
Higher-Order Masked Saber

Suparna Kundu(B) , Jan-Pieter D’Anvers , Michiel Van Beirendonck ,
Angshuman Karmakar , and Ingrid Verbauwhede

imec-COSIC, KU Leuven, Kasteelpark Arenberg 10, Bus 2452,
3001 Leuven-Heverlee, Belgium

{suparna.kundu,jan-pieter.danvers,michiel.beirendonck,
angshuman.karmakar,ingrid.verbauwhede}@esat.kuleuven.be

Abstract. Side-channel attacks are formidable threats to the cryptosys-
tems deployed in the real world. An effective and provably secure coun-
termeasure against side-channel attacks is masking. In this work, we
present a detailed study of higher-order masking techniques for the key-
encapsulation mechanism Saber. Saber is one of the lattice-based finalist
candidates in the National Institute of Standards of Technology’s post-
quantum standardization procedure. We provide a detailed analysis of dif-
ferent masking algorithms proposed for Saber in the recent past and pro-
pose an optimized implementation of higher-order masked Saber. Our pro-
posed techniques for first-, second-, and third-order masked Saber have
performance overheads of 2.7x, 5x, and 7.7x respectively compared to
the unmasked Saber. We show that compared to Kyber which is another
lattice-based finalist scheme, Saber’s performance degrades less with an
increase in the order of masking. We also show that higher-order masked
Saber needs fewer random bytes than higher-order masked Kyber. Addi-
tionally, we adapt our masked implementation to uSaber, a variant of
Saber that was specifically designed to allow an efficient masked imple-
mentation. We present the first masked implementation of uSaber, show-
ing that it indeed outperforms masked Saber by at least 12% for any
order. We provide optimized implementations of all our proposed masking
schemes on ARM Cortex-M4 microcontrollers.

Keywords: Post-quantum cryptography · Higher-order masking ·
Saber · Key-encapsulation mechanism

1 Introduction

The security of public-key cryptography (PKC) is dependent on the computa-
tional intractability of some underlying mathematical problems. The current
most widely used public-key cryptographic algorithms RSA [44] and elliptic
curve cryptography (ECC) [37] are based on the hardness of large integer fac-
torization problem and elliptic curve discrete logarithm problem respectively.
Unfortunately, both of these hard problems can be solved in polynomial time
with large-scale quantum computers by using Shor’s [46] and Proos-Zalka’s [41]
algorithm. Post-quantum cryptography (PQC) is a branch of PKC that focuses

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
C. Galdi and S. Jarecki (Eds.): SCN 2022, LNCS 13409, pp. 93–116, 2022.
https://doi.org/10.1007/978-3-031-14791-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14791-3_5&domain=pdf
http://orcid.org/0000-0003-4354-852X
http://orcid.org/0000-0001-9675-7988
http://orcid.org/0000-0002-5131-8030
http://orcid.org/0000-0003-2594-588X
http://orcid.org/0000-0002-0879-076X
https://doi.org/10.1007/978-3-031-14791-3_5

94 S. Kundu et al.

on designing cryptographic algorithms whose underlying mathematical prob-
lems remain hard even in the presence of large quantum computers. Consid-
ering the fast evolution of quantum computers and their impending threat to
our current public-key infrastructure, the National Institute of Standards and
Technology (NIST) started a procedure to standardize post-quantum public-key
cryptographic primitives such as digital signatures, public-key encryption, and
key-encapsulation mechanism in 2016 [39].

In 2020, NIST announced four finalists and five alternative candidates for the
post-quantum key-encapsulation mechanism (KEM) category, that advanced to
the 3rd round [2]. Three of the four finalist KEMs: Saber [19], Kyber [10], and
NTRU [26], are lattice-based. NTRU is an NTRU-based KEM, whereas Kyber
and Saber are based on variants of the learning with errors (LWE) problem.
The security of Kyber can be reduced to module learning with errors (MLWE)
problem, and the security of Saber is based on module learning with rounding
(MLWR) problem. The hardness of both LWE and LWR problems are dependent
on the difficulty to solve a set of noisy linear equations. This noise is explicitly
added for a LWE problem but is implicitly generated in a LWR problem using
the round-off of a few least significant bits.

Initially, the main focus of the NIST post-quantum standardization procedure
was the mathematical security of the schemes, together with the performance,
and the memory footprint of the cryptographic implementation in embedded
devices. With the advancement of the standardization process, the focus was
broadened to take into account the implementation-security of the schemes also.
Side-channel attacks (SCA) [34] are a well-known type of physical attacks against
implementations of cryptographic algorithms. These attacks exploit leakage of
information, such as timing information, power consumption, electromagnetic
radiation, etc., which leaks information from the physical device which runs the
algorithm to extract the secret key.

Silverman et al. [47] first showed a timing attack on quantum secure lattice-
based cryptographic protocol NTRUEncrypt [28] by exploiting the non-constant
time implementation. To prevent the timing attack, most of the cryptographic
protocols use constant-time implementation, including Saber and Kyber. In
recent years, many works [3,24,29,42,50] showed SCA on lattice-based cryp-
tographic schemes with the help of power consumption and electromagnetic
leakage information. A provably-secure countermeasure against these kinds of
SCA is masking [13].

The masking technique can also provide security against higher-order attacks,
where the adversary can use the power consumption information of multiple
points. However, the performance cost of the masked scheme increases with
the order of SCA. Reparaz et al. [43] were the first to introduce a first-order
SCA resistant masked implementation of chosen-plaintext attack (CPA) secure
ring-LWE based decryption. Nevertheless, real-world applications use chosen-
ciphertext attack (CCA) secure cryptosystems. Lattice-based quantum secure
KEMs such as Saber and Kyber achieve CCA security by using a variant of
Fujisaki-Okamoto transformation [30] on their CPA secure design. Oder et al. [40]
proposed a 1st-order CCA secure masked Ring-LWE key decapsulation and

Higher-Order Masked Saber 95

reported an overhead factor of 5.2x in performance over an unmasked imple-
mentation on an ARM Cortex-M4.

Van Beirendonck et al. [6] proposed the first-order SCA secure implementa-
tion of Saber with an overhead factor of 2.5x. This performance was achievable
because of the power-of-two moduli and efficient utilization of masking tech-
niques specifically aimed at first-order security [48]. Heinz et al. [25] presented
an optimized first-order masked implementation of Kyber with an overhead fac-
tor of 3.4x compared to the unmasked implementation of Kyber. Fritzmann et
al. [21] proposed first-order masked implementations of Kyber and Saber with
instruction set extensions, and Bos et al. [11] proposed higher-order masked
implementations of Kyber.

First-order masked implementations of schemes are typically vulnerable
against higher-order side-channel attacks [36,49], i.e., the attacks that exploit
side-channel leakages of multiple intermediate values. Ngo et al. [38] proposed an
attack on the first-order masked Saber using a deep neural network constructed
at the profiling stage. This attack does not violate the assumption of the first-
order masked Saber but exploits higher-order side-channel leakages. Higher-order
masking increases the noise level exponentially and prevents attacks that exploit
higher-order side-channel leakages.

In the third-round of the NIST submission, the Saber team introduced uSaber
as a variant of Saber. In uSaber, the secrets are sampled from a uniform distri-
bution instead of a centered binomial distribution as used in Saber. The authors
claim that the advantage of this modification is twofold. First, it makes the
scheme simpler since sampling from a uniform distribution is more straightfor-
ward than sampling from a centered binomial distribution, and it also reduces
the modulus by a factor of two. Second, this change allows a very efficient mask-
ing of the secret values. However, this claim is yet to be proven as there exists
no masked implementation of uSaber to corroborate this claim.

Contribution. In this work, we provide arbitrary-order masked implementa-
tions of Saber and uSaber, and we compare their performances with the state-of-
the-art masked implementations of Saber and Kyber. We are the first to propose
a higher-order masked implementation of uSaber. For this, we present a masked
centered uniform sampler which is then applied to uSaber instead of Saber’s
centered binomial sampler. We generally take advantage of Saber’s power-of-
two moduli to mask both Saber’s and uSaber’s decapsulation algorithm, and
we compare different recently proposed algorithms for ciphertext comparison in
higher-order masked settings.

We implement and benchmark our higher-order masked Saber and uSaber
on an ARM Cortex-M4 microcontroller using the PQM4 framework. The first-,
second-, and third-order masked decapsulation algorithm of Saber has an over-
head factor of 2.7x, 5x, and 7.7x over the unmasked implementation, respec-
tively. In uSaber, the overhead factor for first-order is 2.3x, second-order is 4.2x,
and third-order is 6.5x compared to the unmasked version. We include the per-
formance results and requisite of the random bytes during masking for each
masked primitive of first-, second-, and third-order masked Saber and uSaber.

96 S. Kundu et al.

Our implementations are available at https://github.com/KULeuven-COSIC/
Higher-order-masked-Saber.

Finally, we compare the performances of our higher-order masked implemen-
tations of Saber and uSaber with the higher-order masked implementations of
Kyber and Saber presented in [11,12]. We demonstrate that the performances
of masked Saber implementations outperform masked Kyber implementations.
Further, we show that the performance of masked uSaber is better and requires
fewer random bytes than masked Saber and Kyber for any order.

2 Preliminaries

2.1 Notation

We denote the ring of integers modulo q by Zq and the quotient ring
Zq[X]/(X256 +1) by Rq. We use Rl

q to represent the ring which contains vectors
with l elements of Rq. The ring with l × l matrices over Rq is denoted by Rl×l

q .
We use lower case letters to denote single polynomials, bold lower case letters
to denote vectors and bold upper case letters to denote matrices. The j-th coef-
ficient of the polynomial c is represented as c[j], where j ∈ {0, 1, . . . , 255}. The
j-th coefficient of the i-th polynomial of the vector b is represented as b[i][j],
where j ∈ {0, 1, . . . , 255} and i ∈ {0, 1, . . . , l − 1}. Sometimes the set of (n + 1)
elements {x0, x1, . . . , xn} from the same ring R is denoted by {xi}0≤i≤n.

The rounding operation is denoted by �·�, and it returns the closest integer
with ties rounded upwards. The operations x � b and x � b denote the logical
shifting of x by b positions left and right, respectively. These operations are
extended on polynomials by performing them coefficientwise.

We denote x ← χ(S) when x is sampled from the set S according to the
distribution χ. We use the notation x ← χ(S, seedx) to represent that x belongs
to the set S and is generated by the pseudorandom number generator χ with
the help of seed seedx. To represent the uniform distribution we use U . The
centered binomial distribution is denoted by βμ with standard deviation

√
μ/4.

The centered uniform distribution is expressed as Uu, when it samples uniformly
from [−2(u−1), 2(u−1) − 1]. We use HW(x) to represent the Hamming weight of x.

2.2 Saber

In this section, we introduce the Saber encryption scheme. The parameter set
of Saber includes three power-of-two moduli q, p and t, which define the rings
Rq, Rp and Rt used in the algorithm. From these moduli, one can calculate the
number of bits of one coefficient as εq = log2(q), εp = log2(p) and εt = log2(t).
The parameter set also includes a vector length l, which increases with increase in
security, and an integer μ defining the coins of the secret distribution βμ. Given
a set of parameters, the key generation, encryption, and decryption of Saber are
shown in Fig. 1. For an in-depth review of the Saber encryption scheme, we refer
to the original paper [19,20].

https://github.com/KULeuven-COSIC/Higher-order-masked-Saber
https://github.com/KULeuven-COSIC/Higher-order-masked-Saber

Higher-Order Masked Saber 97

2.3 uSaber

uSaber or uniform-Saber was proposed in third round NIST submission [20]
as a variant of Saber. The principal alteration in uSaber from Saber is that it
uses a centered uniform distribution Uu for sampling secret vectors instead of the
centered binomial distribution βμ. The coefficients in polynomials of secret vector
are from [−2(u−1), 2(u−1) − 1] rather than [−μ/2, μ/2]. Due to this modification,
uSaber receives approximately the same level of security as Saber with a slightly
reduced parameters set as shown in Table 1.

Fig. 1. Saber.PKE

Table 1. Parameters of Saber and uSaber with security and failure probability

Scheme

Parameters

Post-quantum

Security

Failure

Probability

NIST

Security

Level
Identical

Different

q
Secret

Distribution

uSaber
l = 3, p = 210

n = 256, t = 24

212 U2 2165 2−167 3

Saber 213 β8 2172 2−136 3

2.4 Fujisaki-Okamoto Transformation

The encryption scheme outlined in the previous section only provides security
against passive attackers (IND-CPA security). One can obtain active security
(IND-CCA) security by using a generic transformation such as a post-quantum
version of the Fujisaki-Okamoto transformation [22,27]. The idea is that the

98 S. Kundu et al.

encapsulation encrypts a random input, and also uses this input as a seed for all
randomness. The decapsulation can then decrypt the seed from the ciphertext
and recompute the ciphertext. This recomputed ciphertext can then be used
to check if the input ciphertext is generated correctly. The Fujisaki-Okamoto
transformation transforms the encryption scheme into a key encapsulation mech-
anism (KEM). Given hash functions F , G and H, the saber KEM is given
in Fig. 2. Again, we refer to the original Saber paper [19,20] for a more detailed
description.

Fig. 2. Saber.KEM

2.5 Higher-Order Masking

Masking is a widely used countermeasure against side-channel attacks. The nth-
order masked scheme can provide security against at most nth-order differential
power attacks. The general idea of nth-order masking is to split the sensitive
variable x into n + 1 shares and then perform all the operations of the algo-
rithms on each of the shares individually. The shares of the sensitive variable
look uniformly random and the sensitive information can only be retrieved after
combining all the n + 1 shares. Moreover, if an adversary can get side-channel
information from at most n points, he will not learn anything about the sensi-
tive variable. In an nth-order masked implementation, linear operations typically
duplicate (n+1) times, and non-linear operations need to use more complex and
costlier methods. As a consequence, the performance cost of a nth-order masked
implementation increases at least by a factor of (n + 1).

There are several methods for masking. We primarily deal with two kinds
of masking techniques: arithmetic masking and Boolean masking. For both the

Higher-Order Masked Saber 99

masking techniques, in order to obtain nth-order security, the sensitive variable
x ∈ Zq needs to be split into n + 1 independent shares x0, x1, . . . , xn ∈ Zq. In
arithmetic masking, the relation between the sensitive variable x and the n + 1
shares of x is x = x0 + x1 + · · · + xn mod q. Whereas, in Boolean masking the
sensitive variable x and its n + 1 shares are related as x = x0 ⊕ x1 ⊕ · · · ⊕ xn.

The arithmetic masking is advantageous for protecting arithmetic operations
such as addition, subtraction, multiplication. For example, to protect the modu-
lar addition z = x + y mod q against n-order attacks, when only x contains sen-
sitive data, we split x into n+1 shares {xi}0≤i≤n such that

∑n
i=0 xi mod q = x,

then the shares of z =
∑n

i=0 zi mod q are:

zi =
{

xi + y mod q, if i = 0
xi, if 1 ≤ i ≤ n

.

If x and y both contains sensitive data, we split y together with x into n+1 shares
{yi}0≤i≤n such that

∑n
i=0 yi = y mod q, then the shares of z =

∑n
i=0 zi mod q

are:
zi = xi + yi mod q, 0 ≤ i ≤ n.

To securely compute the multiplication z = x · y mod q, when x only contains
sensitive data, we create n+1 shares {xi}0≤i≤n for x such that

∑n
i=0 xi mod q =

x, then the shares of z =
∑n

i=0 zi mod q are:

zi = xi · y mod q, 0 ≤ i ≤ n.

We prefer Boolean masking for variables that undergo bitwise operations. For
example, if we want to perform logical shift operation z = x � l securely, write x
into n+ 1 shares {xi}0≤i≤n such that ⊕n

i=0xi = x, then calculate zi = xi � l,∀i
to obtain the shares of z = ⊕n

i=0zi.

3 Masking Saber

In a key encapsulation mechanism (KEM), the secret key remains fixed for a sig-
nificant amount of time. Specifically, the decapsulation algorithm uses the non-
ephemeral secret key s, and therefore it is the most susceptible operation against
side-channel attacks. In this paper, we focus on protecting the non-ephemeral
secret key of Saber during the decapsulation. We introduce a masked decapsu-
lation algorithm for Saber, which can resist higher-order side-channel attacks.
The decapsulation procedure of Saber can be partitioned into three segments,
namely decryption, re-encryption, and ciphertext comparison. For visualization,
we present the flow of Saber’s decapsulation algorithm in Fig. 3. Here, all the
modules that process sensitive data due to the involvement with the secret have
been marked grey. These modules are vulnerable from the perspective of side-
channel attacks and need to be masked. In this section, we describe all the
masked primitives that are used in the higher-order masked decapsulation pro-
cedure of Saber. We also present a new algorithm to perform the ciphertext
comparison component in the masked setting. We will go through each part of
the decapsulation algorithm of Saber chronologically and explain the methods
we have used to mask them.

100 S. Kundu et al.

3.1 Arithmetic Operations

The decapsulation algorithm of Saber is heavily dependent on polynomial arith-
metic, such as polynomial addition/subtraction and polynomial multiplication.
We use arithmetic masking to protect these operations. As shown in Fig. 3, the
decapsulation algorithm requires the following operations: addition between one
masked and another unmasked polynomial, addition between two masked poly-
nomials, and multiplication between one masked and another unmasked polyno-
mial. For masking these operations, we follow the methods described in Sect. 2.5.

Fig. 3. Decapsulation of Saber. In grey the operations that are influenced by the long
term secret sss and thus vulnerable to side-channel attacks [6].

To perform the polynomial multiplication, the original unmasked Saber mul-
tiplication uses a hybrid multiplication, a combination of Toom-Cook-4, 2 levels
of Karatsuba, and school-book multiplication [19,33,35]. We use this same multi-
plication technique in our masked implementation. Chung et al. [14] have recently
introduced an efficient method to perform polynomial multiplication by using the
number-theoretic transform. The same method could be used for the implemen-
tation of masked Saber to provide a significant performance improvement [12].
However, this is not the goal of our work and we keep this as future work.

3.2 Compression

In the last step of Saber.PKE.Dec, m is computed by calculating the most
significant bit (MSB) for each coefficient. It compresses each coefficient of the
polynomial (v − 2εp−εtcm + h2) mod p to produce a polynomial m where each
coefficient is one bit long.

The logical shift operation is easy on Boolean shares. In this situation, we
need to apply a logical shift operation on each share separately. Unfortunately,
computing this logical shift operation on arithmetic shares is not trivial. This
fact is discussed elaborately in [6] for the case of first-order masking, and the
similar issue arises for higher-order masking also.

We compute MSB on arithmetic shares by taking the following steps: first,
convert arithmetic shares to Boolean shares (A2B conversion), second, perform
logical shift operation on Boolean shares, and finally, return to arithmetic domain

Higher-Order Masked Saber 101

with the Boolean to arithmetic (B2A) conversion. As m ∈ R2, the resultant
polynomial after compression is a polynomial with 1 bit coefficients. Here, the
Boolean shares of m act like arithmetic shares of m. Therefore, we do not need
the B2A conversion step.

Bitslicing is a technique that helps to improve the performance of bitwise
operations. We have opted for the algorithm proposed in [15] using the bitsliced
implementation of [17] for the A2B conversion of our implementations.

3.3 Masked Hashing

In Saber, the hash function G and the pseudo-random number generator XOF
are realized by using SHA3-512 and SHAKE-128, respectively. Both are different
instances of the sponge function Keccak-f[1600] [7]. It has been shown that
this construction is easy to protect by using Boolean masking [23].

Keccak-f[1600] permutation has five steps: θ, ρ, π, χ and ι. In between these
θ, ρ, π are linear diffusion steps and ι is a simple addition. As all of these four are
linear operations on Boolean shares, we just need to apply them for each share. χ
is a degree 2 non-linear mapping and therefore requires extra attention to apply
masking. Gross et al. [23] developed a technique to implement χ in the higher-
order mask setting. We have adopted their technique in our implementations.

3.4 Masked Centered Binomial Sampler

Saber.PKE.Enc uses the centered binomial sampler for sampling the vector s′.
This sampler outputs the result of HW(x)−HW(y), where x and y are pseudo-
random numbers of bit length four. These pseudorandom numbers are gener-
ated by using SHAKE-128. As mentioned in Sect. 3.3, SHAKE-128 is protected by
using Boolean masking. After the generation of s′, polynomial multiplications
with s′ (e.g. As′ and bT s′) take place. SHAKE-128 creates Boolean shares, but
polynomial multiplication is an arithmetic operation that is less expensive with
arithmetic shares. To mitigate this issue, we need to include a conversion algo-
rithm that converts Boolean shares into arithmetic shares (B2A conversion) in
the masked centered binomial sampler.

Schneider et al. [45] propose two efficient higher-order masked centered bino-
mial samplers: sampler1 computes masked shares bitwise, whereas sampler2 uses
the bitslicing techniques to improve throughput. We have adopted the implemen-
tation of sampler2 together with the modification made by Van Beirendonck et
al. [6] specifically for Saber.

To convert shares from Boolean to arithmetic, we use the B2A algorithm
proposed in [8]. The details have been provided in the Algorithm1. In this Algo-
rithm, SecBitAdd calculates shares of HW(x) and SecBitSub takes shares of HW(x)
and shares of y as inputs and outputs shares of z = HW(x) − HW(y). The function
SecConstAdd adds μ/2 = 4 with the shares of z to avoid any negative value
that can occur after SecBitSub. In the next step the B2A function converts all
the Boolean shares of z to the arithmetic shares of A and the last step converts
shares of A from {0, 1, . . . , 8} to {−4,−3, . . . , 3, 4}.

102 S. Kundu et al.

Algorithm 1: Masked centered binomial sampler [45]
Input : {xi}0≤i≤n, {yi}0≤i≤n where xi, yi ∈ R

κ
2 such that⊕n

i=0 xi = x,
⊕n

i=0 yi = y
Output : {Ai}0≤i≤n where Ai ∈ Rq and

∑n
i=0 Ai = (HW(x)− HW(y)) mod q

1 {zi}0≤i≤n ← SecBitAdd({xi}0≤i≤n) [6]
2 {zi}0≤i≤n ← SecBitSub({zi}0≤i≤n, {yi}0≤i≤n) [45]
3 {zi}0≤i≤n ← SecConstAdd({zi}0≤i≤n) [6]
4 {Ai}0≤i≤n ← B2A({zi}0≤i≤n) [8]
5 A1 ← (A1 − μ/2) mod q
6 return {yi}0≤i≤n

3.5 Masked Comparison

The masked ciphertext comparison component is required to check the equality
between masked ciphertext generated from re-encryption and the public cipher-
text. This step performs the equality check c

?= c∗ of the Saber.KEM.Decaps
algorithm in the masked domain.

An easy but efficient method for the first-order masked comparison is intro-
duced by Oder et al. [40]. Unfortunately, this hash-based method is limited to
first-order masking, and cannot be generalized to check ciphertext equality in
the higher-order masked settings.

Different approaches for higher-order masked comparison were recently ana-
lyzed thoroughly by D’Anvers et al. [17]. In general, there are four approaches.
The simple method originally due to Barthe et al. [5] groups individual bits into a
large SecOR operation. This requires a pre-processing step to handle ciphertext
compression that is straightforward to mask for Saber, but more complex for
Kyber [21]. The arithmetic method was developed in a series of works [4,9,18],
and aims to reduce the total number of comparisons by grouping coefficients
into a random sum. The decompression method [11] developed for Kyber avoids
masking the compression of the re-encrypted ciphertext, by decompressing the
input ciphertext instead. Finally, the hybrid method [16] introduced the idea of
using different of the previously discussed methods for the different components
of the ciphertext. All of these approaches rely on A2B conversions, which can
be heavily optimized using bitslicing [12,17].

In this section, we will discuss two of these different approaches to higher-
order masked comparison. The first one is the Saber-adapted decompression
method, which was not considered in [17]. The second one is the simple method,
which was found to be the most efficient method for Saber in that same work. For
both methods, we consolidate concurrent A2B optimization techniques proposed
in [12,17].

3.5.1 Decompressed Masked Comparison Algorithm
Bos et al. [11] introduced a new method based on A2B conversion for the masked
comparison algorithm for Kyber, in order to reduce the cost of the Boolean equal-
ity check circuit. This method does not perform the compression operation on

Higher-Order Masked Saber 103

Algorithm 2: Decompressed masked comparison algorithm

Input : {b′
i}0≤i≤n where each b′

i ∈ R
l
2εq and

⊕n
i=0 b

′
i = b′,

{c′
i}0≤i≤n where each c′

i ∈ R2εp and
⊕n

i=0 c′
i = c′,

publicly available b and cm

Output : {biti}0≤i≤n with each biti ∈ {0, 1} such that
⊕n

i=0 biti = 1 iff
b = b′ � (εq − εp) and cm = c′ � (εp − εt), else 0

1 //For b part of ciphertext
2 sb ← (b � (εq − εp)) − 1 //Decompression operation on b

3 eb ← (b � (εq − εp)) + 2(εq−εp)

4 {b′′
i }0≤i≤n ← {b′

i}0≤i≤n

5 b′′
1 ← b′

1 − sb + 2(εq−1)

6 b′
1 ← b′

1 − eb

7 {y′
i}0≤i≤n ← A2B({b′′

i }0≤i≤n)
8 {yi}0≤i≤n ← A2B({b′

i}0≤i≤n)
9 {yi}0≤i≤n ← MSB({yi}0≤i≤n)||MSB({y′

i}0≤i≤n)

10 //For cm part of ciphertext
11 scm ← (cm � (εp − εt)) − 1//Decompression operation on cm

12 ecm ← (cm � (εp − εt)) + 2(εp−εt)

13 {c′′
i }0≤i≤n ← {c′

i}0≤i≤n

14 c′′
1 ← c′

1 − scm + 2(εp−1)

15 c′
1 ← c′

1 − ecm

16 {x′
i}0≤i≤n ← A2B({c′′

i }0≤i≤n)
17 {xi}0≤i≤n ← A2B({c′

i}0≤i≤n)
18 {xi}0≤i≤n ← MSB({xi}0≤i≤n)||MSB({x′

i}0≤i≤n)

19 //Boolean circuit to test all bits of each coefficient of (y, x) is 1
20 {biti}0≤i≤n ← BooleanAllBitsOneTest ({yi}0≤i≤n, {xi}0≤i≤n, 2, 2)

21 return {biti}0≤i≤n

the recomputed ciphertext, but performs a decompression operation on the pub-
lic ciphertext instead. Then, the comparison is performed in the uncompressed
domain. The decompressed operation is less costly to apply on public ciphertext,
as it is public and so this operation can be performed unmasked.

Let us assume the public ciphertext be c = (b, cm), where b be the key
contained part and cm be the message contained part of the ciphertext c. In
Saber, the compression operation is applied to generate the ciphertext during
encryption, and this operation is a many-to-one operation. In this process, each
coefficient of b loses three bits, and each coefficient of cm loses six bits. So, as
compensation for the masked comparison, we use a decompression operation,
which outputs an interval of integers for each coefficient of the public cipher-
text. Let, c[j] be a coefficient of the public ciphertext c, and the corresponding
output of decompression operation be (sc[j], ec[j]). This implies every element in
between the interval (sc[j], ec[j]) becomes c[j] after the compression operation.

Next, we verify that each coefficient of the shared uncompressed ciphertext of
c∗ which is generated from the re-encryption, lies in the corresponding decom-

104 S. Kundu et al.

Algorithm 3: BooleanAllBitsOneTest

Input : {yi}0≤i≤n where each yi ∈ R
l
2bmod1 and

⊕n
i=0 yi = y,

{xi}0≤i≤n where each xi ∈ R2bmod2 and
⊕n

i=0 xi = x,
bmod1, and bmod2

Output : {biti}0≤i≤n with each biti ∈ {0, 1} such that
⊕n

i=0 biti = 1 iff
each bit of every coefficients of y and x is 1, else 0

1 for j1 = 1 to l do
2 for s= 1 to bmod1 do

3 {ui[s][j1]}0≤i≤n ← Bitslice({y(s)
i [j1]}0≤i≤n)

4 for s= 1 to bmod2 do

5 {vi[s]}0≤i≤n ← Bitslice({x
(s)
i }0≤i≤n)

6 //Secure And on both
7 {wi}0≤i≤n ← {vi[1]}0≤i≤n

8 for s= 2 to bmod2 do
9 {wi}0≤i≤n ← SecAnd({wi}0≤i≤n, {vi[s]}0≤i≤n)

10 for j= 1 to l do
11 {yi[j]}0≤i≤n ← {ui[1][j]}0≤i≤n

12 for s= 2 to bmod1 do
13 {yi[j]}0≤i≤n ← SecAnd({yi[j]}0≤i≤n, {ui[s][j]}0≤i≤n)

14 {wi}0≤i≤n ← SecAnd({wi}0≤i≤n,yi[j]}0≤i≤n)

15 for j= log2(256) − 1 to 0 do
16 {w′

i}0≤i≤n ← w0≤i≤n � 2j

17 {wi}0≤i≤n ← w0≤i≤n mod (22j

)
18 {wi}0≤i≤n ← SecAnd({wi}0≤i≤n, {w′

i}0≤i≤n)

19 {biti}0≤i≤n ← {wi}0≤i≤n

20 return {biti}0≤i≤n

pressed interval. Let c∗[j] be the arithmetically masked uncompressed cipher-
text coefficient corresponding to the public ciphertext coefficient c[j]. Now, if
c∗[j] ∈ (sc[j], ec[j]) for all coefficients j, then the comparison returns success
and outputs the shared valid key else returns a random invalid key. The test

c∗[j]
?∈ (sc[j], ec[j]) is realized by checking whether c∗[j] − sc[j] is a positive

number and whether c∗[j] − ec[j] is a negative number. We have adopted this
method for performing the higher-order masked ciphertext comparison in Saber
as shown in Algorithm 2.

In Algorithm 2, lines 2–3 and 11–12 compute the start-point and the end-
point of the interval for each coefficient of the key contained part b and the
message contained part cm of the public ciphertext c, respectively. The MSB of
any number acts as a sign bit, i.e., if the MSB is 1 then the number is negative, else
the number is positive. As in an ideal case, c∗[j]− sc[j] > 0 and c∗[j]− ec[j] < 0,
so the MSB(c∗[j] − sc[j]) should be 0 and the MSB(c∗[j] − ec[j]) should be 1. In
order to avoid two different kinds of checking for c∗[j] − sc[j] and c∗[j] − ec[j],

Higher-Order Masked Saber 105

we need to add a constant l with c∗[j] − sc[j] such that its MSB becomes 1. The
value of l is 2(εq−1) and 2(εp−1) for b and cm part of c, respectively. We compute
the MSB of an arithmetically masked variable in the following way: we convert
the arithmetic shares to Boolean shares using A2B conversion, and then we use
a shift operation to extract the masked shares of MSB. Finally, Algorithm2 uses
Algorithm 3, the BooleanAllBitsOneTest function to combine the output bits
of all coefficients and returns a single-bit indicating success or failure.

3.5.2 Simple Masked Comparison Algorithm
Next, we describe the simple method as given in [17]. Note that the re-encrypted
ciphertext c∗ is arithmetically masked and uncompressed, but the public cipher-
text c is unmasked and compressed. As mentioned earlier, our task is to verify
whether c equals c∗ after compression. In this method, we perform the following
steps: firstly, we transform arithmetic shares of c∗ to Boolean shares by using A2B
conversion algorithm, secondly, we compress the re-encrypted Boolean masked
ciphertext c∗ by using coefficientwise logical right shift, thirdly, we subtract the
public ciphertext c from the compressed and masked re-encrypted ciphertext c∗.
This method is shown in Algorithm 4.

Algorithm 4: Simple masked comparison algorithm [16]

Input : {b′
i}0≤i≤n where each b′

i ∈ R
l
2εq and

⊕n
i=0 b

′
i = b′,

{c′
i}0≤i≤n where each c′

i ∈ R2εp and
⊕n

i=0 c′
i = c′,

publicly available b and cm

Output : {biti}0≤i≤n with each biti ∈ {0, 1} such that
⊕n

i=0 biti = 1 iff
b = b′ � (εq − εp) and cm = c′ � (εp − εt), else 0

1 //For b part of ciphertext
2 {yi}0≤i≤n ← A2B({b′

i}0≤i≤n)
3 {yi}0≤i≤n ← ({yi}0≤i≤n � (εq − εp))
4 y1 ← y1 ⊕ b

5 //For cm part of ciphertext
6 {xi}0≤i≤n ← A2B({c′

i}0≤i≤n)
7 {xi}0≤i≤n ← ({xi}0≤i≤n � (εp − εt))
8 x1 ← x1 ⊕ cm

9 //Boolean circuit to test all bits of each coefficient of (y, x) is 0
10 y1 ← ¬y1

11 x1 ← ¬x1

12 {biti}0≤i≤n ← BooleanAllBitsOneTest ({yi}0≤i≤n, {xi}0≤i≤n, εp, εt)

13 return {biti}0≤i≤n

3.5.3 Bitsliced A2B
Both the decompression method and the simple method rely heavily on A2B
conversions. Throughout the implementations, we use the bitsliced A2B conver-

106 S. Kundu et al.

sion [17] for further speed-up. Moreover, A2B conversions use the SecAdd sub-
function to perform masked addition. Bronchain et al. [12] proposed a SecAdd
which uses k−1 SecAnd operations for k-bit inputs, as opposed to 2k−3 SecAnd
operations required in [17]. We included this technique into the implementation
of [17] to receive better performance.

4 Masking uSaber

In uSaber, the coefficients of the secret vector are sampled according to the
centered uniform distribution Uu instead of the centered binomial distribution
βμ. Here, the hamming weight computation of the centered binomial distribution
is replaced by the sign extension of u bits to εq bits, to generate a sample in
[−2(u−1), 2(u−1) −1] from u uniformly random bits. This secret vector sampler is
the only component that differs between Saber and uSaber. A main advantage
of uSaber is that the centered uniform sampler has fewer operations compared
to the centered binomial sampler and therefore, is easier to mask.

Similar to the centered binomial sampler, the centered uniform sampler takes
pseudorandom Boolean-masked bits as input that are produced by the masked
SHAKE-128 function. Our simple higher-order masked centered uniform sampler
is shown in Algorithm 5. We base it on SecConsAdd in the masked centered bino-
mial sampler, mentioned in Sect. 3.4. First, we use xor to transform a negative
number into a positive number. Second, we apply B2A conversion algorithm to
convert Boolean shares to arithmetic shares. Third, we subtract 2u−1 from the
arithmetic shares to map them from [0, 2u −1] back to [−2(u−1), 2(u−1)−1]. This
masked sampler does not require SecBitAdd and SecBitSub which are used in
masked centered binomial sampler. The centered uniform sampler is simpler and
requires fewer masked operations than the centered binomial sampler.

Algorithm 5: Masked centered uniform Sampler
Input : {xi}0≤i≤n where xi ∈ R

u
2 such that

⊕n
i=0 xi = x

Output : {Ai}0≤i≤n where Ai ∈ Rq and
∑n

i=0 Ai = (x ⊕ 2u−1) − 2u−1 mod q

1 {z0} ← ({z0} ⊕ 2u−1)
2 {Ai}0≤i≤n ← B2A({zi}0≤i≤n) [8]
3 A1 ← A1 − 2u−1 mod q
4 return {yi}0≤i≤n

5 Performance Evaluation

To demonstrate the performance of all of the proposed methods, we implement
them on a 32-bit ARM Cortex-M4 microcontroller, STM32F407-DISCOVERY
development board. We adopt the widely used PQM4 [32] post-quantum crypto-
graphic library and benchmarking framework for performance evaluation. In this

Higher-Order Masked Saber 107

framework, the system timer (SisTick) is used to measure the cycle counts. This
framework uses a 24 MHz main system clock and a 48 MHz TRNG clock. We
take advantage of the on-chip TRNG for sampling masking randomness instead
of generating in advance and storing random bits in a table like Kyber [11]. This
TRNG generates 32 random bits per 40 TRNG clock cycles, which is equal to
20 main system clock cycles. We include the cost of randomness sampling with
the benchmarks. We use arm-none-eabi-gcc version 9.2.1 to accomplish the
measurements of our implementations.

5.1 Performance Analysis of Comparison Algorithms for Saber

We present the cycle counts of the implementation for arbitrary order masked
comparison algorithms of Saber. In Saber, the parameters are: εq = 13, εp = 10,
εt = 4 and l = 3. We break down the cycle counts into three parts: spent during
all the A2B conversion, spent in computing the function BooleanAllBitsOneTest
for the corresponding parameter, and spent in performing all other operations.
Table 2 contains the performance details of masked ciphertext algorithms pre-
sented in Sects. 3.5.1 and Sects. 3.5.2.

In Table 2, we include two versions of the decompressed comparison algo-
rithm and the simple comparison algorithm. We use the bitsliced A2B conversion
technique of masked simple comparator proposed in [17] for the first version,
and we improve this bitsliced A2B converter by employing the technique intro-
duced in [12]. It can be seen from the table the performance of the decompressed
comparison algorithm gains 9%, 16%, and 17% improvements for first-, second-,
and third-order masking after using [12], respectively. Side by side, the improved
decompressed comparison algorithm requires 21% fewer random bytes for any
order masking. The performance of the simple comparison algorithm improves
by 8%, 15%, and 16% for first-, second-, and third-order masking after using [12],
respectively. The improved simple comparison algorithm requires approximately
19% fewer random bytes for any order masking.

As we can see from the table, the cycle count for all A2B conversions employed
in the decompressed comparison algorithm is almost double for all orders com-
pared to the simple comparison algorithm. However, for all the orders, the clock
cycle required to compute the function BooleanAllBitsOneTest with corre-
sponding parameters is approximately one-fourth in the decompressed compari-
son algorithm than the simple comparison algorithm. As we can see from Table 2,
the improved simple comparison algorithm is approximately 43% faster and
employ roughly 42% fewer random bytes than the improved decompressed com-
parison algorithm for any order masking of Saber. Similar results can be found for
the higher-order masked uSaber. So, we use the improved simple comparison algo-
rithm in our higher-order masked Saber and uSaber decapsulation algorithms.

5.2 Performance Analysis for Masked Saber Decapsulation

We present the performance cost of the Saber algorithm for higher-order masking
in Table 3. This table also provides the breakdown of the performance cost of
the higher-order masking for all the modules of the masked Saber decapsulation

108 S. Kundu et al.

algorithm. As mentioned earlier, for masked Saber implementations we use the
hybrid polynomial multiplication, a combination of Toom-Cook-4, Karatsuba,
and schoolbooks multiplication. Therefore, we use the Saber implementation
which uses the hybrid polynomial multiplication to get the overhead factor for
n-th order masked Saber. To maintain simplicity, most of the implementation
is written in C. Only the hybrid multiplication is in assembly and generated by
using the optimal implementation proposed in [31].

From Table 3, we can see that the performance overhead factor of masked
Saber decapsulation implementation for first-order is 2.69x, for second-order is
4.96x, and for third-order is 7.71x. From the table, we can see that the overhead
factor for arithmetic operations approximately is (n + 1) for nth-order masking
due to n+1 time repetitions of each operation. On the other hand, the non-linear
operations on arithmetic shares, for example, hash functions, binomial sampler,
compression operation, and ciphertext comparison, have much larger overhead
factors in the masked setting. To maintain the security assumption, we need to
use random bytes in some masking algorithms (example: SecAnd, SecAdd, SecRe-
fresh, etc.). Table 4 shows random bytes requirements for all the components of the

Table 2. Performance breakdown of the implementation of masked comparison algo-
rithms in the Cortex-M4 platform.

CPU [k]cycles
Masked Comparator

1st 2nd 3rd

Decompressed comparison [This work] 651 2,107 3,606

all A2B conversion 612 2,047 3,518

BooleanAllBitsOneTest 9 29 50

Other operations 28 31 37

random bytes 12,048 47,920 95,840

Improved decompressed comparison [This work] 588 1,756 2,962

all A2B conversion 549 1,696 2,875

BooleanAllBitsOneTest 9 29 50

Other operations 28 31 37

random bytes 9,424 37,424 74,848

Simple comparison [17] 363 1,160 1,992

all A2B conversion 308 1,023 1,766

BooleanAllBitsOneTest 38 117 202

Other operations 16 19 24

random bytes 6,992 26,864 53,728

Improved simple comparison [This work] 331 985 1,671

all A2B conversion 276 848 1,444

BooleanAllBitsOneTest 38 117 202

Other operations 16 19 24

random bytes 5,680 21,616 43,232

Higher-Order Masked Saber 109

Table 3. Performance cost of all the modules of the higher-order masked decapsulation
procedure of Saber.

CPU [k]cycles

Order No mask 1st 2nd 3rd

Saber-Decapsulation 1,121 3,022 (2.69x) 5,567 (4.96x) 8,649 (7.71x)

CPA-PKE-Decryption 129 297 (2.30x) 527 (4.08x) 775 (6.00x)

Polynomial arithmetic 126 237 (1.88x) 349 (2.76x) 464 (3.68x)

Compression 2 59 (29.50x) 178 (89.00x) 310 (155.00x)

Hash G (SHA3-512) 13 123 (9.46x) 242 (18.61x) 379 (29.15x)

CPA-PKE-Encryption 853 2,477 (2.90x) 4,670 (5.47x) 7,370 (8.64x)

Secret generation 69 909 (13.17x) 1,995 (28.91x) 3,561 (51.60x)

XOF (SHAKE-128) 63 611 (9.69x) 1,210 (19.20x) 1,887 (29.95x)

CBD (Binomial Sampler) 6 297 (49.50x) 785 (130.83x) 1,674 (279.00x)

Polynomial arithmetic 1,235 1,688 2,136

Polynomial Comparison
783

331
(2.00x)

985
(3.41x)

1,671
(4.86x)

Other operations 126 126 (1.00x) 126 (1.00x) 126 (1.00x)

Table 4. Randomness cost of all the modules of the higher-order masked decapsulation
algorithm of Saber.

Random bytes

Order 1st 2nd 3rd

Saber-Decapsulation 12,752 43,760 93,664

CPA-PKE-Decryption 928 3,712 7,424

Polynomial arithmetic 0 0 0

Compression 928 3,712 7,424

Hash G (SHA3-512) 192 576 1,152

CPA-PKE-Encryption 11,312 38,512 83,168

Secret generation 5,952 17,856 41,856

XOF (SHAKE-128) 960 2880 5,760

CBD (Binomial Sampler) 4,992 14,976 36,096

Polynomial arithmetic 0 0 0

Polynomial Comparison 5,680 21,616 43,232

Other operations 0 0 0

higher-order masked Saber decapsulation algorithm. It can be seen from Table 4
that the random bytes requirement increases with the order. The first-order imple-
mentation requires 12k random bytes, the second-order and third-order imple-
mentations require 43k (3.43x) and 93k (7.34x) random bytes, respectively.

5.3 Performance Analysis for Masked uSaber Decapsulation

The performance cost and breakdown of the performance cost of the higher-order
masking for all the modules of the masked uSaber decapsulation algorithm are

110 S. Kundu et al.

presented in Table 5. As we mentioned before, the main advantage of uSaber
against Saber is the coefficients of the secret vector are sampled from U2 instead
of β8. Thanks to the parameter choice of secret distribution in uSaber, it needs
fewer numbers of pseudorandom bits than Saber. This fact reduces the cycle
cost of XOF by almost 60% for the unmasked version of uSaber compared to
Saber. Another advantage is that the hamming weight computation of μ bits in
the centered binomial sampler βμ is swapped by the sign extension of u bits in
the centered uniform sampler Uu. It reduces the performance cost of the secret
sampler in unmasked uSaber by 50% compared to Saber. Altogether, the secret
generation is almost 59% faster for the unmasked decapsulation algorithm of
uSaber compared to Saber. The performance cost of the secret generation is lower
in uSaber compared to Saber also after integrating masking. The performances of
the secret generation in masked uSaber are 55%, 52%, and 45% faster compared
to masked Saber for first-, second-, and third-order, respectively. Additionally,
the value of q for uSaber is 212, whereas it is 213 for Saber. This factor reduces one
bit in the A2B conversion for uSaber during the masked polynomial comparison.
It makes the masked polynomial comparison 5%, 5%, and 2% faster in uSaber
than Saber for first-, second-, and third-order, respectively.

As we can observe from Table 5, the approximate performance overhead fac-
tor of masked uSaber decapsulation implementation for first-order is 2.32x, for
second-order is 4.19x, and for third-order is 6.54x. Table 6 presents random bytes
requirements for all the segments of the higher-order masked uSaber decapsula-
tion. We obtain from Table 6 that here also the random bytes requirement grows
with the order of masking. The first-order implementation needs 10k random
bytes, the second-order and third-order implementations use 36k (3.49x) and
79k (7.57x) random bytes, respectively.

Table 5. Performance cost of all the modules of higher-order masked decapsulation
procedure of uSaber.

CPU [k]cycles

Order No mask 1st 2nd 3rd

uSaber-Decapsulation 1,062 2,473 (2.32x) 4,452 (4.19x) 6,947 (6.54x)

CPA-PKE-Decryption 130 297 (2.28x) 527 (4.05x) 775 (5.96x)

Polynomial arithmetic 128 237 (1.85x) 349 (2.72x) 464 (3.62x)

Compression 2 59 (29.50x) 178 (89.00x) 310 (155.00x)

Hash G (SHA3-512) 13 122 (9.38x) 242 (18.61x) 379 (29.15x)

CPA-PKE-Encryption 791 1,928 (2.43x) 3,556 (4.49x) 5,667 (7.16x)

Secret generation 28 400 (14.28x) 954 (34.07x) 1,928 (68.85x)

XOF (SHAKE-128) 25 245 (9.80x) 484 (19.36x) 756 (30.24x)

Uniform distribution 3 155 (51.66x) 469 (156.33x) 1,172 (390.66x)

Polynomial arithmetic 1,214 1,667 2,114

Polynomial Comparison
763

313
(2.00x)

934
(3.40x)

1,623
(4.89x)

Other operations 126 126 (1.00x) 126 (1.00x) 126 (1.00x)

Higher-Order Masked Saber 111

Table 6. Randomness cost of all the modules of higher-order masked decapsulation
algorithm of uSaber.

Random bytes

Order 1st 2nd 3rd

uSaber-Decapsulation 10,544 36,848 79,840

CPA-PKE-Decryption 928 3,712 7,424

Polynomial arithmetic 0 0 0

Compression 928 3,712 7,424

Hash G (SHA3-512) 192 576 1,152

CPA-PKE-Encryption 9,104 31,600 69,344

Secret generation 4,032 12,096 30,336

XOF (SHAKE-128) 960 2880 5,760

Uniform distribution 3,072 9,216 24,576

Polynomial arithmetic 0 0 0

Polynomial Comparison 5,392 20,464 40,928

Other operations 0 0 0

5.4 Comparison with State-of-the-Art

In this section, we compare our masked Saber and uSaber implementations with
the state-of-the-art masked implementations of Saber and Kyber. We present
the performances of our masked implementations in the Cortex-M4 platform and
present them in Table 7. Bronchain et al. [12] introduced faster implementations
of higher-order masked A2B and B2A conversion utilizing bitsliced techniques
and used these conversions to propose higher-order masking implementations
of Saber and Kyber. The performances of Bronchain et al.’s masked Saber and
Kyber implementations in the Cortex-M4 platform are presented in Table 7. As
we mentioned before, the integration of NTT multiplication in masked Saber can
provide a significant performance boost. In [12], authors use NTT multiplication
for Saber to receive better performance. In order to use NTT multiplication, the
authors use a multi-moduli approach that extends the modulus [1]. Even so, the
performance of our 1st, 2nd and 3rd order masked implementations of Saber
achieve 39%, 23%, and 13% improvement than their masked implementation of
Saber, respectively.

In [11], Bos et al. proposed higher-order masked implementations of Kyber.
The masked kyber implementation in [11] is faster and uses fewer random bytes
than the implementation of masked kyber presented in [12] only for first-order
because this masked Kyber uses an optimized implementation for first-order,
while Bronchain et al.’s one uses the generalized one. The performance for 2nd
and 3rd order masked implementations of Kyber in [12] receives 73% and 85%
improvement over the masked Kyber of [11], respectively. However, our imple-
mentation of masked Saber is faster than masked Kyber presented in [12] 60% for
first-order, 53% for second-order, and 48% for third-order. Also, the performance

112 S. Kundu et al.

of our first-order masked Saber is 3% faster than the optimized implementation
of the first-order masked Kyber presented in [11]. In terms of random bytes
requirement, our masked Saber receives factor 20.61x and 25.98x improvement
over the masked Kyber in [11] for 2nd and 3rd order masked implementations,
respectively.

As discussed in Sect. 4, masked uSaber uses less number of operations and
random numbers than masked Saber due to the choice of secret distribution and
parameters in uSaber. Table 7 shows the performances of higher-order masked
implementations of uSaber. Further, this table contains the performance of first-
order masked Saber [6] and first-order masked Kyber [25], which are specially
optimized to prevent the first-order differential power attacks. We can observe
from Table 7 that our generalized implementation of first-order masked uSaber is
12% faster than the optimized implementation of masked Saber and is 16% faster
than the optimized implementation of masked Kyber. The implementation of
masked uSaber is faster than the fastest implementation of higher-order masked
Saber 20% for second-order and 19% for third-order. Masked uSaber also needs
15% less random numbers for second-order and 14% less random numbers for
third-order over masked Saber. In conclusion, we observe from the reported
results of Table 7 that higher-order masked uSaber achieves better performance
and needs fewer random bytes than masked Saber and Kyber for any order.

Table 7. The comparison between Saber and Kyber regarding the performance and
the random bytes requirement.

Performance CPU [k]cycles / Random bytes
Scheme

Unmask 1st 2nd 3rd 1st 2nd 3rd

uSaber This paper 1,062 2,473 4,452 6,947 10,544 36,848 79,840

This paper 1,121 3,022 5,567 8,649 12,752 43,760 93,664

[12] 773 5,027 7,320 9,988 - - -Saber

[6] † 1,123 2,833 - - 11,656 - -

[11] † 882 3,116* 44,347 115,481 12,072* 902,126 2,434,170

[12] 804 7,716 11,880 16,715 - - -Kyber

[25] † 816 2,978 - - - - -

†: measurements are taken from the paper
*: uses optimized implementation for first-order masking

6 Conclusions

Saber is often touted as very helpful for masking because of its two unique design
components, the power-of-two moduli, and the MLWR problem. Van Beiren-
donck et al. [6] showed the first-order masked Saber receives better performance
and needs fewer random bytes than the first-order masked Kyber. In our work,
we substantiated this claim for arbitrary higher-order masking and show that
the higher-order masked Saber also acquires better performance and requires
fewer random bytes for its design decisions.

Higher-Order Masked Saber 113

The third round submission document of Saber claims that the design deci-
sions behind uSaber will be further beneficial for masking even compared to
Saber. This work first concretely justifies those design decisions.

Furthermore, integrating our methods of masking is not dependent upon
the underlying polynomial multiplication, which is one of the computationally
expensive components. Our masked implementations can be adapted for Saber
or uSaber that use the NTT multiplication instead of the hybrid multiplication.

Acknowledgements. This work was supported in part by CyberSecurity Research
Flanders with reference number VR20192203, the Research Council KU Leuven
(C16/15/058), the Horizon 2020 ERC Advanced Grant (101020005 Belfort) and SRC
grant 2909.001.

Jan-Pieter D’Anvers and Angshuman Karmakar are funded by FWO (Research
Foundation - Flanders) as junior post-doctoral fellows (contract numbers
133185/1238822N LV and 203056/1241722N LV). Michiel Van Beirendonck is funded
by FWO as Strategic Basic (SB) PhD fellow (project number 1SD5621N).

References

1. Abdulrahman, A., Chen, J., Chen, Y., Hwang, V., Kannwischer, M.J., Yang, B.:
Multi-moduli NTTs for saber on Cortex-M3 and Cortex-M4. IACR Trans. Cryp-
togr. Hardw. Embed. Syst. 2022(1), 127–151 (2022). https://doi.org/10.46586/
tches.v2022.i1.127-151

2. Alagic, G., et al.: Status Report on the Second Round of the NIST Post-Quantum
Cryptography Standardization Process (2020). https://nvlpubs.nist.gov/nistpubs/
ir/2020/NIST.IR.8309.pdf

3. Amiet, D., Curiger, A., Leuenberger, L., Zbinden, P.: Defeating NewHope with
a single trace. Cryptology ePrint Archive, Report 2020/368 (2020). https://ia.cr/
2020/368

4. Bache, F., Paglialonga, C., Oder, T., Schneider, T., Güneysu, T.: High-speed mask-
ing for polynomial comparison in lattice-based KEMs. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2020(3), 483–507 (2020). https://doi.org/10.13154/tches.
v2020.i3.483-507

5. Barthe, G., et al.: Masking the GLP lattice-based signature scheme at any order. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp.
354–384. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 12

6. Beirendonck, M.V., D’Anvers, J.P., Karmakar, A., Balasch, J., Verbauwhede, I.:
A side-channel resistant implementation of SABER. Cryptology ePrint Archive,
Report 2020/733 (2020). https://ia.cr/2020/733

7. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 313–314. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 19

8. Bettale, L., Coron, J., Zeitoun, R.: Improved high-order conversion from Boolean to
arithmetic masking. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(2), 22–45
(2018). https://doi.org/10.13154/tches.v2018.i2.22-45

9. Bhasin, S., D’Anvers, J., Heinz, D., Pöppelmann, T., Beirendonck, M.V.: Attack-
ing and defending masked polynomial comparison for lattice-based cryptography.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(3), 334–359 (2021). https://
doi.org/10.46586/tches.v2021.i3.334-359

https://doi.org/10.46586/tches.v2022.i1.127-151
https://doi.org/10.46586/tches.v2022.i1.127-151
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
https://ia.cr/2020/368
https://ia.cr/2020/368
https://doi.org/10.13154/tches.v2020.i3.483-507
https://doi.org/10.13154/tches.v2020.i3.483-507
https://doi.org/10.1007/978-3-319-78375-8_12
https://ia.cr/2020/733
https://doi.org/10.1007/978-3-642-38348-9_19
https://doi.org/10.13154/tches.v2018.i2.22-45
https://doi.org/10.46586/tches.v2021.i3.334-359
https://doi.org/10.46586/tches.v2021.i3.334-359

114 S. Kundu et al.

10. Bos, J., et al.: CRYSTALS - Kyber: a CCA-secure module-lattice-based KEM.
Cryptology ePrint Archive, Report 2017/634 (2017). https://ia.cr/2017/634

11. Bos, J.W., Gourjon, M., Renes, J., Schneider, T., van Vredendaal, C.: Masking
Kyber: first- and higher-order implementations. IACR Cryptology ePrint Archive,
p. 483 (2021). https://eprint.iacr.org/2021/483

12. Bronchain, O., Cassiers, G.: Bitslicing arithmetic/Boolean masking conversions for
fun and profit with application to lattice-based KEMs. Cryptology ePrint Archive,
Report 2022/158 (2022). https://ia.cr/2022/158

13. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-
1 26

14. Chung, C.M., Hwang, V., Kannwischer, M.J., Seiler, G., Shih, C., Yang, B.: NTT
multiplication for NTT-unfriendly rings new speed records for saber and NTRU
on Cortex-M4 and AVX2. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(2),
159–188 (2021). https://doi.org/10.46586/tches.v2021.i2.159-188

15. Coron, J.-S., Großschädl, J., Vadnala, P.K.: Secure conversion between Boolean
and arithmetic masking of any order. In: Batina, L., Robshaw, M. (eds.) CHES
2014. LNCS, vol. 8731, pp. 188–205. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-44709-3 11

16. Coron, J.S., Gérard, F., Montoya, S., Zeitoun, R.: High-order polynomial com-
parison and masking lattice-based encryption. Cryptology ePrint Archive, Report
2021/1615 (2021). https://ia.cr/2021/1615

17. D’Anvers, J.P., Beirendonck, M.V., Verbauwhede, I.: Revisiting higher-order
masked comparison for lattice-based cryptography: algorithms and bit-sliced imple-
mentations. Cryptology ePrint Archive, Report 2022/110 (2022). https://ia.cr/
2022/110

18. D’Anvers, J.P., Heinz, D., Pessl, P., van Beirendonck, M., Verbauwhede, I.: Higher-
order masked ciphertext comparison for lattice-based cryptography. Cryptology
ePrint Archive, Report 2021/1422 (2021). https://ia.cr/2021/1422

19. D’Anvers, J.-P., Karmakar, A., Sinha Roy, S., Vercauteren, F.: Saber: module-LWR
based key exchange, CPA-secure encryption and CCA-secure KEM. In: Joux, A.,
Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp. 282–305.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89339-6 16

20. D’Anvers, J.P., et al.: SABER. Technical report, National Institute of
Standards and Technology (2020). https://csrc.nist.gov/projects/post-quantum-
cryptography/round-3-submissions

21. Fritzmann, T., et al.: Masked accelerators and instruction set extensions for post-
quantum cryptography. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022(1),
414–460 (2021). https://doi.org/10.46586/tches.v2022.i1.414-460. https://tches.
iacr.org/index.php/TCHES/article/view/9303

22. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 34

23. Gross, H., Schaffenrath, D., Mangard, S.: Higher-order side-channel protected
implementations of Keccak. Cryptology ePrint Archive, Report 2017/395 (2017).
https://ia.cr/2017/395

24. Guo, Q., Johansson, T., Nilsson, A.: A key-recovery timing attack on post-
quantum primitives using the Fujisaki-Okamoto transformation and its application
on FrodoKEM. Cryptology ePrint Archive, Report 2020/743 (2020). https://ia.cr/
2020/743

https://ia.cr/2017/634
https://eprint.iacr.org/2021/483
https://ia.cr/2022/158
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.46586/tches.v2021.i2.159-188
https://doi.org/10.1007/978-3-662-44709-3_11
https://doi.org/10.1007/978-3-662-44709-3_11
https://ia.cr/2021/1615
https://ia.cr/2022/110
https://ia.cr/2022/110
https://ia.cr/2021/1422
https://doi.org/10.1007/978-3-319-89339-6_16
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.46586/tches.v2022.i1.414-460
https://tches.iacr.org/index.php/TCHES/article/view/9303
https://tches.iacr.org/index.php/TCHES/article/view/9303
https://doi.org/10.1007/3-540-48405-1_34
https://ia.cr/2017/395
https://ia.cr/2020/743
https://ia.cr/2020/743

Higher-Order Masked Saber 115

25. Heinz, D., Kannwischer, M.J., Land, G., Pöppelmann, T., Schwabe, P., Sprenkels,
D.: First-order masked Kyber on ARM Cortex-M4. IACR Cryptology ePrint
Archive, p. 58 (2022). https://eprint.iacr.org/2022/058

26. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054868

27. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70500-2 12

28. Howgrave-Graham, N., Silverman, J.H., Whyte, W.: Choosing parameter sets
for NTRUEncrypt with NAEP and SVES-3. Cryptology ePrint Archive, Report
2005/045 (2005). https://ia.cr/2005/045

29. Huang, W.L., Chen, J.P., Yang, B.Y.: Power analysis on NTRU prime. Cryptology
ePrint Archive, Report 2019/100 (2019). https://ia.cr/2019/100

30. Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: IND-CCA-secure key encapsula-
tion mechanism in the quantum random oracle model, revisited. Cryptology ePrint
Archive, Report 2017/1096 (2017). https://ia.cr/2017/1096

31. Kannwischer, M.J., Rijneveld, J., Schwabe, P.: Faster multiplication in Z2m [x] on
Cortex-M4 to speed up NIST PQC candidates. Cryptology ePrint Archive, Report
2018/1018 (2018). https://ia.cr/2018/1018

32. Kannwischer, M.J., Rijneveld, J., Schwabe, P., Stoffelen, K.: PQM4: post-quantum
crypto library for the ARM Cortex-M4. https://github.com/mupq/pqm4

33. Karmakar, A., Mera, J.M.B., Roy, S.S., Verbauwhede, I.: Saber on ARM CCA-
secure module lattice-based key encapsulation on ARM. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2018(3), 243–266 (2018). https://doi.org/10.13154/tches.
v2018.i3.243-266

34. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

35. Mera, J.M.B., Karmakar, A., Verbauwhede, I.: Time-memory trade-off in Toom-
Cook multiplication: an application to module-lattice based cryptography. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2020(2), 222–244 (2020). https://doi.org/
10.13154/tches.v2020.i2.222-244

36. Messerges, T.S.: Using second-order power analysis to attack DPA resistant soft-
ware. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–251.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44499-8 19

37. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). https://
doi.org/10.1007/3-540-39799-X 31

38. Ngo, K., Dubrova, E., Guo, Q., Johansson, T.: A side-channel attack on a masked
IND-CCA secure saber KEM implementation. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2021(4), 676–707 (2021). https://doi.org/10.46586/tches.v2021.i4.
676-707

39. NIST: Post-Quantum Cryptography Standardization. https://csrc.nist.
gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-
Standardization

40. Oder, T., Schneider, T., Pöppelmann, T., Güneysu, T.: Practical CCA2-secure and
masked ring-LWE implementation. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2018(1), 142–174 (2018). https://doi.org/10.13154/tches.v2018.i1.142-174

https://eprint.iacr.org/2022/058
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://ia.cr/2005/045
https://ia.cr/2019/100
https://ia.cr/2017/1096
https://ia.cr/2018/1018
https://github.com/mupq/pqm4
https://doi.org/10.13154/tches.v2018.i3.243-266
https://doi.org/10.13154/tches.v2018.i3.243-266
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.13154/tches.v2020.i2.222-244
https://doi.org/10.13154/tches.v2020.i2.222-244
https://doi.org/10.1007/3-540-44499-8_19
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.46586/tches.v2021.i4.676-707
https://doi.org/10.46586/tches.v2021.i4.676-707
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://doi.org/10.13154/tches.v2018.i1.142-174

116 S. Kundu et al.

41. Proos, J., Zalka, C.: Shor’s discrete logarithm quantum algorithm for elliptic curves.
Quantum Inf. Comput. 3(4), 317–344 (2003). https://doi.org/10.26421/QIC3.4-3

42. Ravi, P., Bhasin, S., Roy, S.S., Chattopadhyay, A.: Drop by Drop you break
the rock - exploiting generic vulnerabilities in Lattice-based PKE/KEMs using
EM-based Physical Attacks. Cryptology ePrint Archive, Report 2020/549 (2020).
https://ia.cr/2020/549

43. Reparaz, O., Sinha Roy, S., Vercauteren, F., Verbauwhede, I.: A masked ring-
LWE implementation. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS,
vol. 9293, pp. 683–702. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48324-4 34

44. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978). http://doi.
acm.org/10.1145/359340.359342

45. Schneider, T., Paglialonga, C., Oder, T., Güneysu, T.: Efficiently masking binomial
sampling at arbitrary orders for lattice-based crypto. In: Lin, D., Sako, K. (eds.)
PKC 2019. LNCS, vol. 11443, pp. 534–564. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-17259-6 18

46. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: 35th Annual Symposium on Foundations of Computer Science, Santa Fe,
New Mexico, USA, 20–22 November 1994, pp. 124–134. IEEE Computer Society
(1994). https://doi.org/10.1109/SFCS.1994.365700

47. Silverman, J.H., Whyte, W.: Timing attacks on NTRUEncrypt via variation in the
number of hash calls. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 208–
224. Springer, Heidelberg (2006). https://doi.org/10.1007/11967668 14

48. Van Beirendonck, M., D’Anvers, J.P., Verbauwhede, I.: Analysis and com-
parison of table-based arithmetic to Boolean masking. 2021(3), 275–297
(2021). https://doi.org/10.46586/tches.v2021.i3.275-297. https://tches.iacr.org/
index.php/TCHES/article/view/8975

49. Waddle, J., Wagner, D.: Towards efficient second-order power analysis. In: Joye,
M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 1–15. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 1

50. Xu, Z., Pemberton, O., Roy, S.S., Oswald, D., Yao, W., Zheng, Z.: Magnifying
side-channel leakage of lattice-based cryptosystems with chosen ciphertexts: the
case study of Kyber. Cryptology ePrint Archive, Report 2020/912 (2020). https://
ia.cr/2020/912

https://doi.org/10.26421/QIC3.4-3
https://ia.cr/2020/549
https://doi.org/10.1007/978-3-662-48324-4_34
https://doi.org/10.1007/978-3-662-48324-4_34
http://doi.acm.org/10.1145/359340.359342
http://doi.acm.org/10.1145/359340.359342
https://doi.org/10.1007/978-3-030-17259-6_18
https://doi.org/10.1007/978-3-030-17259-6_18
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1007/11967668_14
https://doi.org/10.46586/tches.v2021.i3.275-297
https://tches.iacr.org/index.php/TCHES/article/view/8975
https://tches.iacr.org/index.php/TCHES/article/view/8975
https://doi.org/10.1007/978-3-540-28632-5_1
https://ia.cr/2020/912
https://ia.cr/2020/912

	Higher-Order Masked Saber
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Saber
	2.3 uSaber
	2.4 Fujisaki-Okamoto Transformation
	2.5 Higher-Order Masking

	3 Masking Saber
	3.1 Arithmetic Operations
	3.2 Compression
	3.3 Masked Hashing
	3.4 Masked Centered Binomial Sampler
	3.5 Masked Comparison

	4 Masking uSaber
	5 Performance Evaluation
	5.1 Performance Analysis of Comparison Algorithms for Saber
	5.2 Performance Analysis for Masked Saber Decapsulation
	5.3 Performance Analysis for Masked uSaber Decapsulation
	5.4 Comparison with State-of-the-Art

	6 Conclusions
	References

