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Abstract. We show that three popular universal zero-knowledge
SNARKs (Plonk, Sonic, and Marlin) are updatable SRS simulation
extractable NIZKs and signatures of knowledge (SoK) out-of-the-box
avoiding any compilation overhead.

Towards this we generalize results for the Fiat–Shamir (FS) transfor-
mation, which turns interactive protocols into signature schemes, non-
interactive proof systems, or SoK in the random oracle model (ROM).
The security of the transformation relies on rewinding to extract the
secret key or the witness, even in the presence of signing queries for sig-
natures and simulation queries for proof systems and SoK, respectively.
We build on this line of work and analyze multi-round FS for arguments
with a structured reference string (SRS). The combination of ROM and
SRS, while redundant in theory, is the model of choice for the most effi-
cient practical systems to date. We also consider the case where the SRS
is updatable and define a strong simulation extractability notion that
allows for simulated proofs with respect to an SRS to which the adver-
sary can contribute updates.

We define three properties (trapdoor-less zero-knowledge, rewinding-
based knowledge soundness, and a unique response property) that are
sufficient for argument systems based on multi-round FS to be also sim-
ulation extractable in this strong sense. We show that Plonk, Sonic, and
Marlin satisfy these properties, and conjecture that many other argu-
ment systems such as Lunar, Basilisk, and transparent variants of Plonk
fall within the reach of our main theorem.

1 Introduction

Zero-knowledge proof systems, which allow a prover to convince a verifier of
an NP statement R(x,w) without revealing anything else about the witness w
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have broad application in cryptography and theory of computation [7,26,33].
When restricted to computationally sound proof systems, also called argument
systems1, proof size can be shorter than the size of the witness [16]. Zero-
knowledge Succinct Non-interactive ARguments of Knowledge (zkSNARKs) are
zero-knowledge argument systems that additionally have two succinctness prop-
erties: small proof sizes and fast verification. Since their introduction in [47],
zk-SNARKs have been a versatile design tool for secure cryptographic proto-
cols. They became particularly relevant for blockchain applications that demand
short proofs and fast verification for on-chain storage and processing. Starting
with their deployment by Zcash [9], they have seen broad adoption, e.g., for
privacy-preserving cryptocurrencies and scalable and private smart contracts in
Ethereum.

While research on zkSNARKs has seen rapid progress [10,12,13,31,36,37,42,
43,49] with many works proposing significant improvements in proof size, verifier
and prover efficiency, and complexity of the public setup, less attention has been
paid to non-malleable zkSNARKs and succinct signatures of knowledge [18,20]
(sometimes abbreviated SoK or referred to as SNARKY signatures [4,39]).

Relevance of Simulation Extractability. Most zkSNARKs are shown only to sat-
isfy a standard knowledge soundness property. Intuitively, this guarantees that
a prover that creates a valid proof in isolation knows a valid witness. However,
deployments of zkSNARKs in real-world applications, unless they are carefully
designed to have application-specific malleability protection, e.g. [9], require a
stronger property – simulation-extractability (SE) – that corresponds much more
closely to existential unforgeability of signatures.

This correspondence is made precise by SoK, which uses an NP-language
instance as the public verification key. Instead of signing with the secret key,
SoK signing requires knowledge of the NP-witness. Intuitively, an SoK is thus a
proof of knowledge (PoK) of a witness that is tied to a message. In fact, many
signatures schemes, e.g., Schnorr, can be read as SoK for a specific hard relation,
e.g., DL [23]. To model strong existential unforgeability of SoK signatures, even
when given an oracle for obtaining signatures on different instances, an attacker
must not be able to produce new signatures. Chase and Lysyanskaya [20] model
this via the notion of simulation extractability which guarantees extraction of a
witness even in the presence of simulated signatures.

In practice, an adversary against a zkSNARK system also has access to proofs
computed by honest parties that should be modeled as simulated proofs. The
definition of knowledge soundness (KS) ignores the ability of an adversary to
see other valid proofs that may occur in real-world applications. For instance, in
applications of zkSNARKs in privacy-preserving blockchains, proofs are posted
on-chain for all blockchain participants to see. We thus argue that SE is a much
more suitable notion for robust protocol design. We also claim that SE has
primarily an intellectual cost, as it is harder to prove SE than KS—another
analogy here is IND-CCA vs IND-CPA security for encryption. However, we will
show that the proof systems we consider are SE out-of-the-box.
1 We use both terms interchangeably.
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Fiat–Shamir-Based zkSNARKs. Most modern zkSNARK constructions follow
a modular blueprint that involves the design of an information-theoretic inter-
active protocol, e.g. an Interactive Oracle Proof (IOP) [11], that is then com-
piled via cryptographic tools to obtain an interactive argument system. This is
then turned into a zkSNARK using the Fiat-Shamir transform. By additionally
hashing the message, the Fiat-Shamir transform is also a popular technique for
constructing signatures. While well-understood for 3-message sigma protocols
and justifiable in the ROM [6], Fiat–Shamir should be used with care because
there are both counterexamples in theory [34] and real-world attacks in practice
when implemented incorrectly [48].

In particular, several schemes such as Sonic [46], Plonk [28], Marlin [21]
follow this approach where the information-theoretic object is a multi-message
algebraic variant of IOP, and the cryptographic primitive in the compiler is a
polynomial commitment scheme (PC) that requires a trusted setup. To date, this
blueprint lacks an analysis in the ROM in terms of simulation extractability.

Updatable SRS zkSNARKs. One of the downsides of many efficient zkSNARKs
[22,31,36,37,42,43,49] is that they rely on a trusted setup, where there is a
structured reference string (SRS) that is assumed to be generated by a trusted
party. In practice, however, this assumption is not well-founded; if the party that
generates the SRS is not honest, they can produce proofs for false statements. If
the trusted setup assumption does not hold, knowledge soundness breaks down.
Groth et al. [38] propose a setting to tackle this challenge which allows parties –
provers and verifiers – to update the SRS.2 The update protocol takes an existing
SRS and contributes to its randomness in a verifiable way to obtain a new SRS.
The guarantee in this updatable setting is that knowledge soundness holds as
long as one of the parties updating the SRS is honest. The SRS is also universal,
in that it does not depend on the relation to be proved but only on an upper
bound on the size of the statement’s circuit. Although inefficient, as the SRS
size is quadratic in the size of the circuit, [38] set a new paradigm for designing
zkSNARKs.

The first universal zkSNARK with updatable and linear size SRS was Sonic
proposed by Maller et al. in [46]. Subsequently, Gabizon, Williamson, and Ciobo-
taru designed Plonk [28] which currently is the most efficient updatable universal
zkSNARK. Independently, Chiesa et al. [21] proposed Marlin with comparable
efficiency to Plonk.

The Challenge of SE in the Updatable Setting. The notion of simulation-
extractability for zkSNARKs which is well motivated in practice, has not been
studied in the updatable setting. Consider the following scenario: We assume
a “rushing” adversary that starts off with a sequence of updates by malicious
parties resulting in a subverted reference string srs. By combining their trap-
door contributions and employing the simulation algorithm, these parties can
easily compute a proof to obtain a triple (srs, x, π) that convinces the verifier of

2 This can be seen as an efficient player-replaceable [32] multi-party computation.
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a statement x without knowing a witness. Now, assume that at a later stage,
a party produces a triple (srs′, x, π′) for the same statement with respect to an
updated srs′ that has an honest update contribution. We want the guarantee
that this party must know a witness corresponding to x. The ability to “maul”
the proof π from the old SRS to a proof π′ for the new SRS without know-
ing a witness would clearly violate security. The natural idea is to require that
honestly updated reference strings are indistinguishable from honestly generated
reference strings even for parties that previously contributed updates. However,
this is not sufficient as the adversary can also rush toward the end of the SRS
generation ceremony to perform the last update.

A definition of SE in the updatable setting should take these additional
powers of the adversary, which are not captured by existing definitions of SE,
into consideration. While generic compilers [1,41] can be applied to updatable
SRS SNARKs to obtain SE, not only do they inevitably incur overheads and
lead to efficiency loss, we contend that the standard definition of SE does not
suffice in the updatable setting.

1.1 Our Contributions

We investigate the non-malleability properties of zkSNARK protocols obtained
by FS-compiling multi-message protocols in the updatable SRS setting and give
a modular approach to analyze their simulation-extractability. We make the
following contributions:

– Updatable simulation extractability (USE). We propose a definition of simu-
lation extractability in the updatable SRS setting called USE, that captures
the additional power the adversary gets by being able to update the SRS.

– Theorem for USE of FS-compiled proof systems. We define three notions in
the updatable SRS and ROM, trapdoor-less zero-knowledge, a unique response
property, and rewinding-based knowledge soundness. Our main theorem shows
that multi-message FS-compiled proof systems that satisfy these notions are
USE out-of-the box.

– USE for concrete zkSNARKs. We prove that the most efficient updatable SRS
SNARKS – Plonk/Sonic/Marlin – satisfy the premises of our theorem. We
thus show that these zkSNARKs are updatable simulation extractable.

– SNARKY signatures in the updatable setting. Our results validate the folklore
that the Fiat–Shamir transform is a natural means for constructing signatures
of knowledge. This gives rise to the first SoK in the updatable setting and
confirms that a much larger class of zkSNARKs, besides [39], can be lifted to
SoK.

– Broad applicability. The updatable SRS plus ROM includes both the trusted
SRS and the ROM model as special cases. This implies the relevance of our
theorem for transparent zkSNARKs such as Halo2 and Plonky2 that replace
the polynomial commitments of Kate et al. [40] with commitments from Bul-
letproof [17] and STARKs [8], respectively.
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1.2 Technical Overview

At a high level, the proof of our main theorem for updatable simulation
extractability is along the lines of the simulation extractability proof for FS-
compiled sigma protocols from [24]. However, our theorem introduces new
notions that are more general to allow us to consider proof systems that are
richer than sigma protocols and support an updatable setup. We discuss some
of the technical challenges below.

Plonk, Sonic, and Marlin were originally presented as interactive proofs of
knowledge that are made non-interactive via the Fiat–Shamir transform. In the
following, we denote the underlying interactive protocols by P (for Plonk), S
(for Sonic), and M (for Marlin) and the resulting non-interactive proof systems
by PFS, SFS, MFS respectively.

Rewinding-Based Knowledge Soundness (RBKS). Following [24], one
would have to show that for the protocols we consider, a witness can be extracted
from sufficiently many valid transcripts with a common prefix. The standard
definition of special soundness for sigma protocols requires the extraction of a
witness from any two transcripts with the same first message. However, most
zkSNARK protocols do not satisfy this notion. We put forth a notion analo-
gous to special soundness that is more general and applicable to a wider class
of protocols. Namely, protocols compiled using multi-round FS that rely on an
(updatable) SRS. P, S, and M have more than three messages, and the number
of transcripts required for extraction is more than two. Concretely, (3n+ 6) for
Plonk, (n+ 1) for Sonic, and (2n+ 3) for Marlin, where n is the number of con-
straints in the proven circuit. Hence, we do not have a pair of transcripts but a
tree of transcripts.

Furthermore, the protocols we consider are arguments and rely on a SRS that
comes with a trapdoor. An adversary in possession of the trapdoor can produce
multiple valid proof transcripts potentially for false statements without knowing
any witness. This is true even in the updatable setting, where a trapdoor still
exists for any updated SRS. Recall that the standard special soundness defini-
tion requires witness extraction from any suitably structured tree of accepting
transcripts. This means that there are no such trees for false statements.

Instead, we give a rewinding-based knowledge soundness definition with an
extractor that proceeds in two steps. It first uses a tree building algorithm T to
obtain a tree of transcripts. In the second step, it uses a tree extraction algorithm
Extks to compute a witness from this tree. Tree-based knowledge soundness guar-
antees that it is possible to extract a witness from all (but negligibly many) trees
of accepting transcripts produced by probabilistic polynomial time (PPT) adver-
saries. That is, if extraction from such a tree fails, then we break an underlying
computational assumption. Moreover, this should hold even against adversaries
that contribute to the SRS generation.

Unique Response Protocols (UR). Another property required to show sim-
ulation extractability is the unique response property which says that for 3-
message sigma protocols, the response of the prover (3-rd message) is determined
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by the first message and the challenge [25] (intuitively, the prover can only
employ fresh randomness in the first message of the protocol). We cannot use this
definition since the protocols we consider have multiple rounds of randomized
prover messages. In Plonk, both the first and the third messages are random-
ized. Although the Sonic prover is deterministic after it picks its first message,
the protocol has more than 3 messages. The same holds for Marlin. We propose
a generalization of the unique response property called k-UR. It requires that
the behavior of the prover be determined by the first k of its messages. For our
proof, it is sufficient that Plonk is 3-UR, and Sonic and Marlin are 2-UR.

Trapdoor-Less Zero-Knowledge (TLZK). The premises of our main the-
orem include two computational properties that do not mention a simulator,
RBKS and UR. The theorem states that together with a suitable property for
the simulator of the zero-knowledge property, they imply USE. Our key tech-
nique is to simulate simulation queries when reducing to RBKS and UR. For
this it is convenient that the zero-knowledge simulator be trapdoor-less, that is
can produce proofs without relying on the knowledge of the trapdoor. Simula-
tion is based purely on the simulators early control over the challenge. In the
ROM this corresponds to a simulator that programs the random oracle and can
be understood as a generalization of honest-verifier zero-knowledge for multi-
message Fiat–Shamir transformed proof systems with an SRS. We say that such
a proof system is k-TLZK, if the simulator only programs the k-th challenge and
we construct such simulators for PFS, SFS, and MFS.

Technically we will make use of the k-UR property together with the k-TLZK
property to bound the probability that the tree produced by the tree builder T
of RBKS contains any programmed random oracle queries.

1.3 Related Work

There are many results on simulation extractability for non-interactive zero-
knowledge proofs (NIZKs). First, Groth [35] noticed that a (black-box) SE NIZK
is universally-composable (UC) [19]. Then Dodis et al. [23] introduced a notion
of (black-box) true simulation extractability (i.e., SE with simulation of true
statements only) and showed that no NIZK can be UC-secure if it does not have
this property.

In the context of zkSNARKs, the first SE zkSNARK was proposed by Groth
and Maller [39] and a SE zkSNARK for QAP was designed by Lipmaa [44].
Kosba et al. [41] give a general transformation from a NIZK to a black-box SE
NIZK. Although their transformation works for zkSNARKs as well, the suc-
cinctness of the proof system is not preserved by this transformation. Abdol-
maleki et al. [1] showed another transformation that obtains non-black-box sim-
ulation extractability but also preserves the succinctness of the argument. The
zkSNARK of [37] has been shown to be SE by introducing minor modifications
to the construction and making stronger assumptions [2,15]. Recently, [4] showed
that the Groth’s original proof system from [37] is weakly SE and randomizable.
None of these results are for zkSNARKs in the updatable SRS setting or for
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zkSNARKs obtained via the Fiat–Shamir transformation. The recent work of [30]
shows that Fiat–Shamir transformed Bulletproofs are simulation extractable.
While they show a general theorem for multi-round protocols, they do not con-
sider a setting with an SRS, and are therefore inapplicable to zkSNARKs in the
updatable SRS setting.

2 Definitions and Lemmas for Multi-message SRS-Based
Protocols

Simulation-Extractability for Multi-message Protocols. Most recent SNARK
schemes follow the same blueprint of constructing an interactive information-
theoretic proof system that is then compiled into a public coin computation-
ally sound scheme using cryptographic tools such as polynomial commitments,
and finally made non-interactive via the Fiat–Shamir transformation. Existing
results on simulation extractability (for proof systems and signatures of knowl-
edge) for Fiat–Shamir transformed systems work for 3-message protocols without
reference string that require two transcripts for standard model extraction, e.g.,
[24,45,50].

In this section, we define properties that are necessary for our analysis of
multi-message protocols with a universal updatable SRS. In order to prove
simulation-extractability for such protocols, we require more than just two tran-
scripts for extraction. Moreover, in the updatable setting we consider protocols
that rely on an SRS where the adversary gets to contribute to the SRS. We first
recall the updatable SRS setting and the Fiat-Shamir transform for (2μ + 1)-
message protocols. Next, we define trapdoor-less zero-knowledge and simulation-
extractability which we base on [24] adapted to the updatable SRS setting. Then,
to support multi-message SRS-based protocols compiled using the Fiat–Shamir
transform, we generalize the unique response property, and define a notion of
computational special soundness called rewinding-based knowledge soundness.

Let P and V be PPT algorithms, the former called the prover and the latter
the verifier of a proof system. Both algorithms take a pre-agreed structured
reference string srs as input. The structured reference strings we consider are
(potentially) updatable, a notion we recall shortly. We focus on proof systems
made non-interactive via the multi-message Fiat–Shamir transform presented
below where prover and verifier are provided with a random oracle H. We denote
by π a proof created by P on input (srs, x,w). We say that proof is accepting if
V(srs, x, π) accepts it.

Let R(A) denote the set of random tapes of correct length for adversary A
(assuming the given value of security parameter λ), and let r ←$R(A) denote
the random choice of tape r from R(A).
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Fig. 1. The oracle defines the notion of updatable SRS setup.

2.1 Updatable SRS Setup Ceremonies

The definition of updatable SRS ceremonies of [38] requires the following algo-
rithms.

– (srs, ρ) ← GenSRS(R) is a PPT algorithm that takes a relation R and outputs
a reference string srs, and correctness proof ρ.

– (srs′, ρ′) ← UpdSRS(srs, {ρj}n
j=1) is a PPT algorithm that takes a srs, a list

of update proofs and outputs an updated srs′ together with a proof of correct
update ρ′.

– b ← VerifySRS(srs, {ρj}n
j=1) takes a reference string srs, a list of update proofs,

and outputs a bit indicating acceptance or not.3

In the next section, we define security notions in the updatable setting by
giving the adversary access to an SRS update oracle UpdO, defined in Fig. 1.
The oracle allows the adversary to control the SRS generation. A trusted setup
can be expressed by the updatable setup definition simply by restricting the
adversary to only call the oracle on intent = setup and intent = final. Note
that a soundness adversary now has access to both the random oracle H and
UpdO: (x, π) ← AUpdO,H(1λ; r).

Remark on Universality of the SRS. The proof systems we consider in this work
are universal. This means that both the relation R and the reference string
srs allows to prove arithmetic constraints defined over a particular field up to
some size bound. The public instance x must determine the constraints. If R
comes with any auxiliary input, the latter is benign. We elide public prepro-
cessing of constraint specific proving and verification keys. While important for
performance, this modeling is not critical for security.

2.2 Multi-message Fiat-Shamir Compiled Provers and Verifiers

Given interactive prover and (public coin) verifier P′,V′ that exchange messages
resulting in transcript π̃ = (a1, c1, . . . , aμ, cμ, aμ+1), where ai comes from P′

and ci comes from V′, the (2μ + 1)-message Fiat-Shamir heuristic defines non-
interactive provers and verifiers P,V as follows:
3 For instance Plonk and Marlin will use the GenSRS, UpdSRS and VerifySRS algo-

rithms in Fig. 2.
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Fig. 2. Updatable SRS scheme SRS for PCP

– P behaves as P′ except after sending message ai, i ∈ [1 .. μ], the prover does
not wait for the message from the verifier but computes it locally setting
ci = H(π̃[0..i]), where π̃[0..j] = (x, a1, c1, . . . , aj−1, cj−1, aj).4
P outputs the non-interactive proof π = (a1, . . . , aμ, aμ+1), that omits chal-
lenges as they can be recomputed using H.

– V takes x and π as input and behaves as V′ would but does not provide
challenges to the prover. Instead it computes the challenges locally as P would,
starting from π̃[0..1] = (x, a1) which can be obtained from x and π. Then it
verifies the resulting transcript π̃ as the verifier V′ would.

We note that since the verifier can compute the challenges by querying the
random oracle, they do not need to be sent by the prover. Thus the π - π̃
notational distinction.

Notation for (2μ + 1)-message Fiat–Shamir transformed proof systems. Let
SRS = (GenSRS,UpdSRS,VerifySRS) be the algorithm of an updatable SRS cer-
emony. All our definitions and theorems are about non-interactive proof systems
Ψ = (SRS,P,V,Sim) compiled via the (2μ + 1)-message FS transform. That is
π = (a1, . . . , aμ, aμ+1) and π̃ = (a1, c1, . . . , aμ, cμ, aμ+1), with ci = H(π̃[0..i]).
We use π̃[0] for instance x and π̃[i], π̃[i].ch to denote prover message ai and
challenge ci respectively.

4 For Fiat–Shamir based SoK the message signed m is added to x before hashing.
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Fig. 3. Simulation oracles: srs is the finalized SRS, only SimO.P′ allows for simulation
of false statements

2.3 Trapdoor-Less Zero-Knowledge (TLZK)

We call a protocol trapdoor-less zero-knowledge (TLZK) if there exists a simula-
tor that does not require the trapdoor, and works by programming the random
oracle. Moreover, the simulator may only be allowed to program the random
oracle on point π̃[0, k], that is the simulator can only program the challenges
that come after the k-th prover message. We call protocols which allow for such
a simulation k-programmable trapdoor-less zero-knowledge.

Our definition of zero-knowledge for non-interactive arguments is in the pro-
grammable ROM. We model this using the oracles from Fig. 3 that provide
a stateful wrapper around Sim. SimO.H(x) simulates H using lazy sampling,
SimO.Prog(x, h) allows for programming the simulated H and is available only
to Sim. SimO.P(x,w) and SimO.P′(x) call the simulator. The former is used in
the zero-knowledge definition and requires the statement and witness to be in
the relation, the latter is used in the simulation extraction definition and does
not require a witness input.

Definition 1 (Updatable k-Programmable Trapdoor-Less Zero-Know-
ledge). Let ΨFS = (SRS,P,V,Sim) be a (2μ+1)-message FS-transformed NIZK
proof system with an updatable SRS setup. We call ΨFS trapdoor-less zero-
knowledge with security εzk if for any adversary A, |ε0(λ) − ε1(λ)| ≤ εzk(λ),
where

ε0(λ) = Pr
[
AUpdO,H,P(1λ)

]
, ε1(λ) = Pr

[
AUpdO,SimO.H,SimO.P(1λ)

]
.

If εzk(λ) is negligible, we say ΨFS is trapdoor-less zero-knowledge. Addition-
ally, we say that ΨFS is k-programmable, if Sim before returning a proof π only
calls SimO.Prog on (π̃[0..k], h). That is, it only programs the k-th message.

Remark 1 (TLZK vs HVZK). We note that TLZK notion is closely related to
honest-verifier zero-knowledge in the standard model. That is, if we consider
an interactive proof system Ψ that is HVZK in the standard model then ΨFS

is TLZK. This comes as the simulator Sim in Ψ produces a valid simulated
proof by picking verifier’s challenges according to a predefined distribution and
ΨFS’s simulator SimFS produces its proofs similarly by picking the challenges and
additionally programming the random oracle to return the picked challenges.
Importantly, in both Ψ and ΨFS success of the simulator does not depend on
access to an SRS trapdoor.
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We note that Plonk is 3-programmable TLZK, and Sonic and Marlin are
2-programmable TLZK. This follows directly from the proofs of their standard
model zero-knowledge property in Lemma 5 and lemmas 11 and 14 in the full
version [29].

2.4 Updatable Simulation Extractability (USE)

We note that the zero-knowledge property is only guaranteed for statements in
the language. For simulation extractability where the simulator should be able
to provide simulated proofs for false statements as well, we thus use the oracle
SimO.P′5.

Definition 2 (Updatable Simulation Extractability). Let ΨNI = (SRS,P,
V,Sim) be a NIZK proof system with an updatable SRS setup. We say that ΨNI is
updatable simulation-extractable with security loss εse(λ, acc, q) if for any PPT
adversary A that is given oracle access to setup oracle UpdO and simulation
oracle SimO and that produces an accepting proof for ΨNI with probability acc,
where

acc = Pr
[
V(srs, x, π) = 1

∧(x, π) �∈ Q

∣
∣
∣
∣

r ←$R(A)
(x, π) ← AUpdO,SimO.H,SimO.P′

(1λ; r)

]

there exists an expected PPT extractor Extse such that

Pr

⎡
⎣
V(srs, x, π) = 1,

(x, π) �∈ Q,
R(x,w) = 0

∣∣∣∣∣
r ←$R(A), (x, π) ← AUpdO,SimO.H,SimO.P′

(1λ; r)

w ← Extse(srs, A, r, Qsrs, QH, Q)

⎤
⎦ ≤ εse(λ, acc, q)

Here, srs is the finalized SRS. List Qsrs contains all (srs, ρ) of update SRSs and
their proofs, list QH contains all A’s queries to SimO.H and the (simulated)
random oracle’s answers, |QH| ≤ q, and list Q contains all (x, π) pairs where
x is an instance queried to SimO.P′ by the adversary and π is the simulator’s
answer.

2.5 Unique Response (UR) Protocols

A technical hurdle identified by Faust et al. [24] for proving simulation extraction
via the Fiat–Shamir transformation is that the transformed proof system satisfies
a unique response property. The original formulation by Fischlin, although suit-
able for applications presented in [24,25], does not suffice in our case. First, the
property assumes that the protocol has three messages, with the second being
the challenge from the verifier. That is not the case we consider here. Second, it
is not entirely clear how to generalize the property. Should one require that after
the first challenge from the verifier, the prover’s responses are fixed? That does

5 Note, that simulation extractability property where the simulator is required to give
simulated proofs for true statements only is called true simulation extractability.
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not work since the prover needs to answer differently on different verifier’s chal-
lenges, as otherwise the protocol could have fewer messages. Another problem is
that the protocol could have a message, beyond the first prover’s message, which
is randomized. Unique response cannot hold in this case. Finally, the protocols
we consider here are not in the standard model, but use an SRS.

We work around these obstacles by providing a generalized notion of the
unique response property. More precisely, we say that a (2μ + 1)-message pro-
tocol has unique responses from k, and call it a k-UR-protocol, if it follows the
definition below:

Definition 3 (Updatable k-Unique Response Protocol). Let ΨFS =
(SRS,P,V,Sim) be a (2μ + 1)-message FS-transformed NIZK proof system with
an updatable SRS setup. Let H be the random oracle. We say that ΨFS has unique
responses for k with security εur(λ) if for any PPT adversary Aur:

Pr

[
π �= π′, π̃[0..k] = π̃′[0..k],
V′(srs, x, π, c) = V′(srs, x, π′, c) = 1

∣
∣
∣
∣
∣
(x, π, π′, c) ← AUpdO,H

ur (1λ)

]

≤ εur(λ)

where srs is the finalized SRS and V′(srs, x, π = (a1, . . . , aμ, aμ+1)) behaves as
V(srs, x, π) except for using c as the k-th challenge instead of calling H(π̃[0..k]).
Thus, A can program the k-th challenge. We say ΨFS is k-UR, if εur(λ) is negli-
gible.

Intuitively, a protocol is k-UR if it is infeasible for a PPT adversary to produce
a pair of accepting proofs π �= π′ that are the same on the first k messages of
the prover.

The definition can be easily generalized to allow for programming the oracle
on more than just a single point. We opted for this simplified presentation, since
all the protocols analyzed in this paper require only single-point programming,

2.6 Rewinding-Based Knowledge Soundness (RBKS)

Before giving the definition of rewinding-based knowledge soundness for NIZK
proof systems compiled via the (2μ + 1)-message FS transformation, we first
recall the notion of a tree of transcripts.

Definition 4 (Tree of accepting transcripts, cf. [14]). A (n1, . . . , nμ)-tree
of accepting transcripts is a tree where each node on depth i, for i ∈ [1 .. μ + 1],
is an i-th prover’s message in an accepting transcript; edges between the nodes
are labeled with challenges, such that no two edges on the same depth have the
same label; and each node on depth i has ni − 1 siblings and ni+1 children.
The tree consists of N =

∏μ
i=1 ni branches, where N is the number of accepting

transcripts. We require N = poly(λ). We refer to a (1, . . . , nk = n, 1, . . . , 1)-tree
as a (k, n)-tree.

The existence of simulation trapdoor for P, S and M means that they are
not special sound in the standard sense. We therefore put forth the notion of
rewinding-based knowledge soundness that is a computational notion. Note that
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in the definition below, it is implicit that each transcript in the tree is accepting
with respect to a “local programming” of the random oracle. However, the verifi-
cation of the proof output by the adversary is with respect to a non-programmed
random oracle.

Definition 5 (Updatable Rewinding-Based Knowledge Soundness).
Let n1, . . . , nμ ∈ N. Let ΨFS = (SRS,P,V,Sim) be a (2μ + 1)-message FS-
transformed NIZK proof system with an updatable SRS setup for relation R. Let
H be the random oracle. We require existence of an expected PPT tree builder T
that eventually outputs a T which is either a (n1, . . . , nμ)-tree of accepting tran-
script or ⊥ and a PPT extractor Extks. Let adversary Aks be a PPT algorithm,
that outputs a valid proof with probability at least acc, where

acc = Pr
[
V(srs, x, π) = 1

∧(x, π) �∈ Q

∣
∣
∣
∣

r ←$R(Aks)
(x, π) ← AUpdO,H

ks (1λ; r)

]
.

We say that ΨFS is (n1, . . . , nμ)-rewinding-based knowledge sound with security
loss εks(λ, acc, q) if

Pr

⎡
⎢⎣V(srs, x, π) = 1,

R(x,w) = 0

∣∣∣∣∣∣∣

r ←$R(Aks),

(srs, x, ·) ← AUpdO,H
ks (1λ; r)

T ← T (srs, Aks, r, Qsrs, QH),w ← Extks(T)

⎤
⎥⎦ ≤ εks(λ, acc, q).

Here, srs is the finalized SRS. List Qsrs contains all (srs, ρ) of updated SRSs and
their proofs, and list QH contains all of the adversaries queries to H and the
random oracle’s answers, |QH| ≤ q.

3 Simulation Extractability—The General Result

Equipped with the definitional framework of Sect. 2, we now present the main
result of this paper: a proof of simulation extractability for multi-message Fiat–
Shamir-transformed NIZK proof systems.

Without loss of generality, we assume that whenever the accepting proof
contains a response to a challenge from a random oracle, then the adversary
queried the oracle to get it. It is straightforward to transform any adversary that
violates this condition into an adversary that makes these additional queries to
the random oracle and wins with the same probability.

The core conceptual insight of the proof is that the k-unique response and
k-programmable trapdoor-less zero-knowledge properties together ensures that
the k-th move challenges in the trees of rewinding-based knowledge soundness
are fresh and do not come from the simulator. This allows us to eliminate the
simulation oracle in our rewinding argument and enables us to use the existing
results of [3] in later sections.

Theorem 1 (Simulation-extractable multi-message protocols). Let
ΨFS = (SRS,P,V,Sim) be a (2μ+1)-message FS-transformed NIZK proof system
with an updatable SRS setup. If ΨFS is an updatable k-unique response protocol
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with security loss εur, updatable k-programmable trapdoor-less zero-knowledge,
and updatable rewinding-based knowledge sound with security loss εks; Then ΨFS

is updatable simulation-extractable with security loss

εse(λ, acc, q) ≤ εks(λ, acc − εur(λ), q)

against any PPT adversary A that makes up to q random oracle queries and
returns an accepting proof with probability at least acc.

Proof. Let (x, π) ← AUpdO,SimO.H,SimO.P′
(rA) be the USE adversary. We show

how to build an extractor Extse(srs,A, rA, Q,QH, Qsrs) that outputs a witness w,
such that R(x,w) holds with high probability. To that end we define an algo-
rithm AUpdO,H

ks (r) against rewinding-based knowledge soundness of ΨFS that runs
internally AUpdO,SimO.H,SimO.P′

(rA). Here r = (rSim, rA) with rSim the randomness
that will be used to simulate SimO.P′.

The code of AUpdO,H
ks (r) hardcodes Q such that it does not use any ran-

domness for proofs in Q as long as statements are queried in order. In this
case it simply returns a proof πSim from Q but nevertheless queries SimO.Prog
on (π̃Sim[0..k], π̃Sim[k].ch), i.e. it programs the k-th challenge. While it is hard
to construct such an adversary without knowing Q, it clearly exists and Extse
has the necessary inputs to construct Aks. This hardcoding guarantees that Aks

returns the same (x, π) as A in the experiment. Eventually, Extse uses the tree
builder T and extractor Extks for Aks to extract the witness for x. Both guar-
anteed to exist (and be successful with high probability) by rewinding-based
knowledge soundness. This high-level argument shows that Extse exists as well.

We now give the details of the simulation that guarantees that Aks is suc-
cessful whenever A is—except with a small security loss that we will bound
later: Since Aks runs A internally, it needs to take care of A’s oracle queries.
Aks passes on queries of A to the update oracle UpdO to its own UpdO oracle
and returns the result to A. Aks internally simulates (non-hardcoded) queries
to the simulator SimO.P′ by running the Sim algorithm on randomness rSim of
its tape. Sim requires access to oracles SimO.H to compute a challenge honestly
and SimO.Prog to program a challenge. Again Aks simulates both of these oracles
internally, cf. Fig. 4, this time using the H oracle of Aks. Note that queries of A
to SimO.H are not programmed, but passed on to H.

Importantly, all challenges in simulated proofs, up to round k are also com-
puted honestly, i.e. π̃[i].ch = H(π̃[0..i]), for i < k.

Fig. 4. Simulating random oracle calls.
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Eventually, A outputs an instance and proof (x, π). Aks returns the same
values as long as π̃[0..i] /∈ Qprog, i ∈ [1, μ]. This models that the proof output
by Aks must not contain any programmed queries as such a proof would not be
consistent to H in the RBKS experiment. If A outputs a proof that does contain
programmed challenges, then Aks aborts. We denote this event by E.

Lemma 1. Probability that E happens is upper-bounded by εur(λ).

Proof. We build an adversary AUpdO,H
ur (λ; r) that has access to the random oracle

H and update oracle UpdO. Aur uses Aks to break the k-UR property of ΨFS.
When Aks outputs a proof π for x such that E holds, Aur looks through

lists Q and QH until it finds π̃Sim[0..k] such that π̃[0..k] = π̃Sim[0..k] and a pro-
grammed random oracle query π̃Sim[k].ch on π̃Sim[0..k]. Aur returns two proofs π
and πSim for x, and the challenge π̃Sim[k].ch = π̃[k].ch. Importantly, both proofs
are w.r.t the unique response verifier. The first, since it is a correctly com-
puted simulated proof for which the unique response property definition allows
any challenges at k. The latter, since it is an accepting proof produced by the
adversary. We have that π �= πSim as otherwise A does not win the simulation
extractability game as π ∈ Q. On the other hand, if the proofs are different, then
Aur breaks k-UR-ness of ΨFS. This happens only with probability εur(λ). �	

We denote by ãcc the probability that Aks outputs an accepting proof. We
note that by up-to-bad reasoning ãcc is at most εur(λ) far from the probability
that A outputs an accepting proof. Thus, the probability that Aks outputs an
accepting proof is at least ãcc ≥ acc−εur(λ). Since ΨFS is εks(λ, ãcc, q) rewinding-
based knowledge sound, there is a tree builder T and extractor Extks that rewinds
Aks to obtain a tree of accepting transcripts T and fails to extract the witness
with probability at most εks(λ, ãcc, q). The extractor Extse outputs the witness
with the same probability.

Thus εse(λ, acc, q) = εks(λ, ãcc, q) ≤ εks(λ, acc − εur, q). �	

Remark 2. Observe that our theorem does not depend on εzk(λ). There is no
real prover algorithm P in the experiment. Only the k-programmability of TLZK
matters.

Remark 3. Observe that the theorem does not prescribe a tree shape for the
tree builder T . Interestingly, in our concrete results T outputs a (k, ∗)-tree of
accepting transcripts.

4 Concrete SNARKs Preliminaries

Bilinear groups. A bilinear group generator Pgen(1λ) returns public parameters
p = (p,G1,G2,GT , ê, [1]1 , [1]2), where G1, G2, and GT are additive cyclic groups
of prime order p = 2Ω(λ), [1]1 , [1]2 are generators of G1, G2, resp., and ê :
G1×G2 → GT is a non-degenerate PPT-computable bilinear pairing. We assume
the bilinear pairing to be Type-3, i.e., that there is no efficient isomorphism
from G1 to G2 or from G2 to G1. We use the by now standard bracket notation,
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i.e., we write [a]ι to denote a [1]ι. We denote ê([a]1 , [b]2) as [a]1 • [b]2. Thus,
[a]1 • [b]2 = [ab]T . Since every algorithm A takes as input the public parameters
we skip them when describing A’s input. Similarly, we do not explicitly state
that each protocol starts by running Pgen.

4.1 Algebraic Group Model

The algebraic group model (AGM) of Fuchsbauer, Kiltz, and Loss [27] lies some-
what between the standard and generic bilinear group model. In the AGM it is
assumed that an adversary A can output a group element [y] ∈ G if [y] has been
computed by applying group operations to group elements given to A as input.
It is further assumed, that A knows how to “build” [y] from those elements. More
precisely, the AGM requires that whenever A([x]) outputs a group element [y]
then it also outputs c such that [y] = c� · [x]. Plonk, Sonic and Marlin have been
shown secure using the AGM. An adversary that works in the AGM is called
algebraic.

Ideal Verifier and Verification Equations. Let (SRS,P,V,Sim) be a proof
system. Observe that the SRS algorithms provide an SRS which can be inter-
preted as a set of group representation of polynomials evaluated at trapdoor
elements. That is, for a trapdoor χ the SRS contains [p1(χ), . . . , pk(χ)]1, for
some polynomials p1(X), . . . , pk(X) ∈ Fp[X]. The verifier V accepts a proof π for
instance x if (a set of) verification equation vex,π (which can also be interpreted
as a polynomial in Fp[X] whose coefficients depend on messages sent by the
prover) zeroes at χ. Following [28] we call verifiers who check that vex,π(χ) = 0
real verifiers as opposed to ideal verifiers who accept only when vex,π(X) = 0.
That is, while a real verifier accepts when a polynomial evaluates to zero, an
ideal verifier accepts only when the polynomial is zero.

Although ideal verifiers are impractical, they are very useful in our proofs.
More precisely, we show that the idealized verifier accepts an incorrect proof
(what “incorrect” means depends on the situation) with at most negligible prob-
ability (and in many cases—never); when the real verifier accepts, but not the
idealized one, then a malicious prover can be used to break the underlying secu-
rity assumption (in our case—a variant of dlog.)

Analogously, idealized verifier can be defined for polynomial commitment
schemes.

4.2 Dlog Assumptions in Standard and Updatable Setting

Definition 6 ((q1, q2)-dlog assumption). Let A be a PPT adversary that gets
as input [1, χ, . . . , χq1 ]1 , [1, χ, . . . , χq2 ]2, for some randomly picked χ ∈ Fp, the
assumption requires that A cannot compute χ. That is

Pr[χ = A([1, χ, . . . , χq1 ]1 , [1, χ, . . . , χq2 ]2) |χ←$Fp ] ≤ negl(λ).

Since all our protocols and security notions are in the updatable setting, it
is natural to define the dlog assumptions also in the updatable setting. That is,
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instead of being given a dlog challenge the adversary A is given access to an
update oracle as defined in Fig. 1. The honestly generated SRS is set to be a
dlog challenge and the update algorithm UpdSRS re-randomizing the challenge.
We define this assumptions and show a reduction between the assumptions in
the updatable and standard setting.

Note that for clarity we here refer to the SRS by Ch. Further, to avoid clut-
tering notation, we do not make the update proofs explicit. They are generated
in the same manner as the proofs in Fig. 2.

Definition 7 ((q1, q2)-udlog assumption). Let A be a PPT adversary that gets
oracle access to UpdO with internal algorithms (GenSRS,UpdSRS,VerifySRS),
where GenSRS and UpdSRS are defined as follows:

– GenSRS(λ) samples χ←$Fp and defines Ch := ([1, χ, . . . , χq1 ]1 , [1, χ, . . . ,
χq2 ]2).

– UpdSRS(Ch, {ρj}n
j=1) parses Ch as

(
[{Ai}q1

i=0]1 , [{Bi}q2
i=0]2

)
, samples χ̃←$Fp,

and defines C̃h :=
([

{χ̃iAi}q1
i=0

]
1
,
[
{χ̃iBi}q2

i=0

]
2

)
.

Then Pr
[
χ̄ ← AUpdO(λ)

]
≤ negl(λ), where

([
{χ̄i}q1

i=0

]
1
,
[
{χ̄i}q2

i=0

]
2

)
is the final

Ch.

Remark 4 (Single adversarial updates after an honest setup.). As an alternative
to the updatable setting defined in Fig. 1, one can consider a slightly different
model of setup, where the adversary is given an initial honestly-generated SRS
and is then allowed to perform a malicious update in one-shot fashion. Groth et
al. show in [38] that the two definitions are equivalent for polynomial commit-
ment based SNARKs. We use this simpler definition in our reductions.

In the full version [29], we show a reduction from (q1, q2)-dlog assumption to
its variant in the updatable setting (with single adversarial update).

Generalized Forking Lemma. Although dubbed “general”, the forking lemma
of [5] is not general enough for our purpose as it is useful only for protocols where
a witness can be extracted from just two transcripts. To be able to extract a
witness from, say, an execution of P we need at least (3n+6) valid proofs (where
n is the number of constrains), (n + 1) for S, and 2n + 3 for M. Here we use a
result by Attema et al. [3]6 which lower-bounds the probability of generating a
tree of accepting transcripts T. We restate their Proposition 2 in our notation:

Lemma 2 (Run Time and Success Probability). Let N = n1 · · · · · nμ and
p = 2Ω(λ). Let εerr(λ) = 1−

∏μ
i=1

(
1 − ni−1

p

)
. Assume adversary A that makes up

to q random oracle queries and outputs an accepting proof with probability at least
acc. There exists a tree building algorithm T for (n1, . . . , nμ)-trees that succeeds

6 An earlier versions had its own forking lemma generalization. Attema et al. has a
better bound.
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in building a tree of accepting transcripts in expected running time N + q(N −1)
with probability at least

acc − (q + 1)εerr(λ)
1 − εerr(λ)

.

Opening Uniqueness of Batched Polynomial Commitment Openings.
To show the unique response property required by our main theorem we show
that the polynomial commitment schemes employed by concrete proof systems
have unique openings, which, intuitively, assures that there is only one valid
opening for a given committed polynomial and evaluation point:

Definition 8 (Unique opening property). Let m ∈ N be the number of
committed polynomials, l ∈ N number of evaluation points, c ∈ G

m be the com-
mitments, z ∈ F

l
p be the arguments the polynomials are evaluated at, Kj set of

indices of polynomials which are evaluated at zj, si vector of evaluations of fi,
and oj ,o

′
j ∈ F

Kj
p be the commitment openings. Then for every PPT adversary A

Pr

⎡

⎣
Verify(srs, c,z, s,o) = 1,
Verify(srs, c,z, s,o′) = 1,

o �= o′

∣
∣
∣
∣
∣
(c,z, s,o,o′) ← AUpdO(max)

⎤

⎦ ≤ negl(λ) .

We show that the polynomial commitment schemes of Plonk, Sonic, and
Marlin satisfy this requirement in the full version [29].

Remark 5. In the full version [29], we presents efficient variants of KZG [40]
polynomial commitment schemes used in Plonk, Sonic and Marlin that sup-
port batched verification. Algorithms Com, Op, Verify take vectors as input and
receive an additional arbitrary auxiliary string. This adversarially chosen string
only provides additional context for the computation of challenges and allows
reconstruction of proof transcripts π̃[0..i] for batch challenge computations. We
treat auxiliary input implicitly in the definition above.

5 Non-malleability of Plonk

In this section, we show that PFS is simulation-extractable. To this end, we
first use the unique opening property to show that PFS has the 3-UR property,
cf. Lemma 3. Next, we show that PFS is rewinding-based knowledge sound. That
is, given a number of accepting transcripts whose first 3 messages match, we can
either extract a witness for the proven statement or use one of the transcripts
to break the udlog assumption. This result is shown in the AGM, cf. Lemma
4. We then show that PFS is 3-programmable trapdoor-less ZK in the AGM,
cf. Lemma 5.

Given rewinding-based knowledge soundness, 3-UR and trapdoor-less zero-
knowledge of PFS, we invoke Theorem 1 and conclude that PFS is simulation-
extractable.
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5.1 Plonk Protocol Description

The Constraint System. Assume C is a fan-in two arithmetic circuit, whose
fan-out is unlimited and has n gates and m wires (n ≤ m ≤ 2n). The constraint
system of Plonk is defined as follows:

– Let V = (a, b, c), where a, b, c ∈ [1 ..m]n. Entries ai, bi, ci represent indices
of left, right and output wires of the circuit’s i-th gate.

– Vectors Q = (qL , qR , qO , qM , qC ) ∈ (Fn)5 are called selector vectors: (a) If
the i-th gate is a multiplication gate then qL i = qR i = 0, qM i = 1, and
qO i = −1. (b) If the i-th gate is an addition gate then qL i = qR i = 1,
qM i = 0, and qO i = −1. (c) qC i = 0 for multiplication and addition gates.7

We say that vector x ∈ F
m satisfies constraint system if for all i ∈ [1 .. n]

qL i · xai
+ qR i · xbi

+ qO · xci
+ qM i · (xai

xbi
) + qC i = 0.

Public inputs (xj)
�
j=1 are enforced by adding the constrains

ai = j, qL i = 1, qM i = qR i = qO i = 0, qC i = −xj ,

for some i ∈ [1 .. n].

Algorithms Rolled Out. Plonk argument system is universal. That is, it allows
to verify computation of any arithmetic circuit which has up to n gates using
a single SRS. However, to make computation efficient, for each circuit there is
a preprocessing phase which extends the SRS with circuit-related polynomial
evaluations.

For the sake of simplicity of the security reductions presented in this paper,
we include in the SRS only these elements that cannot be computed without
knowing the secret trapdoor χ. The rest of the preprocessed input can be com-
puted using these SRS elements. We thus let them to be computed by the prover,
verifier, and simulator separately.

Plonk SRS generating algorithm GenSRS(R): The SRS generating algorithm
picks at random χ←$Fp, computes and outputs srs =

([
{χi}n+5

i=0

]
1
, [χ]2

)
.

Preprocessing: Let H = {ωi}ni=1 be a (multiplicative) n-element subgroup of a
field F compound of n-th roots of unity in F. Let Li(X) be the i-th element of an
n-elements Lagrange basis. During the preprocessing phase polynomials Sidj,Sσj,
for j ∈ [1 .. 3], are computed:

Sid1(X) = X,

Sid2(X) = k1 · X,

Sid3(X) = k2 · X,

Sσ1(X) =
∑n

i=1 σ(i)Li(X),
Sσ2(X) =

∑n
i=1 σ(n+ i)Li(X),

Sσ3(X) =
∑n

i=1 σ(2n+ i)Li(X).

7 The qC i selector vector is meant to encode (input independent) constants.
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Coefficients k1, k2 are such that H, k1 · H, k2 · H are different cosets of F∗, thus
they define 3 · n different elements. Gabizon et al. [28] notes that it is enough to
set k1 to a quadratic residue and k2 to a quadratic non-residue.

Furthermore, we define polynomials qL, qR, qO, qM, qC such that

qL(X) =
∑n

i=1qL iLi(X),
qR(X) =

∑n
i=1 qR iLi(X),

qM(X) =
∑n

i=1 qM iLi(X),

qO(X) =
∑n

i=1 qO iLi(X),
qC(X) =

∑n
i=1 qC iLi(X).

Proving Statements in PFS. We show how prover’s algorithm P(srs, x =
(w′

i)
�
i=1 ,w = (wi)

3·n
i=1) operates for the Fiat–Shamir transformed version of Plonk.

Note that for notational convenience w also contains the public input wires
w′

i = wi, i ∈ [1 .. 	].
Message 1. Sample b1, . . . , b9 ←$Fp; compute a(X), b(X), c(X) as

a(X) = (b1X + b2)ZH(X) +
∑n

i=1 wiLi(X)
b(X) = (b3X + b4)ZH(X) +

∑n
i=1 wn+iLi(X)

c(X) = (b5X + b6)ZH(X) +
∑n

i=1 w2·n+iLi(X)

Output polynomial commitments [a(χ), b(χ), c(χ)]1.
Message 2. Compute challenges β, γ ∈ Fp by querying random oracle on partial

proof, that is, β = H(π̃[0..1], 0) , γ = H(π̃[0..1], 1) .
Compute permutation polynomial z(X)

z(X) = (b7X2 + b8X + b9)ZH(X) + L1(X)+

+

n−1∑

i=1

⎛

⎝Li+1(X)
i∏

j=1

(wj + βωj−1 + γ)(wn+j + βk1ωj−1 + γ)(w2n+j + βk2ωj−1 + γ)

(wj + σ(j)β + γ)(wn+j + σ(n+ j)β + γ)(w2n+j + σ(2n+ j)β + γ)

⎞

⎠

Output polynomial commitment [z(χ)]1
Message 3. Compute the challenge α = H(π̃[0..2]), compute the quotient poly-

nomial

t(X) =

(a(X)b(X)qM(X) + a(X)qL(X) + b(X)qR(X) + c(X)qO(X) + PI(X) + qC(X))/ZH(X)+

+ ((a(X) + βX + γ)(b(X) + βk1X + γ)(c(X) + βk2X + γ)z(X))α/ZH(X)

− (a(X) + βSσ1(X) + γ)(b(X) + βSσ2(X) + γ)(c(X) + βSσ3(X) + γ)z(Xω))α/ZH(X)

+ (z(X)− 1)L1(X)α2/ZH(X)

Split t(X) into degree less then n polynomials tlo(X), tmid(X), thi(X), such
that t(X) = tlo(X)+Xntmid(X)+X2nthi(X) . Output [tlo(χ), tmid(χ), thi(χ)]1.

Message 4. Get the challenge z ∈ Fp, z = H(π̃[0..3]). Compute opening evalua-
tions a(z), b(z), c(z),Sσ1(z),Sσ2(z), t(z), z(zω), Compute the linearization poly-
nomial

r(X) =

a(z)b(z)qM(X) + a(z)qL(X) + b(z)qR(X) + c(z)qO(X) + qC(X)
+ α · ((a(z) + βz+ γ)(b(z) + βk1z+ γ)(c(z) + βk2z+ γ) · z(X))
− α · ((a(z) + βSσ1(z) + γ)(b(z) + βSσ2(z) + γ)βz(zω) · Sσ3(X))

+ α2 · L1(z) · z(X)
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Output a(z), b(z), c(z),Sσ1(z),Sσ2(z), t(z), z(zω), r(z).
Message 5. Compute the opening challenge v ∈ Fp, v = H(π̃[0..4]). Compute

the openings for the polynomial commitment scheme

Wz(X) =
1

X − z

⎛
⎜⎜⎝

tlo(X) + z
ntmid(X) + z

2nthi(X) − t(z) + v(r(X) − r(z)) + v
2
(a(X) − a(z))

+ v
3
(b(X) − b(z)) + v

4
(c(X) − c(z)) + v

5
(Sσ1(X) − Sσ1(z))

+ v
6
(Sσ2(X) − Sσ2(z))

⎞
⎟⎟⎠

Wzω(X) = (z(X) − z(zω))/(X − zω)

Output [Wz(χ),Wzω(χ)]1.

Plonk verifier V(srs, x, π): The Plonk verifier works as follows

1. Validate all obtained group elements.
2. Validate all obtained field elements.
3. Parse the instance as {wi}�

i=1 ← x.
4. Compute challenges β, γ, α, z, v, u from the transcript.
5. Compute zero polynomial evaluation ZH(z) = zn − 1.
6. Compute Lagrange polynomial evaluation L1(z) = zn−1

n(z−1) .
7. Compute public input polynomial evaluation PI(z) =

∑
i∈[1 .. �] wiLi(z).

8. Compute quotient polynomials evaluations

t(z) =
(
r(z)+PI(z)−(a(z)+βSσ1(z)+γ)(b(z)+βSσ2(z)+γ)(c(z)+γ)z(zω)α−L1(z)α

2
)

/ZH(z) .

9. Compute batched polynomial commitment [D]1 = v [r]1 + u [z]1 that is

[D]1 = v

⎛
⎜⎝

a(z)b(z) · [qM]1 + a(z) [qL]1 + b [qR]1 + c [qO]1 +

+ ((a(z) + βz+ γ)(b(z) + βk1z+ γ)(c+ βk2z+ γ)α + L1(z)α
2)+

− (a(z) + βSσ1(z) + γ)(b(z) + βSσ2(z) + γ)αβz(zω) [Sσ3(χ)]1)

⎞
⎟⎠+

+ u [z(χ)]1 .

10. Computes full batched polynomial commitment [F ]1:

[F ]1 =
(
[tlo(χ)]1 + zn [tmid(χ)]1 + z2n [thi(χ)]1

)
+ u [z(χ)]1 +

+ v

⎛
⎜⎝

a(z)b(z) · [qM]1 + a(z) [qL]1 + b(z) [qR]1 + c(z) [qO]1 +

+ ((a(z) + βz+ γ)(b(z) + βk1z+ γ)(c(z) + βk2z+ γ)α + L1(z)α
2)+

− (a(z) + βSσ1(z) + γ)(b(z) + βSσ2(z) + γ)αβz(zω) [Sσ3(χ)]1)

⎞
⎟⎠

+ v2 [a(χ)]1 + v3 [b(χ)]1 + v4 [c(χ)]1 + v5 [Sσ1(χ)]1 + v6 [Sσ2(χ)]1 .

11. Compute group-encoded batch evaluation [E]1

[E]1 =
1

ZH(z)

[
r(z) + PI(z) + α2L1(z)+

− α ((a(z) + βSσ1(z) + γ)(b(z) + βSσ2(z) + γ)(c(z) + γ)z(zω))

]

1

+
[
vr(z) + v2a(z) + v3b(z) + v4c(z) + v5Sσ1(z) + v6Sσ2(z) + uz(zω)

]
1

.
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12. Check whether the verification equation holds
(
[Wz(χ)]1 + u · [Wzω(χ)]1

)
• [χ]2 −

(
z · [Wz(χ)]1 + uzω · [Wzω(χ)]1 + [F ]1 − [E]1

)
• [1]2 = 0 . (1)

The verification equation is a batched version of the verification equation
from [40] which allows the verifier to check openings of multiple polynomials
in two points (instead of checking an opening of a single polynomial at one
point).

Plonk simulator Simχ(srs, td = χ, x): We describe the simulator in Lemma 5.

5.2 Simulation Extractability of Plonk

Due to lack of space, we provide here only theorem statements and intuition for
why they hold. Full proofs are given in the full version [29].

Unique Response Property

Lemma 3. Let PCP be a polynomial commitment that is εbind(λ)-binding and
has unique opening property with loss εop(λ). Then PFS is 3-UR against alge-
braic adversaries, who makes up to q random oracle queries, with security loss
εbind(λ) + εop(λ).

Proof (Intuition). We show that an adversary who can break the 3-unique
response property of PFS can be either used to break the commitment scheme’s
evaluation binding or unique opening property. The former happens with the
probability upper-bounded by εbind(λ), the latter with the probability upper
bounded by εop(λ).

Rewinding-Based Knowledge Soundness

Lemma 4. PFS is (3, 3n+6)-rewinding-based knowledge sound against algebraic
adversaries who make up to q random oracle queries with security loss

εks(λ, acc, q) ≤

⎛

⎝1 −
acc − (q + 1)

(
3n+5

p

)

1 − 3n+5
p

⎞

⎠ + (3n+ 6) · εudlog(λ) ,

Here acc is a probability that the adversary outputs an accepting proof, and
εudlog(λ) is security of (n+ 5, 1)-udlog assumption.

Proof (Intuition). We use Attema et al. [3, Proposition 2] to bound the proba-
bility that an algorithm T does not obtain a tree of accepting transcripts in an
expected number of runs. This happens with probability at most

1 −
acc − (q + 1)

(
3n+5

p

)

1 − 3n+5
p
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Then we analyze the case that one of the proofs in the tree T outputted by T
is not accepting by the ideal verifier. This discrepancy can be used to break an
instance of an updatable dlog assumption which happens with probability at
most (3n+ 6) · εudlog(λ).

Trapdoor-Less Zero-Knowledge of Plonk

Lemma 5. PFS is 3-programmable trapdoor-less zero-knowledge.

Proof (Intuition). The simulator, that does not know the SRS trapdoor can make
a simulated proof by programming the random oracle. It proceeds as follows. It
picks a random witness and behaves as an honest prover up to the point when a
commitment to the polynomial t(X) is sent. Since the simulator picked a random
witness and t(X) is a polynomial only (modulo some negligible function) when
the witness is correct, it cannot compute commitment to t(X) as it is a rational
function. However, the simulator can pick a random challenge z and a polynomial
t̃(X) such that t(z) = t̃(z). Then the simulator continues behaving as an honest
prover. We argue that such a simulated proof is indistinguishable from a real
one.

Simulation Extractability of PFS

Since Lemmas 3 to 5 hold, P is 3-UR, rewinding-based knowledge sound and
trapdoor-less zero-knowledge. We now make use of Theorem 1 and show that
PFS is simulation-extractable as defined in Definition 2.

Corollary 1 (Simulation extractability of PFS). PFS is updatable
simulation-extractable against any PPT adversary A who makes up to q ran-
dom oracle queries and returns an accepting proof with probability at least acc
with extraction failure probability

εse(λ, acc, q) ≤
(
1 − acc − εur(λ) − (q + 1)εerr(λ)

1 − εerr(λ)

)
+ (3n+ 6) · εudlog(λ),

where εerr(λ) = 3n+5
p , εur(λ) ≤ εbind(λ) + εop(λ), p is the size of the field, and n

is the number of constrains in the circuit.
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