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Abstract. Access Control Encryption (ACE) [4] allows to control infor-
mation flow between parties by enforcing a policy that specifies which
user can send messages to whom. The core of the scheme is a sanitizer,
i.e., an entity that “sanitizes” all messages by essentially re-encrypting
the ciphertexts under its key. In this work we investigate the natural ques-
tion of whether it is still possible to achieve some meaningful security
properties in scenarios when such a sanitization step is not possible. We
answer positively by showing that it is possible to limit corrupted users
to communicate only through insecure subliminal channels, under the
necessary assumption that parties do not have pre-shared randomness.
Moreover, we show that the bandwidth of such channels can be limited
to be O(log(λ)) by adding public ciphertext verifiability to the scheme
under computational assumptions. In particular, we rely on a new secu-
rity definition for obfuscation, Game Specific Obfuscation (GSO), which
is a weaker definition than VBB, as it only requires the obfuscator to
obfuscate programs in a specific family of programs, and limited to a
fixed security game.

1 Introduction

Designers of practical secure IT systems are often interested in controlling the
flow of information in their system. For this purpose one sets up a security policy
that contains rules on what operations the entities in the system are allowed to
execute. Crucially, such rules must constrain both write and read operations
as both types may lead to unwanted transfer of data. This was formalized in
the classical Bell-Lapadula security policy as the “no read up” (entities with
low security clearance cannot read top-secret data) and “no write-down” rules
(entities with a high security clearance cannot write to public files). If entities
are not assumed to be honest, such a security policy cannot be enforced unless
we assume a trusted party, often known as a sanitizer, which will stop and/or
modify unwanted communication. Of course, the sanitizer cannot do this unless
we assume that parties can only communicate via the sanitizer. In practical
systems one usually tries to ensure this by a combination of hardware security
and software design, for instance in the kernel of the operating system.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
C. Galdi and S. Jarecki (Eds.): SCN 2022, LNCS 13409, pp. 220–243, 2022.
https://doi.org/10.1007/978-3-031-14791-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14791-3_10&domain=pdf
http://orcid.org/0000-0003-0956-1616
http://orcid.org/0000-0003-4992-0249
https://doi.org/10.1007/978-3-031-14791-3_10


On Access Control Encryption Without Sanitization 221

In [4] Damg̊ard et al. asked whether cryptography can be used to simplify
the job of the sanitizer, and reduce the amount of trust we need to place in it.
To this end, they introduced the notion of Access Control Encryption (ACE).
Using an ACE scheme, the sanitizer does not need to know the security policy or
the identities of any parties in the system. It just needs to process every message
it receives and pass it on. The processing essentially amounts to re-randomize
every message received. Instead of asking the sanitizer to enforce the security
policy, an ACE scheme integrates the policy in the key generation algorithm,
which gives an encryption key to each sender, a decryption key to each receiver
and a sanitizer key for the sanitizer. The keys are designed such that, after
sanitization, a receiver can decrypt a message, only if it was encrypted by a
sender that is allowed to send to that receiver.

Observe that security requires the physical assumption that a corrupt sender
cannot bypass the sanitizer and send directly to any receiver she wants. Indeed,
it may seem that nothing non-trivial can be achieved if we drop this assumption.
On the other hand, assuming such a communication bottleneck may be hard to
justify in practice, and makes the system vulnerable to DDoS attacks (in case
the sanitizer is offline). It is then natural to wonder:

Can we achieve any meaningful security without sanitization?

2 Our Results

In this paper, we answer affirmatively to the previous question analyzing two
new models, both avoiding the need of preprocessing ciphertexts before delivery.
We present formal definitions of ACE in these models, and we instantiate them
under various computational assumptions. Along the way we obtain a standard
ACE with sender anonymity from standard assumptions, which had been left as
an open problem in [6] (deferred to the full version due to lack of space).

2.1 Modeling ACE Without Sanitization

ACE without Sanitizer (ACEnoS). Removing the sanitization bottleneck
implies that senders can now post to a bulletin board that receivers can read
from. As in standard ACE, parties have no other communication channel avail-
able, and key generation assumes a trusted party. However, senders are now free
to post whatever they want. What security properties can we hope to achieve in
such a model? Clearly, we can do what cryptography “natively” allows us to do,
namely what we call the No Read Rule (NRR): an honest sender can encrypt
a message such that only the designated receiver can extract information about
the plaintext from the ciphertext; furthermore we can guarantee that a cipher-
text does not reveal the identity of the sender. What we can do about a corrupt
sender is more subtle: clearly, we cannot stop a sender from simply posting any
message she wants, thus broadcasting confidential data. But, on the other hand,
this is often not what a corrupt sender wants to do. If, for instance, the data
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involved is extremely valuable, it may be more attractive to break the security
policy by sending a secret message that can only be decrypted by a specific
(corrupted) receiver she is not allowed to send to. This attack we can actually
hope to stop, through what we call the No Secret Write Rule (NSWR)1: parties
cannot communicate secretly if the policy does not allow it. If parties manage
to communicate against policy, then anyone can read their communication.

Communication Restrictions. For this goal to be meaningful, we can allow
corrupted senders and receivers to share a common strategy, but not randomness.
Without this constraint, any no secret write rule can trivially be broken just using
one-time-pad encryption, for instance. Assuming that the parties’ initial states
are uncorrelated, the rough intuition is that if the key generation does not supply
a corrupted sender and receiver with sufficiently correlated key material, the
receiver’s ability to decrypt a ciphertext cannot depend on the keys she has. But
if it does not, then anyone should be able to extract the message the corrupted
sender wants to leak, and so the message is effectively publicly available. Observe
that the assumption that parties do not have pre-shared randomness is not new:
in fact, Alwën et al. [1] already pointed out the need for such an assumption
when building collusion-free protocols.

Verifiable ACE (VACE). Our solution above implies that whatever informa-
tion a corrupt sender embeds in his message can in principle be accessed by
anyone. But there is no limit on the amount of information she can leak in this
way. Is there some way to plausibly limit such leakage? We answer affirmatively,
by adding a way to publicly verify the posted ciphertexts. Intuitively, if a cipher-
text verifies, it is correctly formed according to the encryption algorithm, not
something the sender can choose as he likes (e.g., no unencrypted messages).
However, a sender may still try to output a valid ciphertext that equals the
encoding of an n-bit subliminal message. The hope is that now the sender’s sit-
uation becomes somewhat similar to having to generate ciphertexts by calling a
random (encryption) oracle. In this scenario embedding a random n-bits string
requires a number of queries exponential in n, as the sender can only make a
polynomial number of calls and cannot control the (somewhat) random outputs.
This limits senders to leak up to a logarithmic number of bits, which is optimal2.

Finally, as anyone can verify, senders are discouraged from posting invalid
ciphertexts (e.g., unencrypted messages) – as in practice, content that does not
verify would be taken down and there might be consequences for the sender.
With this we obtain fast communication (no need of a sanitization bottleneck),
while maintaining some accountability. Observe that public verification yields
something different from a standard ACE, albeit very close. The difference is
1 This is closely related to the notion of subliminal channels [10], where the information

sent is hidden in messages that are seemingly created for a different purpose. In
that language, NSWR says that, while a corrupt sender may be able to establish a
subliminal channel to a receiver he should not send to, any such channel is non-secret.

2 This reasoning yields a clear lower bound: no ACEnoS can prevent a sender to embed
a logarithmic number of bits in a ciphertext (by generating ciphertexts until, say,
the first few bits of the string are equal to the message bits she wants to embed).
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that not only the sanitization key is public (as in [5]), but the sanitization step
(the verification in this case) can be performed by any party, after ciphertexts
are posted. This was not the case in [5], where the sanitizer does more than just
a routine check (in fact, it injects honestly generated randomness in ciphertexts).

2.2 Instantiating ACEnoS and VACE

Constructing ACEnoS. Even assuming parties not to have shared randomness,
it is not straightforward to obtain a ACEnoS by simply “removing” the saniti-
zation step from pre-existing ACE constructions: the security of existing ACE
schemes strongly relies on some transformation to be applied on a ciphertext
before its delivery. In our work, we give several constructions under various stan-
dard assumptions that match in efficiency the existing ACE constructions (e.g.,
[4,5]). One of these requires a new primitive, key-indistinguishable predicate
encryption. The definition is rather natural, and very useful, as it immediately
yields a solution of a problem left open by Kim and Wu [6] (see full version).

Constructing VACE. We give a construction of an ACE scheme with verifi-
cation and minimal leakage based on a new definition of obfuscation. The need
of a new assumption arises from the fact that building a VACE is highly non-
trivial. To see why, we can consider what seems at first a promising solution:
assume the sender is committed to a PRF key K and is supposed to compute the
ciphertext c she posts using randomness generated from K and the encrypted
message m, via the PRF, i.e., c = Epk (m,PRFK (m)). In addition, the sender
adds a non-interactive zero-knowledge proof that c was correctly computed. This
allows verification. Moreover, it also seems to imply that a malicious sender can-
not manipulate the randomness to embed a subliminal message m ′ in c. However
a closer look shows that this is not clear at all: the intuition assumes that the
sender chooses a message m to encrypt and the subliminal message m ′ first, then
generates randomness using the PRF key and hopes that the resulting cipher-
text will be an encoding m ′. In fact, the sender does not have to do this: she
might be able to instead compute simultaneously c and m from the subliminal
message m ′, in a way that depends on K , such that c = Epk (m,PRFK (m))
holds. The security properties of the PRF and the encryption function do not
imply that this is infeasible: the PRF is only secure if the key is not known, and
the encryption function is only hard to invert on a random ciphertext, and this
does not prevent the adversary from generating c and m simultaneously from K .
With this approach, it is completely unclear that c could not be an encoding of
a subliminal message m ′ that the adversary wants. One might be able to make
these problems go away if one is willing to model the PRF as a random oracle.
But now the problem is that the zero-knowledge proof requires access to the
code of the instantiation of the oracle. This code is no longer available once we
pass to the random oracle model, so it is not clear how to prove security.

In the absence of a solution based on standard assumptions, we rely on a
new model for security of obfuscation that we call Game-Specific Obfuscation
(GSO). As the name suggests, GSO only requires the obfuscator to obfuscate
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programs in a specific family of programs F used in a fixed security game G.
Roughly speaking, the security requirement is that the obfuscated program does
not help an adversary to win the specific game any more than oracle access
to the program would have allowed. Note that while implied by VBB, GSO
makes a much weaker demand than VBB: we assume that the obfuscation gives
nothing more than oracle access, only as far as winning G is concerned, and the
obfuscator only needs to obfuscate programs in F . In particular, the impossibility
result for VBB [2] does not apply to GSO. At the same time, GSO and iO
are somewhat incomparable: GSO has no specific requirement on the family
of programs, while iO needs them to compute the same function; on the other
hand, iO still guarantees indistinguishability for every game, while GSO targets a
specific one. Nevertheless, assuming GSO is a strong assumption, and our result
mainly serves to rule out impossibility results for VACE with minimal leakage.

2.3 Concurrent Work

Recently, Lu et al. [7] explore an analogous question in the context of collusion-
preserving MPC [1]: could one get rid of mediation? At a high level, their solution
is similar to our VACE construction: parties’ messages are encrypted, signed, and
sent on an authenticated broadcast channel by a trusted hardware, which thus
performs the same task as the obfuscated program in our construction. However,
to completely prevent subliminal channels they have to assume that senders
cannot run the trusted hardware multiple times and choose which ciphertext to
send, which is a stronger assumption than our communication model.

2.4 Future Directions

We believe that the question we study here is a fundamental one that is of
interest, also outside the scope of ACE, as it can be phrased in a much more
general context: assume a polynomial-time sender who is limited to sending
messages that satisfy some verification predicate. The question is to what extent
we can use the verification to limit the bandwidth of any subliminal channel that
the sender may be able to embed? Given our results, it seems that a logarithmic
number of bits per message can be achieved. However, we leave a solution based
on standard assumptions as an open problem.

3 Access Control Encryption Without Sanitization

Let [n] = 0, 1, . . . ,n for an integer n ∈ N, and λ be the security parameter.
Denote by |s| the length of a bit string s.

Parties. The protocol is run by n parties Pi. Each party can be either a sender
or a receiver. We denote by nS (resp., nR) the number of senders (resp.,
receivers); thus n = nS + nR.

Policy. A policy is a function P : [nS ] × [nR] → {0, 1} defined as follows:
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– P(i, j) = 1 means that the i-th sender can send messages to the j-th
receiver (i.e., Rj can decrypt ciphertexts generated by Si);

– P(i, j) = 0 means that the i-th sender cannot send messages to the j-th
receiver (i.e., Rj cannot decrypt ciphertexts generated by Si);

Finally, the party identity i = 0 represents a sender or receiver with no rights,
i.e., for all j ∈ [nR], k ∈ [nS ] it holds P(0, j) = P(k, 0) = 0.

Communication Model. We assume only one-way channels between parties:
– parties cannot share any randomness nor other key setup, and
– parties only communicate through a bulletin board, and do not have pri-

vate channels, or, in general, communication channels outside the protocol
(analogously to ACE). Senders are the only ones allowed to write on the
bulletin board, while receivers have read-only access to it.

An Access Control Encryption scheme without sanitizer (denoted by ACEnoS
in this work) is composed by four algorithms:

Setup: (pp,msk) ← Setup(1λ,P)
Takes as input the security parameter λ and the policy P, and outputs the
public parameters of the scheme (that include the message space M) and the
master secret key.

Key Generation: ki ← KGen(pp,msk , i, t)
Takes as input the public parameters of the scheme, the master secret key,
the identity of the party, and a type t ∈ {sen, rec}, and outputs a key ki,
generated depending on t and i as follows:

– ek i ← KGen(pp,msk , i, sen) is the encryption key for i ∈ [nS ];
– dk i ← KGen(pp,msk , i, rec) is the decryption key for i ∈ [nR];
– ek0 = dk0 = pp.

Encryption: c ← Enc(pp, ek i,m)
On input the secret key of Si and a message m ∈ M, outputs the ciphertext.

Decryption: m ′ ← Dec(pp, dk i, c)
On input a ciphertext and the secret key of the receiver i, it outputs either a
message or ⊥ (representing a decryption failure).

As in the original scheme, an ACE without sanitizer has to satisfy:

Correctness: a honestly generated ciphertext can always be decrypted by the
designated receivers.

No Read Rule: only the designated receiver can extract information about the
plaintext from a ciphertext; senders anonymity is guaranteed under natural
assumptions.

No Secret Write Rule: parties cannot communicate secretly if the policy does
not allow it. If parties manage to communicate despite being forbidden by
the policy, then anyone can read their communication.

When compared to the security definitions of ACE, only the No write Rule
requires major changes, as it is the only property where the sanitizer plays a fun-
damental role. Correctness and the No Real Rule only need small adjustments.
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Definition 3.1 (Correctness). An ACE without sanitizer is correct if for all
m ∈ M, i ∈ [nS ], j ∈ [nR] such that P(i, j) = 1 it holds

Pr

⎡
⎣Dec(pp, dk j ,Enc(pp, ek i,m)) �= m :

(pp,msk) ← Setup(1λ,P),
ek i ← KGen(pp,msk , i, sen),
dk j ← KGen(pp,msk , j, rec)

⎤
⎦ ≤ negl(λ),

where the probabilities are taken over the random coins of all the algorithms.

The NRR models the case in which a coalition of parties (both senders and
receivers) tries to either break the confidentiality of a message (payload privacy)
or to break the anonymity of target senders. We consider the most powerful
adversary, that has even access to the target senders’ encryption keys. This
guarantees sender’s anonymity (and payload privacy) even for senders whose
encryption key was leaked.

Definition 3.2 (No-Read Rule). Consider the following security experiment,
where A is a stateful adversary and b ∈ {0, 1},

Experiment ExpnrA,b(λ, P) Oracles

(pp,msk) ← Setup(1λ, P) OG(j, t) : OE(j,m):

(m0,m1, i0, i1, st) ← AOG(·), OE(·)(pp) If ∃ kj s.t. (kj , j, t) ∈ L, return kj ekj ← OG(j, sen)

cb ← Enc(pp, OG(ib, sen),mb) Else kj ← KGen(pp,msk , j, t) c ← Enc(pp, ekj ,m)

b′ ← AOG(·), OE(·)(st, cb) L ← L ∪ {(kj , j, t)} Return c.

Return b′. Return kj .

Given the following requirement,

Necessary Condition: b = b′, |m0| = |m1|, i0, i1 ∈ [nS ],

we say that A wins the experiment if one of the following holds:

Payload Privacy (PP). The Necessary Condition holds, and for all queries
q = (j, rec) to OG it holds that: P(i0, j) = P(i1, j) = 0.

Sender Anonymity (SA). The Necessary Condition holds, and for all queries
q = (j, rec) to OG it holds that: P(i0, j) = P(i1, j) and m0 = m1.

An ACE without sanitizer satisfies the No-Read rule if for all PPT A, b $←−{0, 1}

2 ·
∣∣∣∣Pr

[
(PP ∨ SA) : b′ ← ExpnrA,b(λ,P)

] − 1
2

∣∣∣∣ ≤ negl(λ).

NRR vs. Indistinguishability. The NRR corresponds to the indistinguishability
properties of the PKE, which in fact can be seen as special cases of the NRR:
Payload Privacy when i0 = i1 guarantees IND-CPA security, while the Sender
Anonymity case is analogous of key-indistinguishability [3].

The goal of the No Secret Write Rule is to prevent unauthorized communi-
cations. However, as the sanitization step is not present anymore, there is no
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countermeasure in place to prevent parties to try to establish subliminal chan-
nels [10]: parties might try to embed messages in the bits of a valid ciphertext
using some shared randomness (for example, bits of their secret keys). As com-
pletely preventing subliminal channels without some kind of sanitization step is
impossible (cf. Sect. 7.2), we settle for preventing secure exfiltration of informa-
tion: if two parties manage to communicate despite this being against the policy,
they can only succeed in establishing an insecure subliminal channel (i.e., they
can only send unencrypted messages). This is useful in scenarios where leaking
information by broadcasting it in the clear is not an option (e.g., if the informa-
tion allows to identify the party that leaked it). Thus we need to assume that
the corrupted sender and receiver do not share randomness or private commu-
nication channels. An obvious implication is that they cannot corrupt the same
party and they should only communicate through the bulletin board. In fact,
this imposes much bigger limitations to their corruption abilities:

– They cannot corrupt parties that have parts of the key in common (e.g., in
constructions relying on symmetric key cryptography), as in this case the
common bits can be used as shared randomness.

– They cannot corrupt parties whose keys can be recovered from each other (as
it is the case for public key cryptography, where usually the public key can
be recovered from the secret key).

– Neither of them can have both read and write access to the board, other-
wise they would have an (insecure but) two-way communication channel that
would then allow for key-exchange. This means that the corrupted sender
can only corrupt other senders, and analogously for the receiver. Moreover,
corrupted senders should not have access to an encryption oracle, while cor-
rupted receivers do: the first requirement is due to the fact that a corrupt
sender could trivially break the property by “replaying” encryptions under
keys of (honest) senders who are allowed to communicate to the corrupted
receiver, while the latter is due to the fact that we want to model that receivers
have access to the entire bulletin board, which may contain encryptions of
known messages under keys of known identities.

The definition says that if a corrupted receiver can recover a message, then
knowing some decryption keys did not help in the process. This is modeled by
imposing that a party B without access to keys can recover the message with a
similar success probability3. Remark that there is no consistency check on the
ciphertext s̄ output by the corrupted sender A1: s̄ could even be the entire view
of A1. In Sect. 7.2 we show that adding ciphertext verifiability yields stronger
limitation on the communication between unauthorized parties.

Definition 3.3 (No Secret Write (NSW) Rule). Let A = (A1,A2) be an
adversary and consider the following game (oracles OG and OE are the key
generation oracle and encryption oracle defined in Definition 3.2):

3 Alternatively one could require A2 (and consequently B) to distinguish whether a
ciphertext contains a subliminal message at all. This case is clearly implied by ours.
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Experiments
Expnsw(A1,A2)

(λ, P) Expnsw(A1,B)(λ, P)

(pp,msk) ← Setup(1λ, P) (pp,msk) ← Setup(1λ, P)

(m̄, s̄) ← A
OG(·,sen)
1 (pp) (m̄, s̄) ← A

OG(·,sen)
1 (pp)

m ′ ← A
OG(·,rec), OE(·)
2 (pp, s̄) m ′′ ← BOE(·)(pp, s̄)

Return 1 if m̄ = m ′, Return 1 if m̄ = m ′′,
0 otherwise. 0 otherwise.

Let Q1 (resp., Q2) be the set of all queries q = (i, sen) (resp., q = (j, rec))
that A1 (resp.,A2) issues to OG. The adversary wins the experiment if m ′ = m̄
while the following holds:

No Communication Rule (NCR). ∀ (i, sen) ∈ Q1, (j, rec) ∈ Q2, P(i, j) = 0.

Given λ and a policy P, an ACE without sanitizer satisfies the No Secret
Write rule if for all PPT A = (A1,A2) there exists a PPT algorithm B and a
negligible function negl such that

Pr
[
1 ← Expnsw(A1,B)(λ,P)

]
≥ Pr

[
1 ← Expnsw(A1,A2)(λ,P) ∧ NCR

]
− negl(λ).

Further remarks on defining NSWR security can be found in the full version,
alongside the intuition behind the impossibility to instantiate an ACE without
sanitization from symmetric key primitives.

4 Linear ACE Without Sanitizer from PKE

The first construction is akin to the original linear ACE from standard assump-
tions by Damg̊ard et al. [4]. In such scheme, senders are given the public keys of
all the receivers they are allowed to communicate with, and “decoy/placeholder”
public keys for the receivers they are not allowed to communicated with (to make
sure that ciphertexts generated by different senders have the same length). The
encryption algorithm then encrypts the message under all the keys. The i-th
receiver just decrypts the i-th ciphertext using its secret key. Sender’s anonymity
requires that ciphertexts do not leak any information about the key used to gen-
erate them, i.e., key indistinguishability [3].

Let (PKE.KeyGen,PKE.Enc,PKE.Dec) be a public key encryption scheme,
that is IND-CPA secure4 and IK-CPA. An ACE without sanitizer from PKE
(denoted ACEpke) can be instantiated as follow.

4 It is enough that the PKE is IND-CPA, as whenever the receiver has to distinguish
between the encryption of 2 different messages, it is not allowed to get the decryption
key (as it would be in the Payload privacy game). In the sender anonymity game,
when the adversary can ask for decryption keys, the only requirement is that is
should be impossible to identify a sender from the encryption key it uses, which is
guaranteed by the key-indistinguishability property.
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Communication Model: parties communicate through a bulletin board. Only
senders are allowed to write on the board. Receivers can only read from it.

Message Space: M := {0, 1}�.
Setup: (pp,msk) ← Setup(1λ,P)

It generates the message set, and the number of parties n, of senders nS ,
and of receivers nR; all are included in pp, along with the policy. The master
secret key is a list of 2nR (distinct) pairs of asymmetric keys, i.e.,

msk =
{

((pk0
j , sk

0
j ), (pk

1
j , sk

1
j )) :

For i = 1, 2
(pk i

j , sk
i
j) ← PKE.KeyGen(1λ)

}

j∈[nR]

.

Key Generation: ki ← KGen(pp,msk , i, t)
On input (i, t), the algorithm parses msk = {((pk0

j , sk
0
j ), (pk

1
j , sk

1
j ))}j , and

behaves as it follows.
– If i �= 0 and t = sen, it returns a vector ek i = (ek i[j])j∈[nR] such that

ek i[j] ← pkP(i,j)
j .

– If i �= 0 and t = rec, it returns dk i = sk1
i .

– If i = 0, returns ek0 = dk0 = pp.
Encryption: c ← Enc(pp, ek i,m)

Run cj ← PKE.Enc(ek i[j],m; ρj) for all j ∈ [nR] (ρj is a random string).
Return c = (cj)j=1,...,n .

Decryption: m ′ ← Dec(pp, dk j , c)
Let c = (c1, . . . , cnR

). Return the output of PKE.Dec(dk j , cj) (which could
be either a message m or ⊥).

Theorem 4.1. The ACEpke scheme is correct, and satisfies the properties of
No-Read and No Secret Write as described in Sect. 3 if the public key encryption
scheme is IND-CPA secure and key-indistinguishable.

Proof. The proof is as follows.

Correctness. Correctness directly follows from the correctness of the PKE
scheme.

No Read Rule. The No-Read Rule relies on both the IK-CPA and IND-CPA
properties of the PKE scheme. The proof is deferred to the full version, as it
closely follows the proof of [4, Theorem 3].

No Secret Write Rule. Given an adversary A = (A1,A2) that wins the game
Expnsw(A1,A2)(λ,P) with probability εA, to prove that the scheme satisfies the NSW
Rule we need to construct an algorithm B that wins game Expnsw(A1,B)(λ,P) with
essentially the same probability (up to a negligible difference). Upon receiving
s̄ from A1, the algorithm B runs A2 internally on input (pp, s̄) simulating the
oracles as follows. First, it generates 2nR pairs of PKE keys, and collects them
in a fresh master secret key m̄sk = {(( ¯pk0

j , s̄k
0
j ), (p̄k

1
j , s̄k

1
j ))}j∈[nR]. The oracles

are then simulated using msk ′:
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OG: on input (j, t) from A2, B generates new keys according to the policy P using
m̄sk . If t = sen B sends ek j = (p̄kP(j,i)

i )i∈[nR]; if t = rec, it sends dk j = s̄k1
j .

It stores the keys in a list K.
OE : simulates the encryption oracle as specified in the security experiment using

the appropriate key from K.

Finally, B outputs the message that A2 returns. By the definition of conditional
probability, the success probability of B is

Pr
[
1 ← Expnsw(A1,B)(λ,P)

]
= Pr

[
1 ← Expnsw(A1,A2)(λ,P) ∧ NCR

]
· Pr(E),

where we denote by E the event “A2 does not distinguish the simulated oracles
from real ones”. The only way A2 could distinguish, is if the answers of the
simulated oracles were inconsistent with the challenge ciphertext s̄. However, in
the real game the encryption keys queried by A1 are statistically independent
of the decryption keys queried by A2, and they do not share state, thus any
information encoded in s̄ is statistically independent of the keys A2 queries. The
only way A2 could get information about the encryption keys owned by A1 would
be by querying the encryption oracle on (i,m) for an i that A1 has corrupted
(such identity could be hardcoded in A2, so the attack can be performed even in
absence of shared state). If A2 can distinguish that the ciphertext is not generated
using the same key that A1 received, then A can be exploited to break the key
indistinguishability property of the PKE. Let qE be the number of queries by
A2 to the encryption oracle. One can prove this by a sequence of hybrid games:

Game 0. This is the No-Secret-Write experiment.
Hybrid k for 0 ≤ k ≤ 2nR. In all hybrid games the view of A1 is generated

according to the NSWR experiment, i.e., using the master secret key msk
generated at the beginning of the experiment. However, when generating the
view of A2, the challenger in Hybrid k generates the j-th key pairs in m̄sk as
follows:
Case j < �k/2: it generates fresh PKE key pairs (p̄k0

j , s̄k
0
j , p̄k

1
j , s̄k

1
j ).

Case j = k: it generates a fresh key pair (p̄k , s̄k), and sets the j-th PKE
pairs to be (p̄k , s̄k , pk1

j , sk
1
j ) if k is odd and (p̄k0

j , s̄k
0
j , p̄k , s̄k) if k is even,

where (pk0
j , sk

0
j , pk

1
j , sk

1
j ) is the j-th key pair in msk and (p̄k0

j , s̄k
0
j , ) ←

PKE.KeyGen(1λ).
Case j > �k/2: it uses the same PKE key pairs (pk0

j , sk
0
j , pk

1
j , sk

1
j ) as in

msk .
Let Ek be the event that A distinguishes between Hybrid k and Hybrid k −1.
Lemma 4.2 shows that Pr(Ek) ≤ 2

3qEεik-cpa(λ).
Game 1. This is the No-Secret-Write experiment as simulated by B. By defini-

tion, Hybrid 0 is exactly equal to Game 0, and Hybrid 2nR is the same as
Game 1. Therefore:

Pr(E) ≥ 1 − 3nRqEεik-cpa(λ),
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where εik-cpa(λ) is the probability of breaking the IK-CPA property of the
PKE scheme and qE = poly(λ) as A is a polynomial-time algorithm. ��

Lemma 4.2. Pr(Ek) ≤ 3εik-cpa(λ)qE for all k ∈ [2nR].

Proof. We split the proof in 3 cases:

Case 1: for all queries (j, sen) by A1 to OG, P(j, k) = 0.
Case 2: there are ī, j̄ ∈ [nS ] such that A1 queried (̄i, sen) and (j̄, sen) to OG and

P (̄i, k) = 1, P(j̄, k) = 0.
Case 3: for all queries (j, sen) by A1 to OG, P(j, k) = 1.

If k = 0 this is exactly the NSW experiment. If k = 2nR this is the NSW
experiment as simulated by B. Assume now 0 < k < 2nR.

Let us start from k odd. In Case 1 A1 sees pk0
k but not pk1

k, while A2 can
query dkk and receives sk1

k both in Hybrid k and in Hybrid k − 1. The only
difference is that in Hybrid k OE uses ¯pkk, pk1

k instead of pk0
k, pk1

k as in Hybrid
k−1. If A can distinguish in this case, we construct a PPT algorithm C that can
win the IK-CPA experiment running A as a subroutine. C receives pk0 and pk1

from the IK-CPA experiment and generates msk setting (pk0
k, sk0

k) = (pk0,⊥)
and (p̄k , s̄k) = (pk1,⊥). The rest of the master secret keys msk and m̄sk are
generated as specified by Hybrid k. Then it answers to OG using msk for the
queries by A1 and m̄sk for the queries by A2. To answer queries from A2 to OE ,
C selects a random q $←− [qE ] and behaves as follows:

– C answers to the first q−1 queries using pk0, pk
1
k as the k-th encryption keys.

– When A2 sends the q-th query (i,m), C returns m to the IK-CPA experiment
and receives a challenge ciphertext c̄. Then it generates the encryption of m
as follows:

cj ← PKE.Enc(pkP(i,j)
j ,m) for j = 1, . . . , k − 1

cj ← c̄ for j = k if P(i, k) = 0

cj ← PKE.Enc(pk1
j ,m) for j = k if P(i, k) = 1

cj ← PKE.Enc(p̄kP(i,j)
j ,m) for j = k + 1, . . . ,nR

– C answers to the remaining qE − q + 1 queries using pk1, pk
1
k as the k-th

encryption keys.

Thus it follows that for k odd

Pr(Ek | Case 1) ≤ |Pr(A wins Hybrid k − 1 | Case 1) − Pr(A wins Hybrid k | Case 1)|

≤ |
qE∑

Q=1

Pr(A wins the game | q = Q ∧ c̄ ← PKE.Enc(pk0,m))+

− Pr(A wins the game | q = Q ∧ c̄ ← PKE.Enc(pk1,m))|
≤ qEεik-cpa(λ).

In Case 2 A1 sees both pk0
k and pk1

k, while A2 cannot query dkk both in
Hybrid k and in Hybrid k − 1. The difference is that in Hybrid k OE uses
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¯pkk, pk1
k instead of pk0

k, pk1
k as in Hybrid k − 1. The reduction shown for Case

1 can be replicated without changes in this case. In Case 3 A1 sees pk1
k but not

pk0
k, while A2 cannot query dkk both in Hybrid k and in Hybrid k − 1. Again

the only difference is that in Hybrid k OE uses ¯pkk, pk1
k instead of pk0

k, pk1
k as

in Hybrid k − 1. Thus in this case the view of A in Hybrid k is statistically
indistinguishable from the view of A in Hybrid k − 1.

Finally, assume that k is even. In Case 1 A1 sees pk0
k but not pk1

k, while
A2 can query dkk and receives s̄k1

k in Hybrid k and sk1
k in Hybrid k − 1. The

encryption oracle OE uses ¯pkk
0
, p̄k in Hybrid k, and p̄k0

k, pk1
k in Hybrid k − 1.

As the adversary does not see pk1
k, the view of A in Hybrid k is statistically

indistinguishable by the view of A in Hybrid k − 1. In Case 3 A1 sees pk1
k but

not pk0
k, while A2 cannot query dkk both in Hybrid k and in Hybrid k − 1.

The difference is that in Hybrid k OE uses ¯pkk
0
, p̄k instead of p̄k0

k, pk1
k as in

Hybrid k − 1. The previous reduction can be adapted to this case as follows. C
receives pk0 and pk1 from the IK-CPA experiment and generates msk setting
(pk1

k, sk1
k) = (pk0,⊥) and (p̄k , s̄k) = (pk1,⊥). The rest of the master secret keys

msk and m̄sk are generated as specified by Hybrid k. Then it answers to OG

using msk for the queries by A1 and m̄sk for the queries by A2. To answer queries
from A2 to OE , C selects a random q $←− [qE ] and behaves as follows:

– C answers to the first q−1 queries using pk0, pk
1
k as the k-th encryption keys.

– When A2 sends the q-th query (i,m), C returns m to the IK-CPA experiment
and receives a challenge ciphertext c̄. Then it generates the encryption of m
as follows:

cj ← PKE.Enc(pkP(i,j)
j ,m) for j = 1, . . . , k − 1

cj ← PKE.Enc(p̄k0
j ,m) for j = k if P(i, k) = 0

cj ← c̄ for j = k if P(i, k) = 1

cj ← PKE.Enc(p̄kP(i,j)
j ,m) for j = k + 1, . . . ,nR

– C answers to the remaining qE − q + 1 queries using pk1, pk
1
k as the k-th

encryption keys.

Analogously to the case of k odd, for k even it holds that

Pr(Ek | Case 3) ≤ qEεik-cpa(λ).

Finally, in Case 2 A1 sees both pk0
k and pk1

k, while A2 cannot query dkk both in
Hybrid k and in Hybrid k − 1. The difference is again that in Hybrid k OE uses
¯pkk

0
, p̄k instead of p̄k0

k, pk1
k as in Hybrid k − 1. The reduction shown for Case 1

can be replicated without changes in this case. Therefore, for all k it holds that

Pr(Ek) =
3∑

i=1

Pr(Case i)Pr(Ek | Case i) ≤ 3qEεik-cpa(λ).

��
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5 Compact ACE from Hybrid Encryption

The previous construction has the problem that the length of ciphertexts depends
linearly on � · nR. This can be improved using a hybrid encryption technique:
combining ACEpke with a rate-1 symmetric key encryption (SKE) scheme yields
a more compact ACE (denoted by ACEhe), which outputs ciphertexts whose size
scales with � + nR instead. Interestingly, there is no known analogous hybrid
encryption version of the original construction of [4].

Let (SE.KeyGen,SE.Enc,SE.Dec) be a rate-1 symmetric encryption scheme
that is lor-cpa secure, and let ACEnoS = (ACE.Setup,ACE.KGen,ACE.Enc,
ACE.Dec) be an ACE without sanitizer that is NRR and NSWR secure.

Communication Model: parties communicate through a bulletin board;
senders and receivers have write-only and read-only access respectively.

Message Space: M := {0, 1}�.
Setup: (pp,msk) ← Setup(1λ,P)

Return (pp,msk) ← ACE.Setup(1λ,P).
Key Generation: ki ← KGen(pp,msk , i, t)

Return ki ← ACE.KGen(pp,msk , i, t).
Encryption: c ← Enc(pp, ek i,m)

Generate a one-time secret key sk ← SE.KeyGen(1λ), and encrypt the message
using it: c1 ← SE.Encsk (m). Then encrypt the key using the ACEnoS: c2 ←
ACE.Enc(pp, ek i, sk). Return c = (c1, c2).

Decryption: m ′ ← Dec(pp, dk j , c)
Parse c = (c1, c2). Decrypt the secret key sk ′ ← ACE.Dec(pp, dk j , c2). If
sk ′ = ⊥, return ⊥. Else return m ′ ← SE.Decsk ′(c1).

Efficiency, Storage Requirements, and Optimizations. The length of the cipher-
text is O(nR + �) using a rate-1 SKE. The full version contains a construction
from predicate encryption that outputs more compact ciphertexts (of length
O(log(nS)+λ)) when instantiated for policies such that minj∈[nR] Sj = O(log nS)
where Sj is the set of senders allowed to communicate with the receiver j.

Theorem 5.1. The protocol previously described is correct, and satisfies the
properties of No-Read and No Secret Write if the SKE is lor-cpa secure, and
ACEnoS satisfies correctness, NRR and NSWR as described in Sect. 3.

The security proof is akin to that of ACEpke, and is deferred to the full version.

6 Game-Specific Obfuscation

We suggest a variant of obfuscation that is weaker that Virtual Blackbox (VBB)
obfuscation and hence may be possible to implement in general. VBB obfuscation
requires that the obfuscated program gives nothing to the receiver, other than
oracle access to the original program, and it is well known that no obfuscator
can be capable of VBB-obfuscating every program.
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Fig. 1. Security experiment for Game-Specific obfuscation.

Here, we consider instead a security game G (formalized as an experiment
in Fig. 1), in which a challenger C plays against an adversary A, using an
obfuscator Obf. The game comes with a specification of a family of programs
F := {Pk ,p}k∈{0,1}λ,p∈{0,1}m , parameterized by k and by a label p of some length
m, so we have one member of the family for each pair (k , p). This is meant to
cover a wide range of applications where obfuscated programs may be used: very
often, an application bakes one or more cryptographic keys into the program,
this is modelled by the parameter k . The label p is useful in a multiparty sce-
nario, where parties may be given programs that depend on their identity, for
instance.

The game proceeds in rounds, where in each round of the game, A can query
C on various labels p to obtain obfuscated programs P̂p

k = Obf(Pp
k ), as well as

for other data (such as public parameters). At the end of each round, A returns
some final output zi, which is remembered between rounds. Optionally, the game
may allow A to remember additional state information between rounds (not
represented in Fig. 1). In the end, C decides if A won the game. Our definition
compares this to a similar experiment where, however, the adversary B only gets
oracle access to the programs.

Importantly, C can decide not to answer a query, based on the label and its
current state. This models conditions one would typically have in a game, such
as: the game models a scheme with several parties participating, some of which
are corrupt, and the adversary is not allowed to query a program that was given
to an honest player. Since the same C plays against both A and B, they are under
the same constraints, so B cannot “cheat” and make queries that A could not.

For simplicity, we let C choose a single parameter k initially. We can easily
generalize to cases where programs using several different values of k are used.

Definition 6.1 (Game-Specific Obfuscation). We say that Obf is a game-
specific secure obfuscator (GSO) relative to G and F if for every PPT adversary
A, there exists a PPT adversary B which plays G using only oracle access to each
obfuscated program, and where |Pr[1 ← ExpG0

A,Obf(λ,F , q)] − Pr[1 ← ExpG1

B,Obf(λ,
F , q)]| is negligible, where the challenger behaves as follows:
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Challenge Generation: on input (0; (λ,F , q)), it returns k ∈ {0, 1}λ and some
general public parameters pp.

Program Obfuscation: on input (1, k , p; st), it returns the obfuscation P̂p
k ←

Obf(Pp
k ) of the program, or ⊥.

Oracle Access to Programs: on input (2, (k , p,m); st) it returns the evaluation
of the program Pp

k (m), or ⊥.
Other Data: on input (3, ·; st) it can return additional data.
Winning Condition Check: on input (4, z1, . . . , zq; st) it returns 1 if the adver-

sary won the game, 0 otherwise.

Every mode of operation can update the state st of the challenger too, if required
by the game.

Note that this definition, while implied by VBB, makes a much weaker
demand than VBB: we assume that the obfuscation gives nothing more than
oracle access, only as far as winning G is concerned, and the obfuscator only
needs to obfuscate programs in F . Indeed, the impossibility result for VBB does
not apply to game-specific obfuscation in general, it just rules out its existence
for a specific game and family of programs. The notion is somewhat incompa-
rable to iO obfuscation: obfuscators secure in the iO sense are usually claimed
to be able to obfuscate any program, and can potentially be applied in any
security game, but on the other hand, iO only guarantees indistinguishability
between programs with the same input/output behavior. Even when restricting
to assume the existence of iO/GSO for specific programs (as it happens in con-
structions relying on iO), still iO and GSO target different aspects: GSO has no
specific requirement on the family of programs, while iO needs them to compute
the same function; on the other hand, iO still guarantees indistinguishability for
every game, while GSO targets a specific one.

As usual, we also require the obfuscators to preserve functionality (the input-
output behaviour of the obfuscated program is equivalent to the original pro-
gram) and polynomial slowdown (the obfuscated program should can at most be
polynomially slower/larger than the original one).

7 ACE with Ciphertext Verifiability

In this section we explore whether it is possible to obtain more than just pre-
venting parties from establishing secure subliminal channels. The intuition is
that it should be possible to restrict corrupted parties in the bandwidth of their
subliminal channels by adding some form of ciphertext verifiability to our model.
Ciphertext verifiability allows any party with access to the bulletin board to ver-
ify that ciphertexts appended to the public board have been generated honestly
and according to policy, even if the party is not allowed to decrypt them by the
policy. We then show a scheme that allows to restrict the bandwidth of cor-
rupted senders to logarithmic in the security parameter under a novel variant of
obfuscation, namely the GSO introduced in the previous section. We find this a
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promising indication that public verification can help to restrict subliminal com-
munication between corrupted parties. As a byproduct, we get a construction
whose complexity only scales polylogarithmically with the number of parties.

7.1 Ciphertext Verifiability

Parties, policies and the communication model are the same as in Sect. 3. The
difference is that an ACE with ciphertext verifiability (VACE) is composed by
5 algorithms (Setup,KGen,Enc,Verify,Dec). The verification algorithm Verify
allows receivers to verify that ciphertexts published in the bulletin board are
well-formed according to their decryption key:

Verification b ∈ {0, 1} ← Verify(dk j , c)
On input a ciphertext c and a decryption key, the algorithm outputs 1 if
c ← Enc(pp, ek i,m) for some (unknown) honestly generated sender’s key ek i

and message m ∈ M, and 0 otherwise.

Remark that the definition implies that verification can be done using dk0, i.e.,
the decryption key of the receiver with identity j = 0 which by policy cannot
receive messages5. Differently from ACEnoS, now dk0 might not be equal to the
public parameters (while ek0 still is). Moreover, dk0 is not part of them: it is
given only to receivers, not to the senders. This follows quite naturally from the
communication model: as senders have write-only access to the public board,
they cannot see (thus verify) ciphertexts by other senders than themselves6.

The introduction of such algorithm requires to modify the properties of secu-
rity and correctness as well. This new construction of ACE should satisfy both
correctness as defined in Sect. 3 and a completeness requirement (i.e., that hon-
estly generated ciphertexts pass verification).

Definition 7.1 (Completeness). A VACE scheme is complete if for all λ,m ∈
M, i ∈ [nS ], j ∈ [nR] it holds

Pr

⎡
⎣1 ← Verify(dk j ,Enc(pp, ek i,m)) :

(pp,msk) ← Setup(1λ,P),
ek i ← KGen(pp,msk , i, sen),
dk j ← KGen(pp,msk , j, rec)

⎤
⎦ = 1,

where the probabilities are taken over the random coins of all the algorithms.

To ensure that verification is meaningful, the outcome of verification should
be consistent when done with different keys.

5 The inclusion of the identity 0 for senders and receivers with no rights is standard
in normal access control encryption, cf. [4].

6 In fact, it seems to be necessary for a more technical reason related to the NSWR (as
the verification key could be seen as shared randomness between corrupted senders
and receivers).
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Definition 7.2 (Verification Consistency). Given a policy P, a VACE
scheme verifies consistently if, for every PPT adversary A there exists a neg-
ligible function negl such that

Pr

⎡
⎢⎢⎢⎢⎣

b0 �= b1 |

(pp,msk) ← Setup(1λ,P)
(i0, i1, c) ← AOG(·,·)(pp)
For k = 0, 1

dk ik
← KGen(pp,msk , ik, rec)

bk ← Verify(dk ik
, c)

⎤
⎥⎥⎥⎥⎦

≤ negl(λ),

where the OG returns ek j on input (j, sen), and dk j on input (j, rec).

The No Read Rule remains unchanged as such property is not concerned with
enforcing the policy, but with the anonymity and privacy of the scheme. On the
other hand, the winning condition of the No Secret Write Rule changes to impose
that the challenge ciphertext successfully verifies w.r.t. some fixed receiver key.
This, combined with consistency of verification (which we just defined) implies
that a successful verification w.r.t. even just the public verification key dk0 is
enough to guarantee it w.r.t. all receiver keys (which could be impossible to
check efficiently in the game if the number of receivers is superpolynomial).

The verification key dk0 is only given to the corrupted receiver A2 and to the
public verifier B but not to the corrupted sender A1, as the latter cannot read
from the public board, but just write on it.

Definition 7.3 (No Secret Write Rule). Let A = (A1,A2) be an adversary
and consider the following game:

Experiments

Expnusw(A1,A2)(λ, P) Expnusw(A1,B)(λ, P)

(pp, msk) ← Setup(1λ, P) (pp, msk) ← Setup(1λ, P)

(m̄, c) ← A
OG(·,sen)
1 (pp) (m̄, c) ← A

OG(·,sen)
1 (pp, m̄)

m′ ← A
OG(·,rec), OE(·)
2 (pp, c) m′′ ← BOE(·),OG(0,rec)(pp, c)

Return 1 if Return 1 if

m̄ = m′ ∧ 1 ← Verify(dk0, c), dk0 ← OG(0, rec), m̄ = m′′ ∧ 1 ← Verify(dk0, c), dk0 ← OG(0, rec),

0 otherwise. 0 otherwise.

Oracles

OG(j, t) : OE(j,m):
If ∃ kj s.t. (kj , j, t) ∈ L, return kj ek j ← OG(j, sen)
Else kj ← KGen(pp,msk , j, t) Return c ← Enc(pp, ek j ,m).

L ← L ∪ {(kj , j, t)}
Return kj .

Let Q1 (resp., Q2) be the set of all queries q = (i, sen) (resp., q = (j, rec))
that A1 (resp.,A2) issues to OG. The adversary wins the experiment if m ′ = m̄
and the ciphertext verifies while the following holds:

No Communication Rule (NCR). ∀ (i, sen) ∈ Q1, (j, rec) ∈ Q2, it should hold
that P(i, j) = 0.
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Given λ and a policy P, a ACE without sanitizer with verifiable ciphertexts
satisfies the No Secret Write rule if for all PPT A = (A1,A2) there exists a PPT
algorithm B and a negligible function negl such that

Pr
[
1 ← Expnsw(A1,B)(λ,P)

]
≥ Pr

[
1 ← Expnsw(A1,A2)(λ,P) ∧ NCR

]
− negl(λ).

Ciphertext Verifiability vs. Sanitization. It is fair to wonder whether adding
public verifiability yields an ACE with sanitization. This is not the case because:
(1) the sanitizer/verification key is public; (2) in the VACE case, behavior of
sanitizer/verifier is checkable by other receivers; (3) the access structure to a
public board usually requires an authentication layer: verification (and possible
identification of dishonest senders) can be enforced in that layer.

7.2 VACE from Game Specific Obfuscation

Verifiability of a ciphertext means that any party can verify that the ciphertext
satisfies some relation, i.e., that has some structure, which bounds the entropy
of the ciphertext. While this is not enough to prevent subliminal channels com-
pletely (as this seems to require the injection of true randomness, e.g., cf. [4,8]),
in this section we show that this is enough to meaningfully restrict the bandwidth
of corrupted senders.

We build a VACE following the IND-CCA PKE construction from iO by
Sahai and Waters [9], with the following changes: (1) we impose that every
ciphertext encrypts the identity of the sender in addition to the message, and
(2) decryption is done by an obfuscated program that checks the policy too. As
the original protocol outputs ciphertexts composed by two parts, the encryption
of the message and a value used as authentication/integrity check, we easily
get a VACE construction that is NRR secure assuming iO with a proof similar
to [9]. However, proving NSWR from iO seems impossible, thus we rely on a
GSO assumption on the obfuscator (further details in Sect. 7.3).

We now consider messages to be just one bit, i.e., M = {0, 1}, and assume
that nS = poly(λ) (as this is needed when using the puncturable PRF in the
proof of the NRR rule).

Setup: (pp,msk) ← Setup(1λ,P)
Generate the keys for the PRFs: Kk

$←− {0, 1}λ, k = 1, 2. The algorithm returns
pp = (λ,P,M) and the master secret key msk = (K1,K2).

Key Generation: ki ← KGen(pp,msk , i, t)
Generate the obfuscated circuits P̂s

i ← Obf(λ,Ps
i ), i ∈ [nS ] \ {0}, and P̂r

i ←
Obf(λ,Pr

i ), i ∈ [nR], of the programs Ps
i and Pr

j in Fig. 2, padded so that they
are as long as the programs in the reductions (cf. proof of Theorem 7.4 and
7.7).

– If i �= 0 and t = sen, return ek i = (P̂s
i ).

– If i = 0 and t = sen, return ek0 = pp.
– If t = rec, return dk i = (P̂r

i ).
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Fig. 2. Encryption and decryption programs.

Encryption: c ← Enc(pp, ek i,m)
Sample s $←− {0, 1}λ. Return c ← P̂s

i (m, s).
Decryption: m ′ ← Dec(pp, dk j , c)

Run (b,m ′) ← P̂r
j(c) and return m ′.

Verification: b ∈ {0, 1} ← Verify(dk j , c)
Run (b,m ′) ← P̂r

j(c) and return b.

For ease of exposition we split the security proof of the VACE in two theorems,
as the NRR and NSWR require different assumptions on Obf. In particular
Theorem 7.4 shows NRR security and only requires the standard notion of iO,
whereas Theorem 7.7 uses the novel GSO assumption. Note that one could also
have chosen to prove the NRR security of the VACE assuming GSO instead of
iO, but we opted for using the minimal assumptions for each theorem.

Theorem 7.4. The VACE previously defined satisfies correctness and complete-
ness, and has consistent verification, assuming the correctness of its building
blocks. In addition, if Obf is a iO and PRF1, PRF2 and PRG are two puncturable
PRF and a PRG respectively, the previous VACE and is NRR secure.

The proof of Theorem 7.4 relies on the standard techniques introduced in [9],
and is deferred to the full version. Remark that verification consistency follows
easily from the fact that the first bit of the output of P̂r

j is independent of the
value of j, thus it is the same for all j ∈ [nR].

7.3 No Secret Write Rule of VACE

We argue that indistinguishability obfuscation does not seem enough to prove
NSWR security for our VACE. A major hint in this direction is that proving
that the NSWR holds seems to require to show that A2 cannot distinguish the
real experiment from an experiment where both the encryption oracle and the
receiver keys are simulated using only the information available to B (i.e., the
encryption oracle and the verification key). However, we do not see a way to
simulate the decryption keys that preserves their I/O behavior without knowing
the master secret keys. Such a consistency in the I/O behavior of the keys is
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needed because A1 could still transmit information to A2 related to the behavior
of the senders’ keys queried by A1, e.g., the output on a particular input (s,m):
as B does not know which keys have been queried by A1, it cannot rely on
the encryption oracle to answer these queries consistently. However, simulation
can be done assuming Obf to be a secure GSO. In particular, the obfuscator is
assumed to be GSO secure for the following family of programs and game.

Definition 7.5 (F). The family F = {Pk ,p}k ,p contains all the possible keys:

– k = msk = (K1,K2), and
– p = (j, t) is the identity and type of party, and
– Pk ,(j,t) = Pt

j, t ∈ {s, r} as defined in Fig. 2.

Definition 7.6 (Gnsw). The game Gnsw runs for q = 2 rounds and is played by
a challenger Cnsw that behaves as follows:

– C(0, . . . ; st) returns (pp, k) = (pp,msk) ← Setup(1λ,P) and stores them in
st (alongside a round counter).

– C(1, (k , (j, t)); st) returns the output of KGen(pp,msk , j, t) and stores the
query in a list qi for i = 1, . . . , q in st.

– C(2, (k , (j, t),m); st) it returns the evaluation of the program Pt
j(m).

– C(3, st) returns ⊥ during round 1, and s̄ in round 2.
– C(4, z1, z2; st) parses z1 = (m̄, s̄) and returns 1 if the following three condi-

tions hold:
1. z2 = m̄
2. 1 ← Verify(dk0, s̄)
3. q1 (resp., q2) contains only queries for sender (resp., receiver) keys, and

for every (i, sen) ∈ q1 and (j, rec) ∈ q2 it holds that P(i, j) = 0.

Note that we have chosen to only use the GSO assumption where it is nec-
essary, namely the NSWR property. Therefore, since the NRR property is still
proven using the iO assumption, the PRFs used in the construction are still
puncturable even if this property is not explicitly used in the proof of the NSWR
property.

Theorem 7.7. Assuming Obf is a secure GSO for F and Gnsw as in Definition
7.5 and 7.6, and given two puncturable PRF and a PRG, the previous VACE is
NSWR secure. Moreover, assuming that only ciphertexts that pass the verification
are posted, it only allows for subliminal channels of bandwidth at most O(log(λ)).

Proof. Proving the NSWR relies on the hypothesis that Obf is a secure GSO
for (F , Gnsw). Indeed, the NSWR experiment in Definition 7.3 is exactly equal
to the game in Fig. 1 where (F , Gnsw) are as in Definition 7.5 and 7.6, and the
adversary A in the GSO experiment behaves like A1 in the first round, and like
A2 in the second. This implies that the probability that (A1,A2) win the NSWR
experiment is the same as the probability that A wins the GSO experiment. In
fact, from GSO security it follows that for any adversary A there exists a second
adversary A′ that has only oracle access to all the keys, but wins the game Gnsw

(i.e., the NSWR experiment) with almost the same probability:
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Pr
[
1 ← Expnsw(A1,A2)(λ,P) ∧ NCR

]
= Pr

[
1 ← Exp

G0
nsw

A,Obf(λ,F , 2)
]

≤ Pr
[
1 ← Exp

G1
nsw

A′,Obf(λ,F , 2)
]

+ εGSO. (1)

Let us now analyze the winning probability of A′. Denote by (A′
1,A

′
2) the execu-

tion of A′ in the first and second round of G1
nsw respectively. This adversary now

does not receive the sender (or receiver) keys, but is only given oracle access to
them. In fact, the oracle only evaluates the plaintext version of the keys, thus
it is possible to substitute the PRF and PRG used in the keys with random
functions, without significantly impacting the winning probability of A′:

Pr
[
1 ← Exp

G1
nsw

A′,Obf(λ,F , 2)
]

= Pr
[
1 ← Exp

G2
nsw

A′,Obf(λ,F , 2)
]

+ ερ, (2)

where ερ is the probability of distinguishing the PRF and PRG from a random
function, and the game G2

nsw is a modification of G1
nsw where C(2, ·) answers

the queries executing the code of Pt
i where PRF1, PRF2 and PRG have been

substituted by random functions.
At this point we can already observe that the bandwidth of the subliminal

channel (for ciphertexts that pass the verification) has to be at most O(log(λ)).
Indeed, in game G2

nsw the components t and cipher of the ciphertext are uni-
formly random while the tag sig is deterministically generated from them, thus
a corrupted sender is restricted to encode a subliminal message in a ciphertext
only through rejection sampling: A′

1 can only try encrypting randomly chosen
messages (the ciphertext does not reveal anything about the plaintext, thus it is
fair to assume that the subliminal message and the plaintext are independently
chosen) until the ciphertext finally encodes the subliminal message. If the sender
runtime is restricted to be polynomial-time, this limits the amount of rejection
sampling that it can do, restricting the amount of information encoded in the
ciphertext (the subliminal message) to O(log(λ)). The GSO assumption allows
to conclude the argument: as A1 cannot do (much) better than A′

1, the adversary
can send short subliminal messages in the real experiment too.

Finally, we conclude the proof of the NSWR by showing an algorithm B that
can win the NSWR experiment running A′

2 internally, with almost the same
probability as the adversary A. Recall that in game G2

nsw the sender keys oracle
(i.e., the simulated C(2, (·, (·, sen),m); st), which can be called in both rounds)
returns a uniformly random bit string. This in particular implies that the view
of A′

1 (i.e., A′ at round 1) and A′
2 are independent of the master secret key

msk generated at the beginning of the game. Therefore, a simulator B can win
the NSWR experiment running A′ at round 2 internally by generating a fresh
pp′,msk ′ for the VACE and use them to simulate C(2, ·). As the public parameters
of the scheme only contain λ, M and P, there is no way for A′

2 to distinguish
between the real and simulated experiment, and it holds that

Pr
[
1 ← Exp

G2
nsw

A′,Obf(λ,F , 2)
]

= Pr
[
1 ← Exp

G2
nsw

(A′
1,B),Obf(λ,F , 2)

]
= Pr

[
1 ← Expnsw(A1,B)(λ,P)

]
. (3)

Combining Eqs. (1), (2), and (3) yields the claim. ��
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On the Need of Ciphertext Verifiability. Ciphertext verifiability is crucial for the
previous argument to go through: if one cannot verify that the ciphertext has
been generated by the obfuscated program, a corrupted sender could just set the
ciphertext to be the (subliminal) message it wants to send. So long as the data
structure of the ciphertext fits the specifications, the subliminal channel cannot
be detected. The next lemma (which is a folklore result) shows that our result
is optimal: stricter restrictions on the subliminal channel require sanitization.

Lemma 7.8. Let λ be the security parameter. An encoding scheme
(KG,Enc,Dec) (either symmetric or asymmetric, deterministic or probabilistic)
such that the domain of Enck has dimension at least poly(λ) for every k out-
put by the key generation KG always allows for insecure subliminal channels
with bandwidth O(log(λ)) (in absence of a trusted sanitization step) assuming
the adversary runs in polynomial-time and has oracle access to the encryption
algorithm.

Proof. Consider an encoding (KG,Enc,Dec) that satisfies basic correctness
(reportend in the following for completeness):

Correctness: ∀λ ∈ N, ∀m ∈ M, ∃ε = negl(λ) : Pr(m ′ �= m | (ke, kd) ←
KG(1λ), c ← Enc(ke,m), m ′ ← Dec(kd, c)) ≤ ε.

Then a PPT adversary A1 that has only oracle access to the encryption algorithm
can transmit any subliminal message m̄ such that |m̄| ≤ O(log(λ)) to a PPT
receiver A2 by sending a single valid ciphertext, even in the worst case scenario
in which A2 cannot decrypt the ciphertext, nor it shares state with A1, and
independently of the security guarantees of the encoding scheme.

The attack is very simple. Having oracle access to the encoding algorithm
means that on input m, the oracle returns its encryption under a key fixed at the
beginning of the game (and unknown to A1). The adversary A1 can query the
encryption oracle to obtain q = poly(λ) distinct ciphertexts {ci}i=1,...,q (because
it runs in polynomial-time, and the domain of the encryption algorithm is large
enough for the ciphertexts to be distinct). As they are all distinct, there exists
w.h.p. a ciphertext ci whose (w.l.o.g.) first |m̄| bits are equal to m̄. ��
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