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2 DIENS, École normale supérieure, CNRS, Inria, PSL University, Paris, France

Abstract. This paper revisits Key-Policy Attribute-Based Encryption
(KP-ABE), allowing delegation of keys, traceability of compromised keys,
and key anonymity, as additional properties.

Whereas delegation of rights has been addressed in the seminal paper
by Goyal et al. in 2006, introducing KP-ABE, this feature has almost
been neglected in all subsequent works in favor of better security lev-
els. However, in multi-device scenarios, this is quite important to allow
users to independently authorize their own devices, and thus to delegate
their initial rights with possibly more restrictions to their everyday-use
devices. But then, one may also require tracing capabilities in case of
corrupted devices and anonymity for the users and their devices.

To this aim, we define a new variant of KP-ABE including delegation,
with switchable attributes, in both the ciphertexts and the keys, and new
indistinguishability properties. We then provide a concrete and efficient
instantiation with adaptive security under the sole SXDH assumption in
the standard model. We eventually explain how this new primitive can
address all our initial goals.

1 Introduction

Multi-device scenarios have become prevalent in recent years, as it is now quite
usual for people to own multiple phones and computers for personal and pro-
fessional purposes. Users manage multiple applications across different devices,
which brings forth new kinds of requirements. One must be able to granularly
control what each of his devices can do for numerous applications, with a cost
that is minimal for the user and the overall system. In particular, it is expected
that one can control what each of its devices can access, for example restricting
the rights to read sensitive documents from a professional laptop or phone dur-
ing travel. Furthermore, if one suspects a key to be compromised, it should be
possible to trace and change it without impacting the service. At the same time,
these operations must happen transparently between different devices from the
perspective of the user. This means each device should be autonomously config-
urable with regards to interactions with a central authority or to other devices.
Eventually, one may also expect the delegated keys to be unlinkable, for some
kind of anonymity for the users, even when devices are explored or corrupted by
an adversary.
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Usual current authentication means defining a unique account for the user,
providing the same access-rights to all the devices, is equivalent to a key-cloning
approach, where the user clones his key in every device. In this case, all the
devices of the same user are easily linked together, from their keys. This also
prevents countermeasures against specific devices.

Key-Policy Attribute-Based Encryption (KP-ABE), in the seminal paper of
Goyal et al. [7], offers interesting solutions to these issues. Indeed, a policy is
embedded inside each user’s private key, any user can finely-tune the policy
for each of his devices when delegating his keys, for any more restrictive policy.
Besides, since keys become different in each device, one could expect to trace and
revoke keys independently. However, delegation and tracing capabilities might
look contradictory with current approaches, as explained below. But we bridge
this gap and we also suggest complementing these features with a certain level of
unlinkability between the different keys of a single user in order to better protect
the privacy of users.

1.1 Related Work

Attribute-Based Encryption (ABE) has first been proposed in the paper
by Goyal et al. [7]. In an ABE system, on the one hand, there is a policy P
and, on the other hand, there are some attributes (Ai)i, and one can decrypt
a ciphertext with a key if the policy P is satisfied on the attributes (Ai)i.
They formally defined two approaches: Key-Policy Attribute-Based Encryption
(KP-ABE), where the policy is specified in the decryption key and the attributes
are associated to the ciphertext; Ciphertext-Policy Attribute-Based Encryption
(CP-ABE), where the policy is specified in the ciphertext and the attributes are
associated to the decryption key.

In their paper, they proposed a concrete construction of KP-ABE, for any
monotonous access structure defined by a policy expressed as an access-tree with
threshold internal gates and leaves associated to attributes. Attributes in the
ciphertext are among a large universe U (not polynomially bounded). Given an
access-tree T embedded in a private key, and a set of attributes Γ ⊂ U associated
to a ciphertext, one can decrypt if and only if Γ satisfies T . Furthermore, they
laid down the bases for delegation of users’ private keys: one can delegate a new
key, associated with a more restrictive access-tree.

This first paper on KP-ABE allows fine-grained access-control for multiple
devices, dealing with delegation of keys for more restrictive policies. However,
their approach for delegation of keys is conflictual with traceability. Indeed,
on the one hand, for delegation to work properly, users must be given enough
information in the public key to be able to produce valid delegated keys. On the
other hand, for the tracing process to be effective in a black-box way, attackers
must not be able to detect it. From our knowledge, this natural tension between
the two features is in all the existing literature.

Predicate Encryption/Inner-Product Encryption (IPE) were used by
Okamoto and Takashima [13–15], together with LSSS: the receiver can read
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the message if a predicate is satisfied on some information in the decryption
key and in the ciphertext. Inner-product encryption (where the predicate checks
whether the vectors embedded in the key and in the ciphertext are orthogonal) is
the major tool. Their technique of Dual Pairing Vector Space (DPVS) provided
two major advantages in KP-ABE applications: whereas previous constructions
were only secure against selective attacks (the attributes in the challenge cipher-
text were known before the publication of the keys), this technique allowed full
security (a.k.a. adaptive security, where the attributes in the challenge cipher-
text are chosen at the challenge-query time). In addition, it allows the notion
of attribute-hiding (from [8]) where no information leaks about the attributes
associated to the ciphertext, except for the fact that they are accepted or not
by the policies in the keys. It gets closer to our goals, as tracing might become
undetectable. However, it does not seem any longer compatible with delegation,
as the security proofs require all the key generation material to remain a secret
information for the key issuer only.

As follow-up works, Chen et al. [3,4] designed multiple systems for IPE, with
adaptive security, and explored full attribute-hiding with weaker assumptions
and shorter ciphertexts and secret keys than in the previous work of Okamoto-
Takashima. However, it does not fit our expectations on delegation, for the same
reasons. On the other hand, Attrapadung also proposed new ABE schemes based
on Pair Encoding Systems, which allow for all possible predicates and large uni-
verses [1], but this deals neither with delegation nor with any kind of attribute-
hiding, as we would need.

1.2 Contributions

Since the approach of [14] is close to our goal, with attribute-hiding that seems
promising for traceability, we extend the original construction to make it com-
patible with delegation. We propose and prove, in the full version [6], a simple
variant that handles delegation with adaptive security under the SXDH assump-
tion. Then, we target delegatable KP-ABE with some additional attribute-hiding
property in the ciphertext to allow undetectable tracing.

To this aim, we first detail one of the main limitation we have to overcome
in order to get delegation and traceability: with the original approach of [7],
attributes associated to the ciphertext are explicitly stated as elements in the
ciphertext. Removing some attributes can thus allow to single out specific private
keys, but this is a public process, and thus incompatible with any tracing proce-
dure, that would then be detectable by the adversary. To prevent that, our first
contribution is the new primitive: Switchable-Attribute Key-Policy Attribute-
Based Encryption (SA-KP-ABE), where one can invalidate some attributes in the
ciphertext, without removing them. More precisely, we will bring new properties
to the attributes in ciphertexts (for undetectable tracing) but also symmetrically
to the leaves in keys (for anonymity).

In a SA-KP-ABE scheme, attributes in a ciphertext and leaves in an access-
tree T defining the policy in a key can be switched in two different states:
Attributes can be set to valid or invalid in a ciphertext at encryption time, using
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Feature [14] [11] [4] Ours
Security Adaptive Adaptive Adaptive Adaptive

Assumptions DLIN q-type XDLIN SXDH
Construction type CP/KP ABE CP/KP ABE IPE KP ABE

Delegation � × × �
Traceability × � × �

Fig. 1. Comparison with Related Work

a secret encryption key. We then denote Γ = Γv ·∪ Γi, the set of attributes for a
ciphertext, as the disjoint union of valid and invalid attributes; Leaves can be set
to passive or active in the access-tree in a key at key generation time, using the
master secret key. We also denote L = Lp ·∪ La, the set of leaves, as the disjoint
union of passive and active leaves. A set of valid/invalid attributes Γ = Γv ·∪Γi is
accepted by an access-tree T with passive/active leaves L = Lp ·∪ La, if the tree
T is accepting when all the leaves in L associated to an attribute in Γ are set to
True, except if the leaf is active (in La) and the associated attribute invalid (in
Γi). As already presented above, passive/active leaves in L are decided during the
Key Generation procedure by the authority, using the master secret key. Then
the keys are given to the users. During the Encryption procedure, a ciphertext
is generated for attributes in Γ , but one might specify some attributes to be
invalid by using a secret tracing key, which virtually and secretly switches some
active leaves to False. Passive leaves are not impacted by invalid attributes.

A second contribution is a concrete and efficient instantiation of
SA-KP-ABE, with security proofs under the SXDH assumption. We eventually
explain how one can deal with delegatable and traceable KP-ABE from such a
primitive. As shown on Fig. 1, our scheme is the first one that can combine both
delegation and traceability of keys for KP-ABE. Computational assumptions are
recalled in the next section and in the full version [6].

Our first simple construction (in the full version [6]) following the initial proof
from [14], only allows a polynomial-size universe for the attributes involved in
the policy, encoded as a Boolean access-tree. This is due to a limited theorem
with static attributes in the change of basis in the DPVS framework (see the
next section). The latter construction will allow an unbounded universe for the
attributes, with an adaptive variant in the change of basis (see Theorem 3). This
result is of independent interest.

Discussions. Our setting bears common characteristics with recent KP-ABE
approaches, but with major differences. First, Waters [16] introduced the Dual
System Encryption (DSE) technique, to improve the security level of KP-ABE,
from selective security in [7] to adaptive security. In DSE, keys and ciphertexts
can be set semi-functional, which is in the same vein as our active leaves in keys
and invalid attributes in ciphertexts. However, DSE solely uses semi-functional
keys and ciphertexts during the simulation, in the security proof, while our
construction exploits them in the real-life construction. The security proof thus
needs another layer of tricks.
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Second, the attribute-hiding notions are strong properties that have been well
studied in different IPE works. However, one does not need to achieve such a
strong result for tracing: Our (Distinct) Attribute-Indistinguishability is properly
tailored for KP-ABE and tracing.

Finally, we detail the advantage of our solution over a generic KEM app-
roach that would combine a Delegatable KP-ABE and a black-box traitor-tracing
scheme. This generic solution works if one is not looking for optimal bounds
on collusion-resistance during tracing: The main issue with such a use of two
independent schemes is that for each user, the KP-ABE key and the traitor-
tracing key are not linked. As a consequence, the encryptions of the ABE part
and the tracing part are done independently. The colluding users can all try to
defeat the traitor tracing without restriction: the collusion-resistance for trac-
ing in the global scheme will exactly be the collusion-resistance of the traitor
tracing scheme. On the other hand, our construction will leverage the collusion-
resistance of KP-ABE to improve the collusion-resistance of tracing: only players
non-revoked by the KP-ABE part can try to defeat the traitor tracing part. Hence,
during tracing, one can revoke arbitrary users thanks to the policy/attributes
part. This allows to lower the number of active traitors, possibly keeping them
below the collusion-resistance of the traitor tracing scheme, so that tracing
remains effective.

2 Preliminaries

We will make use of a pairing-friendly setting G = (G1,G2,Gt, e,G1, G2, q),
with a bilinear map e from G1 × G2 into Gt, and G1 (respectively G2) is a
generator of G1 (respectively G2). We will use additive notation for G1 and G2,
and multiplicative notation in Gt.

Definition 1 (Decisional Diffie-Hellman Assumption).The DDH assump-
tion in G, of prime order q with generator G, states that no algorithm can
efficiently distinguish the two distributions

D0 = {(a · G, b · G, ab · G), a, b
$← Zq} D1 = {(a · G, b · G, c · G), a, b, c

$← Zq}

And we will denote by AdvddhG (T ) the best advantage an algorithm can get in
distinguishing the two distributions within time bounded by T . Eventually, we
will make the following more general Symmetric eXternal Diffie-Hellman (SXDH)
Assumption which makes the DDH assumptions in both G1 and G2. Then, we
define AdvsxdhG (T ) = max{AdvddhG1

(T ),AdvddhG2
(T )}.

2.1 Dual Pairing Vector Spaces

We review the main points on Dual Pairing Vector Spaces (DPVS) to help
following the intuition provided in this paper. Though not necessary for the
comprehension of the paper, the full details are provided in the full version [6].
DPVS have been used for schemes with adaptive security [9,12,13,15] in the same
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vein as Dual System Encryption (DSE) [16], in prime-order groups under the
DLIN assumption. In [10], and some subsequence works, DSE was defined using
pairings on composite-order elliptic curves. Then, prime-order groups have been
used, for efficiency reasons, first with the DLIN assumption and then with the
SXDH assumption [5]. In all theses situations, one exploited indistinguishability
of sub-groups or sub-spaces. While we could have used any of them, the latter
prime-order groups with the SXDH assumption lead to much more compact and
efficient constructions.

In this paper, we thus use the SXDH assumption in a pairing-friendly setting
G, with the additional law between elements X ∈ G

n
1 and Y ∈ G

n
2 : X × Y def=∏

i e(Xi,Yi). If X = (Xi)i = �x · G1 ∈ G
n
1 and Y = (Yi)i = �y · G2 ∈ G

n
2 :

(�x · G1) × (�y · G2) = X × Y =
∏

ie(Xi, Yi) = g
〈�x,�y〉
t , where gt = e(G1, G2) and

〈�x, �y〉 is the inner product between vectors �x and �y.
From any basis B = (�bi)i of Z

n
q , we can define the basis B = (bi)i of G

n
1 ,

where bi = �bi · G1. Such a basis B is equivalent to a random invertible matrix
B

$← GLn(Zq), the matrix with �bi as its i-th row. If we additionally use B
∗ =

(b∗
i )i, the basis of Gn

2 associated to the matrix B′ = (B−1)�, as B · B′� = In,

bi ×b∗
j = (�bi ·G1)× (�b′

j ·G2) = g
〈�bi,�b

′
j〉

t = g
δi,j

t , where δi,j = 1 if i = j and δi,j = 0
otherwise, for i, j ∈ {1, . . . , n}: B and B

∗ are called Dual Orthogonal Bases. A
pairing-friendly setting G with such dual orthogonal bases B and B

∗ of size n is
called a Dual Pairing Vector Space.

2.2 Change of Basis

Let us consider the basis U = (ui)i of Gn associated to a random matrix U ∈
GLn(Zq), and the basis B = (bi)i of Gn associated to the product matrix BU ,
for any B ∈ GLn(Zq). For a vector �x ∈ Z

n
q , we denote (�x)B =

∑
ixi · bi. Then,

(�x)B = (�y)U where �y = �x · B. Hence, (�x)B = (�x · B)U and (�x · B−1)B = (�x)U
where we denote B

def= B ·U. For any invertible matrix B, if U is a random basis,
then B = B · U is also a random basis. Furthermore, if we consider the random
dual orthogonal bases U = (ui)i and U

∗ = (u∗
i )i of G

n
1 and G

n
2 respectively

associated to a matrix U (which means that U is associated to the matrix U
and U

∗ is associated to the matrix U ′ = (U−1)�): the bases B = B · U and
B

∗ = B′ · U∗, where B′ = (B−1)�, are also random dual orthogonal bases:

bi × b∗
j = g

�bi·�b′�
j

t = g
�ui·B·(B−1)�·�u′�

j

t = g
�ui·�u′�

j

t = g
δi,j

t .

All the security proofs will exploit changes of bases, from one game to another
game, with two kinds of changes: formal or computational.

Formal Change of Basis, where we start from two dual orthogonal bases U and
U

∗ of dimension 2, and set

B =
(

1 1
0 1

)

B′ =
(

1 0
−1 1

)

B = B · U B
∗ = B′ · U∗
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then,

(x1, x2)U = (x1, x2 − x1)B (y1, y2)U∗ = (y1 + y2, y2)B∗ (1)
(0, x2)U = (0, x2)B (0, y2)U∗ = (y2, y2)B∗ (2)

In practice, this change of basis makes b1 = u1 + u2, b2 = u2, b∗
1 = u∗

1,
b∗
2 = −u∗

1 + u∗
2. If u1/b1 and u∗

2/b
∗
2 are kept private, the adversary cannot

know whether we are using (U,U∗) or (B,B∗). This will be used to duplicate some
component, from a game to another game, as shown in the above Example (2).

Computational Change of Basis, where we define vectors in a dual orthogonal
basis (U,U∗) of dimension 2. From a Diffie-Hellman challenge (a·G1, b·G1, c·G1),
where c = ab + τ mod q with either τ = 0 or τ

$← Z
∗
q , one can set

B =
(

1 a
0 1

)

B′ =
(

1 0
−a 1

)

B = B · U B
∗ = B′ · U∗ (3)

then, in basis (B,B∗), we implicitly define

(b, c)U + (x1, x2)B = (b, c − ab)B + (x1, x2)B = (x1 + b, x2 + τ)B
(y1, y2)U∗ = (y1 + ay2, y2)B∗

where τ can be either 0 or random, according to the Diffie-Hellman challenge.
And the two situations are indistinguishable. We should however note that in
this case, b∗

2 cannot be computed, as a · G2 is not known. This will not be a
problem if this element is not provided to the adversary.

Partial Change of Basis: in the constructions, bases will be of higher dimension,
but we will often only change a few basis vectors. We will then specify the vectors
as indices to the change of basis matrix: in a space of dimension n,

B =
(

1 a
0 1

)

1,2

B′ =
(

1 0
−a 1

)

1,2

B = B · U B
∗ = B′ · U∗ (4)

means that only the two first coordinates are impacted, and thus b1,b2 and
b∗
1,b

∗
2. We complete the matrices B and B′ with the identity matrix: bi = ui

and b∗
i = u∗

i , for i ≥ 3.

2.3 Particular Changes

The security proofs will rely on specific indistinguishable modifications that we
detail here. We will demonstrate the first of them to give the intuition of the
methodology to the reader. A full demonstration for the other modifications can
be found in the full version [6]. These results hold under the DDH assumption
in G1, (but it can also be applied in G2), on random dual orthogonal bases B

and B
∗.
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With the above change of basis provided in Eq. (4), we can compute B =
(bi)i, as we know a · G1 and all the scalars in U :

bi =
∑

k

Bi,k·uk bi,j =
∑

k

Bi,k·uk,j =
∑

k

Bi,kUk,j ·G1 =
∑

k

Uk,j ·(Bi,j ·G1).

Hence, to compute bi, one needs all the scalars in U , but only the group elements
Bi,j · G1, and so G1 and a · G1. This is the same for B∗, except for the vector b∗

2

as a · G2 is missing. One can thus publish B and B
∗\{b∗

2}.

Indistinguishability of Sub-spaces (3). As already remarked, for such a fixed
matrix B, if U is random, so is B too, and (�x)B = (�x · B)U, so (�x)U = (�x · B−1)B.
Note that B−1 = B′�. So, (b, c, 0, . . . , 0)U = (b, c − ab, 0, . . . , 0)B, then

(b, c, 0, . . . , 0)U + (x1, x2, x3, . . . , xn)B = (x1 + b, x2 + τ, x3, . . . , xn)B

where τ can be either 0 or random. Note that whereas we cannot compute b∗
2,

this does not exclude this second component in the computed vectors, as we can
use (y1, . . . , yn)U∗ = (y1 + ay2, y2, . . . , yn)B∗ .

Theorem 2. Under the DDH Assumption in G1, for random dual orthogonal
bases B and B

∗, once having seen B and B
∗\{b∗

2}, and any vector (y1, y2, . . . ,
yn)B∗ , for any y2, . . . , yn ∈ Zq, but unknown random y1

$← Zq, one cannot
distinguish (x1, x

′
2, x3, . . . , xn)B and (x1, x2, x3, . . . , xn)B, for any x2, . . . , xn ∈

Zq, but unknown random x1, x
′
2

$← Zq.

Some scalar coordinates can be chosen (and thus definitely known) by the adver-
sary, whereas some other must be random. Eventually the adversary only sees
the vectors in G

n
1 and G

n
2 . We now directly state two other properties for which

the demonstration (which works similarly as the SubSpace-Ind one) can be found
in the full version [6].

Swap-Ind Property, on (B,B∗)1,2,3: from the view of B and B
∗\{b∗

1,b
∗
2}, and

the vector (y1, y1, y3, . . . , yn)B∗ , for any y1, y3, . . . , yn ∈ Zq, one cannot distin-
guish the vectors (x1, 0, x3, x4, . . . , xn)B and (0, x1, x3, x4, . . . , xn)B, for any
x1, x4, . . . , xn ∈ Zq, but unknown random x3

$← Zq.
(Static) Index-Ind Property, on (B,B∗)1,2,3: from the view of B and

B
∗\{b∗

3}, for fixed t 	= p ∈ Zq, and the (π · (t,−1), y3, . . . , yn)B∗ , for
any y3, . . . , yn ∈ Zq, but unknown random π

$← Zq, one cannot dis-
tinguish (σ · (1, p), x3, x4, . . . , xn)B and (σ · (1, p), x′

3, x4, . . . , xn)B, for any
x′
3, x3, x4, . . . , xn ∈ Zq, but unknown random σ

$← Zq.

We stress that, in this static version, t and p must be fixed, and known before the
simulation starts in the security analysis, as they will appear in the matrix B.
In the Okamoto-Takashima’s constructions [13,15], such values t and p were for
bounded names of attributes. In the following, we want to consider unbounded
attributes, we thus conclude this section with an adaptive version, where t and
p do not need to be known in advance, from a large universe:
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Theorem 3 (Adaptive Index-Ind Property). Under the DDH Assumption
in G1, for random dual orthogonal bases B and B

∗, once having seen B and
B

∗\{b∗
3}, and (π · (t,−1), y3, 0, 0, y6, . . . , yn)B∗ , for any t, y3, y6, . . . , yn ∈ Zq, but

unknown random π
$← Zq, one cannot distinguish (σ · (1, p), x3, 0, 0, x6, . . . , xn)B

and (σ · (1, p), x′
3, 0, 0, x6, . . . , xn)B, for any x3, x

′
3, x6, . . . , xn ∈ Zq, and p 	= t,

but unknown random σ
$← Zq, with an advantage better than 8 × AdvddhG1

(T ) +
4 × AdvddhG2

(T ), where T is the running time of the adversary.

Proof. For the sake of simplicity, we will prove indistinguishability between
(σ · (1, p), 0, 0, 0)B and (σ · (1, p), x3, 0, 0)B, in dimension 5 only, instead of n.
Additional components could be chosen by the adversary. Applied twice, we
obtain the above theorem. The proof follows a sequence of games.

GameG0: The adversary can choose p 	= t and x3, y3 in Zq, but π, σ
$← Zq are

unknown to it:

k∗ = (π(t,−1), y3, 0, 0)B∗ c0 = (σ(1, p), 0, 0, 0)B
c1 = (σ(1, p), x3, 0, 0)B

Vectors (b1,b2,b3,b∗
1,b

∗
2) and (cb,k∗) are provided to the adversary that

must decide on b: Adv0 is its advantage in correctly guessing b. Only k∗ and
c0 will be modified in the following games, so that eventually c0 = c1 in the
last game, which leads to perfect indistinguishability.

GameG1: We replicate the first sub-vector (t,−1), with ρ
$← Zq, in the hidden

components: k∗ = (π(t,−1), y3, ρ(t,−1))B∗ . To show the indistinguishabil-
ity, one applies the SubSpace-Ind property on (B∗,B)1,2,4,5. Indeed, we can
consider a triple (a · G2, b · G2, c · G2), where c = ab + τ mod q with either
τ = 0 or random, which are indistinguishable under the DDH assumption in
G2. Let us assume we start from random dual orthogonal bases (V,V∗). We
define

B′ =

⎛

⎜
⎜
⎝

1 0 a 0
0 1 0 a
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠

1,2,4,5

B =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0

−a 0 1 0
0 −a 0 1

⎞

⎟
⎟
⎠

1,2,4,5

B
∗ = B′ · V∗

B = B · V

The vectors b4,b5 can not be computed, but they are hidden from the
adversary’s view, and are not used in any vector. We compute the new
vectors:

k∗ = (b(t,−1), y3, c(t,−1))V∗ c0 = (σ(1, p), 0, 0, 0)B
= (b(t,−1), y3, (c − ab)(t,−1)B∗

= (b(t,−1), y3, τ(t,−1)B∗

One can note that when τ = 0, this is the previous game, and when τ
random, we are in the new game, with π = b and ρ = τ : Adv0 − Adv1 ≤
AdvddhG2

(T ).
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GameG2: We replicate the non-orthogonal sub-vector (1, p), with θ
$← Zq:

k∗ = (π(t,−1), y3, ρ(t,−1))B∗ c0 = (σ(1, p), 0, θ(1, p))B

To show the indistinguishability, one applies the SubSpace-Ind property on
(B,B∗)1,2,4,5. Indeed, we can consider a triple (a · G1, b · G1, c · G1), where
c = ab + τ mod q with either τ = 0 or random, which are indistinguishable
under the DDH assumption in G1. Let us assume we start from random dual
orthogonal bases (V,V∗). Then we define the matrices

B =

⎛

⎜
⎜
⎝

1 0 a 0
0 1 0 a
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠

1,2,4,5

B′ =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0

−a 0 1 0
0 −a 0 1

⎞

⎟
⎟
⎠

1,2,4,5

B = B · V B
∗ = B′ · V∗

The vectors b∗
4,b

∗
5 can not be computed, but they are hidden from the

adversary’s view. We compute the new vectors in V and V
∗:

c0 = (b(1, p), 0, c(1, p))V k∗ = (π′(t,−1), y3, ρ(t,−1))V∗

= (b(1, p), 0, (c − ab)(1, p))B = ((π′ + aρ)(t,−1), y3, ρ(t,−1))B∗

= (b(1, p), 0, τ(1, p))B

One can note that when τ = 0, this is the previous game, and when τ
random, we are in the new game, with π = π′ + aρ, σ = b, and θ = τ :
Adv1 − Adv2 ≤ AdvddhG1

(T ).
GameG3: We randomize the two non-orthogonal sub-vectors, with random

scalars u1, u2, v1, v2
$← Zp:

k∗ = (π(t,−1), y3, u1, u2)B∗ c0 = (σ(1, p), 0, v1, v2)B

To show the indistinguishability, one makes a formal change of basis on
(B∗,B)4,5, with a random unitary matrix Z, with z1z4 − z2z3 = 1:

B′ = Z =
(

z1 z2
z3 z4

)

4,5

B =
(

z4 −z3
−z2 z1

)

4,5

B
∗ = B′ · V∗

B = B · V

This only impacts the hidden vectors (b4,b5), (b∗
4,b

∗
5). If one defines k∗

and c0 in (V∗,V), this translates in (B∗,B):

k∗ = (π(t,−1), y3, ρ(t,−1))V∗ = (π(t,−1), y3, ρ(tz1 − z3, tz2 − z4))B∗

c0 = (σ(1, p), 0, θ(1, p))V = (σ(1, p), 0, θ(z4 − pz2,−z3 + pz1))B

Let us consider random u1, u2, v1, v2
$← Zp, and solve the system in

z1, z2, z3, z4. This system admits a unique solution, if and only if t 	= p.
And with random ρ, θ, and random unitary matrix Z,

k∗ = (π(t,−1), y3, u1, u2)B∗ c0 = (σ(1, p), 0, v1, v2)B

with random scalars u1, u2, v1, v2
$← Zp. In bases (V,V∗), we are in the

previous game, and in bases (B,B∗), we are in the new game, if p 	= t:
Adv2 = Adv3.
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GameG4: We now randomize the third component in c0:

k∗ = (π(t,−1), y3, u1, u2)B∗ c0 = (σ(1, p), x3, v1, v2)B

To show the indistinguishability, one applies the SubSpace-Ind property on
(B,B∗)4,3. Indeed, we can consider a triple (a · G1, b · G1, c · G1), where
c = ab + τ mod q with either τ = 0 or τ = x3, which are indistinguishable
under the DDH assumption in G1. Let us assume we start from random dual
orthogonal bases (V,V∗). Then we define the matrices

B =
(

1 0
a 1

)

3,4

B′ =
(

1 −a
0 1

)

3,4

B = B · V B
∗ = B′ · V∗

The vectors b∗
3 can not be computed, but it is not into the adversary’s view.

We compute the new vectors:

k∗ = (π(t,−1), y3, u′
1, u2)V∗ c0 = (σ(1, p), c, b, v2)V

= (π(t,−1), y3, u′
1 + ay3, u2)B∗ = (σ(1, p), c − ab, b, v2)B

= (σ(1, p), τ, b, v2)B

One can note that when τ = 0, this is the previous game, and when τ = x3,
we are in the new game, with v1 = b and u1 = u′

1 + ay3: Adv3 −Adv4 ≤ 2 ×
AdvddhG1

(T ), by applying twice the Diffie-Hellman indistinguishability game.

We can undo successively games G3, G2, and G1 to get, after a gap bounded by
AdvddhG1

(t) + AdvddhG2
(t): k∗ = (π(t,−1), y3, 0, 0)B∗ and c0 = (σ(1, p), x3, 0, 0)B. In

this game, the advantage of any adversary is 0. The global difference of advan-
tages is bounded by 4 · AdvddhG1

(T ) + 2 · AdvddhG2
(T ), which concludes the proof.

3 Key-Policy ABE with Switchable Attributes

Classical definitions and properties for KP-ABE, and more details about policies,
are reviewed in the full version [6], following [7]. We recall here the main notions
on labeled access-trees as a secret sharing to embed a policy in keys.

3.1 Policy Definition

Access Trees. As in the seminal paper [7], we will consider an access-tree T to
model the policy on attributes in an unbounded universe U , but with only AND
and OR gates instead of more general threshold gates: an AND-gate being an
n-out-of-n gate, whereas an OR-gate is a 1-out-of-n gate. This is also a particular
case of the more general LSSS technique. Nevertheless, such an access-tree with
only AND and OR gates is as expressive as with any threshold gates or LSSS.
For any monotonic policy, we define our access-tree in the following way: T is a
rooted labeled tree from the root ρ, with internal nodes associated to AND and
OR gates and leaves associated to attributes. More precisely, for each leaf λ ∈ L,
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AND

AND

OR

λ1 λ2

OR

λ3 λ4

OR

λ5 λ6 λ7

OR

λ8 AND

λ9 λ10

Fig. 2. Example of an access-tree with two different evaluation pruned trees for the
leaves colored in green: {λ1, λ3, λ5, λ8} or {λ1, λ3, λ5, λ9, λ10} (Color figure online)

A(λ) ∈ U is an attribute, and any internal node ν ∈ N is labeled with a gate
G(ν) ∈ {AND,OR} as an AND or an OR gate to be satisfied among the children
in children(ν). We will implicitly consider that any access-tree T is associated to
the attribute-labeling A of the leaves and the gate-labeling G of the nodes. For
any leaf λ ∈ L of T or internal node ν ∈ N\{ρ}, the function parent links to the
parent node: ν ∈ children(parent(ν)) and λ ∈ children(parent(λ)).

On a given list Γ ⊆ U of attributes, each leaf λ ∈ L is either satisfied
(considered or set to True), if A(λ) ∈ Γ , or not (ignored or set to False) otherwise:
we will denote LΓ the restriction of L to the satisfied leaves in the tree T
(corresponding to an attribute in Γ ). Then, for each internal node ν, one checks
whether all children (AND-gate) or at least one of the children (OR-gate) are
satisfied, from the attributes associated to the leaves, and then ν is itself satisfied
or not. By induction, if for each node ν we denote Tν the subtree rooted at the
node ν, T = Tρ. A leaf λ ∈ L is satisfied if λ ∈ LΓ then, recursively, Tν is
satisfied if the AND/OR-gate associated to ν via G(ν) is satisfied with respect
to status of the children in children(ν): we denote Tν(Γ ) = 1 when the subtree
is satisfied, and 0 otherwise:

Tλ(Γ ) = 1 iff λ ∈ LΓ for any leaf λ ∈ L
Tν(Γ ) = 1 iff ∀κ ∈ children(ν), Tκ(Γ ) = 1 when G(ν) = AND

Tν(Γ ) = 1 iff ∃κ ∈ children(ν), Tκ(Γ ) = 1 when G(ν) = OR

Evaluation Pruned Trees. In the above definition, we considered an access-
tree T on leaves L and a set Γ of attributes, with the satisfiability T (Γ ) = 1
where the predicate defined by T is true when all the leaves λ ∈ LΓ are set to
True. A Γ -evaluation tree T ′ ⊂ T is a pruned version of T , where one children
only is kept to OR-gate nodes, down to the leaves, so that T ′(Γ ) = 1. Basically,
we keep a skeleton with only necessary True leaves to evaluate the internal nodes
up to the root. We will denote EPT(T , Γ ) the set of all the evaluation pruned
trees of T with respect to Γ . EPT(T , Γ ) is non-empty if and only if T (Γ ) = 1.

Figure 2 gives an illustration of such an access-tree for a policy: when the
colored leaves {λ1, λ3, λ5, λ8, λ9, λ10} are True, the tree is satisfied, and there
are two possible evaluation pruned trees: down to the leaves {λ1, λ3, λ5, λ8} or
{λ1, λ3, λ5, λ9, λ10}.



Key-Policy ABE with Switchable Attributes 159
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Fig. 3. Example of a 6-labeling in Z/7Z, with a non-satisfying set of (colored)
attributes: leaves λ8, λ9 and λ10 are not independent (Color figure online)

Partial Order on Policies. Delegation will only be possible for a more
restrictive access-tree, or a less accessible tree T ′, than T with the follow-
ing partial order: T ′ ≤ T , if and only if for any subset Γ of attributes,
T ′(Γ ) = 1 =⇒ T (Γ ) = 1. In our case of access-trees, a more restrictive access-
tree is, for each node ν: if G(ν) = AND, one or more children are added (i.e.,
more constraints); if G(ν) = OR, one or more children are removed (i.e., less flex-
ibility); the node ν is moved one level below as a child of an AND-gate at node ν′,
with additional sub-trees as children to this AND-gate (i.e., more constraints).

3.2 Labeling of Access-Trees

Labeled Access-Trees. We will label such trees with integers so that some
labels on the leaves will be enough/necessary (according to the policy) to recover
the labels above, up to the root, as illustrated on Fig. 3.

Definition 4 (Random y-Labeling). For an access-tree T and any y ∈ Zp,
the probabilistic algorithm Λy(T ) sets aρ ← y for the root, and then in a top-
down manner, for each internal node ν, starting from the root: if G(ν) = AND,
with n children, a random n-out-of-n sharing of aν is associated to each children;
if G(ν) = OR, with n children, each children is associated to the value aν .

Algorithm Λy(T ) outputs Λy = (aλ)λ∈L, for all the leaves λ ∈ L of the tree T .
Because of the linearity, from any y-labeling (aλ)λ of the tree T , and a random
z-labeling (bλ)λ of T , the sum (aλ + bλ)λ is a random (y + z)-labeling of T . In
particular, from any y-labeling (aλ)λ of T , and a random zero-labeling (bλ)λ of
T , the values cλ ← aλ + bλ provide a random y-labeling of T .

Labels on leaves are a secret sharing of the root that allows reconstruction
of the secret if and only if the policy is satisfied, as explained below:

Properties of Labelings. For an acceptable set Γ for T and a labeling Λy

of T for a random y, given only (aλ)λ∈LΓ
, one can reconstruct y = aρ. Indeed,

as T (Γ ) = 1, we use an evaluation pruned tree T ′ ∈ EPT(T , Γ ). Then, in a
bottom-up way, starting from the leaves, one can compute the labels of all the
internal nodes, up to the root.

On the other hand, when T (Γ ) = 0, with a random labeling Λy of T for a
random y, given only (aλ)λ∈LΓ

, y is unpredictable: for any y, y′ ∈ Zp, Dy and
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Dy′ are perfectly indistinguishable, where Dy = {(aλ)λ∈LΓ
, (aλ)λ

$← Λy(T )}.
Intuitively, given (aλ)λ∈LΓ

, as T (Γ ) = 0, one can complete the labeling so that
the label of the root is any y.

For our notion of Attribute-Indistinguishability, we need to identify a specific
property called independent leaves, which describes leaves for which the secret
share leaks no information in any of the other leaves in the access-tree.

Definition 5 (Independent Leaves). Given an access-tree T and a set Γ so
that T (Γ ) = 0, we call independent leaves, in LΓ with respect to T , the leaves
μ such that, given only (aλ)λ∈LΓ \{μ}, aμ is unpredictable: for any y, the two
distributions D$

y(Γ ) = {(aλ)λ∈LΓ
} and Dy(Γ, μ) = {(bμ) ∪ (aλ)λ∈LΓ \{μ}} are

perfectly indistinguishable, where (aλ)λ
$← Λy(T ) and bμ

$← Zp.

With the illustration on Fig. 3, with non-satisfied tree, when only colored
leaves are set to True, leaves λ3 and λ5 are independent among the True
leaves {λ3, λ5, λ8, λ9, λ10}. But leaves λ8, λ9 and λ10 are not independent as
aλ8 = aλ9 + aλ10 mod 7 for any random labeling. Intuitively, given (aλ)λ∈LΓ \{μ}
and any aμ, one can complete it into a valid labeling (with any random root
label y as T (Γ ) = 0), for μ ∈ {3, 5}, but not for μ ∈ {8, 9, 10}.

3.3 Switchable Leaves and Attributes

For a Key-Policy ABE with Switchable Attributes (SA-KP-ABE), leaves in the
access-tree can be made active or passive, and attributes in the ciphertext can be
made valid or invalid. We thus enhance the access-tree T into T̃ = (T ,La,Lp),
where the implicit set of leaves L = La ·∪ Lp is now the explicit disjoint union
of the active-leaf and passive-leaf sets. Similarly, a ciphertext will be associated
to the pair (Γv, Γi), also referred as a disjoint union Γ = Γv ·∪ Γi, of the valid-
attribute and invalid-attribute sets.

We note T̃ (Γv, Γi) = 1 if there is an evaluation pruned tree T ′ of T that is
satisfied by Γ = Γv ·∪ Γi (i.e., T ′ ∈ EPT(T , Γ )), with the additional condition
that all the active leaves in T ′ correspond only to valid attributes in Γv: ∃T ′ ∈
EPT(T , Γ ),∀λ ∈ T ′ ∩ La, A(λ) ∈ Γv. In other words, this means that an invalid
attribute in the ciphertext should be considered as inexistent for active leaves,
but only for those leaves.

We also have to enhance the partial order on T to T̃ , so that we can deal
with delegation: T̃ ′ = (T ′,L′

a,L′
p) ≤ T̃ = (T ,La,Lp) if and only if T ′ ≤ T ,

L′
a ∩ Lp = L′

p ∩ La = ∅ and L′
a ⊆ La. More concretely, T ′ must be more

restrictive, existing leaves cannot change their passive or active status, and new
leaves can only be passive.

3.4 Key-Policy Attribute-Based Encapsulation with Switchable
Attributes

We can now define the algorithms of an SA-KP-ABE, with the usual description of
Key Encapsulation Mechanism, that consists in generating an ephemeral key K
and its encapsulation C. The encryption of the actual message under the key K,
using a symmetric encryption scheme is then appended to C. We will however call
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C the ciphertext, and K the encapsulated key in C. In our definitions, there are
two secret keys: the master secret key MK for the generation of users’ keys, and
the secret key SK for running the advanced encapsulation with invalid attributes:

Setup(1κ). From the security parameter κ, the algorithm defines all the global
parameters PK, the secret key SK and the master secret key MK;

KeyGen(MK, T̃ ). The algorithm outputs a key dkT̃ which enables the user to
decapsulate keys generated under a set of attributes Γ = Γv ·∪ Γi if and only
if T̃ (Γv, Γi) = 1;

Delegate(dkT̃ , T̃ ′). Given a key dkT̃ , generated from either the KeyGen or the
Delegate algorithms, for a policy T̃ and a more restrictive policy T̃ ′ ≤ T̃ , the
algorithm outputs a decryption key dkT ′ ;

Encaps(PK, Γ ). For a set Γ of (valid only) attributes, the algorithm generates
the ciphertext C and an encapsulated key K;

Encaps∗(SK, Γv, Γi). For a pair (Γv, Γi) of disjoint sets of valid/invalid attributes,
the algorithm generates the ciphertext C and an encapsulated key K;

Decaps(dkT̃ , C). Given the key dkT̃ from either KeyGen or Delegate, and the
ciphertext C, the algorithm outputs the encapsulated key K.

We stress that fresh keys (from the KeyGen algorithm) and delegated keys (from
the Delegate algorithm) are of the same form, and can both be used for decryp-
tion and can both be delegated. This allows multi-hop delegation.

On the other hand, one can note the difference between Encaps with PK
and Encaps∗ with SK, where the former runs the latter on the pair (Γ, ∅). And
as Γi = ∅, the public key is enough. This is thus still a public-key encryption
scheme when only valid attributes are in the ciphertext, but the invalidation of
some attributes require the secret key SK. For the advanced reader, this will
lead to secret-key traceability, as only the owner of SK will be able to invalidate
attributes for the tracing procedure (as explained in Sect. 5). For correctness,
the Decaps algorithm should output the encapsulated key K if and only if C has
been generated for a pair (Γv, Γi) that satisfies the policy T̃ of the decryption
key dkT̃ : T̃ (Γv, Γi) = 1. The following security notion enforces this property. But
some other indistinguishability notions need to be defined in order to be able to
exploit these switchable attributes in more complex protocols.

3.5 Security Notions

For the sake of simplicity, we focus on one-challenge definitions (one encapsu-
lation with Real-or-Random encapsulated key, one user key with Real-or-All-
Passive leaves, and one encapsulation with Real-or-All-Valid attributes), in the
same vein as the Find-then-Guess security game. But the adversary could gen-
erate additional values, as they can either be publicly generated or an oracle
is available. Then, the definitions can be turned into multi-challenge security
games, with an hybrid proof, as explained in [2].

Definition 6 (Delegation-Indistinguishability for SA-KP-ABE). Del-IND
security for SA-KP-ABE is defined by the following game:

Initialize: The challenger runs the Setup algorithm of SA-KP-ABE and gives
the public parameters PK to the adversary;
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Oracles: The following oracles can be called in any order and any number of
times, except for RoREncaps which can be called only once.
OKeyGen(T̃ ): this models a KeyGen-query for any access-tree T̃ =

(T ,La,Lp). It generates the decryption key but only outputs the index
k of the key;

ODelegate(k, T̃ ′): this models a Delegate-query for any more restrictive
access-tree T̃ ′ ≤ T̃ , for the k-indexed generated decryption key for T̃ .
It generates the decryption key but only outputs the index k′ of the new
key;

OGetKey(k): the adversary gets back the k-indexed decryption key generated
by OKeyGen or ODelegate oracles;

OEncaps(Γv, Γi): The adversary may be allowed to issue Encaps∗-queries, with
(K,C) ← Encaps∗(SK, Γv, Γi), and C is returned;

RoREncaps(Γv, Γi): The adversary submits a unique real-or-random encapsu-
lation query on a set of attributes Γ = Γv ·∪Γi. The challenger asks for an
encapsulation query on (Γv, Γi) and receives (K0, C). It also generates a
random key K1. It eventually flips a random coin b, and outputs (Kb, C)
to the adversary;

Finalize(b′): The adversary outputs a guess b′ for b. If for some access-tree T̃ ′

corresponding to a key asked to the OGetKey-oracle, T̃ ′(Γv, Γi) = 1, on the
challenge set (Γv, Γi), β

$← {0, 1}, otherwise one sets β = b′. One outputs β.

Advdel-ind(A) denotes the advantage of an adversary A in this game.

In the basic form of Del-IND-security, where Encaps∗ encapsulations are not
available, the RoREncaps-oracle only allows Γi = ∅, and no OEncaps-oracle is
available. But as Encaps (with Γi = ∅) is a public-key algorithm, the adversary
can generate valid ciphertexts by himself. We will call it “Del-IND-security for
Encaps”. For the more advanced security level, RoREncaps-query will be allowed
on any pair (Γv, Γi), with the additional OEncaps-oracle. We will call it “Del-IND-
security for Encaps∗”.

With these disjoint unions of L = La ·∪ Lp and Γ = Γv ·∪ Γi, we will also
consider some indistinguishability notions on (La,Lp) and (Γv, Γi), about which
leaves are active or passive in L = La ·∪ Lp for a given key, and which attributes
are valid or invalid in Γ = Γv ·∪ Γi for a given ciphertext. The former will be the
key-indistinguishability, whereas the latter will be attribute-indistinguishability.
Again, as Encaps is public-key, the adversary can generate valid encapsula-
tions by himself. However, we may provide access to an OEncaps-oracle to allow
Encaps∗ queries, but with constraints in the final step, to exclude trivial attacks
against key-indistinguishability. Similarly there will be constraints in the final
step on the OKeyGen/ODelegate-queries for the attribute-indistinguishability.

Definition 7 (Key-Indistinguishability). Key-IND security for SA-KP-ABE
is defined by the following game:

Initialize: The challenger runs the Setup algorithm of SA-KP-ABE and gives
the public parameters PK to the adversary;
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Oracles: OKeyGen(T̃ ), ODelegate(k, T̃ ′), OGetKey(k), OEncaps(Γv, Γi), and
RoAPKeyGen(T̃ ): The adversary submits one Real or All-Passive KeyGen-

query for any access structure T̃ of its choice, with a list L = La ·∪ Lp

of active and passive leaves, and gets dk0 = KeyGen(MK, (T ,La,Lp)) or
dk1 = KeyGen(MK, (T , ∅,L)). It eventually flips a random coin b, and
outputs dkb to the adversary;

Finalize(b′): The adversary outputs a guess b′ for b. If for some (Γv, Γi) asked
to the OEncaps-oracle, T (Γv ·∪ Γi) = 1, for the challenge access-tree T where
L = La ·∪ Lp, β

$← {0, 1}, otherwise one sets β = b′. One outputs β.

Advkey-ind(A) denotes the advantage of an adversary A in this game.

In this first definition, the constraints in the finalize step require the adversary
not to ask for an encapsulation on attributes that would be accepted by the
policy with all-passive attributes in the leaves.

A second version deals with accepting policies: it allows encapsulations on
attributes that would be accepted by the policy with all-passive leaves in the
challenge key, until attributes associated to the active leaves in the challenge
key and invalid attributes in the ciphertexts are distinct. Hence, the Distinct
Key-Indistinguishability (dKey-IND) where Finalize(b′) reads: The adver-
sary outputs a guess b′ for b. If some active leaf λ ∈ La from the challenge
key corresponds to some invalid attribute t ∈ Γi in an OEncaps-query, then set
β

$← {0, 1}, otherwise set β = b′. One outputs β.

Definition 8 (Attribute-Indistinguishability). Att-IND security for
SA-KP-ABE is defined by the following game:

Initialize: The challenger runs the Setup algorithm of SA-KP-ABE and gives
the public parameters PK to the adversary;

Oracles: OKeyGen(T̃ ), ODelegate(k, T̃ ′), OGetKey(k), OEncaps(Γv, Γi), and
RoAVEncaps(Γv, Γi): The adversary submits one Real-or-All-Valid encapsu-

lation query on distinct sets of attributes (Γv, Γi). The challenger gen-
erates (K,C) ← Encaps∗(SK, Γv, Γi) as the real case, if b = 0, or
(K,C) ← Encaps(PK, Γv ·∪ Γi) as the all-valid case, if b = 1, and out-
puts C to the adversary;

Finalize(b′): The adversary outputs a guess b′ for b. If for some access-tree T̃ ′

corresponding to a key asked to the OGetKey-oracle, T̃ ′(Γv ·∪ Γi, ∅) = 1, on
the challenge set (Γv, Γi), β

$← {0, 1}, else one sets β = b′. One outputs β.

Advatt-ind(A) denotes the advantage of an adversary A in this game.

This definition is a kind of attribute-hiding, where a user with keys for access-
trees that are not satisfied by Γ = Γv ·∪ Γi cannot distinguish valid from invalid
attributes in the ciphertext.

As above on key-indistinguishability, this first definition excludes accepting
policies on the challenge ciphertext. However, for tracing, one also needs to
deal with ciphertexts on accepting policies. More precisely, we must allow keys
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and a challenge ciphertext that would be accepted in the all-valid case, and
still have indistinguishability, until attributes associated to the active leaves in
the keys and invalid attributes in the challenge ciphertext are distinct. Hence,
the Distinct Attribute-Indistinguishability (dAtt-IND) where Finalize(b′)
reads: The adversary outputs a guess b′ for b. If some attribute t ∈ Γi from the
challenge query corresponds to some active leaf λ ∈ L′

a in a OGetKey-query,
then set β

$← {0, 1}, otherwise set β = b′. One outputs β.

4 Our SA-KP-ABE Scheme

4.1 Description of Our KP-ABE with Switchable Attributes

We extend the basic KP-ABE scheme proven in the full version [6], with leaves
that can be made active or passive in a decryption key, and some attributes
can be made valid or invalid in a ciphertext, and prove that it still achieves the
Del-IND-security. For our construction, we will use two DPVS, of dimensions 3
and 9 respectively, in a pairing-friendly setting (G1,G2,Gt, e,G1, G2, q), using
the notations introduced in Sect. 2.1. Essentially, we introduce a 7-th component
to deal with switchable attributes. The two new basis-vectors d7 and d∗

7 are in
the secret key SK and the master secret key MK respectively. The two additional
8-th and 9-th components are to deal with the unbounded universe of attributes,
to be able to use the adaptive Index-Ind property (see Theorem 3), instead of the
static one. These additional components are hidden, and for the proof only:

Setup(1κ). The algorithm chooses two random dual orthogonal bases

B = (b1,b2,b3) B
∗ = (b∗

1,b
∗
2,b

∗
3) D = (d1, . . . ,d9) D

∗ = (d∗
1, . . . ,d

∗
9).

It sets the public parameters PK = {(b1,b3,b∗
1), (d1,d2,d3,d∗

1,d
∗
2,d

∗
3)},

whereas the master secret key is MK = {b∗
3,d

∗
7} and the secret key is SK =

{d7}. Other basis vectors are kept hidden.
KeyGen(MK, T̃ ). For an extended access-tree T̃ = (T ,La,Lp), the algorithm first

chooses a random a0
$← Zq, and a random a0-labeling (aλ)λ of the access-tree

T , and builds the key:

k∗
0 = (a0, 0, 1)B∗ k∗

λ = (πλ(1, tλ), aλ, 0, 0, 0, rλ, 0, 0)D∗

for all the leaves λ, where tλ = A(λ), πλ
$← Zq, and rλ

$← Z
∗
q if λ is an

active leaf in the key (λ ∈ La) or else rλ = 0 for a passive leaf (λ ∈ Lp). The
decryption key dkT̃ is then (k∗

0, (k
∗
λ)λ).

Delegate(dkT̃ , T̃ ′). Given a private key for a tree T̃ and a more restrictive subtree
T̃ ′ ≤ T̃ , the algorithm creates a delegated key dkT̃ ′ . It chooses a random
a′
0

$← Zq and a random a′
0-labeling (a′

λ)λ of T ′; Then, it updates k∗
0 ←

k∗
0 + (a′

0, 0, 0)B∗ ; It sets k∗
λ ← (π′

λ · (1, tλ), a′
λ, 0, 0, 0, 0, 0, 0)B∗ for a new leaf,

or updates k∗
λ ← k∗

λ + (π′
λ · (1, tλ), a′

λ, 0, 0, 0, 0, 0, 0)B∗ for an old leaf, with
π′

λ
$← Zq.
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Encaps(PK, Γ ). For a set Γ of attributes, the algorithm first chooses random
scalars ω, ξ

$← Zq. It then sets K = gξ
t and generates the ciphertext C =

(c0, (ct)t∈Γ ) where

c0 = (ω, 0, ξ)B ct = (σt(t,−1), ω, 0, 0, 0, 0, 0, 0)D

for all the attributes t ∈ Γ , with σt
$← Zq.

Encaps∗(SK, (Γv, Γi)). For a disjoint union Γ = Γv ·∪ Γi of sets of attributes
(Γv is the set of valid attributes and Γi is the set of invalid attributes), the
algorithm first chooses random scalars ω, ξ

$← Zq. It then sets K = gξ
t and

generates the ciphertext C = (c0, (ct)t∈(Γv ·∪Γi)) where

c0 = (ω, 0, ξ)B ct = (σt(t,−1), ω, 0, 0, 0, ut, 0, 0)D

for all the attributes t ∈ Γv ·∪ Γi, σt
$← Zq and ut

$← Z
∗
q if t ∈ Γi or ut = 0 if

t ∈ Γv.
Decaps(dkT̃ , C). The algorithm first selects an evaluation pruned tree T ′ of T

that is satisfied by Γ = Γv ∪Γi, such that any leaf λ in T ′ is either passive in
the key (λ ∈ Lp) or associated to a valid attribute in the ciphertext (tλ ∈ Γv).
This means that the labels aλ for all the leaves λ in T ′ allow to reconstruct
a0 by simple additions, where t = tλ:

ct × k∗
λ = g

σt·πλ·〈(t,−1),(1,tλ)〉+ω·aλ+ut·rλ

t = gω·aλ
t ,

as ut = 0 or rλ = 0. Hence, the algorithm can derive gω·a0
t . From c0 and k∗

0,
it can also compute c0 × k∗

0 = gω·a0+ξ
t , which then easily leads to K = gξ

t .

First, note that the delegation works as b∗
1, d∗

1,d
∗
2,d

∗
3 are public. This allows to

create a new key for T̃ ′ ≤ T̃ . But as d∗
7 is not known, any new leaf is necessarily

passive, and an active existing leaf in the original key cannot be converted to
passive, and vice-versa. Indeed, all the randomnesses are fresh, except for the
last components rλ that remain unchanged: this is perfectly consistent with the
definition of T̃ ′ ≤ T̃ .

Second, in encapsulation, for invalidating a contribution ct in the ciphertext
with a non-zero ut, for t ∈ Γi, one needs to know d7, hence the Encaps∗ that
requires SK, whereas Encaps with Γi = ∅ just needs PK.

Eventually, we stress that in the above decryption, one can recover gω·a0
t if

and only if there is an evaluation pruned tree T ′ of T that is satisfied by Γ
and the active leaves in T̃ ′ correspond to valid attributes in Γv (used during the
encapsulation). And this holds if and only if T̃ (Γv, Γi) = 1.

4.2 Del-IND-Security of Our SA-KP-ABE for Encaps

For this security notion, we first consider only valid contributions in the challenge
ciphertext, with indistinguishability of the Encaps algorithm. Which means that
Γi = ∅ in the challenge pair. And the security result holds even if the vector d7

is made public:
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G0 Real Del-IND-Security game
c0 = ( ω 0 ξ ) ct = ( σt(1, t) ω | 0 0 0 ut 0 0 )

k∗
�,0 = ( a�,0 0 1 ) k∗

�,λ = ( π�,λ(t�,λ, −1) a�,λ | 0 0 0 r�,λ 0 0 )

G1 SubSpace-Ind Property, on (B,B∗)1,2 and (D,D∗)3,4, between 0 and τ
$← Zq

c0 = ( ω τ ξ ) ct = ( σt(1, t) ω | τ 0 0 ut 0 0 )
k∗

�,0 = ( a�,0 0 1 ) k∗
�,λ = ( π�,λ(t�,λ, −1) a�,λ | 0 0 0 r�,λ 0 0 )

G2 SubSpace-Ind Property, on (D,D∗)1,2,6, between 0 and τzt

c0 = ( ω τ ξ ) ct = ( σt(1, t) ω | τ 0 τzt ut 0 0 )
k∗

�,0 = ( a�,0 0 1 ) k∗
�,λ = ( π�,λ(t�,λ, −1) a�,λ | 0 0 0 r�,λ 0 0 )

G3 Introduction of an additional random-labeling.
c0 = ( ω τ ξ ) ct = ( σt(1, t) ω | τ 0 τzt ut 0 0 )

k∗
�,0 = ( a�,0 r�,0 1 ) k∗

�,λ = ( π�,λ(t�,λ, −1) a�,λ | 0 0 s�,λ

zt�,λ
r�,λ 0 0 )

G4 Formal basis change, on (B,B∗)2,3, to randomize ξ

c0 = ( ω τ ξ′′ ) ct = ( σt(1, t) ω | τ 0 τzt ut 0 0 )
k∗

�,0 = ( a�,0 r�,0 1 ) k∗
�,λ = ( π�,λ(t�,λ, −1) a�,λ | 0 0 s�,λ

zt�,λ
r�,λ 0 0 )

Gray cells x mean they have been changed in this game.

Fig. 4. Global sequence for the Del-IND-security proof of our SA-KP-ABE

Theorem 9. Our SA-KP-ABE scheme is Del-IND for Encaps (with only valid
attributes in the challenge ciphertext), even if d7 is public.

The proof essentially reduces to the IND-security result of the KP-ABE scheme,
and is available in the full version [6]. We present an overview of the proof,
as the structure of the first games is common among most of our proofs. The
global sequence of games is described on Fig. 4, where (c0, (ct)) is the challenge
ciphertext for all the attributes t ∈ Γ , and (k∗

,0, (k
∗
,λ)) are the keys, for 1 ≤ � ≤

K, and λ ∈ L for each �-query, with active and passive leaves.
In the two first games G1 and G2, one is preparing the floor with a random

τ and random masks zt in the ciphertexts ct (actually, the challenge ciphertext
corresponding to the attribute t). Note that until the actual challenge query is
asked, one does not exactly know the attributes in Γ (as we are in the adaptive-
set setting), thus we will decide on the random mask zt, where t is virtually
associated to the number of the attribute in their order of apparition in the
security game. The main step is to get to Game G3, starting with an additional
labeling (s,0, (s,λ)λ), using hybrid games that begins from Game G2. To do this,
the new labelling is added in each �-th key, then each label is masked by the
random zt for each attribute t. One then exploits the limitations expected from
the adversary in the security game: the adversary cannot ask keys on access-trees
T such that T (Γ ) = 1, for the challenge set Γ . This limitation translates into
the value s,0 being unpredictable for the adversary with regards to (s,λ)λ, as
for each key requested by the adversary, there is at least one s,λ by lack of a
corresponding ciphertext. Thus, we can replace s,0 by a random independent
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r,0 without giving any advantage to the adversary. To formally mask the shares
s,λ, we need another level of hybrid games: we will change all the keys associated
with a specific attribute λ at the same time, by using the Adaptive Index-Ind
technique. This allows us to mask the s,λ share in each key with zt, one λ at a
time inside the �-th key.

Simulation of delegation can just be done by using the key generation algo-
rithm, making sure we use the same randomness for all the keys delegated from
the same one. As the vector d∗

7 is known to the simulator, this is easy. As d7 is
public, the adversary can run by himself both Encaps and Encaps∗.

We stress that our construction makes more basis vectors public, than in the
schemes from [15], as only b∗

3 is for the key issuer. This makes the proof more
tricky, but this is the reason why we can deal with delegation for any user.

4.3 Del-IND-Security of Our SA-KP-ABE for Encaps∗

We now study the full indistinguishability of the ciphertext generated by an
Encaps∗ challenge, with delegated keys. The intuition is that when ut · r,λ 	= 0,
the share a,λ in g

ω·a�,λ+ut·r�,λ

t is hidden, but we have to formally prove it.
The main issue in this proof is the need to anticipate whether ut · r,λ = 0 or

not when simulating the keys, and the challenge ciphertext as well (even before
knowing the exact query (Γv, Γi)). Without being in the selective-set setting
where both Γv and Γi would have to be specified before generating the public
parameters PK, we ask to know disjoint super-sets Av, Ai ⊆ U of attributes.
Then, in the challenge ciphertext query, we will ask that Γv ⊆ Av and Γi ⊆ Ai.
We will call this setting the semi-adaptive super-set setting, where the super-sets
have to be specified before the first decryption keys are issued. Furthermore, the
set of attributes Γ = Γv ·∪Γi used in the real challenge query is only specified at
the moment of the challenge, as in the adaptive setting.

For this proof, d7 must be kept secret (cannot be provided to the adversary).
We will thus give access to an Encaps∗ oracle. We then need to simulate it.

Theorem 10. Our SA-KP-ABE scheme is Del-IND for Encaps∗, in the semi-
adaptive super-set setting (where Av, Ai ⊆ U so that Γv ⊆ Av and Γi ⊆ Ai are
specified before asking for keys).

We stress that the semi-adaptive super-set setting is much stronger than the
selective-set setting where the adversary would have to specify both Γv and Γi

before the setup. Here, only super-sets have to be specified, and just before the
first key-query. The adversary is thus given much more power.

The full proof can be found in the full version [6], we provide some hints, that
extend the above sketch: we only consider keys that are really provided to the
adversary, and thus delegated keys. They can be generated as fresh keys except
for the rλ’s that have to be the same for leaves in keys delegated from the same
initial key. However, in order to randomize s,0 once all of the shares have been
masked, one cannot directly conclude that s,0 is independent from the view of
the adversary: we only know T̃(Γv, Γi) = 0, but not necessarily T(Γv ·∪ Γi) = 0,
as in the previous proof.
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AND

AND

A1,1 A2,0 A3,1

T
Leaf Gate

Fig. 5. Tracing sub-tree for the codeword w = (1, 0, 1)

To this aim, we revisit this gap with an additional sequence where we focus on
the k-th key and the challenge ciphertext. In that sequence, we first prepare with
additional random values y,λ in all the keys, with the same repetition properties
as the r,λ. Thereafter, in another sub-sequence of games on the attributes, we
can use the Swap-Ind property to completely randomize sk,λ when utk,λ

·rk,λ 	= 0.
Hence, the sk,λ are unknown either when ztk,λ

is not known (the corresponding
element is not provided in the challenge ciphertext) or this is a random s′

k,λ

when utk,λ
· rk,λ 	= 0. The property of the access-tree then makes sk,0 perfectly

unpredictable, which can be replaced by a random independent rk,0.

4.4 Distinct Indistinguishability Properties

We first claim easy results, for which the proofs are symmetrical:

Theorem 11. Our SA-KP-ABE scheme is dKey-IND, even if d∗
7 is public.

Theorem 12. Our SA-KP-ABE scheme is dAtt-IND, even if d7 is public.

Both proofs can be found in the full version [6]. In these alternative variants,
all the invalid attributes in all the queried ciphertexts do not correspond to
any active leaf in the challenge keys (for dKey-IND) or all active leaves in all
the queried keys do not correspond to any invalid attribute in the challenge
ciphertext (for dAtt-IND). Then, we can gradually replace all the real keys by
all-passive in the former proof or all the real ciphertexts by all-valid in the latter
proof.

4.5 Attribute-Indistinguishability

Theorem 13. Our SA-KP-ABE scheme is Att-IND, even if d7 is public, if all the
active keys correspond to independent leaves with respect to the set of attributes
Γ = Γv ·∪ Γi in the challenge ciphertext.

The proof can be found in the full version [6]. This is an important result with
respect to our target application of tracing, combined with possible revocation.
Indeed, with such a result, if a user is excluded independently of the tracing
procedure (the policy would reject him even if all his passive leaves match valid
attributes in the ciphertext), he will not be able to detect whether there are
invalid attributes in the ciphertext and thus that the ciphertext is from a tracing
procedure. This gives us a strong resistance to collusion.
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5 Application to Tracing

In our Traitor-Tracing approach, any user would be given a key associated to a
word in a traceable code at key generation time. To embed a word inside a key,
the key generation authority only needs to create a new policy for a user with
policy T : the new policy will be a root AND gate, that connects the original
access-tree T as one child, and a word-based access-tree composed of active
leaves as another child, as illustrated on Fig. 5.

From there, the tracing authority, using the secret key SK, could trace any
Pirate Decoder by invalidating attributes associated to the positions in words,
one position at a time. Since an adversary cannot know whether attributes
are valid or invalid, until it is not impacted by the invalid attributes (thanks
to the Distinct Attribute-Indistinguishability), he will answer each queries of
the tracer, when it is able to do it, effectively revealing the bits of his word
on each position, until the tracer finds his complete word, to eventually trace
back the traitors, from the traceable-code properties. Furthermore, thanks to the
Attribute-Indistinguishability (not Distinct), a traitor that has been identified
by the tracing authority can be removed from the target set at tracing time, and
can thus no longer participate in the coalition, as it will be excluded from the
policy, whatever the valid/invalid attributes. We stress that the secret key SK is
required for invalidating some attributes, and so for the tracing. We thus have
secret-key black-box traceability. More details are given in the full version [6].

6 Conclusion

We have designed a KP-ABE scheme that allows an authority to generate keys
with specific policies for each user, so that these users can thereafter delegate
their keys for any more restrictive rights. Thanks to the (Distinct) Attribute-
Indistinguishability and Attribute-Indistinguishability, it can also include key
material for tracing a compromised key involved in a pirate device while lim-
iting the size of collusions. In addition, with Key-Indistinguishability on active
leaves and perfect randomization on passive leaves, one achieves a strong level
of anonymity: one cannot detect whether two keys have been delegated by the
same original key.
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