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Abstract. Chakraborty, Prabhakaran, and Wichs (PKC’20) recently
introduced a new tag-based variant of lossy trapdoor functions,
termed cumulatively all-lossy-but-one trapdoor functions (CALBO-
TDFs). Informally, CALBO-TDFs allow defining a public tag-based
function with a (computationally hidden) special tag, such that the func-
tion is lossy for all tags except when the special secret tag is used. In
the latter case, the function becomes injective and efficiently invertible
using a secret trapdoor. This notion has been used to obtain advanced
constructions of signatures with strong guarantees against leakage and
tampering, and also by Dodis, Vaikunthanathan, and Wichs (EURO-
CRYPT’20) to obtain constructions of randomness extractors with
extractor-dependent sources. While these applications are motivated by
practical considerations, the only known instantiation of CALBO-TDFs
so far relies on the existence of indistinguishability obfuscation.

In this paper, we propose the first two instantiations of CALBO-TDFs
based on standard assumptions. Our constructions are based on the
LWE assumption with a sub-exponential approximation factor and on
the DCR assumption, respectively, and circumvent the use of indistin-
guishability obfuscation by relying on lossy modes and trapdoor mecha-
nisms enabled by these assumptions.

Keyword: Lossy trapdoor functions, cumulative lossiness, standard
assumptions

1 Introduction

As introduced by Peikert and Waters [48], lossy trapdoor functions (LTDFs) are
function families where evaluation keys can be sampled in two modes: In the
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injective mode, a function Fek(·) is injective and can be inverted using a trap-
door tk that comes with the evaluation key ek; In the lossy mode, a function
Fek(·) has a much smaller image size and thus loses a certain amount of infor-
mation about its input. The standard security of an LTDF requires that the
two modes be indistinguishable. That is, no efficient distinguisher can tell apart
lossy evaluation keys from injective ones.

Lossy trapdoor functions have been built from a variety of standard cryp-
tographic assumptions, such as the Decisional Diffie-Hellman (DDH) [25,29,48]
and Learning with Errors (LWE) assumptions [2,8,48], the Quadratic Residu-
osity (QR) [24,25,37] and Composite Residuosity (DCR) assumptions [25], the
Phi-hiding assumption [3,41] and more [46,53]. They have found numerous appli-
cations in cryptography, including chosen-ciphertext security, trapdoor func-
tions with many hard-core bits, collision-resistant hash functions, oblivious trans-
fer [48], deterministic [9,50] and hedged public-key encryption [6,52] in the stan-
dard model, instantiability of RSA-OAEP [41], computational extractors [23,27],
pseudo-entropy functions [18], selective-opening security [7], and more.

Several generalizations of LTDFs have been considered. Of particular interest
are the tag-based variants, where algorithms take an additional tag as input. In
all-but-one LTDFs [48] for instance, the evaluation key obtained by running the
sampling algorithm with a special tag tag∗ is such that the function Fek(·, tag)
is injective for all tags tag �= tag∗, but the function Fek(·, tag∗) is lossy. All-but-
one LTDFs have been generalized to all-but-N LTDFs [36] (which admit N > 1
lossy tags) or all-but-many lossy trapdoor functions (where arbitrarily many lossy
tags can be adaptively created). The latter notion notably found applications to
selective-opening chosen-ciphertext security with compact ciphertexts [14,39,43].

In a setting where multiple lossy evaluations are provided (e.g., for multiple
lossy evaluation keys in the context of standard LTDFs or for multiple lossy tags
in the context of tag-based LTDFs), one may want to guarantee that multiple
lossy evaluations on the same input x do not reveal more information about x
than a single evaluation. This additional property was termed cumulative lossi-
ness in [19] where it was formalized by requiring the existence of a (possibly
inefficient) algorithm that starts with some fixed, partial information about x
and recovers the entire information provided by the multiple lossy evaluations.
The fact that all these evaluations can be recovered (even inefficiently) from the
same amount of partial information on x then guarantees that multiple lossy
evaluations on the same input x preserve the entropy of x. In particular, they
do not end up leaking x entirely.

In this paper, we investigate the notion of cumulatively all-lossy-but-one trap-
door functions, suggested by Chakraborty, Prabharkaran and Wichs [19], which
considers the case where all tags are lossy, except one. This notion has been used
to obtain advanced constructions of randomness extractors [23] and signatures
in the leakage and tampering model [19].

Cumulatively All-Lossy-But-One Lossy Trapdoor Functions. A cumula-
tively all-lossy-but-one trapdoor functions (CALBO-TDFs) is a tag-based LTDFs
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where the function Fek(·, tag) is lossy for any tag tag except one special injec-
tive tag tag∗, for which Fek(·, tag∗) is invertible using a trapdoor td associated
with ek. In addition, the lossiness is required to be cumulative in the sense that
multiple evaluations Fek(x, tagi) for lossy tags tagi �= tag∗ always leak the same
information about x. Finally, the evaluation key should computationally hide
the special injective tag and evaluation keys generated with distinct injective
tags are required to be (computationally) indistinguishable.

In [23], the notion of CALBO-TDFs was relaxed by not requiring the exis-
tence of a trapdoor for the injective tag tag∗. This relaxed notion, termed
CALBO functions (or CALBOs for short), is also implicit in [18,26]. By drop-
ping the trapdoor requirement, these works obtained CALBOs from standard
lossy functions (without trapdoor). Therefore it has been possible to construct
CALBOs from many standard assumptions such as DDH, LWE, or DCR.

The design of CALBO-TDFs, for which a trapdoor is required in injective
mode, is much harder. Indeed, the only known instantiation so far [19] relies on
the existence of indistinguishability obfuscation [28] (iO) besides the DDH (or
LWE) assumption. At a high level, the construction of [19] starts with cumulative
LTDFs (C-LTDFs), which can be built from LWE or DDH, and combines it with
iO and puncturable PRFs [13,15,40]. The idea of [19] is to generate a CALBO-
TDF evaluation key as an obfuscated program in which the special injective tag
tag∗ is hard-wired together with an injective evaluation key for the underlying C-
LTDF. This program, on input tag, outputs the hard-wired injective evaluation
key if tag = tag∗; Otherwise, it samples a lossy evaluation key using randomness
derived from a puncturable PRF (of which the key is also hard-wired in the
program) evaluated on the input tag, and finally returns the resulting evaluation
key. When it comes to evaluating a function for an input x and a tag tag, [19]
evaluates the underlying C-LTDF on input x using the evaluation key obtained
by running the obfuscated program on input tag. The injectivity on the special
tag tag∗ and the cumulative lossiness property immediately follow from the same
properties in the underlying C-LTDF. Indistinguishability of evaluation keys
simply follows from the security of iO, the pseudorandomness of the puncturable
PRF when puncturing the tags, and the indistinguishability of lossy and injective
keys in the underlying C-LTDF.

In [19], CALBO-TDFs served as a building block to construct leakage and
tamper resilient signature schemes with a deterministic signing algorithm, a
notion that provides a natural solution to protect signature schemes against
leakage, e.g. physical analysis and timing measurements, or tampering attacks,
where the adversary deliberately targets the randomness used by the algorithms.
The complexity of the CALBO-TDF candidate of [19] motivates the search for
simpler, more efficient instantiations of CALBO-TDFs that avoid the use of
heavy hammers like obfuscation and rely on more standard assumptions.

1.1 Our Contributions

We present two constructions of CALBO-TDFs based solely on standard assump-
tions. Our first construction relies on the LWE assumption [51] with sub-
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exponential approximation factor in reducing LWE to a worst-case lattice prob-
lem1, while our second construction relies on Paillier’s Composite Residuosity
assumption [47] (DCR).

We thus avoid the use of indistinguishability obfuscation (which was used to
hide the hard-wired values including the special tag and the injective evaluation
key) by relying on lossy modes and trapdoor mechanisms enabled by LWE and
DCR. The first construction uses the lossy mode and trapdoor mechanism of
LWE in a similar way to [2,32,45]. By exploiting ideas from [44], it achieves a
mildly relaxed notion of cumulative lossiness, where cumulative lossiness only
holds with overwhelming probability over the choice of (non-injective) tags. The
same relaxed notion was used in the LWE+iO-based construction of [19]. This
relaxation does not hurt any of the applications, as shown [19]. Our second
construction relies on the lossiness and trapdoor mechanism of the Decision
Composite Residuosity (DCR) assumption. In particular, it uses the Damg̊ard-
Jurik cryptosystem [20] in a similar way to the LTDF of Freeman et al. [25].

1.2 Technical Overview

Relaxed CALBO-TDFs from LWE. We start from the observation that
CALBOs (without a trapdoor) can be viewed as selectively secure unpredictable
functions when the key of the function is the CALBO’s input and the input
of the function serves as the CALBO’s tag. We then upgrade the LWE-based
PRF of Libert, Stehlé and Titiu [44] whose security proof precisely relies on the
cumulative lossiness of the LWE function (in its derandomized version based on
the rounding technique of [4]) for an appropriate choice of parameters. The LWE
function (which maps a pair of short integer column-vectors (s, e) ∈ Z

n ×Z
m to

s�A+e�, for a random matrix A ∈ Z
n×m
q ) is known [32] to provide a lossy func-

tion, and even a lossy trapdoor function for an appropriate choice of parameters
[2,8]. The PRF of [44] interprets a variant of the key-homomorphic PRF of [11]
as a lossy function in its security proof. More specifically, letting �·�p : Zq → Zp

denote the rounding function of [4] for moduli p < q defined as �x�p = �(p/q)·x�,
the function mapping x ∈ Z

n
q to

⌊
x� · A

⌋
p

is injective when A ∈ Z
n×m
q is uni-

formly random and lossy (as shown in [2]) when A is of the form D� · B + E
for some random B ∈ Z

�×m
q ,D ∈ Z

�×n
q , � � n, and some small-norm matrix E.

The PRF of [44] maps an input x to �s�A(x)�p, where s ∈ Z
n is the secret key

and A(x) ∈ Z
n×m
q is an input-dependent matrix derived from public matrices.

The latter matrix is actually obtained using fully homomorphic encryption tech-
niques, by multiplying Gentry-Sahai-Waters (GSW) ciphertexts [31] indexed by
the bits of x. The security proof of [44] “programs” A(x) in such a way that all
evaluation queries reveal a lossy function of the secret key s while the challenge
evaluation reveals a non-lossy function �s�A(x�)�p of s. By choosing a large

1 The approximation factor is closely related to the modulus-to-noise ratio q/σ if the
LWE problem is defined over the ring of integers modulo q and the errors are sampled
from a discrete Gaussian distribution Dσ.
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enough ratio q/p, they show that all evaluation queries reveal the same informa-
tion about the secret key s, which is exactly what we need to prove cumulative
lossiness in the CALBO setting. At the same time, [44] shows that �s�A(x�)�p

retains a large amount of entropy conditionally on the information revealed by
all evaluation queries.

We introduce two modifications in the function of [44]. First, we only need
a selectively secure version of their PRF since the injective tag tag∗ is known
ahead of time in the security experiment whereas [44] has to prove adaptive secu-
rity using an admissible hash function [10]. We thus remove the admissible hash
function and directly compute A(x) as a product of public GSW ciphertexts
indexed by the tag bits without encoding them first. As a second modification
w.r.t [44], we need to extend the tag-dependent matrix A(x) so as to ensure
invertibility in injective mode.

Our CALBO construction can be outlined as follows. Given the injective tag
tag∗ ∈ {0, 1}t, the setup algorithm first generates A = D� · B + E ∈ Z

n×m
q as

a lossy matrix, where B ∈ Z
�×m
q , D ∈ Z

�×n
q and E ∈ Z

n×m, with � � n < m.
Then, the setup algorithm embeds (A,B) in the evaluation key ek via a set of
GSW ciphertexts [31]

Ai,b = A · Ri,b + δb,tag∗
i

· G ∀i ∈ [t], b ∈ {0, 1} (1)

where tag∗
i denotes the i-th bit of tag∗, δb,tag∗

i
= (b ?= tag∗

i ), G ∈ Z
n×�n·log q�
q is

the gadget matrix of Micciancio and Peikert [45], and Ri,b ∈ {0, 1}m×�n·log q� for
each i ∈ [t]. The trapdoor tk (which allows inverting in injective mode) contains
{Ri,b}i∈[t],b∈{0,1}. The computational indistinguishability of keys for different
injective tags follows from the LWE assumption. The latter implies that the
lossy matrix A = D� · B + E is indistinguishable from a uniform matrix in
Z

n×m
q . When A is uniform, the Leftover Hash Lemma implies that each product

A · Ri,b is statistically close to the uniform distribution U(Zn×m
q ). This ensures

that matrices (1) statistically hide tag∗ as they are statistically indistinguishable
from i.i.d. random matrices over Zq.

In order to evaluate the function on an input x for a tag tag, the evaluation
algorithm computes a product of GSW ciphertexts {Ai,tagi

}t
i=1 chosen among

{(Ai,0,Ai,1)}t
i=1 and then obtains a ciphertext A(tag) encrypting the logical

AND Ctag(tag∗) �
∧t

i=1(tagi = tag∗
i ), where {tagi}t

i=1 are the bits of tag. Said
otherwise, the tag-dependent matrix A(tag) = A · Rtag + Ctag∗(tag) · G is an
encryption of Ctag(tag∗) =

∏t
i=1 δtagi,tag

∗
i
, where the circuit Ctag(·) is homomor-

phically evaluated by computing a subset product of GSW ciphertexts in the
most sequential way (according to the terminology in [5]) so as to minimize
the noise growth. This is done by making sure that each multiplication always
involves a fresh GSW ciphertext.

Finally, the output of the evaluation is
⌊
x� · [A |A(tag)]

⌋
p
. Here, we slightly

modify [44] where the challenge evaluation is of the form
⌊
x�A(tag)

⌋
p
. The

reason is that, in order to ensure invertibility for the injective tag tag∗, we need
to exploit the fact that A(tag∗) depends on G. To this end, we need an injective
evaluation of x to be of the form
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⌊
x� · [A |A(tag∗)]

⌋
p

=
⌊
x� · [A |A · Rtag∗ + G]

⌋
p

for some small-norm matrix Rtag∗ ∈ Z
n×�n·log q�. In this case, the binary matrices

Ri,b contained in tk can be used to compute Rtag∗ , which is a Micciancio-Peikert
trapdoor [45] for the matrix [A |A(tag∗)] and allows inverting the function x →⌊
x� · [A |A(tag∗)]

⌋
p

in the same way as in the LTDF of [2].
In lossy mode (when tag differs from tag∗ in at least one bit), we can achieve

cumulative lossiness only for a fixed input, due to the error introduced by the
rounding operation. The argument is essentially the same as that in [44]: We
exploit the lossy form of A and the fact that, for any lossy tag tag �= tag∗, the
matrix [A |A(tag)] = [A |A · Rtag] does not depend on G. Then, with over-
whelming probability, evaluations

⌊
x� · [A |A · Rtag]

⌋
p

always reveal the same
information about x ∈ Z

n since w.h.p. we have
⌊
x� · [A |A · Rtag]

⌋
p

=
⌊
x� · D� · B | (x� · D� · B) · Rtag]

⌋
p

when q/p is sufficiently large. Hence, evaluations
{⌊

x� · [A |A(tag)]
⌋

p

}

tag �=tag∗

do not reveal any more information than D · x ∈ Z
�
q. Concerning the relaxation

of cumulative lossiness, Chakraborty et al. [19] have the same restriction in their
use of the LWE assumption. However, as discussed in [19, Apppendix A], this
relaxed notion is not a problem in their applications of CALBO-TDFs.

CALBO-TDFs from DCR. We give a construction of CALBO-TDFs based
on the Damg̊ard-Jurik homomorphic encryption scheme [20] with additional
insights from [21,22]. The construction is obtained by composing together multi-
ple instances of the DCR-based lossy trapdoor permutation of Freeman et al. [25],
which is index-dependent as its domain depends on the evaluation key. Recall
that the Damg̊ard-Jurik cryptosystem uses the group Z

∗
Nζ+1 , where N = pq is

an RSA modulus and ζ ≥ 1 is some natural number. Given an injective tag
tag∗ ∈ {0, 1}t, the evaluation key ek of our CALBO-TDFs includes (N, ζ) and
the following Damg̊ard-Jurik ciphertexts

gi,b = (1 + N)δb,tag∗
i · αNζ

i,b mod N ζ+1 ∀(i, b) ∈ [t] × {0, 1} ,

where αi,b ←↩ U(Z∗
N ) for each i ∈ [t], b ∈ {0, 1}, δb,tag∗

i
= (b ?= tag∗

i ) and tag∗
i

denotes the i-th bit of tag∗. The trapdoor tk consists of the Damg̊ard-Jurik
decryption key.

For an evaluation of an input x ∈ ZNζ+1 given a tag tag, we first write
x0 := x = y0 · N + z0 for (y0, z0) ∈ ZNζ × ZN . Then, we iterate for i ∈ [t] and,
at each iteration, we compute a Damg̊ard-Jurik ciphertext xi of yi−1:

xi = g
yi−1
i,tagi

· zNζ

i−1 mod N ζ+1 .

The output of the function consists of xt.
In the injective mode (where tag = tag∗), we have that gi,tag∗

i
is an encryption

of 1 for each i ∈ [t]. Then, each xi is an encryption of yi−1. Using tk, the inverter
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can thus recover (yi−1, zi−1) from xi and eventually recover (y0, z0) and x = x0

as long as zi−1 ∈ Z
∗
N at each iteration. For any input x such that zi−1 /∈ Z

∗
N

at some iteration, the evaluation algorithm outputs 0 (analogously to an index-
dependent DCR-based LTDF proposed by Auerbach et al. [3, Sect. 6.1]). We
note that our DCR-based construction is not perfectly invertible injective mode,
the fraction of inputs for which the function is not invertible is overwhelming.
Moreover, finding such inputs is as hard as factoring N and thus contradicts the
DCR assumption.

In the lossy mode (where tag �= tag∗), let the smallest index i ∈ [t] such that
tagi �= tag∗. For this index i, gi,tagi

is a Damg̊ard-Jurik encryption of 0, and so is
xi at the i-th evaluation step. This implies that xi loses information about yi−1

as it can take at most ϕ(N) values.
We then observe that injectivity and indistinguishability follow from the

correctness and semantic security of Damg̊ard-Jurik. Cumulative lossiness can be
argued using the same arguments as in the CALBO function of [23, Sect. 5.3.1].
At each evaluation step, the information (yi−1, zi−1) ∈ ZNζ ×ZN about x is fully
carried over to the next step of the evaluation if tagi = tag∗

i and zi−1 ∈ Z
∗
N . As

soon as tagi differs from tag∗
i , the information about yi−1 is lost and subsequent

evaluation steps (and therefore the final output of the evaluation) only depend
on at most log ϕ(N) < log N bits of x. Since there are t positions where a lossy
tag can differ from tag∗ for the first time, the function {Fek(·, tag)}tag �=tag∗ has
image size ≤ ϕ(N)t. So, the union of all lossy evaluations {Fek(x, tag)}tag �=tag∗

on some input x reveals at most log(ϕ(N)t) < t · log N bits about x.

1.3 Related Work

Dodis, Vaikuntanathan and Wichs [23, Sect. 5.3.1] considered a notion of cumula-
tively all-lossy-but-one (CALBO) functions without trapdoor, which they used to
extract randomness from extractor-dependent sources. They showed that CAL-
BOs can be generically realized from standard lossy functions by relaxing the
injectivity property. Due to their relaxed notion of injectivity, their construction
is not invertible in injective mode. Our DCR-based CALBO-TDF is inspired
by their construction (which is itself similar to the pseudo-entropy function of
Braverman et al. [18]) with the difference that we do not need to compose a
standard lossy function with a compressing d-wise independent function at each
iterative evaluation step. This is the reason why our injective mode is invertible.

In a recent work, Quach, Waters, and Wichs [49] introduced a new notion of
targeted lossy functions (TLFs), where lossy evaluations only lose information on
some targeted inputs and no trapdoor allows efficiently inverting in the injective
mode. Quach et al. [49] also extended TLFs to targeted all-lossy-but-one (T-
ALBOs) and targeted all-injective-but-one (T-AIBOs) variants. Interestingly, it
was shown in [49] that, in contrast with lossy trapdoor functions, TLFs, T-
ALBOs, and T-AIBOs can be realized in Minicrypt. We can also consider the
relaxation of targeted lossiness alone, while still asking for a trapdoor in the
injective mode. This notion was discussed in [29] where a construction based on
the Computational Diffie-Hellman assumption was given.
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Lossy algebraic filters (LAFs) [38,42] are tag-based lossy functions that were
used to construct public-key encryption schemes with circular chosen-ciphertext
security [38]. They provide similar functionalities to CALBO in that they explic-
itly require multiple evaluations {Fek(x, tagi)}i on distinct lossy tags to always
leak the same information about x. One difference is that LAFs admit arbi-
trarily many injective tags and arbitrarily many lossy tags. The requirement is
that lossy tags should be hard to find without a trapdoor key. In contrast with
CALBO-TDF, LAFs do not support efficient inversion on injective tags.

2 Background

We write [n] to denote the set {1, 2, . . . , n} for an integer n. For any q ≥ 2, we
let Zq denote the ring of integers with addition and multiplication modulo q,
containing the representatives in the interval (−q/2, q/2). We always set q as a
prime integer. For 2 ≤ p < q and x ∈ Zq, we define �x�p := �(p/q) · x� ∈ Zp

where the operator �y� means taking the largest integer less than or equal to y.
This notation is readily extended to vectors over Zq. Given a distribution D, we
write x ∼ D to denote a random variable x distributed according to D. For a
finite set S, we let U(S) denote the uniform distribution over S. If X and Y are
distributions over the same domain D, then Δ(X,Y ) denotes their statistical
distance. We write ppt as a shorthand for “probabilistic polynomial-time” when
considering the complexity of algorithms. We use a generalized version of the
Leftover Hash Lemma [35].

Lemma 1 ([1], Lemma 14). Let H = {h : X → Y }h∈H be a family of uni-
versal hash functions. Let f : X → Z be some function. Let T1, . . . , Tk be k
independent random variables over X and we define γ := maxk γ(Ti) where
γ(Ti) := maxt∈X Pr[Ti = t]. Then, we have

Δ
(

(h, h(T1), f(T1), . . . , h(Tk), f(Tk)) ;
(
h,U

(1)
Y , f(T1), . . . , U

(k)
Y , f(Tk)

) )

≤ k

2

√
γ · |Y | · |Z|

where U
(1)
Y , . . . , U

(k)
Y denote k uniformly random variables over Y .

2.1 Cumulatively All-Lossy-But-One Trapdoor Functions

We now recall the definition of cumulatively all-lossy-but-one trapdoor functions
(CALBO-TDFs), a notion recently introduced in [19,23] as an extension of lossy
trapdoor functions. We also recall its variant with relaxed cumulative lossiness
that we achieve assuming LWE. We refer the reader to the introduction for an
overview of these notions in the general context of lossy trapdoor functions.

Definition 1 (CALBO-TDF). Let λ ∈ N be a security parameter and
�, α : N → N be functions. Let T = {Tλ}λ∈N be a family of sets of tags. An
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(�, α)-cumulatively-all-lossy-but-one trapdoor function family (CALBO-TDF)
with respect to the tag family T is a triple of algorithms (Sample,Eval, Invert),
where the first is probabilistic and the latter two are deterministic:

– Sample(1λ, tag∗): on inputs 1λ and tag∗ ∈ Tλ, sample and output (ek, tk).
– Eval(ek, tag, x): on inputs x ∈ {0, 1}�(λ), an evaluation key ek and tag, output

an element y in some set R of images.
– Invert(tk, tag, y): on inputs y ∈ R, a trapdoor key tk, and tag, output x′ ∈

{0, 1}�(λ).

We require the following properties:

– (Injectivity) There exists a negligible function negl : N → N such that for all
λ ∈ N, tag∗ ∈ Tλ, (ek, tk)←Sample(1λ, tag∗) we have

|{x ∈ {0, 1}�(λ) : Invert(tk, tag∗,Eval(ek, tag∗, x)) = x}|
2�(λ)

≥ 1 − negl(λ) .

– (α-cumulative lossiness) For all λ ∈ N, all tags tag∗ ∈ Tλ, and all (ek, tk)←
Sample(1λ, tag∗), there exists a (possibly inefficient) function compressek :
{0, 1}�(λ) → Rek where |Rek| ≤ 2�(λ)−α(λ) such that for all tag �= tag∗ and x ∈
{0, 1}�(λ), there exists a (possibly inefficient) function expandek,tag : Rek → R
satisfying

Eval(ek, tag, x) = expandek,tag(compressek(x)) . (2)

– (Indistinguishability) For all tag∗
0, tag

∗
1 ∈ Tλ, the two ensembles

{ek0 : (ek0, tk0)←Sample(1λ, tag∗
0)}λ∈N

{ek1 : (ek1, tk1)←Sample(1λ, tag∗
1)}λ∈N

are computationally indistinguishable.

An alternative, relaxed notion of CALBO-TDFs was also proposed in [19,23]. In
this relaxed variant, cumulative lossiness is slightly simplified by requiring Equa-
tion (2) to only hold with overwhelming probability over the choice of tags. This
minor relaxation does not impact applications, as the relaxed notion was proven
sufficient for all known applications of CALBO-TDFs in [19, Appendix A]. We
use this relaxation in our LWE-based construction in Sect. 3.1, and recall it
below. We refer to this notion as relaxed CALBO-TDFs.

(relaxed α-cumulative lossiness) There exists a negligible function negl : N →
(0, 1) and for sufficiently large λ ∈ N, for any tag∗ ∈ Tλ, for all (ek, tk) ←
Sample(1λ, tag∗), there exists a (possibly inefficient) function compressek :
{0, 1}�(λ) → Rek where |Rek| ≤ 2�(λ)−α(λ) such that for any fixed randomly
chosen x ∈ {0, 1}�(λ), there exists a (possibly inefficient) function expandek,tag :
Rek → R satisfying

Pr[Eval(ek, tag, x) = expandek,tag(compressek(x))] ≥ 1 − negl(λ) ,

where the probability is taken over the choices of tag �= tag∗. We call negl(λ)
the lossiness error of the CALBO-TDF.
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Lossiness Rate. We define the lossiness rate of an (�, α)-CALBO-TDF by the
rate of bits lost on lossy tags, namely 1 − (� − α)/� = α/�. This is similar to the
notion of lossiness rate used in [29,48]. Ideally, we want this rate to be as close
to 1 as possible, for example 1 − o(1).

2.2 Lattices

Unless stated otherwise, we write vectors as column vectors. For a full-row rank
matrix A ∈ Z

n×m
q , we define the lattice Λ(A) admitting A as a basis by Λ(A) =

{s� · A : s ∈ Z
n
q }. We also define the lattice Λ⊥(A) = {x ∈ Z

m : Ax = 0 mod
q}. Given a vector x ∈ Z

n
q , we define its �∞-norm as ‖x‖∞ = maxi∈[n] |x[i]|

where x[i] denotes the i-th coordinate of x. We let ‖x‖2 =
√

x[1]2 + · · · + x[n]2
denote the Euclidean norm of x. The minimum distance measured in �∞-norm
of a lattice Λ is given by λ∞

1 (Λ) := minx�=0 ‖x‖∞. For a basis B of R
n, the

origin-centered parallelepiped is defined as P1/2(B) := B · [−1/2, 1/2)n. We also
use the following infinity norm for matrices B ∈ Z

n×m:

‖B‖∞ = max
i∈[n]

⎛

⎝
m∑

j=1

|Bi,j |

⎞

⎠ .

Let Σ ∈ R
n×n be a symmetric positive definite matrix and c ∈ R

n be a vector.
We define the Gaussian function over Rn by ρΣ, c(x) = exp(−π(x− c)�Σ-1(x−
c)) and if Σ = σ2 · In and c = 0, we write ρσ for ρΣ, c. For any discrete
set Λ ⊂ R

n, the discrete Gaussian distribution DΛ,Σ,c has probability mass
PrX∼DΛ,Σ,c

[X = x] = ρΣ, c(x)
ρΣ, c(Λ) , for any x ∈ Λ. When c = 0 and Σ = σ2 · In we

denote DΛ,Σ,c by DΛ,σ.

Learning-with-Errors Assumption. Our first CALBO-TDF relies on the
LWE assumption.

Definition 2. Let α : N → (0, 1) and m ≥ n ≥ 1, q ≥ 2 be functions of a
security parameter λ ∈ N. The Learning with Errors (LWE) problem consists
in distinguishing between the distributions (A, s�A + e�) and U(Zn×m

q × Z
m
q ),

where A ∼ U(Zn×m
q ), s ∼ U(Zn

q ) and e ∼ DZm,αq. For an algorithm A : Zn×m
q ×

Z
m
q → {0, 1}, we define

AdvLWE
q,m,n,α(A) =

∣
∣Pr[A

(
A, s�A + e�)

= 1] − Pr[A (A,u) = 1
∣
∣ ,

where the probabilities are over A ∼ U(Zn×m
q ), s ∼ U(Zn

q ), u ∼ U(Zm
q ) and

e ∼ DZm,αq and the internal randomness of A. We say that LWEq,m,n,α is hard
if for all ppt algorithm A, the advantage AdvLWE

q,m,n,α(A) is negligible in λ.

We require that α ≥ 2
√

n/q for the reduction from worst-case lattice problems
and refer the readers to, e.g., [17] for more details.
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We will need the techniques for homomorphic encryption (HE) [31] in order
to build CALBO-TDFs from LWE. In this paper, we consider only binary circuits
with fan-in-2 gates for homomorphic evaluation. We use the terms size and depth
of a circuit to refer to the number of its gates and the length of its longest input-
to-output path, respectively. We note that in our construction from LWE, we do
not need the general fully homomorphic encryption thanks to the fact that all
evaluated circuits have bounded depths, for the sole purpose of comparing tags.
Hence, leveled homomorphic encryption suffices for our purposes.

Gadget Matrix. We recall the “gadget matrix” from [45] and their homo-
morphic properties. The technique is later developed further in [12,33,34].
For an integer modulus q, the gadget vector over Zq is defined as g =
(1, 2, 4, . . . , 2�log q�−1). The gadget matrix Gn is the tensor (or Kronecker) prod-
uct In ⊗ g ∈ Z

n×n′
q where n′ = �n log q�. There exists an efficiently computable

function G-1
n : Zn×n′

q → {0, 1}n′×n′
such that Gn·G-1

n (A) = A for all A ∈ Z
n×n′
q .

In particular, we can define G-1
n to be the entry-wise binary decomposition of

matrices in Z
n×n′
q . In the following, we omit the subscript n and write G when

it is clear from context. Lemma 2 helps bound the noise of the output cipher-
text after homomorphically evaluating a depth-τ circuit C containing only AND
gates. This will affect our parameter choices for the LWE-based CALBO-TDFs
as well as our later argument for its relaxed cumulative lossiness.

Lemma 2 (Adapted from [12,16,31]). Let λ ∈ N and m = m(λ), n = n(λ).
We define n′ := �n log q�. Let C : {0, 1}t → {0, 1} be a AND Boolean circuit of
depth τ . Let Ai = A ·Ri +bi ·G ∈ Z

n×m
q with A ∈ Z

n×m
q , Ri ∈ {−1, 1}m×n′

and
bi ∈ {0, 1}, for i ≤ t. There exist deterministic algorithms FHEval and EvalPriv
with running time poly(4τ , t,m, n, log q) that satisfy:

FHEval(C, (Ai)i) = A · RC + C(b1, . . . , bt) · G = A · RC +
t∧

i=1

bi · G,

where RC = EvalPriv
(
C, ((Ri, bi))i

)
and ‖RC‖∞ ≤ maxi{‖Ri‖∞} · (n′ + 1)τ .

Lossy mode of LWE. We recall the Lossy sampler for LWE that is introduced
by Goldwasser et al. in [32] and later developed by Alwen et al. in [2].

Definition 3. Let χ = χ(λ) be an efficiently sampleable distribution over Z. We
define an efficient lossy sampler (A, B)←Lossy(1m, 1n, 1�, q, χ) via:

Lossy(1m, 1n, 1�, q, χ): Sample B ←↩ U(Z�×m
q ),D ←↩ U(Z�×n

q ),E ←↩ χn×m,
where � � n, and output A = D� · B + E ∈ Z

n×m
q together with B.

We remark that the lossy sampler reveals the coefficient matrix B along with
A but as long as the secret matrix D is not leaked, this does not compromise
the pseudorandomness of A. Indeed, it can be shown that under the LWEq,m,�,α

assumption, A is computationally indistinguishable from a uniformly random
matrix. Intuitively, the dimension of the secret is now � and we view each row
of D� as a secret vector, B as the uniform coefficients and each row of A as the
resulting LWE vector. Formally, we have the following lemma:
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Lemma 3 ([32]). Let a random matrix Ã ←↩ U(Zn×m
q ) and let a pair (A, B)←

Lossy(1m, 1n, 1�, q, χ), where χ = DZ,αq is an error distribution. Then, under
the LWEq,m,�,α assumption, the following two distributions are computationally
indistinguishable: A

comp
≈ Ã.

Trapdoor Mechanisms for LWE. Micciancio and Peikert [45] introduced a
trapdoor mechanism for LWE. Their technique makes use of the “gadget matrix”
G ∈ Z

n×n′
q , where n′ = �n log q�, and for A′ ∈ Z

n×(m+n′)
q , they call a short

matrix R ∈ Z
m×n′

a G-trapdoor of A′ if A′ · [R� | Im]� = HG for some invert-
ible H ∈ Z

n×n
q . Micciancio and Peikert also showed that using a G-trapdoor

allows one to invert the LWE function (s, e) �→ s�A′ + e� for any s ∈ Z
n
q and

any error e ∈ Z
m+n′

such that ‖e‖2 ≤ q/O(
√

n log q). More specifically, we have
the following lemma:

Lemma 4 ([45], Theorem 4.1 and Sect. 5). Let n′ = �n log q� and δ =
negl(n). Assume that m ≥ n log q + 2 log n′

2δ . Then there exists a ppt algorithm
GenTrap that takes as inputs matrices A ∈ Z

n×m
q ,H ∈ Z

n×n
q , outputs a short

matrix R ∈ {−1, 0, 1}m×n′
and A′ = [A | − A · R + H · G] ∈ Z

n×(m+n′)
q such

that if H is invertible, then R is a G-trapdoor of A′ and we call H the invert
tag of A′.

In particular, inverting the function gG(s, e) := s� · G + e� can be done in
quasi-linear time O(n · logc n) for any s ∈ Z

n
q and any e ∈ P1/2(q · (B-1)�),

where B is a basis of the lattice Λ⊥(G) = {z ∈ Z
n′

: G · z = 0 (mod q)}.

In a follow-up work, Alwen et al. [2] used GenTrap to construct trapdoors for
inverting Learning with Rounding (LWR) instances

⌊
s�A

⌋
p
. Their main obser-

vation is that one can convert
⌊
s�A

⌋
p

to s�A + e� where ‖e‖2 ≤ √
mq/p,

by first multiplying with q/p then taking the ceiling value. Afterwards, using a
G-trapdoor of A, e.g. a sample from GenTrap, allows one to compute back s.
Formally, we have the following lemma:

Lemma 5 ([2], Lemma 6.3). Let n′ = �n log q� and δ = negl(n). Assume
that m ≥ n log q + 2 log n′

2δ and p ≥ O(
√

(m + n′)n′). Then there exists a ppt
algorithm LWRInvert that takes as inputs (A′,R) with R being a G-trapdoor of
A′, together with some c ∈ Z

m+n′
p such that c =

⌊
s�A′⌋

p
for some s ∈ Z

n
q , then

outputs s.

We will also need the following technical lemmas. Lemma 6 comes from a
work by Gentry, Peikert, and Vaikuntanathan [30].

Lemma 6 ([30], Lemma 5.3). Let � and q be positive integers and q be prime.
Let n ≥ 2� log q. Then for all but an at most q−n fraction of D ∈ Z

�×n
q , we

have λ∞
1 (Λ(D)) ≥ q/4, where Λ(D) = {s�D : s ∈ Z

�
q} and λ∞

1 (Λ(D)) is the
minimum distance of Λ(D) measured in the �∞-norm.
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Lemma 7 ([2], Lemma 2.7). Let p, q be positive integers and p < q. Let R >
0 be an integer. Then, the probability that there exists e ∈ [−R,R] such that
�y�p �= �y + e�p, where y ←↩ U(Zq), is at most 2pR/q.

The following lemma is well-known, e.g. a simple proof can be found in [44,
Lemma 2.3].

Lemma 8. Let q be a prime a Dm,n,q be a distribution over Z
n×m
q such that

Δ(Dm,n,q, U(Zn×m
q )) ≤ ε. Then, let Vn,q be any distribution over Z

n
q , we have

Δ(V �
n,q · Dm,n,q, U(Zm

q )) ≤ ε + α ·
(
1 − 1

qm

)
where α := Pr[v ←↩ Vn,q : v = 0].

2.3 Composite Residuosity

Our second construction of CALBO-TDFs relies on Paillier’s composite residu-
osity assumption.

Definition 4 ([20,47]). Let a composite N = pq, for primes p, q, and let an
integer ζ ≥ 1. The Decision Composite Residuosity (ζ-DCR) problem is to
distinguish between the distributions D0 := {z = zNζ

0 mod N ζ+1 | z0 ←↩ U (Z∗
N )}

and D1 := {z ←↩ U
(
Z

∗
Nζ+1

)
}.

For each ζ > 0, the ζ-DCR assumption was shown to be equivalent to the original
1-DCR assumption [20]. Damg̊ard and Jurik [20] initially gave their security
proof using a recursive argument (rather than a sequence of hybrid experiments)
that loses a factor 2 at each step, thus incurring an apparent security loss 2ζ .
However, the semantic security of their scheme under the 1-DCR assumption
for any polynomial ζ is a well-known result. The proof of Lemma 9 is perhaps
folklore but for completeness we will include it in the full version of this paper.

Lemma 9 (Adapted from [20]). Let ζ = poly(λ). Then ζ-DCR is equivalent
to 1-DCR with a security loss at most ζ.

3 Cumulatively All-Lossy-But-One Trapdoor Functions

We now describe two constructions of CALBO-TDFs from standard assump-
tions. So far, the only known CALBO-TDFs construction was proposed by
Chakraborty et al. [19] and relies on puncturable PRFs, cumulatively-lossy-
trapdoor functions (C-LTDFs) and indistinguishability obfuscation (iO). This
construction relies on iO to obfuscate a program, which first compares a given
input tag with the hardcoded injective tag and outputs the hardcoded injective
evaluation key if the comparison goes through. Otherwise, it generates a fresh
lossy key. All auxiliary key generations in the program are realized using the
algorithms from the underlying C-LTDF. The obfuscated program is described
in the evaluation key for the CALBO-TDF. An evaluation on a pair of tag and
input proceeds by first calling the obfuscated program on the given tag to get a
C-LTDF key, then use the evaluation of the C-LTDF on the received key and the
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given input. The obfuscated program uses a puncturable PRF, which receives
the given tag as input, to generate randomness needed for producing a fresh
lossy key. Our constructions are much simpler and require neither CPRFs nor
iO. They thus drastically improve the efficiency compared to [19].

We construct CALBO-TDFs from the LWE and DCR assumptions. Our LWE-
based CALBO-TDFs only achieves the relaxed variant of cumulative lossiness
while our DCR-based construction achieves the full notion. The fact that we
have to relax the cumulative lossiness in the LWE case seems intrinsic due to
the noise that appears in the LWE samples. We remark that Chakraborty et al.
faced a similar problem when constructing C-LTDFs from LWE as well as when
boostrapping C-LTDFs to CALBO-TDFs using iO in [19].

3.1 Relaxed CALBO-TDFs from LWE

In this section, we describe our construction of CALBO-TDFs from LWE. It is
inspired from the PRF from [44], which can be seen as a CALBO-TDFs without
inversion. We extend ideas from [44] to achieve inversion via trapdoors.

Let λ be a security parameter and let � = �(λ), n = n(λ),m = m(λ), q =
q(λ), p = p(λ), t = t(λ), β = β(λ) be natural numbers and χ = χ(λ) = DZ,αq

be an LWE error distribution. We denote n′ = �n log q�. The tag space is Tλ =
{0, 1}t. Our construction now goes as follows:

Sample(1λ, tag∗): Sample (A, B) ← Lossy(1m, 1n, 1�, q, χ), then set the evalua-
tion keyek :=

(
A ∈ Z

n×m
q , B ∈ Z

�×m
q , {Ai,0,Ai,1}t

i=1

)
where

Ai,b = A · Ri,b + δb,tag∗
i

· G ∈ Z
n×n′
q ∀i ∈ [t], b ∈ {0, 1}

for Ri,b ← U({0, 1}m×n′
), tag∗

i denotes the i-th bit of tag∗, and δb,tag∗
i

= (b ?=
tag∗

i ). Afterwards, set the trapdoor key tk := {Ri,b}i∈[t],b∈{0,1} and output
(ek, tk).

Eval(ek, tag,x ∈ [0, β]n): Let Ctag : {0, 1}t → {0, 1} be the circuit Ctag(tag′) =∏t
i=1 δtagi,tag

′
i
and δtagi,tag

′
i
= 1 if and only if tagi = tag′

i. Parse the evaluation
key ek = (A, B, {Ai,0,Ai,1}t

i=1) and perform the homomorphic evaluation

A(tag) := FHEval
(
Ctag,

(
Ai,tagi

)t

i=1

)
= A · Rtag + Ctag(tag∗) · G

=

{
A · Rtag + G if tag = tag∗

A · Rtag otherwise
∈ Z

n×n′
q (3)

where the procedure FHEval is specified by:

FHEval
(
Ctag,

(
Ai,tagi

)t

i=1

)
:= A1,tag1 · G-1

(
A2,tag2 · G-1

(
· · ·G-1(At,tagt

) · · ·
))

and Rtag ∈ Z
m×n′

. Finally, compute and output
⌊
x� · [A |A(tag)]

⌋
p

.
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Invert(tk, tag∗,y ∈ Z
m+n′
p ): Parse the trapdoor key tk = {Ri,b}i∈[t],b∈{0,1}

then compute FHEval
(
Ctag∗ ,

(
Ai,tag∗

i

)t

i=1

)
= A · Rtag∗ + G, and following

Lemma 2, obtain EvalPriv
(
Ctag∗ , ((Ri,tag∗

i
, tag∗

i ))i∈[t]

)
= Rtag∗ . Afterwards,

compute x←LWRInvert([A |A · Rtag∗ + G],−Rtag∗ ,y) as per Lemma 5 and
output x.

The way we carry out the homomorphic computation FHEval involved in
equation (3) is not unique. Roughly speaking, at each step of the homomor-
phic evaluation of Ctag, we “decompose” the result from the previous step
using G-1 (the decomposed entries become binary) before multiplying so as to
obtain a ciphertext for the AND gate’s output. This gives the smallest possible
increase in the error term of the resulting homomorphic ciphertext, following
Lemma 2. Different approaches for computing FHEval will lead to different error
increases. Indeed, we homomorphically evaluate the circuit Ctag in the most pos-
sible “sequential” way, which is inspired by [5], and always multiply ciphertexts
whose noise terms are not too large. A less sequential computation will work,
but at the cost of a larger modulus, which then becomes exponential not only
in the security paramter but also in the depth of Ctag.

Parameter Selection. Let λ be the security parameter. First of all, we set the
bound β = 1 for the entries of inputs, which gives a domain {0, 1}n. We set the
tag length t = log λ, which means the circuits to be homomorphically evaluated
have depths bounded by t− 1 ≤ log λ. By Lemma 6, we must choose � such that
n ≥ 2� log q. In addition, for the trapdoor mechanism to work, Lemma 5 requires
that m ≥ n log q + 2 log n′

2δ and p ≥ O(
√

(m + n′)n′), where n′ = �n log q� and
δ = negl(n).

We will need m ≥ n log q + ω(log n) in order to apply Lemma 3. Moreover,
for the LWEq,m,n−1,α problem to be hard, it is necessary that q ≤ 2nε

< 2n and
2
√

n/q ≤ α ≤ n · 2−nε

, for some 0 < ε < 1. We refer to [17, Corollary 3.2] for
more details on these bounds for q and α. Similarly, we also need to ensure that
the LWEq,m,�,α problem is hard. Last but not least, we need q/p > 2λ for the
rounding operation to anihilate the noise term, following Lemma 7. Concretely,
let 0 < ε < 1 be a constant and d ≥ 1, we set up the parameters as follows:

n = Θ(λd); n′ = n log q = Θ
(
λd+dε

)
; β = 1; t = log λ; q = 2nε

= Θ
(
2λdε

)
;

α = n · 2−nε

= Θ
(
λd · 2−λdε

)
; m = 2λ + �n log q� = Θ

(
λd+dε

)
;

� =
n

2 log q
= Θ

(
λd−dε

)
; p = Θ

(√
(m + n′)n′

)
= Θ

(
λd+dε

)
.

Theorem 1. Let λ ∈ N be a security parameter. Under the LWEq,m,�,α and
LWEq,m,n−1,α assumptions, the above construction (Sample,Eval, Invert) is a
relaxed (n, n − � log q)-cumulatively-all-lossy-but-one trapdoor function family
with tag space Tt = {0, 1}t.

Proof. We now prove each of the required properties.
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Injectivity. The correctness of FHEval and EvalPriv in Invert follows Lemma 2.
It is straightforward to see that −Rtag∗ is a G-trapdoor for the matrix A′ :=
[A |A ·Rtag∗ +G]. Hence, given as inputs y = Eval(ek, tag∗,x) =

⌊
x� · A′⌋

p
and

the pair (A′,−Rtag∗), the algorithm LWRInvert will be able to compute back x
as per Lemma 5.

Indistinguishability. Let tag∗
0, tag

∗
1 ∈ {0, 1}t and (ekb, tkb)←Sample(1λ, tag∗

b)
for b ∈ {0, 1}. We want to prove that ek0 and ek1 are indistinguishable. Let
b ∈ {0, 1}. The evaluation key ekb is parsed as

ekb =
(
A(b) ∈ Z

n×m
q , B(b) ∈ Z

�×m
q , {A(b)

i,0 ,A(b)
i,1}t

i=1

)

where (A(b),B(b)) ← Lossy(1m, 1n, 1�, q, χ) and B(b) ∼ U(Z�×m
q ), A(b)

i,b′ are
encryptions of δb′,tag∗

b,i
∈ {0, 1} for i ∈ [t] and tag∗

b,i is the i-th bit of tag∗
b ,

respectively. Similarly to the proof of semantic security for the GSW encryp-
tion scheme [31], we first notice that A(b) is indistinguishable from a uniformly
random matrix Ã(b) in Z

n×m
q thanks to Lemma 3 and the parameter choice

m ≥ n log q+2λ. Hence, changing A(b) to Ã(b) is computationally indistinguish-
able under LWE.

We then apply Lemma 1 for the family of universal hash functions H =
{hA : Z

n
q → Z

m
q } where hA(x) := x� · A is indexed by A ∈ Z

n×m
q and q is

prime. Therefore, it holds that
(
Ã(b)R(b)

i,tag∗
b,i

)

i∈[t]
is statistically close to a t-

tuple of independent uniformly random matrices. As a result, for all i, the pair
(Ã(b)

i,0 , Ã(b)
i,1), where Ã(b)

i,b′ := Ã(b)R(b)
i,tag∗

b,i
+ δb′,tag∗

b,i
· G for b′ ∈ {0, 1}, is statisti-

cally close to a pair of uniformly random matrices. In the end, for b ∈ {0, 1}, ekb

is computationally indistinguishable from ẽkb whose components are sampled
uniformly at random in the corresponding domain and the indistinguishability
is concluded.

Relaxed Cumulative Lossiness. Let tag∗ ∈ Tt, (ek, tk) ← Sample(1λ, tag∗),
and fix an input x ∈ [0, β]n = {0, 1}n by the parameter choice β = 1. For every
tag ∈ Tt such that tag �= tag∗, we need to describe two functions compressek and
expandek,tag such thatEval(ek, tag,x) = expandek,tag(compressek(x)) except for a
negligible probability over the choices of tag �= tag∗.

The function compressek(x ∈ {0, 1}n) is described as follows:

1. Parse ek as ek := (A, B, {Ai,0,Ai,1}t
i=1) then use A ∈ Z

n×m
q and B ∈ Z

�×m
q

to recover (inefficiently) D ∈ Z
�×n
q and E ∈ Z

n×m. This is essentially inverting
an LWE function (D,E) → D�B + E for the matrix B.

2. Compute and output D · x ∈ Z
�
q.

Let y ∈ Z
�
q and tag ∈ Tt such that tag �= tag∗. The function expandek,tag(y) is

described as follows:
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1. Parse the ek as ek := (A, B, {Ai,0,Ai,1}t
i=1) then use (A,B) to (inefficiently)

recover D ∈ Z
�×n
q and E ∈ Z

n×m
q . Using A and {Ai,0,Ai,1}t

i=1, compute
A(tag) as in the Eval algorithm, i.e.

A(tag) := FHEval
(
Ctag,

(
Ai,tagi

)t

i=1

)
= A · Rtag + Ctag(tag∗) · G
(∗)
= A · Rtag ∈ Z

n×n′
q

where the (∗) equality comes from the fact that tag �= tag∗. We will denote
A′ := [A | A(tag)] = [A |

(
D� · B + E

)
· Rtag] ∈ Z

n×(m+n′)
q .

2. Compute (inefficiently) a matrix F ∈ Z
�×n′
q such that F is an LWE secret for

(D,A(tag)). Specifically, the matrix F statisfies that A(tag) = D� ·F+Etag

where Etag ∈ Z
n×n′

has bounded entries. The bound will be analyzed below.
3. Compute (inefficiently) an arbitrary but small matrix R′ ∈ Z

m×n′
such that

B · R′ = F.
4. Compute and return

⌊
[y� · B |y� · F]

⌋
p

∈ Z
m+n′
p .

Given a fixed input x ∈ {0, 1}n, for tag ∈ Tt and tag �= tag∗, we consider

expandek,tag(compressek(x)) = expandek,tag(D · x) =
⌊
[(Dx)� · B|(Dx)� · BR′]

⌋
p

where B,D,R′,F are computed as specified in compressek and expandek,tag.
To begin with, we analyze the bound of the entries in the error matrix

Etag so that the matrix F computed in step 2 of expandek,tag is uniquely deter-
mined. It suffices to bound the infinity norm of E ·Rtag. We evaluate homomor-
phically the ciphertexts Ai,b on a circuit Ctag defined as a sequential AND-
ing of t bits in tag and has depth t − 1. Moreover, the matrices Ai,b are
obtained using binary Ri ∈ {0, 1}m×n′

, for all i ∈ [t] and b ∈ {0, 1}. As
a corollary of Lemma 2, we have ‖Rtag‖∞ ≤ n′(n′ + 1)t. With E ∈ Z

n×m
q ,

we also have ‖E‖∞ = maxi∈[n]

(∑m
j=1 |Ei,j |

)
≤ mαq. This implies that

‖E · Rtag‖∞ ≤ ‖E‖∞ · ‖Rtag‖∞ ≤ n′(n′ + 1)t · m · αq. We choose the parameters
for n′(n′ + 1)t · m · αq to be small enough, for example smaller than q/4 given
a sufficiently large λ. Thus

(
D� · B + E

)
· Rtag uniquely determines B · Rtag

as a corollary of Lemma 6. Consequently, the (inefficient) step 2 of expandek,tag
will be able to find the unique F = B · Rtag. Then, we have B · R′ = B · Rtag

and
⌊
[(Dx)� · B | (Dx)� · B · R′]

⌋
p

=
⌊
[(Dx)� · B | (Dx)� · B · Rtag]

⌋
p
. Let us

define an event BAD as
⌊
[(Dx)� · B | (Dx)� · B · Rtag]

⌋
p

�=
⌊
[(Dx)� · B + x�E | (Dx)� · B · Rtag + x� · E · Rtag]

⌋
p

and we observe that the right-hand side is actually Eval(ek, tag,x). A simple
computation gives us Pr[Eval(ek, tag,x) = expandek,tag(compressek(x))] ≥ 1 −
Pr[BAD] where the probabilities are taken over the choices of tag ∈ Tt such that
tag �= tag∗, for the fixed input x ∈ {0, 1}n. The following lemma proves that
Pr[BAD] is negligible under current parameter and completes the proof.
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Lemma 10. We have the following bound:

Pr[BAD] ≤ 2t+1 · p · mα ·
(
1 + n′(n′ + 1)t

)
.

A proof for Lemma 10 can be found in the full version of this paper. ��

3.2 CALBO-TDFs from DCR

In this section we give a construction of CALBO-TDF achieving non-relaxed
cumulative lossiness from the DCR assumption. We start by recalling the
Damg̊ard-Jurik encryption scheme, whose decryption algorithm along with other
useful properties are used in our CALBO-TDFs.

Damg̊ard-Jurik Encryption. Damg̊ard and Jurik introduced in [20] a gen-
eralization of Paillier’s cryptosystem based on the ζ-DCR assumption. Given
a modulus N = pq such that gcd(N,ϕ(N)) = 1, where p and q are primes,
Damg̊ard and Jurik proved that the multiplicative group Z

∗
Nζ+1 is isomorphic to

the direct product of ZNζ and Z
∗
N :

Theorem 2 ([20], Theorem 1). For any N satisfying gcd(N,ϕ(N)) = 1 and
for ζ < min(p, q), the map ψζ : ZNζ × Z

∗
N → Z

∗
Nζ+1 given by (m, r) �→ (1 +

N)mrNζ

(mod N ζ+1) is invertible in polynomial time using lcm(p − 1, q − 1).

The Damg̊ard-Jurik encryption exploits this isomorphic property: a public
key is a pair (N, ζ) associated with secret key (p, q) and ψζ is the encryption func-
tion (where r plays the role of randomness), that can be inverted (decryption)
given (p, q). Semantic security is easily proven under the ζ-DCR assumption [20,
Theorem 2]. We are now ready to describe our construction of CALBO-TDFs
from the ζ-DCR assumption. We remark that the domain is currently index-
dependent, i.e. inputs are taken in Z

∗
Nζ+1 where N and ζ are specified in the

evaluation key. The domain can be made index-independent by using {0, 1}n for
some bitlength n in the same way Freeman et al. have done in [25], e.g. we can
choose any n ∈ N such that n < min(log p, log q).

Sample(1λ, tag∗): Given tag∗ ∈ Tt = {0, 1}t, generate an evaluation key ek :=(
N, ζ, {gi,0, gi,1 ∈ Z

∗
Nζ+1 }t

i=1

)
, consisting of the following components:

– A modulus N = pq such that p, q > 2l(λ) and gcd(N,ϕ(N)) = 1, where
l : N → N is a polynomial dictating the bitlength of p and q as a function
of λ, and an integer ζ > t.

– Elements gi,0, gi,1 ∈ Z
∗
Nζ+1 which are generated as

gi,b = (1 + N)δb,tag∗
i · αNζ

i,b mod N ζ+1 ∀(i, b) ∈ [t] × {0, 1},

where αi,b ←↩ U(Z∗
N ) for each i ∈ [t], b ∈ {0, 1}, tag∗

i denotes the i-th bit

of tag∗, and δb,tag∗
i

= (b ?= tag∗
i ). We note that gi,b is a Damg̊ard-Jurik

ciphertext of δb,tag∗
i
.
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Output ek and tk = (p, q).
Eval(ek, tag, x): Given an input x ∈ ZNζ+1 and tag ∈ Tt = {0, 1}t, let x0 = x.

Find (y0, z0) ∈ ZNζ ×ZN such that x0 = y0 ·N +z0. If gcd(z0, N) > 1, output
0. Otherwise, for i = 1 to t, do the following:
1. Parse xi−1 ∈ ZNζ+1 as a pair of integers (yi−1, zi−1) ∈ ZNζ × Z

∗
N such

that xi−1 = yi−1 · N + zi−1.
2. Compute xi = g

yi−1
i,tagi

· zNζ

i−1 mod N ζ+1.
In the end, output z = xt ∈ Z

∗
Nζ+1 .

Invert(tk, tag, z): Set xt = z and find (yt, zt) ∈ ZNζ × ZN such that xt =
yt · N + zt. If gcd(zt, N) > 1, output 0. Otherwise, for i = t down to i = 1,
conduct the following steps:
1. Using tk = (p, q), compute the unique pair (yi−1, zi−1) ∈ ZNζ × Z

∗
N such

that xi = g
yi−1
i,tagi

· zNζ

i−1 mod N ζ+1. This is done by first recovering yi−1 =
Dec((p, q), xi) ∈ ZNζ using the Damg̊ard-Jurik decryption algorithm for

obtaining zi−1 =
(
xi·g−yi−1

i,tagi
mod N ζ+1

)N−ζ

mod N. Note that zi−1 ∈ Z
∗
N

is well-defined thanks to the isomorphism ψ-1
ζ used in Damg̊ard-Jurik

decryption.
2. Let xi−1 = yi−1 · N + zi−1. Output x0 when i = 1.

The check gcd(z0, N) = 1 in Eval implies that, as long as factoring is hard, it
is infeasible to find non-invertible inputs, i.e. x = y0 · N + z0 ∈ ZNζ+1 such that
gcd(z0, N) > 1 for (y0, z0) ∈ ZNζ ×ZN . Moreover, the fraction of non-invertible
inputs is bounded by N ζ · (p+q)/N ζ+1 = (p+q)/N , which is negligible. We now
prove that the above construction is a CALBO-TDF assuming ζ−DCR holds.

Theorem 3. Let λ ∈ N is a security parameter. Let ζ = ζ(λ), l = l(λ), t = t(λ)
be functions in λ such that ζ > t. Assuming the ζ-DCR assumption, the triplet
(Sample,Eval, Invert) is a ((ζ +1) log N, (ζ +1) log N − t log N −1)-cumulatively-
all-lossy-but-one trapdoor function family with tag space Tt = {0, 1}t.

Proof. We prove injectivity, indistinguishability and cumulative lossiness prop-
erties as defined in Sect. 2.1. Let λ ∈ N be a security parameter and ζ = ζ(λ), l =
l(λ), t = t(λ) be polynomials in λ such that ζ > t. Let tag∗ ∈ Tt be the injective
tag and (ek, tk)←Sample(1λ, tag∗).

We first justify why we only need to check gcd(z0, N) = 1 and can be sure
that if it holds, gcd(zi, N) = 1 for all i ≥ 1. Indeed, let i ∈ [t]. By construction
xi = yi · N + zi for (yi, zi) ∈ ZNζ × ZN . Suppose z0 ∈ Z

∗
N , we verify the claim

by induction. Indeed x1 = ψζ(y0, z0) ∈ Z
∗
Nζ+1 . Hence gcd(z1, N) = gcd(z1 +

y1 · N,N) = gcd(x1, N) = 1. For the inductive step, suppose zi−1 ∈ Z
∗
N , then

xi = ψζ(yi−1, zi−1) ∈ Z
∗
Nζ+1 . By the same argument, we have gcd(zi, N) =

gcd(zi + yi · N,N) = gcd(xi, N) = 1.
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Injectivity. Let tag∗ ∈ {0, 1}t be an injective tag. We consider two cases for
invertibility of Eval(ek, tag∗, x) given the trapdoor tk of tag∗. If x ∈ ZNζ+1 \
Z

∗
Nζ+1 , equivalently by Theorem 2 it holds that x = y0·N+z0 and gcd(z0, N) > 1,

then Eval(ek, tag∗, x) = 0 by construction and cannot be inverted using tk. The
fraction of such inputs in ZNζ+1 is N ζ · (N − ϕ(N))/N ζ+1 = (p + q − 1)/N,
which is negligible in λ.

Otherwise, suppose that x ∈ Z
∗
Nζ+1 . By the correctness of Damg̊ard-Jurik

decryption algorithm and Theorem 2, for each i = t down to 1, step 1 in Invert
correctly recovers yi−1 ∈ ZNζ and zi−1 ∈ Z

∗
N such that xi−1 = yi−1 · N + zi−1,

where xi−1 is used at step i − 1 in Eval(ek, tag∗, x). Inductively, x0 = y0 · N + z0
is recovered correctly. In summary, Invert(tk, tag∗,Eval(ek, tag∗, x)) = x for an
overwhelming fraction of the domain ZNζ+1 and the injectivity is concluded.

Indistinguishability. Let tag∗
0, tag

∗
1 ∈ {0, 1}t and (ekb, tkb)←Sample(1λ, tag∗

b)
for b ∈ {0, 1}. We want to prove that ek0 and ek1 are indistinguishable. Let
b ∈ {0, 1}. The evaluation key ekb is parsed as

ekb =
(
N, ζ, {g

(b)
i,0 , g

(b)
i,1 ∈ Z

∗
Nζ+1 }t

i=1

)

where g
(b)
i,b′ is a Damg̊ard-Jurik encryption of δb′,tag∗

b,i
for i ∈ [t] and b′ ∈ {0, 1},

respectively and tag∗
b,i is the i-th bit of tag∗

b . The indistinguishability readily
follows the semantic security of the Damg̊ard-Jurik encryption scheme under a
standard hybrid argument.

Cumulative Lossiness. For (ek, tk) ← Sample(1λ, tag∗) and tag ∈
{0, 1}t such that tag �= tag∗, we want to describe two (possibly inef-
ficient) functions compressek and expandek,tag satisfying Eval(ek, tag, x) =
expandek,tag(compressek(x)) for all x ∈ ZNζ+1 .

Given x ∈ ZNζ+1 , the function compressek(x) is described as follows:

1. Parse the evaluation key as ekb =
(
N, ζ, {gi,0, gi,1 ∈ Z

∗
Nζ+1 }t

i=1

)
and (inef-

ficiently) factor N = pq.
2. Initialize a list List to empty. Compute (y, z) ∈ ZNζ × ZN such that x =

y · N + z. If gcd(z,N) > 1 then add 0 to List and output List.
3. Otherwise, having p, q, for all (i, b) ∈ [t] × {0, 1}, use the Damg̊ard-Jurik

decryption Dec((p, q), gi,b) = δb,tag∗
i

and in the end obtain tag∗ ∈ {0, 1}t.
Moreover, use the isomorphism ψ-1

ζ from Theorem 2 to also recover all the
αi,b ∈ Z

∗
N while knowing gi,b ∈ Z

∗
Nζ+1 and δb,tag∗

i
∈ ZNζ .

4. For i = 1 to t, define

siblingi := tag∗
[1..(i−1)] ‖ (1 − tag∗

i )

where tag∗
[1..(i−1)] denotes the first i − 1 bits of tag∗.

5. For j = 1 to t, perform the following:
– Let x0 = x and find (y0, z0) such that x0 = y0 · N + z0.
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– For k = 1 to j − 1, compute

xk = g
yk−1

k,siblingj [k]
· zNζ

k−1 (mod N ζ+1)

where siblingj [k] is the k-th bit of siblingj .
– Let b = siblingj [j]. Compute (yj−1, zj−1) such that xj−1 = yj−1 ·N +zj−1

and add
(αyj−1

j−1,b · zj−1)Nζ

(mod N ζ+1) ∈ ZN

to List.
6. Output List ∈ Z

t
N .

Given tag �= tag∗ and a List ∈ Z
t
N , the function expandek,tag(List) is given

below:

1. Parse the evaluation key as ekb =
(
N, ζ, {gi,0, gi,1 ∈ Z

∗
Nζ+1 }t

i=1

)
and (inef-

ficiently) factor N = pq.
2. If List contains only one element 0, output 0.
3. Otherwise, having p, q, for all (i, b) ∈ [t] × {0, 1}, use the Damg̊ard-Jurik

decryption Dec((p, q), gi,b) = δb,tag∗
i

and in the end obtain tag∗ ∈ {0, 1}t.
4. Compute i = minj∈[t](tagj �= tag∗

j ). It holds that 1 ≤ i ≤ t is well-defined
because tag �= tag∗.

5. Let xi = List[i]. For k = i + 1 to t, conduct the following:
– Compute (yk−1, zk−1) satisfying xk−1 = yk−1 · N + zk−1.
– Compute

xk = g
yk−1
k,tagk

· zNζ

k−1 (mod N ζ+1) .

6. Output xt ∈ Z
∗
Nζ+1 .

Relating to cumulative lossiness, we evaluate |{compressek(x) : x ∈ ZNζ+1}|.
By construction, for x ∈ Z

∗
Nζ+1 , the output of compressek(x) is a list of t elements

in ZN . If x ∈ ZNζ+1 \ Z
∗
Nζ+1 , compressek(x) outputs a list of one single element,

namely 0. We then have the bound

|{compressek(x) : x ∈ ZNζ+1}| = N t + 1 ≤ 2 · N t .

We want to prove that Eval(ek, tag, x) = expandek,tag(compressek(x)) for all
x ∈ ZNζ+1 and tag �= tag∗. If x ∈ ZNζ+1 \ Z

∗
Nζ+1 , then Eval(ek, tag, x) = 0 by

construction. Moreover, we have x = y · N + z for (y, z) ∈ ZNζ × ZN such that
gcd(z,N) > 1. Thus, compressek(x) outputs List containing only 0 and step 2 in
expandek,tag(List) recovers exactly 0. Otherwise, suppose x ∈ Z

∗
Nζ+1 . Our main

observation is that for i = minj∈[t](tagj �= tag∗
j ), the value xi will uniquely

determine xt, by the fact that ψζ is an isomorphism from Theorem 2. Moreover,
because tagi �= tag∗

i and tagk = tag∗
k for all k < i, we have

xi = (αyi−1
i−1,b · zi−1)Nζ

(mod N ζ+1)

and the sequence (x0, . . . , xi−1 = yi−1 · N + zi−1) stays the same as if the
input tag is tag∗. By definition of siblingi, it is easily verified that the loop 5 in
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compressek constructs List such that List[i] = xi and i = minj∈[t](tagj �= tag∗
j ).

Finally, the loop 5 in expandek,tag(List) performs exactly the same computation as
Eval(ek, tag, x) would do, starting from i. Hence, the equality Eval(ek, tag, x) =
expandek,tag(compressek(x)) is justified. ��

Remark 1. The domain is ZNζ+1 and its size is log(N ζ+1) = (ζ + 1) log N .
Moreover, by setting the tag length t = O(λ) and the exponent ζ = ω(λ) so that
our CALBO-TDFs can be used for the applications to randomness extractors
in [23, Corollary 5.12], the lossiness rate of the above construction becomes

(ζ + 1) log N − log(2 · N t)
(ζ + 1) log N

= 1 − t

ζ + 1
− 1

(ζ + 1) log N
= 1 − o(1)

and is indeed better than what the LWE-based CALBO-TDF achieves, which is
1 − Θ(1) by the parameter choices.
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