1 Introduction
	1.1 Context
	1.2 Contributions

	2 Abstract Semantics of Hardware Architecture
	2.1 Semantics of Atomic Components
	2.2 Semantics of Components
	2.3 Application of the Semantics to a Streaming Architecture

	3 Methodology
	3.1 Fault Model
	3.2 Identification of Failures Scenarios
	3.3 Coverage/Fault Collapsing

	4 Experiments
	5 Related Work
	6 Conclusion
	References

	Assessment of the Impact of U-space Faulty Conditions on Drones Conflict Rate
	1 Introduction
	1.1 Conflict Management by the U-space
	1.2 Safety Assessment in the U-space

	2 Related Work
	2.1 Safety Assessment of UAVs
	2.2 Fault Injection for Safety Assessment

	3 Approach and Experimental Setup
	3.1 Scenarios and Missions
	3.2 Fault/Failure Model
	3.3 Safety Assessment Metrics
	3.4 Experimental Framework

	4 Results and Analysis of the Results
	4.1 Assessment of the Impact on the Conflicts
	4.2 Assessment of the Impact on the Surveillance Performance
	4.3 Discussion

	5 Threats to Validity
	6 Conclusion
	References

	ACTOR: Accelerating Fault Injection Campaigns Using Timeout Detection Based on Autocorrelation
	1 Introduction
	2 Problem Analysis
	2.1 Fault-Injection Model
	2.2 Timeout Detectors

	3 Timeout Detection Using Autocorrelation
	3.1 Adaption as Timeout Detector
	3.2 FAIL* Integration

	4 Evaluation
	5 Discussion
	6 Related Work
	7 Conclusion
	References

	Object Detection and Perception
	Formally Compensating Performance Limitations for Imprecise 2D Object Detection
	1 Introduction
	2 Related Work
	3 Data-Driven Safe Post-processing in Addressing 2D Object Detection Imprecision
	4 Mathematically Associating the IoU Metric and Safety
	4.1 The Mathematical Connection Between IoU and Safety

	5 Connecting Motion Planners with Safety Post-processing
	6 Evaluation
	7 Concluding Remarks
	References

	Architectural Patterns for Handling Runtime Uncertainty of Data-Driven Models in Safety-Critical Perception
	1 Introduction
	2 Related Work
	3 Example Use Case
	4 Architectural Patterns for Dealing with Uncertainty
	5 Simulation-Based Evaluation Approach
	6 Study Results and Discussion
	7 Summary and Conclusion
	References

	Hardware Faults that Matter: Understanding and Estimating the Safety Impact of Hardware Faults on Object Detection DNNs
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Hardware Faults Vocabulary
	3.2 Experimental Setup: Models, Datasets and System

	4 Methodology of Vulnerability Estimation
	4.1 Issues with Average Precision
	4.2 Proposed Metrics: IVMOD

	5 Transient Faults
	5.1 Corruption Probability
	5.2 Corruption Severity
	5.3 Bit-Wise Analysis of False Object Count

	6 Permanent Faults
	6.1 Evaluating Fault Persistence
	6.2 Corruption Probability and Severity

	7 Conclusion
	References

	Application of STPA for the Elicitation of Safety Requirements for a Machine Learning-Based Perception Component in Automotive
	1 Introduction
	2 Related Work
	3 Safety Requirement Elicitation for Pedestrian Detection Component
	3.1 Integrating STPA into the Safety Life Cycle of ISO 26262 and ISO/FDIS 21448
	3.2 Case Study: Deriving Safety Requirements of a Perception Component with STPA
	3.3 Defining Safety-Relevant Metrics
	3.4 Discussion

	4 Conclusion
	References

	Testing
	Exploring a Maximal Number of Relevant Obstacles for Testing UAVs
	1 Introduction
	2 Scenario-Based Testing of UAVs
	3 Automated Derivation of a Maximal Number of Relevant Obstacles
	3.1 Relevant Obstacles for the UAV
	3.2 Parameter Values Describing the UAV's Behavior
	3.3 Process Overview of the Automated Derivation of a Maximal Number of Relevant Obstacles
	3.4 Search Space and Fitness Function

	4 Experiments
	4.1 Experimental Setup and Implementation
	4.2 Experimental Results
	4.3 Discussion
	4.4 Threats to Validity

	5 Related Work
	6 Conclusion
	References

	Data-Driven Assessment of Parameterized Scenarios for Autonomous Vehicles
	1 Introduction
	2 Scenario-Based Testing
	3 Parameterized Scenario Assessment
	3.1 Extracting Relevant Information from Traffic Data
	3.2 Containment of a Single Recorded Scenario Instance
	3.3 Containment of Many Recorded Scenario Instances

	4 Experiments
	4.1 Parameterized Scenario
	4.2 Traffic Data
	4.3 Points to Be Reproduced
	4.4 Fitness Function for Re-creation
	4.5 Simulation Setup
	4.6 Experiment Results
	4.7 Discussion
	4.8 Limitations

	5 Related Work
	6 Conclusion
	References

	Optimising the Reliability that Can Be Claimed for a Software-Based System Based on Failure-Free Tests of Its Components
	1 Introduction
	2 Confidence Bounds from Component Tests
	3 Optimising Test Plans for Asymmetric Structures
	4 Test Plan Optimisation Using Linear Programming
	5 Example
	6 Discussion and Conclusions
	A Test Plan Optimisation R Script
	References

	Author Index

