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Preface

The 13th Conference on Security and Cryptography for Networks (SCN 2022) was
held in Amalfi, Italy, during September 12–14, 2022. The conference has traditionally
been held in Amalfi, with the exception of the 5th edition, held in the nearby town of
Maiori, and the 12th edition in 2020 that, due to COVID-19 restrictions, was held as a
virtual event. After the editions of 1996, 1999, and 2002, the conference has been
organized biennially. SCN 2022 was organized in cooperation with the International
Association for Cryptologic Research (IACR).

The SCN conference is an international meeting which focuses is on the crypto-
graphic and information security methodologies needed to address the challenges
arising in the modern digital society. SCN allows researchers, practitioners, developers,
and users interested in the security of communication networks to meet and exchange
ideas in the wonderful setting of the Amalfi Coast.

In this edition we received 101 submissions of exceptional quality, authored by 273
authors from 27 countries. Reviewing and selection among the very high-quality
submissions was a challenging task. Each submission was assigned to at least three
reviewers, whereas submissions authored by Program Committee (PC) members
received four reviews, for a total of 310 submitted reviews. The single-blind reviewing
process was carried out by the Program Committee, consisting of 33 members from 14
different countries, with the help of 87 external reviewers. Program Committee
members received, on average, 10 papers to review. This process allowed us to select
33 papers to be presented at SCN 2022 and to be included in this proceedings. We are
grateful to the PC members and external reviewers for their hard and careful work.

The conference program also included invited talks by Eli Ben Sasson and Marshall
Ball.

We sincerely thank all the authors who submitted papers to this conference, the
Program Committee members and all reviewers, the Organizing Committee members,
colleagues, and student helpers for their valuable time and effort, and all the conference
attendees who made this event truly intellectually stimulating through their active
participation.

September 2022 Clemente Galdi
Stanislaw Jarecki
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How to Do Cryptography
Even When Cryptography Doesn’t Exist

Marshall Ball

New York University, New York City, USA

Abstract. Over the past half century remarkable progress has been made on
“provably secure” cryptography. At the heart of this progress is a clear, com-
pelling, and convenient formalism of an adversary as a probabilistic polynomial
time algorithm. Unfortunately, it remains unclear if such a cryptography is
indeed possible.

We survey some recent work that studies relaxed security notions where an
adversary is only moderately more powerful than honest parties. Notably, such
security notions may be achievable even if classical cryptography does not exist.

Keywords: Theory of cryptography • Computational complexity • Fine-grained
Cryptography

Cryptographers seldom sleep well. Their careers are frequently based on very precise
complexity-theoretic assumptions, which could be shattered the next morning.

Joe Kilian quoting Silvio Micali, 1988 [1]

In the past decades, tremendous progress has been made characterizing the minimal
assumptions necessary for a myriad of classical cryptographic objects. Nonetheless, the
possibility still remains that all of this work is for nought and not even minimal
cryptographic assumptions, such as the existence of one-way functions, hold true! This
state of affairs is distressing not just for those of us with careers in cryptography, but
our entire information infrastructure whose integrity is founded upon the security of
various cryptographic protocols and primitives.

A common explanation given for the failure to prove, unconditionally, the exis-
tence of classical cryptographic objects such as symmetric key or public key encryp-
tion, is that any such proof must also prove that P does not equal NP, a Millennium
Prime Problem that seems to be beyond the reach of current techniques available in the
larger mathematical community. Moreover, even if P 6¼ NP it is still quite plausible that
classical cryptography does not exist. If indeed classical cryptography does not exist, is
there any hope of recovering some notion of security in a formal sense?

In more detail, classical cryptography (one-way functions, pseudorandom genera-
tors, public key encryption, etc.) formulates an adversary as any (randomized) algo-
rithm that runs in polynomial time, nc steps for any constant c. The effectiveness of this
model of an adversary cannot be overstated; it is central to our ability to reason about
security. Unfortunately, its generality makes it beholden various barriers.

In recent years, a variety of works (often under the heading of fine-grained cryp-
tography) have proposed looking at more restricted notions of adversarial behavior

https://orcid.org/0000-0002-4236-3710


which retain reasonable adversarial guarantees while skirting classical barriers.
Importantly, these adversarial abstractions remain theoretically robust and simple
enough to be useful.

For example, an algorithm that requires n1000 steps of work is already intractable to
run for even nation-state level adversaries. A variant of public key encryption secure
against n1000 time adversaries would give a robust notion of security and could con-
ceivably exist even if P ¼ NP and classical cryptography does not.

In the setting of massive data (and massive n), even n2 can be infeasibly huge.
Additionally in such a setting, it may be reasonable to restrict consideration to
adversaries with a sub-linear amount working memory. In certain hardware settings, it
may be reasonable to consider even simpler adversarial models.

For some security notions, it is critical that the adversarial model restricted. Proofs
of Work, a critical ingredient in Bitcoin and related protocols in permissionless dis-
tributed computing, can be produced with a certain amount of work and cannot
computed with less. Proofs of Work, and related primitives such as verifiable delay
functions and memory-hard functions necessitate precise adversarial restrictions.

To be clear, unconditional guarantees in most of these settings are well beyond the
current state of computational intractability. However, recent works have shown how
some of these objects can be constructed from well-studied conjectures in computa-
tional complexity that plausibly hold even if classical cryptography is impossible. This
opens the door to a robust, tailor-made theory of cryptography. Despite progress, this
area remains nascent; we are still only beginning to develop cryptographic theory in
these settings.

Reference

1. Kilian, J.: Founding cryptography on oblivious transfer. In: Simon, J. (ed.) Proceedings of the
20th Annual ACM Symposium on Theory of Computing, 2–4 May 1988, Chicago, Illinois,
USA, pp. 20–31. ACM (1988). https://doi.org/10.1145/62212.62215
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From Galactic PCP Theory to Scaling
Blockchains with ZK-STARKs

EliBen-Sasson

Starkware, Netanya, Israel
eli@starkware.co

Abstract. There’s a beautiful story to be told about how theoretical “galactic”
algorithms involved in the PCP Theorem got reduced to practice and are the
main contender for scaling blockchains. This story will be the topic of this talk.
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Decoding McEliece with a Hint – Secret
Goppa Key Parts Reveal Everything

Elena Kirshanova1,2(B) and Alexander May3

1 Immanuel Kant Baltic Federal University, Kaliningrad, Russia
2 Technology Innovation Institute, Abu Dhabi, UAE

elenakirshanova@gmail.com
3 Ruhr University Bochum, Bochum, Germany

alex.may@rub.de

Abstract. We consider the McEliece cryptosystem with a binary Goppa
code C ⊂ F

n
2 specified by an irreducible Goppa polynomial g(x) ∈

F2m [X] and Goppa points (α1, . . . , αn) ∈ F
n
2m . Since g(x) together

with the Goppa points allow for efficient decoding, these parameters
form McEliece secret keys. Such a Goppa code C is an (n − tm)-
dimensional subspace of Fn

2 , and therefore C has co-dimension tm. For
typical McEliece instantiations we have tm ≈ n

4
.

We show that given more than tm entries of the Goppa point vector
(α1, . . . , αn) allows to recover the Goppa polynomial g(x) and the remain-
ing entries in polynomial time. Hence, in case tm ≈ n

4
roughly a fourth of

a McEliece secret key is sufficient to recover the full key efficiently.
Let us give some illustrative numerical examples. For ClassicM-

cEliece with (n, t, m) = (3488, 64, 12) on input 64 · 12+ 1 = 769 Goppa
points, we recover the remaining 3488−769 = 2719 Goppa points in F212

and the degree-64 Goppa polynomial g(x) ∈ F212 [x] in 60 s.
For ClassicMcEliece with (n, t, m) = (8192, 128, 13) on input

128 · 13 + 1 = 1665 Goppa points, we recover the remaining 8192 −
1665 = 6529 Goppa points in F213 and the degree-128 Goppa polyno-
mial g(x) ∈ F213 [x] in 288 s.

Our results also extend to the case of erroneous Goppa points, but in
this case our algorithms are no longer polynomial time.

Keywords: Classic McEliece · Code-based cryptogrpaphy ·
Cryptanalysis · Partial key exposure

1 Introduction

Partial Key Exposure Attacks. Some cryptosystems are known to allow for full
key recovery from only a fraction of the secret key. As an example, let (N, e) be
an RSA public key with corresponding secret key (d, p, q). A famous result of
Coppersmith [8] shows that N can be factored efficiently if half of the bits of p
are given, thereby revealing the complete secret key. Boneh, Durfee, and Frankel
[6] showed that for small e a quarter of the bits of d also suffices to reconstruct

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
C. Galdi and S. Jarecki (Eds.): SCN 2022, LNCS 13409, pp. 3–20, 2022.
https://doi.org/10.1007/978-3-031-14791-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14791-3_1&domain=pdf
http://orcid.org/0000-0001-8924-7605
http://orcid.org/0000-0001-5965-5675
https://doi.org/10.1007/978-3-031-14791-3_1


4 E. Kirshanova and A. May

the complete secret key. This kind of attacks are often referred to as Partial Key
Exposure attacks, and there is a long line of research for RSA [11,19,20,28].

However, the existence of polynomial time Partial Key Exposure attacks is
usually considered a typical RSA vulnerability. It is widely believed that for
discrete logarithm problems gx leakage of a constant fraction of bits of x does
not degrade the problem [15,23].

The situation seems to be similar for post-quantum cryptosystem. For most
schemes, no vulnerabilities are known in the sense that leakage of a constant
fraction of the secret key leads to full secret key recovery. In fact, some cryp-
tosystems are believed to be somewhat robust against Partial Key Exposure
attacks [9].

Among the literature on post-quantum Partial Key Exposures is an NTRU
attack by Paterson and Villanueva-Polanco [24], and attacks of Villanueva-
Polanco on BLISS [29] and LUOV [31]. The PhD thesis of Villanueva-Polanco
[30] contains a more systematic study of partial key exposure attacks, including
also McEliece. However, none of these attacks is polynomial time for a known
constant fraction of the secret key bits. To the best of our knowledge the only
exception is a recent result of Esser, May, Verbel, Wen [12] that recovers BIKE
keys from a constant fraction of their secret key.

McEliece Cryptanalysis. Since the McEliece cryptosystem was proposed more
than 40 years ago, it faced a lot of significant cryptanalysis efforts [3,13]. How-
ever, most cryptanalysis concentrated on information set decoding algorithms
[2,4,18,21,25], basically trying to decoding McEliece instances as if they where
instances of random codes with Goppa code parameters, thereby completely
ignoring the Goppa code structure hidden in McEliece public keys.

When McEliece is instantiated with other codes, e.g. generalized Reed-
Solomon codes, there have been devastating attacks breaking the scheme in poly-
nomial time [27]. However, for the originally suggested binary subfield Goppa
codes very little structural attacks are known, besides for distinguishers for high-
rate Goppa codes [14] and for very special choices of Goppa code parameters [17],
both cases being far off typical cryptographic parameter selection.

Our Results. We show surprisingly elementary facts about McEliece keys that
strongly exploit the Goppa code structure. Our attacks imply a clear warning
that one should well protect McEliece secret keys, e.g. against side-channels,
since leaking even a small fraction of the key in any known positions already
allows to efficiently recover the complete secret key.

Let us be a bit more precise what we show in this work. Binary Goppa
codes C ∈ F

n
2 of length n and co-dimension tm are defined via an irreducible

Goppa polynomial g(x) ∈ F2m [x] of degree-t with tm < n, and Goppa points
(α1, . . . , αn) ∈ (F2m)n. In fact, the parity check matrix defining a Goppa code C
is a function of a Goppa polynomial and a tuple of Goppa points. Therefore, a
McEliece secret key consists of g(x) and (α1, . . . , αn), whereas a McEliece public
key Hpub is a scrambled form of a parity check matrix.
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It is a folklore result that (α1, . . . , αn) allows to efficiently recover g(x). We
give a more formal proof of this folklore result in Sect. 3.1, since it is the starting
point for our more involved algorithms.

1. We show in Sect. 3.2 that any tm + 1 points αi allow to efficiently recover
g(x).

2. We show in Algorithm 3.3 that any tm+1 points αi together with g(x) allow
to recover in polynomial time all the remaining Goppa points, provided that
the submatrix formed by the columns of Hpub indexed by αi has full rank.

Both results together imply that with constant probability any tm+1 Goppa
points suffice to recover the complete McEliece secret key in polynomial time.

We support our claims by implementing our algorithms, and successfully run-
ning them on McEliece parameters proposed in [1]. Our non-optimized imple-
mentations are available at https://github.com/ElenaKirshanova/leaky goppa
in mceliece.

The results are provided in Table 1. On input of tm+1 Goppa points, our algo-
rithm Key-Recovery for all 2000 instances succeeded to recover the degree-t
Goppa polynomial g(x) in F2m [x] and all remaining n − (tm + 1) Goppa points
in averaged run times between 1 and 5 mins.

Table 1. Experimental results for Classic McEliece Key-Recovery (Algorithm 3.4),
averaged over 2000 instances. The middle column refers to the number of Goppa points
the algorithm receives as input.

(n, t, m) tm + 1 Time

(3488, 64, 12) 769 60 s

(4608, 96, 13) 1249 184 s

(6960, 119, 13) 1548 258 s

(8192, 128, 13) 1665 288 s

Typical McEliece instantiations have tm + 1 ≈ n
4 showing that knowledge of

only a quarter of the secret key suffices to efficiently recover the whole. Some-
what interestingly, current McEliece instantiations explicitly choose small co-
dimension tm � n to guard against information set decoding attacks. Our results
in turn benefit from small co-dimension.

Technically, our results heavily use the structure imposed by Goppa codes,
and thus can be considered as one of the very few structural non-generic McEliece
attacks. At the heart of our algorithms lies a simple routine that constructs —
with the help of the McEliece public key— codewords with at most the Hamming
weight tm of the co-dimension.

https://github.com/ElenaKirshanova/leaky_goppa_in_mceliece
https://github.com/ElenaKirshanova/leaky_goppa_in_mceliece
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Impact on Classic McEliece. Classic McEliece [1, Section 2.5.2] proposes to store
the secret key as a so-called in-place Beneš network in which neither g(x), nor
(α1, . . . , αn) are stored explicitly. It is an open question whether our attacks also
apply to this setting.

2 Preliminaries

Notation. We let F2 denote the binary field and let F2m be a finite extension
of F2 of degree m > 1. We denote by γ a primitive element of F2m , i.e., field
elements of F2m are of the form

∑m−1
i=0 aiγ

i, ai ∈ F2. We further let n ≤ 2m

denote some positive integer, and let L = (α1, . . . , αn) ∈ F
n
2m be our list of

Goppa points with distinct points αi �= αj for i �= j. We denote by g(x) our
Goppa polynomial – an irreducible polynomial of degree t in F2m [x].

Let H = (h1 . . .hn) ∈ F
tm×n
2 be a matrix with n columns hi ∈ F

tm
2 . Let

I ⊂ {1, . . . , n} be an index set. Then we denote by H[I] the projection of H’s
to the columns defined by I = {i1, . . . , i�}, i.e.,

H[I] = (hi1 , . . . ,hi�
).

Analogous for a code C ⊆ F
n
2 and some I ⊆ {1, . . . , n} we denote by C[I] the

projection to the coordinates in I = {i1, . . . , i�}, i.e.,

C[I] = {(ci1 , . . . , ci�
) ∈ F

�
2 | (c1, . . . , cn) ∈ C}.

For a matrix A, we denote its transpose by At.

Definition 1 (Goppa code). Let L = (α1, . . . , αn) ∈ F2m be Goppa points
and g(x) ∈ F2m [x] be an irreducible, degree-t Goppa polynomial. Then we define
a Goppa code

C(L, g) =

{

c ∈ F
n
2 :

n∑

i=1

ci

x − αi
≡ 0 mod g(x)

}

. (1)

For a codeword c, we define its support as supp(c) := {i ∈ {1, . . . , n} | ci �= 0}.
Let us consider HGoppa(L, g) ∈ F

t×n
2m of the form

HGoppa(L, g) =

⎛

⎜
⎜
⎜
⎝

1 1 . . . 1
α1 α2 . . . αn

...
...

. . .
...

αt−1
1 αt−1

2 . . . αt−1
n

⎞

⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎝

g−1(α1) 0 . . . 0
0 g−1(α2) . . . 0
...

...
. . .

...
0 0 . . . g−1(αn)

⎞

⎟
⎟
⎟
⎠

.

From HGoppa(L, g) ∈ F
t×n
2m , we construct the parity-check matrix HGoppa(L, g)∈

F
mt×n
2 by applying the bijection V : F2m → F

m
2 , that represents F2m as an

m-dimensional vector space over F2, i.e,
∑m−1

i=0 aiγ
i �→ [a0, . . . , am−1].
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With constant probability HGoppa(L, g) has rank full rank tm. Throughout
this paper we only consider full rank parity check matrices —the standard cryp-
tographic case. For full rank HGoppa(L, g) the Goppa code C(L, g) ⊂ F

n
2 is a

binary code of co-dimension tm and therefore of dimension n − tm.
In Classic McEliece [1], the echelon form of HGoppa defines the public key

Hpub, while (L, g) is the secret key. Knowledge of (L, g) allows for efficient decod-
ing of up to t errors [7,16].

Definition 2 (Syndrome). For y ∈ F
n
2 , the syndrome of y is defined as

sy :=
n∑

i=1

yi

x − αi
=

n∑

i=1

yi

∏

j �=i

(x − αj) mod g(x). (2)

From Definition 1 and Definition 2 we see that y ∈ C(L, g) iff we have
syndrome sy = 0 mod g(x).

The following lemma, see [5,10,16], shows that a Goppa polynomial g(x)
and its square g2(x) define the same code. We will use this property in our
algorithms for recovering the correct Goppa polynomial. We include a proof for
completeness.

Lemma 1. [16] The binary irreducible Goppa code C(L, g) satisfies

C(L, g) = C(L, g2).

Proof. Since sc ≡ 0 mod g(x)2 we have sc ≡ 0 mod g(x). The inclusion
C(L, g2) ⊂ C(L, g) follows.

To show C(L, g) ⊂ C(L, g2), for any c ∈ C(L, g) define

fc(x) :=
∏

i∈supp(c)

(x − αi) with derivative f ′
c(x) =

∑

i∈supp(c)

∏

j �=i

(x − αj).

From Definition 2 it follows that sc ≡ f ′
c(x)/fc(x) mod g(x). Since g(x) is

irreducible of degree t > 1, we have gcd(fc(x), g(x)) = 1 and hence fc(x) is
invertible modulo g(x). Therefore

c ∈ C(L, g) ⇔ sc ≡ 0 mod g(x) ⇔ f ′
c(x) ≡ 0 mod g(x).

Notice that f ′
c(x) =

∑n
i=1 ifix

i−1 and thus for even i we have ifix
i−1 =

0 mod 2. Therefore, only xi-terms with even degree remain. Thus,

f ′
c(x) =

n∑

i≡0 mod 2

fi(xi/2)2 =

(
n∑

i≡0 mod 2

fi(xi/2)

)2

mod 2.

This implies that f ′
c(x) is a square. Hence every irreducible divisor of f ′

c(x) has
to appear with even multiplicity, implying that g2(x) divides f ′

c(x). Therefore,
c ∈ C(L, g2). �



8 E. Kirshanova and A. May

Algorithm 2.1. Test-Goppa-Polynomial

Input: f(x), Goppa points αi ∈ F2m with i ∈ I ⊂ {1, . . . , n},

index set I with |I| := �, generator matrix G ∈ F
j×�
2 of C(L, g)[I]

Output: 1 indicating that f(x) might be C(L, g)’s Goppa polynomial, or 0

1: for all j rows g of G do
2: Compute sg(x) =

∑
i∈I

gi
x−αi

mod f(x) from Eq. (2).

3: if sg(x) �≡ 0 mod f(x) then
4: Return 0
5: Return 1

The following algorithm Test-Goppa-Polynomial (Algorithm 2.1) tests
whether a potential Goppa polynomial satisfies Eq. (1) for all codewords in the
span of some projected Goppa code. We shall make use of this algorithm in the
next section.

Throughout the paper, we need that some projected random submatrices
have full rank. The following lemma states the probability for this event.

Lemma 2. Suppose we obtain u1, . . . ,uk ∈ F
�
2, � > k drawn independently

at uniform from F
�
2. Then u1, . . . ,uk are linearly independent with probability

∏k−1
i=0 1 − 2i−�.

Proof. Let Ei, 0 ≤ i ≤ k be the event that the first i vectors u1, . . . ,ui form an
i-dimensional space. Define Pr[E0] := 1.

Let p1 = Pr[E1] and pi = Pr[Ei | Ei−1] for 2 ≤ i ≤ k. Then p1 = 1 − 1
2� ,

since we only have to exclude u1 = 0� ∈ F
�
2. Moreover for 1 < i ≤ k, we have

pi = 1 − 2i−1

2�
,

since ui should not lie in the (i−1)-dimensional span 〈u1, . . . ,ui−1〉. We obtain

Pr[Ek] = Pr[Ek | Ek−1] · Pr[Ek−1] = . . . =
k∏

i=1

Pr[Ei | Ei−1]

=
k∏

i=1

pi =
k∏

i=1

1 − 2i−1−� =
k−1∏

i=0

1 − 2i−�.

�

3 Some Parts of a Secret Goppa Key Reveal Everything

Our first result states that the knowledge of all Goppa points α1, . . . , αn ∈ F2m

together with the public key Hpub ∈ F
tm×n
2 allows to recover the secret Goppa

polynomial g(x). This result seems to be folklore knowledge and is mentioned e.g.
in [22, Section 4.3] and in [1]. However, we are not aware of an algorithm, let alone



Decoding McEliece with a Hint – Secret Goppa Key Parts Reveal Everything 9

a formal proof, showing such a result. We will close this gap for completeness,
and also because recovery of the full secret key from all Goppa points is the
starting point for our more advanced results that recover the secret key from
only a small fraction of all Goppa points.

3.1 Key Recovery from ALL Goppa Points

Idea of Goppa Polynomial Recovery Algorithm for All Points. Recall from
Eq. (1) that

C(L, g) =

{

c ∈ F
n
2 :

n∑

i=1

ci

x − αi
≡ 0 mod g(x)

}

.

Thus, for every codeword c = (c1, . . . , cn) ∈ C(L, g) we have

n∑

i=1

ci

∏

1≤j≤n,j �=i

(x − αj) ≡ 0 mod g(x). (3)

Observe that the left-hand side of Eq. (3) is a multiple of the desired Goppa
polynomial g(x).

The public key Hpub allows to easily compute a generator matrix of the
code, from which we can sample random codewords c ∈ C(L, g). Our algorithm
Basic-Goppa (Algorithm 3.1) now computes from a random c the left-hand
side of Eq. (3), factors the resulting polynomial in irreducible factors, and in
case there are several degree-t factors, chooses the correct Goppa polynomial
using the test from Algorithm 2.1.

Algorithm 3.1. Basic-Goppa

Input: public key Hpub ∈ F
tm×n
2 , Goppa points α1, . . . , αn ∈ F2m

Output: Goppa polynomial g(x)

1: Compute a generator matrix G ∈ F
n×(n−tm)
2 of C as the right kernel of Hpub.

2: Generate c ∈ C \ {0}: for some non-zero m ∈ F
n−tm
2 set c = mGt ∈ F

n
2 .

3: Compute f(x) =
∑n

i=1 ci

∏
1≤j≤n,j �=i(x − αj) ∈ F2m [x], see Eq. (3).

4: Factor f(x) into irreducible factors over F2m .
5: for all irreducible degree-t factors ĝ(x) such that ĝ(x)2 divides f(x) do
6: if Test-Goppa-Polynomial(ĝ(x), {1, . . . , n}, Gt) = 1 then output ĝ(x).

Theorem 1. On input of Hpub ∈ F
tm×n
2 and all Goppa points α1, . . . , αn ∈ F2m ,

algorithm Basic-Goppa recovers the Goppa polynomial g(x) in Õ(n3) opera-
tions in F2m .
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Proof. From the discussion before we know that the polynomial f(x) in line 3 of
Basic-Goppa is a multiple of the Goppa polynomial g(x). By Lemma 1 we know
that C(L, g) = C(L, g2), and thus not only g(x), but also g2(x) divides f(x).

Among all potential irreducible candidates ĝ(x) of degree t whose square
divide f(x), we look for a Goppa polynomial that generates our code C(L, g). To
this end we use Test-Goppa-Polynomial that checks whether all codewords
generated by the basis Gt are in C(L, ĝ) from Eq. (1), which implies C(L, ĝ) =
C(L, g). This in turn means that ĝ(x) defines the desired Goppa code.

This completes correctness of Basic-Goppa, it remains to show the run
time. Using Gaussian elimination, the generator matrix G can be computed in
time O(n3).

The polynomial f(x) ∈ F2m [x] is of degree n − 1. Thus, f(x) can be factored
in time Õ(n3 + n2 log |F|) = Õ(n3) operations in F2m [26, Section 20]. �

3.2 Goppa Polynomial Recovery from only tm + 1 Goppa Points

In this section, we show that only tm+1 Goppa points together with the public
key Hpub ∈ F

tm×n
2 suffice to recover a list of candidate polynomials that contain

the Goppa polynomial g(x). Since tm + 1 � n this improves significantly over
the results of the previous Sect. 3.1. For typical McEliece parameters we have
tm + 1 ≈ n

4 , i.e. only a quarter of the Goppa points suffice to recover the
Goppa polynomial. In the subsequent Sect. 3.3, we further show how to efficiently
compute the remaining Goppa points, thereby identifying the correct g(x) and
recovering the complete McEliece secret key.

Idea of Goppa Polynomial Recovery Algorithm from tm + 1 Points. Recall
from Definition 1 of a Goppa code and Eq. (1) that all Goppa codewords
c = (c1, . . . , cn) ∈ F

n
2 satisfy

n∑

i=1

ci

x − ai
=

n∑

i∈supp(c)

ci

x − ai
≡ 0 mod g(x),

where supp(c) = {i ∈ {1, . . . , n} | ci �= 0} denotes the index set of non-zero
coordinates in c, called c’s support. We conclude that

∑

i∈supp(c)

ci

∏

j∈supp(c)\{i}
(x − αj) ≡ 0 mod g(x). (4)

Assume now that we know the Goppa points αj within an index set j ∈ I ⊆
{1, . . . , n}. If we succeed to construct a codeword c with supp(c) ⊆ I, then we
can efficiently compute the left-hand side of Eq. (4).

Our main observation is that for any index set I with |I| > tm we can easily
construct a non-zero codeword c with supp(c) ∈ I. In a nutshell, we project
the Goppa code C(L, g) to the coordinates in I. The details are provided in
Advanced-Goppa (Algorithm 3.2).
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Algorithm 3.2. Advanced-Goppa

Input: public key Hpub ∈ F
tm×n
2 , index set I ⊂ {1, . . . , n} with � := |I| > tm,

Goppa points αi ∈ F2m with i ∈ I
Output: list L of all potential Goppa polynomials ĝ(x) with g(x) ∈ L
1: Let Hpub[I] ∈ F

tm×�
2 be the projection of Hpub ∈ F

tm×n
2 to the � columns from I.

2: Compute G[I] ∈ F
�×(�−rank(H̄))
2 as the right kernel of Hpub[I].

3: For some non-zero m ∈ F
�−rank(Hpub[I])
2 set c̄ = m(G[I])t ∈ F

�
2.

4: Construct c by appending to c̄ zeros in all positions {1, . . . , n} \ I.
5: Compute f(x) =

∑
i∈supp(c) ci

∏
j∈supp(c)\{i}(x − αj) ∈ F2m [x], see Eq. (4).

6: Factor f(x) into irreducible factors over F2m . Set L = ∅.
7: for all irreducible degree-t factors ĝ(x) such that ĝ(x)2 divides f(x) do
8: if Test-Goppa-Polynomial(ĝ(x), I, Ḡ[I]t) = 1 then L := L ∪ ĝ(x).

Theorem 2 (Goppa polynomial). On input of Hpub ∈ F
tm×n
2 , an index set

I ⊂ {1, . . . , n} with � := |I| > tm, and Goppa points αi ∈ F2m , i ∈ I, algorithm
Advanced-Goppa computes a list L with the Goppa polynomial g(x) ∈ L in
Õ(n3) operations in F2m .

Proof. The correctness and run time proof for Advanced-Goppa follows mostly
the reasoning in the proof of Theorem 1. In addition, we have to show
that Advanced-Goppa constructs a non-zero codeword c ∈ C(L, g) with
supp(c′) ∈ I.

Since � > tm we have � − rank(H̄) ≥ � − tm > 0. Thus, there exists some
non-zero m ∈ F

�−rank(Hpub[I])
2 , and in turn some non-zero c̄ ∈ F

�
2. Since c is

constructed from c̄ by appending zeros in positions outside I, we have supp(c) ⊆
I. Since c̄ is from the right kernel of Hpub[I] we have Hpub[I]c̄ = 0tm, and since
we append only zeros, also Hpubc = 0tm. This shows that c ∈ C(L, g) is indeed
a codeword with supp(c) ∈ I. �
Remark 1 (less Goppa points). In the proof of Theorem 2 we construct a poly-
nomial c̄ with Hamming weight at most �, and expected Hamming weight only
�
2 . Assume that we are given an oracle O(i) that returns αi. Then we could
ask O(·) on c̄’s support, i.e., on expectation only tm+1

2 Goppa points would be
sufficient.

Experiments. In Table 2 we show the results of running the Advanced-Goppa
algorithm on Classic McEliece parameter sets, implemented in SageMath (ver-
sion 9.4). For each parameter set we generated 20 different McEliece public keys,
and for each key, we ran Advanced-Goppa on 100 different index sets I.

Observe from Table 2 (columns 3 and 5) that Advanced-Goppa already for
the minimal � = tm+1 usually only outputs the desired g(x). When we increased
to � = tm + 2 we never found a polynomial ĝ(x) �= g(x).

Larger � helps Test-Goppa-Polynomial (Algorithm 2.1) to exclude faulty
ĝ. For � = tm + 1 we have rank((G[I])t) = 1 with high probability, and hence
there is only a single non-zero c in the code generated by (G[I])t. In this case
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Table 2. Experimental results for Advanced-Goppa(Algorithm 3.2).

(n, t, m) � = tm + 1 |L| = 1 � = tm + 2 |L| = 1 Av. time

(3488, 64, 12) 769 97% 770 100% 18 s

(4608, 96, 13) 1249 99% 1250 100% 54 s

(6960, 119, 13) 1548 99% 1549 100% 91 s

(8192, 128, 13) 1665 99% 1666 100% 105 s

Test-Goppa-Polynomial cannot exclude any false positive ĝ. However, for
� = tm+2 we might have rank( ¯(G)) = 2, which lets Test-Goppa-Polynomial
exclude faulty ĝ’s.

Our run time (last column) is averaged over all 2000 runs. Our single-threaded
experiments were conducted on Intel Xeon(R) E-2146G CPU 3.50 GHz × 12,
64GiB, Ubuntu 20.04. We see that our non-optimized implementation finds the
Goppa polynomial g(x) for all parameter sets in a matter of seconds.

3.3 Reconstruction of the Remaining Goppa Points

In Sect. 3.2, we showed that � > tm Goppa points are sufficient to efficiently
reconstruct the Goppa polynomial g(x) (or a list L containing g(x)). In this
section, we show that g(x) together with � > tm Goppa points are sufficient to
recover all n Goppa points from Hpub. This in turn implies that � > tm Goppa
points are sufficient to efficiently recover the complete McEliece secret key.

Idea of Goppa Points Recovery Algorithm from g(x) and tm+1 Points. Assume
that we know αi for an index set I of size � := |I| > tm. Our goal is to compute
αr for some r /∈ I.

Our idea is to construct a codeword c ∈ C(L, g) with supp(c) \ I = {r}, i.e.,
c has all but a single 1-coordinate cr = 1 inside I.

From the definition of a Goppa code in Eq. (1) we obtain

∑

i∈I

ci

x − αi
≡ 1

x − αr
mod g(x). (5)

Knowing the left-hand side and g(x) enables us to compute αr.
The high-level idea of constructing c ∈ C(L, g) with supp(c) \ I = {r} is to

express the r-th column of Hpub as an F2-sum of the � columns in Hpub[I]. This
amounts to solving a system of linear equations. The details are given in Goppa
points (Algorithm 3.3) and the analysis in Theorem3.

Theorem 3 (Goppa points). On input Hpub ∈ F
tm×n
2 , the Goppa polynomial

g(x), an index set I ⊂ {1, . . . , n} with � := |I| > tm such that rank(Hpub[I]) =
tm, and Goppa points αi ∈ F2m , i ∈ I, algorithm Goppa-Points outputs in
time O (

n4
)
all Goppa points α1, . . . , αn.
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Algorithm 3.3. Goppa-Points

Input: public key Hpub ∈ F
tm×n
2 , Goppa polynomial g(x),

index set I with � := |I| > tm and rank(Hpub[I]) = tm,
Goppa points αi ∈ F2m with i ∈ I ⊂ {1, . . . , n}

Output: all Goppa points α1, . . . , αn ∈ F2m or FAIL

1: while I �= {1, . . . , n} do
2: Pick r ∈ {1, . . . , n} \ I.

3: Find c ∈ F
|I|
2 that solves the linear equation system Hpub[J ]c = Hpub[{r}].

4: Compute f(x) =
(∑

i∈I
ci

x−αi

)−1

mod g(x) using Eq. (5).

5: if f(x) is of the form x − αr then output αr,
6: else output FAIL.

7: Set I ← I ∪ {r}.

Proof. Let us first address the correctness of Goppa-Points. Since we require
rank(Hpub[I]) = tm the linear equation equation system Hpub[J ]c = Hpub[{r}]
in line 3 is always solvable.

Thus, Goppa-Points constructs a solution c ∈ F
|I|
2 . Define c′ by appending

to c a 1-coordinate in the r position, and 0-coordinates in all positions from
{1, . . . , n} \ {I ∪{r}}. By construction Hpubc′ = 0tm, and therefore c′ ∈ C(L, g)
with supp(c′) ∈ I ∪ {r}. This allows us to solve for αr using Eq. (5) in line 4.

By Eq. (5) we always have f(x) = x−αr, and thus we output another Goppa
point in line 5. The purpose of the else-Statement in line 6 is to identify incorrect
inputs, either incorrect ĝ(x) or faulty Goppa points α̃i. We come back to this
issue in Sect. 3.4 and Sect. 4.

Goppa-Points’s runtime is dominated by running Gaussian elimination in
line 3 for computing c. Gaussian elimination runs in O(n3) steps in each of the
n − � iterations, resulting in total run time O(n4). �

Table 3. Experimental results for Goppa-Points (Algorithm 3.3).

(n, t, m) � = tm + 1 time

(3488, 64, 12) 769 42 s

(4608, 96, 13) 1249 130 s

(6960, 119, 13) 1548 167 s

(8192, 128, 13) 1665 183 s
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Experiments. Table 3 shows how Algorithm 3.3 performs in practice.
Analogous to the experiments in Sect. 3.2, we generated 20 different McEliece

public key, and for each of them we ran 100 experiments with different index
sets I. We averaged the run time over all 2000 experiments.

Again, we see that recovering all remaining n − � Goppa points is with our
(non-optimized) implementation realized in a matter of seconds.

Remark 2 (Non-full rank). The condition rank(Hpub[I]) = tm in Goppa-
Points is required to solve the equation system in line 3. However, we would like
to stress that Goppa-Points allows to successfully recover some Goppa points
even in the case rank(Hpub[I]) < tm. In this case, the equation system in line 3
is solvable by the famous Rouché-Capelli theorem iff

rank(Hpub[I]) = rank(Hpub[I ∪ {r}]). (6)

Thus, we can modify Line 2 such that we choose only r satisfying Equation
(6). All corresponding αr can still be computed by Goppa-Points. E.g. for
rank(Hpub[I]) = tm − 1 we expect that Goppa-Points still computes n−�

2 , i.e.,
half of all remaining Goppa points.

Remark 3 (Probability of full rank). Assume that we obtain an index set I of size
� ≥ tm + 1 chosen uniformly at random from {1, . . . , n}. Under the assumption
that Hpub behaves like a random matrix over F2, Lemma 2 shows that we are in
the full-rank case rank(Hpub[I]) = tm with probability at least

tm−1∏

i=0

1 − 2i−� ≥
tm−1∏

i=0

1 − 2i−tm−1 =
tm+1∏

i=2

1 − 2−i ≥ lim
n→∞

(
n∏

i=2

1 − 2−i

)

≈ 0.58.

3.4 Full Key Recovery from tm + 1 Goppa Points

Combining Theorem 2 and Theorem 3, we obtain a full key recovery algo-
rithm from at least tm + 1 Goppa points. The algorithm Key-Recovery
that successively runs Advanced-Goppa and Goppa-Points is described in
Algorithm 3.4.

Theorem 4 (Key Recovery). On input of Hpub ∈ F
tm×n
2 , an index set I ⊂

{1, . . . , n} with � := |I| > tm such that rank(Hpub[I]) = tm, and Goppa points
αi ∈ F2m , i ∈ I, algorithm Key-Recovery outputs in time O

(
n5

t

)
= O(n5)

the Goppa polynomial g(x) and all Goppa points α1, . . . , αn.

Proof. Let us first show correctness. Key-Recovery calls Advanced-Goppa
Algorithm 3.2 and recovers a list L that contains the correct Goppa polynomial
g(x). Then for every candidate ĝ(x) in line 3 Key-Recovery tries to recover
all remaining Goppa points. Usually, Goppa-Points immediately fails on
incorrect ĝ(x).

Notice that the correct polynomial g(x) is always contained in L, thus by
Theorems 2 and 3 the loop in line 3 recovers at least one key candidate ki.
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Algorithm 3.4. Key-Recovery

Input: public key Hpub ∈ F
tm×n
2 ,

index set I with � := |I| > tm and rank(Hpub[I]) = tm,
Goppa points αi ∈ F2m with i ∈ I ⊂ {1, . . . , n}

Output: Goppa polynomial g(x), all Goppa points α1, . . . , αn ∈ F2m

1: Run L ←Advanced-Goppa(Hpub, I, {αi}i∈I)
2: i := 0
3: for every ĝ(x) ∈ L do
4: if Goppa-Points(Hpub, ĝ(x), I, {αi}i∈I) �= FAIL then
5: i ← i + 1
6: ki ← (ĝ(x), α1, . . . , αn)

7: if i = 1 then output k1 = (ĝ(x), α1, . . . , αn).
8: else check k1, . . . , ki via a transformation to public key and comparison with Hpub.

Thus, we either output the correct key in line 7, or find among more than
one candidate ki the correct key in line 8. Our check in line 8 uses McEliece’s
deterministic transformation from secret to public key, and thereby assures that
we output the correct key.

Let us consider run time. Advanced-Goppa factors in Eq. (4) polynomi-
als of degree at most � ≤ n. A candidate polynomial ĝ(x) from L must have
degree t, and appear as a square in the factorization. Thus, |L| = O(n/t).
Key-Recovery’s run time is dominated by the loop in line 3, running Goppa-
Points in time O(n4) for |L| iterations. The run time follows. �

Experiments. Run times of our Key-Recovery (Algorithm 3.4) experiments
are provided in Table 1. Since almost always |L| = 1, i.e., Advanced-Goppa
finds only the correct Goppa polynomial, Key-Recovery’s runtime is mainly
the sum of the runtimes of Advanced-Goppa and of Goppa-Points (compare
with Tables 2 and 3).

We would like to stress that we never found an example of more than a single
key k1, thus we never had to apply the key check in line 8 of Key-Recovery.

4 Correcting Faulty Goppa Points

Error Model. In practice, one might be able (e.g. via some side-channel) to obtain
erroneous Goppa points. Assume the following simple error model. An attacker
obtains erroneous Goppa points α̃1, . . . α̃n, where each α̃i ∈ F2m is correct with
probability 1 − p, and faulty with probability p for some constant 0 < p < 1. In
case α̃i is faulty, we assume that α̃i is uniformly distributed (among all incorrect
values). More precisely, for all 1 ≤ i ≤ n we have

Pr[α̃i = αi] = 1 − p and Pr[α̃i = y | α̃i �= αi] =
1

2m − 1
for all y ∈ F2m \ {αi}.



16 E. Kirshanova and A. May

We now show that our algorithm Key-Recovery nicely extends to the error
scenario, but we have to sacrifice polynomial run time.

Idea of Faulty Goppa Point Correction. Recall that Key-Recovery from
Sect. 3.4 requires only tm + 1 � n correct Goppa points to recover the secret
key. The basic idea of our correction algorithm is to guess a size-(tm+1) subset
of α̃1, . . . α̃n that contains only correct Goppa points. Thus, our algorithm is
reminiscent of Prange’s information set decoding [25].

To this end we have to be cautious, since the correctness proof of Key-
Recovery only guarantees that Key-Recovery outputs the correct key when
run on error-free αi’s. Therefore, we modify Key-Recovery to Faulty-Key-
Recovery that also handles erroneous inputs.

Faulty-Key-Recovery (see Algorithm 4.1) provides the following addi-
tional checks. Line 2 aborts, when Advanced-Goppa does not find a candidate
for the Goppa polynomial. This usually happens for faulty αi, since Eq. (4) only
holds for correct Goppa points. Moreover, line 5 aborts, when Goppa-Points
fails, because Eq. (5) does not hold for incorrect Goppa points. We build in addi-
tional checks in lines 8 and 9 in order to prove correctness of our Goppa point
correction algorithm. However, we experimentally observe that lines 2 and 5
seem to capture already all faults in practice.

Algorithm 4.1. Fault-Key-Recovery

Input: public key Hpub ∈ F
tm×n
2 ,

index set I with � := |I| > tm and rank(Hpub[I]) = tm,
Goppa points αi ∈ F2m with i ∈ I ⊂ {1, . . . , n}

Output: Goppa polynomial g(x), all Goppa points α1, . . . , αn ∈ F2m or FAIL

1: Run L ←Advanced-Goppa(Hpub, I, {αi}i∈I)
2: if |L| = 0 then output FAIL.

3: i := 0
4: for every ĝ(x) ∈ L do
5: if Goppa-Points(Hpub, ĝ(x), I, {αi}i∈I) �= FAIL then
6: i ← i + 1

7: ki ← (ĝ(x), α1, . . . , αn)

8: if i = 0 then output FAIL.

9: else check k1, . . . , ki via a transformation to public key and comparison with Hpub. If none
of k1, . . . , ki is the correct key, output FAIL.

Our algorithm Faulty-Goppa (Algorithm 4.2) now calls Fault-Key-
Recovery to check for error-freeness of the chosen size-(tm+1) subset of Goppa
points, and recovers the key for an error-free subset.

Theorem 5. On input Hpub ∈ F
tm×n
2 , and erroneous Goppa points α̃1, . . . α̃n,

where pn αi are faulty and n(1−p) ≥ tm+1, Faulty-Goppa outputs the Goppa
polynomial g(x) and the Goppa points α1, . . . , αn in expected time
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Algorithm 4.2. Faulty-Goppa

Input: public key Hpub ∈ F
tm×n
2 ,

erroneous Goppa points α̃1, . . . , α̃n ∈ F2m

Output: Goppa polynomial g(x), Goppa points α1, . . . , αn

1: repeat
2: Choose uniformly I ⊂ {1, . . . , n}, |I| = tm + 1 s.t. rank(Hpub[I]) = tm.
3: until Faulty-Key-Recovery(Hpub, I, {αi}i∈I) �= FAIL.

T = O
(

n5 ·
(

n
tm+1

)

(
n(1−p)
tm+1

)

)

.

The run time can only be proven under the assumption that Hpub behaves like a
random matrix over F2.

Proof. Let us first show correctness. Theorem 4 ensures that Key-Recovery
and therefore also Faulty-Key-Recovery outputs the correct key when run
on an error-free Goppa point subset {αi}i∈I , since the additional checks in lines
2, 5, 8 and 9 never apply. Moreover, these checks guarantee that Faulty-Key-
Recovery either outputs FAIL, or the correct secret key.

Let us now prove Faulty-Goppa’s expected run time. The input contains
n(1 − p) correct Goppa points, and the probability that we choose an index set
I of size tm + 1 with only error-free Goppa points is

p0 := Pr[{αi}i∈I error-free] =

(
n(1−p)
tm+1

)

(
n

tm+1

) .

By Lemma 2, we have rank(Hpub[I]) = tm with probability at least 1
2 , if Hpub

behaves like a random matrix. Thus, we have to run an expected number of
O(p−1

0 ) iterations, until we discover an error-free Goppa point subset. Since in
each iteration we run Faulty-Key-Recovery, and Faulty-Key-Recovery
has the same asymptotic run time O(n5) as Key-Recovery, the run time
follows. �

Run Time Discussion. Assume that tm + 1 = cn for some constant c, typi-
cally c = 1

4 for McEliece instantiations. Using Stirling’s formula and the binary
entropy function H(·), one can express Faulty-Goppa’s run time T in Theo-
rem 5 (neglecting polynomial factors) as the exponential run time

2(H(c)−H( c
1−p )(1−p))n.

Experiments. In our experiments, we wanted to understand which checks of
Faulty-Key-Recovery lead to FAIL. To this end, for each Classic McEliece
parameter set we started with error-free Goppa points α1, . . . , αn, chose a size-
(tm+1) subset thereof, and injected a single faulty α̃i in this subset. We consider
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this the hardest case for letting Faulty-Key-Recovery fail. We ran Faulty-
Key-Recovery on 100 of these injected faulty instances. We then repeated the
experiments with two injected faults.

Our results are presented in Table 4. We provide the percentages of FAIL
events caused by either line 2 or line 5 of Faulty-Key-Recovery. All faulty
keys were detected by these two checks, the additional checks of lines 8 and 9
were never applied.

From Table 4 we observe that if we run Faulty-Key-Recovery with a
single injected fault, it still recovers the correct Goppa polynomial g(x) with
probability roughly 1/2. This happens, since a codeword c constructed inside
Advanced-Goppa may have a 0-coordinate on the position of the faulty α̃i.
This probability drops to at most 29%, when the input set has two faulty Goppa
points, since now Advanced-Goppa needs a c with 0-coordinates on these two
faulty positions. However, our subroutine Goppa-Points inside Faulty-Key-
Recovery eventually detected all faulty inputs via Eq. (5) in our experiments.

Table 4. Occurrences of two FAIL events in Faulty-Key-Recovery, when either 1
(left part), or 2 (right part) faulty α’s are injected in the index set.

(n, t, m)
1 fault in tm + 1 points 2 faults in tm + 1 points

line 2 line 5 line 2 line 5

(3488, 64, 12) 46% 54% 71% 29%

(4608, 96, 13) 50% 50% 80% 20%

(6960, 119, 13) 51% 49% 83% 17%

(8192, 128, 13) 52% 48% 84% 16%
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Abstract. In the past decade billions of user passwords have been
exposed to the dangerous threat of offline password cracking attacks.
An offline attacker who has stolen the cryptographic hash of a user’s
password can check as many password guesses as s/he likes limited only
by the resources that s/he is willing to invest to crack the password.
Pepper and key-stretching are two techniques that have been proposed
to deter an offline attacker by increasing guessing costs. Pepper ensures
that the cost of rejecting an incorrect password guess is higher than
the (expected) cost of verifying a correct password guess. This is useful
because most of the offline attacker’s guesses will be incorrect. Unfor-
tunately, as we observe the traditional peppering defense seems to be
incompatible with modern memory hard key-stretching algorithms such
as Argon2 or Scrypt. We introduce an alternative to pepper which we call
Cost-Asymmetric Memory Hard Password Authentication which bene-
fits from the same cost-asymmetry as the classical peppering defense
i.e., the cost of rejecting an incorrect password guess is larger than the
expected cost to authenticate a correct password guess. When configured
properly we prove that our mechanism can only reduce the percentage
of user passwords that are cracked by a rational offline attacker whose
goal is to maximize (expected) profit i.e., the total value of cracked pass-
words minus the total guessing costs. We evaluate the effectiveness of
our mechanism on empirical password datasets against a rational offline
attacker. Our empirical analysis shows that our mechanism can signif-
icantly reduce the percentage of user passwords that are cracked by a
rational attacker by up to 10%.

Keywords: Memory Hard Functions · Password Authentication ·
Stackelberg Game

1 Introduction

In the past decade data-breaches have exposed billions of user passwords to the
dangerous threat of offline password cracking. An offline attacker has stolen the
cryptographic hash hu = H(pwu, saltu) of a target user (u) and can validate as
many password guesses as s/he likes without getting locked out i.e., given hu
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and saltu
1 the attacker can check if pwu = pw′ by computing h′ = H(pw′, saltu)

and comparing the hash value with hu. Despite all of the security problems text
passwords remain entrenched as the dominant form of authentication online and
are unlikely to be replaced in the near future [17]. Thus, it is imperitive to
develop tools to deter offline attackers.

An offline attacker is limited only by the resources s/he is willing to
invest in cracking the password and a rational attacker will fix a guessing
budget to optimally balance guessing costs with the expected value of the
cracked passwords. Key-Stretching functions intentionally increase the cost of
the hash function H to ensure that an offline attack is as expensive as possi-
ble. Hash iteration is a simple technique to increase guessing costs i.e., instead
of storing (u, saltu, hu = H(pwu, saltu)) the authentication server would store
(u, saltu, hu = Ht(pwu, saltu)) where Hi+1(x) := H(Hi(x)) and H1(x) :=
H(x). Hash iteration is the traditional key-stretching method which is used
by password hashing algorithms such as PBKDF2 [27] and BCRYPT [36]. Intu-
itively, the cost of evaluating a function like PBKDF2 or BCRYPT scales linearly
with the hash-iteration parameter t which, in turn, is directly correlated with
authentication delay. Cryptocurrencies have hastened the development of Appli-
cation Specific Integrated Circuits (ASICs) to rapidly evaluate cryptographic
hash functions such as SHA2 and SHA3 since mining often involves repeated
evaluation of a hash function H(·). In theory an offline attacker could use ASICs
to substantially reduce the cost of checking password guesses. In fact, Blocki
et al. [13] argued that functions like BCRYPT or PBKDF2 cannot provide ade-
quate protection against an offline attacker without introducing an unacceptable
authentication delay e.g., 2 min.

Memory-Hard Functions (MHFs) [35] have been introduced to address the
short-comings of hash-iteration based key-stretching algorithms like BCRYPT
and PBKDF2. Candidate MHFs include SCRYPT [35], Argon2 (which was
declared as the winner of Password Hashing Competition [2] in 2015) and
DRSample [5]. Intuitively, a password hash function is memory hard if any algo-
rithm evaluating this function must lock up large quantities of memory for the
duration of computation. One advantage of this approach is that RAM is an
expensive resource even on an ASIC leading to egalitarian costs i.e., the attacker
cannot substantially reduce the cost of evaluating the hash function using cus-
tomized hardware. The second advantage is that the Area-Time cost associated
with a memory hard function can scale quadratically in the running time param-
eter t. Intuitively, the honest party can evaluate the hash function MHF(·; t) in
time t, while any attacker evaluating the function must lock up t blocks of mem-
ory for t steps i.e., the Area-Time cost is t2. The running time parameter t is

1 The salt value protects against pre-computation attacks such as rainbow tables
and ensures that the attacker must crack each individual password separately.
For example, even if Alice and Bob select the same password pwA = pwB their
password hashes will almost certainly be different i.e., hA = H(pwA, saltA) �=
H(pwB , saltB) = hB due to the different choice of values and collision resistance
of the cryptographic hash function H.
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constrained by user patience as we wish to avoid introducing an unacceptably
long delay while the honest authentication server evaluates the password hash
function during user authentication. Thus, quadratic cost scaling is desireable
as it allows an authentication server to increase password guessing costs rapidly
without necessarily introducing an unacceptable authentication delay.

Peppering [32] is an alternative defense against an offline password attacker.
Intuitively, the idea is for a server to store (u, saltu, hu = H(pwu, saltu, xu)).
Unlike the random salt value saltu, the random pepper value xu ∈ [1, xmax]
is not stored on the authentication server. Thus, to verify a password guess
pw′ the authentication server must compute h1 = H(pw′, saltu, 1), . . . , hxmax

=
H(pw′, saltu, xmax). If pw′ = pwu then we will have hxu

= hu and authentication
will succeed. On the other hand, if pw′ �= pwu then we will have hi �= hu for
all i ≤ xmax and authentication will fail. In the first case (correct login) the
authentication server will not need to compute hi = H(pw′, saltu, i) for any
i > xu, while in the second case (incorrect guess) the authentication server will
need to evaluate hi for every i ≤ xmax. Thus, the expected cost to verify a correct
password guess is lower than the cost of rejecting an incorrect password guess.
This can be a desirable property as a password attacker will spend most of his
time eliminating incorrect password guesses, while most of the login attempts
sent to the authentication server will be correct.

A natural question is whether or not we can combine peppering with Mem-
ory Hard Functions to obtain both benefits: quadratic cost scaling and cost-
asymmetry.

Question 1. Can we design a password authentication mechanism that incor-
porates cost-asymmetry into ASIC resistant Memory Hard Functions while
having the benefits of fully quadratic cost scaling under the the constraints
of authentication delay and expected workload?

Naive Approach: At first glance it seems trivial to integrate pepper with a
memory hard function MHF(·) e.g., when a new user u registers with password
pwu we can simply pick our random pepper xu ∈ [1, xmax], salt saltu, compute
hu = MHF(pwu, saltu, xu; t) and store the tuple (u, saltu, hu). Unfortunately,
the solution above is overly simplistic. How should the parameters be set? We
first observe that the authentication delay for our above solution can be as large
as t · xmax since we may need to compute MHF(pw, saltu, x; t) for every value of
x ∈ [1, xmax] and this computation must be carried out sequentially to reap the
cost-asymmetry benefits of pepper. Similarly, the Area-Time cost for the attacker
to evaluate MHF(pw, saltu, x; t) for every value of x ∈ [1, xmax] would scale with
t2 ·xmax. This may seem reasonable at first glance, but what if the authentication
server had not used pepper and instead stored hu = MHF(pwu, saltu; t · xmax)
using the running time parameter t′ = t · xmax? In this case the authentication
delay is identical, but the attacker’s Area-Time cost would be t′2 = t2 ·x2

max—an
increase of xmax in comparison to the naive solution. Thus, the naive approach
to integrate pepper and memory hard functions loses much of the benefit of
quadratic scaling.
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Halting Puzzles: Boyen [18] introduced the notion of a halting puzzle where
the “pepper” value is replaced with a random running time parameter. In partic-
ular, when a new user u registers with a password pwu we can pick our random
running time parameter tu ∈ [1, tmax] along with saltu and store (u, saltu, hu)
where hu = MHF(pwu, saltu; tu). Given a password guess pw′ the authentication
server will locate saltu, hu and accept if and only if hu = MHF(pw′, saltu; t) for
some t ∈ [1, tmax]. All memory hard functions MHF(w; t) we are aware of gen-
erate a stream of data-labels L1, . . . , Lt where Li = MHF(w; i) and Li+1 can be
computed quickly once the prior labels L1, . . . , Li are all stored in memory e.g.,
we might have Li+1 = H(Li−1, Lj) where j < i−1 and H is the underlying cryp-
tographic hash function. Thus, whenever the user attempts to login with pass-
word pw′

u the honest server can simply start computing MHF(pw′
u, saltu; tmax) to

generate a stream of labels L′
1, L

′
2, . . . and immediately accept if the server finds

some label i ≤ t which matches the password hash i.e., Li = hu. Observe that
whenever the user enters the correct password pw′

u = pwu the honest authentica-
tion server will be able to halt early after just tu ≤ tmax iterations. By constrast,
the only way to definitely reject an incorrect password pw′

u is to finish computing
MHF(pw′

u, saltu; i). The authentication delay is at most tmax and it seems like
the attacker’s area-time cost will scale quadratically i.e., t2max. Thus, the solution
ostensibly seems to benefit from quadratic cost scaling and cost-asymmetry.

However, we observe that an attacker might not choose to compute the entire
function MHF(pw′, saltu; t) for each password guess. For example, suppose that,
as proposed in [18], the running time parameter tu is selected uniformly at ran-
dom in the range [1, tmax], but for each password guess pw′ in the attacker’s
dictionary the attacker only computes MHF(pw′, saltu; tmax/3) to compare the
stolen hash hu with the first tmax/3 labels. The attacker’s area-time cost per
password guess (t2max/9) would decrease by a factor of 9, but the attacker’s suc-
cess rate only diminishes by a factor of 1/3—the probability that tu ∈ [1, tmax/3].
Motivated by this observation there are several natural questions to ask. First,
can we model how a rational offline attacker would adapt his approach to deal
with halting puzzles? Second, if tu is picked uniformly at random is it possi-
ble that the solution could have an adverse impact i.e., could we unintention-
ally increase the number of passwords cracked by a rational (profit-maximizing)
attacker? Finally, can we find the optimal distribution over tu which minimizes
the success rate of a rational offline attacker subject to constraints on (amor-
tized) server workload and maximum authentication delay.

1.1 Our Contributions

We introduce Cost-Asymmetric Memory Hard Password Hashing, an extention
of Boyen’s halting puzzles which can only decrease the number of passwords
cracked by a rational password cracking attacker. Our key modification is to
introduce cost-even breakpoints as random running time parameters i.e., we
fix m values t1 ≤ . . . ≤ tm = t such that t2m = t2i (m/i) for all 1 ≤ i < m.
Now instead of selecting xu randomly in the range [1, t] (time-even breakpoints)
we pick xu ∈ {t1, . . . , tm}. We can either select xu ∈ {t1, . . . , tm} uniformly
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at random or, if desired, we can optimize the distribution in an attempt to
minimize the expected number of passwords that the adversary breaks. Then
the authentication server computes hu = MHF(pwu, saltu;xu) and store the
tuple (u, saltu, hu) as the record for user u.

We adapt the Stackelberg game theoretic framework of Blocki and Datta
[12] to model the behavior of a rational password cracking attacker when the
authentication server uses Cost-Asymmetric Memory Hard Password Hashing.
In this model the attacker obtains a reward v for every cracked password and
will choose a strategy which maximizes its expected utility—expected reward
minus expected guessing costs. One of the main challenges in our setting is
that the attacker’s action space is exponential in the size of the support of the
password distribution. For each password pw the attacker can chose to ignore
the password, partially check the password or completely check the password.
We design efficient algorithms to find a locally optimal strategy for the attacker
and identify conditions under which the strategy is also a global optimum (these
conditions are satisfied in almost all of our empirical experiments). We can then
use black-box optimization to search for a distribution over xu which minimizes
the number of passwords cracked by our utility maximizing attacker.

When xu ∈ {t1, . . . , tm} is selected uniformly at random we prove that cost-
even breakpoints will only reduce the number of passwords cracked by a ratio-
nal attacker. By contrast, we provide examples where time-even breakpoints
increases the number of passwords that are cracked—some of these examples
are based on empirical password distributions.

We empirically evaluate the effectiveness of our mechanism with 8 large pass-
word datasets. Our analysis shows that we can reduce the fraction of cracked
passwords by up to 10% by adopting cost-asymmetric memory hard password
hashing with cost-even breakpoints sampled from uniform distribution. In addi-
tion, our analysis demonstrates that the benefit of optimizing the distribution
over xu is marginal. Optimizing the distribution over the breakpoints t1, . . . , tm
requires us to accurately estimate many key parameters such as the attacker’s
value v for cracked passwords and the probability of each password in the user
password distribution. If our estimates are inaccurate then we could unintention-
ally increase the number of cracked passwords. Thus, we recommend instantiat-
ing Cost-Asymmetric Memory Hard Password Hashing with the uniform distri-
bution over our cost-even breakpoints t1, . . . , tm as a prior independent password
authentication mechanism.

1.2 Related Work

Trade-off between usability and security lie in the core of mechanism design of
password authentication. Users tend to pick low-entropy passwords [16], leaving
their accounts insecure. Convincing them to select stronger passwords is a diffi-
cult task [19,29]. Password strength meters are commonly embedded in website
in the hope that users would select stronger passwords after the strength of their
original passwords being displayed. However, it is found that users are often not
persuaded by the suggestion of password strength meters [20,39]. In order to
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encourge users to pick high-entropy passwords some sites mandate users to fol-
low stringent guidelines when users create their passwords. However, it has been
shown that these policies can incur undesirable usability costs [3,24,26,37], and
in some cases can even lead to users selecting weaker passwords [14,29].

Password offline attacks have been a concern since the Unix system was
devised [34]. Various approaches are developed to expedite the cracking process
by the adversary or model password guessability by the hoesty party. Tools
like Hashcat [1] and John the Ripper [23] enumerate combinations of tokens as
dictionary candidates and are widely used by real-world attackers. Liu et al. [30]
analyzed these tools using techniques of rule inversion and guess counting to
retrive guessing number without explicit enumeration. Probabilistic models like
Probabilistic Context-Free Grammars [28,43], Markov models [21,22,31] have
been applied and analyzed in password cracking. Character-level text generation
with Long-Short Term Memory (LSTM) recurrent neural networks is fast, lean
and accurate in modeling password guessability [33].

Memory-Hard Functions (MHF) is a key cryptographic primitive. Evalua-
tion of MHF requires large amount of memory in addition to longer computa-
tion time, making parallel computation and customized hardware futile to speed
up computation process. Candidate MHFs include SCRYPT [35], Balloon hash-
ing [15], and Argon2 [11] (the winner of the Password Hashing Competition[2]).
MHFs can be classified into two distinct categories or modes of operation—
data-independent MHFs (iMHFs) and data-dependent MHFs(dMHFs) (along
with the hybrid idMHF, which runs in both modes). dMHFs like SCRYPT are
maximally memory hard [7], but they have the issue of possible side-channel
attacks. iMHFs, on the other hand, can resist side-channel attakcs but the aAT
(amortized Area Time) complexity is at most O(N2 log log N/ log N) [4]—a com-
binatorial graph property called depth-robustness is both necessarily [4] and
sufficient [6] for constructing iMHFs with large aAT complexity. Ameri et al.
[8] introduced the notion of a computationally data-independent MHF (ciMHF)
which protects against side-channel leakage as long as the adversary is com-
putationally bounded and constructed a ciMHF with optimal aAT complexity
Ω(N2).

2 Background and Notations

Password Dataset. We use P to denote the set of all possible passwords, the
corresponding distribution is P. The process of a user u choosing a password
for his/her account can be viewed as a random sampling from the underlying

distribution pwu
$← P. It will be convenient to assume that the passwords in

P are sorted such that Pr[pw1] ≥ Pr[pw2] ≥ . . .. Given a password dataset
D of na accounts, we can obtain empirical distribution De by approximating
Prpwi∼De

[pwi] = fi

na
, where fi is the frequency of pwi and na is the number of

accounts present in D. Often the empirical distribution can be represented in
compact form by grouping passwords with the same frequency into an equivalence
set i.e., Des = {(f1, s1), . . . , (fi, si), . . . , (fne

, sne
)}, where si is the number of
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passwords which appear with frequency fi in D and ne is the total number of
equivalence sets and, for convenience, we assume f1 > f2 > . . . > fne

. We use
esi = (fi, si) to describe the ith equivalence set. In empirical experiments it is
often more convenient to work with the compact representation Des of password
distribution. In addition, we use np to denote the number of distinct passwords
in our dataset D. Observe that for any dataset we have na ≥ np ≥ ne. In fact,
we will typically have na � np � ne.

Computation Cost of an MHF. The evaluation of MHF(x; t) produces a sequence
of labels L1, L2, . . . , Lt where the last label generated Lt is the final output.
Once L1, . . . , Li−1 are all stored in memory it is possible to compute label i
by making a single call to an underlying cryptographic hash function H e.g.,
we might have Li = H(Lj , Lk) where j, k < i denote prior labels. We can
also define MHF(x; i) = Li for i < t. Thus, we can obtain all of the values
MHF(x; 1), . . . ,MHF(x; t) in time t. We model the (amortized) Area-Time cost
of evaluating MHF(·; t) as cHt + cM t2, where cH and cM are constants. Intu-
itively, cH denotes the area of a core implementing the hash function H and cM

represents the area of an individual cell with the capacity to hold one data-label
(hash output). Since the memory cost tend to dominant, we ignore the hash cost
as simply model the cost as cM t2.

3 Defender’s Model

In this section, we present the model of the defender. In particular, we describe
how passwords are stored and verified on the authentication server.

Account Registration. When a user u registers for a new account with a password
pwu the authentication server randomly generates a saltu value, samples a run-
ning time parameter tu ∈ T from our set of possible running time breakpoints
T = {t1, t2, . . . , tm} (we let qi = Pr[ti] to denote the probability that tu = ti)
and stores the tuple (u, saltu, hu) where hu = MHF(pwu, saltu; tu). Note that
the salt value saltu is recorded while the running time parameter tu is discarded.

Password Verification. When a user u attempts to login to his/her account
by submitting (u, pw′

u), the authentication server would first retrieve record
(u, saltu, hu), calculate h1 = MHF(pw′

u, saltu; t1) and compare h1 with hu. It
they are equal, login request is granted. Otherwise, the server would continue to
calculate h2 = MHF(pw′

u, saltu; t2), compare h2 with hu, so on and so forth. If
any of hi matches hu, then user u successfully logs in his/her account. However, if
for all possible running time parameters t ∈ T we have hu �= MHF(pw′

u, saltu; t)
then the login request is rejected.

Defender Action and Workload Constraint. The defender’s (leader’s) action in
our Stackelberg game is to select the probability distribution q1, . . . , qm over
the running time breakpoints. The goal is to pick the distribution q1, . . . , qm to
minimize the percentage of passwords cracked by a rational adversary subject
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to constraints on the expected server workload. Whenever user u logs in with
the correct password pwu the authentication server will incur cost cM t2u. Since
tu = ti with probability qi the expected cost of verifying a correct password is∑m

i=1 qicM t2i . Thus, given a maximum workload parameter Cmax we require that
the distribution q1, . . . , qm are selected subject to the constraints that qi ≥ 0,
q1 + . . . qm = 1 and

m∑

i=1

qicM t2i ≤ Cmax. (1)

4 Attacker’s Model

In this section, we first state the assumptions we use in our economic analysis.
Then we show how a rational attacker who steals the password hashes from the
server would run a dictionary offline attack. Finally, we present the Stackelberg
game in modeling the interaction between the defender and the attacker within
the framework of [12].

4.1 Assumptions of Economics Analysis

We assume that the attacker is rational, knowledgeable and untarteged. By ratio-
nality, we mean that the attacker will attempt to maximize its expected utility
i.e., the value of the cracked password(s) minus the attacker’s guessing costs.
By knowledgeable we mean that by Kerckhoffs’s principle the attacker knows
the exact distribution P from which the user’s password was sampled. In prac-
tice, an attacker would not have perfect knowledge of the distribution P, but
could still rely on sophisticated password cracking models e.g., using Neural
Networks [33], Markov Models [22,40] or Probabilistic Context-Free Grammars
(PCFGs) [28,42,43]. Finally, we assume that the attacker is untargetted mean-
ing we assume that each account has the same value v for the attacker and the
attacker does not have background information about the passwords that indi-
vidual user’s may have selected. One can derive a range of estimates for v based
on black market studies e.g., Symantec reported that passwords generally sell
for $4—$30 [25] and [38] reported that Yahoo! e-mail passwords sell for ≈ $1.

4.2 Cracking Process

We now specify how an offline attacker would use the stolen hash to run a
dictionary attack. The password distribution and the breakpoint distribution
induce a joint distribution over pairs (pw, t) ∈ P × {t1, . . . , tm} where we have
Pr[(pwi, tj)] = Pr[pwi]qj .

The adversary’s strategy is to formulate a checking sequence π = {(pwi, tj)}
with the purpose of finding the target (pwu, tu). An instruction (pwi, tj) in π
means the adversary selects pwi as current guess and compute the jth label
for pwi i.e., evaluate MHF(pwi, saltu; tj). The cracking process terminates when
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Fig. 1. Password Cracking Process. Black nodes denote current checking sequence π.
White nodes denote unchecked instructions Π(np, m)−π. Star denotes unknown target
(pwu, tu).

the adversary found the hidden target (pwu, tu) or timeout. Thus, the order of
instructions in a checking sequence π can impact the attackers expected cost.

A checking sequence is subject to legit restrictions:

1. Small label first. If (pwi, tj1) appears before (pwi, tj2) in π, then it should be
the case tj2 > tj1 .

2. Label backward continuity. If (pwi, tj) ∈ π then (pwi, t1), . . . , (pwi, tj−1) ∈ π.
3. No inversions. Inversions in the form of (pwi1 , tj1), (pwi2 , tj2), (pwi1 , t

′
j1

)
where t′j1 > tj1 are not allowed.

The first two restrictions state that the attacker cannot advance to a larger
label without computing all previous labels. The third is an assumption that we
made. Intuitively, the assumption is justified because an attacker who computes
labels for pwi2 while storing labels for pwi1 will incur extra memory cost which is
undesirable for a rational attacker. The cracking process is illustrated in Fig. 1.

4.3 Attacker’s Utility

After specifying the restrictions for a legit checking sequence, we can formulate
the the attacker’s utility. Suppose the kth instruction in checking sequence π
is πk = (pwi, tj), then the probability that the attacker succeeds on step k is
Pr[πk] = Pr[pwi]·qj . Let λ(π,B) .=

∑B
k=1 Pr[πk] denote the attacker’s probability

of success after the first B ≤ |π| instructions and let λ(π) .= λ(π, |π|) denote the
attacker’s overall probability of success. Recall that the overall cost to compute
MHF(·; tj) is cM t2j . After computing MHF(pwi; tj−1) the additional cost of exe-
cuting instruction πk to compute MHF(pwi; tj) is denoted c(πk) .= cM (t2j −t2j−1).
For notational convenience, we define t0

.= 0.
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The attacker’s utility is described by the equation below:

Uadv(v, �q, π) = v · λ(π) −
|π|∑

k=1

c(πk) (1 − λ(π, k − 1)) . (2)

The first term in Eq. (2) gives us the attacker’s expected reward. In particular,
the attacker will receive value v if s/he crack’s the password and, given a checking
sequence π, the attacker succeeds with probability λ(π) i.e., in expectation the
reward is v · λ(π). The second term in Eq. (2) gives us the attacker’s expected
guesing costs, which is the summation of product of 2 terms where the probability
that the attacker incurs cost c(πk) to evalute the instruction πk is given by the
probability that the attacker does not succeed after the first k − 1 steps i.e.,
1 − λ(π, k − 1).

Besides legit restrictions that make a checking sequence valid a rational
attacker would restrict its attention to checking sequences π that satisfy the
following opt restrictions:

1. Popular password first. If (pwi1 , tj) appears before (pwi2 , tj), then Pr[pwi1 ] ≥
Pr[pwi2 ].

2. Password backward continuity. If (pwi, tj) ∈ π for some j, then (pwi−1, tj′) ∈
π for some j′.

3. Stop at equivalence class boundary. If (pwi, tj) is the last instruction in π
where pwi ∈ esk, then pwi+1 ∈ esk+1.

It can be easily proved that an attacker who violates opt restrictions will
suffer utility loss. Legit restrictions, together with the first 2 opt restrictions,
determine a complete ordering, which we call natural ordering, over all instruc-
tions {(pwi, tj)}, namely,

{
(pwi1 , tj1) < (pwi2 , tj2), if Pr[pwi1 ] > Pr[pwi2 ],

(pwi, tj1) < (pwi, tj2), if j1 < j2.
(3)

We use Π(n,m) to denote the sequence of all instructions for top n passwords
with respect to natural ordering,

Π(n, m) := (pw1, t1), . . . , (pw1, tm), . . . , (pwn, t1), . . . , (pwn, tm). (4)

We say a sequence containing consecutive instructions for a single password is
a instruction bundle, which is denoted by

�i(j1, j2) := (pwi, tj1), . . . , (pwi, tj2). (5)

Specifically, �i(j1, j2) = ∅ when j1 = j2 = 0. Then the attacker’s strategy π is
a sub-sequence of Π(np,m) (recall that np is the number of distinct passwords)
in the form of

π = ⊕Len(π)

i′=1 �i′(1, τi′) := �1(1, τ1) ◦ �2(1, τ2) ◦ · · · ◦ �Len(1, τLen), (6)

where ◦ denotes the concatenation of two disjoint instruction sequence and
Len(π) is the largest index of password for which the attacker would check at
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least one label, which depends on the associated checking sequence, when the
context is clear it is just written as Len. Because of opt restriction 3, Len can
only take values in {0, |es1|, |es1| + |es2|, . . . ,

∑ne

k=1 |esk|}. Notice that π is fully
specified by the largest label index τi for pwi.

4.4 Stackelberg Game

We use Stackelberg game to model the interaction between the attacker and
defender. The defender (leader) fixes a distribution �q over the breakpoints
{t1, . . . , tm}. The attacker (follower) responds by selecting checking sequence
π∗ = arg max Uadv(v, �q, π) to maximize its utility.

Define server’s utility to be User(v, �q) = −λ(π∗), where π∗ is the attacker’s
best response to defender’s strategy �q given password value v. At equilibrium
no player has the incentive to deviate form her/his strategy, thus equilibrium
profile (�q∗, π∗) satisfies,

{
Uadv(v, �q, π∗) ≥ Uadv(v, �q, π), ∀π,

User(v, �q∗) ≥ User(v, �q), ∀�q.
(7)

The defender’s goal is try to find a distribution �q which minimizes λ(π∗)
subject to the constraint that the rational attacker responds with its utility
optimizing strategy π∗ given the breakpoint distribution �q and value parameter
v. Thus, before the defender can attempt to optimize �q we need to be able to
compute the attacker’s response π∗.

5 Computing the Attacker’s Optimal Strategy

As we noted in the previous section a rational attacker will use its utility optimiz-
ing strategy π∗ = arg max Uadv(v, �q, π). In this section, we show how to compute
the attacker’s optimal strategy π∗ for both time-even breakpoints and cost-even
breakpoints.

Before we introduce our algorithm used to find the optimal checking sequence,
let us see why the native brute force algorithm is computationally infeasible.
If the attacker chose to check top Len passwords; for each password pwi the
attacker has m possible choices for each password i.e., select τi ∈ {1, . . . , m}
and evaluate MHF(pwdi; tτi). Thus the native brute force algorithm runs in time
O (∑np

Len=1 mLen
) ⊆ O(mnp) with a very large exponent (np ≈ 2.14× 107 for our

largest dataset Linkedin, and np ≈ 3.74 × 105 for our smallest dataset Bfiled).
This is why we need to design polynomial time algorithms.

In the following subsections, we first specify a superset2 of π∗, setting a
boundary within which we will gradually extend the checking sequence from an
empty one. Then we introduce our local search algorithm which finds the optimal
2 We use the concept and notation of subset and superset for ordered sequences the

way they were defined for regular set. If all elements of sequence A are also elements
of sequence B regardless the order, we say A ⊆ B.
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Fig. 2. Algorithm Flowchart

checking sequence most of the time. Our key intuition in designing algorithms
is that an unchecked instruction bundle should be included into the optimal
checking sequence if it provides non-negative marginal utility. Generally there
are two local search directions, either concatenate instructions at the end of cur-
rent checking sequence or insert instructions in the middle of current checking
sequence. After the local search algorithm terminates we reach a local optimum
πLO. Finally we design algorithms to verify if the local optimum is also global
optimum or promote the local optimum to global optimum under specifc param-
eter settings. As a overview we briefly summarize our results (also demonstrated
in the flowchart, see Fig. 2) in this section as follows:

– When we use cost-even breakpoints sampled from uniform distribution,
namely, βi =

√
i and qi = 1

m , we have a local search algorithm ExtendbyConcat
(v, �q, ∅) which iteratively considers instruction bundle that can be concate-
nated, ExtendbyConcat(v, �q, ∅) runs in time O(npm) and gives optimal check-
ing sequence;

– When breakpoints are cost-even (β =
√

i) but the distribution is non-uniform,
we design an algorithm Extend(v, �q) which returns a locally optimal checking
sequence πLO in time O(npm). By locally optimal we mean that advancing
any number of labels for any single password on the basis of πLO will decrease
attacker’s utility.
After obtaining πLO, we can run a polynomial algorithm OptimalityTest(v, �q,
πLO) to check if πLO is also a global optimum. If OptimalityTest(v, �q, πLO)
returns PASS, we know for sure that πLO = π∗; otherwise, no conclusion can
be drawn. If m ≤ 3 we will use an efficient brute force algorithm FindOptSeq
(v, �q, πLO), which runs in time O(n2

p), to the reach global optimum.
– When β �= √

i, regardless of the breakpoint distribution we can still run
Extend(v, �q) to obtain locally optimal πLO, and feed πLO to OptimalityTest
(v, �q, πLO). If OptimalityTest(v, �q, πLO) returns PASS, again we have πLO =
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π∗; if OptimalityTest(v, �q, πLO) returns FAIL, we cannot deduce any informa-
tion about the global optimality of πLO; in this case, confirm that πLO = π∗

or promote πLO to π∗ will take exponential time.

5.1 Marginal Utility

Since we are going to use marginal utility as metrics of state transition in local
search, we first specify how to compute marginal utility.

Definition 1. Fixing v and �q, define Δ(π1, π2) to be marginal utility from strat-
egy π1 to π2, namely,

Δ(π1, π2) := Uadv(v, �q, π2) − Uadv(v, �q, π1). (8)

For most of the time π2 is the result of modifying π1 which is called base,
in order to avoid redundantly repeating base we often write Δ◦ (e | π1) and
Δ+ (e | π1) to denote Δ (π1, π1 ◦ e) and Δ (π1, π1 + e), respectively, where e is
some ordered set of instructions, referred to as extension. Recall that ◦ is con-
catenation operation, here we formally introduce insertion operation +.
Definition 2. Given a checking sequence π = ⊕Len

i=1�i(1, τi) and an instruction
bundle �i′(j1, j2), define operation π + �i′(j1, j2) to be the checking sequence

π + �i′(j1, j2) := ⊕i′
i=1�i(1, τi) ◦ �i′(j1, j2) ◦ ⊕Len

i=i′+1�i(1, τi).

We discard superscript and comprehensively write Δ (e | π) to denote the
marginal utility by including e into π, either through concatenation or inser-
sion. Operations are valid only if the extension is compatible with the base.
By compatible we mean the resulting checking sequence also satisfy both legit
restrictions and opt restrictions.

When e is a singleton, from Eq. (2) we can derive the marginal utility by
inserting instruction e = (pwi, tj) /∈ π to base π,

Δ+ (e | π) = Pr[pwi]qj

⎛

⎝v +
∑

e′>e,e′∈π

c(e′)

⎞

⎠ −
⎛

⎝1 −
∑

e′<e,e′∈π

Pr[e′]

⎞

⎠ cM (t2j − t2j−1).

(9)
where Pr[pwi]qj

∑
e′>e,e′∈π c(e′) is the influence of e on future instructions since

it eliminates some uncertainty about the user’s password pwu thus reduces the
expected cost for future trials.

When e is a singleton, marginal utility upon concatenation has no future
influence, hence,

Δ◦ (e | π) = Pr[pwi]qjv − (1 − λ(π)) cM (t2j − t2j−1). (10)

When e consists of multiple consecutive instructions, the marginal utility can
be computed by iteratively applying Eq. (9) and (10). Namely,

Δ (e | π) =

|e|∑

i=1

Δ (ei | π ∪ {e0, . . . , ei−1}) , (11)

where e0 = ∅, ei is the ith instruction of e and ∪ denotes inclusion (whether
through concatenation or insertion) while maintaining natural ordering.
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5.2 A Superset of the Optimal Checking Sequence

Before we present our algorithms we first show how to prune down the search
space for π∗. Particularly, fixing v and �q we find an index Lenmax such that
π∗ ⊆ Π(Lenmax,m) i.e., π∗ will not even partially check passwords with rank
larger than Lenmax. Thus there is no need to consider any instructions beyond
Π(Lenmax,m) in construction of the optimal checking sequence.

Lemma 1. Δ◦ (π3 | π1) ≤ Δ◦ (π3 | π2) , if λ(π1) ≤ λ(π2).

Definition 3. Fixing v and �q we define

Lenmax :=

{
maxi{i : F (v, �q, i) ≥ 0}, if such i exists,
0, o.w.

where

F (v, �q, i) :=

{
max1≤j≤m{Δ (∅, �i(0, j))}, if i = 1,

max1≤j≤m{Δ◦ (�i(0, j) | Π(i − 1, m))}, o.w.

Intuitively, Lenmax is the largest possible password index for which at least one
of instruction bundles �Lenmax

(1, j), 1 ≤ j ≤ m provide non-negative marginal
utility no matter what previous instructions are. We remark even though there is
no theoretical proof of monotonicity of F (v, �q, i), we have verified that F (v, �q, i)
is decreasing in i for our empirical password distribution. Note that by Lemma
1 we have

Δ◦
(
�i(0, j)

∣∣∣ ⊕i−1
i=1�i(1, τi)

)
≤ F (v, �q, i),

if F (v, �q, i) < 0, then �i(0, j) would certainly provide negative marginal utility,
thus cannot be included in π∗. It is described in the following theorem.

Theorem 1.
π∗ ⊆ Π(Lenmax, m).

5.3 Extension by Concatenation

We have established a superset of π∗ in last subsection, now we design a local
search algorithm that gives us a checking sequence πLOC which is a subset of
π∗. Here, LOC stands for “locally optimal with respect to concatenation.” The
sequence πLOC will be helpful to further prune down the search space for π∗. In
fact, in the special case where the breakpoint distribution is uniform (qi = 1

m )
and cost-even breakpoints (βi =

√
i) are used, we can prove that equality holds

i.e., πLOC = π∗ is the optimal solution.
To find our sequence πLOC we start with the empty sequence of instructions

and repeatedly include instructions that provide non-negative marginal utility
upon concatenation to the current solution. We design a local search algorithm
ExtendbyConcat(v, �q, ∅) to find a checking sequence πLOC . Our local search algo-
rithm ExtendbyConcat(v, �q, ∅) terminates after at most np rounds.

After the i − 1th round we have πLOC ⊆ Π(i − 1,m) i.e., the current
solution only includes checking instructions for the first i − 1 passwords. In
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the ith round we find an instruction bundle for password i which maximizes
(marginal) utility upon concatenation. More specifically, in round i we compute
τi = arg max0≤j≤m{Δ◦ (�i(0, j) | πLOC)} and append this instruction bundle to
obtain an updated checking sequence πLOC = πLOC ◦ �i(0, τi). Details can be
found in Algorithm 1.

Algorithm 1: ExtendbyConcat(v, �q, π)
Input: v, �q
Output: πLOC

1 πLOC = π;
2 start = i∗(πLOC);
3 for i = start : np do
4 for j = 0 : m do
5 Compute Δ◦ (�i(0, j) | πLOC);
6 end
7 τi = arg max0≤j≤m{Δ◦ (�i(0, j) | πLOC)};
8 if τi > 0 then
9 πLOC = πLOC ◦ �i(1, τi);

10 else break;

11 end

12 end
13 return πLOC

We can use Eq. (10) to compute the marginal utility in time O(1) by caching
previously computed values of λ(π). Thus, ExtendbyConcat(v, �q, ∅) runs in time
O(Lenmaxm) ⊆ O(npm), recall that np is the number of distinct password.

Theorem 2.
πLOC ⊆ π∗.

From Theorem 1 and Theorem 2, it is easy to derive the following corollaries.

Corollary 1.
Len(πLOC) ≤ Len(π∗) ≤ Lenmax,

and
Len(πLOC), Len(π∗), Lenmax ∈ {x0, x1, . . . , xne} ,

where

xk =

{
0, if k = 0,
∑k

k′=1 |esk′ |, if k = 1, . . . , ne.
(12)

Corollary 2.

λ(πLOC) ≤ Padv = λ(π∗) ≤ λ (Π(Lenmax, m)) .

Now we have a polynomial algorithm that returns a checking sequence πLOC

locally optimal with respect to concatenation. The following theorem states that
πLOC = π∗ if breakpoints are cost-even and follow uniform distribution.
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Theorem 3. When qi = 1
m and βi =

√
i, ExtendbyConcat(v, �q, ∅) returns the

optimal checking sequence, i.e., πLOC = π∗.

Even though the attacker behaviors optimally—following strategy π∗. We
can guarantee that our mechanism results in lower (or equal if no passwords are
cracked) percentage of cracked passwords than deterministic cost hashing, which
is captured by Theorem 4.

Theorem 4. When βi =
√

i and qi = 1
m then, λ(π∗) ≤ P d

adv, where P d
adv is the

percentage of cracked passwords in traditional deterministic cost hashing.

We have shown that our mechanism configured with cost-even breakpoints
sampled from uniform distribution will only decrease the percentage of cracked
passwords. In the next subsections we consider how the attacker would react to
general configuration of the mechanism.

5.4 Local Search in Two Directions

In the previous section we introduced an algorithm ExtendbyConcat(v, �q, ∅) to
produce a locally optimal solution πLOC with respect to concatenation. We
showed the instruction sequence πLOC is a subset of the instructions in π∗ and
argued that in specific cases the algorithm is guaranteed to find the optimal
solution. However, in more general cases the local optimum may not be globally
optimum. One possible reason for this is that there may be a missing instruction
from π∗ that we would like to insert into the middle of the checking sequence
πLOC , while our local search algorithm ExtendbyConcat(v, �q, ∅) only considers
instructions that can be appended to πLOC .

In this subsection we extend the local search algorithm to additionally con-
sider insertions. Note that we can still use local search to test if inserting instruc-
tion bundle �i(j1, j2) improves the overall utility, i.e., Δ+ (�i(j1, j2) | π) ≥ 0 .
We design an algorithm ExtendbyInsert(v, �q, π) which performs such an update.
Combining ExtendbyConcat(v, �q, π) and ExtendbyInsert(v, �q, π), we design an
Algorithm Extend(v, �q) to construct a checking sequence πLO (LO=Locally Opti-
mal) which is locally optimal with respect to both operations: concatenation and
insertions. Specifically, after each call of ExtendbyInsert(v, �q, π) we immediately
run ExtendbyConcat(v, �q, π) to ensure that the solution is still locally optimal
with respect to concatenation. See Algorithm 3 for details. The algorithms still
maintain the invariant that πLO is a subset of π∗—see Theorem 5.

Given πLOC computed in time O(npm), the number of unchecked instruc-
tions is upper bounded by |Π(Lenmax,m)| − |πLOC |. By caching the proba-
bility summation of previous and future instructions at each insertion posi-
tion, verify if an instruction bundle is profitable and update the checking
sequence take time O(1). One pass of repeat loop of Algorithm 3 takes time
O(|Π(Lenmax,m)|−|πLOC |) ⊆ O(npm), the number of repeat loop execution is
finite (in experiment it terminates after at most 3 passes). Therefore, Extend(v, �q)
runs in time O(npm).
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Algorithm 2: ExtendbyInsert(v, �q, π)
Input: v, �q, π
Output: πLOI

1 πLOI = π;
2 while e exists such that Δ+ (e | πLOI) ≥ 0 do
3 πLOI = πLOI + e
4 end
5 return πLOI

Algorithm 3: Extend(v, �q)
Input: v, �q
Output: πLO

1 πLO = ExtendbyConcat(v, �q, ∅);
2 repeat
3 πLO = ExtendbyInsert(v, �q, πLO);
4 πLO = ExtendbyConcat(v, �q, πLO);

5 until no single profitable instruction bundle exist ;
6 return πLO

Lemma 2. If π ⊆ π∗ and Δ+ (e | π) ≥ 0 then π + e ⊆ π∗.

Lemma 2 guarantees that + operation preserves the invariance that our con-
struction is subset of π∗. Naturally follows Theorem 5, which states the output
of Extend(v, �q) is a subset of π∗.

Theorem 5. Let πLO = Extend(v, �q), then πLO ⊆ π∗.

Since we are using local search to construct πLO, together with Theorem 5
we know πLO is a local optimum. When Algorithm 3 terminates, advancing any
number of labels for any single password cannot improve the overall utility, but
there is no guarantee of utility reduction upon inclusion of multiple instruction
bundles that associated with different passwords. In the next subsection we will
discuss how to verify if the local optimum πLO is indeed the global optimum and
design an efficient brute force algorithm that improves local optimum to global
optimum under specific parameter settings.

5.5 Optimality Test and Globally Optimal Checking Sequence

In the previous subsections, we designed a polynomial algorithm Extend(v, �q) to
construct locally optimal checking sequence πLO with respect to insertions and
concatenation. We also proved that the sequence πLO is a subset of the optimal
sequence π∗. In practice we find that it is often the case that πLO = π∗ and
we give an efficient heuristic algorithm which (often) allows us to confirm the
global optimality of πLO. In particular, our procedure will never falsely indicate
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that πLO = π∗ though it may occasionally fail to confirm that this is the case.
When our optimality test fails, we design algorithms to promote locally optimal
solution to globally optimal solution for cost-even breakpoints and m ≤ 3, see
full version of this paper [10] for details.

6 Defender’s Optimal Strategy

When making decisions about breakpoint distribution, the defender will take
attacker’s best response into consideration. Specifically, the defender would
choose �q∗ = arg min λ(π∗) where π∗ = arg max Uadv(v, �q, π)). Formally, the opti-
mization problem (OPT) is

min
�q

λ(π∗)

s.t. 0 ≤ qi ≤ 1, ∀1 ≤ i ≤ m,
m∑

i=1

qi = 1, (13)

m∑

i=1

qicM t2i ≤ Cmax,

π∗ = arg max Uadv(v, �q, π))

The optimization goal is to minimize attacker’s success rate. The first two con-
strains guarantee qi are valid probabilities. The third constraint forces that the
expected cost does not exceed maximum workload Cmax. The last constraint
states that the attacker responds optimally given password value v and the
defender’s strategy �q. Since there is no closed form expression of λ(π∗) we use
heuristic black box optimization solvers to optimize �q. We refer to the black box
solver as FindOptDis(). This heuristic algorithm is parametrized by the attacker’s
value v and by the password distribution P and outputs a distribution �q. As a
caveat our heuristic algorithm is not absolutely guaranteed to find the optimal
breakpoint distribution �q∗. Detailed discussion about FindOptDis() can be found
in the full version of this paper [10].

7 Experiments

7.1 Experiment Setup

In this section, we evaluate the performance of our mechanism using empirical
password datasets. Due to length limitations we only report results for the two
largest datasets: Linkedin (1.74∗108 accounts with 5.74∗107 distinct passwords)
and Neopets (6.83∗107 accounts with 2.8∗107 distinct accounts). In the full ver-
sion [10] we include results for 6 additional password datasets (Bfield, Brazzers,
Clicksense, CSDN, RockYou and Webhost)3.
3 The password datasets we analyze and experiment with are publicly available and

widely used in literature research. We did not crack any new passwords. Thus, our
usage of the datasets would not cause further harm to users.
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For each dataset we derive the corresponding empirical distribution De

(namely, Prpw∼De
[pw] = fi/na where fi is the frequency of pw) and analyze

the attacker’s success rate under this password distribution. The drawback is
that the tail of empirical distribution De can significantly diverge from real
distribution P. We follow the approach of [9] and use Good-Turing Frequency
estimation to upbound the CDF divergence E between De and P. In particular,
we use yellow (resp. red) to denote the unconfident region where the empirical
distribution might diverge significantly from the real distribution E > 0.01 (resp.
E > 0.1).

We plot the attacker’s success rate λ(π∗) as the ratio v/Cmax varies under
different conditions. In Fig. 3 we consider time-even breakpoints with uniform
distribution over breakpoints. Similarly, Fig. 4 considers cost-even breakpoints
under the uniform distribution as the number of breakpoints m varies. In Fig. 5,
we fix m = 3 continue to use cost-even breakpoints, and run our algorithm
FindOptDis() (implemented with BITEOPT [41]), to optimize the breakpoint
distribution.

Fig. 3. Time-Even Breakpoints, Uniform Breakpoint Distribution

7.2 Experiment Analysis and Discussion

Time-Even Breakpoints with Uniform Distribution. Fig. 3 plots the attacker’s
success rate (vs. v/Cmax) when we use time-even breakpoints with the uniform
distribution i.e., Boyen’s Halting puzzles [18]. In most parameter ranges the
usage of Boyen’s Halting puzzles reduces the % of cracked passwords in compar-
ison to using deterministic (cost-equivalent) memory hard functions. However,
one significant observation is that for some parameters v/Cmax (highlighted
with amplified circles on the plots) using Boyen’s halting puzzles can actually
increase the percentage of cracked passwords. Take LinkedIn as example, when
v/Cmax = 100 using time-even breakpoints increases the % of cracked passwords
from 0% (determistic MHF) to 0.2%. Similar phenomenon can be observed in
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Fig. 4. Cost-Even Breakpoints, Uniform Breakpoint Distribution

other datasets. Intuitively, these findings are explained by the observation that
it is relatively cheap for the attacker to check the first few cost-even breakpoints.

We also provide a (admitedly contrived) example to show that time-even
breakpoints could be very harmful. Suppose a dataset has 2 passwords, each
occurs with probability 1

2 , and password value v = 1.45, and cost parameter
Cmax = 1. With deterministic MHFs a simple calculation shows that the rational
attacker’s utility optimal strategy is to give up immediately without checking any
passwords. On the other hand, if we use Halting Puzzles (time-even breakpoints
with a uniform distribution) then a rational attacker will recover the user’s
password with probability at least 1

4 e.g., a rational attacker will always want to
check the first label of both passwords.

Cost-Even Breakpoints and Uniform Distribution. Figure 5 plots the success rate
of the rational adversary when we use cost-even breakpoints with the uniform dis-
tribution. Our results are consistent with Theorem 4 where we proved that cost-
even breakpoints with the uniform distribution can never increase the attacker’s
success rate. In Fig. 5 we also explore the impact of increasing the number of
breakpoints m. We find that increasing m decreases the attacker’s success rate
although the impact dimishes as m increases—see the [10] for additional dis-
cussion. When m = 99 we find instances where the attacker’s success rate is
decreased by an additive factor of 10%.

Optimized Distribution and Cost-Even Breakpoints. Continuing to use cost-
even breakpoints we attempted to optimize the breakpoint distribution using
BITEOPT[41]—see Fig. 5. In all instances we only obtained marginal reductions
in the attacker’s success rate when compared to the uniform distribution over
breakpoints. Furthermore, optimizing the breakpoint distribution �q requires the
defender to know the password distribution and the attacker’s value v a priori.
In practice there is a very real risk that we would optimize �q with respect to
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Fig. 5. Cost-Even Breakpoints, Optimized Breakpoint Distribution

the wrong distribution or value v. Thus we recommend to use cost-even break
points with uniform distribution as this solution can be implemented without
any knowledge of v or the password distribution.

8 Conclusion

In this paper, we introduce cost-asymmetric memory hard password authenti-
cation, a prior independent authentication mechanism, to defend against offline
attacks. As traditional hash function are replaced by memory hard functions,
we propose to use random breakpoints in evaluation of an MHF in order to
have the benefit of both cost asymmetry and cost quadratic scaling. The inter-
action between the defender and the attacker is modeled by a Stackelberg game,
within the game theory framework we formulate the optimal strategies for both
defender and attacker. We theoretically proved that cost-asymmetric memory
hard password authentication with cost-even breakpoints sampled from uniform
distribution will reduce attacker’s cracking success rate. In addition we set up
experiments to validate the effectiveness of our proposed mechanism for arbitrary
parameter settings, experiment results show that the reduction of attacker’s suc-
cess rate is up to 10%.
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Abstract. We formally introduce, define, and construct memory-hard
puzzles. Intuitively, for a difficulty parameter t, a cryptographic puzzle is
memory-hard if any parallel random access machine (PRAM) algorithm
with “small” cumulative memory complexity (� t2) cannot solve the puz-
zle; moreover, such puzzles should be both “easy” to generate and be solv-
able by a sequential RAM algorithm running in time t. Our definitions and
constructions of memory-hard puzzles are in the standard model, assum-
ing the existence of indistinguishability obfuscation (iO) and one-way
functions (OWFs), and additionally assuming the existence of a memory-
hard language. Intuitively, a language is memory-hard if it is undecidable
by any PRAM algorithm with “small” cumulative memory complexity,
while a sequential RAM algorithm running in time t can decide the lan-
guage. Our definitions and constructions of memory-hard objects are the
first such definitions and constructions in the standard model without
relying on idealized assumptions (such as random oracles).

We give two applications which highlight the utility of memory-hard
puzzles. For our first application, we give a construction of a (one-time)
memory-hard function (MHF) in the standard model, using memory-
hard puzzles and additionally assuming iO and OWFs. For our second
application, we show any cryptographic puzzle (e.g., memory-hard, time-
lock) can be used to construct resource-bounded locally decodable codes
(LDCs) in the standard model, answering an open question of Blocki,
Kulkarni, and Zhou (ITC 2020). Resource-bounded LDCs achieve better
rate and locality than their classical counterparts under the assumption
that the adversarial channel is resource bounded (e.g., a low-depth cir-
cuit). Prior constructions of MHFs and resource-bounded LDCs required
idealized primitives like random oracles.

1 Introduction

Memory-hardness is an important notion in the field of cryptography that is
used to design egalitarian proofs of work and to protect low entropy secrets
(e.g., passwords) against brute-force attacks. Over the last decade, there has
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been a rich line of both theoretical and applied work in constructing and ana-
lyzing memory-hard functions [2–8,16,25,28,34,43]. Ideally, one wants to prove
that any algorithm evaluating the function (possibly on multiple distinct inputs)
has high cumulative memory complexity (cmc) [7] (asymptotically equivalent to
the notions of (amortized) Space-Time complexity and (amortized) Area-Time
complexity in idealized models of computation [4]). Intuitively, the cmc of an
algorithm Af evaluating a function f on input x (denoted by cmc(Af , x)) is the
summation of the amount of memory used by Af during every step of the com-
putation. Currently, security proofs for memory-hard objects rely on idealized
assumptions such as the existence of random oracles [5–8] or other ideal objects
such as ideal ciphers or permutations [34]. Informally, a function f is memory-
hard if there is a sequential algorithm computing f in time t, but any parallel
algorithm computing f (possibly on multiple distinct inputs) has high cmc, e.g.,
t2−ε for small constant ε > 0. An important open question is to construct prov-
ably secure memory-hard objects in the standard model.

In this work, we focus specifically on memory-hard puzzles. Cryptographic
puzzles are cryptographic primitives that have two desirable properties: (1) for
a target solution s, it should be “easy” to generate a puzzle Z with solution
s; and (2) solving the puzzle Z to obtain solution s should be “difficult” for
any algorithm A with “insufficient resources”. Such puzzles have seen a wide
range of applications, including using in cryptocurrency, handling junk mail, and
constructing time-released encryption schemes [41,60,77,83]. For example, the
well-known and studied notion of time-lock puzzles [19,29,44,73,74,83] requires
that for difficulty parameter t and security parameter λ, a sequential (i.e., non-
parallel) machine can generate a puzzle in time poly(λ, log(t)) and solve the
puzzle in time t · poly(λ), but requires that any parallel algorithm running in
sequential time significantly less than t (i.e., any polynomial size circuit of depth
smaller than t) cannot solve the puzzle, except with negligible probability (in the
security parameter). In the context of memory-hard puzzles, we want to ensure
that the puzzles are easy to generate, but that any algorithm solving the puzzle
has high cmc. More concretely, we require that the puzzles can be generated
(resp., solved) in time poly(λ, log(t)) (resp., t · poly(λ)) on a sequential machine
while any algorithm solving the puzzle has cmc at least t2−ε for small constant
ε > 0. We remark that any sequential machine solving the puzzle in time at
most t · poly(λ) will have cmc at most t2 · poly(λ) so a lower bound of t2−ε for
the cmc of our puzzles would be nearly tight.

In this work, we ask the following questions:

Is it possible to construct memory-hard puzzles under standard crypto-
graphic assumptions? If yes, what applications of memory-hard puzzles
can we find?

1.1 Our Results

We formally introduce and define the notion of memory-hard puzzles. Inspired
by time-lock puzzles and memory-hard functions, we define memory-hard
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puzzles without idealized assumptions. Intuitively, we say that a cryptographic
puzzle is memory-hard if any parallel random access machine (PRAM) algorithm
with “small” cmc cannot solve the puzzles. This is in contrast with time-lock puz-
zles which require that any algorithm running in “small” sequential time (i.e.,
any low-depth circuit) cannot solve the puzzle. For both memory-hard and time-
lock puzzles, the puzzles should be “easy” to generate; i.e., in sequential time
poly(λ, log(t)).

Similar to the time-lock puzzle construction ofBitansky et al. [19], we construct
memory-hard puzzles assuming the existence of a suitable succinct randomized
encoding scheme [11,12,17,19,46,58,70], and the additional assumption that there
exists a language which is “suitably” memory-hard. Towards this end, we formally
introduce and define memory-hard languages: such languages, informally, require
that (1) the language is decidable by a family of uniformly succinct circuits—
succinct circuits which are computable by a uniform algorithm—of appropriate
size; and (2) any PRAM algorithm deciding the language must have “large” cmc.
We discuss the technical ideas behind our construction in Sect. 2.2 and present
its memory-hardness in Theorems 3 and 2.

We stress that our construction does not rely on an explicit instance of a
memory-hard language: the existence of such a language suffices to prove memory-
hardness of the constructed puzzle, mirroring the construction of [19]. We use suc-
cinct randomized encoding scheme of Garg and Srinivasan [46], which is instan-
tiated from indistinguishability obfuscation (iO) for circuits and somewhere sta-
tistically binding hash functions [57,67,78].1 We remark that our constructions
are primarily of theoretical interest, as known constructions of randomized encod-
ings rely on expensive primitives such as iO [1,13,14,33,45,59,67,69]. We make
no claims about the practical efficiency of our constructions.

It is important to note that even if we defined memory-hard puzzles in
an idealized model (e.g., the random oracle model), memory-hard functions
do not directly yield memory-hard puzzles. Cryptographic puzzles stipulate
that for parameters t and λ the puzzle generation algorithm needs to run
in time poly(λ, log(t)). However, using a memory-hard function to generate a
cryptographic puzzle would require the generation algorithm to compute the
memory-hard function, which would yield a generation algorithm running in
time (roughly) proportional to t · poly(λ).

Application 1: Memory-Hard Functions. We demonstrate the power of
memory-hard puzzles via two applications. For our first application, we use
memory-hard puzzles to construct a (one-time secure) memory-hard function
(MHF) in the standard model. As part of this construction, we formally define
(one-time) memory-hard functions in the standard model, without idealized
primitives; see Definitions 7 and 8. We emphasize that all prior constructions

1 Such hash functions generate a hashing key that statistically binds the i-th input bit.
For example, a hash output y may have many different preimages, but all preimages
have the same i-th bit. Construction of such hash functions exist under standard cryp-
tographic assumptions such as DDH and LWE, among others [78].
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of memory-hard functions rely on idealized primitives such as random oracles
[2–8,16,25,28,43] or ideal ciphers and permutations [34]. In fact, prior defini-
tions of memory-hardness were with respect to an idealized model such as the
parallel random oracle model, e.g., [7].

Recall that a function f is memory-hard if it can be computed by a sequential
machine in time t (and thus uses space at most t), but any PRAM algorithm
evaluating f (possibly on multiple distinct inputs) has large cumulative memory
complexity (cmc); e.g., at least t2−ε for small constant ε > 0. One-time security
stipulates that for any input x, any attacker with low cmc cannot distinguish
between (x, f(x)) and (x, r) with non-negligible advantage when r is a uniformly
random bit string.2 Assuming the existence of indistinguishability obfuscation,
puncturable pseudo-random functions, and memory-hard puzzles, we give a con-
struction of one-time secure memory-hard functions. We discuss the technical
ideas of our MHF construction in Sect. 2.3 and present its memory-hardness in
Theorem 4.

We stress that, to the best of our knowledge, this is the first construction
of a memory-hard function under standard cryptographic assumptions and the
additional assumption that a memory-hard puzzle exists. Given our construction
of a memory-hard puzzle, we construct memory-hard functions from standard
cryptographic assumptions additionally assuming the existence of a memory-
hard language. or ideal cipher and permutation models.

We also conjecture that our scheme is multi-time secure as well: if an attacker
with low cmc, say some g, cannot compute f(x) for given input x, then an
attacker with cmc at most m · g cannot compute f(xi) for m distinct inputs
x1, . . . , xm. However, we are unable to formally prove this due to some technical
barriers in the security proof. At a high level, this is due to the fact that allowing
the attacker to have higher cmc (e.g., m · g) eventually leads to an attacker with
large enough cmc to simply solve the underlying memory-hard puzzle that is used
in the MHF construction, thus allowing the adversary to distinguish instances
of the MHF instance. See Sect. 2.3 for discussion.

Application 2: LDCs for Resource-Bounded Channels. We use crypto-
graphic puzzles to construct efficient locally decodable codes for resource-bounded
channels [26]. A (�, δ, p)-locally decodable code (LDC) C[K, k] over some alpha-
bet Σ is an error-correcting code with encoding function Enc : Σk → {0, 1}K

and probabilistic decoding function Dec : {1, . . . , k} → Σ satisfying the follow-
ing properties. For any message x, the decoder, when given oracle access to some
ỹ such that Δ(ỹ,Enc(x)) � δK, makes at most � queries to its oracle and out-
puts xi with probability at least p, where Δ is the Hamming distance. The rate
of the code is k/K, the locality of the code is �, the error tolerance is δ, and
the success probability is p. Classically (i.e., the adversarial channel introducing
errors is computationally unbounded), there is an undesirable trade-off between
the rate k/K and locality, e.g., if � = polylog(k) then K � k.
2 Our one-time security definition differs from those in prior literature (e.g., [6,7]),

and is, in fact, stronger. See Sect. 2.3 for discussion.
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Modeling the adversarial channel as computationally unbounded may be
overly pessimistic. Moreover, it has been argued that any real world commu-
nication channel can be reasonably modeled as a resource-bounded channel
[26,71]. A resource-bounded channel is an adversarial channel that is assumed to
have some constrained resource (e.g., the channel is a low-depth circuit), and a
resource-bounded LDC is a LDC that is resilient to errors introduced by some
class of resource-bounded channels C. Arguably, error patterns (even random
ones) encountered in nature can be modeled by some (not necessarily known)
resource-bounded algorithm which simulates the same error pattern, and thus
these channels are well-motivated by real world channels. For example, send-
ing a message from Earth to Mars takes between (roughly) 3 and 22 min when
traveling at the speed of light; this limits the depth of any computation that
could be completed before the (corrupted) codeword is delivered. Furthermore,
examining LDCs resilient against several resource-bounded channels has led to
better trade-offs between the rate and locality than their classical counterparts
[15,24,50,71,76,84]. Recently, Blocki, Kulkarni, and Zhou [26] constructed LDCs
for resource-bounded channels with locality � = polylog(k) and constant rate
k/K = Θ(1), but their construction relies on random oracles.

We use cryptographic puzzles to modify the construction of [26] to obtain
resource-bounded LDCs without random oracles. Given any cryptographic puz-
zle that is secure against some class of adversaries C, we construct a locally
decodable code for Hamming errors that is secure against the class C, resolving
an open problem of Blocki, Kulkarni, and Zhou [26]. We discuss our LDC con-
struction in Sect. 2.4 and present its memory-hardness in Corollary 1. We can
instantiate our LDC with any (concretely secure) cryptographic puzzle. In par-
ticular, the time-lock puzzles of Bitansky et al. [19] directly give us LDCs secure
against small-depth channels, and our memory-hard puzzle construction gives
us LDCs secure against any channel with low cmc. Our LDC construction for
resource bounded Hamming channels can also be extended to resource-bounded
insertion-deletion (InsDel) channels by leveraging recent “Hamming-to-InsDel”
LDC compilers [20,21,80]. See discussion in Sect. 2.4 and Corollary 2.

Challenges in Defining Memory-Hardness. Defining the correct machine
model and cost metric for memory-hard puzzles is surprisingly difficult. As
PRAM algorithms and cmc are used extensively in the study of MHFs, it is
natural to use the same machine model and cost metric. However, cmc intro-
duces subtleties in the analysis of our memory-hard puzzle construction: like
[19], we rely on parallel amplification in order to construct an adversary which
breaks our memory-hard language assumption. While parallel amplification does
not significantly increase the depth of a computation (the metric used by [19]),
any amplification directly increases the cmc of an algorithm by a multiplicative
factor proportional to the number of amplification procedures performed. This
requires careful consideration in our security reductions.

One may also attempt to define memory-hard languages as languages with
cmc at least t2−ε, for small constant ε > 0, that are also decidable by single-tape
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Turing machines (à la [19]) in time t, rather than by uniformly succinct circuit
families. However, we demonstrate a major hurdle towards this definition. In
particular, we show that any single-tape Turing machine running in time t can
be simulated by any PRAM algorithm with cmc O(t1.8 · log(t)); see Sect. 2.1
for discussion and Theorem 1 for our formal theorem. Taking this approach, we
could not hope obtain memory hard puzzles with cmc at least t2−ε for small ε
as we can rule out the existence of memory-hard languages with cmc � t1.8.
To contrast, under our uniformly succinct definition, we can provide a concrete
candidate language with cmc plausibly as high as t2−ε such that the language is
also decidable by a uniformly succinct circuit family of size ˜O(t).3 Furthermore,
we show that our definition is essentially minimal, i.e., we can use memory-hard
puzzles to construct memory-hard languages under the modest assumption that
the puzzle solving algorithm is uniformly succinct; see discussion in Sect. 2.1 and
Proposition 1.

1.2 Prior Work

Cryptographic puzzles are functions which require some specified amount of
resources (e.g., time or space) to compute. Time-lock puzzles, introduced by
Rivest, Shamir, and Wagner [83] extending the study of timed-released cryptog-
raphy of May [75], are puzzles which require large sequential time to solve: any
circuit solving the puzzle has large depth. [83] proposed a candidate time-lock
puzzle based on the conjectured sequential hardness of exponentiation in RSA
groups, and the proposed schemes of [29,44] are variants of this scheme. Mah-
moody, Moran, and Vadhan [73] give a construction of weak time-lock puzzles
in the random oracle model, where “weak” says that both a puzzle generator
and puzzle solver require (roughly) the same amount of computation, whereas
the standard definition of puzzles requires the puzzle generation algorithm to
be much more efficient than the solving algorithm. Closer to our work, Bitan-
sky et al. [19] construct time-lock puzzles using succinct randomized encodings,
which can be instantiated from one-way functions, indistinguishability obfus-
cation, and other assumptions [46]. Recently, Malavolta and Thyagarajan [74]
introduce and construct homomorphic time-lock puzzles: puzzles where one can
compute functions over puzzle solutions without solving them. Continued explo-
ration of indistinguishability obfuscation has pushed it closer and closer to being
instantiated from well-founded cryptographic assumptions such as learning with
errors [59].

Memory-hard functions (MHFs), introduced by Percival [81], have enjoyed
rich lines of both theoretical and applied research in construction and analysis of
these functions [2–8,16,25,28,34,43]. The security proofs of all prior MHF candi-
dates rely on idealized assumptions (e.g., random oracles [5–8,27]) or other ideal
objects (e.g., ideal ciphers or permutations [34]). The notion of data-independent
MHFs—MHFs where the data-access pattern of computing the function, say, via
a RAM program, is independent of the input—has also been widely explored.

3 In fact, one can provably show that the cmc is t2−ε in the random oracle model.



Memory-Hard Puzzles in the Standard Model with Applications 51

Data-independent MHFs are attractive as they provide natural resistance to side-
channel attacks. However, building data-independent memory-hard functions
(iMHFs) comes at a cost: any iMHF has amortized space-time complexity at
most O(N2 · loglog(N)/ log(N)) [2], while data-dependent MHFs were proved to
have maximal complexity Ω(N2) in the parallel random oracle model [6] (here, N
is the run time of the honest sequential evaluation algorithm). Recently, Ameri,
Blocki, and Zhou [10] introduced the notion of computationally data-independent
memory-hard functions: MHFs which appear data-independent to a computa-
tionally bounded adversaries. This relaxation of data-independence allowed [10]
to circumvent known barriers in the construction of data-independent MHFs as
long as certain assumptions on the tiered memory architecture (RAM/cache)
hold.

LDC constructions, like all code constructions, generally follow one of two
channel models: the Hamming channel where worst-case bit-flip error patterns
are introduced, and the Shannon channel where symbols are corrupted by an
independent probabilistic process. Probabilistic channels may be too weak to
capture natural phenomenon, while Hamming channels often limit achievable
code constructions. For the Hamming channel, the channel is assumed to have
unbounded power. Protecting against unbounded errors is desirable but often
has undesirable trade-offs. For example, current constructions of LDCs with effi-
cient (i.e., poly-time) encodings an obtain any constant rate R < 1, are robust
to δ < (1 − R)-fraction of errors, but have query complexity 2O(

√
log n log log n)

for codeword length n [65]. If one instead focuses on obtaining low query com-
plexity, one can obtain schemes with codewords of length sub-exponential in the
message size while using a constant number q � 3 queries [40,42,87]. These unde-
sirable trade-offs have lead to a long line of work examining LDCs (and codes in
general) with relaxed assumptions [15,24,50,71,76,84]. Two relaxations closely
related to our work are due to Ostrovsky, Pandey, and Sahai [79] and Blocki,
Kulkarni, and Zhou [26]. [79] introduce and construct private Hamming LDCs:
locally decodable codes in the secret key setting, where the encoder and decoder
share a secret key that is unknown to the (unbounded) channel. Blocki, Kulka-
rni, and Zhou [26] analyze Hamming LDCs in the context of resource-bounded
channels. The LDC construction of [26] bootstraps off of the private Hamming
LDC construction of [79], obtaining Hamming LDCs in the random oracle model
assuming the existence of functions which are uncomputable by the channel.

While Hamming LDCs have enjoyed decades of research [40,42,61,62,65,66,
86–88], the study of insertion-deletion LDCs (or InsDel LDCs) remains scarce.
An InsDel LDC is a LDC that is resilient to adversarial insertion-deletion errors.
In the non-LDC setting, there has been a rich line of research into insertion-
deletion codes [32,35–39,47–49,51–56,64,68,72,85], and only recently have effi-
cient InsDel codes with asymptotically good information rate and error tolerance
been well-understood [47,52–54,72]. Ostrovsky and Paskin-Cherniavsky [80] and
Block et al. [21] give a compiler which transforms any Hamming LDC into an
InsDel LDC with a poly-logarithmic blow-up in the locality. Block and Blocki
[20] extend the compiler of [21] to the private and resource-bounded settings.
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Recently, Blocki et al. [22] give lower bounds for InsDel LDCs with constant
locality: they show that (1) any 2-query InsDel LDC must have exponential rate;
(2) 2-query linear InsDel LDCs do not exist; and (3) for any constant q � 3, a
q-query InsDel LDC must have rate that is exponential in existing lower bounds
for Hamming LDCs.

2 Technical Overview

Our construction of memory-hard puzzles relies on two key technical ingredi-
ents. First we require the existence of a language L ⊆ {0, 1}∗ that is suitably
memory-hard. Given such a language, we additionally require succinct random-
ized encodings [17,46,70] for succinct circuits. With these two objects, we con-
struct memory-hard puzzles. Both of our memory-hard objects are defined with
respect to parallel random access machine (PRAM) algorithms and cumulative
memory complexity (cmc). We say that an algorithm A is a PRAM algorithm if
during each time-step of the computation, the algorithm has an internal state
and can read from multiple positions from memory, perform a computation,
then write to multiple positions in memory. Recall that cmc(A, x) is the sum-
mation of the memory used by A(x) during every time step of the computation,
and cmc(A, λ) = maxx : |x|=λ cmc(A, x). Moreover, for a function y, we say that
cmc(A) < y if cmc(A, λ) < y(λ) for all λ ∈ N. We note that even though we
define cmc as a maximum, in all of our memory-hard definitions we quantify
over all adversaries, and thus capture worst-case hardness.

We discuss the key ideas and present our main results in the remainder of
this section. Section 2.1 presents our formal definition of memory-hard languages
and a discussion on the plausibility and necessity of this assumption. Section 2.2
presents our formal definition of memory-hard puzzles and presents an overview
of our construction assuming the existence of a memory-hard language and a
succinct randomized encoding scheme. Section 2.3 presents an overview of our
construction of a (one-time secure) memory-hard functions assuming the exis-
tence of indistinguishability obfuscation, one-way functions, and memory-hard
puzzles. Finally, Sect. 2.4 presents our construction of resource-bounded locally
decodable codes from any cryptographic puzzle.

2.1 Memory-Hard Languages

Our definition of memory-hard languages is inspired by the notion of non-
parallelizing languages,4 which are required by Bitansky et al. [19] to construct
time-lock puzzles (also using succinct randomized encodings). We define our
memory-hard languages with respect to a particular language class that requires
the notion of uniformly succinct circuits. Informally, a circuit family {Ct,λ}λ∈N

is succinct if there exists a smaller circuit family {C ′
t,λ}λ∈N such that for every

4 Informally, a language is non-parallelizing if any polynomial sized circuit deciding
the language has large depth.



Memory-Hard Puzzles in the Standard Model with Applications 53

t ∈ N: (1) |C ′
t,λ| = polylog(|Ct,λ|); and (2) on input gate number g of Ct,λ the

circuit C ′
t,λ(g) outputs the indices of the input gates of g and the function fg

computed by gate g. Furthermore, we say that a succinct circuit family is uni-
formly succinct if there additionally exists a sequential algorithm running in time
poly(|C ′

t,λ|) that outputs the description of the succinct circuit C ′
t,λ for every λ.

We capture the formal definitions below, beginning with succinct circuits.

Definition 1 (Succinct Circuits [18,46]). Let C : {0, 1}n → {0, 1}m be a cir-
cuit with N − n binary gates. The gates of the circuit are numbered as follows.
The input gates are given numbers {1, . . . , n}. The intermediate gates are num-
bered {n + 1, n + 2, . . . , N − m} such that for any gate g with inputs from gates
i and j, the label for g is bigger than i and j. The output gates are numbered
{N − m + 1, . . . , N}. Each gate g ∈ {n + 1, . . . , N} is described by a tuple
(i, j, fg) ∈ [g − 1]2 ×GType where the outputs of gates i and j serve as inputs to
gate g and fg denotes the functionality computed by gate g. Here, GType denotes
the set of all binary functions f : {0, 1}2 → {0, 1}.

We say that the circuit C is succinct if there exists a circuit Csc such that
on input g ∈ {n + 1, N} outputs description (i, j, fg) and |Csc| < |C|.
For notational convenience, for any circuit Csc that succinctly describes a larger
circuit C, we define FullCirc(Csc) := C and SuccCirc(C) := Csc. Next we give the
definition uniformly succinct circuit families.

Definition 2 (Uniform Succinct Circuit Families). We say that a circuit
family {Ct,λ}t,λ is succinctly describable if there exists another circuit family
{Csc

t,λ}t,λ such that |Csc
t,λ| = polylog(|Ct,λ|)5 and FullCirc(Csc

t,λ) = Ct,λ for every
t, λ. Additionally, if there exists a PRAM algorithm A such that A(t, λ) outputs
Csc

t,λ in time poly(|Csc
t,λ|) for every t, λ, then we say that {Ct,λ}t,λ is uniformly

succinct.

Given the notion of uniformly succinct circuits, we define our language class SCt.

Definition 3 (Language Class SCt). Let t be a positive function. We define
SCt as the class of languages L decidable by a uniformly succinct circuit family
{Ct,λ}λ such that there exists a polynomial p satisfying |Ct,λ| � t · p(λ, log(t))
for every λ and t := t(λ).

Given Definition 3, we define memory-hard languages. Intuitively, a language
L ∈ SCt is memory-hard if any (PRAM) algorithm B that ε-decides L must
have large cmc, where ε-decides here informally means that any probabilistic
algorithm can decide the language L with advantage at least ε.

Definition 4 ((g, ε)-Memory Hard Language). Let t be a positive function.
A language L ∈ SCt is a (g, ε)-memory hard language if for every PRAM algo-
rithm B with cmc(B, λ) < g(t(λ), λ), the algorithm B does not ε(λ)-decide Lλ

5 For our purposes, we require the size of the succinct circuit to be poly-logarithmic in
the size of the full circuit. One can easily replace this requirement with the require-
ment presented in Definition 1.
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for every λ. If ε(λ) = negl(λ), we say L is a g-strong memory-hard language. If
ε(λ) ∈ (0, 1/2) is a constant, we say L is a (g, ε) -weakly memory-hard.

Note that one may define a weak memory-hard language with respect to
ε(λ) = 1/poly(λ); however, this turns out to be essentially equivalent to
ε(λ) ∈ (0, 1/2). See the full version of our work [9] for a discussion. More-
over, our definition of memory-hard languages is essentially minimal, as one can
construct memory-hard languages from memory-hard puzzles under the modest
assumption that the puzzle solving algorithm is uniformly succinct. We prove
the following proposition in the full version of our work [9].

Proposition 1. Let Puz = (Puz.Gen,Puz.Sol) be a (g, ε)-memory hard puzzle
such that Puz.Sol is computable by a uniformly succinct circuit family {Ct,λ}t,λ

of size |Ct,λ| � t · poly(λ, log(t)) for every λ and difficulty parameter t := t(λ).
For language LPuz := {(Z, s) : s = Puz.Sol(Z)}, we have that LPuz ∈ SCt and is
a (g, ε)-memory hard language.

Plausibility of Memory-Hard Languages. We complement our definition of
memory-hard languages by providing a concrete construction of a candidate
memory-hard language. We define a language Lλ = L∩{0, 1}λ that is decidable
by a uniformly succinct circuit Ct,λ of size t2 ·polylog(t). Our language relies on
a hash function H, and under the idealized assumption that H is a random ora-
cle, Lλ is provably memory-hard with cumulative memory complexity at least
t2/ log(t).

Key to defining Lλ is a recent explicit construction of a depth-robust graph
due to Blocki, Cinkoske, Lee, and Son [23]. Depth-robustness is a combinato-
rial property which is sufficient for constructing memory-hard functions in the
parallel random oracle model [4]. Crucially, this graph is explicit and determin-
istic, and can be fully encoded by a uniformly succinct circuit. We remark that
other randomized constructions of depth-robust graphs such the one used in the
DRSample memory-hard function [3] cannot be used to construct memory-hard
languages as the graphs are not uniformly succinct. We defer the reader to the
full version of our work for more discussion [9].

We acknowledge that we only know how to prove our candidate language is
memory-hard in the random oracle model or other idealized models of compu-
tation, which we are trying to avoid in our memory-hard puzzle construction.
However, our memory-hard puzzle construction- does not require an explicit
memory-hard language and our security proof holds as long as some memory-
hard language exists. Thus, our goal is simply to establish a plausible candi-
date for such a language. We conjecture that our defined language will remain
memory-hard when the random oracle is instantiated with a concrete crypto-
graphic hash function such as SHA3. Proving that the conjecture holds in the
standard model, however, would require major advances in the difficult field of
complexity theory and circuit lower bounds. Moreover, assuming that all of our
cryptographic assumptions hold, a concrete attack against our memory-hard
puzzle construction would directly show that memory-hard languages do not
exist, which is presumably a difficult problem in complexity theory.
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PRAM Algorithms versus Turing Machines. One might try to define memory-
hard languages to require they be decidable by a single-tape Turing machine
rather than a PRAM algorithm. However, we show that if we require our
memory-hard language to be decidable by a single-tape Turing machine in time
t = t(λ), then the language is only secure against PRAM algorithms with cmc

less than ˜O(t1.8). We show this by proving that any single-tape Turing machine
running in time t = t(λ) for λ-bit inputs can be simulated by a PRAM algorithm
in time O(t) using with space at most O(t0.8 · log(t)). As cmc is upper bounded
by the maximum space of a computation times the maximum time of a compu-
tation, this implies that cmc is at most O(t1.8 · log(t)). We prove the following
theorem in the full version of our work [9].

Theorem 1. For any language L decidable in time t(n) by a single-tape Turing
machine for inputs of size n, there exists a constant c > 0 such that L is decidable
by a PRAM algorithm with cmc at most c · t(n)1.8 · log(t(n)).

It is an interesting open question if such a reduction holds for multi-tape
Turing machines; in particular, showing such a reduction for two-tape Turing
machines would only strengthen our definition due to the reduction from multi-
tape to two-tape Turing machines [82].

2.2 Memory-Hard Puzzles

We formally define memory-hard puzzles. Intuitively, a memory-hard puzzle is a
cryptographic puzzle which requires any PRAM algorithm solving the puzzle to
have large cmc. We give two flavors of memory-hard puzzles and begin with an
asymptotically secure memory-hard puzzle.

Definition 5 (g-Memory Hard Puzzle). A puzzle Puz = (Puz.Gen,Puz.Sol)
is a g -memory hard puzzle if there exists a polynomial t′ such that for all polyno-
mials t > t′ and for every PRAM algorithm A with cmc(A) < y for the function
y(λ) := g(t(λ), λ), there exists a negligible function μ such that for all λ ∈ N and
every pair s0, s1 ∈ {0, 1}λ we have |Pr [A(Zb, Z1−b, s0, s1) = b] − 1/2| � μ(λ),
where the probability is taken over b

$← {0, 1} and Zi ← Puz.Gen(1λ, t(λ), si) for
i ∈ {0, 1}.
Note that for any difficulty parameter t := t(λ) for security λ, we assume that
Puz.Sol is computable in time t · poly(λ) on a sequential RAM algorithm.
This implies that there exists a PRAM algorithm A computing Puz.Sol has
cmc(A, λ) � (t · poly(λ))2 = t2 · poly(λ). This yields an upper bound on the
function g of Definition 5: take t to be any (large enough) polynomial. Then
suitable values of g (ignoring poly(λ) factors) include g = t2/ log(t) or g = t2−θ

for small constant θ > 0. In particular, we cannot expect to design g-memory
hard puzzles for any function g = ω(t2 · poly(λ)) (by our definitions).

We complement Definition 5 with the following concrete security definition.
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Definition 6 ((g, ε)-Memory Hard Puzzle). A puzzle Puz = (Puz.Gen,
Puz.Sol) is a (g, ε)-memory hard puzzle if there exists a polynomial t′ such that
for all polynomials t > t′ and every PRAM algorithm A with cmc(A) < y for
y(λ) := g(t(λ), λ), and for all λ > 0 and any pair s0, s1 ∈ {0, 1}λ, we have
|Pr [A(Zb, Z1−b, s0, s1) = b] − 1/2| � ε(λ), where the probability is taken over
b

$← {0, 1} and Zi ← Puz.Gen(1λ, t(λ), si) for i ∈ {0, 1}. If ε(λ) = 1/poly(λ), we
say the puzzle is weakly memory-hard.

Similar to Definition 5, suitable values of g for Definition 6 include g = t2/ log(t)
and g = t2−θ for small constant θ > 0, as any PRAM algorithm with cmc
larger than t2 · poly(λ) can trivially break puzzles security simply by running
the algorithm Puz.Sol.

We note that in our security definition the adversary is given two puzzles
Zb, Z1−b in random order along with both solutions s0, s1 (in the correct order).
An alternate security definition would only give the adversary one puzzle, Zb,
and the solutions s0, s1. We remark that our security definition is at least as
strong since the attacker can simply choose to ignore Z1−b. It is an open question
whether or not there is reduction in the other direction establishing tight concrete
security guarantees. Thus, we choose to use the stronger definition.

We construct memory-hard puzzles by using succinct randomized encodings
for succinct circuits and additionally assuming that a (suitable) memory-hard
language exists. Informally, a succinct randomized encoding for succinct circuits
consists of two algorithms sRE.Enc and sRE.Dec where ̂Cx,G ← sRE.Enc(1λ, C ′,
x, G) takes as input a security parameter λ, a succinct circuit C ′ describing
a larger circuit C with G gates and an input x ∈ {0, 1}∗ and outputs a ran-
domized encoding ̂C in time poly(|C ′|, λ, log(G), |x|). The decoding algorithm
sRE.Dec( ̂Cx,G) outputs C(x) in time at most G · poly(log(G), λ). Note that the
running time requirement ensures sRE.Enc cannot simply compute C(x). Intu-
itively, security implies that the encoding ̂Cx,G reveals nothing more than C(x)
to a computationally bounded attacker. Due to space constraints, we defer the
formal definitions of both asymptotically secure and concretely secure succinct
randomized encodings to the full version of our work [9].

We extend ideas from [19] to construct memory-hard puzzles from succinct
randomized encodings; the formal construction is presented in the full version
of our work [9]. The generation algorithm Puz.Gen(1λ, t, s) first constructs a
Turing machine Ms,t that on any input runs for t steps then outputs s, where
t = t(λ) and s ∈ {0, 1}λ. This machine is then transformed into a succinct
circuit C ′

s,t (via a transformation due to Pippenger and Fischer [82]), and then
encodes this succinct circuit with our succinct randomized encoding; i.e., Z =
sRE.Enc(1λ, C ′

s,t, 0
λ, Gs,t). Here, C ′

s,t succinctly describes a larger circuit Cs,t

which is equivalent to Ms,t (on inputs of size λ) and has Gs,t := |Cs,t| gates. The
puzzle solution algorithm simply runs the decoding procedure of the randomized
encoding scheme; i.e., Puz.Sol(Z) outputs s ← sRE.Dec(Z).

Security is obtained via reduction to a suitable memory-hard language L.
If the security of the constructed puzzle is broken by an adversary A with
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small cmc, then we construct a new adversary B with small cmc which breaks
the memory-hard language assumption by deciding whether x ∈ L with non-
negligible advantage. Suppose that Z0 ← Puz.Gen(1λ, t, s0), Z1 ← Puz.Gen(1λ,
t, s1), b is a random bit, and t := t(λ). If A(s0, s1, Zb, Z1−b) can violate the MHP
security and predict b with non-negligible probability, then we can construct an
algorithm B with similar cmc that decides our memory-hard language. Algorithm
B first constructs a uniformly succinct circuit Ca,a′ such that on any input x
we have Ca,a′(x) = a if x ∈ L; otherwise Ca,a′(x) = a′ if x �∈ L. Our defi-
nition of memory-hard languages ensures that Ca,a′ is uniformly succinct and
has size G = t · poly(λ, log(t)). Let C ′

a,a′ denote the smaller circuit that suc-
cinctly describes Ca,a′ . The adversary computes Zi = sRE.Enc(1λ, C ′

si,s1−i
, x,G)

for i ∈ {0, 1}, samples b
$← {0, 1}, and obtains b′ ← A(Zb, Z1−b, s0, s1). Our

adversary B outputs 1 if b = b′ and 0 otherwise.
Observe that if x ∈ L then Puz.Sol(Z0) = s0 and Puz.Sol(Z1) = s1; otherwise

if x �∈ L then Puz.Sol(Z0) = s1 and Puz.Sol(Z1) = s0. By security of sRE,
adversary A cannot distinguish between Zi = sRE.Enc(1λ, C ′

si,s1−i
, x,G) and a

puzzle generated with Puz.Gen. Thus on input (Zb, Z1−b, s0, s1), the adversary A
outputs b′ = b with non-negligible advantage. By our above observation, we have
that B now (probabilistically) decides the memory-hard language L with non-
negligible advantage. To obtain an adversary B′ that deterministically decides
L, we use standard amplification techniques, along with the assumption of B′

being a non-uniform algorithm (à la the argument for BPP ⊂ P/poly). Whereas
amplification—when performed in parallel—does not significantly increase the
total computation depth, any amplification increases the cmc of an algorithm by
a multiplicative factor proportional to the amount of amplification performed.
Intuitively, this is because the cmc of an algorithm A is equal to the sum of the
cmc of all sub-computations performed by A. We defer formal details to the full
version of our work [9].

The memory-hardness of our construction relies on the particular suc-
cinct randomized encoding scheme used, and the existence of an appropriately
memory-hard language. We again stress that the memory-hardness of our con-
struction does not rely on an explicit instance of a memory-hard language, and
the existence of such a language is sufficient for the above reduction to hold.
We show that our construction satisfies two flavors of memory-hardness. First,
given an asymptotically secure succinct randomized encoding scheme sRE and
the existence of a strong memory-hard language, we show that there exists is an
asymptotically secure memory-hard puzzle.

Theorem 2. Let t := t(λ) be a polynomial and let g := g(t, λ) be a func-
tion. Let sRE = (sRE.Enc, sRE.Dec) be a succinct randomized encoding
scheme. If there exists a g′-strong memory-hard language L ∈ SCt for
g′(t, λ) := g + 2psRE(log(t), λ)2 + 2pSC(log(t), log(λ))2 + O(λ), then there exists
a g-memory hard puzzle. Here, psRE and pSC are fixed polynomials for the run-
times of sRE.Enc and the uniform machine constructing the uniform succinct
circuit of L, respectively.
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To get a handle on Theorem 2, consider a large enough polynomial t such that
t � psRE(log(t), λ) and t � pSC(log(t), log(λ)). Then if there exists a g′-strong
memory-hard language for g′(t, λ) = t2/ log(t), we obtain a g-memory hard
puzzle for g(t, λ) = (1 − o(1)) · g′(t, λ) (i.e., there is little loss in the memory-
hardness of the constructed puzzle).

Next, assuming a concretely secure succinct randomized encoding scheme
sRE and the existence of a weak memory-hard language, then there exists a
weakly-secure memory-hard puzzle.

Theorem 3. Let t := t(λ) be a polynomial and let g := g(t, λ) be a function. Let
sRE = (sRE.Enc, sRE.Dec) be a (g, s, εsRE)-secure succinct randomized encoding
scheme for g := g(t, λ) and s(λ) := t · poly(λ, log(t)) such that psRE is a fixed
polynomial for the runtime of sRE.Enc. Let ε := ε(λ) = 1/poly(λ) > 3εsRE(λ)
be fixed. If there exists a (g′, εL)-weakly memory-hard language L ∈ SCt

for g′(t, λ) := [g + 2psRE(log(t), λ)2 + 2pSC(log(t), log(λ))2 + O(λ)] · Θ(1/ε), and
some constant εL ∈ (0, 1/2), then there exists a (g, ε)-weakly memory-hard puz-
zle. Here, pSC is a fixed polynomial for the runtime of the uniform machine
constructing the uniform succinct circuit for L.

Notice here we lose a factor of Θ(1/ε) when compared with Theorem 2.
Concretely, using our same example from Theorem 2, if t is sufficiently large such
that t � psRE(log(t), λ) and t � pSC(log(t), log(λ)), and if ε = 1/λ2, then for
g′ = t2/ log(t) we obtain a (g, ε)-weakly memory-hard puzzle for g = g′ · Θ(λ2).
This loss is due to the security reduction: our adversary performs amplification
to boost the success probability of breaking the weakly memory-hard language
assumption from ε to the constant εL. To achieve constant εL, one needs to
amplify Θ(1/ε) times. As discussed previously, amplification directly incurs a
multiplicative blow-up in the cmc complexity of a PRAM algorithm performing
the amplification.

2.3 Memory-Hard Functions from Memory-Hard Puzzles

Using our new notion of memory-hard puzzles, we construct a one-time memory-
hard function under standard cryptographic assumptions. To the best of our
knowledge, this is the first such construction in the standard model; i.e., without
random oracles [7] or other idealized primitives [34]. Recall that informally a
function f is memory-hard if any PRAM algorithm computing f has large cmc.
We define the one-time security of a memory-hard function f via the following
game between an adversary and an honest challenger. First, before the game
begins an input x is selected and provided to the challenger and the attacker.
Second, the challenger computes y0 = f(x) and samples y1 ∈ {0, 1}λ and b

$←
{0, 1} uniformly at random, and sends yb. Then the attacker outputs a guess b′ for
b. We say that the adversary wins if b′ = b, and say that f is (t, ε)-one time secure
if for all inputs x and all attackers running in time � t the probability that the
attacker outputs the correct guess b′ = b is at most ε(λ). Note that this definition
differs from prior definitions in the literature (e.g., [6,7]), and is in fact stronger
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than requiring that an adversary with insufficient resources cannot compute
the MHF. However, we remark that in the random oracle model, for random
oracle H, any MHF f immediately yields a function f ′(x) = H(f(x)) which
is indistinguishable from random to any adversary that cannot compute f(x).
We provide two definitions of one-time memory-hard functions in the standard
model. First, we present a simplified definition of asymptotic security for MHFs
(see [9] for the complete formal definition).

Definition 7 (One-Time g -MHF). For a function g(·, ·), we say that a mem-
ory hard function MHF = (MHF.Setup,MHF.Eval) is one-time g -memory hard
if there exists a polynomial t′ such that for all polynomials t(λ) > t′(λ) and
every adversary A with cmc(A) < y for y(λ) := g(t(λ), λ), there exists a neg-
ligible function μ(λ) such that for all λ ∈ N and every input x ∈ {0, 1}λ, we
have |Pr[A(x, hb, pp) = b] − 1/2| � μ(λ), where the probability is taken over
pp ← MHF.Setup(1λ, t(λ)), b

$←{0, 1}, h0 ← MHF.Eval(pp, x), and h1
$←{0, 1}λ.

We complement the above definition with a concrete security definition.

Definition 8 (One-time (g, ε)-MHF). For a function g(·, ·), we say that a
MHF = (MHF.Setup,MHF.Eval) is a one-time (g, ε) -MHF if there exists a
polynomial t′ such that for all polynomials t(λ) > t′(λ) and every adversary A
with area-time complexity cmc(A) < y, where y(λ) = g(t(λ), λ), and for all λ > 0
and x ∈ {0, 1}λ we have |Pr[A(x, hb, pp) = b]−1/2| � ε(λ), where the probability
is taken over pp ← MHF.Setup(1λ, t(λ)), b

$← {0, 1}, h0 ← MHF.Eval(x, pp) and
a uniformly random string h1 ∈ {0, 1}λ.

We give a memory-hard function construction that relies on our new notion
of memory-hard puzzles, and additionally uses indistinguishability obfuscation
(iO) for circuits and a family of puncturable pseudo-random functions (PPRFs)
{Fi}i [30,31,63]. Informally, PPRFs are pseudo-random functions that allow one
to “puncture” a key K at values x1, . . . , xk, where the key K can be used to
evaluate the function at any point x �∈ {x1, . . . , xk} and hide the values of the
function at the points x1, . . . , xk.

We formally present our memory-hard function in the full version of our work
[9] and provide a high-level overview of the construction here. During the setup
phase we generate three PPRF keys K1, K2, and K3 and obfuscate a program
prog(·, ·) which does the following. On input (x,⊥), prog outputs a memory-
hard puzzle Puz.Gen(1λ, t(λ), s; r) with solution s = FK1(x) using randomness
r = FK2(x). On input (x, s′), prog checks to see if s′ = FK1(x) and, if so,
outputs FK3(x); otherwise ⊥. Given the public parameters pp = iO(prog), we
can evaluate the MHF as follows: (1) run pp(x,⊥) = iO(prog(x,⊥)) to obtain a
puzzle Z; (2) solve the puzzle Z to obtain s = Puz.Sol(Z); and (3) run pp(x, s) =
iO(prog)(x, s) to obtain the output FK3(x). Intuitively, the construction is shown
to be one-time memory-hard by appealing to the memory-hard puzzle security,
PPRF security, and iO security.

We establish one-time memory-hardness by showing how to transform an
MHF attacker A into a MHP attacker B with comparable cmc. Our reduction
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involves a sequence of hybrids H0,H1,H2 and H3. Hybrid H0 is simply our above
constructed function. In hybrid H1 we puncture the PPRF keys Ki{x0, x1} at
target points x0, x1 and hard code the corresponding puzzles Z0, Z1 along with
their solutions—iO security implies that H1 and H0 are indistinguishable. In
hybrid H2 we rely on PPRF security to replace Z0, Z1 with randomly generated
puzzles independent of the PPRF keys K1,K2 and hardcode the corresponding
solutions s0, s1. Finally, in hybrid H3 we rely on MHP security to break the
relationship between si and Zi; i.e., we flip a coin b′ and hardcoded puzzles
Z ′
0 = Zb′ and Z ′

1 = Z1−b′ while maintaining si = Puz.Sol(Zi). In the final
hybrid we can show that the attacker cannot win the MHF security game with
non-negligible advantage.

Showing indistinguishability of H2 and H3 is the most interesting case. In
fact, an attacker who can solve either puzzle Zb or Z1−b can potentially dis-
tinguish the two hybrids. Instead, we only argue that the hybrids are indistin-
guishable if the adversary has small area-time complexity. In particular, if an
adversary with small cmc is able to distinguish between H2 and H3, then we
construct an adversary with small cmc which breaks the memory-hard puzzle.

Our main result is that given a concretely secure PPRF family and a con-
cretely secure iO scheme, if there exists a concretely secure memory-hard puzzle
(Definition 6), then there exists a concretely secure memory-hard function.

Theorem 4. Let t := t(λ) be a polynomial and let g := g(t, λ) be a func-
tion. Let F be a (tPPRF, εPPRF)-secure PPRF family and iO be a (tiO, εiO)-
secure iO scheme. If there exists a (g, εMHP)-memory hard puzzle for g �
min{tPPRF(λ), tiO(λ)}, then there exists one-time (g′, εMHF)-MHF for g′(t, λ) =
g(t, λ)/p(log(t), λ)2, where εMHF(λ) = 2 · εMHP(λ) + 3 · εPPRF(λ) + εiO(λ) and
p(log(t), λ) is a fixed polynomial which depends on the efficiency of underlying
puzzle and iO.

To get a handle on Theorem 4, consider the following parameter settings. Let θ >
0 be a small constant and suppose that t is suitably large such that p(log(t), λ)2 =
Θ(tc) for some suitably small constant 0 < c < θ. Then for g(t, λ) = t2−θ+c,
εMHP = (1/6) · 2−λ, εPPRF = (1/9) · 2−λ, and εiO = (1/3) · 2−λ,6 our theorem
yields a (g′, εMHF) for g′(t, λ) = Θ(t2−θ) and εMHF = 1/2λ. Note that the exact
parameters of the constructed MHF depend explicitly on the parameters of the
underlying primitives used in the construction. Due to space constraints, we
defer the formal definitions of concretely secure PPRF families and iO to the
full version of our work [9].

Note that for any instantiation of iO that we are aware of, our construction
is also a (computationally) data-independent MHF [10], i.e., the memory access
pattern is (computationally) independent of the secret input x. This is a desirable
and useful property that provides natural resistance to side-channel attacks.

Remark 1. One may attempt to construct memory-hard puzzles directly from
memory-hard functions in a natural way. For example, for a memory-hard func-
tion f , one could define Gen(x) = r‖x ⊕ f(r) for random r

$← {0, 1}∗ and Sol(Z)
6 In this example, we assume sub-exponentially secure iO.
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such that first Z is parsed as Z = r′‖y′ and then returns y′ ⊕ f(r′). Clearly
computing Sol(Z) is memory-hard, but (Gen,Sol) is not a cryptographic puzzle
by our definitions since Gen violates the efficiency constraints of cryptographic
puzzles.

Barriers to Proving Multi-Time Security. While we conjecture that our MHF
construction achieves stronger multi-time security, we are unable to formally
prove this. An interesting aspect of our final hybrid is that indistinguishability
does not necessarily hold against an attacker with higher cmc who could trivially
distinguish between (s0, s1, Z0, Z1) and (s0, s1, Z1, Z0) by solving the puzzles Z0

and Z1. However, once the cmc of the attacker is high enough to solve one
puzzle, then we cannot rely on the MHP security for the indistinguishability of
the final two hybrids. Proving multi-time security would involve proving that any
attacker solving m distinct puzzles has cmc that scales linearly in the number
of puzzles; i.e., any attacker with cmc = o (m · g(t(λ))) will fail to solve all m
puzzles. In particular, even though we expect the cmc of the attacker to be too
small to solve all m puzzles, the cmc will become large enough to solve at least
one puzzle, which allows the attacker to distinguish between the hybrids in our
security reduction. See the full version [9] for more details.

2.4 Resource-Bounded LDCs from Cryptographic Puzzles

Recall that a resource-bounded LDC is a (�, δ, p) locally decodable code that is
resilient to δ-fraction of errors introduced by some channel in some adversarial
class C, where every A ∈ C is assumed to have some resource constraint. For
example, C can be a class of adversaries that are represented by low-depth
circuits, or have small cumulative memory complexity. In more detail, security
of resource-bounded LDCs requires that any adversary in the class C cannot
corrupt an encoding y = Enc(x) to some ỹ such that (1) the distance between
y and ỹ is at most δ · |y|; and (2) there exists an index i such that the decoder,
when given ỹ as its oracle, outputs xi with probability less than p.

We construct our resource-bounded LDC by modifying the construction of
[26] to use cryptographic puzzles in place of random oracles. In particular, for
algorithm class C, if there exists a cryptographic puzzle that is unsolvable by
any algorithm in C, then we use this puzzle to construct a LDC secure against
C. See the full version of our work for the formal definitions of a (C, ε)-hard
puzzle and a C-secure LDC [9].

Our construction crucially relies on a private LDC [79]. Private LDCs are
LDCs that are additionally parameterized by a key generation algorithm Gen
that on input 1λ for security parameter λ outputs a shared secret key sk to both
the encoding and decoding algorithm. Crucially, this secret key is hidden from
the adversarial channel. See [9,26,79] for formal definitions.

We provide a high-level overview here of our LDC construction and defer
the formal construction to the full version of our work [9]. Let (Gen,Encp,Decp)
be a private Hamming LDC. The encoder Encf , on input message x, samples
random coins s ∈ {0, 1}λ then generates cryptographic puzzle Z with solution s.
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The encoder then samples a secret key sk ← Gen(1λ; s), where Gen uses random
coins s, and encodes the message x as Y1 = Encp(x; sk). The puzzle Z is then
encoded as Y2 via some repetition code. The encoder then outputs Y = Y1 ◦ Y2.
This codeword is corrupted to some ˜Y , which can be parsed as ˜Y = ˜Y1 ◦ ˜Y2.

The local decoder Decf , on input index i and given oracle access to ˜Y , first
recovers the puzzle Z by querying ˜Y2 and using the decoder of the repetition
code (e.g., via random sampling with majority vote). Given s, the local decoder
is able to generate the same secret key sk ← Gen(1λ; s) and now runs the local
decoder Decp(i; sk). All queries made by Decp(i; sk) are answered by querying ˜Y1,
and the decoder outputs Decp(i; sk). The construction is secure against any class
C for which there exist cryptographic puzzles that are secure against this class.
For example, time-lock puzzles give an LDC that is secure against the class C

of circuits of low-depth, and memory-hard puzzles give an LDC that is secure
against the class C of PRAM algorithms with low cmc.

Security is established via a reduction to the cryptographic puzzle. Suppose
there exists an adversary A ∈ C which can violate the security of our LDC.
The reduction relies on a two-phase hybrid distinguishing argument [26]. Fix
(Encf ,Decf) to be the encoder and local decoder constructed above. We define
two different encoders to be used in the hybrid arguments. First the encoder
Enc0 := Encf is defined to be exactly the same as our LDC encoder. Second,
the encoder Enc1 is defined to be identical to Encf , except with the following
changes: (1) Enc1 receives both a message x and some secret key sk as input;
(2) Enc1 encodes x as Y1 = Encp(x; sk); and (3) Enc1 samples some s′ $← {0, 1}λ

that is uncorrelated with its input sk, computes puzzle Z ′ ← Puz.Gen(s′), and
computes Y2 as the repetition encoding of Z ′.

We now construct our attacker B which violates the security of the cryp-
tographic puzzle as follows: B is given (Zb, Z1−b, s0, s1) for uniformly random
bit b, where Zi is a puzzle with solution si as input. Then B fixes a message
x and encodes x as follows. (1) Using puzzle solution s0, generate secret key
sk ← Gen(1λ, s0). (2) Compute Y2 as the encoding of Zb (i.e., its first input) using
the repetition code. (3) Compute Y1 ← Encp(x; sk). (4) Set Y = Y1 ◦Y2. With Y

in hand, the adversary B simulates adversary A to obtain Ỹ = Ỹ1◦Ỹ2 ← A(x, Y ).
Finally, B outputs b′ ← D(x, sk, Ỹ1). Here, the distinguisher D is given Ỹ1, the
secret key sk0, and message x as input; additionally, it can simulate the local
decoding algorithm Decp. In particular, the distinguisher D is defined as fol-
lows: (1) sample an index i

$← {1, . . . , |x|} uniformly at random; (2) compute
x̃i ← DecỸ1

p (i; sk0); and (3) output b′ = 0 if xi �= x̃i and b′ = 1 otherwise.
Intuitively, if b = 1 then Y1 = Encp(s; sk0) where the secret key sk0 is infor-

mation theoretically hidden from A when the corrupted private-key codeword
Ỹ1 ← A(x, Y ) is produced. Private key LDC security ensures that, except with
negligible probability, DecỸ1

p (i; sk0) will output the correct answer x̃i = xi and
D will output the correct answer b′ = 1. On the other hand if b = 0 we have
Y = Enc0(x) and Ỹ ← A(x, Y ) so that the probability that DecỸ1

p (i; skb) outputs
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the wrong answer xi �= x̃i will be non-negligible—at least 1/|x| times the advan-
tage of A in the LDC security game. Thus, the probability that D outputs the
correct answer b′ = 0 is also non-negligible. It follows our adversary B outputs
the correct bit b = b′ with non-negligible advantage violating security of the
underlying memory hard puzzles. See [9] for formal details.

Our main result is that given any private Hamming LDC, if there exists a
memory-hard puzzle, then there exists a resource-bounded LDC that is secure
against the class of PRAM algorithms, where the parameters of the resource-
bounded LDC are comparable to the parameters of the private LDC.

Corollary 1. Let g be a function, let C(g) := {A : A is a PRAM algorithm and
cmc(A) < g}, and let Cp[Kp, kp, λ] be a (�p, δp, pp, εp)-private Hamming LDC.
If there exists a (g, ε′)-memory hard puzzle then there exists a (�, δ, ε)-resource
bounded LDC C[Ω(Kp), kp] that is secure against the class C(g) with parameters
� = Θ(�p), δ = Θ(1), p = 1 − negl(λ), and ε = Θ(εp + ε′).

Actually, in the full version of our work [9], we prove a more general theorem
which utilizes any private LDC in conjunction with a more general (C, ε)-hard
puzzle (i.e., the puzzle is secure against the class of adversaries C, which allows
us to construct a resource-bounded LDC that is secure against the class C.

Resource-Bounded LDCs for Insertion-Deletion Errors in the Standard Model.
Recently, Block and Blocki [20] proved that the so-called “Hamming-to-InsDel”
compiler of Block et al. [21] extends to both the private Hamming LDC and
resource-bounded Hamming LDC settings. That is, there exists a procedure
which compiles any resource-bounded Hamming LDC to a resource-bounded LDC
that is robust against insertion-deletion errors such that this compilation proce-
dure preserves the underlying security of the Hamming LDC. We apply the result
of Block and Blocki [20] to our construction and obtain the first construction
of resource-bounded locally decodable code for insertion-deletion errors in the
standard model. We remark that the prior construction presented in [20] was in
the random oracle model.

Corollary 2. Let C(g) = {A : AisaPRAMalgorithmandcmc(A) < g} and let
Cp[Kp, kp, λ] be a private Hamming LDC. If there exists a (g, ε′)-memory hard
puzzle and a (�, δ, p, ε) resource-bounded LDC that is secure against the class C(g),
then there exists a (�′, δ′, p′, ε′′)-LDC C[n, k] for insertion-deletion errors against
class C(g), where �′ = � · O(log4(n)), δ′ = Θ(δ), p′ < p, ε′′ = ε/(1 − negl(n)),
k = kp, and K = Ω(Kp).
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Abstract. Over the past decades, there has been a dramatic increase
of the attacks recovering the data from the RAM memory. These have
heightened the need for new solutions and primitives suitable for the
encryption of this information. In this paper we introduce RAMus, a new
tweakable lightweight block cipher whose properties support its usage
for securing the RAM memory. In this sense, RAMus attains all the
requirements provided by the (German) Federal Office of Information
Security (BSI) in the domain of encryption algorithms suitable for RAM
and memory encryption. The design strategy of RAMus is inspired from
the LS-approach. Compared to the literature, in our proposal the linear
layer is replaced by a second Sbox layer. In RAMus, the diffusion is
ensured by the Sbox layers, which use Sboxes with a non-trivial branch
number.

Keywords: RAMus · RAM encryption · Branch number · 2S-strategy

1 Introduction

The security of a personal device, such as a smartphone or a laptop, is one of the
most analyzed topics in the domain of cryptography, security, and privacy. Even
though most of the vulnerabilities arise from the online behavior of the device’s
user, in the last decade special attention was given to the security of the data
stored in the memory of the device. The attacks aiming at recovering the data
from the RAM, such as the cold boot attack [26] or the direct memory access
attack [40], proved the increasing importance of protecting this information. In
order to increase the security of the data stored in the RAM memory, both
the academia and the industry invested their resources in designing a series of
solutions. While the resulted proposals employ different techniques to ensure
the security of the cryptographic secrets, most of them are based on one of the
following block ciphers: AES [23], Prince [19], Qarma [10] or ASCON [24].

In order to support the development of RAM encryption solutions, The (Ger-
man) Federal Office of Information Security (BSI) published, in 2013, a method-
ology for cryptographic rating of memory encryption schemes used in smartcards
and similar devices [1]. According to this methodology, an algorithm suitable for
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memory encryption schemes should exhibit small area for its implementation,
while having high speed, which is translated in our work by both low latency and
high throughput. Furthermore, the methodology recommends the use of a tweak-
able block cipher, where the tweak is parameterised with the memory address of
the plaintext. Last but not least, the methodology discusses the necessary secu-
rity of a suitable block cipher with respect to the known attacks. While linear
and differential cryptanalysis are considered critical, the methodology considers
less relevant the security against related-key attacks. The methodology also dis-
cusses the impact of side-channel attacks, noting that this type of attacks could
lead to critical vulnerabilities in some particular scenarios.

Our Contribution. In order to contribute to the efforts of the cryptographic
community in the area of secure memory encryption, we propose RAMus, a
new lightweight tweakable block cipher. The design of RAMus follows the 2S-
strategy, a new design framework introduced in this paper. The cipher satisfies
the constraints imposed by the BSI methodology, while ensuring that its thresh-
old implementation against side-channel attacks does not have any overheads.
RAMus is a tweakable block cipher, with a tweak space of 264. Therefore, for the
32- and 64-bit systems, it allows the usage of the same symmetric key for the
entire RAM memory, without the vulnerabilities induced by the ECB mode of
operation and the overhead of other modes of operation, such as XEX or XTS.

In order to ensure low area of the implementation of RAMus, the round
function, tweak update function and key schedule use only two basic operations:
one 8-bit Sbox and the XOR addition. To ensure good diffusion through the
cipher, the Sbox was designed such that it has good cryptographic properties,
while having non-trivial linear and differential branch numbers.

The latency of the cipher is closely related to the number of non-linear oper-
ations used for the round function. We note that the chosen Sbox can be imple-
mented with only 8 non-linear gates, the minimum number of non-linear gates
of an 8-bit Sbox with good cryptographic properties. Moreover, the strategy
used for the design of the Sbox ensures resistance against side-channel attacks
according to the literature [20,32].

Related Work. The related work covers two areas. The first one regards the
block ciphers that are used for RAM encryption solutions, while the second one
refers to the design and usage of Sboxes with non-trivial linear and differential
branch number.

Block Ciphers Suitable for RAM Encryption. The most common block ciphers
used to design RAM encryption solutions include AES, Prince, Qarma and
ASCON. Although the security of all these ciphers was subjected to extended
analysis (especially in the case of AES, which was selected as a NIST standard,
and ASCON, which is part of the final portofolio of the CAESAR competition
and a finalist of the NIST Lightweight competition), we remark that none of
these ciphers fulfill all the requirements presented in the BSI methodology. Note
that AES, Prince and ASCON are not tweakable, while the Sbox of Qarma does
not lend itself easily to a lightweight side-channel resistant implementation.
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Sboxes with Non-trivial Branch Numbers. Through the last decades, the problem
of linear and differential branch numbers of an Sbox caught the attention of the
cryptographic community. The first step in this direction regards the design and
analysis of 4-bit Sboxes with non-trivial differential branch number, such as the
Sboxes of Serpent [15] or PRESENT [18]. The natural extension of this field was
proposed in [36], which presents the classification of all 4-bit Sbox equivalence
classes with respect to the differential branch number. The next step of this
research was the design and analysis of 5-bit Sboxes with non-trivial branch
numbers, such as the Sbox of ASCON which has both linear and differential
branch number 3. This work was continued in [37], which proposes new design
strategies for 5-bit and 6-bit Sboxes with non-trivial branch numbers.

Further, [28] introduces the unbalanced-bridge approach, a technique suitable
for the design of 8-bit Sboxes with linear and differential branch number 3. Such
Sboxes have good cryptographic properties, while allowing for bit-slice imple-
mentations which use at least 11 non-linear gates. Using this type of Sboxes, the
authors propose the block cipher PIPO, which follows the LS-design framework.
We note that the authors also present a series of 8-bit Sboxes with differential
branch number 4, but with non-linearity 0, concluding that this type of Sboxes
would induce vulnerabilities with respect to linear cryptanalysis.

Structure of the Paper. The rest of this paper is organized as follows: in
Sect. 2 we present some terminology regarding linear and differential cryptanal-
ysis, the branch number of an Sbox and the LS-design framework. In Sect. 3
we introduce the 2S-strategy, a new design technique inspired by the LS-design
framework. Section 4 introduces the RAMus block cipher, as a parameteriza-
tion of the 2S-strategy, and Sect. 5 discusses the design rationale of RAMus.
Section 6 presents the security analysis of RAMus with respect to the most
important cryptanalytic techniques, while in Sect. 7 we discuss the performance
of RAMus in hardware implementations.

2 Preliminaries

Linear Cryptanalysis. Linear cryptanalysis [31] was introduced in 1993 by
Matsui as an attack against DES [6]. This approach aims at finding linear approx-
imations between the bits of the plaintext and the ciphertext. In order to exploit
such approximations, it is necessary that the associated probability is different
from 0.5, i.e.

Pr = #{p ∈ F
n
2 |

⊕

i

pi ⊕
⊕

j

cj = 0}/2n �= 0.5,

where pi and cj represent the ith bit of the plaintext and the jth bit of the
ciphertext, respectively. The quality of a linear approximation defines the success
rate of the future attack, and in this paper it is measured by the correlation of
the linear approximation, which is defined as corr = 2 · Pr − 1.
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The most common approach to finding such approximations is by using a
divide-and-conquer approach. Matsui’s strategy was to identify linear approxi-
mations between the input and the output of each operation and further con-
nect them, resulting in the linear trail. The analysis of every operation can be
performed by following the rules of propagation of linear trails introduced in
[14,21,22]. If the case of the propagation through linear layers can be considered
straightforward, the case of non-linear layers is more involved. In particular,
for the analysis of the Sbox with respect to linear cryptanalysis the standard
approach is to compute the corresponding Linear Approximation Table (LAT).

Definition 1. Let S be an Sbox of size n and “·” be the standard inner product.
Then, the LAT of an Sbox S represents the matrix defined as follows:

LATS [α, β] = #{x|α · x ⊕ β · S(x) = 0} − 2n−1.

The maximum absolute value of LATS is called the liniar uniformity of the
Sbox S and it defines the quality of the Sbox with respect to linear cryptanalysis.

Differential Cryptanalysis. Differential cryptanalysis [16] was introduced in
1990 by Biham and Shamir, also as an attack on DES. This attack aims at
analysing the propagation of differences from a plaintext pair to the correspond-
ing ciphertext pair. The approach is similar to the one presented above, involv-
ing the analysis of the propagation through the particular operations of a cipher
and further connect them, resulting in the differential characteristic. Usually,
the difference is considered with respect to the XOR operation and in this paper
we conform to this. While the difference propagation through the linear lay-
ers are straightforward, the analysis of the differences’ propagation through a
non-linear layer involves the computation of its corresponding Differential Dis-
tribution Table (DDT).

Definition 2. The DDT of an Sbox S represents the matrix of integers defined
as follows:

DDTS [δ,Δ] = #{x|Δ = S(x) ⊕ S(x ⊕ δ)}.

The maximum value of DDTS is called the differential uniformity of the Sbox
S and it defines the quality of the Sbox with respect to differential cryptanalysis.

Branch Number. The main criteria in the design of a block cipher is repre-
sented by the properties of confusion and diffusion. In most of the ciphers from
literature, the confusion is ensured by the choice of the non-linear (Sbox) layer,
while the diffusion is often ensured by the linear layer(s) of the cipher. The most
common technique to measure the diffusion of a cipher is given through the
means of the branch number of the underlying operations. For the purposes of
this work, we only discuss the concept of the branch number associated to an
Sbox. Let us denote the Hamming weight of a byte x by wt(x).
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Table 1. The properties of the DDT and the LAT of an Sbox

Any Sbox Invertible Sbox

If DDT (0, Δ) �= 0, then Δ = 0. If DDT (δ, 0) �= 0, then δ = 0.
If LAT (α, 0) �= 0, then α = 0. If LAT (0, β) �= 0, then β = 0.

Definition 3. The differential and linear branch numbers of an Sbox S, denoted
by BNd and BNl respectively, are computed as:

BNd(S) = min{wt(δ) + wt(Δ)|DDTS(δ,Δ) �= 0}
BNl(S) = min{wt(α) + wt(β)|LATS(α, β) �= 0}

Note that the LAT and the DDT of an Sbox have the properties described in
Table 1.

A consequence of these properties is that the minimum value of the linear and
differential branch number of an invertible Sbox is 2, therefore we consider this
to be the trivial linear and differential branch number. Frequently, the design of
the non-linear layer consists of independent, parallel applications of one or more
Sboxes on partitions of the internal state. In this case, the branch number of the
entire non-linear layer is given by the lowest branch number of the underlying
Sboxes.

Bounds on Linear and Differential Branch Number. In [38] the authors present
the bound on linear and differential branch number of permutations. We sum-
marize their results in Lemma 1.

Lemma 1. Let S : Fn
2 → F

n
2 be a non-linear permutation. Then,

• BNl(S) ≤ n − 1
• if n = 4, BNd(S) ≤ 3
• if n ≥ 5, BNd(S) ≤ �2n

3 	

In particular, the maximum differential branch number for an 8-bit Sbox is
6, while the maximum linear branch number is 7. [30] presents a technique of
designing non-linear layers with maximum differential branch number. The goal
of this paper was to introduce new non-linear diffusion layers, therefore the
resulting permutations have trivial linear and differential uniformity.

The LS-Design Framework. Nowadays, one of the goals of cryptographers is
to analyse and propose different design strategies meant to ensure the security
of the future symmetric primitives against the most important attacks. In order
to ensure the resistance of a cipher against the two most significant mathemat-
ical attacks, namely linear and differential cryptanalysis, Daemen and Rijmen
proposed the wide-trail strategy [23].
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In the last decades, the scientific community focused on analysing the security
of a block cipher against side-channel attacks [27]. One of the approaches to
ensure the security of a cipher against such attacks is to implement the so called
masking techniques [34]. While these techniques can ensure the needed level of
security, they highly influence the costs of implementing a block cipher. In order
to address this issue, Grosso et al. introduced the LS-design framework [25].

The internal state of a cipher based on the LS-design framework is viewed as
a l × s matrix. The round function, apart from the key and constant addition,
consists of two operations: a non-linear layer defined by the parallel application
of an Sbox on each row of the matrix, and a linear layer in which a linear
function is applied independently on each column. For more details regarding
the properties of these two operations and possible parameterizations we refer
the reader to the original paper.

3 The 2S-Strategy

In this paper we introduce the 2S-strategy. The aim of this strategy is to lead
to the design of a tweakable block cipher which is designed only by using non-
linear operations. This design strategy is inspired by the LS-strategy described in
Sect. 2. In order to ensure the diffusion through the cipher, we design non-linear
layers with non-trivial linear and differential branch numbers.

3.1 Notations

The internal state of a cipher based on the 2S-strategy is viewed as an r × c
matrix of bits. While the values of r and c can be chosen by the designer, in this
paper, we consider r = 8 and c = 8, therefore the internal state contains 64 bits,
indexed as described in Fig. 1. In this paper we consider the rows indexed top-to-
bottom, while the columns are indexed left-to-right, i.e. the first row and the first
column are the ones containing the bit indexed 1. For the bytes composition, we
use the big-endian order. More specifically, for the first row the bit in position 8
represents the least significant bit, while in the first column the bit in position
1 represents the most significant one.

Throughout this paper we would refer to two manners in which a byte array
could be extracted from the 8 × 8 matrix of bits s. We denote by vR(s) the
array containing the bytes composed by the rows of the matrix, while vC(s)
denotes the bytes read at a column level. More precisely, the first value of vR(s)
is the byte composed by the bits indexed from 1 to 8, while the last component
of the vC(s) is represented by the bits indexed by the values multiple of 8. A
description of how the arrays vR(s) and vC(s) are obtained from the internal
state s is described in Fig. 1.

We also introduce the inverse operations of vR and vC , which take a byte
array as input and return an 8 × 8 matrix, as follows:

sR(vR(s)) = s, sC(vC(s)) = s
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Fig. 1. The indexes of the internal
state and the vR(s) and vC(s) func-
tions’ application.

Fig. 2. Two consecutive rounds of the
cipher. The lying rectangles represent the
first non-linear layer, while the standing
rectangles represent the second one.

3.2 The Round Function

The round function of the cipher is described by two Sbox layers, one tweak
and one key addition. More precisely, the round function assumes the following
operations: first, an Sbox S is applied on every row of the internal state; secondly,
the round tweak is added to the internal state by the use of bitwise XOR; thirdly,
the same Sbox S is applied on every column of the internal state; finally, the
round key is added to the internal state. The description of the first two rounds of
such a cipher is depicted in Fig. 2. We underline that, depending on the use case,
more than one Sbox could be used in order to design a block cipher based on the
2S-strategy. However, the use of multiple Sboxes could have several drawbacks.
Firstly, the chosen Sboxes must be designed such that they exhibit non-trivial
linear and differential branch numbers, while having non-trivial uniformities.
Secondly, the use of different Sboxes leads to an increase in the area needed for
the implementation of the cipher.

The Sbox Layers. The diffusion of most ciphers in the literature is ensured
by using linear layers with non-trivial branch numbers. In the case of the 2S-
strategy, both the confusion and the diffusion of the cipher are ensured by using
two non-linear layers in each round of the cipher. Both layers assume the parallel
application of an Sbox on partitions of the internal state. For the first layer,
denoted SBR, the Sbox is applied on each row independently, while for the
second layer, denoted SBC , the Sbox is applied on each column. The index
denotes the manner in which the inputs were chosen, where the indexes “R” and
“C” marks the appliance of the Sbox on rows and columns, respectively. Figure 3
and Fig. 4 describe the manner in which the non-linear layers SBR and SBC
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Fig. 3. The layer SBR. Fig. 4. The layer SBC .

are applied. We note that the two layers are affine equivalent functions, defined
by the relation SBR(s) = SBC(sT )T , where sT denotes the transposition of the
matrix s.

In order to ensure the security of a cipher based on the 2S-strategy, the
chosen Sboxes need to have good cryptographic properties, such as good linear
and differential uniformity. Moreover, in order to ensure the diffusion through
the non-linear layer, the Sboxes must also have non-trivial linear and differential
branch numbers. In Sect. 5 we propose a parameterization for the Sbox S, we
discuss the properties of an Sbox suitable for the 2S-strategy and we describe a
design strategy that leads to the design of an Sbox with the suitable properties.

Key Schedule and Tweak Update Function. In order to ensure a small area
of the hardware implementation of a cipher based on the 2S-strategy, we designed
the key schedule and the tweak update function by using the same non-linear
layers as the round function. The choices of these two functions determine the
efficiency of the cipher in practice, in the use scenario. Usually, the encryption
of the RAM data is performed using the same symmetric key, therefore the key
derivation function can be performed only once, in the initialization phase of the
system. In this phase, all the round keys can be computed and stored in a secure
register or device.

In order to ensure a higher resistance of a cipher based on the 2S-strategy
against linear, differential and related-key attacks, we designed the key schedule
and the tweak update function by using one non-linear layer in each round. More-
over, we designed these functions such that in two consecutive rounds different
non-linear layers are applied.

The tweak update function is designed as follows: in the odd indexed rounds,
the Sbox is applied on each row of the current tweak, while in the even numbered
rounds, the Sbox is applied on every column. Note that the first round is indexed
by 1. A pseudocode of this function is given in Algorithm 1.
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Algorithm 1: The tweak
update function for round r

Result: The round tweak
if ((r % 2) == 1) then

tweakr = SBR(tweakr−1);
else

tweakr = SBC(tweakr−1);
end

Algorithm 2: The key sched-
ule for the round r
Result: The round key
if ((r % 2) == 0) then

keyr = SBR(keyr−1);
else

keyr = SBC(keyr−1);
end

A similar approach is used for designing the key schedule, where the opera-
tions on the even and odd rows are performed in reverse. More precisely, in the
odd indexed rounds, the Sbox is applied on the columns of the current key, while
in the even indexed rounds the Sbox is applied on the rows.

A pseudocode of the key schedule algorithm is described in Algorithm 2.

Round Constants. The round constants could be added either on the round
function, the tweak update function or the key schedule, depending on the goals,
in terms of performance, of the new designed block cipher. While in Sect. 4
we propose an algorithm for the generation of the round constants, we entrust
the future designers to create personalized algorithms which accomplish this
purpose.

4 The Description of RAMus

The RAMus cipher represents a practical parameterization of the 2S-strategy.
RAMus is a tweakable lightweight block cipher with 64 bit block and 128 bit key
and 17 rounds. The cipher attains all the requirements provided by the (Ger-
man) Federal Office of Information Security (BSI) in the domain of encryption
algorithms suitable for RAM and memory encryption.

The Sbox Layers. As mentioned in Sect. 3.2, an Sbox suitable for the 2S-
strategy needs to have good cryptographic properties, together with non-trivial
linear and differential branch numbers. In Sect. 5 we propose a design strategy
which could be used to generate Sboxes that fulfill all the necessary properties.
By following this strategy, we designed an Sbox which has differential branch
number 4 and linear branch number 3, while both the linear and differential
uniformities are 64. To the best of our knowledge, this is the first published
Sbox with differential branch number 4 and non-trivial linear and differential
uniformities.

Moreover, given the use case of RAMus, in the design of the Sbox S we used a
supplementary constraint regarding the optimization of Sbox’s implementation
with respect to the number of non-linear gates. We discuss the design rationale
of the Sbox in Sect. 5, while the full description of the Sbox, given through a
look-up table, is given in the Appendix, in Table 4.
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Algorithm 3: The key schedule - computing the key for the rth round
Input: The (r − 1)th round key rkr−1

Output: The rth round key rkr

xr = r/2;
// Defining the round constants’ associated initial array RC[8]
for i = 0 to 3 do

RC[(xr + i)%8] = 4 · xr + i;
end
// Computing the round constant rcr and the round key rkr

if ((r % 2) == 1) then
rcr = SBR(s

R(RC));
rkr = SBR(rkr−1) ⊕ rcr;

else
rcr = SBC(s

C(RC));
rkr = SBC(rkr−1) ⊕ rcr;

end

Key Schedule, Tweak and Round Constants Addition. The 2S-strategy
defines a key schedule in which the key has the same length as the block - in the
case of RAMus 64 bits. In order to design a block cipher with a master key of
length 128, we use the same approach introduced by the authors of the Prince
cipher [19]. More precisely, we split the 128-bit master key k into k = (k0, k1),
where k0 and k1 represents the first and the last 64 bits of the key, respectively.
The key is then extended from 128 bits to 192 bits as follows:

(k0, k1) → (k0, (k0 
 1) ⊕ (k0 
 63), k1),

where x 
 y defines the circular shift of the 64-bit word x with y positions.
The first two keys are used for the initial and final whitening, while the key k1
represents the input of the key schedule of RAMus.

In order to minimize the storing space and the latency of the cipher, we
chose to add the round constants to the key schedule, instead of adding them
to the round function. In this way, an implementation that precomputes the
round keys needs to add the round constants during the precomputations only.
The constants are generated depending to the current round index, and they
are obtained after applying one Sbox layer. A pseudocode of the key schedule
is described in Algorithm 3. We note that, for the first round, the key rkr−1

represents the master key of the cipher.
In each round i, the constants rci are added to 4 different and consecutive

rows or columns, depending on the round index. More precisely, in the odd
indexed round 2·r+1, the constants are added to the columns r, r+1, r+2, r+3,
while in the rounds 2 · r, the constants are added to the rows r, r+1, r+2, r+3.
Therefore, in every round, four constant bytes are added to the internal state of
the key schedule. These bytes are computed by applying the Sbox on the values
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Fig. 5. The first two rounds of the
key schedule of RAMus.

Fig. 6. The SPN design strategy for Sboxes

4 · r, 4 · r +1, 4 · r +2 and 4 · r +3. Figure 5 describes the first two rounds of the
key schedule of RAMus.

The tweak update function follows accurately the corresponding description
of the 2S-strategy, which is described in Sect. 3.2 and in Algorithm 1.

5 Design Rationale

Linear vs. Non-linear Layers. The linear layer is considered a core com-
ponent of the ciphers based on the SPN, LS or ARX strategies. Many papers
aimed at introducing different strategies for the design of the linear layer, both
from a security and efficiency perspective (e.g. [23], [7]). The general goal of the
linear layer is to ensure the diffusion through the round function. Usually, the
design of optimal linear layers assumes the search of linear functions that have
a high branch number, while allowing for an efficient implementation. Recent
works such as [28,35] introduced methods to design Sboxes with non-trivial lin-
ear and differential branch number. The non-linear layer of RAMus represents
a trade-off between the constraints of a good linear and a good non-linear layer,
allowing for a design following the 2S-strategy (with no linear layers).

Sboxes with Non-trivial Branch Number. The design of the Sbox S fol-
lowed three main goals. The first goal of our design strategy was to optimize
the linear or the differential branch number of an Sbox, while ensuring the fact
that the linear and differential uniformities are non-trivial. The second goal was
to ensure, by design, the resistance of RAMus against power analysis, i.e. to
ensure that RAMus has an efficient masked implementation. The third goal was
to ensure the low latency of the cipher, in the masked implementation, there-
fore we aimed at optimising the number of non-linear gates of S. In order to
ensure these three goals, our approach was to identify the design strategies for
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designing an Sbox with a known, masking-friendly, design strategy, as the ones
presented in [20,32]. The Sbox S follows the SPN Sbox design strategy, which
is depicted in Fig. 6. The main idea of this strategy is to divide the 8-bit input
into two equal parts of 4 bit each, i.e. x = x1||x2. Then x1 and x2 are used
as inputs for two 4 × 4 non-linear functions F1 and F2, respectively, resulting in
y = F1(x1)||F2(x2). The result y is then used as an input for an 8-bit linear layer
L. Formally, the Sbox S can be described as S(x1||x2) = L(F1(x1)||F2(x2)).

While the SPN Sbox design strategy facilitates the design of Sboxes with
resistance against power analysis, it has an important drawback: the linear and
differential uniformities of the resulting Sbox are determined by the properties of
F1 and F2. Let us denote by δf and lf the differential and linear uniformity of the
function f , respectively. Then: δS = 16 · max{δF1 , δF2}, lS = 16 · max{lF1 , lF2}.
Therefore, by using this approach the lowest linear and differential uniformity
of S is 64.

Since one of the goals of our design strategy was to optimize the differential
branch number, we analysed the properties of the non-linear functions F1 and
F2, together with the properties of the linear layer L. Our design strategy is
based on the following observation.

Observation 1. Let L be the identity function. Then

BNd(S) = min{BNd(F1), BNd(F2)}
According to the literature [36], the highest differential branch number for a

4-bit Sbox is 3. Therefore, Observation 1 provides us a method to design 8-bit
Sboxes with the non-trivial differential branch number 3.

In order to design S such that it is also optimised with respect to the num-
ber of necessary non-linear gates, we parameterize the functions F1 and F2 with
the PRESENT Sbox, which can be implemented with only 4 non-linear gates,
according to [33]. Note that this is in fact the minimum number of non-linear
gates that can be used in the implementation of any 4-bit Sbox with good crypto-
graphic properties. Moreover, according to [17,33], the Present Sbox also allows
for a 3-share TI implementation.

For the design of the linear function L, we opted for a particular function
with branch number 4 such that will ensure that the final differential branch
number of S is 4. The linear function L was designed using three rotations, as
follows L(x) = rot(x, 1) ⊕ rot(x, 2) ⊕ rot(x, 5), where by rot(x, i) we denote the
circular left shift of the byte x by i positions. By using this design strategy, with
different parameterizations for the non-linear function F1 and F2 and for the
linear function L, different Sboxes with similar properties can be designed.

6 Security Analysis of RAMus

Our analysis included a series of adversarial models, depending on the capa-
bilities of the adversary. Depending on the attack scenario, the adversary can
control the plaintext or the plaintext and the tweak (known- or chosen-plaintext
attack), or he can even control the master key (related-key attack).



RAMus - A New Lightweight Block Cipher for RAM Encryption 81

Given the use case of RAMus (RAM encryption solutions), the most suit-
able adversarial model is the one in which the adversary can fully control the
plaintext. While the tweak value cannot be fixed, the adversary can choose the
tweak difference, since the tweak represents the memory address associated to
the plaintext. We consider less relevant the related-key scenario in this use case,
since all the encryptions are performed using the same, fixed, master key.

6.1 Theoretical Proven Bound

In order to compute the theoretical upper bound of any differential characteristic
or linear trail, we use the method introduced by the wide trail strategy. We
bound the number of active Sboxes by using The 2-round Propagation Theorem
provided by Daemen and Rijmen in [23].

Theorem 1 (The 2-Round Propagation Theorem). For a key-alternating
block cipher with a γλ structure, the number of active bytes of any two round
trail is lower bounded by the (branch) number of λ.

In [23], γ represents a local non-linear transformation, in which any output
bit is influenced only by a set of input bits, while λ represents a linear mixing
transformation with high diffusion. Classically, the γ function is represented by
an Sbox layer, in which the Sbox is applied on partitions of the input bits, while
the λ function is designed such that it has a high branch number. We underline
that, since the number of active Sboxes is not influenced by the γ function,
Theorem 1 in fact computes the number of active Sboxes of the γλγ function.
According to Sect. 5, the non-linear layer of RAMus satisfies both criteria: it
represents a local non-linear transformation, while it has a non-trivial linear and
differential branch number.

In order to compute the lower bound of the number of active Sboxes in
2 rounds of RAMus we apply Theorem 1 twice, with different correspondence
between the γ and λ functions and the two non-linear layers SBR and SBC .

In order to compute the number of active Sboxes of the first non-linear layer,
we identify γ to SBR and λ with SBC . According to the theorem, the number of
active Sboxes of SBR, in two rounds of RAMus is given by the branch number
of SBC . Accordingly, the number of active Sboxes of the second non-linear layer
is bounded by the branch number of SBR. Figure 7 describes these associations.

Therefore, the minimum number of active Sboxes in two rounds of
RAMus can be computed as B = B1 + B2, where B1 and B2 represent the
branch number of SBR and SBC respectively.

Since the branch number of both SBR and SBC are equal to the branch
number of the Sbox S, the number of active Sboxes in two rounds of RAMus is
equal to twice the branch number of S. Therefore, for 2 rounds of RAMus, the
minimum number of active Sboxes is 8 for differential cryptanalysis and 6 for
linear cryptanalysis. This analysis is performed in the fixed tweak scenario, in
which the attacker can control both the plaintext and the tweak.
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Fig. 7. The two associations between SBR and SBC to the γ and λ functions

Table 2. The minimum number of active Sboxes, in different scenarios

Round nr. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Fixed tweak
Diff sk 2 8 10 16 18 24 26 32 34 40 42 48 50 56 58 64 66
Diff rk 1 6 9 14 17 22 25 30 33 38 41 46 49 54 57 62 65

Lin 2 6 8 12 14 18 20 24 26 30 32 36 38 42 44 48 50

Not fixed tweak
Diff sk 2 6 10 15 18 22 26 31 34 38 42 47 50 54 58 63 66
Diff rk 1 6 9 14 17 22 25 30 33 38 41 46 49 54 57 62 65

Lin 3 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68

6.2 SAT-Based Analysis

The second step of our analysis was to use SAT-based methods to evaluate the
security of RAMus against linear and differential cryptanalysis. In our analysis
we used the ARXpy tool [11].

We performed our analysis in two main scenarios, depending on the capabil-
ities of the adversary to control the tweak input. Therefore, in our first scenario
the tweak is constant in all the encryptions, while for the second scenario the
tweak is different, but the adversary can observe the values of the tweaks, and,
therefore, their difference. For these scenarios, we analysed the propagation of
differences in the single key (Diff sk) and related-key (Diff rk) scenarios, together
with the propagation of the linear masks (Lin). The results are presented in
Table 2. We note that the table presents the minimum number of possible active
Sboxes after applying any number of rounds of RAMus between 1 and 17.

Moreover, we mention that all our experiments were performed by using a
generic implementation table of the Sbox S, which does not represent a real Sbox,
but imposes the constraints that its properties, such as the linear and differential
branch numbers and uniformities, are the same as the Sbox S presented in Sect. 5.
We stress that our experiments did not take into account neither the particular
LAT, nor the DDT of the Sbox S. Therefore, the results obtained by using this
approach represent only a lower bound of the number of active bits. In practice,
the minimum number of active Sboxes could be higher.

The attentive reader will notice that, while the number of active Sboxes in
the two scenarios are similar with respect to differential cryptanalysis, in the case
of linear cryptanalysis the number of active Sboxes is quite different (favouring
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our use case). The reason for this difference can be explained by the different
propagation of linear approximations through the XOR operation.

The number of active Sboxes, together with the particular cryptographic
properties of the associated Sbox, leads to an estimation of the security level
of the cipher against linear and differential cryptanalysis. In our analysis, we
evaluate the security of RAMus by using the assumption that all the Sboxes are
independent. From this point of view, our analysis follows the same approach
used to assess the security of the CS-cipher [39,42]. Moreover, we mention that
this assumption is also used to assess the security of a series of permutation-based
algorithms, such as the NIST LWC submissions SpoC [8] or SPIX [9].

Resistance of RAMus Against Differential Cryptanalysis. The most common
approach in the security evaluation of a cipher against differential cryptanalysis
is to upper bound the probability p of any differential characteristic. If the bound
is smaller than 2−k, where k denotes the size of the key, then an attack based
on differential cryptanalysis is not feasible. Under the independence assumption,
the probability p is computed by p = psS , where s represents the number of active
Sboxes and pS is the highest probability associated to an active Sbox. Note that
pS can be computed using the differential uniformity δS .

In the particular case of RAMus, pS = 2−2 and, according to Table 2, s > 64
in all the scenarios based on differential cryptanalysis. Therefore

p < (2−2)64 ⇒ p < 2−128

Therefore, an attack based on differential cryptanalysis against RAMus is unfea-
sible, thus we consider RAMus to be secure against the attacks based on differ-
ential cryptanalysis, in both the single-key and the related-key scenario.

Resistance of RAMus Against Linear Cryptanalysis. In general, in order to dis-
tinguish a linear trail with correlation c, an adversary needs to encrypt at least
c−2 plaintexts. According to [14,31], the larger the size of the data sample, the
more accurate the results are. In the case of RAMus, the full codebook contains
up to 2128 (plaintext, tweak) pairs. Therefore, RAMus can be considered vulner-
able against an attack based on linear cryptanalysis only if the absolute value
of the correlation of its best linear trail is higher than 2−64.

The correlation of the best linear trail of a cipher is computed as c = csS ,
where cS represents the best correlation associated to one active Sbox and s is
the number of active Sboxes. In the particular case of RAMus, cS = ±2−1 and,
according to Table 2, s > 64 in Scenario 2. Therefore

|c| < (2−1)64 ⇒ |c| < 2−64.

Hence, an attack based on linear cryptanalysis against RAMus is unfeasible,
thus RAMus is secure against such an attack.
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6.3 The Security of RAMus Against Integral Cryptanalysis
and the Division Property Attacks

Integral Cryptanalysis. Integral cryptanalysis, also known as the square
attack or the saturation attack, was introduced by Knudsen in [29]. An inte-
gral attack exploits the existence of an integral distinguisher defined as follows.
An adversary chooses a set of plaintexts such that a set of the bits are constant,
while the remaining bits (called active bits) vary through all possible values. The
goal of the adversary is to find an indexing of the active bits such that the XOR
sum of the corresponding ciphertexts equals to zero in some particular indexes,
with probability 1. The set of plaintexts for which this property holds is called
an integral distinguisher.

To design such distinguishers, the most common approach is to analyse the
propagation of different properties of parts of the internal states, such as whether
they are “constant” (C), “active” (A), “balanced” (B) or with the “unknow” prop-
erty (U) (i.e. a property different from the previous three ones). Note that, if
components of the ciphertexts are “constant”, “active” or “balanced”, the XOR
sum of these components results in a 0 value with probability 1. Opposed to this
scenario, in the case in which components of the ciphertext have the “unknow”
property, the XOR sum will be 0 with a probability less than 1.

In order to analyse the security of RAMus against integral cryptanalysis, we
analyse the behaviour of the internal states in different scenarios, depending on
the choice of the “active” bits. The best distinguisher identified in our analysis
covers 3 rounds of RAMus. In this scenario, we consider the sets of plaintexts
such that all the bits in a row have the A property. For simplicity and without
loss of generality, we assume that the “active” bits are in the first row. Moreover,
we impose the additional constraint that the tweak is equal to the plaintext. In
this case, after the appliance of the first non-linear layer and the tweak addition,
all the internal states are “constant” and each position equals to 0 (due to the
cancellation between the internal state and the round tweak). After the appliance
of the second non-linear layer, the state will have a “constant” value equal to
SBC(0)⊕key, where 0 represents the state with all 0 positions and key represents
the round key. Furthermore, after the appliance of the following SBR function,
all the internal states would still have the C property.

By looking only at the tweak update function, we notice that, for the first
non-linear layer, the “active” row will propagate to another “active” row, while
the remaining part will be “constant”. In the second round of the tweak update
function, since the Sboxes are applied on a column level, each active bit will
influence the properties of each corresponding column. In particular, the bits in
positions 3, 4, 5, 6 will have the B property, while the remaining positions will
be “constant”. Therefore, the addition of the tweak in the second round would
transfer the properties from the tweak to the internal state. At the end of the
second round, each position of the internal state will be “balanced”, a property
which is also preserved through the third round. The first appliance of the non-
linear layer of the 4th round will determine that all the positions of the internal
state will have the “unknow” property. Therefore, in this scenario, a 3-round
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distinguisher could be designed, as depicted in Fig. 9 in the Appendix. Thus,
even if the key-recovery phase of the attack could cover another 4 rounds, we
consider that RAMus is resistant to integral cryptanalysis.

The Division Property. As a new distinguishing property against block
ciphers, the division property was introduced by Todo in [41] and it represents
a generalization of both the integral attack and the higher-order differential
cryptanalysis. In [43], the authors introduce a division property analysis tech-
nique based on the Mixed-Integer Linear Programming (MILP) problem. Since
publication, this tool was used to analyse the resistance against the attacks based
on the division property of several modern block ciphers, such as Princev2 [19]
or GIMLI [13]. By employing the same technique, we searched for the existence
of integral distinguishers based on the division property for RAMus. The best
distinguisher that we found covers 3.5 rounds and the data complexity required
for an attack based on this distinguisher is 263 plaintexts. Note that our analysis
covered both the fixed-tweak and the variable-tweak scenarios.

7 Performance

In this section we present the results of our measurements or estimates regarding
the performance of the hardware implementation of RAMus and we compare
them with the performance of PRINCEv2 [19], QARMA-64 [10], PRESENT [18]
and SKINNY [12]. We excluded from this comparison the other two block ciphers
which are frequently used in RAM encryption solutions, AES and ASCON, due
to the difference in their parameters’ lengths.

Setup of the Experiments. Depending on the application, a dedicated hard-
ware implementation is performed usually on Field-Programmable Gate Arrays
(FPGA) or Application-Specific Integrated Circuits (ASIC). While ASICs are
designed for a sole purpose, and the implementation is permanently drawn into
silicon, the FPGAs can be reprogrammed to satisfy different purposes sequen-
tially. Due to the versatility of the latter, all of our hardware implementations
were run on the FPGA of the ZedBoardTM development kit, which uses the
Xilinx Zynq R©-7000 All Programable SoC (APSoC).

The first step was to identify an approach which facilitates the comparison
of the hardware performance between the five targeted ciphers. In this sense,
we chose to use Xilinx’s Vivado High-Level Synthesis (HLS), an automated tool
which transforms a high-level functional specification (such as a C or C++ imple-
mentation) into an optimized register-transfer level (RTL) descriptions, which
contains the hardware implementation of the initial C/C++ code. While for
RAMus we use our own C implementation, for PRINCEv2, Qarma, PRESENT
and SKINNY we used the public C implementations provided by [2–4] and [5]
respectively. Note that for PRINCEv2 and SKINNY we used the reference imple-
mentation provided by the authors of the ciphers.
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R0 R1 R2 R0 R1 R2 R0 R1 R2

pipeline→ R0 R1 R2R0 R1 R2

R0 R1 R2

R0 R1 R2

Fig. 8. The pipeline implementation of three encryptions of a 3-round block cipher.
Note that the pipeline implementation is similar to a 5-round encryption.

After generating the RTL module, we used Xilinx’s Vivado IP integrator
to configure the hardware design, by connecting default modules (such as the
Zynq architecture) with the previously generated custom one. Finally, we used
Xilinx Software Development Kit (SDK), which allows for the development of
embedded software applications for the hardware design formerly created.

Latency vs. Throughput. The performance of a hardware implementation
can be evaluated with respect to several different criteria: the latency of the
implementation (the speed of one encryption), its throughput (the amount of
data processed in a fixed period of time), the area needed for the implementation
or the power consumption.

In a sequential approach, the relation between the latency and the through-
put of an implementation is given by the following formula: N/l = t, where
N represents the amount of data to be processed, and l and t represent the
latency and throughput, respectively. The most common approach to increase
the throughput of an implementation is to use parallelization, therefore using
multiple threads which perform, in parallel, the same process. This type of par-
allelism increases the throughput, but, in the same time, it increases the resource
(CPU or area) consumption.

On the other hand, the parallelism of an FPGA, called pipelining, involves
the usage of the hardware components in an optimal manner in which several
instructions are overlapped during execution. The main idea behind pipelining is
that a process can be divided into a set of instructions such that the output of one
instruction is the input of the next one and each instruction is implemented on an
independent hardware component. As soon as an instruction finishes processing
an input, it is ready for the next one. Therefore, different instructions could be
performed simultaneously.

For simplicity, let Enc represent a block cipher with 3 rounds, denoted R0, R1

and R2. An intuitive description of the pipelining parallelism over three encryp-
tion instances can be depicted from Fig. 8. In a sequential implementation the
second encryption instance will start after the first one finishes. In contrast, in
the case of a pipelined implementation, the output of R0 is transmitted as an
input for R1, while R0 can be used in parallel for the encryption of the second
plaintext. Assuming that all three rounds have the same latency, performing
the encryption of three plaintexts in the pipelined implementation will have the
same latency as an encryption with 5 rounds in the classical implementation.
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Table 3. The performance comparison between the five targeted block ciphers. LUT,
FF and BRAM stands for LookUp Table, FlipFlops and Block RAM, respectively.

Non-pipelined Pipelined Throughput
(KB/sec)

Latency
(μs) Area Power

(mW)
Latency

(μs) Area Power
(mW)

PRINCEv2 12.1
1991 LUT

14 4.772
5730 LUT

1705 7.292395 FF 4756 FF
0 BRAM 0 BRAM

Qarma-64 29.8
2353 LUT

35 0.873
1050 LUT

1682 7.953281 FF 1498 FF
3 BRAM 0 BRAM

PRESENT 25.6
1096 LUT

17 9.1*
1096 LUT*

1693* 6.75*1320 FF 1320 FF*
1.5 BRAM 1.5 BRAM*

SKINNY 163
1210 LUT

17 1.695
1211 LUT

1686 7.631443 FF 1770 FF
2 BRAM 1 BRAM

RAMus 46.3
1038 LUT

13 1.059
5065 LUT

1669 8.001285 FF 5228 FF
2 BRAM 0 BRAM

*the PRESENT implementation contained several functions that could not be pipelined

The Results of Our Experiments. In our work, we used the pipeline par-
allelization in two different manners. Firstly, we used the pipeline pragma pro-
vided by Vivado HLS for generating the pipelined implementation of all three
targeted ciphers. We note that for the pipelined implementation of PRINCEv2
we modified the prince_s_layer function such that it will not be parameter-
ized with the corresponding Sbox. Secondly, we used the pipeline pragma to
estimate the throughput of the three targeted ciphers. In this sense, we mea-
sured the latency of a single pipelined round of the corresponding ciphers and
we computed the total number of rounds that need to be performed for the pro-
cessing of 128 encryptions (1 KB of data). Then we computed the throughput
as t = 128/(l · nr), where t and l represent the throughput and the latency,
respectively, while nr represent the total number of rounds.

Note that both PRINCEv2 and Qarma-64 have a self-reflection property,
thus the rounds are not identical. In order to estimate the throughput for these
two ciphers we individually measured all the individual rounds. We measured
the middle rounds in both cases as a single round. Our estimates use the round
with the highest latency, due to the fact that the processing through a lower
latency round will start after the high latency one finishes.

In our experiment, we measured the latency, area and power consumption of
both the pipelined and non-pipelined implementations of all five ciphers and we
estimated the throughput as presented above. Table 3 presents the results of our
experiments. While the results for latency, power consumption and throughput
can be easily inferred from Table 3, the area of a hardware implementation is
more involved. In an FPGA, a LookUp Table (LUT) stores a custom truth table
which is set to simulate logic gate combinations. A flip-flop (FF) is used to store
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the results of LUTs, while a block RAM (BRAM) is a larger bank of RAM which
is used for storing higher amounts of data inside the FPGA.

As depicted in Table 3, in the scenario of non-pipelined implementations,
RAMus exhibits the lowest area and the lowest power consumption, whereas in
the case of pipelined implementations, RAMus has the lower power consumption,
a higher latency than PRINCEv2 and SKINNY while the area is lower than the
one of PRINCEv2. Moreover, from our estimates, the throughput of RAMus is
comparable with the one of Qarma-64, both being above the throughput of the
other three ciphers.

Throughout performing these experiments we were surprised by the high
latency of the pipelined implementation of PRINCEv2. Nonetheless, we did not
find any argument which could invalidate the correctness of our experiments.

Appendix 1. The Byte Description of the Sbox S

Table 4. The Sbox S. The output associated to the hexadecimal input xy can be
depicted from the intersection of the row x0 and the column 0y. For example, S(c2) =
5d.

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

00 33 24 4e c1 8d 9a e7 15 f0 7f 59 ab 02 68 bc d6

10 42 55 3f b0 fc eb 96 64 81 0e 28 da 73 19 cd a7

20 e4 f3 99 16 5a 4d 30 c2 27 a8 8e 7c d5 bf 6b 01

30 1c 0b 61 ee a2 b5 c8 3a df 50 76 84 2d 47 93 f9

40 d8 cf a5 2a 66 71 0c fe 1b 94 b2 40 e9 83 57 3d

50 a9 be d4 5b 17 00 7d 8f 6a e5 c3 31 98 f2 26 4c

60 7e 69 03 8c c0 d7 aa 58 bd 32 14 e6 4f 25 f1 9b

70 51 46 2c a3 ef f8 85 77 92 1d 3b c9 60 0a de b4

80 0f 18 72 fd b1 a6 db 29 cc 43 65 97 3e 54 80 ea

90 f7 e0 8a 05 49 5e 23 d1 34 bb 9d 6f c6 ac 78 12

a0 95 82 e8 67 2b 3c 41 b3 56 d9 ff 0d a4 ce 1a 70

b0 ba ad c7 48 04 13 6e 9c 79 f6 d0 22 8b e1 35 5f

c0 20 37 5d d2 9e 89 f4 06 e3 6c 4a b8 11 7b af c5

d0 86 91 fb 74 38 2f 52 a0 45 ca ec 1e b7 dd 09 63

e0 cb dc b6 39 75 62 1f ed 08 87 a1 53 fa 90 44 2e

f0 6d 7a 10 9f d3 c4 b9 4b ae 21 07 f5 5c 36 e2 88

Appendix 2. The Integral Distinguisher Described in
Sect. 6.3

We recall that, for this distinguisher, the first row is “active”, with the additional
constraint that the tweak is equal to the plaintext.
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Fig. 9. The 3-round integral distinguisher described in Sect. 6.3.
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Abstract. Side-channel attacks are formidable threats to the cryptosys-
tems deployed in the real world. An effective and provably secure coun-
termeasure against side-channel attacks is masking. In this work, we
present a detailed study of higher-order masking techniques for the key-
encapsulation mechanism Saber. Saber is one of the lattice-based finalist
candidates in the National Institute of Standards of Technology’s post-
quantum standardization procedure. We provide a detailed analysis of dif-
ferent masking algorithms proposed for Saber in the recent past and pro-
pose an optimized implementation of higher-order masked Saber. Our pro-
posed techniques for first-, second-, and third-order masked Saber have
performance overheads of 2.7x, 5x, and 7.7x respectively compared to
the unmasked Saber. We show that compared to Kyber which is another
lattice-based finalist scheme, Saber’s performance degrades less with an
increase in the order of masking. We also show that higher-order masked
Saber needs fewer random bytes than higher-order masked Kyber. Addi-
tionally, we adapt our masked implementation to uSaber, a variant of
Saber that was specifically designed to allow an efficient masked imple-
mentation. We present the first masked implementation of uSaber, show-
ing that it indeed outperforms masked Saber by at least 12% for any
order. We provide optimized implementations of all our proposed masking
schemes on ARM Cortex-M4 microcontrollers.

Keywords: Post-quantum cryptography · Higher-order masking ·
Saber · Key-encapsulation mechanism

1 Introduction

The security of public-key cryptography (PKC) is dependent on the computa-
tional intractability of some underlying mathematical problems. The current
most widely used public-key cryptographic algorithms RSA [44] and elliptic
curve cryptography (ECC) [37] are based on the hardness of large integer fac-
torization problem and elliptic curve discrete logarithm problem respectively.
Unfortunately, both of these hard problems can be solved in polynomial time
with large-scale quantum computers by using Shor’s [46] and Proos-Zalka’s [41]
algorithm. Post-quantum cryptography (PQC) is a branch of PKC that focuses
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on designing cryptographic algorithms whose underlying mathematical prob-
lems remain hard even in the presence of large quantum computers. Consid-
ering the fast evolution of quantum computers and their impending threat to
our current public-key infrastructure, the National Institute of Standards and
Technology (NIST) started a procedure to standardize post-quantum public-key
cryptographic primitives such as digital signatures, public-key encryption, and
key-encapsulation mechanism in 2016 [39].

In 2020, NIST announced four finalists and five alternative candidates for the
post-quantum key-encapsulation mechanism (KEM) category, that advanced to
the 3rd round [2]. Three of the four finalist KEMs: Saber [19], Kyber [10], and
NTRU [26], are lattice-based. NTRU is an NTRU-based KEM, whereas Kyber
and Saber are based on variants of the learning with errors (LWE) problem.
The security of Kyber can be reduced to module learning with errors (MLWE)
problem, and the security of Saber is based on module learning with rounding
(MLWR) problem. The hardness of both LWE and LWR problems are dependent
on the difficulty to solve a set of noisy linear equations. This noise is explicitly
added for a LWE problem but is implicitly generated in a LWR problem using
the round-off of a few least significant bits.

Initially, the main focus of the NIST post-quantum standardization procedure
was the mathematical security of the schemes, together with the performance,
and the memory footprint of the cryptographic implementation in embedded
devices. With the advancement of the standardization process, the focus was
broadened to take into account the implementation-security of the schemes also.
Side-channel attacks (SCA) [34] are a well-known type of physical attacks against
implementations of cryptographic algorithms. These attacks exploit leakage of
information, such as timing information, power consumption, electromagnetic
radiation, etc., which leaks information from the physical device which runs the
algorithm to extract the secret key.

Silverman et al. [47] first showed a timing attack on quantum secure lattice-
based cryptographic protocol NTRUEncrypt [28] by exploiting the non-constant
time implementation. To prevent the timing attack, most of the cryptographic
protocols use constant-time implementation, including Saber and Kyber. In
recent years, many works [3,24,29,42,50] showed SCA on lattice-based cryp-
tographic schemes with the help of power consumption and electromagnetic
leakage information. A provably-secure countermeasure against these kinds of
SCA is masking [13].

The masking technique can also provide security against higher-order attacks,
where the adversary can use the power consumption information of multiple
points. However, the performance cost of the masked scheme increases with
the order of SCA. Reparaz et al. [43] were the first to introduce a first-order
SCA resistant masked implementation of chosen-plaintext attack (CPA) secure
ring-LWE based decryption. Nevertheless, real-world applications use chosen-
ciphertext attack (CCA) secure cryptosystems. Lattice-based quantum secure
KEMs such as Saber and Kyber achieve CCA security by using a variant of
Fujisaki-Okamoto transformation [30] on their CPA secure design. Oder et al. [40]
proposed a 1st-order CCA secure masked Ring-LWE key decapsulation and
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reported an overhead factor of 5.2x in performance over an unmasked imple-
mentation on an ARM Cortex-M4.

Van Beirendonck et al. [6] proposed the first-order SCA secure implementa-
tion of Saber with an overhead factor of 2.5x. This performance was achievable
because of the power-of-two moduli and efficient utilization of masking tech-
niques specifically aimed at first-order security [48]. Heinz et al. [25] presented
an optimized first-order masked implementation of Kyber with an overhead fac-
tor of 3.4x compared to the unmasked implementation of Kyber. Fritzmann et
al. [21] proposed first-order masked implementations of Kyber and Saber with
instruction set extensions, and Bos et al. [11] proposed higher-order masked
implementations of Kyber.

First-order masked implementations of schemes are typically vulnerable
against higher-order side-channel attacks [36,49], i.e., the attacks that exploit
side-channel leakages of multiple intermediate values. Ngo et al. [38] proposed an
attack on the first-order masked Saber using a deep neural network constructed
at the profiling stage. This attack does not violate the assumption of the first-
order masked Saber but exploits higher-order side-channel leakages. Higher-order
masking increases the noise level exponentially and prevents attacks that exploit
higher-order side-channel leakages.

In the third-round of the NIST submission, the Saber team introduced uSaber
as a variant of Saber. In uSaber, the secrets are sampled from a uniform distri-
bution instead of a centered binomial distribution as used in Saber. The authors
claim that the advantage of this modification is twofold. First, it makes the
scheme simpler since sampling from a uniform distribution is more straightfor-
ward than sampling from a centered binomial distribution, and it also reduces
the modulus by a factor of two. Second, this change allows a very efficient mask-
ing of the secret values. However, this claim is yet to be proven as there exists
no masked implementation of uSaber to corroborate this claim.

Contribution. In this work, we provide arbitrary-order masked implementa-
tions of Saber and uSaber, and we compare their performances with the state-of-
the-art masked implementations of Saber and Kyber. We are the first to propose
a higher-order masked implementation of uSaber. For this, we present a masked
centered uniform sampler which is then applied to uSaber instead of Saber’s
centered binomial sampler. We generally take advantage of Saber’s power-of-
two moduli to mask both Saber’s and uSaber’s decapsulation algorithm, and
we compare different recently proposed algorithms for ciphertext comparison in
higher-order masked settings.

We implement and benchmark our higher-order masked Saber and uSaber
on an ARM Cortex-M4 microcontroller using the PQM4 framework. The first-,
second-, and third-order masked decapsulation algorithm of Saber has an over-
head factor of 2.7x, 5x, and 7.7x over the unmasked implementation, respec-
tively. In uSaber, the overhead factor for first-order is 2.3x, second-order is 4.2x,
and third-order is 6.5x compared to the unmasked version. We include the per-
formance results and requisite of the random bytes during masking for each
masked primitive of first-, second-, and third-order masked Saber and uSaber.
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Our implementations are available at https://github.com/KULeuven-COSIC/
Higher-order-masked-Saber.

Finally, we compare the performances of our higher-order masked implemen-
tations of Saber and uSaber with the higher-order masked implementations of
Kyber and Saber presented in [11,12]. We demonstrate that the performances
of masked Saber implementations outperform masked Kyber implementations.
Further, we show that the performance of masked uSaber is better and requires
fewer random bytes than masked Saber and Kyber for any order.

2 Preliminaries

2.1 Notation

We denote the ring of integers modulo q by Zq and the quotient ring
Zq[X]/(X256 +1) by Rq. We use Rl

q to represent the ring which contains vectors
with l elements of Rq. The ring with l × l matrices over Rq is denoted by Rl×l

q .
We use lower case letters to denote single polynomials, bold lower case letters
to denote vectors and bold upper case letters to denote matrices. The j-th coef-
ficient of the polynomial c is represented as c[j], where j ∈ {0, 1, . . . , 255}. The
j-th coefficient of the i-th polynomial of the vector b is represented as b[i][j],
where j ∈ {0, 1, . . . , 255} and i ∈ {0, 1, . . . , l − 1}. Sometimes the set of (n + 1)
elements {x0, x1, . . . , xn} from the same ring R is denoted by {xi}0≤i≤n.

The rounding operation is denoted by �·�, and it returns the closest integer
with ties rounded upwards. The operations x � b and x � b denote the logical
shifting of x by b positions left and right, respectively. These operations are
extended on polynomials by performing them coefficientwise.

We denote x ← χ(S) when x is sampled from the set S according to the
distribution χ. We use the notation x ← χ(S, seedx) to represent that x belongs
to the set S and is generated by the pseudorandom number generator χ with
the help of seed seedx. To represent the uniform distribution we use U . The
centered binomial distribution is denoted by βμ with standard deviation

√
μ/4.

The centered uniform distribution is expressed as Uu, when it samples uniformly
from [−2(u−1), 2(u−1) − 1]. We use HW(x) to represent the Hamming weight of x.

2.2 Saber

In this section, we introduce the Saber encryption scheme. The parameter set
of Saber includes three power-of-two moduli q, p and t, which define the rings
Rq, Rp and Rt used in the algorithm. From these moduli, one can calculate the
number of bits of one coefficient as εq = log2(q), εp = log2(p) and εt = log2(t).
The parameter set also includes a vector length l, which increases with increase in
security, and an integer μ defining the coins of the secret distribution βμ. Given
a set of parameters, the key generation, encryption, and decryption of Saber are
shown in Fig. 1. For an in-depth review of the Saber encryption scheme, we refer
to the original paper [19,20].

https://github.com/KULeuven-COSIC/Higher-order-masked-Saber
https://github.com/KULeuven-COSIC/Higher-order-masked-Saber
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2.3 uSaber

uSaber or uniform-Saber was proposed in third round NIST submission [20]
as a variant of Saber. The principal alteration in uSaber from Saber is that it
uses a centered uniform distribution Uu for sampling secret vectors instead of the
centered binomial distribution βμ. The coefficients in polynomials of secret vector
are from [−2(u−1), 2(u−1) − 1] rather than [−μ/2, μ/2]. Due to this modification,
uSaber receives approximately the same level of security as Saber with a slightly
reduced parameters set as shown in Table 1.

Fig. 1. Saber.PKE

Table 1. Parameters of Saber and uSaber with security and failure probability

Scheme

Parameters

Post-quantum

Security

Failure

Probability

NIST

Security

Level
Identical

Different

q
Secret

Distribution

uSaber
l = 3, p = 210

n = 256, t = 24

212 U2 2165 2−167 3

Saber 213 β8 2172 2−136 3

2.4 Fujisaki-Okamoto Transformation

The encryption scheme outlined in the previous section only provides security
against passive attackers (IND-CPA security). One can obtain active security
(IND-CCA) security by using a generic transformation such as a post-quantum
version of the Fujisaki-Okamoto transformation [22,27]. The idea is that the



98 S. Kundu et al.

encapsulation encrypts a random input, and also uses this input as a seed for all
randomness. The decapsulation can then decrypt the seed from the ciphertext
and recompute the ciphertext. This recomputed ciphertext can then be used
to check if the input ciphertext is generated correctly. The Fujisaki-Okamoto
transformation transforms the encryption scheme into a key encapsulation mech-
anism (KEM). Given hash functions F , G and H, the saber KEM is given
in Fig. 2. Again, we refer to the original Saber paper [19,20] for a more detailed
description.

Fig. 2. Saber.KEM

2.5 Higher-Order Masking

Masking is a widely used countermeasure against side-channel attacks. The nth-
order masked scheme can provide security against at most nth-order differential
power attacks. The general idea of nth-order masking is to split the sensitive
variable x into n + 1 shares and then perform all the operations of the algo-
rithms on each of the shares individually. The shares of the sensitive variable
look uniformly random and the sensitive information can only be retrieved after
combining all the n + 1 shares. Moreover, if an adversary can get side-channel
information from at most n points, he will not learn anything about the sensi-
tive variable. In an nth-order masked implementation, linear operations typically
duplicate (n+1) times, and non-linear operations need to use more complex and
costlier methods. As a consequence, the performance cost of a nth-order masked
implementation increases at least by a factor of (n + 1).

There are several methods for masking. We primarily deal with two kinds
of masking techniques: arithmetic masking and Boolean masking. For both the
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masking techniques, in order to obtain nth-order security, the sensitive variable
x ∈ Zq needs to be split into n + 1 independent shares x0, x1, . . . , xn ∈ Zq. In
arithmetic masking, the relation between the sensitive variable x and the n + 1
shares of x is x = x0 + x1 + · · · + xn mod q. Whereas, in Boolean masking the
sensitive variable x and its n + 1 shares are related as x = x0 ⊕ x1 ⊕ · · · ⊕ xn.

The arithmetic masking is advantageous for protecting arithmetic operations
such as addition, subtraction, multiplication. For example, to protect the modu-
lar addition z = x + y mod q against n-order attacks, when only x contains sen-
sitive data, we split x into n+1 shares {xi}0≤i≤n such that

∑n
i=0 xi mod q = x,

then the shares of z =
∑n

i=0 zi mod q are:

zi =
{

xi + y mod q, if i = 0
xi, if 1 ≤ i ≤ n

.

If x and y both contains sensitive data, we split y together with x into n+1 shares
{yi}0≤i≤n such that

∑n
i=0 yi = y mod q, then the shares of z =

∑n
i=0 zi mod q

are:
zi = xi + yi mod q, 0 ≤ i ≤ n.

To securely compute the multiplication z = x · y mod q, when x only contains
sensitive data, we create n+1 shares {xi}0≤i≤n for x such that

∑n
i=0 xi mod q =

x, then the shares of z =
∑n

i=0 zi mod q are:

zi = xi · y mod q, 0 ≤ i ≤ n.

We prefer Boolean masking for variables that undergo bitwise operations. For
example, if we want to perform logical shift operation z = x � l securely, write x
into n+ 1 shares {xi}0≤i≤n such that ⊕n

i=0xi = x, then calculate zi = xi � l,∀i
to obtain the shares of z = ⊕n

i=0zi.

3 Masking Saber

In a key encapsulation mechanism (KEM), the secret key remains fixed for a sig-
nificant amount of time. Specifically, the decapsulation algorithm uses the non-
ephemeral secret key s, and therefore it is the most susceptible operation against
side-channel attacks. In this paper, we focus on protecting the non-ephemeral
secret key of Saber during the decapsulation. We introduce a masked decapsu-
lation algorithm for Saber, which can resist higher-order side-channel attacks.
The decapsulation procedure of Saber can be partitioned into three segments,
namely decryption, re-encryption, and ciphertext comparison. For visualization,
we present the flow of Saber’s decapsulation algorithm in Fig. 3. Here, all the
modules that process sensitive data due to the involvement with the secret have
been marked grey. These modules are vulnerable from the perspective of side-
channel attacks and need to be masked. In this section, we describe all the
masked primitives that are used in the higher-order masked decapsulation pro-
cedure of Saber. We also present a new algorithm to perform the ciphertext
comparison component in the masked setting. We will go through each part of
the decapsulation algorithm of Saber chronologically and explain the methods
we have used to mask them.
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3.1 Arithmetic Operations

The decapsulation algorithm of Saber is heavily dependent on polynomial arith-
metic, such as polynomial addition/subtraction and polynomial multiplication.
We use arithmetic masking to protect these operations. As shown in Fig. 3, the
decapsulation algorithm requires the following operations: addition between one
masked and another unmasked polynomial, addition between two masked poly-
nomials, and multiplication between one masked and another unmasked polyno-
mial. For masking these operations, we follow the methods described in Sect. 2.5.

Fig. 3. Decapsulation of Saber. In grey the operations that are influenced by the long
term secret sss and thus vulnerable to side-channel attacks [6].

To perform the polynomial multiplication, the original unmasked Saber mul-
tiplication uses a hybrid multiplication, a combination of Toom-Cook-4, 2 levels
of Karatsuba, and school-book multiplication [19,33,35]. We use this same multi-
plication technique in our masked implementation. Chung et al. [14] have recently
introduced an efficient method to perform polynomial multiplication by using the
number-theoretic transform. The same method could be used for the implemen-
tation of masked Saber to provide a significant performance improvement [12].
However, this is not the goal of our work and we keep this as future work.

3.2 Compression

In the last step of Saber.PKE.Dec, m is computed by calculating the most
significant bit (MSB) for each coefficient. It compresses each coefficient of the
polynomial (v − 2εp−εtcm + h2) mod p to produce a polynomial m where each
coefficient is one bit long.

The logical shift operation is easy on Boolean shares. In this situation, we
need to apply a logical shift operation on each share separately. Unfortunately,
computing this logical shift operation on arithmetic shares is not trivial. This
fact is discussed elaborately in [6] for the case of first-order masking, and the
similar issue arises for higher-order masking also.

We compute MSB on arithmetic shares by taking the following steps: first,
convert arithmetic shares to Boolean shares (A2B conversion), second, perform
logical shift operation on Boolean shares, and finally, return to arithmetic domain
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with the Boolean to arithmetic (B2A) conversion. As m ∈ R2, the resultant
polynomial after compression is a polynomial with 1 bit coefficients. Here, the
Boolean shares of m act like arithmetic shares of m. Therefore, we do not need
the B2A conversion step.

Bitslicing is a technique that helps to improve the performance of bitwise
operations. We have opted for the algorithm proposed in [15] using the bitsliced
implementation of [17] for the A2B conversion of our implementations.

3.3 Masked Hashing

In Saber, the hash function G and the pseudo-random number generator XOF
are realized by using SHA3-512 and SHAKE-128, respectively. Both are different
instances of the sponge function Keccak-f[1600] [7]. It has been shown that
this construction is easy to protect by using Boolean masking [23].

Keccak-f[1600] permutation has five steps: θ, ρ, π, χ and ι. In between these
θ, ρ, π are linear diffusion steps and ι is a simple addition. As all of these four are
linear operations on Boolean shares, we just need to apply them for each share. χ
is a degree 2 non-linear mapping and therefore requires extra attention to apply
masking. Gross et al. [23] developed a technique to implement χ in the higher-
order mask setting. We have adopted their technique in our implementations.

3.4 Masked Centered Binomial Sampler

Saber.PKE.Enc uses the centered binomial sampler for sampling the vector s′.
This sampler outputs the result of HW(x)−HW(y), where x and y are pseudo-
random numbers of bit length four. These pseudorandom numbers are gener-
ated by using SHAKE-128. As mentioned in Sect. 3.3, SHAKE-128 is protected by
using Boolean masking. After the generation of s′, polynomial multiplications
with s′ (e.g. As′ and bT s′) take place. SHAKE-128 creates Boolean shares, but
polynomial multiplication is an arithmetic operation that is less expensive with
arithmetic shares. To mitigate this issue, we need to include a conversion algo-
rithm that converts Boolean shares into arithmetic shares (B2A conversion) in
the masked centered binomial sampler.

Schneider et al. [45] propose two efficient higher-order masked centered bino-
mial samplers: sampler1 computes masked shares bitwise, whereas sampler2 uses
the bitslicing techniques to improve throughput. We have adopted the implemen-
tation of sampler2 together with the modification made by Van Beirendonck et
al. [6] specifically for Saber.

To convert shares from Boolean to arithmetic, we use the B2A algorithm
proposed in [8]. The details have been provided in the Algorithm1. In this Algo-
rithm, SecBitAdd calculates shares of HW(x) and SecBitSub takes shares of HW(x)
and shares of y as inputs and outputs shares of z = HW(x) − HW(y). The function
SecConstAdd adds μ/2 = 4 with the shares of z to avoid any negative value
that can occur after SecBitSub. In the next step the B2A function converts all
the Boolean shares of z to the arithmetic shares of A and the last step converts
shares of A from {0, 1, . . . , 8} to {−4,−3, . . . , 3, 4}.
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Algorithm 1: Masked centered binomial sampler [45]
Input : {xi}0≤i≤n, {yi}0≤i≤n where xi, yi ∈ R

κ
2 such that⊕n

i=0 xi = x,
⊕n

i=0 yi = y
Output : {Ai}0≤i≤n where Ai ∈ Rq and

∑n
i=0 Ai = (HW(x)− HW(y)) mod q

1 {zi}0≤i≤n ← SecBitAdd({xi}0≤i≤n) [6]
2 {zi}0≤i≤n ← SecBitSub({zi}0≤i≤n, {yi}0≤i≤n) [45]
3 {zi}0≤i≤n ← SecConstAdd({zi}0≤i≤n) [6]
4 {Ai}0≤i≤n ← B2A({zi}0≤i≤n) [8]
5 A1 ← (A1 − μ/2) mod q
6 return {yi}0≤i≤n

3.5 Masked Comparison

The masked ciphertext comparison component is required to check the equality
between masked ciphertext generated from re-encryption and the public cipher-
text. This step performs the equality check c

?= c∗ of the Saber.KEM.Decaps
algorithm in the masked domain.

An easy but efficient method for the first-order masked comparison is intro-
duced by Oder et al. [40]. Unfortunately, this hash-based method is limited to
first-order masking, and cannot be generalized to check ciphertext equality in
the higher-order masked settings.

Different approaches for higher-order masked comparison were recently ana-
lyzed thoroughly by D’Anvers et al. [17]. In general, there are four approaches.
The simple method originally due to Barthe et al. [5] groups individual bits into a
large SecOR operation. This requires a pre-processing step to handle ciphertext
compression that is straightforward to mask for Saber, but more complex for
Kyber [21]. The arithmetic method was developed in a series of works [4,9,18],
and aims to reduce the total number of comparisons by grouping coefficients
into a random sum. The decompression method [11] developed for Kyber avoids
masking the compression of the re-encrypted ciphertext, by decompressing the
input ciphertext instead. Finally, the hybrid method [16] introduced the idea of
using different of the previously discussed methods for the different components
of the ciphertext. All of these approaches rely on A2B conversions, which can
be heavily optimized using bitslicing [12,17].

In this section, we will discuss two of these different approaches to higher-
order masked comparison. The first one is the Saber-adapted decompression
method, which was not considered in [17]. The second one is the simple method,
which was found to be the most efficient method for Saber in that same work. For
both methods, we consolidate concurrent A2B optimization techniques proposed
in [12,17].

3.5.1 Decompressed Masked Comparison Algorithm
Bos et al. [11] introduced a new method based on A2B conversion for the masked
comparison algorithm for Kyber, in order to reduce the cost of the Boolean equal-
ity check circuit. This method does not perform the compression operation on
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Algorithm 2: Decompressed masked comparison algorithm

Input : {b′
i}0≤i≤n where each b′

i ∈ R
l
2εq and

⊕n
i=0 b

′
i = b′,

{c′
i}0≤i≤n where each c′

i ∈ R2εp and
⊕n

i=0 c′
i = c′,

publicly available b and cm

Output : {biti}0≤i≤n with each biti ∈ {0, 1} such that
⊕n

i=0 biti = 1 iff
b = b′ � (εq − εp) and cm = c′ � (εp − εt), else 0

1 //For b part of ciphertext
2 sb ← (b � (εq − εp)) − 1 //Decompression operation on b

3 eb ← (b � (εq − εp)) + 2(εq−εp)

4 {b′′
i }0≤i≤n ← {b′

i}0≤i≤n

5 b′′
1 ← b′

1 − sb + 2(εq−1)

6 b′
1 ← b′

1 − eb

7 {y′
i}0≤i≤n ← A2B({b′′

i }0≤i≤n)
8 {yi}0≤i≤n ← A2B({b′

i}0≤i≤n)
9 {yi}0≤i≤n ← MSB({yi}0≤i≤n)||MSB({y′

i}0≤i≤n)

10 //For cm part of ciphertext
11 scm ← (cm � (εp − εt)) − 1//Decompression operation on cm

12 ecm ← (cm � (εp − εt)) + 2(εp−εt)

13 {c′′
i }0≤i≤n ← {c′

i}0≤i≤n

14 c′′
1 ← c′

1 − scm + 2(εp−1)

15 c′
1 ← c′

1 − ecm

16 {x′
i}0≤i≤n ← A2B({c′′

i }0≤i≤n)
17 {xi}0≤i≤n ← A2B({c′

i}0≤i≤n)
18 {xi}0≤i≤n ← MSB({xi}0≤i≤n)||MSB({x′

i}0≤i≤n)

19 //Boolean circuit to test all bits of each coefficient of (y, x) is 1
20 {biti}0≤i≤n ← BooleanAllBitsOneTest ({yi}0≤i≤n, {xi}0≤i≤n, 2, 2)

21 return {biti}0≤i≤n

the recomputed ciphertext, but performs a decompression operation on the pub-
lic ciphertext instead. Then, the comparison is performed in the uncompressed
domain. The decompressed operation is less costly to apply on public ciphertext,
as it is public and so this operation can be performed unmasked.

Let us assume the public ciphertext be c = (b, cm), where b be the key
contained part and cm be the message contained part of the ciphertext c. In
Saber, the compression operation is applied to generate the ciphertext during
encryption, and this operation is a many-to-one operation. In this process, each
coefficient of b loses three bits, and each coefficient of cm loses six bits. So, as
compensation for the masked comparison, we use a decompression operation,
which outputs an interval of integers for each coefficient of the public cipher-
text. Let, c[j] be a coefficient of the public ciphertext c, and the corresponding
output of decompression operation be (sc[j], ec[j]). This implies every element in
between the interval (sc[j], ec[j]) becomes c[j] after the compression operation.

Next, we verify that each coefficient of the shared uncompressed ciphertext of
c∗ which is generated from the re-encryption, lies in the corresponding decom-
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Algorithm 3: BooleanAllBitsOneTest

Input : {yi}0≤i≤n where each yi ∈ R
l
2bmod1 and

⊕n
i=0 yi = y,

{xi}0≤i≤n where each xi ∈ R2bmod2 and
⊕n

i=0 xi = x,
bmod1, and bmod2

Output : {biti}0≤i≤n with each biti ∈ {0, 1} such that
⊕n

i=0 biti = 1 iff
each bit of every coefficients of y and x is 1, else 0

1 for j1 = 1 to l do
2 for s= 1 to bmod1 do

3 {ui[s][j1]}0≤i≤n ← Bitslice({y(s)
i [j1]}0≤i≤n)

4 for s= 1 to bmod2 do

5 {vi[s]}0≤i≤n ← Bitslice({x
(s)
i }0≤i≤n)

6 //Secure And on both
7 {wi}0≤i≤n ← {vi[1]}0≤i≤n

8 for s= 2 to bmod2 do
9 {wi}0≤i≤n ← SecAnd({wi}0≤i≤n, {vi[s]}0≤i≤n)

10 for j= 1 to l do
11 {yi[j]}0≤i≤n ← {ui[1][j]}0≤i≤n

12 for s= 2 to bmod1 do
13 {yi[j]}0≤i≤n ← SecAnd({yi[j]}0≤i≤n, {ui[s][j]}0≤i≤n)

14 {wi}0≤i≤n ← SecAnd({wi}0≤i≤n,yi[j]}0≤i≤n)

15 for j= log2(256) − 1 to 0 do
16 {w′

i}0≤i≤n ← w0≤i≤n � 2j

17 {wi}0≤i≤n ← w0≤i≤n mod (22j

)
18 {wi}0≤i≤n ← SecAnd({wi}0≤i≤n, {w′

i}0≤i≤n)

19 {biti}0≤i≤n ← {wi}0≤i≤n

20 return {biti}0≤i≤n

pressed interval. Let c∗[j] be the arithmetically masked uncompressed cipher-
text coefficient corresponding to the public ciphertext coefficient c[j]. Now, if
c∗[j] ∈ (sc[j], ec[j]) for all coefficients j, then the comparison returns success
and outputs the shared valid key else returns a random invalid key. The test

c∗[j]
?∈ (sc[j], ec[j]) is realized by checking whether c∗[j] − sc[j] is a positive

number and whether c∗[j] − ec[j] is a negative number. We have adopted this
method for performing the higher-order masked ciphertext comparison in Saber
as shown in Algorithm 2.

In Algorithm 2, lines 2–3 and 11–12 compute the start-point and the end-
point of the interval for each coefficient of the key contained part b and the
message contained part cm of the public ciphertext c, respectively. The MSB of
any number acts as a sign bit, i.e., if the MSB is 1 then the number is negative, else
the number is positive. As in an ideal case, c∗[j]− sc[j] > 0 and c∗[j]− ec[j] < 0,
so the MSB(c∗[j] − sc[j]) should be 0 and the MSB(c∗[j] − ec[j]) should be 1. In
order to avoid two different kinds of checking for c∗[j] − sc[j] and c∗[j] − ec[j],
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we need to add a constant l with c∗[j] − sc[j] such that its MSB becomes 1. The
value of l is 2(εq−1) and 2(εp−1) for b and cm part of c, respectively. We compute
the MSB of an arithmetically masked variable in the following way: we convert
the arithmetic shares to Boolean shares using A2B conversion, and then we use
a shift operation to extract the masked shares of MSB. Finally, Algorithm2 uses
Algorithm 3, the BooleanAllBitsOneTest function to combine the output bits
of all coefficients and returns a single-bit indicating success or failure.

3.5.2 Simple Masked Comparison Algorithm
Next, we describe the simple method as given in [17]. Note that the re-encrypted
ciphertext c∗ is arithmetically masked and uncompressed, but the public cipher-
text c is unmasked and compressed. As mentioned earlier, our task is to verify
whether c equals c∗ after compression. In this method, we perform the following
steps: firstly, we transform arithmetic shares of c∗ to Boolean shares by using A2B
conversion algorithm, secondly, we compress the re-encrypted Boolean masked
ciphertext c∗ by using coefficientwise logical right shift, thirdly, we subtract the
public ciphertext c from the compressed and masked re-encrypted ciphertext c∗.
This method is shown in Algorithm 4.

Algorithm 4: Simple masked comparison algorithm [16]

Input : {b′
i}0≤i≤n where each b′

i ∈ R
l
2εq and

⊕n
i=0 b

′
i = b′,

{c′
i}0≤i≤n where each c′

i ∈ R2εp and
⊕n

i=0 c′
i = c′,

publicly available b and cm

Output : {biti}0≤i≤n with each biti ∈ {0, 1} such that
⊕n

i=0 biti = 1 iff
b = b′ � (εq − εp) and cm = c′ � (εp − εt), else 0

1 //For b part of ciphertext
2 {yi}0≤i≤n ← A2B({b′

i}0≤i≤n)
3 {yi}0≤i≤n ← ({yi}0≤i≤n � (εq − εp))
4 y1 ← y1 ⊕ b

5 //For cm part of ciphertext
6 {xi}0≤i≤n ← A2B({c′

i}0≤i≤n)
7 {xi}0≤i≤n ← ({xi}0≤i≤n � (εp − εt))
8 x1 ← x1 ⊕ cm

9 //Boolean circuit to test all bits of each coefficient of (y, x) is 0
10 y1 ← ¬y1

11 x1 ← ¬x1

12 {biti}0≤i≤n ← BooleanAllBitsOneTest ({yi}0≤i≤n, {xi}0≤i≤n, εp, εt)

13 return {biti}0≤i≤n

3.5.3 Bitsliced A2B
Both the decompression method and the simple method rely heavily on A2B
conversions. Throughout the implementations, we use the bitsliced A2B conver-
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sion [17] for further speed-up. Moreover, A2B conversions use the SecAdd sub-
function to perform masked addition. Bronchain et al. [12] proposed a SecAdd
which uses k−1 SecAnd operations for k-bit inputs, as opposed to 2k−3 SecAnd
operations required in [17]. We included this technique into the implementation
of [17] to receive better performance.

4 Masking uSaber

In uSaber, the coefficients of the secret vector are sampled according to the
centered uniform distribution Uu instead of the centered binomial distribution
βμ. Here, the hamming weight computation of the centered binomial distribution
is replaced by the sign extension of u bits to εq bits, to generate a sample in
[−2(u−1), 2(u−1) −1] from u uniformly random bits. This secret vector sampler is
the only component that differs between Saber and uSaber. A main advantage
of uSaber is that the centered uniform sampler has fewer operations compared
to the centered binomial sampler and therefore, is easier to mask.

Similar to the centered binomial sampler, the centered uniform sampler takes
pseudorandom Boolean-masked bits as input that are produced by the masked
SHAKE-128 function. Our simple higher-order masked centered uniform sampler
is shown in Algorithm 5. We base it on SecConsAdd in the masked centered bino-
mial sampler, mentioned in Sect. 3.4. First, we use xor to transform a negative
number into a positive number. Second, we apply B2A conversion algorithm to
convert Boolean shares to arithmetic shares. Third, we subtract 2u−1 from the
arithmetic shares to map them from [0, 2u −1] back to [−2(u−1), 2(u−1)−1]. This
masked sampler does not require SecBitAdd and SecBitSub which are used in
masked centered binomial sampler. The centered uniform sampler is simpler and
requires fewer masked operations than the centered binomial sampler.

Algorithm 5: Masked centered uniform Sampler
Input : {xi}0≤i≤n where xi ∈ R

u
2 such that

⊕n
i=0 xi = x

Output : {Ai}0≤i≤n where Ai ∈ Rq and
∑n

i=0 Ai = (x ⊕ 2u−1) − 2u−1 mod q

1 {z0} ← ({z0} ⊕ 2u−1)
2 {Ai}0≤i≤n ← B2A({zi}0≤i≤n) [8]
3 A1 ← A1 − 2u−1 mod q
4 return {yi}0≤i≤n

5 Performance Evaluation

To demonstrate the performance of all of the proposed methods, we implement
them on a 32-bit ARM Cortex-M4 microcontroller, STM32F407-DISCOVERY
development board. We adopt the widely used PQM4 [32] post-quantum crypto-
graphic library and benchmarking framework for performance evaluation. In this
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framework, the system timer (SisTick) is used to measure the cycle counts. This
framework uses a 24 MHz main system clock and a 48 MHz TRNG clock. We
take advantage of the on-chip TRNG for sampling masking randomness instead
of generating in advance and storing random bits in a table like Kyber [11]. This
TRNG generates 32 random bits per 40 TRNG clock cycles, which is equal to
20 main system clock cycles. We include the cost of randomness sampling with
the benchmarks. We use arm-none-eabi-gcc version 9.2.1 to accomplish the
measurements of our implementations.

5.1 Performance Analysis of Comparison Algorithms for Saber

We present the cycle counts of the implementation for arbitrary order masked
comparison algorithms of Saber. In Saber, the parameters are: εq = 13, εp = 10,
εt = 4 and l = 3. We break down the cycle counts into three parts: spent during
all the A2B conversion, spent in computing the function BooleanAllBitsOneTest
for the corresponding parameter, and spent in performing all other operations.
Table 2 contains the performance details of masked ciphertext algorithms pre-
sented in Sects. 3.5.1 and Sects. 3.5.2.

In Table 2, we include two versions of the decompressed comparison algo-
rithm and the simple comparison algorithm. We use the bitsliced A2B conversion
technique of masked simple comparator proposed in [17] for the first version,
and we improve this bitsliced A2B converter by employing the technique intro-
duced in [12]. It can be seen from the table the performance of the decompressed
comparison algorithm gains 9%, 16%, and 17% improvements for first-, second-,
and third-order masking after using [12], respectively. Side by side, the improved
decompressed comparison algorithm requires 21% fewer random bytes for any
order masking. The performance of the simple comparison algorithm improves
by 8%, 15%, and 16% for first-, second-, and third-order masking after using [12],
respectively. The improved simple comparison algorithm requires approximately
19% fewer random bytes for any order masking.

As we can see from the table, the cycle count for all A2B conversions employed
in the decompressed comparison algorithm is almost double for all orders com-
pared to the simple comparison algorithm. However, for all the orders, the clock
cycle required to compute the function BooleanAllBitsOneTest with corre-
sponding parameters is approximately one-fourth in the decompressed compari-
son algorithm than the simple comparison algorithm. As we can see from Table 2,
the improved simple comparison algorithm is approximately 43% faster and
employ roughly 42% fewer random bytes than the improved decompressed com-
parison algorithm for any order masking of Saber. Similar results can be found for
the higher-order masked uSaber. So, we use the improved simple comparison algo-
rithm in our higher-order masked Saber and uSaber decapsulation algorithms.

5.2 Performance Analysis for Masked Saber Decapsulation

We present the performance cost of the Saber algorithm for higher-order masking
in Table 3. This table also provides the breakdown of the performance cost of
the higher-order masking for all the modules of the masked Saber decapsulation
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algorithm. As mentioned earlier, for masked Saber implementations we use the
hybrid polynomial multiplication, a combination of Toom-Cook-4, Karatsuba,
and schoolbooks multiplication. Therefore, we use the Saber implementation
which uses the hybrid polynomial multiplication to get the overhead factor for
n-th order masked Saber. To maintain simplicity, most of the implementation
is written in C. Only the hybrid multiplication is in assembly and generated by
using the optimal implementation proposed in [31].

From Table 3, we can see that the performance overhead factor of masked
Saber decapsulation implementation for first-order is 2.69x, for second-order is
4.96x, and for third-order is 7.71x. From the table, we can see that the overhead
factor for arithmetic operations approximately is (n + 1) for nth-order masking
due to n+1 time repetitions of each operation. On the other hand, the non-linear
operations on arithmetic shares, for example, hash functions, binomial sampler,
compression operation, and ciphertext comparison, have much larger overhead
factors in the masked setting. To maintain the security assumption, we need to
use random bytes in some masking algorithms (example: SecAnd, SecAdd, SecRe-
fresh, etc.). Table 4 shows random bytes requirements for all the components of the

Table 2. Performance breakdown of the implementation of masked comparison algo-
rithms in the Cortex-M4 platform.

CPU [k]cycles
Masked Comparator

1st 2nd 3rd

Decompressed comparison [This work] 651 2,107 3,606

all A2B conversion 612 2,047 3,518

BooleanAllBitsOneTest 9 29 50

Other operations 28 31 37

# random bytes 12,048 47,920 95,840

Improved decompressed comparison [This work] 588 1,756 2,962

all A2B conversion 549 1,696 2,875

BooleanAllBitsOneTest 9 29 50

Other operations 28 31 37

# random bytes 9,424 37,424 74,848

Simple comparison [17] 363 1,160 1,992

all A2B conversion 308 1,023 1,766

BooleanAllBitsOneTest 38 117 202

Other operations 16 19 24

# random bytes 6,992 26,864 53,728

Improved simple comparison [This work] 331 985 1,671

all A2B conversion 276 848 1,444

BooleanAllBitsOneTest 38 117 202

Other operations 16 19 24

# random bytes 5,680 21,616 43,232
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Table 3. Performance cost of all the modules of the higher-order masked decapsulation
procedure of Saber.

CPU [k]cycles

Order No mask 1st 2nd 3rd

Saber-Decapsulation 1,121 3,022 (2.69x) 5,567 (4.96x) 8,649 (7.71x)

CPA-PKE-Decryption 129 297 (2.30x) 527 (4.08x) 775 (6.00x)

Polynomial arithmetic 126 237 (1.88x) 349 (2.76x) 464 (3.68x)

Compression 2 59 (29.50x) 178 (89.00x) 310 (155.00x)

Hash G (SHA3-512) 13 123 (9.46x) 242 (18.61x) 379 (29.15x)

CPA-PKE-Encryption 853 2,477 (2.90x) 4,670 (5.47x) 7,370 (8.64x)

Secret generation 69 909 (13.17x) 1,995 (28.91x) 3,561 (51.60x)

XOF (SHAKE-128) 63 611 (9.69x) 1,210 (19.20x) 1,887 (29.95x)

CBD (Binomial Sampler) 6 297 (49.50x) 785 (130.83x) 1,674 (279.00x)

Polynomial arithmetic 1,235 1,688 2,136

Polynomial Comparison
783

331
(2.00x)

985
(3.41x)

1,671
(4.86x)

Other operations 126 126 (1.00x) 126 (1.00x) 126 (1.00x)

Table 4. Randomness cost of all the modules of the higher-order masked decapsulation
algorithm of Saber.

# Random bytes

Order 1st 2nd 3rd

Saber-Decapsulation 12,752 43,760 93,664

CPA-PKE-Decryption 928 3,712 7,424

Polynomial arithmetic 0 0 0

Compression 928 3,712 7,424

Hash G (SHA3-512) 192 576 1,152

CPA-PKE-Encryption 11,312 38,512 83,168

Secret generation 5,952 17,856 41,856

XOF (SHAKE-128) 960 2880 5,760

CBD (Binomial Sampler) 4,992 14,976 36,096

Polynomial arithmetic 0 0 0

Polynomial Comparison 5,680 21,616 43,232

Other operations 0 0 0

higher-order masked Saber decapsulation algorithm. It can be seen from Table 4
that the random bytes requirement increases with the order. The first-order imple-
mentation requires 12k random bytes, the second-order and third-order imple-
mentations require 43k (3.43x) and 93k (7.34x) random bytes, respectively.

5.3 Performance Analysis for Masked uSaber Decapsulation

The performance cost and breakdown of the performance cost of the higher-order
masking for all the modules of the masked uSaber decapsulation algorithm are
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presented in Table 5. As we mentioned before, the main advantage of uSaber
against Saber is the coefficients of the secret vector are sampled from U2 instead
of β8. Thanks to the parameter choice of secret distribution in uSaber, it needs
fewer numbers of pseudorandom bits than Saber. This fact reduces the cycle
cost of XOF by almost 60% for the unmasked version of uSaber compared to
Saber. Another advantage is that the hamming weight computation of μ bits in
the centered binomial sampler βμ is swapped by the sign extension of u bits in
the centered uniform sampler Uu. It reduces the performance cost of the secret
sampler in unmasked uSaber by 50% compared to Saber. Altogether, the secret
generation is almost 59% faster for the unmasked decapsulation algorithm of
uSaber compared to Saber. The performance cost of the secret generation is lower
in uSaber compared to Saber also after integrating masking. The performances of
the secret generation in masked uSaber are 55%, 52%, and 45% faster compared
to masked Saber for first-, second-, and third-order, respectively. Additionally,
the value of q for uSaber is 212, whereas it is 213 for Saber. This factor reduces one
bit in the A2B conversion for uSaber during the masked polynomial comparison.
It makes the masked polynomial comparison 5%, 5%, and 2% faster in uSaber
than Saber for first-, second-, and third-order, respectively.

As we can observe from Table 5, the approximate performance overhead fac-
tor of masked uSaber decapsulation implementation for first-order is 2.32x, for
second-order is 4.19x, and for third-order is 6.54x. Table 6 presents random bytes
requirements for all the segments of the higher-order masked uSaber decapsula-
tion. We obtain from Table 6 that here also the random bytes requirement grows
with the order of masking. The first-order implementation needs 10k random
bytes, the second-order and third-order implementations use 36k (3.49x) and
79k (7.57x) random bytes, respectively.

Table 5. Performance cost of all the modules of higher-order masked decapsulation
procedure of uSaber.

CPU [k]cycles

Order No mask 1st 2nd 3rd

uSaber-Decapsulation 1,062 2,473 (2.32x) 4,452 (4.19x) 6,947 (6.54x)

CPA-PKE-Decryption 130 297 (2.28x) 527 (4.05x) 775 (5.96x)

Polynomial arithmetic 128 237 (1.85x) 349 (2.72x) 464 (3.62x)

Compression 2 59 (29.50x) 178 (89.00x) 310 (155.00x)

Hash G (SHA3-512) 13 122 (9.38x) 242 (18.61x) 379 (29.15x)

CPA-PKE-Encryption 791 1,928 (2.43x) 3,556 (4.49x) 5,667 (7.16x)

Secret generation 28 400 (14.28x) 954 (34.07x) 1,928 (68.85x)

XOF (SHAKE-128) 25 245 (9.80x) 484 (19.36x) 756 (30.24x)

Uniform distribution 3 155 (51.66x) 469 (156.33x) 1,172 (390.66x)

Polynomial arithmetic 1,214 1,667 2,114

Polynomial Comparison
763

313
(2.00x)

934
(3.40x)

1,623
(4.89x)

Other operations 126 126 (1.00x) 126 (1.00x) 126 (1.00x)
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Table 6. Randomness cost of all the modules of higher-order masked decapsulation
algorithm of uSaber.

# Random bytes

Order 1st 2nd 3rd

uSaber-Decapsulation 10,544 36,848 79,840

CPA-PKE-Decryption 928 3,712 7,424

Polynomial arithmetic 0 0 0

Compression 928 3,712 7,424

Hash G (SHA3-512) 192 576 1,152

CPA-PKE-Encryption 9,104 31,600 69,344

Secret generation 4,032 12,096 30,336

XOF (SHAKE-128) 960 2880 5,760

Uniform distribution 3,072 9,216 24,576

Polynomial arithmetic 0 0 0

Polynomial Comparison 5,392 20,464 40,928

Other operations 0 0 0

5.4 Comparison with State-of-the-Art

In this section, we compare our masked Saber and uSaber implementations with
the state-of-the-art masked implementations of Saber and Kyber. We present
the performances of our masked implementations in the Cortex-M4 platform and
present them in Table 7. Bronchain et al. [12] introduced faster implementations
of higher-order masked A2B and B2A conversion utilizing bitsliced techniques
and used these conversions to propose higher-order masking implementations
of Saber and Kyber. The performances of Bronchain et al.’s masked Saber and
Kyber implementations in the Cortex-M4 platform are presented in Table 7. As
we mentioned before, the integration of NTT multiplication in masked Saber can
provide a significant performance boost. In [12], authors use NTT multiplication
for Saber to receive better performance. In order to use NTT multiplication, the
authors use a multi-moduli approach that extends the modulus [1]. Even so, the
performance of our 1st, 2nd and 3rd order masked implementations of Saber
achieve 39%, 23%, and 13% improvement than their masked implementation of
Saber, respectively.

In [11], Bos et al. proposed higher-order masked implementations of Kyber.
The masked kyber implementation in [11] is faster and uses fewer random bytes
than the implementation of masked kyber presented in [12] only for first-order
because this masked Kyber uses an optimized implementation for first-order,
while Bronchain et al.’s one uses the generalized one. The performance for 2nd
and 3rd order masked implementations of Kyber in [12] receives 73% and 85%
improvement over the masked Kyber of [11], respectively. However, our imple-
mentation of masked Saber is faster than masked Kyber presented in [12] 60% for
first-order, 53% for second-order, and 48% for third-order. Also, the performance
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of our first-order masked Saber is 3% faster than the optimized implementation
of the first-order masked Kyber presented in [11]. In terms of random bytes
requirement, our masked Saber receives factor 20.61x and 25.98x improvement
over the masked Kyber in [11] for 2nd and 3rd order masked implementations,
respectively.

As discussed in Sect. 4, masked uSaber uses less number of operations and
random numbers than masked Saber due to the choice of secret distribution and
parameters in uSaber. Table 7 shows the performances of higher-order masked
implementations of uSaber. Further, this table contains the performance of first-
order masked Saber [6] and first-order masked Kyber [25], which are specially
optimized to prevent the first-order differential power attacks. We can observe
from Table 7 that our generalized implementation of first-order masked uSaber is
12% faster than the optimized implementation of masked Saber and is 16% faster
than the optimized implementation of masked Kyber. The implementation of
masked uSaber is faster than the fastest implementation of higher-order masked
Saber 20% for second-order and 19% for third-order. Masked uSaber also needs
15% less random numbers for second-order and 14% less random numbers for
third-order over masked Saber. In conclusion, we observe from the reported
results of Table 7 that higher-order masked uSaber achieves better performance
and needs fewer random bytes than masked Saber and Kyber for any order.

Table 7. The comparison between Saber and Kyber regarding the performance and
the random bytes requirement.

Performance CPU [k]cycles / Random bytes
Scheme

Unmask 1st 2nd 3rd 1st 2nd 3rd

uSaber This paper 1,062 2,473 4,452 6,947 10,544 36,848 79,840

This paper 1,121 3,022 5,567 8,649 12,752 43,760 93,664

[12] 773 5,027 7,320 9,988 - - -Saber

[6] † 1,123 2,833 - - 11,656 - -

[11] † 882 3,116* 44,347 115,481 12,072* 902,126 2,434,170

[12] 804 7,716 11,880 16,715 - - -Kyber

[25] † 816 2,978 - - - - -

†: measurements are taken from the paper
*: uses optimized implementation for first-order masking

6 Conclusions

Saber is often touted as very helpful for masking because of its two unique design
components, the power-of-two moduli, and the MLWR problem. Van Beiren-
donck et al. [6] showed the first-order masked Saber receives better performance
and needs fewer random bytes than the first-order masked Kyber. In our work,
we substantiated this claim for arbitrary higher-order masking and show that
the higher-order masked Saber also acquires better performance and requires
fewer random bytes for its design decisions.
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The third round submission document of Saber claims that the design deci-
sions behind uSaber will be further beneficial for masking even compared to
Saber. This work first concretely justifies those design decisions.

Furthermore, integrating our methods of masking is not dependent upon
the underlying polynomial multiplication, which is one of the computationally
expensive components. Our masked implementations can be adapted for Saber
or uSaber that use the NTT multiplication instead of the hybrid multiplication.
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Abstract. We introduce distance-comparison-preserving symmetric
encryption (DCPE), a new type of property-preserving encryption that
preserves relative distance between plaintext vectors. DCPE is naturally
suited for nearest-neighbor search on encrypted data. To boost security,
we divert from prior work on Property Preserving Encryption (PPE) and
ask for approximate comparison, which is natural given the prevalence
of approximate nearest neighbor (ANN) search. We study what security
approximate DCPE can provide and how to construct it.

Based on a relation we prove between approximate DCP and approx-
imate distance-preserving functions, we design our core approximate
DCPE scheme for Euclidean distance we call Scale-And-Perturb (SAP).
The encryption algorithm of our core scheme processes plaintexts on-
the-fly. To further enhance security, we also introduce two preprocessing
techniques: (1) normalizing the plaintext distribution, and (2) shuffling,
wherein the component-wise encrypted dataset is randomly permuted.
We prove that SAP achieves a suitable indistinguishability-based security
notion we call real-or-replaced indistinguishability (RoR). In particular,
our RoR result implies that our scheme prevents a form of membership
inference attack. Moreover, we show for i.i.d. multivariate normal plain-
texts, we get security against approximate frequency-finding attacks, the
main line of attacks against property-preserving encryption. This follows
from a one-wayness (OW) analysis. Finally, carefully combining our OW
and RoR results, we are able characterize bit-security of SAP.

Overall, we find that our DCPE scheme not only has superior bit-
security to Order Preserving Encryption (OPE) but resists relevant
attacks that even ideal order-revealing encryption (Boneh et al., EURO-
CRYPT 2015) does not.
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1 Introduction

1.1 Background and Motivation

The paradigm of secure outsourced databases refers to a setting where a client
transmits its database to an untrusted server that hosts it. The goal of such a
protocol is to protect information about the database from the server to the extent
possible, while maintaining the ability for the client to issue queries. This paradigm
was first introduced in the database community by [28] and has received intensive
study since then (see [34]) from the database and cryptographic community.

An attractive approach to constructions, which has already seen real-world
deployment, is the emerging notion of function-revealing encryption (FRE) (e.g.,
[5,9,12,33,48]). A (private-key) function-revealing encryption scheme for a func-
tion f allows anyone from the encryptions c1, . . . , cn of m1, . . . ,mn respectively
to compute f(m1, . . . ,mn). The terminology is important here: function may be
replaced by property, which refers to the case that f is a predicate;1 revealing
can be replaced by preserving, where the way of computing the above output
of f is itself f(c1, . . . , cn). FRE is attractive because it allows the construction
of outsourced database protocols that let the server index and process queries
almost exactly the same way as for unencrypted data (in fact, exactly in the
function-preserving case).

So far, FRE-based protocols have mainly been built for running queries
on encrypted SQL databases. The types of FRE used here are order-revealing
(ORE) and order-preserving encryption (OPE) [1,9,10,12], in which plaintexts
are numbers and f is the comparison predicate pcomp(x, y) = 1 iff x < y; and
deterministic encryption2 (DE) [2,5], which is the function-preserving case where
f is the equality predicate peq(x, y) = 1 iff x = y. Combined with some other
schemes and tricks, DE and ORE/OPE give rise to outsourced database proto-
cols for most SQL queries, such as the CryptDB system [50].

Unfortunately, even when these underlying FRE schemes are ideal, this app-
roach is subject to attacks in the outsourced database setting ([7,19,26,47,52] in
the “snapshot” setting, where the adversary sees one snapshot of the encrypted
database, and [24,25,36,39,41] in the “persistent” setting, where the adver-
sary observes the query processing over time,—see below). This has created
a viewpoint that the FRE approach in such a higher-level applications is inher-
ently insecure. Indeed, existing positive results for FRE-based protocols have
major restrictions: they either assume uniform, high-entropy plaintexts [10] or
an unknown prior on the data [13], neither of which seems likely to hold in
practice. Other work introduces high overhead for practical datasets [42,51].

1.2 Our Results

Overview. In this work, we move to FRE for non-SQL databases. In particular,
we treat the case of spatial or vector databases supporting approximate nearest
1 Property-preserving encryption (PPE) is a special case that our construction actually

falls into, but we stick with FRE terminology for generality.
2 In our terminology, it could also be called equality-preserving encryption.



Approximate Distance-Comparison-Preserving Symmetric Encryption 119

neighbor (ANN) search. We put forth a new type of FRE for this setting and a
construction, achieving novel security guarantees in the “snapshot” setting.

(Approximate) Distance-Comparison Preserving Encryption. Nearest neighbor
search is fundamental in spatial and vector databases. In fact, it is common
to return the approximate nearest neighbor instead of the exact value [3,46].
Indeed, ANN is very useful for high-dimensional data due to “curse of dimen-
sionality” [6,31]. (In higher dimensions, the notion of exact distances between
points becomes less significant, thereby making it difficult for exact algorithms to
converge). It has also recently become popular in information retrieval [30,38,58].
The first step of our work is to identify the “core operation” that ANN
search algorithms use. This turns out to be distance comparison (cf. [18,57]),
which gives rise to the need for distance-comparison preserving and distance-
comparison revealing encryption (DCPE/DCRE) FRE for the ternary predicate
pdist-comp(x, y, z) = 1 if dist(x, y) < dist(x, z) and the predicate evaluates to 0 oth-
erwise. As the goal is ANN, we actually consider “approximate” DCPE/DCRE,
where the predicate evaluates to 1 if dist(x, y) and dist(x, z) are sufficiently far.
We show approximate DCPE preserves the approximation factor of the overlying
ANN search algorithm.

Relation to Approximate Distance-Preserving Encryption. In order to get a han-
dle on an approximate DCPE construction, we would like to understand the
“structure” of DCP functions—what do they look like? To this end, we prove
that approximate DCP is approximate distance-preserving (DP) with a related
approximation factor. To make this precise, let us call an encryption function
β-DCP if

dist(x, y) < dist(x, z) − β =⇒ pdist-comp(cx, cy, cz) = 1,

where cx denotes a ciphertext of x. Let us call a function (α, β)-DP if

α dist(x, y) − β ≤ dist(cx, cy) ≤ α dist(x, y) + β.

Although, our definitions are compatible with any distance measure, our main
result in this part is that, for Euclidean distance, all functions which are β-DCP
satisfy the notion of (α, β′)-DP for some β′ which depends on α and β. A detailed
analysis of these relations can be found in the full version of the paper [22].

The Scale-and-Perturb (SAP) Construction. Inspired by the above results, our
“core” approximate DCPE scheme for Euclidean distance is called the “Scale-
and-Perturb” (SAP) scheme. It works as follows. The encryption algorithm scales
the plaintext by a factor held in the secret key followed by adding a random
perturbation factor. Note that this does not allow decryption, hence we apply
a pseudorandom function to derandomize the perturbation step. The param-
eters are drawn from a uniform distribution, which is inspired by previous
works [23,32,35]. Namely, we sample the perturbation from a uniform distribu-
tion within a sphere. The radius of the sphere determines the maximum permis-
sible approximation for distance comparison. The choice of uniform distribution
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for noise will be crucial to prevent averaging out the noise by an adversary,
thereby preventing trivial known plaintext attacks.

Preprocessing Techniques. While our core encryption scheme can encrypt any
individual message given only the secret key, we propose preprocessing steps
which enhance the security guarantees and utility of our scheme. The prepro-
cessing steps assume additional knowledge when encrypting. The first idea is
shuffling. Here, the entire dataset is encrypted component-wise at once, after
the plaintexts are shuffled according to a random permutation. This can be
achieved efficiently as shown in [8,40]. To our knowledge, this technique is new in
property-preserving encryption (PPE). The second idea is normalization, which
converts the plaintexts to a normal distribution. This can be done by apply-
ing standard statistical tools like the BoxCox transform [53]. In our results we
sometimes assume that such preprocessing techniques have been applied; in par-
ticular, our results based on one-wayness apply to plaintexts (i.e., vectors) fol-
lowing a multivariate normal distribution. Many natural statistics already follow
a normal distribution as well in which case, we can skip the normalization stage
altogether. Indeed, such a pre-processing enables us to bypass uniform data
assumption in [10] which does not hold for most general datasets.

Indistinguishability-Based Security and “ideal DCPE” A natural type of secu-
rity notions to consider here is “indistinguishability-based.” Indeed, as DCPE is
a special case of property-preserving encryption (PPE), the Left-or-Right (LoR)
security notion of [15,48] applies. Roughly, LoR considers an adversary making
queries (x1

0, x
1
1), . . . , (x

q
0, x

q
1) to an oracle returning encryptions of either the left

messages or the right messages. For the given predicate p, it is further required
that (x1

b , . . . , x
q
b) have the same “p-equality pattern” for b ∈ {0, 1}. This restric-

tion ensures that the functionality of the scheme does not allow the adversary
to trivially win the game and that only p leaks. We show that it follows from
structural results discussed above that this notion is not achievable for approxi-
mate pdist-comp with practical approximation factors. (We leave open whether it
is possible using preprocessing on the entire dataset simultaneously).

Faced with this impossibility result, we move toward using the above-
mentioned preprocessing techniques and considering other security notions to
analyze guarantees for our scheme. We show security against three types of
attacks that have been influential in prior work.

First Target: Security Against Membership Inference. Our first target is secu-
rity against membership inference (MI) attacks, in which the adversary tries
to determine whether an individual is in the database or not after seeing the
encrypted database. Often, MI refers to making this determination after seeing
a machine learning model (see e.g. Yeom et al. [60]). In that respect, one can
think of our goal as to immunize a model against black-box MI by encrypting
its outputs under DCPE.

Our “real-or-replaced” (RoR) notion exactly captures these attacks as it
deals with indistinguishability of datasets that differ at exactly one point aka.
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neighboring datasets, following the formalization of [60] but assuming the differ-
ing points are sufficiently close (so it is not a “full-fledged” MI attack, security
against which is unachievable for us). As mentioned, a crucial technique we use
to achieve it is that of a shuffle outputting a random permutation of the cipher-
texts. Shuffling has become a state-of-the-art technique for security amplification
in this setting for differential privacy and we observe similar results in our case
as well. We stress that via shuffling we obtain a negligible security bound rather
than a moderate one as one might expect from [60], which would give our result
a questionable interpretation.

In more detail, in RoR the adversary chooses a dataset and sends it to an
oracle which does either of the two things with equal probability—(1) Creates
a random permutation of the dataset, encrypts it, (2) Chooses one point in the
dataset at random, replaces it with another point chosen uniformly within a
bounded distance (parameter of the security notion) from the to-be-replaced
point, generates a random permutation of the modified dataset and encrypts
it. The encrypted points are then returned to the adversary whose goal is to
identify which dataset was encrypted.

Second Target: Frequency-Finding Security. Here, we target security against
frequency-finding (FF) attacks, where the adversary tries to estimate how many
times some element appears in the database. In our formulation, the adversary
need not even know which element it is and tries to guess an approximate fre-
quency. Leakage of frequency information about the plaintext has proved to be
the Achilles’ heel of previous works in property-preserving encryption schemes
(for instance, OPE/ORE and even ideal ORE) [26,47]. Such attacks have suc-
cessfully reconstructed (partially or completely) the messages encrypted under
the aforementioned schemes by exploiting this leakage. Thus, it is imperative we
ensure that similar attacks to do not apply.

In Theorem 6 we prove that such leakage does not occur for SAP (for multi-
variate normal data). This is proven by a reduction from a new security notion in
the spirit of one-wayness. In particularly, we generalize the window one-wayness
(WOW) notion of [10] to higher dimensions, calling it attribute window one-
wayness AWOW and prove it holds for SAP relative to a message oracle, which
takes as input a distribution chosen by the adversary and outputs the encryp-
tion of a randomly sampled message from the said distribution. The reduction
to FF exploits the fact that a frequency table (histogram) can be used to con-
struct the Empirical Cumulative Distribution Function (ECDF), which in turn
provides vital information about the high-density points in the support of the
underlying distribution. As a conclusion, the FF results say that it is impossible
to guess approximate frequencies for any attribute occuring with significantly
high probability from a message space sampled from a multivariate gaussian
distribution.

In order to help readers have a clearer understanding of the concrete security
values that we achieve and show the dependence of various parameters on the
security bounds, we give some values in Tables 1 and 2 for reference.
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Third Target: Bit Security. Finally, we aim to characterize bit-security of the
plaintexts. This effort, inspired by [10,54], is motivated by the fact that while
DCPE inherently cannot hide all partial information, it may still protect some
“physical bits” of the plaintexts that represent important partial information in
practice. To explain bit-security more precisely, let x be a plaintext in a dataset
sampled from some distribution (in our results it is multivariate normal). Fix
some stretch of bit-positions of x. We call the stretch OW if given the encryption
of the dataset it is hard to compute that stretch of bits of x. We call the stretch
pseudorandom if given the encryption of the dataset one cannot distinguish that
stretch of bits from random. Intuitively, this means all partial information about
these bits is hidden.

To characterize bit security, we go through several steps. First, we introduce
an experiment called Hardcore Bits (HCB) which enables us to talk about one-
wayness and pseudorandomness of lower order bits for the same message. HCB
creates a hybrid to compose the RoR result atop OW. We prove the lower log δ
bits are pseudorandom, where δ is the distance parameter for RoR. Further,
at least half the lower half of the bits are one way. Concretely the number of
one way bits of a n bit string is n

2 + k, where k is directly proportional to
the approximation factor β. The latter beats the result for OPE [10]; the OPE
scheme also does not have hardcore bits. See Fig. 2 for a depiction of our result.

1.3 Discussion

From DCPE to Approximate Nearest Neighbour (ANN). Any standard Exact
Nearest Neighbour algorithm can be applied to a database encrypted using our
scheme in a modular way to obtain ANN. We show in Sect. 3.2 that using this
approach, any β-DCPE scheme yields an ANN with worst-case approximation
factor of β.

Overall Security Assessment. We have chosen the three types of attacks we
consider as representative of the security desired in practice and find it very
encouraging that our scheme defends against them. It should however be noted
that security against these attacks does not yet imply our scheme is safe to use
in a particular application. PPE has been a notoriously murky area but has
also been extremely influential in practice, making forward progress essential.
Overall, we hope that with time the community vets our scheme and creates a
more complete understanding of it, as well as extends it in directions mentioned
below to further increase its security.

An Example Application. The above caveat notwithstanding, one example appli-
cation where our scheme may be suitable is where the dataset consists of infor-
mation of people from various demographics. The census data is a well-known
example of such a dataset which is used widely for similarity search. Nearest
Neighbour Search is a state-of-the-art algorithm in such a setup. In such an
application, it might be acceptable to differentiate people based on zip code but
the identity of a person must be indistinguishable from others living in the same
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zip code. Our RoR results guarantee strong security while ensuring utility in such
setting.

Setting the Parameters. Overall, the choice of β is pivotal in balancing security
and utility. Hence, a natural question to ask is what value of β should be chosen
for some application? Unfortunately, there is no single answer, as the parameters
needed would vary based on the size of the domain and tolerable error in the
application. For instance, if we have a dataset where the message-space for each
component is (−N,N), and the ANN can tolerate an error up to Emax ≤ N ,
then β ≤ Emax will ensure that the error is within the specified limit. (Refer to
Sect. 3.2 for details). From a security perspective, Tables 1 and 2 suggest taking
β ≥ √

N . Hence, we are looking at the range
√

N ≤ β ≤ Emax. Note, that this
is a contradiction if Emax ≤ √

N . This suggests our scheme should not be used
in such a case, i.e. maximum tolerable error must be at least square-root the
domain size.

Fruitful Future Directions. A step forward in this direction would be generaliz-
ing SAP schemes to make them compatible with other metric spaces. Distance-
comparison-revealing encryption (DCRE) is also a compelling subject of study.
Recall a DCPE evaluation algorithm takes as input a set of three plaintexts
and outputs the pairwise distance comparison between them. This primitive can
exhibit security improvements over DCPE, similar to the effect of ORE [11,16]
over OPE [9,10].

Another future direction is to combine sketching algorithms [37,55] with our
scheme. A sketch of some data set with respect to a function f is a compression
(e.g., dimension reduction) which allows users to (approximately) compute f by
having access to the sketch alone. Such compression approaches are intuitively
expected to be effective techniques to significantly improve bit-security.

1.4 Further Related Work

The only previous FRE scheme that works on higher-dimensional vectors is
the scheme of [27] for partial ordering. “Left-or-right” ORE [43] is designed to
immunize ORE-based protocols against snapshot attacks but suffers the draw-
back that the support of efficient higher-level protocols afforded by plain ORE
is no longer present. Non-FRE based protocols such as Arx [49] or essentially
any structured encryption scheme [14] are semantically secure in the snapshot
attack model, but also do not carry the practical benefits of using FRE, namely
avoiding implementing an entirely different backend. Non-FRE based protocols
for secure nearest-neighbor search have been widely addressed by the database
community, although they are rather ad hoc or insecure (see [59] and references
therein).
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2 Preliminaries

We mostly use standard notation. A detailed description of the notations, some
standard cryptographic primitives, and mathematical background needed for our
technique is given in the full version [22].

We specialize some notions relevant to our setting. A dataset is composed of
a list of vectors, which we refer to as messages m = (m[1], . . . , m[d]), Messages m
lie in a bounded d-dimensional discrete space M. We denote by |D| the number
of messages in D. Component m[i] is also referred to as the ith attribute of m.
Mostly plaintext space (M) and ciphertext space (C) are of the form [−M,M ]d

and [−C,C]d respectively where M,C ∈ N, i.e. a d dimensional space with
each dimension being [−M,M ].

In all our results, messages will be sampled independently from a multivariate
distribution MD with support M (note the attributes in a given message may
still depend on one another). If there is a dataset D, where each message m ∈ D
follows distribution MD (denoted by D ∼ MD). At times, we take the liberty
to refer to it as a distribution MD of a dataset D. Furthermore, each attribute
m[i] is assumed sampled from a distribution Di defined on [−M,M ]. Thus,
MD = (D1, . . . ,Dd). Again, we might drop the subscript and write only D
when appropriate.

3 Approximate Distance-Comparison-Preserving
Functions and Their Properties

Before turning to corresponding encryption schemes, we give definitions of dis-
tance-comparison-preserving functions and related notions. Our central notion
is that of approximate distance preservation and others will serve as related
auxiliary notions. Note that the definitions have been presented in a generalized
form. The domain, range and parameter space can be easily chosen as per need.

3.1 Notions Considered

Below, functions can be randomized. If f : X → Y is a randomized function
then when f(x) occurs in an equation it means the equation should hold for
any possible outcome of the coins. Note that in this subsection, we use generic
symbols, as these notions can be applied on a variety of domains. For instance,
x, y can be vectors or numbers. In particular, for generality of definitions we use
dist(·, ·) to denote any metric, we but our results concern the case of Euclidean
distance, which we denote by ‖ · ‖.

Distance-Preserving (DP) Function: A function f : X → Y is said to be
DP if

∀x, y ∈ X : dist(x, y) = dist(f(x), f(y)).



Approximate Distance-Comparison-Preserving Symmetric Encryption 125

Approximate-Distance-Preserving ((α, β′)-DP) Function: Let α ∈ R, β′ ∈
R

+. A function f : X → Y is said to be (α, β′)-DP if

∀x, y ∈ X : α dist(x, y) − β′ < dist(f(x), f(y)) < α dist(x, y) + β′.

Distance-Comparison-Preserving (DCP) Function: A function f : X → Y
is said to be DCP if

∀x, y, z ∈ X : dist(x, y) < dist(x, z) =⇒ dist(f(x), f(y)) < dist(f(x), f(z)).

Approximate-Distance-Comparison-Preserving (β-DCP) Function: For
β ∈ R

+, a function f : X → Y is said to be β-DCP if

∀x, y, z ∈ X : dist(x, y) < dist(x, z) − β =⇒ dist(f(x), f(y)) < dist(f(x), f(z)).

Note that a function f is 0-DCP ⇐⇒ f is DCP.
We point out that that these notions are intricately related to each other. A

detailed analysis can be found in the full version [22] for lack of space. Notably,
we roughly show that approximate distance-comparison-preserving functions are
approximate distance-preserving.

Using encryption systems that are exactly distance-preserving has been
proven to be highly insecure [44,56]. Hence we introduce further notions which
help to achieve the necessary security requirements. The reason we concentrate
on approximate-distance-comparison-preserving functions over DCP functions
is that the former comprises of functions whose formulations are independent
of the dataset. This is because we set the approximation fator as a constant
independent of the underlying dataset. Exact distance comparison-preserving
encryptions need to have parameters that depend on particular datapoints in
the message space. The notion of β-DCP does not have any such restrictions as
the bounds on the perturbations are independent of the dataset on which it is
being applied.

3.2 Accuracy of Nearest Neighbors for β-DCP Functions

When using an existing nearest-neighbor search algorithm with a β-DCP func-
tion, our goal is to guarantee some reasonable bounds on the accuracy of the
algorithm. The following claim proves that any nearest-neighbour search algo-
rithm run on a set of points after post processing by a β-DCP function returns
a point whose plaintext distance from the user query is no more than β larger
than the distance to the actual nearest neighbour.

Let NN be a Nearest-Neighbor algorithm that is given query q and a set of
points P and NN(q,P) returns s ∈ P if ∀x ∈ P : dist(q, s) ≤ dist(q, x), i.e., s is
the nearest neighbor for q.

Let f be a β-DCP function. Consider a run of NN with query f(q) and set
f(P). Let s∗ be such that NN(f(q), f(P)) = f(s∗) (which exists since NN returns
a value in f(P)).
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Claim. ∀x ∈ P : dist(q, s∗) ≤ dist(q, x) + β.

Proof. Assume that for some x ∈ P we had dist(q, s∗) > dist(q, x) + β, that
is, dist(q, x) < dist(q, s∗) − β. Since f is β-DCP, this implies dist(f(q), f(x)) <
dist(f(q), f(s∗)). But since NN(f(q), f(P)) = f(s∗), and thus dist(f(q), f(s∗))
≤ dist(f(q), f(x)), this is a contradiction.

We stress that β is the worst-case error in predicting the nearest neighbors.

(Approximate-)Distance-Comparison-Preserving Encryption ((β-)
DCPE): We say that a symmetric key encryption scheme SE =
(KeyGen, Enc,Dec) with plaintext and ciphertext spaces X and Y is
(approximate-)distance-comparison-preserving if Enc(K, ·) is a (β-)DCP func-
tion from X to Y for all K output by KeyGen.

3.3 Impossibility of Ideal Security

As in the study of its predecessor OPE [9], a first question about β-DCPE is
whether it can achieve “ideal” security, meaning it leaks only the approximate
distance comparisons between the plaintexts. As in the case of OPE, the answer
is “no”. (However, there is a caveat, hence we refer readers to Remark 1). Toward
this end, we first introduce the relevant definition.

Indistinguishability-Based Security of Approximate DCPE

Definition 1. Let SE = (KeyGen, Enc,Dec) be a β-DCPE scheme with message
space M = [−M,M ]d and ciphertext space C = [−C,C]d. For an LoR compatible
adversary A, define its LoR-advantage

AdvLoRSE (A) = 2 · Pr
[
ExpLoR

SE (A) = 1
]

− 1

where the experiment above is defined as follows:

Experiment ExpLoR
SE (A):

K
$←− KeyGen

b
$←− {0, 1}

b′ $←− ALR(·,·)

If b == b′

return 1
Else return 0

Oracle LR(m0,m1):
c $←− EncK(mb)
Return c

Let (m0
1,m

1
1), . . . , (m

0
q,m

1
q) be a sequence of queries made by A to its oracle.

We call A an LoR compatible adversary if for every such sequence the following
holds for all i, j, k ∈ [q]:

dist(m0
i ,m

0
j ) ≤ dist(m0

j ,m
0
k) − β ⇒ dist(m1

i ,m
1
j ) ≤ dist(m1

j ,m
1
k) − β.

This can be seen as a special case of the notion introduced by [48]. We say
that SE is ideal-secure if AdvLoR

SE (A) is small for every efficient LoR-adversary A.
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Impossibility Result

We show that no β-DCPE scheme for Euclidean distance is ideal-secure unless β
is likely too large to be useful in applications. The proof relies on a “Big-jump”
style attack as in [9] that uses only two pairs of oracle queries.

Theorem 1. Let SE = (KeyGen, Enc,Dec) be a β-DCPE scheme with plain-
text space M = [0,M ]. If β < M

4 then there is an LoR-adversary A such that
AdvLoRSE (A) = 1.

Proof. Consider the following adversary:

Algorithm 1. Big-Jump Adversary
procedure ABigJump

N ← LR(M, M); α ← N
M

; β′ ← 2αβ

cb ← LR(0, M)
If dist(N, cb) < β′, then return b′ ← 1
Return b′ ← 0

It is vacuously true that ABigJump is LoR. We now argue that AdvLoR
SE (ABigJump)

= 1. Before that we state the following theorem whose proof can be found in the
full version [22].

Theorem 2 (1-Dimension). Let N ∈ R,M ∈ N ∪ {0}, if f : N → R is a
β-DCP, and f(0) = 0, f(M) = N , then ∀x, y such that 0 < x, y < M ,

N

M
(dist(x, y) − 2β) ≤ dist(f(x), f(y)) ≤ N

M
(dist(x, y) + 2β).

In other words, if f is β-DCP, then f is (α, β′)-DP, where α = N
M and β′ = 2 N

M β.

Theorem 2 tells that that any β-DCP function is (α, β′)-DP, where α =
N
M and β′ = 2 N

M β, i.e. for any m1,m2 ∈ M and any possible corresponding
ciphertexts (for any possible key and randomness of the encryption) c1, c2 we
have

N

M
· dist(m1,m2) − 2

N

M
β ≤ dist(c1, c2) ≤ N

M
· dist(m1,m2) + 2

N

M
β.

If cb corresponds to the encryption of M , the above expression gives us
dist(cb, N) ≤ 2 N

M β. Whereas dist(cb, N) ≥ N − 2 N
M β when 0 is encrypted by

LR.
If β < M

4 , then 2 N
M β < N − 2 N

M β, and thus AdvLoR
SE (ABigJump) = 1.

This impossibility result can easily be extended to multiple dimensions.
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Remark 1. This proof does not necessarily hold if the data is subjected to pre-
processing on the entire database before encryption. One such example of pre-
processing is shuffling which has been explored in Sect. 4.2. It must be noted
that shuffling does not contradict this proof. However there is no guarantee that
there does not exist any preprocessing method which can bypass this result.
In the case of OPE, with preprocessing ideal security can be achieved. We are
unsure if this can be achieved for DCPE using some preprocessing and leave this
for future work.

4 The Scale-and-Perturb (SAP) Scheme

We first give our core encryption scheme and then discuss additional preprocess-
ing techniques.

4.1 Our Core β-DCPE Scheme

We now propose our core β-DCPE scheme for Euclidean distance based on
our prior characterization of approximation distance-comparison preserving
functions. We will suggest data preprocessing techniques in Sect. 4.2 in addi-
tion. Let M = [−M,M ]d be a discrete message space of dimension d. Let
PRF : {0, 1}k × {0, 1}� → {0, 1}∗ be a function family for some k, � ∈ N. We
leave the number of output bits implicit in our algorithms for simplicity. The
scheme is also parameterized by β which can take any non negative value less
than 2M

√
(d). In the algorithm below, U ,N denote a uniform and gaussian

distribution respectively.
The keyspace is denoted by S, where |S| ≤ 2λ, where λ is the security param-

eter. Define the “Scale-And-Perturb” (SAP) encryption scheme on M as

SAP = SAP[PRF, β,S] = (KeyGenSAP, EncSAP,DecSAP)

as shown in Algorithm 2.

Scheme Overview: The coins generated using the PRF are used for decryption.
They provide a unique identity to each plaintext-ciphertext pair which makes
decryption possible. The TapeGen PRF from [9] can be a candidate PRF. Of
course, security of our scheme also depends on the chosen PRF. For simplicity,
we do not talk about the PRF in the remainder, analyzing the core (no-decrypt)
scheme. Our results all then transfer to the scheme described above mutatis
mutandis.

The scaling factor is selected uniformly at random from the keyspace S (Line
1 of KeyGenSAP). The choice of the size of S does not affect utility but has
an influence on the one-wayness bounds. Specific values of the size would vary
based on applications and we have tabulated some results in Table 2. Take note
that λ (which we sometimes denote as λm since it is chosen independently for
each message m ∈ M) is a d-dimensional vector whose norm has an upper
bound of sβ

4 . We sample it in such a way that λm is chosen uniformly from the
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Algorithm 2. The SAP scheme.

procedure KeyGenSAP()

s
$←− S

K
$←− {0, 1}k

return (s, K)

procedure EncSAP((s, K), m)

n
$←− {0, 1}�

coin1‖coin2 ← PRF(K, n)

u ← N (0, Id; coin1)

x′ ← U(0, 1; coin2)

x ← sβ
4 (x′)

1
d ; λm ← ux

‖u‖
c ← sm + λm

return (c, n)

procedure DecSAP((s, K), (c, n))

coin1‖coin2 ← PRF(K, n)

u ← N (0, Id; coin1)

x′ ← U(0, 1; coin2)

x ← sβ
4 (x′)

1
d

λm ← ux
‖u‖

m ← c−λm
s

return m

d-dimensional ball of radius sβ
4 (Line 6 of EncSAP). To do so, we first generate

a vector from a multivariate normal distribution with mean 0 and variance Id,
which is a d-dimensional identity matrix. The uniform point inside the ball is
generated by multiplying the standardized version (point divided by its norm)
of this point with the dth root of a uniformly generated point from [0, 1] followed
by re-scaling with the radius of the ball. This mechanism ensure that the each
point inside the ball can be sampled with uniform probability [29].

Claim 2: For any scaling factor s ∈ S, EncSAP(s, ·) is β-DCP wrt. Euclidean
distance.

Proof. Denote EncSAP(s, ·) by f(·) for notational simplicity. Let x,y, z ∈ M.
Suppose ‖x−y‖ < ‖y−z‖−β. f(x) = sx+λx. f(y) = sy+λy. f(z) = sz+λz.

Hence,

‖f(x) − f(y)‖ ≤ ‖f(x) − sx‖ + ‖sx − sy‖ + ‖f(y) − sy‖ (1)

= ‖λx‖ + s‖x − y‖ + ‖λy‖ < ‖λx‖ + ‖λy‖ + s(‖y − z‖ − β) (2)

= ‖sy − sz‖ − sβ + ‖λx‖ + ‖λy‖ < ‖sy − sz‖ − sβ + sβ/4 + sβ/4 (3)

= ‖sy − sz‖ − sβ/2 < ‖sy − sz‖ − (‖λz‖ + ‖λy‖) ≤ ‖sy − sz‖ − (‖λz − λy‖) (4)

≤ ‖(sy − sz) − (λz − λy)‖ = ‖f(y) − f(z)‖ .

where (1) Triangle Inequality, (2) by assumption, (3) ‖λx‖, ‖λy‖ < sβ/4 and (4)
Triangle Inequality.

Thus, ‖x − y‖ < ‖y − z‖ − β =⇒ ‖f(x) − f(y)‖ < ‖f(y) − f(z)‖, ∴ f is
β-DCP.

4.2 Two Preprocessing Algorithms

To boost security and compatibility for real life application of SAP, we now
propose two additional preprocessing algorithms. The first operates on the entire
dataset D. The second only needs to know the distribution of D and can otherwise
operate on the data on-the-fly. Thus, both of the transforms make stronger
assumptions about the model.
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Shuffle(dataset): On input dataset D which has n entries (m1,m2, . . . ,mn),
sample a random permutation Π: [n] → [n]. Output the transformed dataset D′

that is mπ(1),mπ(2), . . . ,mπ(n).
Such a shuffle can be implemented using a mix network (mixnet). Very effi-

cient implementations of mixnets handling large data exist [8,40].
Shuffling enhances the security because it hides the identity of the cipher-

text from an adversary. By looking at a set of ciphertexts, the adversary can-
not map it to the plaintext even if it knows them in advance. It enables secu-
rity improvements without adding much computational overheads. Shuffling has
been recently employed in differential privacy works [4,17,21] to achieve security
enhancements while maintaining utility, which is our goal as well.

Normalize(m, MD): On input m a data point coming from a multivariate
distribution MD, apply algorithm BoxCox [53] (state-of-the-art normalization
algorithm) to input m and output the result.

Intuitively, BoxCox is a transformation which takes as input the distribution
of the dataset, and makes a transformation using maximum likelihood estima-
tion. This step can be considered as a heuristic as we do not rigorously deal with
the error on our analyses.

This preprocessing step will be used because our security analyses assume
the data follows a multivariate normal distribution. Such an assumption has
practical significance as a large number of data available in practice [45] either
follow this distribution or can be easily simulated as per the above if not. Note
that if the data is naturally normally distributed this preprocessing step is not
needed.

To combine these preprocessing steps with encryption, the idea is that the
SAP is then applied to each data point output by the transformation; in the
shuffling case this means the dataset is encrypted and sent all together. Naturally,
the transforms can also be composed.

5 Real-or-Replaced Indistinguishability for Neighboring
Datasets

To allow for the shuffling preprocessing step described in Subsect. 4.2, we intro-
duce the notion of security to accommodate the adversary querying an dataset
rather than many points individually. In essence, we define a “real-or-replaced”
(RoR-type) definition where the oracle either shuffles and encrypts: (1) the
dataset D provided by the adversary or (2) the dataset D with a random plaintext
resampled uniformly below a certain distance threshold relative to the original.
We thus have security wrt. “neighboring databases” (as in [20,60]), speaking to
the adversary’s ability to infer whether information of a particular individual is
present in the dataset. Shuffling plays a key role in our analysis here.

Real-or-Replaced Indistinguishability. Let SE = (KeyGen, Enc,Dec) be a
symmetric key encryption scheme. Let MD be the distribution from which the
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plaintext is sampled. In our results, the adversary makes a single Swap oracle
query only.

We say that SE is (r, ε)-RoR-secure for MD if for every δ-RoR adversary A
against SE , its advantage

Advδ−RoR
SE,MD(A) = 2 · Pr

[
Expδ−RoR

SE,MD(A) = 1
]

− 1 ≤ ε,

where the experiment Expδ−RoR
SE,MD(A) is defined as follows (where some of its

algorithms are defined below it):

Experiment Expδ−RoR
SE,MD(A):

K
$←− KeyGen

Ctxt ← ∅
b

$←− {0, 1}
b′ ← ASwap(·)

If b == b′ return 1
Else return 0

Oracle Swap(D0):
i

$←− |D| ; b
$←− {0.1}

D1
$←− Resamp(D0, i, δ)

D′
b

$←− shuffle(Db)
For all m ∈ D′

b

Ctxt ← Ctxt.append(Enc(K,m))
return Ctxt

We stress that Ctxt is a list because the order in which the ciphertexts are
presented to the adversary is important. Above, we define Resample(D, i, δ) to
be the algorithm that on input a dataset D, an index i that denoted which
message in D must be replaced and parameter δ follows the following steps:(1)
Picks up the ith message in D, call it mi. (2) Construct a d dimensional sphere
of radius δ B(mi; δ) around mi. (3) Samples a point at random inside B(mi; δ)
and return it. The final step can be done efficiently in the same way in which
the perturbation factor is chosen for our encryption scheme.

Additionally, note that the shuffle step in the Swap oracle models this pre-
processing step being applied.

5.1 δ-RoR Security Bounds

The following is the main result which upper bounds the δ − RoR adversary’s
advantage.

Theorem 3. Let δ ≤ β
2 . For any δ-RoR adversary A generating its query D of

size N according to distribution MD,

Advδ-RoR
SAP (A) ≤ 2(2 − p)

N(1 − p)

(
1 − pT

2

)N−1

where p =
(

h
rad+ δ

2

)d

, rad = β
4 , a =

√
rad2 − δ2

4 , cos(θ) = 2rad2−4a2

2rad2
, h = a tan( θ

4 )
and T = Pr [‖X − Y ‖ ≤ δ] , (X,Y ) ∼ MD.
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The proof of this theorem requires a cumbersome analysis, hence we shift it
to the full version [22]. As a brief sketch, we first reduce any δ-RoR adversary A to
a canonical adversary which behaves in a pre-determined manner. Then, we pro-
ceed to prove an upper bound on the advantage of the said canonical adversary
using a geometric approach along with standard set theoretic and probabilistic
arguments. Intuitively, each message has a region where its ciphertext might lie
based on the secret key and randomization. Ciphertexts corresponding to differ-
ent messages are indistinguishable if their “ciphertext region” overlap with one
another, and the distinguishing advantage of a adversary is computed by calcu-
lating the fraction of these regions which overlap with others. This along with
the shuffling operation ensures that any canonical RoR adversary has negligible
advantage.

Table 1 shows a few values for Advδ−RoR−D
SAP (A).

6 Security Against Approximate Frequency-Finding
Attacks

Here we define security against an adversary that tries to approximately guess
any one element of the histogram corresponding to an attribute of the plaintext.
We call it the Freq-Find (FF) notion.

We proceed to state some definitions which will be useful in the formal secu-
rity analysis.

Table 1. Some concrete parameters and upper bounds on Advδ−RoR−D
SE (A).

N dim δ β Advδ−RoR−D
SE (A)

100 3 26 215 2−47

300 5 25 210 2−96

1000 5 26 210 2−116

1000 10 29 214 2−217

5000 5 28 211 2−154

5000 8 28 212 2−160

Attribute Histogram: For a list of attributes Lattr = (a1, · · · , an), let
(a′

1, · · · , a′
n′), n′ ≤ n be the set of all unique elements in Lattr. We define

the histogram of Lattr as a list denoted by Hist(Lattr), with each element
Hist(Lattr)[j], j ∈ [n′] as,

Hist(Lattr)[j] =
n∑

i=1

1{ai = a′
j}.
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Most Likely Attribute Histogram: For a set of ciphertexts Lctxt =
(c1, · · · , cn), the most likely attribute histogram for the jth attribute, j ∈ [d]
is a list denoted by Hist(Lj,ml

ctxt), where Lj,ml
ctxt = (mj,ml

1 , · · · ,mj,ml
n ). mj,ml

i is the jth

attribute of the most likely guess for message mi corresponding to ci, ∀ i ∈ [n].

γ-Approximate Histograms: A most likely histogram Hist is called a γ-
Approximate Histogram for the actual histogram Hist(L) if ∀i,

Hist[i] ∈ [Hist(L)[i] − γ,Hist(L)[i] + γ].

In our case, the goal of the adversary is to guess an entry of γ-approximate
histogram of the plaintext histogram.

Up next, we take a detour to introduce an intermediate security notion which
is pivotal in proving the security against FF attacks.

6.1 Window One-Wayness Security Notion

In this section, MD is MVN (μ,Σμ,Σμ,Σ), such that, μμμ = (μ[1], . . . , μ[d]) and ΣΣΣ is the
d × d covariance matrix. Naturally, Di becomes N (μ[i], σ2

1), where σ2
i is the ith

diagonal entry of ΣΣΣ. For some theorems (specifically AWOW) which deal with
attribute space, the subscript has been dropped for ease of reading.

We introduce an intermediate Window One-Wayness based security notion
which was introduced by [10]. It measures the probability that an adversary,
given a set of ciphertexts corresponding to messages chosen at random from the
underlying plaintext distribution decrypts one of them. The definition considers
a general scenario that asks the adversary given some inputs to guess an interval
(window) within which the underlying challenge plaintext lies. They do not need
to point out which plaintext they intend to guess the window around. The size
of the window and the number of challenge ciphertexts are parameters of the
definition.

We analyze the security of individual attributes for each plaintext. This is
much stronger that than looking at the security of a plaintext as a whole as
window one-way security of each attribute implies one-wayness security for the
whole point. The converse need not be true.

Attribute Window One-Wayness: Let SE = (KeyGen, Enc,Dec) be a sym-
metric key encryption scheme. Let MD be a stateful “plaintext sampler” that
on input (state, d∗) (due to ease of notation, we drop state in some function
definitions) outputs a plaintext m whose ath attribute is denoted by m[a] along
with the updated state. Let r ∈ N. In our case, MD will denote a multivariate
distribution sample whose ith attribute follows a univariate gaussian (denoted
by Di).

We say that SE is (r, ε)−AWOW-secure for MD if for every r-AWOW adver-
sary A against SE , i.e., obeying the restrictions given below, its advantage

Advr−AWOW
SE,MD (A) = Pr

[
Expr−AWOW

SE,MD (A) = 1
]

≤ ε,
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where the experiment Expr−AWOW
SE,MD (A) is defined as follows:

Experiment Expr−AWOW
SE,MD (A):

K
$←− KeyGen

S′
M ← ∅

(mL,mR) $←− AMsg()

If ∃m ∈ S′
M such that

for some a ∈ [d], ma ∈ [mL,mR]
return 1

Else return 0

Oracle Msg(d∗):
(state,m) $←− MD(d∗)
S′

M ← S′
M ∪ {m}

c $←− EncK(m)
return c

Restrictions on the Adversary: An (r, ε) − AWOW adversary A must obey
the following rules:

– For any output (mL,mR), |mL − mR| ≤ r.

We now define an alternate r−AWOW security experiment. Here, define that
on input (state, d∗, N), the stateful sampler MD outputs a dataset D of size N
from this distribution.

The experiment Expr−AWOW−1
SE,MD (A) where the adversary has the same restric-

tions as above is defined as follows:

Experiment Expr−AWOW−1
SE,MD (A):

K
$←− KeyGen

S′
M ,CD ← ∅

(mL,mR) $←− AMsg(·)

If ∃m ∈ S′
M such that

for some a ∈ [d], ma ∈ [mL,mR]
return 1

Else return 0

Oracle Msg(d∗, N):
for i ∈ [N ]

(state,mi)
$←− MD(d∗)

S′
M ← S′

M ∪ {mi}
c $←− EncK(m)
CD ← CD ∪ c

return shuffle(CD)

Lemma 1. If in Expr−AWOW
SE,MD (A) the adversary makes N queries to Msg and a

single oracle query in Expr−AWOW−1
SE,MD (A), then we have

Pr
[
Expr−AWOW

SE,MD (A) = 1
]

= Pr
[
Expr−AWOW−1

SE,MD (A) = 1
]
.

Note that the Experiment Expr−AWOW−1
SE,MD (A) captures the case where shuffle

has been applied to the dataset whereas Experiment Expr−AWOW
SE,MD (A) is the sce-

nario where messages are encrypted on-the-fly without shuffle.

Proof. Since each message belonging to the dataset are independently generated,
the messages sampled by Msg oracles for both the experiments follow the same
distribution. Moreover, all random permutations are identically distributed so
the oracle’s output for both experiments will also be identically distributed.
Hence the lemma follows.
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Thus, we see that the shuffle does not have any influence on the r-AWOW
security bounds. From now on, we use Expr−AWOW−1

SE,MD (A) and Expr−AWOW
SE,MD (A)

interchangeably as per convenience.
We say that such MD is multivariate Gaussian if ∀ state, d∗, every ith

attribute follows a univariate distribution Di, where Di is N (μi, σ
2
i ).

6.2 One-Wayness Bounds

Refer to the full version [22] for detailed proofs.
We pay attention to the case when the adversary looks to decrypt the cipher-

text to come with a correct guess for the “most likely” plaintext.

Most Likely Plaintext. Fix a symmetric encryption scheme SE = (KeyGen,
Enc,Dec). For given c ∈ C, if mc ∈ M is a message such that

Pr
K

$←−KeyGen

[Enc(K,m) = c] .

achieves a maximum at m = mc, then we call mc a (if unique, “the”) most likely
plaintext for c.

An Upper Bound on the r-AWOW Advantage. The following theorem
states an upper bound on any AWOW adversary against SAP.

Theorem 4. For any r-AWOW adversary A making at most z Msg oracle
queries

Advr−AWOW
SAP,MVN (μ.Σμ.Σμ.Σ)(A) ≤ z(1 − p)|M| |S| + 1

2|S|
∑
m

((
2rm − βm

m2 − r2
− β

m

) (|M|
m

))
.

(1)
where M = [−M,M ] is the attribute-space of SAP and S is the keyspace. Here, p
is the parameter of the Binomial Distribution (denoted by Bin(|M|, p)) which is
used to approximate N (μ, σ2), which is the univariate distribution of the chosen
attribute. Hence, |M|p = μ, |M|p(1−p) = σ2. For simplicity, we use m to denote
an attribute instead of m[a] which is an abuse of notation.

The proof for this theorem is obtained using straightforward algebraic manip-
ulation and probabilistic arguments (cf. [22]). To help understand the bounds,
we present some values in Table 2. In the table, message space M = [−280, 280]d

and |S| = 230.

A Lower Bound on Large Attribute Window One-Wayness. Here we
show that there exists an efficient adversary attacking the window one-wayness
of SAP for a sufficiently large window size.
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Table 2. Upper and Lower Bounds on r, 1-AWOW Advantage

d r β r, 1-AWOW Upper Bound r, 1-AWOW Lower Bound

1 β
24

215 2−32 2−35

2 β
25

220 2−40 2−43

4 β
25

220 2−51 2−55

6 β
28

225 2−62 2−66

10 β
210

230 2−76 2−78

Theorem 5. For any r-AWOW adversary A, with r ≥ β
2 ,

Advr−AWOW
SAP,MVN (μ.Σμ.Σμ.Σ)(A) ≥ r

2
√|M| ln

1 − p

1 − 2p
. (2)

where M = [−M,M ] is the attribute-space of SAP and S is the keyspace. Here, p
is the parameter of the Binomial Distribution (denoted by Bin(|M|, p)) which is
used to approximate N (μ, σ2), the univariate normal distribution corresponding
to the chosen attribute. Hence, |M|p = μ, |M|p(1 − p) = σ2.

Refer to the full version [22] for proofs.

6.3 Security Against Freq-Find Adversaries

The adversary wins the game if it can guess an entry HistEntry of a γ-
approximate histogram, which occurs at most ψ times. We say that SE is
(γ, ψ, ε) − FF secure for D if the (γ, ψ, ε) − FF advantage of an adversary A
against SE is,

Adv(γ,ψ)−FF
SE,MD (A) = Pr

[
Exp(γ,ψ)−FF

SE,MD (A) = 1
]

≤ ε,

where the experiment Exp
(γ,ψ)−FF
SE,MD (A) is defined as:

Experiment Exp
(γ,ψ)−FF
SE (A):

K
$←− KeyGen

h ← AMsg(·) // a guess for any element of the approx. histogram
count ← 0
for i in 1 to n

for j in 1 to d

If h ∈ [Hist(S′j
M )[i] − γ,Hist(S′j

M )[i] + γ] // (1)
count ← count + 1 // (2)

If 0 < count ≤ ψ // (3)
Return 1

Else return 0

Above, the Msg oracle is exactly the same as in the r-AWOW experiment.
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1. Check if the guess within γ approx. of an histogram entry. Hist(S′j
M ) : his-

togram for the list of jth attribute of elements in the list S′
M .

2. Track the number of times the guessed frequency occurs.
3. Make sure that this guessed frequency occurs at most λ times.

Parameter ψ is an essential parameter which depends on the underlying
plaintext distribution. It prevents the adversary from trivially winning the game
by guessing a frequency value which has a very high number of occurrence in
the histogram. For example, a dataset from a well spread distribution will have
plenty of points sampled only once. In that case, the adversary can win the game
easily by guessing 1.

Upper Bound on the Freq-Find Advantage:

Theorem 6 (Main result). Let A be a (γ, ψ)-FF adversary. Then there exists a
γ
ψ -AWOW adversary B making at most qm queries to the Msg oracle such that
and D ∼ N (μ, σ2) is the univariate distribution for the chosen attribute.

Adv
(γ,ψ)−FF
SAP,MD (A) ≤ 1

0.5( 0.39γ
ψσ − 2e

−0.5
qm )

Adv
γ
ψ −AWOW

SAP (B).

We now define an AWOW adversary B in Algorithm 3 that simulates adver-
sary A. Refer to full version [22] for proofs.

Algorithm 3. γ
ψ -AWOW Adversary

procedure BMsg(·)
Run A

On Message oracle query

(state,x)
$←− MD(d∗)

Sim ← Sim ∪ {x}
Return Msg

Until A outputs HistEntry∗

count ← 0
If ∃i, j HistEntry∗ ∈ [Hist(Simj)[i] − γ,Hist(Simj)[i] + γ]

count ← count + 1
If 0 < count ≤ ψ

Return OptInt(HistEntry∗, Sim) // As calculated in the subsection below
Else Return ⊥

Optimal Attribute Interval. Let Hist(S′j
M ) be the histogram for the list of

jth attributes of elements in the list S′
M . Let X be the random variable used

to denote an attribute following distribution D (D is a Normal Distribution in
our case) over the attribute space. Let HistEntry be any arbitrary guess by the
Freq − Find adversary.
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The optimal attribute interval for such guess for a γ-approximate histogram
entry, is denoted by OptInt(HistEntry,S′

M ) = [mLopt
,mRopt

] such that mRopt
−

mLopt
= r and

∣
∣
∣
∣
∣
∣

Pr

X
$←−D

[li ≤ X ≤ mi] − HistEntry

|S′
M |

∣
∣
∣
∣
∣
∣

= min
j:mj−lj=r

∣
∣
∣
∣
∣
∣

Pr

X
$←−D

[lj ≤ X ≤ mj ] − HistEntry

|S′
M |

∣
∣
∣
∣
∣
∣

.

where r is the attribute window length defined in the AWOW experiment.
Intuitively, the above equation selects the interval of length r among all

possible intervals whose sampling probability is closest to the guess of the FF
adversary.

To better understand the bound, we demonstrate a graph in Fig. 1 to show
how the leading multiplicative constant decays, thus giving a tight bound.

Some Practical Parameters: We present a graph (cf. Fig. 1) to demonstrate
the trend of 1

( 0.39γ
ψσ −2e

−0.5
qm )

, the multiplicative constant Theorem 6 with respect

to the parameter. (It is log scaled for better visuals). This has been done as
the expression is difficult to analyse and very high values of this constant would
indeed make our reduction meaningless.
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7 Bit Security

In this section, we are concerned with characterizing bit security of the plaintexts.
We define a Hardcore Bits experiment which enables us to comment on the
one-wayness and pseudorandomness of different bits from the same message.
The hardcore bits notion actually considers a specific hardcore function and
differs from the classical such notion in that the adversary may request multiple
challenges on related messages. We give a reduction from this notion to δ-RoR.



Approximate Distance-Comparison-Preserving Symmetric Encryption 139

Theorem 7. For any adversary B, playing the Experiment HCB(Hardcore bits)
there exists an δ-RoR adversary A

AdvHCBSAP,MD(B) ≤ Advδ−RoR
SAP,MD(A). (3)

Experiment HCB:

K
$←− KeyGen

S′
M ← ∅

b
$←− {0, 1}

b′ $←− AMsg()()
If b′ == b return 1
Else return 0

Oracle Msg(d∗, N):
for i ∈ [N ]

(state,mi)
$←− MD(d∗)

S′
M ← S′

M ∪ {mi}
mi

$←− EncK(mi)
If b = 0

bits ← right most log2 δ bits of mi

Else

bits
$←− {0, 1}log2 δ

C ← C ∪ ci‖bits
return C

Let A be an adversary taking part in δ-RoR-Experiment. We reduce adversary
B to A. Algorithm 4 gives a perfect simulation by A using its oracle for the queries
made by B. Thus,

AdvHCB
SE (B) ≤ AdvRoR

SE (A).

Hence, Theorem 7 follows.

Algorithm 4. RoR Adversary A

procedure AMsg

Run B
On Msg oracle query (d∗, N)

SD ← SD ∪ {d∗}
for i ∈ [N ]

(state,mi)
$←− MD(·, d∗)

S′
M ← S′

M ∪ {mi}
bitsi ← mi[log2 δ · · · ] // Right most log2 δ bits
Bits ← Bits ∪ bitsi

C
$←− Swapb(S

′
M )

Return C & Bits to B
Repeat until B outputs guess bit b′

Return guess bit b′

Note that the reduction holds because ‖m − m′‖ ≤ δ. It is clear that A
succeeds in breaking the δ-RoR experiment if B breaks the HCB experiment. The
ciphertexts generated for both the messages are identically distributed because
the lower order bits are masked using a uniformly distributed noise. ��

Note: It must be pointed out that the HCB experiment has been carefully
crafted to ensure that one can comment on the one-wayness and pseudorandom-
ness of bits on the same message. To achieve this, the standard Msg oracle has
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been modified to append the rightmost log δ bits of a message (or random log δ
bits) along with the ciphertext for the particular message. The one-wayness of
the bits follows directly from the AWOW results. Experiment HCB allows us to
create a hybrid that can process indistinguishability on top of one-wayness.

Claim. For any message m following MVN ((((μ,Σ)) whose components are n bit
long encrypted by SAP,

1. The lowest log2 δ bits are pseudorandom (i.e., hardcore).
2. The number of left most bits leaked (i.e., efficiently computed) is strictly less

than log2 |M|
2 ( half the higher order bits).

3. If we remove the left-most k bits from the lowest log2 |M|
2 bits, the advantage

of guessing the remaining lower order bits decreases by a multiplicative factor
of 2k.

The proof can be found in the full version [22].

Fig. 2. Demonstrating the bit security.

This shows that SAP scheme leaks strictly less than half of the total bits and
the number of total bits leaked is a decreasing function of the approximation
factor β. More precisely, increasing the approximation factor by k times decreases
the number of bits leaked by log2 k. This is an improvement over at least half
bits leaked by its predecessor OPE [10].
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42. Lacharité, M.-S., Paterson, K.G.: Frequency-smoothing encryption: preventing
snapshot attacks on deterministically encrypted data. IACR Trans. Symm. Cryp-
tol. 2018(1), 277–313 (2018)

43. Lewi, K., Wu, D.J.: Order-revealing encryption: new constructions, applications,
and lower bounds. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C.,
Halevi, S. (eds.) ACM CCS 2016, pp. 1167–1178. ACM Press (2016)

44. Liu, K., Giannella, C., Kargupta, H.: An attacker’s view of distance preserv-
ing maps for privacy preserving data mining. In: Fürnkranz, J., Scheffer, T.,
Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 297–308.
Springer, Heidelberg (2006). https://doi.org/10.1007/11871637 30

45. Toby Mordkoff, J.: The assumption (s) of normality. Dostupno na: goo.gl/g7MCwK
(Pristupljeno 27 May 2017) (2016)

46. Muja, M., Lowe, D.G.: Scalable nearest neighbor algorithms for high dimensional
data. IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2227–2240 (2014)

47. Naveed, M., Kamara, S., Wright, C.V.: Inference attacks on property-preserving
encrypted databases. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015, pp.
644–655. ACM Press (2015)

48. Pandey, O., Rouselakis, Y.: Property preserving symmetric encryption. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
375–391. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 23

49. Poddar, R., Boelter, T., Popa, R.A.: Arx: an encrypted database using semantically
secure encryption. PVLDB 12(11), 1664–1678 (2019)

50. Popa, R.A., Li, F.H., Zeldovich, N.: An ideal-security protocol for order-preserving
encoding. In: 2013 IEEE Symposium on Security and Privacy, pp. 463–477. IEEE
Computer Society Press (2013)

51. Pouliot, D., Griffy, S., Wright, C.V.: The strength of weak randomization: easily
deployable, efficiently searchable encryption with minimal leakage. In: Dependable
Systems and Networks, DSN 2019, pp. 517–529. IEEE (2019)

https://doi.org/10.1007/s10115-004-0173-6
http://arxiv.org/abs/1204.2606
https://doi.org/10.1007/11871637_30
https://doi.org/10.1007/978-3-642-29011-4_23
https://doi.org/10.1007/978-3-642-29011-4_23


144 G. Fuchsbauer et al.

52. Pouliot, D., Wright, C.V.: The shadow nemesis: inference attacks on efficiently
deployable, efficiently searchable encryption. In: Weippl, E.R., Katzenbeisser, S.,
Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 1341–1352. ACM
Press (2016)

53. Sakia, R.M.: The box-cox transformation technique: a review. J. Roy. Stat. Soc.:
Ser. D (Statistician) 41(2), 169–178 (1992)

54. Teranishi, I., Yung, M., Malkin, T.: Order-preserving encryption secure beyond
one-wayness. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS,
vol. 8874, pp. 42–61. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-45608-8 3

55. Tropp, J.A., Yurtsever, A., Udell, M., Cevher, V.: Practical sketching algorithms
for low-rank matrix approximation. SIAM J. Matrix Anal. Appl. 38(4), 1454–1485
(2017)

56. Turgay, E.O., Pedersen, T.B., Saygın, Y., Savaş, E., Levi, A.: Disclosure risks of
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Abstract. This paper revisits Key-Policy Attribute-Based Encryption
(KP-ABE), allowing delegation of keys, traceability of compromised keys,
and key anonymity, as additional properties.

Whereas delegation of rights has been addressed in the seminal paper
by Goyal et al. in 2006, introducing KP-ABE, this feature has almost
been neglected in all subsequent works in favor of better security lev-
els. However, in multi-device scenarios, this is quite important to allow
users to independently authorize their own devices, and thus to delegate
their initial rights with possibly more restrictions to their everyday-use
devices. But then, one may also require tracing capabilities in case of
corrupted devices and anonymity for the users and their devices.

To this aim, we define a new variant of KP-ABE including delegation,
with switchable attributes, in both the ciphertexts and the keys, and new
indistinguishability properties. We then provide a concrete and efficient
instantiation with adaptive security under the sole SXDH assumption in
the standard model. We eventually explain how this new primitive can
address all our initial goals.

1 Introduction

Multi-device scenarios have become prevalent in recent years, as it is now quite
usual for people to own multiple phones and computers for personal and pro-
fessional purposes. Users manage multiple applications across different devices,
which brings forth new kinds of requirements. One must be able to granularly
control what each of his devices can do for numerous applications, with a cost
that is minimal for the user and the overall system. In particular, it is expected
that one can control what each of its devices can access, for example restricting
the rights to read sensitive documents from a professional laptop or phone dur-
ing travel. Furthermore, if one suspects a key to be compromised, it should be
possible to trace and change it without impacting the service. At the same time,
these operations must happen transparently between different devices from the
perspective of the user. This means each device should be autonomously config-
urable with regards to interactions with a central authority or to other devices.
Eventually, one may also expect the delegated keys to be unlinkable, for some
kind of anonymity for the users, even when devices are explored or corrupted by
an adversary.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Usual current authentication means defining a unique account for the user,
providing the same access-rights to all the devices, is equivalent to a key-cloning
approach, where the user clones his key in every device. In this case, all the
devices of the same user are easily linked together, from their keys. This also
prevents countermeasures against specific devices.

Key-Policy Attribute-Based Encryption (KP-ABE), in the seminal paper of
Goyal et al. [7], offers interesting solutions to these issues. Indeed, a policy is
embedded inside each user’s private key, any user can finely-tune the policy
for each of his devices when delegating his keys, for any more restrictive policy.
Besides, since keys become different in each device, one could expect to trace and
revoke keys independently. However, delegation and tracing capabilities might
look contradictory with current approaches, as explained below. But we bridge
this gap and we also suggest complementing these features with a certain level of
unlinkability between the different keys of a single user in order to better protect
the privacy of users.

1.1 Related Work

Attribute-Based Encryption (ABE) has first been proposed in the paper
by Goyal et al. [7]. In an ABE system, on the one hand, there is a policy P
and, on the other hand, there are some attributes (Ai)i, and one can decrypt
a ciphertext with a key if the policy P is satisfied on the attributes (Ai)i.
They formally defined two approaches: Key-Policy Attribute-Based Encryption
(KP-ABE), where the policy is specified in the decryption key and the attributes
are associated to the ciphertext; Ciphertext-Policy Attribute-Based Encryption
(CP-ABE), where the policy is specified in the ciphertext and the attributes are
associated to the decryption key.

In their paper, they proposed a concrete construction of KP-ABE, for any
monotonous access structure defined by a policy expressed as an access-tree with
threshold internal gates and leaves associated to attributes. Attributes in the
ciphertext are among a large universe U (not polynomially bounded). Given an
access-tree T embedded in a private key, and a set of attributes Γ ⊂ U associated
to a ciphertext, one can decrypt if and only if Γ satisfies T . Furthermore, they
laid down the bases for delegation of users’ private keys: one can delegate a new
key, associated with a more restrictive access-tree.

This first paper on KP-ABE allows fine-grained access-control for multiple
devices, dealing with delegation of keys for more restrictive policies. However,
their approach for delegation of keys is conflictual with traceability. Indeed,
on the one hand, for delegation to work properly, users must be given enough
information in the public key to be able to produce valid delegated keys. On the
other hand, for the tracing process to be effective in a black-box way, attackers
must not be able to detect it. From our knowledge, this natural tension between
the two features is in all the existing literature.

Predicate Encryption/Inner-Product Encryption (IPE) were used by
Okamoto and Takashima [13–15], together with LSSS: the receiver can read
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the message if a predicate is satisfied on some information in the decryption
key and in the ciphertext. Inner-product encryption (where the predicate checks
whether the vectors embedded in the key and in the ciphertext are orthogonal) is
the major tool. Their technique of Dual Pairing Vector Space (DPVS) provided
two major advantages in KP-ABE applications: whereas previous constructions
were only secure against selective attacks (the attributes in the challenge cipher-
text were known before the publication of the keys), this technique allowed full
security (a.k.a. adaptive security, where the attributes in the challenge cipher-
text are chosen at the challenge-query time). In addition, it allows the notion
of attribute-hiding (from [8]) where no information leaks about the attributes
associated to the ciphertext, except for the fact that they are accepted or not
by the policies in the keys. It gets closer to our goals, as tracing might become
undetectable. However, it does not seem any longer compatible with delegation,
as the security proofs require all the key generation material to remain a secret
information for the key issuer only.

As follow-up works, Chen et al. [3,4] designed multiple systems for IPE, with
adaptive security, and explored full attribute-hiding with weaker assumptions
and shorter ciphertexts and secret keys than in the previous work of Okamoto-
Takashima. However, it does not fit our expectations on delegation, for the same
reasons. On the other hand, Attrapadung also proposed new ABE schemes based
on Pair Encoding Systems, which allow for all possible predicates and large uni-
verses [1], but this deals neither with delegation nor with any kind of attribute-
hiding, as we would need.

1.2 Contributions

Since the approach of [14] is close to our goal, with attribute-hiding that seems
promising for traceability, we extend the original construction to make it com-
patible with delegation. We propose and prove, in the full version [6], a simple
variant that handles delegation with adaptive security under the SXDH assump-
tion. Then, we target delegatable KP-ABE with some additional attribute-hiding
property in the ciphertext to allow undetectable tracing.

To this aim, we first detail one of the main limitation we have to overcome
in order to get delegation and traceability: with the original approach of [7],
attributes associated to the ciphertext are explicitly stated as elements in the
ciphertext. Removing some attributes can thus allow to single out specific private
keys, but this is a public process, and thus incompatible with any tracing proce-
dure, that would then be detectable by the adversary. To prevent that, our first
contribution is the new primitive: Switchable-Attribute Key-Policy Attribute-
Based Encryption (SA-KP-ABE), where one can invalidate some attributes in the
ciphertext, without removing them. More precisely, we will bring new properties
to the attributes in ciphertexts (for undetectable tracing) but also symmetrically
to the leaves in keys (for anonymity).

In a SA-KP-ABE scheme, attributes in a ciphertext and leaves in an access-
tree T defining the policy in a key can be switched in two different states:
Attributes can be set to valid or invalid in a ciphertext at encryption time, using
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Feature [14] [11] [4] Ours
Security Adaptive Adaptive Adaptive Adaptive

Assumptions DLIN q-type XDLIN SXDH
Construction type CP/KP ABE CP/KP ABE IPE KP ABE

Delegation � × × �
Traceability × � × �

Fig. 1. Comparison with Related Work

a secret encryption key. We then denote Γ = Γv ·∪ Γi, the set of attributes for a
ciphertext, as the disjoint union of valid and invalid attributes; Leaves can be set
to passive or active in the access-tree in a key at key generation time, using the
master secret key. We also denote L = Lp ·∪ La, the set of leaves, as the disjoint
union of passive and active leaves. A set of valid/invalid attributes Γ = Γv ·∪Γi is
accepted by an access-tree T with passive/active leaves L = Lp ·∪ La, if the tree
T is accepting when all the leaves in L associated to an attribute in Γ are set to
True, except if the leaf is active (in La) and the associated attribute invalid (in
Γi). As already presented above, passive/active leaves in L are decided during the
Key Generation procedure by the authority, using the master secret key. Then
the keys are given to the users. During the Encryption procedure, a ciphertext
is generated for attributes in Γ , but one might specify some attributes to be
invalid by using a secret tracing key, which virtually and secretly switches some
active leaves to False. Passive leaves are not impacted by invalid attributes.

A second contribution is a concrete and efficient instantiation of
SA-KP-ABE, with security proofs under the SXDH assumption. We eventually
explain how one can deal with delegatable and traceable KP-ABE from such a
primitive. As shown on Fig. 1, our scheme is the first one that can combine both
delegation and traceability of keys for KP-ABE. Computational assumptions are
recalled in the next section and in the full version [6].

Our first simple construction (in the full version [6]) following the initial proof
from [14], only allows a polynomial-size universe for the attributes involved in
the policy, encoded as a Boolean access-tree. This is due to a limited theorem
with static attributes in the change of basis in the DPVS framework (see the
next section). The latter construction will allow an unbounded universe for the
attributes, with an adaptive variant in the change of basis (see Theorem 3). This
result is of independent interest.

Discussions. Our setting bears common characteristics with recent KP-ABE
approaches, but with major differences. First, Waters [16] introduced the Dual
System Encryption (DSE) technique, to improve the security level of KP-ABE,
from selective security in [7] to adaptive security. In DSE, keys and ciphertexts
can be set semi-functional, which is in the same vein as our active leaves in keys
and invalid attributes in ciphertexts. However, DSE solely uses semi-functional
keys and ciphertexts during the simulation, in the security proof, while our
construction exploits them in the real-life construction. The security proof thus
needs another layer of tricks.
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Second, the attribute-hiding notions are strong properties that have been well
studied in different IPE works. However, one does not need to achieve such a
strong result for tracing: Our (Distinct) Attribute-Indistinguishability is properly
tailored for KP-ABE and tracing.

Finally, we detail the advantage of our solution over a generic KEM app-
roach that would combine a Delegatable KP-ABE and a black-box traitor-tracing
scheme. This generic solution works if one is not looking for optimal bounds
on collusion-resistance during tracing: The main issue with such a use of two
independent schemes is that for each user, the KP-ABE key and the traitor-
tracing key are not linked. As a consequence, the encryptions of the ABE part
and the tracing part are done independently. The colluding users can all try to
defeat the traitor tracing without restriction: the collusion-resistance for trac-
ing in the global scheme will exactly be the collusion-resistance of the traitor
tracing scheme. On the other hand, our construction will leverage the collusion-
resistance of KP-ABE to improve the collusion-resistance of tracing: only players
non-revoked by the KP-ABE part can try to defeat the traitor tracing part. Hence,
during tracing, one can revoke arbitrary users thanks to the policy/attributes
part. This allows to lower the number of active traitors, possibly keeping them
below the collusion-resistance of the traitor tracing scheme, so that tracing
remains effective.

2 Preliminaries

We will make use of a pairing-friendly setting G = (G1,G2,Gt, e,G1, G2, q),
with a bilinear map e from G1 × G2 into Gt, and G1 (respectively G2) is a
generator of G1 (respectively G2). We will use additive notation for G1 and G2,
and multiplicative notation in Gt.

Definition 1 (Decisional Diffie-Hellman Assumption).The DDH assump-
tion in G, of prime order q with generator G, states that no algorithm can
efficiently distinguish the two distributions

D0 = {(a · G, b · G, ab · G), a, b
$← Zq} D1 = {(a · G, b · G, c · G), a, b, c

$← Zq}

And we will denote by Advddh
G

(T ) the best advantage an algorithm can get in
distinguishing the two distributions within time bounded by T . Eventually, we
will make the following more general Symmetric eXternal Diffie-Hellman (SXDH)
Assumption which makes the DDH assumptions in both G1 and G2. Then, we
define AdvsxdhG (T ) = max{Advddh

G1
(T ),Advddh

G2
(T )}.

2.1 Dual Pairing Vector Spaces

We review the main points on Dual Pairing Vector Spaces (DPVS) to help
following the intuition provided in this paper. Though not necessary for the
comprehension of the paper, the full details are provided in the full version [6].
DPVS have been used for schemes with adaptive security [9,12,13,15] in the same
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vein as Dual System Encryption (DSE) [16], in prime-order groups under the
DLIN assumption. In [10], and some subsequence works, DSE was defined using
pairings on composite-order elliptic curves. Then, prime-order groups have been
used, for efficiency reasons, first with the DLIN assumption and then with the
SXDH assumption [5]. In all theses situations, one exploited indistinguishability
of sub-groups or sub-spaces. While we could have used any of them, the latter
prime-order groups with the SXDH assumption lead to much more compact and
efficient constructions.

In this paper, we thus use the SXDH assumption in a pairing-friendly setting
G, with the additional law between elements X ∈ G

n
1 and Y ∈ G

n
2 : X × Y def=∏

i e(Xi,Yi). If X = (Xi)i = �x · G1 ∈ G
n
1 and Y = (Yi)i = �y · G2 ∈ G

n
2 :

(�x · G1) × (�y · G2) = X × Y =
∏

ie(Xi, Yi) = g
〈�x,�y〉
t , where gt = e(G1, G2) and

〈�x, �y〉 is the inner product between vectors �x and �y.
From any basis B = (�bi)i of Z

n
q , we can define the basis B = (bi)i of G

n
1 ,

where bi = �bi · G1. Such a basis B is equivalent to a random invertible matrix
B

$← GLn(Zq), the matrix with �bi as its i-th row. If we additionally use B
∗ =

(b∗
i )i, the basis of Gn

2 associated to the matrix B′ = (B−1)�, as B · B′� = In,

bi ×b∗
j = (�bi ·G1)× (�b′

j ·G2) = g
〈�bi,�b

′
j〉

t = g
δi,j

t , where δi,j = 1 if i = j and δi,j = 0
otherwise, for i, j ∈ {1, . . . , n}: B and B

∗ are called Dual Orthogonal Bases. A
pairing-friendly setting G with such dual orthogonal bases B and B

∗ of size n is
called a Dual Pairing Vector Space.

2.2 Change of Basis

Let us consider the basis U = (ui)i of Gn associated to a random matrix U ∈
GLn(Zq), and the basis B = (bi)i of Gn associated to the product matrix BU ,
for any B ∈ GLn(Zq). For a vector �x ∈ Z

n
q , we denote (�x)B =

∑
ixi · bi. Then,

(�x)B = (�y)U where �y = �x · B. Hence, (�x)B = (�x · B)U and (�x · B−1)B = (�x)U
where we denote B

def= B ·U. For any invertible matrix B, if U is a random basis,
then B = B · U is also a random basis. Furthermore, if we consider the random
dual orthogonal bases U = (ui)i and U

∗ = (u∗
i )i of G

n
1 and G

n
2 respectively

associated to a matrix U (which means that U is associated to the matrix U
and U

∗ is associated to the matrix U ′ = (U−1)�): the bases B = B · U and
B

∗ = B′ · U∗, where B′ = (B−1)�, are also random dual orthogonal bases:

bi × b∗
j = g

�bi·�b′�
j

t = g
�ui·B·(B−1)�·�u′�

j

t = g
�ui·�u′�

j

t = g
δi,j

t .

All the security proofs will exploit changes of bases, from one game to another
game, with two kinds of changes: formal or computational.

Formal Change of Basis, where we start from two dual orthogonal bases U and
U

∗ of dimension 2, and set

B =
(

1 1
0 1

)

B′ =
(

1 0
−1 1

)

B = B · U B
∗ = B′ · U∗
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then,

(x1, x2)U = (x1, x2 − x1)B (y1, y2)U∗ = (y1 + y2, y2)B∗ (1)
(0, x2)U = (0, x2)B (0, y2)U∗ = (y2, y2)B∗ (2)

In practice, this change of basis makes b1 = u1 + u2, b2 = u2, b∗
1 = u∗

1,
b∗
2 = −u∗

1 + u∗
2. If u1/b1 and u∗

2/b
∗
2 are kept private, the adversary cannot

know whether we are using (U,U∗) or (B,B∗). This will be used to duplicate some
component, from a game to another game, as shown in the above Example (2).

Computational Change of Basis, where we define vectors in a dual orthogonal
basis (U,U∗) of dimension 2. From a Diffie-Hellman challenge (a·G1, b·G1, c·G1),
where c = ab + τ mod q with either τ = 0 or τ

$← Z
∗
q , one can set

B =
(

1 a
0 1

)

B′ =
(

1 0
−a 1

)

B = B · U B
∗ = B′ · U∗ (3)

then, in basis (B,B∗), we implicitly define

(b, c)U + (x1, x2)B = (b, c − ab)B + (x1, x2)B = (x1 + b, x2 + τ)B
(y1, y2)U∗ = (y1 + ay2, y2)B∗

where τ can be either 0 or random, according to the Diffie-Hellman challenge.
And the two situations are indistinguishable. We should however note that in
this case, b∗

2 cannot be computed, as a · G2 is not known. This will not be a
problem if this element is not provided to the adversary.

Partial Change of Basis: in the constructions, bases will be of higher dimension,
but we will often only change a few basis vectors. We will then specify the vectors
as indices to the change of basis matrix: in a space of dimension n,

B =
(

1 a
0 1

)

1,2

B′ =
(

1 0
−a 1

)

1,2

B = B · U B
∗ = B′ · U∗ (4)

means that only the two first coordinates are impacted, and thus b1,b2 and
b∗
1,b

∗
2. We complete the matrices B and B′ with the identity matrix: bi = ui

and b∗
i = u∗

i , for i ≥ 3.

2.3 Particular Changes

The security proofs will rely on specific indistinguishable modifications that we
detail here. We will demonstrate the first of them to give the intuition of the
methodology to the reader. A full demonstration for the other modifications can
be found in the full version [6]. These results hold under the DDH assumption
in G1, (but it can also be applied in G2), on random dual orthogonal bases B

and B
∗.
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With the above change of basis provided in Eq. (4), we can compute B =
(bi)i, as we know a · G1 and all the scalars in U :

bi =
∑

k

Bi,k·uk bi,j =
∑

k

Bi,k·uk,j =
∑

k

Bi,kUk,j ·G1 =
∑

k

Uk,j ·(Bi,j ·G1).

Hence, to compute bi, one needs all the scalars in U , but only the group elements
Bi,j · G1, and so G1 and a · G1. This is the same for B∗, except for the vector b∗

2

as a · G2 is missing. One can thus publish B and B
∗\{b∗

2}.

Indistinguishability of Sub-spaces (3). As already remarked, for such a fixed
matrix B, if U is random, so is B too, and (�x)B = (�x · B)U, so (�x)U = (�x · B−1)B.
Note that B−1 = B′�. So, (b, c, 0, . . . , 0)U = (b, c − ab, 0, . . . , 0)B, then

(b, c, 0, . . . , 0)U + (x1, x2, x3, . . . , xn)B = (x1 + b, x2 + τ, x3, . . . , xn)B

where τ can be either 0 or random. Note that whereas we cannot compute b∗
2,

this does not exclude this second component in the computed vectors, as we can
use (y1, . . . , yn)U∗ = (y1 + ay2, y2, . . . , yn)B∗ .

Theorem 2. Under the DDH Assumption in G1, for random dual orthogonal
bases B and B

∗, once having seen B and B
∗\{b∗

2}, and any vector (y1, y2, . . . ,
yn)B∗ , for any y2, . . . , yn ∈ Zq, but unknown random y1

$← Zq, one cannot
distinguish (x1, x

′
2, x3, . . . , xn)B and (x1, x2, x3, . . . , xn)B, for any x2, . . . , xn ∈

Zq, but unknown random x1, x
′
2

$← Zq.

Some scalar coordinates can be chosen (and thus definitely known) by the adver-
sary, whereas some other must be random. Eventually the adversary only sees
the vectors in G

n
1 and G

n
2 . We now directly state two other properties for which

the demonstration (which works similarly as the SubSpace-Ind one) can be found
in the full version [6].

Swap-Ind Property, on (B,B∗)1,2,3: from the view of B and B
∗\{b∗

1,b
∗
2}, and

the vector (y1, y1, y3, . . . , yn)B∗ , for any y1, y3, . . . , yn ∈ Zq, one cannot distin-
guish the vectors (x1, 0, x3, x4, . . . , xn)B and (0, x1, x3, x4, . . . , xn)B, for any
x1, x4, . . . , xn ∈ Zq, but unknown random x3

$← Zq.
(Static) Index-Ind Property, on (B,B∗)1,2,3: from the view of B and

B
∗\{b∗

3}, for fixed t 	= p ∈ Zq, and the (π · (t,−1), y3, . . . , yn)B∗ , for
any y3, . . . , yn ∈ Zq, but unknown random π

$← Zq, one cannot dis-
tinguish (σ · (1, p), x3, x4, . . . , xn)B and (σ · (1, p), x′

3, x4, . . . , xn)B, for any
x′
3, x3, x4, . . . , xn ∈ Zq, but unknown random σ

$← Zq.

We stress that, in this static version, t and p must be fixed, and known before the
simulation starts in the security analysis, as they will appear in the matrix B.
In the Okamoto-Takashima’s constructions [13,15], such values t and p were for
bounded names of attributes. In the following, we want to consider unbounded
attributes, we thus conclude this section with an adaptive version, where t and
p do not need to be known in advance, from a large universe:
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Theorem 3 (Adaptive Index-Ind Property). Under the DDH Assumption
in G1, for random dual orthogonal bases B and B

∗, once having seen B and
B

∗\{b∗
3}, and (π · (t,−1), y3, 0, 0, y6, . . . , yn)B∗ , for any t, y3, y6, . . . , yn ∈ Zq, but

unknown random π
$← Zq, one cannot distinguish (σ · (1, p), x3, 0, 0, x6, . . . , xn)B

and (σ · (1, p), x′
3, 0, 0, x6, . . . , xn)B, for any x3, x

′
3, x6, . . . , xn ∈ Zq, and p 	= t,

but unknown random σ
$← Zq, with an advantage better than 8 × Advddh

G1
(T ) +

4 × Advddh
G2

(T ), where T is the running time of the adversary.

Proof. For the sake of simplicity, we will prove indistinguishability between
(σ · (1, p), 0, 0, 0)B and (σ · (1, p), x3, 0, 0)B, in dimension 5 only, instead of n.
Additional components could be chosen by the adversary. Applied twice, we
obtain the above theorem. The proof follows a sequence of games.

GameG0: The adversary can choose p 	= t and x3, y3 in Zq, but π, σ
$← Zq are

unknown to it:

k∗ = (π(t,−1), y3, 0, 0)B∗ c0 = (σ(1, p), 0, 0, 0)B
c1 = (σ(1, p), x3, 0, 0)B

Vectors (b1,b2,b3,b∗
1,b

∗
2) and (cb,k∗) are provided to the adversary that

must decide on b: Adv0 is its advantage in correctly guessing b. Only k∗ and
c0 will be modified in the following games, so that eventually c0 = c1 in the
last game, which leads to perfect indistinguishability.

GameG1: We replicate the first sub-vector (t,−1), with ρ
$← Zq, in the hidden

components: k∗ = (π(t,−1), y3, ρ(t,−1))B∗ . To show the indistinguishabil-
ity, one applies the SubSpace-Ind property on (B∗,B)1,2,4,5. Indeed, we can
consider a triple (a · G2, b · G2, c · G2), where c = ab + τ mod q with either
τ = 0 or random, which are indistinguishable under the DDH assumption in
G2. Let us assume we start from random dual orthogonal bases (V,V∗). We
define

B′ =

⎛

⎜
⎜
⎝

1 0 a 0
0 1 0 a
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠

1,2,4,5

B =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0

−a 0 1 0
0 −a 0 1

⎞

⎟
⎟
⎠

1,2,4,5

B
∗ = B′ · V∗

B = B · V

The vectors b4,b5 can not be computed, but they are hidden from the
adversary’s view, and are not used in any vector. We compute the new
vectors:

k∗ = (b(t,−1), y3, c(t,−1))V∗ c0 = (σ(1, p), 0, 0, 0)B
= (b(t,−1), y3, (c − ab)(t,−1)B∗

= (b(t,−1), y3, τ(t,−1)B∗

One can note that when τ = 0, this is the previous game, and when τ
random, we are in the new game, with π = b and ρ = τ : Adv0 − Adv1 ≤
Advddh

G2
(T ).
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GameG2: We replicate the non-orthogonal sub-vector (1, p), with θ
$← Zq:

k∗ = (π(t,−1), y3, ρ(t,−1))B∗ c0 = (σ(1, p), 0, θ(1, p))B

To show the indistinguishability, one applies the SubSpace-Ind property on
(B,B∗)1,2,4,5. Indeed, we can consider a triple (a · G1, b · G1, c · G1), where
c = ab + τ mod q with either τ = 0 or random, which are indistinguishable
under the DDH assumption in G1. Let us assume we start from random dual
orthogonal bases (V,V∗). Then we define the matrices

B =

⎛

⎜
⎜
⎝

1 0 a 0
0 1 0 a
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠

1,2,4,5

B′ =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0

−a 0 1 0
0 −a 0 1

⎞

⎟
⎟
⎠

1,2,4,5

B = B · V B
∗ = B′ · V∗

The vectors b∗
4,b

∗
5 can not be computed, but they are hidden from the

adversary’s view. We compute the new vectors in V and V
∗:

c0 = (b(1, p), 0, c(1, p))V k∗ = (π′(t,−1), y3, ρ(t,−1))V∗

= (b(1, p), 0, (c − ab)(1, p))B = ((π′ + aρ)(t,−1), y3, ρ(t,−1))B∗

= (b(1, p), 0, τ(1, p))B

One can note that when τ = 0, this is the previous game, and when τ
random, we are in the new game, with π = π′ + aρ, σ = b, and θ = τ :
Adv1 − Adv2 ≤ Advddh

G1
(T ).

GameG3: We randomize the two non-orthogonal sub-vectors, with random
scalars u1, u2, v1, v2

$← Zp:

k∗ = (π(t,−1), y3, u1, u2)B∗ c0 = (σ(1, p), 0, v1, v2)B

To show the indistinguishability, one makes a formal change of basis on
(B∗,B)4,5, with a random unitary matrix Z, with z1z4 − z2z3 = 1:

B′ = Z =
(

z1 z2
z3 z4

)

4,5

B =
(

z4 −z3
−z2 z1

)

4,5

B
∗ = B′ · V∗

B = B · V

This only impacts the hidden vectors (b4,b5), (b∗
4,b

∗
5). If one defines k∗

and c0 in (V∗,V), this translates in (B∗,B):

k∗ = (π(t,−1), y3, ρ(t,−1))V∗ = (π(t,−1), y3, ρ(tz1 − z3, tz2 − z4))B∗

c0 = (σ(1, p), 0, θ(1, p))V = (σ(1, p), 0, θ(z4 − pz2,−z3 + pz1))B

Let us consider random u1, u2, v1, v2
$← Zp, and solve the system in

z1, z2, z3, z4. This system admits a unique solution, if and only if t 	= p.
And with random ρ, θ, and random unitary matrix Z,

k∗ = (π(t,−1), y3, u1, u2)B∗ c0 = (σ(1, p), 0, v1, v2)B

with random scalars u1, u2, v1, v2
$← Zp. In bases (V,V∗), we are in the

previous game, and in bases (B,B∗), we are in the new game, if p 	= t:
Adv2 = Adv3.
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GameG4: We now randomize the third component in c0:

k∗ = (π(t,−1), y3, u1, u2)B∗ c0 = (σ(1, p), x3, v1, v2)B

To show the indistinguishability, one applies the SubSpace-Ind property on
(B,B∗)4,3. Indeed, we can consider a triple (a · G1, b · G1, c · G1), where
c = ab + τ mod q with either τ = 0 or τ = x3, which are indistinguishable
under the DDH assumption in G1. Let us assume we start from random dual
orthogonal bases (V,V∗). Then we define the matrices

B =
(

1 0
a 1

)

3,4

B′ =
(

1 −a
0 1

)

3,4

B = B · V B
∗ = B′ · V∗

The vectors b∗
3 can not be computed, but it is not into the adversary’s view.

We compute the new vectors:

k∗ = (π(t,−1), y3, u′
1, u2)V∗ c0 = (σ(1, p), c, b, v2)V

= (π(t,−1), y3, u′
1 + ay3, u2)B∗ = (σ(1, p), c − ab, b, v2)B

= (σ(1, p), τ, b, v2)B

One can note that when τ = 0, this is the previous game, and when τ = x3,
we are in the new game, with v1 = b and u1 = u′

1 + ay3: Adv3 −Adv4 ≤ 2 ×
Advddh

G1
(T ), by applying twice the Diffie-Hellman indistinguishability game.

We can undo successively games G3, G2, and G1 to get, after a gap bounded by
Advddh

G1
(t) + Advddh

G2
(t): k∗ = (π(t,−1), y3, 0, 0)B∗ and c0 = (σ(1, p), x3, 0, 0)B. In

this game, the advantage of any adversary is 0. The global difference of advan-
tages is bounded by 4 · Advddh

G1
(T ) + 2 · Advddh

G2
(T ), which concludes the proof.

3 Key-Policy ABE with Switchable Attributes

Classical definitions and properties for KP-ABE, and more details about policies,
are reviewed in the full version [6], following [7]. We recall here the main notions
on labeled access-trees as a secret sharing to embed a policy in keys.

3.1 Policy Definition

Access Trees. As in the seminal paper [7], we will consider an access-tree T to
model the policy on attributes in an unbounded universe U , but with only AND
and OR gates instead of more general threshold gates: an AND-gate being an
n-out-of-n gate, whereas an OR-gate is a 1-out-of-n gate. This is also a particular
case of the more general LSSS technique. Nevertheless, such an access-tree with
only AND and OR gates is as expressive as with any threshold gates or LSSS.
For any monotonic policy, we define our access-tree in the following way: T is a
rooted labeled tree from the root ρ, with internal nodes associated to AND and
OR gates and leaves associated to attributes. More precisely, for each leaf λ ∈ L,
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AND

AND

OR

λ1 λ2

OR

λ3 λ4

OR

λ5 λ6 λ7

OR

λ8 AND

λ9 λ10

Fig. 2. Example of an access-tree with two different evaluation pruned trees for the
leaves colored in green: {λ1, λ3, λ5, λ8} or {λ1, λ3, λ5, λ9, λ10} (Color figure online)

A(λ) ∈ U is an attribute, and any internal node ν ∈ N is labeled with a gate
G(ν) ∈ {AND,OR} as an AND or an OR gate to be satisfied among the children
in children(ν). We will implicitly consider that any access-tree T is associated to
the attribute-labeling A of the leaves and the gate-labeling G of the nodes. For
any leaf λ ∈ L of T or internal node ν ∈ N\{ρ}, the function parent links to the
parent node: ν ∈ children(parent(ν)) and λ ∈ children(parent(λ)).

On a given list Γ ⊆ U of attributes, each leaf λ ∈ L is either satisfied
(considered or set to True), if A(λ) ∈ Γ , or not (ignored or set to False) otherwise:
we will denote LΓ the restriction of L to the satisfied leaves in the tree T
(corresponding to an attribute in Γ ). Then, for each internal node ν, one checks
whether all children (AND-gate) or at least one of the children (OR-gate) are
satisfied, from the attributes associated to the leaves, and then ν is itself satisfied
or not. By induction, if for each node ν we denote Tν the subtree rooted at the
node ν, T = Tρ. A leaf λ ∈ L is satisfied if λ ∈ LΓ then, recursively, Tν is
satisfied if the AND/OR-gate associated to ν via G(ν) is satisfied with respect
to status of the children in children(ν): we denote Tν(Γ ) = 1 when the subtree
is satisfied, and 0 otherwise:

Tλ(Γ ) = 1 iff λ ∈ LΓ for any leaf λ ∈ L
Tν(Γ ) = 1 iff ∀κ ∈ children(ν), Tκ(Γ ) = 1 when G(ν) = AND

Tν(Γ ) = 1 iff ∃κ ∈ children(ν), Tκ(Γ ) = 1 when G(ν) = OR

Evaluation Pruned Trees. In the above definition, we considered an access-
tree T on leaves L and a set Γ of attributes, with the satisfiability T (Γ ) = 1
where the predicate defined by T is true when all the leaves λ ∈ LΓ are set to
True. A Γ -evaluation tree T ′ ⊂ T is a pruned version of T , where one children
only is kept to OR-gate nodes, down to the leaves, so that T ′(Γ ) = 1. Basically,
we keep a skeleton with only necessary True leaves to evaluate the internal nodes
up to the root. We will denote EPT(T , Γ ) the set of all the evaluation pruned
trees of T with respect to Γ . EPT(T , Γ ) is non-empty if and only if T (Γ ) = 1.

Figure 2 gives an illustration of such an access-tree for a policy: when the
colored leaves {λ1, λ3, λ5, λ8, λ9, λ10} are True, the tree is satisfied, and there
are two possible evaluation pruned trees: down to the leaves {λ1, λ3, λ5, λ8} or
{λ1, λ3, λ5, λ9, λ10}.
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Fig. 3. Example of a 6-labeling in Z/7Z, with a non-satisfying set of (colored)
attributes: leaves λ8, λ9 and λ10 are not independent (Color figure online)

Partial Order on Policies. Delegation will only be possible for a more
restrictive access-tree, or a less accessible tree T ′, than T with the follow-
ing partial order: T ′ ≤ T , if and only if for any subset Γ of attributes,
T ′(Γ ) = 1 =⇒ T (Γ ) = 1. In our case of access-trees, a more restrictive access-
tree is, for each node ν: if G(ν) = AND, one or more children are added (i.e.,
more constraints); if G(ν) = OR, one or more children are removed (i.e., less flex-
ibility); the node ν is moved one level below as a child of an AND-gate at node ν′,
with additional sub-trees as children to this AND-gate (i.e., more constraints).

3.2 Labeling of Access-Trees

Labeled Access-Trees. We will label such trees with integers so that some
labels on the leaves will be enough/necessary (according to the policy) to recover
the labels above, up to the root, as illustrated on Fig. 3.

Definition 4 (Random y-Labeling). For an access-tree T and any y ∈ Zp,
the probabilistic algorithm Λy(T ) sets aρ ← y for the root, and then in a top-
down manner, for each internal node ν, starting from the root: if G(ν) = AND,
with n children, a random n-out-of-n sharing of aν is associated to each children;
if G(ν) = OR, with n children, each children is associated to the value aν .

Algorithm Λy(T ) outputs Λy = (aλ)λ∈L, for all the leaves λ ∈ L of the tree T .
Because of the linearity, from any y-labeling (aλ)λ of the tree T , and a random
z-labeling (bλ)λ of T , the sum (aλ + bλ)λ is a random (y + z)-labeling of T . In
particular, from any y-labeling (aλ)λ of T , and a random zero-labeling (bλ)λ of
T , the values cλ ← aλ + bλ provide a random y-labeling of T .

Labels on leaves are a secret sharing of the root that allows reconstruction
of the secret if and only if the policy is satisfied, as explained below:

Properties of Labelings. For an acceptable set Γ for T and a labeling Λy

of T for a random y, given only (aλ)λ∈LΓ
, one can reconstruct y = aρ. Indeed,

as T (Γ ) = 1, we use an evaluation pruned tree T ′ ∈ EPT(T , Γ ). Then, in a
bottom-up way, starting from the leaves, one can compute the labels of all the
internal nodes, up to the root.

On the other hand, when T (Γ ) = 0, with a random labeling Λy of T for a
random y, given only (aλ)λ∈LΓ

, y is unpredictable: for any y, y′ ∈ Zp, Dy and
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Dy′ are perfectly indistinguishable, where Dy = {(aλ)λ∈LΓ
, (aλ)λ

$← Λy(T )}.
Intuitively, given (aλ)λ∈LΓ

, as T (Γ ) = 0, one can complete the labeling so that
the label of the root is any y.

For our notion of Attribute-Indistinguishability, we need to identify a specific
property called independent leaves, which describes leaves for which the secret
share leaks no information in any of the other leaves in the access-tree.

Definition 5 (Independent Leaves). Given an access-tree T and a set Γ so
that T (Γ ) = 0, we call independent leaves, in LΓ with respect to T , the leaves
μ such that, given only (aλ)λ∈LΓ \{μ}, aμ is unpredictable: for any y, the two
distributions D$

y(Γ ) = {(aλ)λ∈LΓ
} and Dy(Γ, μ) = {(bμ) ∪ (aλ)λ∈LΓ \{μ}} are

perfectly indistinguishable, where (aλ)λ
$← Λy(T ) and bμ

$← Zp.

With the illustration on Fig. 3, with non-satisfied tree, when only colored
leaves are set to True, leaves λ3 and λ5 are independent among the True
leaves {λ3, λ5, λ8, λ9, λ10}. But leaves λ8, λ9 and λ10 are not independent as
aλ8 = aλ9 + aλ10 mod 7 for any random labeling. Intuitively, given (aλ)λ∈LΓ \{μ}
and any aμ, one can complete it into a valid labeling (with any random root
label y as T (Γ ) = 0), for μ ∈ {3, 5}, but not for μ ∈ {8, 9, 10}.

3.3 Switchable Leaves and Attributes

For a Key-Policy ABE with Switchable Attributes (SA-KP-ABE), leaves in the
access-tree can be made active or passive, and attributes in the ciphertext can be
made valid or invalid. We thus enhance the access-tree T into T̃ = (T ,La,Lp),
where the implicit set of leaves L = La ·∪ Lp is now the explicit disjoint union
of the active-leaf and passive-leaf sets. Similarly, a ciphertext will be associated
to the pair (Γv, Γi), also referred as a disjoint union Γ = Γv ·∪ Γi, of the valid-
attribute and invalid-attribute sets.

We note T̃ (Γv, Γi) = 1 if there is an evaluation pruned tree T ′ of T that is
satisfied by Γ = Γv ·∪ Γi (i.e., T ′ ∈ EPT(T , Γ )), with the additional condition
that all the active leaves in T ′ correspond only to valid attributes in Γv: ∃T ′ ∈
EPT(T , Γ ),∀λ ∈ T ′ ∩ La, A(λ) ∈ Γv. In other words, this means that an invalid
attribute in the ciphertext should be considered as inexistent for active leaves,
but only for those leaves.

We also have to enhance the partial order on T to T̃ , so that we can deal
with delegation: T̃ ′ = (T ′,L′

a,L′
p) ≤ T̃ = (T ,La,Lp) if and only if T ′ ≤ T ,

L′
a ∩ Lp = L′

p ∩ La = ∅ and L′
a ⊆ La. More concretely, T ′ must be more

restrictive, existing leaves cannot change their passive or active status, and new
leaves can only be passive.

3.4 Key-Policy Attribute-Based Encapsulation with Switchable
Attributes

We can now define the algorithms of an SA-KP-ABE, with the usual description of
Key Encapsulation Mechanism, that consists in generating an ephemeral key K
and its encapsulation C. The encryption of the actual message under the key K,
using a symmetric encryption scheme is then appended to C. We will however call
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C the ciphertext, and K the encapsulated key in C. In our definitions, there are
two secret keys: the master secret key MK for the generation of users’ keys, and
the secret key SK for running the advanced encapsulation with invalid attributes:

Setup(1κ). From the security parameter κ, the algorithm defines all the global
parameters PK, the secret key SK and the master secret key MK;

KeyGen(MK, T̃ ). The algorithm outputs a key dkT̃ which enables the user to
decapsulate keys generated under a set of attributes Γ = Γv ·∪ Γi if and only
if T̃ (Γv, Γi) = 1;

Delegate(dkT̃ , T̃ ′). Given a key dkT̃ , generated from either the KeyGen or the
Delegate algorithms, for a policy T̃ and a more restrictive policy T̃ ′ ≤ T̃ , the
algorithm outputs a decryption key dkT ′ ;

Encaps(PK, Γ ). For a set Γ of (valid only) attributes, the algorithm generates
the ciphertext C and an encapsulated key K;

Encaps∗(SK, Γv, Γi). For a pair (Γv, Γi) of disjoint sets of valid/invalid attributes,
the algorithm generates the ciphertext C and an encapsulated key K;

Decaps(dkT̃ , C). Given the key dkT̃ from either KeyGen or Delegate, and the
ciphertext C, the algorithm outputs the encapsulated key K.

We stress that fresh keys (from the KeyGen algorithm) and delegated keys (from
the Delegate algorithm) are of the same form, and can both be used for decryp-
tion and can both be delegated. This allows multi-hop delegation.

On the other hand, one can note the difference between Encaps with PK
and Encaps∗ with SK, where the former runs the latter on the pair (Γ, ∅). And
as Γi = ∅, the public key is enough. This is thus still a public-key encryption
scheme when only valid attributes are in the ciphertext, but the invalidation of
some attributes require the secret key SK. For the advanced reader, this will
lead to secret-key traceability, as only the owner of SK will be able to invalidate
attributes for the tracing procedure (as explained in Sect. 5). For correctness,
the Decaps algorithm should output the encapsulated key K if and only if C has
been generated for a pair (Γv, Γi) that satisfies the policy T̃ of the decryption
key dkT̃ : T̃ (Γv, Γi) = 1. The following security notion enforces this property. But
some other indistinguishability notions need to be defined in order to be able to
exploit these switchable attributes in more complex protocols.

3.5 Security Notions

For the sake of simplicity, we focus on one-challenge definitions (one encapsu-
lation with Real-or-Random encapsulated key, one user key with Real-or-All-
Passive leaves, and one encapsulation with Real-or-All-Valid attributes), in the
same vein as the Find-then-Guess security game. But the adversary could gen-
erate additional values, as they can either be publicly generated or an oracle
is available. Then, the definitions can be turned into multi-challenge security
games, with an hybrid proof, as explained in [2].

Definition 6 (Delegation-Indistinguishability for SA-KP-ABE). Del-IND
security for SA-KP-ABE is defined by the following game:

Initialize: The challenger runs the Setup algorithm of SA-KP-ABE and gives
the public parameters PK to the adversary;
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Oracles: The following oracles can be called in any order and any number of
times, except for RoREncaps which can be called only once.
OKeyGen(T̃ ): this models a KeyGen-query for any access-tree T̃ =

(T ,La,Lp). It generates the decryption key but only outputs the index
k of the key;

ODelegate(k, T̃ ′): this models a Delegate-query for any more restrictive
access-tree T̃ ′ ≤ T̃ , for the k-indexed generated decryption key for T̃ .
It generates the decryption key but only outputs the index k′ of the new
key;

OGetKey(k): the adversary gets back the k-indexed decryption key generated
by OKeyGen or ODelegate oracles;

OEncaps(Γv, Γi): The adversary may be allowed to issue Encaps∗-queries, with
(K,C) ← Encaps∗(SK, Γv, Γi), and C is returned;

RoREncaps(Γv, Γi): The adversary submits a unique real-or-random encapsu-
lation query on a set of attributes Γ = Γv ·∪Γi. The challenger asks for an
encapsulation query on (Γv, Γi) and receives (K0, C). It also generates a
random key K1. It eventually flips a random coin b, and outputs (Kb, C)
to the adversary;

Finalize(b′): The adversary outputs a guess b′ for b. If for some access-tree T̃ ′

corresponding to a key asked to the OGetKey-oracle, T̃ ′(Γv, Γi) = 1, on the
challenge set (Γv, Γi), β

$← {0, 1}, otherwise one sets β = b′. One outputs β.

Advdel-ind(A) denotes the advantage of an adversary A in this game.

In the basic form of Del-IND-security, where Encaps∗ encapsulations are not
available, the RoREncaps-oracle only allows Γi = ∅, and no OEncaps-oracle is
available. But as Encaps (with Γi = ∅) is a public-key algorithm, the adversary
can generate valid ciphertexts by himself. We will call it “Del-IND-security for
Encaps”. For the more advanced security level, RoREncaps-query will be allowed
on any pair (Γv, Γi), with the additional OEncaps-oracle. We will call it “Del-IND-
security for Encaps∗”.

With these disjoint unions of L = La ·∪ Lp and Γ = Γv ·∪ Γi, we will also
consider some indistinguishability notions on (La,Lp) and (Γv, Γi), about which
leaves are active or passive in L = La ·∪ Lp for a given key, and which attributes
are valid or invalid in Γ = Γv ·∪ Γi for a given ciphertext. The former will be the
key-indistinguishability, whereas the latter will be attribute-indistinguishability.
Again, as Encaps is public-key, the adversary can generate valid encapsula-
tions by himself. However, we may provide access to an OEncaps-oracle to allow
Encaps∗ queries, but with constraints in the final step, to exclude trivial attacks
against key-indistinguishability. Similarly there will be constraints in the final
step on the OKeyGen/ODelegate-queries for the attribute-indistinguishability.

Definition 7 (Key-Indistinguishability). Key-IND security for SA-KP-ABE
is defined by the following game:

Initialize: The challenger runs the Setup algorithm of SA-KP-ABE and gives
the public parameters PK to the adversary;
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Oracles: OKeyGen(T̃ ), ODelegate(k, T̃ ′), OGetKey(k), OEncaps(Γv, Γi), and
RoAPKeyGen(T̃ ): The adversary submits one Real or All-Passive KeyGen-

query for any access structure T̃ of its choice, with a list L = La ·∪ Lp

of active and passive leaves, and gets dk0 = KeyGen(MK, (T ,La,Lp)) or
dk1 = KeyGen(MK, (T , ∅,L)). It eventually flips a random coin b, and
outputs dkb to the adversary;

Finalize(b′): The adversary outputs a guess b′ for b. If for some (Γv, Γi) asked
to the OEncaps-oracle, T (Γv ·∪ Γi) = 1, for the challenge access-tree T where
L = La ·∪ Lp, β

$← {0, 1}, otherwise one sets β = b′. One outputs β.

Advkey-ind(A) denotes the advantage of an adversary A in this game.

In this first definition, the constraints in the finalize step require the adversary
not to ask for an encapsulation on attributes that would be accepted by the
policy with all-passive attributes in the leaves.

A second version deals with accepting policies: it allows encapsulations on
attributes that would be accepted by the policy with all-passive leaves in the
challenge key, until attributes associated to the active leaves in the challenge
key and invalid attributes in the ciphertexts are distinct. Hence, the Distinct
Key-Indistinguishability (dKey-IND) where Finalize(b′) reads: The adver-
sary outputs a guess b′ for b. If some active leaf λ ∈ La from the challenge
key corresponds to some invalid attribute t ∈ Γi in an OEncaps-query, then set
β

$← {0, 1}, otherwise set β = b′. One outputs β.

Definition 8 (Attribute-Indistinguishability). Att-IND security for
SA-KP-ABE is defined by the following game:

Initialize: The challenger runs the Setup algorithm of SA-KP-ABE and gives
the public parameters PK to the adversary;

Oracles: OKeyGen(T̃ ), ODelegate(k, T̃ ′), OGetKey(k), OEncaps(Γv, Γi), and
RoAVEncaps(Γv, Γi): The adversary submits one Real-or-All-Valid encapsu-

lation query on distinct sets of attributes (Γv, Γi). The challenger gen-
erates (K,C) ← Encaps∗(SK, Γv, Γi) as the real case, if b = 0, or
(K,C) ← Encaps(PK, Γv ·∪ Γi) as the all-valid case, if b = 1, and out-
puts C to the adversary;

Finalize(b′): The adversary outputs a guess b′ for b. If for some access-tree T̃ ′

corresponding to a key asked to the OGetKey-oracle, T̃ ′(Γv ·∪ Γi, ∅) = 1, on
the challenge set (Γv, Γi), β

$← {0, 1}, else one sets β = b′. One outputs β.

Advatt-ind(A) denotes the advantage of an adversary A in this game.

This definition is a kind of attribute-hiding, where a user with keys for access-
trees that are not satisfied by Γ = Γv ·∪ Γi cannot distinguish valid from invalid
attributes in the ciphertext.

As above on key-indistinguishability, this first definition excludes accepting
policies on the challenge ciphertext. However, for tracing, one also needs to
deal with ciphertexts on accepting policies. More precisely, we must allow keys
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and a challenge ciphertext that would be accepted in the all-valid case, and
still have indistinguishability, until attributes associated to the active leaves in
the keys and invalid attributes in the challenge ciphertext are distinct. Hence,
the Distinct Attribute-Indistinguishability (dAtt-IND) where Finalize(b′)
reads: The adversary outputs a guess b′ for b. If some attribute t ∈ Γi from the
challenge query corresponds to some active leaf λ ∈ L′

a in a OGetKey-query,
then set β

$← {0, 1}, otherwise set β = b′. One outputs β.

4 Our SA-KP-ABE Scheme

4.1 Description of Our KP-ABE with Switchable Attributes

We extend the basic KP-ABE scheme proven in the full version [6], with leaves
that can be made active or passive in a decryption key, and some attributes
can be made valid or invalid in a ciphertext, and prove that it still achieves the
Del-IND-security. For our construction, we will use two DPVS, of dimensions 3
and 9 respectively, in a pairing-friendly setting (G1,G2,Gt, e,G1, G2, q), using
the notations introduced in Sect. 2.1. Essentially, we introduce a 7-th component
to deal with switchable attributes. The two new basis-vectors d7 and d∗

7 are in
the secret key SK and the master secret key MK respectively. The two additional
8-th and 9-th components are to deal with the unbounded universe of attributes,
to be able to use the adaptive Index-Ind property (see Theorem 3), instead of the
static one. These additional components are hidden, and for the proof only:

Setup(1κ). The algorithm chooses two random dual orthogonal bases

B = (b1,b2,b3) B
∗ = (b∗

1,b
∗
2,b

∗
3) D = (d1, . . . ,d9) D

∗ = (d∗
1, . . . ,d

∗
9).

It sets the public parameters PK = {(b1,b3,b∗
1), (d1,d2,d3,d∗

1,d
∗
2,d

∗
3)},

whereas the master secret key is MK = {b∗
3,d

∗
7} and the secret key is SK =

{d7}. Other basis vectors are kept hidden.
KeyGen(MK, T̃ ). For an extended access-tree T̃ = (T ,La,Lp), the algorithm first

chooses a random a0
$← Zq, and a random a0-labeling (aλ)λ of the access-tree

T , and builds the key:

k∗
0 = (a0, 0, 1)B∗ k∗

λ = (πλ(1, tλ), aλ, 0, 0, 0, rλ, 0, 0)D∗

for all the leaves λ, where tλ = A(λ), πλ
$← Zq, and rλ

$← Z
∗
q if λ is an

active leaf in the key (λ ∈ La) or else rλ = 0 for a passive leaf (λ ∈ Lp). The
decryption key dkT̃ is then (k∗

0, (k
∗
λ)λ).

Delegate(dkT̃ , T̃ ′). Given a private key for a tree T̃ and a more restrictive subtree
T̃ ′ ≤ T̃ , the algorithm creates a delegated key dkT̃ ′ . It chooses a random
a′
0

$← Zq and a random a′
0-labeling (a′

λ)λ of T ′; Then, it updates k∗
0 ←

k∗
0 + (a′

0, 0, 0)B∗ ; It sets k∗
λ ← (π′

λ · (1, tλ), a′
λ, 0, 0, 0, 0, 0, 0)B∗ for a new leaf,

or updates k∗
λ ← k∗

λ + (π′
λ · (1, tλ), a′

λ, 0, 0, 0, 0, 0, 0)B∗ for an old leaf, with
π′

λ
$← Zq.
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Encaps(PK, Γ ). For a set Γ of attributes, the algorithm first chooses random
scalars ω, ξ

$← Zq. It then sets K = gξ
t and generates the ciphertext C =

(c0, (ct)t∈Γ ) where

c0 = (ω, 0, ξ)B ct = (σt(t,−1), ω, 0, 0, 0, 0, 0, 0)D

for all the attributes t ∈ Γ , with σt
$← Zq.

Encaps∗(SK, (Γv, Γi)). For a disjoint union Γ = Γv ·∪ Γi of sets of attributes
(Γv is the set of valid attributes and Γi is the set of invalid attributes), the
algorithm first chooses random scalars ω, ξ

$← Zq. It then sets K = gξ
t and

generates the ciphertext C = (c0, (ct)t∈(Γv ·∪Γi)) where

c0 = (ω, 0, ξ)B ct = (σt(t,−1), ω, 0, 0, 0, ut, 0, 0)D

for all the attributes t ∈ Γv ·∪ Γi, σt
$← Zq and ut

$← Z
∗
q if t ∈ Γi or ut = 0 if

t ∈ Γv.
Decaps(dkT̃ , C). The algorithm first selects an evaluation pruned tree T ′ of T

that is satisfied by Γ = Γv ∪Γi, such that any leaf λ in T ′ is either passive in
the key (λ ∈ Lp) or associated to a valid attribute in the ciphertext (tλ ∈ Γv).
This means that the labels aλ for all the leaves λ in T ′ allow to reconstruct
a0 by simple additions, where t = tλ:

ct × k∗
λ = g

σt·πλ·〈(t,−1),(1,tλ)〉+ω·aλ+ut·rλ

t = gω·aλ
t ,

as ut = 0 or rλ = 0. Hence, the algorithm can derive gω·a0
t . From c0 and k∗

0,
it can also compute c0 × k∗

0 = gω·a0+ξ
t , which then easily leads to K = gξ

t .

First, note that the delegation works as b∗
1, d∗

1,d
∗
2,d

∗
3 are public. This allows to

create a new key for T̃ ′ ≤ T̃ . But as d∗
7 is not known, any new leaf is necessarily

passive, and an active existing leaf in the original key cannot be converted to
passive, and vice-versa. Indeed, all the randomnesses are fresh, except for the
last components rλ that remain unchanged: this is perfectly consistent with the
definition of T̃ ′ ≤ T̃ .

Second, in encapsulation, for invalidating a contribution ct in the ciphertext
with a non-zero ut, for t ∈ Γi, one needs to know d7, hence the Encaps∗ that
requires SK, whereas Encaps with Γi = ∅ just needs PK.

Eventually, we stress that in the above decryption, one can recover gω·a0
t if

and only if there is an evaluation pruned tree T ′ of T that is satisfied by Γ
and the active leaves in T̃ ′ correspond to valid attributes in Γv (used during the
encapsulation). And this holds if and only if T̃ (Γv, Γi) = 1.

4.2 Del-IND-Security of Our SA-KP-ABE for Encaps

For this security notion, we first consider only valid contributions in the challenge
ciphertext, with indistinguishability of the Encaps algorithm. Which means that
Γi = ∅ in the challenge pair. And the security result holds even if the vector d7

is made public:
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G0 Real Del-IND-Security game
c0 = ( ω 0 ξ ) ct = ( σt(1, t) ω | 0 0 0 ut 0 0 )

k∗
�,0 = ( a�,0 0 1 ) k∗

�,λ = ( π�,λ(t�,λ, −1) a�,λ | 0 0 0 r�,λ 0 0 )

G1 SubSpace-Ind Property, on (B,B∗)1,2 and (D,D∗)3,4, between 0 and τ
$← Zq

c0 = ( ω τ ξ ) ct = ( σt(1, t) ω | τ 0 0 ut 0 0 )
k∗

�,0 = ( a�,0 0 1 ) k∗
�,λ = ( π�,λ(t�,λ, −1) a�,λ | 0 0 0 r�,λ 0 0 )

G2 SubSpace-Ind Property, on (D,D∗)1,2,6, between 0 and τzt

c0 = ( ω τ ξ ) ct = ( σt(1, t) ω | τ 0 τzt ut 0 0 )
k∗

�,0 = ( a�,0 0 1 ) k∗
�,λ = ( π�,λ(t�,λ, −1) a�,λ | 0 0 0 r�,λ 0 0 )

G3 Introduction of an additional random-labeling.
c0 = ( ω τ ξ ) ct = ( σt(1, t) ω | τ 0 τzt ut 0 0 )

k∗
�,0 = ( a�,0 r�,0 1 ) k∗

�,λ = ( π�,λ(t�,λ, −1) a�,λ | 0 0 s�,λ

zt�,λ
r�,λ 0 0 )

G4 Formal basis change, on (B,B∗)2,3, to randomize ξ

c0 = ( ω τ ξ′′ ) ct = ( σt(1, t) ω | τ 0 τzt ut 0 0 )
k∗

�,0 = ( a�,0 r�,0 1 ) k∗
�,λ = ( π�,λ(t�,λ, −1) a�,λ | 0 0 s�,λ

zt�,λ
r�,λ 0 0 )

Gray cells x mean they have been changed in this game.

Fig. 4. Global sequence for the Del-IND-security proof of our SA-KP-ABE

Theorem 9. Our SA-KP-ABE scheme is Del-IND for Encaps (with only valid
attributes in the challenge ciphertext), even if d7 is public.

The proof essentially reduces to the IND-security result of the KP-ABE scheme,
and is available in the full version [6]. We present an overview of the proof,
as the structure of the first games is common among most of our proofs. The
global sequence of games is described on Fig. 4, where (c0, (ct)) is the challenge
ciphertext for all the attributes t ∈ Γ , and (k∗

,0, (k
∗
,λ)) are the keys, for 1 ≤ � ≤

K, and λ ∈ L for each �-query, with active and passive leaves.
In the two first games G1 and G2, one is preparing the floor with a random

τ and random masks zt in the ciphertexts ct (actually, the challenge ciphertext
corresponding to the attribute t). Note that until the actual challenge query is
asked, one does not exactly know the attributes in Γ (as we are in the adaptive-
set setting), thus we will decide on the random mask zt, where t is virtually
associated to the number of the attribute in their order of apparition in the
security game. The main step is to get to Game G3, starting with an additional
labeling (s,0, (s,λ)λ), using hybrid games that begins from Game G2. To do this,
the new labelling is added in each �-th key, then each label is masked by the
random zt for each attribute t. One then exploits the limitations expected from
the adversary in the security game: the adversary cannot ask keys on access-trees
T such that T (Γ ) = 1, for the challenge set Γ . This limitation translates into
the value s,0 being unpredictable for the adversary with regards to (s,λ)λ, as
for each key requested by the adversary, there is at least one s,λ by lack of a
corresponding ciphertext. Thus, we can replace s,0 by a random independent
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r,0 without giving any advantage to the adversary. To formally mask the shares
s,λ, we need another level of hybrid games: we will change all the keys associated
with a specific attribute λ at the same time, by using the Adaptive Index-Ind
technique. This allows us to mask the s,λ share in each key with zt, one λ at a
time inside the �-th key.

Simulation of delegation can just be done by using the key generation algo-
rithm, making sure we use the same randomness for all the keys delegated from
the same one. As the vector d∗

7 is known to the simulator, this is easy. As d7 is
public, the adversary can run by himself both Encaps and Encaps∗.

We stress that our construction makes more basis vectors public, than in the
schemes from [15], as only b∗

3 is for the key issuer. This makes the proof more
tricky, but this is the reason why we can deal with delegation for any user.

4.3 Del-IND-Security of Our SA-KP-ABE for Encaps∗

We now study the full indistinguishability of the ciphertext generated by an
Encaps∗ challenge, with delegated keys. The intuition is that when ut · r,λ 	= 0,
the share a,λ in g

ω·a�,λ+ut·r�,λ

t is hidden, but we have to formally prove it.
The main issue in this proof is the need to anticipate whether ut · r,λ = 0 or

not when simulating the keys, and the challenge ciphertext as well (even before
knowing the exact query (Γv, Γi)). Without being in the selective-set setting
where both Γv and Γi would have to be specified before generating the public
parameters PK, we ask to know disjoint super-sets Av, Ai ⊆ U of attributes.
Then, in the challenge ciphertext query, we will ask that Γv ⊆ Av and Γi ⊆ Ai.
We will call this setting the semi-adaptive super-set setting, where the super-sets
have to be specified before the first decryption keys are issued. Furthermore, the
set of attributes Γ = Γv ·∪Γi used in the real challenge query is only specified at
the moment of the challenge, as in the adaptive setting.

For this proof, d7 must be kept secret (cannot be provided to the adversary).
We will thus give access to an Encaps∗ oracle. We then need to simulate it.

Theorem 10. Our SA-KP-ABE scheme is Del-IND for Encaps∗, in the semi-
adaptive super-set setting (where Av, Ai ⊆ U so that Γv ⊆ Av and Γi ⊆ Ai are
specified before asking for keys).

We stress that the semi-adaptive super-set setting is much stronger than the
selective-set setting where the adversary would have to specify both Γv and Γi

before the setup. Here, only super-sets have to be specified, and just before the
first key-query. The adversary is thus given much more power.

The full proof can be found in the full version [6], we provide some hints, that
extend the above sketch: we only consider keys that are really provided to the
adversary, and thus delegated keys. They can be generated as fresh keys except
for the rλ’s that have to be the same for leaves in keys delegated from the same
initial key. However, in order to randomize s,0 once all of the shares have been
masked, one cannot directly conclude that s,0 is independent from the view of
the adversary: we only know T̃(Γv, Γi) = 0, but not necessarily T(Γv ·∪ Γi) = 0,
as in the previous proof.
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AND

AND

A1,1 A2,0 A3,1

T
Leaf Gate

Fig. 5. Tracing sub-tree for the codeword w = (1, 0, 1)

To this aim, we revisit this gap with an additional sequence where we focus on
the k-th key and the challenge ciphertext. In that sequence, we first prepare with
additional random values y,λ in all the keys, with the same repetition properties
as the r,λ. Thereafter, in another sub-sequence of games on the attributes, we
can use the Swap-Ind property to completely randomize sk,λ when utk,λ

·rk,λ 	= 0.
Hence, the sk,λ are unknown either when ztk,λ

is not known (the corresponding
element is not provided in the challenge ciphertext) or this is a random s′

k,λ

when utk,λ
· rk,λ 	= 0. The property of the access-tree then makes sk,0 perfectly

unpredictable, which can be replaced by a random independent rk,0.

4.4 Distinct Indistinguishability Properties

We first claim easy results, for which the proofs are symmetrical:

Theorem 11. Our SA-KP-ABE scheme is dKey-IND, even if d∗
7 is public.

Theorem 12. Our SA-KP-ABE scheme is dAtt-IND, even if d7 is public.

Both proofs can be found in the full version [6]. In these alternative variants,
all the invalid attributes in all the queried ciphertexts do not correspond to
any active leaf in the challenge keys (for dKey-IND) or all active leaves in all
the queried keys do not correspond to any invalid attribute in the challenge
ciphertext (for dAtt-IND). Then, we can gradually replace all the real keys by
all-passive in the former proof or all the real ciphertexts by all-valid in the latter
proof.

4.5 Attribute-Indistinguishability

Theorem 13. Our SA-KP-ABE scheme is Att-IND, even if d7 is public, if all the
active keys correspond to independent leaves with respect to the set of attributes
Γ = Γv ·∪ Γi in the challenge ciphertext.

The proof can be found in the full version [6]. This is an important result with
respect to our target application of tracing, combined with possible revocation.
Indeed, with such a result, if a user is excluded independently of the tracing
procedure (the policy would reject him even if all his passive leaves match valid
attributes in the ciphertext), he will not be able to detect whether there are
invalid attributes in the ciphertext and thus that the ciphertext is from a tracing
procedure. This gives us a strong resistance to collusion.
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5 Application to Tracing

In our Traitor-Tracing approach, any user would be given a key associated to a
word in a traceable code at key generation time. To embed a word inside a key,
the key generation authority only needs to create a new policy for a user with
policy T : the new policy will be a root AND gate, that connects the original
access-tree T as one child, and a word-based access-tree composed of active
leaves as another child, as illustrated on Fig. 5.

From there, the tracing authority, using the secret key SK, could trace any
Pirate Decoder by invalidating attributes associated to the positions in words,
one position at a time. Since an adversary cannot know whether attributes
are valid or invalid, until it is not impacted by the invalid attributes (thanks
to the Distinct Attribute-Indistinguishability), he will answer each queries of
the tracer, when it is able to do it, effectively revealing the bits of his word
on each position, until the tracer finds his complete word, to eventually trace
back the traitors, from the traceable-code properties. Furthermore, thanks to the
Attribute-Indistinguishability (not Distinct), a traitor that has been identified
by the tracing authority can be removed from the target set at tracing time, and
can thus no longer participate in the coalition, as it will be excluded from the
policy, whatever the valid/invalid attributes. We stress that the secret key SK is
required for invalidating some attributes, and so for the tracing. We thus have
secret-key black-box traceability. More details are given in the full version [6].

6 Conclusion

We have designed a KP-ABE scheme that allows an authority to generate keys
with specific policies for each user, so that these users can thereafter delegate
their keys for any more restrictive rights. Thanks to the (Distinct) Attribute-
Indistinguishability and Attribute-Indistinguishability, it can also include key
material for tracing a compromised key involved in a pirate device while lim-
iting the size of collusions. In addition, with Key-Indistinguishability on active
leaves and perfect randomization on passive leaves, one achieves a strong level
of anonymity: one cannot detect whether two keys have been delegated by the
same original key.
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Abstract. Mix-nets are protocols that allow a set of senders to
send messages anonymously. Faonio et al. (ASIACRYPT’19) showed
how to instantiate mix-net protocols based on Public-Verifiable Re-
randomizable Replayable CCA-secure (Rand-RCCA) PKE schemes. The
bottleneck of their approach is that public-verifiable Rand-RCCA PKEs
are less efficient than typical CPA-secure re-randomizable PKEs. In this
paper, we revisit their mix-net protocol, showing how to get rid of the
cumbersome public-verifiability property, and we give a more efficient
instantiation for the mix-net protocol based on a (non publicly-verifiable)
Rand-RCCA scheme. Additionally, we give a more careful security anal-
ysis of their mix-net protocol.

1 Introduction

Mixing Networks (aka mix-nets), originally proposed by Chaum [11], are pro-
tocols that allow a set of senders to send messages anonymously. Typically, a
mix-net is realized by a chain of mix-servers (aka mixers) that work as follows.
Senders encrypt their messages and send the ciphertexts to the first mix-server in
the chain; each mix-server applies a transformation to every ciphertext (e.g., par-
tial decryption, or re-encryption), re-orders the ciphertexts according to a secret
random permutation, and passes the new list to the next mix-server. The idea
is that the list returned by the last mixer contains (either in clear or encrypted
form, depending on the mixing approach) the messages sent by the senders in a
randomly permuted order.

Mix-net protocols are fundamental building blocks to achieve privacy in a
variety of application scenarios, including anonymous e-mail [11], anonymous
payments [24], and electronic voting [11]. Informally, the basic security prop-
erty of mix-nets asks that, when enough mix-servers are honest, the privacy
of the senders of the messages (i.e., “who sent what”) is preserved. In several
applications, it is also desirable to achieve correctness even in the presence of
an arbitrary number of dishonest mixers. This is for example fundamental in
electronic voting where a dishonest mixer could replace all the ciphertexts with
encrypted votes for the desired candidate.
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Realizing Mix-Nets. A popular design paradigm of mixing networks are re-
encryption mix-nets [27] in which each server decrypts and freshly encrypts every
ciphertext. Interestingly, such a transformation can be computed even publicly
using re-randomizable encryption schemes (e.g., El Gamal). The process of re-
randomizing and randomly permuting ciphertexts is typically called a shuffle.
Although shuffle-based mix-nets achieve privacy when all the mix-servers behave
honestly, they become insecure if one or more mixers do not follow the protocol.
An elegant approach proposed to solve this problem is to let each mixer prove the
correctness of its shuffle with a zero-knowledge proof. This idea inspired a long
series of works on zero-knowledge shuffle arguments, e.g., [5,19,20,22,26,30,32,
33]. Notably, some recent works [5,30,33] improved significantly over the early
solutions, and they have been implemented and tested in real-world applications
(elections) [34]. In spite of the last results, zero-knowledge shuffle arguments are
still a major source of inefficiency in mix-nets. This is especially a concern in
applications like electronic voting where mix-nets need to be able to scale up to
millions of senders (i.e., voters).

Mix-Nets from Replayable CCA Security. Most of the research effort for
improving the efficiency of mix-nets has been so far devoted to improving the effi-
ciency of shuffle arguments. A notable exception is the work of Faonio et al. [17].
Typical mixing networks based on re-randomizable encryption schemes make use
of public-key encryption (PKE) schemes that are secure against chosen-plaintext
attack (CPA), thus to obtain security against malicious mixers they leverage on
the strong integrity property offered by the zero-knowledge shuffle arguments.
The work of Faonio et al. instead showed that, by requiring stronger security
properties from the re-randomizable encryption scheme, the NP-relation proved
by the zero-knowledge shuffle arguments can be relaxed. This design enables
faster and more efficient instantiations for the zero-knowledge proof but, on
the other hand, requires more complex ciphertexts and thus a re-randomization
procedure that is slower in comparison, for example, with the re-randomization
procedure for ElGamal ciphertexts. More in detail, Faonio et al. propose a secure
mixing network in the universal composability model of Canetti [7] based on re-
randomizable PKE schemes that are replayable-CCA (RCCA) secure (as defined
by Canetti et al. [9]) and publicly-verifiable. The first notion, namely RCCA
security, is a relaxation of the standard notion of chosen-ciphertext security.
This notion offers security against malleability attacks on the encrypted message
(i.e. an attacker cannot transform a ciphertext of a message M to a ciphertext
of a message M′) but it still allows for malleability on the ciphertext (i.e. we
can re-randomize the ciphertexts). The second requirement, namely public ver-
ifiability, requires that anyone in possession of the public key can check that a
ciphertext decrypts correctly to a valid message, in other words, that the decryp-
tion procedure would not output an error message on input such a ciphertext.
Unfortunately, this second requirement is the source of the major inefficiency in
the mixing networks of Faonio et al.. For example, the re-randomization pro-
cedure of the state-of-art non publicly-verifiable re-randomizable PKE scheme
with RCCA-security (Rand-RCCA PKE, in brief) in the random oracle model
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of Faonio and Fiore [16] costs 19 exponentiations in a pairing-free cryptographic
group, while the re-randomization procedure of the publicly-verifiable Rand-
RCCA PKE of [17] costs around 90 exponentiations plus 5 pairing operations.

1.1 Our Contribution

We revisit the mix-net design of Faonio et al. [17]. Our contributions are two-
fold: we generalize the mix-net protocol of [17] showing how to get rid of the
cumbersome public verifiability property, and we give a more efficient instantia-
tion for the mix-net protocol based on the (non publicly-verifiable) Rand-RCCA
scheme of [17]. Our generalization of the mix-net protocol is based on two main
ideas. The first idea is that, although the verification of the ciphertexts is still
necessary, it is not critical for the verification to be public and non-interactive.
In particular, we can replace the public verifiability property with a multi-party
protocol (that we call a verify-then-decrypt protocol) that verifies the cipher-
texts before the decryption phase and that decrypts the ciphertexts from the
last mixer in the chain only if the verification succeeded. The second idea is
that in the design of the verify-then-decrypt multiparty protocol we can trade
efficiency for security. In particular, we could design a protocol that eventually
leaks partial information about the secret key and, if the Rand-RCCA PKE
scheme is resilient against this partial leakage of the secret key, we could still
obtain a secure mix-net protocol. Along the way, we additionally (1) abstract
the necessary properties required by the zero-knowledge proof that the mixers
need to attach to their shuffled ciphertexts and (2) give a more careful security
analysis of the mixnet protocol. More technically, we define the notion sumcheck-
admissible relation w.r.t. the Rand-RCCA PKE scheme (see Definition 2) which
is a property of an NP-relation that, informally, states that given two lists of
ciphertexts if all the ciphertexts in the lists decrypt to valid messages, then the
sum of the messages in the first list is equal to the sum of the messages in the
second list. For example, a shuffle relation is a sumcheck-admissible relation,
however simpler (and easier to realize in zero-knowledge) NP-relations over the
lists of ciphertexts can be considered as well.

Our second contribution is a concrete instantiation of the mix-net protocol.
The main idea of our concrete protocol is that many (R)CCA PKE schemes
can be conceptually divided into two main components: the first “CPA-secure”
component assures that the messages are kept private, while the second compo-
nent assures the integrity of the ciphertexts, namely, the component can identify
malformed ciphertexts and avoid dangerous decryptions through the CPA-secure
component. Typical examples for such PKE schemes are those based on the
Cramer-Shoup paradigm [13]. Intuitively, these schemes should be secure even
if the adversary gets to see the secret key associated with the second compo-
nent under the constraint that once such leakage is available the adversary must
lose access to the decryption oracle. This suggests a very efficient design for the
verify-then-decrypt multiparty protocol: the mixers commit to secret shares of
the secret key, once all the ciphertexts are available the mixers open to the secret
key material for the second component, now any mixer can non-interactively and
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efficiently verify the validity of the ciphertexts. If all the ciphertexts are valid
the mixers can engage a CPA-decryption multiparty protocol for the ciphertexts
in the last list. As last contribution, we show that the Rand-RCCA PKE scheme
of [17] is leakage resilient (under the aforementioned notion) and we instantiate
all the necessary parts.

A final remark, an important property of a mixnet protocol is the so-called
auditability1, namely the capability of an external party to verify that a given
transcript of a protocol execution has produced an alleged output. Intuitively,
mixnets based on non-interactive zero-knowledge proofs of shuffle usually should
have this property. However, one must be careful, because not only the shuf-
fling phase, but the full mixnet protocol should be auditable. In particular, for
our mixnet protocol to be auditable the verify-then-decrypt protocol should be
auditable as well. We show that the latter protocol for our concrete instantiation
is indeed auditable.

1.2 Related Work

The notion of mix-net was introduced by Chaum [11]. The use of zero-knowledge
arguments to prove the correctness of a shuffle was first suggested by Sako
and Kilian [29]. The first proposals used expensive cut-and-choose-based zero-
knowledge techniques [1,29]. Abe et al. removed the need for cut-and-choose by
proposing a shuffle based on permutation networks [2,3]. Furukawa and Sako
[19] and independently Neff [26] proposed the first zero-knowledge shuffle argu-
ments for ElGamal ciphertexts that achieve a complexity linear in the number
of ciphertexts. These results have been improved by Wikström [33], and later
Terelius and Wikström [30], who proposed arguments where the proof genera-
tion can be split into an offline and online phase (based on an idea of Adida
and Wikström [4]). These protocols have been implemented in the Verificatum
library [34]. Groth and Ishai [23] proposed the first zero-knowledge shuffle argu-
ment with sublinear communication. Bayer and Groth gave a faster argument
with sublinear communication in [5]. The notion of Rand-RCCA PKE encryption
was introduced by Groth [21]. The work of Prabhakaran and Rosulek [28] showed
the first Rand-RCCA PKE in the standard model. The work of Faonio and Fiore
[16] presented a practical Rand-RCCA PKE scheme in the random oracle model.
Recently, Wang et al. [31] introduced the first receiver-anonymous Rand-RCCA
PKE, solving the open problem raised by Prabhakaran and Rosulek in [28]. The
state-of-art Rand-RCCA PKE scheme can be found in the work of Faonio et
al. [17]. Other publicly-verifiable Rand-RCCA PKE schemes were presented by
Chase et al. [10] and Libert et al. [25]. As far as we know, our design for the
verify-then-decrypt protocol cannot be easily instantiated with the schemes in
[16,28,31]. The reason is that for all these schemes the decryption procedures
have a “verification step” that depends on the encrypted message.

1 This notion is sometimes called verifiability, however, we prefer to use the term
“auditability” to avoid confusion with the verifiability of the ciphertexts property.
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2 Preliminaries

For space reasons, we give the basic preliminaries and notations in the full version
[18]. Calligraphic letters denote the sets, while capital letters denote the lists
(they are represented as ordered tuples). Given n lists Li, i ∈ [n], and an element
x, we define the following operations: (i) Count(x,Li) returns the number of times
the value x appears in the list Li, (ii) Concat(L1, . . . , Ln) returns a list L as a
concatenation of the input lists, and L1 ⊆ L2 returns 1 if each element of L1 is
contained in the list L2, or 0 otherwise.

Re-randomizable PKE. A re-randomizable PKE (Rand-PKE) scheme PKE
is a tuple of five algorithms PKE = (Setup,KGen,Enc,Dec,Rand) where the
first four represent a PKE, and the last one allows for re-randomization of the
ciphertexts. For space reasons, we formally define Rand-PKE and perfect re-
randomizability in the full version [18]. Here we give a short description of the
latter notion. The notion of perfect re-randomizability consists of three condi-
tions: (i) the re-randomization of a valid ciphertext and a fresh ciphertext (for the
same message) are equivalently distributed; (ii) the re-randomization procedure
maintains correctness, i.e. the randomized ciphertext and the original decrypt
to the same value, in particular, invalid ciphertexts keep being invalid; (iii) it
is hard to find a valid ciphertext that is not in the support of the encryption
scheme.

All-But-One Tag-Based NIZK Systems. An ABO Perfect-Hiding tag-based
NIZK is a NIZK proof system with tags where there exists an algorithm ABOInit
which on input a tag τ creates a common reference string crs together with a
trapdoor such that for any tag τ ′ �= τ the trapdoor allows for zero-knowledge
while for τ the proof system is adaptive sound. In an ABO Perfect-Sound tag-
based NIZK, instead, for any tag τ ′ �= τ the proof system is adaptive sound,
while for τ the trapdoor allows for zero-knowledge.

The Universal Composability Model. We review some basic notions of the
Universal Composability model of Canetti [7] and defer the definitions in the full
version [18]. In a nutshell, a protocol Π UC-realizes an ideal functionality FF

with setup assumption FG if there exists a PPT simulator S such that no PT
environment Z can distinguish an execution of the protocols Π which can interact
with the setup assumption FG from a joint execution of the simulator S with the
ideal functionality FF. The environment Z provides the inputs to all the parties
of the protocols, decides which party to corrupt (we consider static corruption,
where the environment decides the corrupted parties before the protocol starts),
and schedules the order of the messages in the networks. When specifying an
ideal functionality, we use the “delayed outputs” terminology of Canetti [7].
Namely, when a functionality F sends a public delayed output M to party P we
mean that M is first sent to the simulator and then forwarded to P only after
acknowledgment by the simulator.
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Fig. 1. The lRCCA security experiment.

3 Definitions

Replayable CCA with Leakage Security. We rely on the following notion
of security for Rand-PKE. Our notion is similar to the RCCA security game,
with the difference that here A is given the additional leakage f(sk) just before
returning b′. A cannot invoke the decryption oracle after the leakage.

Definition 1 (RCCA with leakage Security). Consider the experiment
ExplRCCA

A,PKE,f in Fig. 1, with parameters λ, an adversary A := (A1,A2,A3), a
PKE scheme PKE, and a leakage function f . PKE is leakage-resilient replayable
CCA-secure (lRCCA-secure) w.r.t. f if for any PPT adversary A:

AdvlRCCA
A,PKE,f (λ) :=

∣
∣2Pr[ExplRCCA

A,PKE,f (λ, b) = 1, b ←$ {0, 1}] − 1
∣
∣ ∈ negl(λ).

The Mix-Net Ideal Functionality. The Mix-Net ideal functionality is
described in Fig. 2. We follow the definition of [32]. The Mix-Net accepts input
messages from the senders and waits for the acknowledgment from the mixers
to run. It outputs the input messages sorted according to a specific order.

The Verify-then-Decrypt Ideal Functionality. We give in Fig. 3 the formal
definition of this ideal functionality. Informally, the ideal functionality accepts
two lists of ciphertexts, such that the first list includes all the ciphertexts in the
second list, it first verifies that all the ciphertexts in the first list decrypt to valid
messages (i.e. no decryption error) and releases such output together with the
decryption from the second list. The functionality has parameter f that denotes
the leakage of secret information allowed to realize such functionality.

4 Mix-Net

We now describe our mixnet protocol that UC-realizes FMix with setup assump-
tions FVtDec and Fcrs. We start by giving the definition of Sumcheck-Admissible
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Fig. 2. UC ideal functionality for MixNet.

relation with respect to a PKE. In this definition we abstract the necessary prop-
erty for the zero-knowledge proof system used by the mixers in the protocol.

Definition 2 (Sumcheck-Admissible Relation w.r.t. PKE). Let PKE be a
public-key encryption scheme with public space PK and the ciphertext space being
a subset of CT . For any λ, any prm ∈ Setup(1λ), let Rprm

ck : (PK×CT 2n)×{0, 1}∗

be an NP-relation. We parse an instance of Rprm
ck as x = (pk, L1, L2) where

Lj = (Cj
i )i∈[n] for j ∈ {1, 2}. Rck is Sumcheck-Admissible w.r.t. PKE if:

(Sumcheck) For any (pk, sk) ←$ KGen(prm) and for any x := (pk, L1, L2) we
have that if x ∈ L(Rck) and ∀j, i : Dec(sk, Cj

i ) �= ⊥ then
∑

i Dec(sk, C
1
i ) −

Dec(sk, C2i )=0.
(Re-Randomization Witness) For any (pk, sk) ←$ KGen(prm) and for any

x := (pk, L1, L2) such that there exists (ri)i∈[n] where ∀i ∈ [n],∃j ∈ [n] : C2i =
Rand(pk, C1j ; ri) we have that (x, (ri)i∈[n]) ∈ Rck.

Building Blocks. Let PKE be a Rand-PKE scheme, let f be any efficiently-
computable function and let Rck be any Sumcheck-Admissible relation w.r.t.
PKE. The building blocks for our Mix-Net are:

1. A Rand-PKE scheme PKE that is lRCCA-secure w.r.t. f (cfr. Definition 1).
2. An All-but-One Perfect-Sound tag-based NIZK (cfr. Sect. 2) NIZKmx :=

(Initmx,Pmx,Vmx) for proving membership in Rck, with tag space [m].
3. An All-but-One Perfect-Hiding tag-based NIZK NIZKsd = (Initsd,Psd,Vsd)

for knowledge of the plaintext, i.e. a NIZK for the relation Rmsg :=
{(pk, C), (M, r) : C = Enc(pk, M; r)}, with tag space [n]. In particular, a weaker
notion of extractability that guarantees that the message M is extracted is
sufficient.

4. An ideal functionality FPKE,f
VtDec , as defined in Fig. 3.
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Fig. 3. UC ideal functionality for Verify-then-Decrypt.

5. An ideal functionality for the common reference string (see Fig. 4) of the above
NIZKs. In particular, the functionality initializes a CRS crsmx for NIZKmx, and
an additional CRS crssd for NIZKsd.

Finally, we assume parties have access to point-to-point authenticated channels.

Protocol Description. To simplify the exposition, we describe in this section
the case of a single invocation, i.e. the protocol is run only once with a single,
fixed session identifier sid; in Fig. 5 we describe in detail the protocol for the
general case of a multi-session execution. At the first activation of the protocol,
both the mixer parties and the sender parties receive from FVtDec the public key
pk for the scheme PKE and the CRSs from FCRS. At submission phase, each
sender PSi

encrypts their input message Mi by computing Ci ←$ Enc(pk, Mi),
and attaches a NIZK proof of knowledge πi

sd of the plaintext, using i as tag.
Finally, the party PSi

broadcasts their message (Ci, π
i
sd). After all sender par-

ties have produced their ciphertexts, the mixers, one by one, shuffle their input
lists and forward to the next mixer their output lists. In particular, the party
PMi

produces a random permutation of the input list of ciphertexts Li−1 (L0

is the list of ciphertexts from the senders) by re-randomizing each ciphertext in
the list and then permuting the whole list, thus computing a new list Li. Addi-
tionally, the mixer computes a NIZK proof of membership πi

mx with tag i, for
the instance (pk, Li−1, Li) being in the sumcheck-admissible relation, because of
the re-randomization witness property of Definition 2, the mixer holds a valid
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Fig. 4. UC ideal functionality for Common Reference String.

witness for such an instance. After this phase, the mixers are ready for the ver-
ification: the mixers invoke the Verify-then-Decrypt functionality FVtDec to (i)
verify that each list seen so far is made up only of valid ciphertexts and (ii)
decrypt the ciphertexts contained in the final list. Finally publishes the list of
the messages received by FVtDec, sorted according to some common deterministic
criterion, e.g. the lexicographical order.

Theorem 1. For any arbitrary leakage function f , if PKE is lRCCA-secure
w.r.t. f , NIZKmx is ABO Perfect Sound, NIZKsd is ABO Perfect Hiding, then
the protocol described in Fig. 5 UC-realizes the functionality FMix, described in
Fig. 2, with setup assumptions FPKE,f

VtDec and Fcrs.

Proof. We now prove the existence of a simulator S, and we show that no PPT
environment Z can distinguish an interaction with the real protocol from an inter-
action with S and the ideal functionality FMix (the ideal world), i.e. the distribu-
tion (FVtDec,Fcrs)-HybridZ,ΠMix,A(λ) is indistinguishable from IdealZ,FMix,S(λ). In
our proof, we give a sequence of hybrid experiments in which the (FVtDec,Fcrs)-
hybrid world is progressively modified until reaching an experiment that is iden-
tically distributed to the ideal world. In what follows, we indicate with h∗ the
index of the first honest mixer. For label ∈ {in,hide}, we introduce the set Ψlabel

consisting of tuples (x, y). We define the functions ψlabel and ψ−1
label associated

with the corresponding set:

ψlabel(x) :=

{

y if (x, y) ∈ Ψlabel

x otherwise
ψ−1
label(y) :=

{

x if (x, y) ∈ Ψlabel

y otherwise

Informally, the pair of functions ψin, ψ
−1
in helps the hybrids to keep track of

the ciphertexts sent by the honest senders while they are mixed by the first
h∗ − 1 mixers, while the pair of functions ψhide, ψ

−1
hide helps to keep track of

the ciphertexts output by the first honest mixer while they are mixed by the
remaining mixers in the chain. We recall that in the protocol the mixers PMi

,
for i ∈ [m], send a message which includes a list Li of ciphertexts. Whenever it
is convenient we parse Li as (Ci,j)j∈[n]. Let Invalid be the event that, during
the interaction of Z with the simulator/protocol, there exist i ∈ [m], j ∈ [n] such
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Fig. 5. Our protocol ΠMix.

that Dec(sk, Ci,j) = ⊥ or Vf(crsmx, (pk, Li−1, Li), πi
mx) = 0 (namely, πi

mx does not
verify). Clearly, when the event Invalid occurs, the protocol aborts.

Hybrid H0. This first hybrid is equivalent to (FVtDec,Fcrs)-HybridZ,ΠMix,A(λ).

Hybrid H1. In this hybrid, we change the way crsmx is generated. We run
(crsmx, tps) ←$ ABOInit(prm, h∗). Also, the proof πh∗

mx of the first honest mixer
is simulated. H1 is indistinguishable from H0 because of the ABO Composable
Perfect Zero-Knowledge property of the NIZK.

Hybrid H2. The first honest mixer PMh∗ , rather than re-randomizing the
ciphertexts received in input, decrypts and re-encrypts all the ciphertexts. If
the decryption fails for some ciphertext Ci, PMh∗ re-randomizes this “invalid”
ciphertext and continues. H2 is indistinguishable from H1 because PKE is per-
fectly re-randomizable: because of the tightness of the decryption property, we
have that ∀j, if Dec(sk, Ch∗−1,j) = Mh∗−1,j �= ⊥ then Ch∗,j ∈ Enc(pk, Mh∗−1,j) with
overwhelming probability; also, by the indistinguishability property, the distri-
bution of the re-randomized ciphertext Rand(pk, Ch∗−1,j) and a fresh encryption
Enc(pk, Mh∗−1,j) are statistically close.
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Hybrid H3. Here we introduce the set Ψhide and we populate it with the pairs
(Mh∗−1,i, Hi)i∈[n], where H1, . . . , Hn are distinct and sampled at random from the
message space M. When we simulate the ideal functionality FVtDec, we output
ψ−1
hide(M) for all successfully decrypted messages M. The only event that can distin-

guish the two hybrids is the event that ¬Invalid and ∃j, j′ : Dec(sk, Cm,j) = Hj′ .
However, H1, . . . , Hn are not in the view of Z, thus the probability of such event
is at most n2

|M| . H3 and H2 are statistically indistinguishable.

Hybrid H4. In this hybrid, rather than re-encrypting the same messages, the
first honest mixer re-encrypts the fresh and uncorrelated messages H1, . . . , Hn

(used to populate Ψhide). Specifically, PMh∗ samples a random permutation
ζh∗ and computes the list Lh∗ := (Ch∗,j)j∈[n], with Ch∗,ζh∗ (j) ←$ Enc(pk,
ψhide(Mh∗−1,j)).

Lemma 1. Hybrids H3 and H4 are computationally indistinguishable.

Proof. We use a hybrid argument. Let H3,i be the hybrid game in which the
first honest mixer computes the list Lh∗ := (Ch∗,j)j∈[n] as:

Ch∗,ζh∗ (j) :=
{
Enc(pk, ψhide(Mh∗−1,j)) if j ≤ i

Enc(pk, Mh∗−1,j) if j > i

In particular, it holds that H3 ≡ H3,0 and H4 ≡ H3,n. We prove that ∀i ∈ [n]
the hybrid H3,i−1 is computationally indistinguishable from H3,i, reducing to the
lRCCA-security of the scheme PKE. Consider the following adversary against the
lRCCA-security experiment.

Adversary B(pk) with oracle access to ODec(·).

– Simulate H3,i−1, in particular, when the environment instructs a corrupted
mixer to send the message (KEY, sid) simulate the ideal functionality FVtDec

sending back the answer (KEY, sid, pk).
– When it is time to compute the list of the first honest mixer Lh∗ , namely,

when the mixer PMh∗ is activated by the environment and has received for
all j ∈ [n] the messages (sid, j, C, πsd) from the senders and the messages
(sid, Lj , π

j
mx) from all the mixers with index j ≤ h∗ − 1, first decrypt all the

ciphertexts received so far using ODec(·). Let Mh∗−1,i be the decryption of
the ciphertext Ch∗−1,i. If Mh∗−1,i = ⊥ then output a random bit, else send
the pair of messages (Mh∗−1,i, Hi) to the lRCCA challenger, thus receiving a
challenge ciphertext C∗.

– Populate the list Lh∗ by setting Cζh∗ (i) ← C∗, and computing all the other
ciphertexts as described in H3,i−1. Continue the simulation as the hybrid
does.

– When all the mixers have sent the message (VtDEC, L, Lm), to FVtDec, check
that all the mixer proofs accept, otherwise abort the simulation and output
a random bit. Then decrypt all the ciphertexts in L by sending queries to
the guarded decryption oracle, i,e. send the query Ci′,j , receiving back the
message Mi′,j ∈ M ∪ {�,⊥}. If Mi′,j = ⊥, abort and output a random bit.
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If Mi′,j = �, then set Mi′,j := Mh∗−1,i. Simulate the leakage from FVtDec through
the leakage received by the lRCCA security experiment: in particular, the
reduction loses access to the guarded decryption oracle, receives the value
f(sk) and sends the message (sid,b, {Mm,j}j∈[n]) as required by the protocol.

– Finally, forward the bit returned by Z.

First we notice that when the guarded decryption oracle returns a message
Mi′,j = � then the reduction can safely return Mh∗−1,i. In fact, the ciphertext
would decrypt to either Hi or to Mh∗−1,i, however by the change introduced in
H3, we have that Mh∗−1,i = ψ−1

hide(Hi) and Mh∗−1,i = ψ−1
hide(Mh∗−1,i).

It is easy to see that when the challenge bit b of the experiment is equal
to 0, the view of Z is identically distributed to the view in H3,j−1, while if the
challenge bit is 1, the view of Z is identically distributed to the one in H3,j . Thus
|Pr[H3,j−1(λ) = 1] − Pr[H3,j(λ) = 1]| ≤ AdvlRCCA

B,PKE,f (λ).

Hybrid H5. Let Vm := (Mm,j)j∈[n] (resp. Vh∗ := (Mh∗,j)j∈[n]) be the list of
decrypted ciphertexts output by the last mixer PMm

(resp. by the first honest
mixer PMh∗ ). In the hybrid H5 the simulation aborts if ¬Invalid and Vm �= Vh∗ .

Lemma 2. Hybrids H4 and H5 are computationally indistinguishable.

Proof. Since |Vm| = |Vh∗ | and the messages H1, . . . , Hn are distinct, the event
Vh∗ �= Vm holds if and only if there exists an index j ∈ [n] such that
Count(Hj , Vm) �= 1. Let H4,i be the same as H4 but the simulation aborts if
¬Invalid and ∃j ∈ [i] : Count(Hj , Vm) �= 1. Clearly, H4,0 ≡ H4 and H4,n ≡ H5.
Let Badi be the event that (¬Invalid ∧ Count(Hi, Vm) �= 1). It is easy to check
that:

|Pr[H4,i−1(λ) = 1] − Pr[H4,i(λ) = 1]| ≤ Pr[Badi].

In fact, the two hybrids are equivalent if the event Badi does not happen.
We define an adversary to the lRCCA security of PKE that makes use of the

event above.

Adversary B(pk) with oracle access to ODec(·).
1. Simulate H5; in particular, when the environment instructs a corrupted

mixer to send the message (KEY, sid) simulate the ideal functionality
FVtDec sending back the answer (KEY, sid, pk). (Thus embedding the pub-
lic key from the challenger in the simulation.)

2. When it is time to compute the list of the first honest mixer Lh∗ , namely,
when the mixer PMh∗ is activated by the environment and has received
the messages (sid, i, C, πsd) for all senders and the messages (sid, Lj , π

j
mx)

for all mixers with index j ≤ h∗ − 1, first decrypt all the ciphertexts
received so far using the guarded decryption oracle. If there is a decryp-
tion error, output a random bit b′.

3. Sample H(0), H(1) ←$ M and send the pair of messages (H(0), H(1)) to the
lRCCA challenger, receiving back the challenge ciphertext C∗. Set the
list Lh∗ = (Ch∗,j)j∈[n] as follow:

Ch∗,ζh∗ (j) :=
{
Enc(pk, Mh∗−1,j) if j �= i

C∗ else
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where recall that ζh∗ is the random permutation used by the h∗-th mixer.
Continue the simulation as the hybrid does.

4. When all the mixer have sent the message (VtDEC, L, Lm), to FVtDec,
decrypt all of the ciphertexts in L by sending queries to the guarded
decryption oracle, namely, send the query Ci′,j for all i′ > h∗ and all
j ∈ [n], receiving back as answer Mi′,j ∈ M ∪ {�,⊥}.
If the event Invalid holds, then abort the simulation and output a ran-
dom bit b′.

5. Let C ← Count(�, Vm), if C = 1 then abort the simulation and output a
random bit b′.

6. From now one we can assume that ¬Invalid and C �= 1; Compute

M ← (C − 1)−1 ·

⎛

⎝
∑

j∈[n],Mm,j �=�
Mm,j −

∑

j �=ζh∗ (i)

Mh∗,j

⎞

⎠ . (1)

Output b′ s.t. M = H(b
′).

First, we notice that the simulation B provides to the environment Z is perfect,
indeed, independently of the challenge bit, the message H(b) is distributed identi-
cally to Hj . Thus the probability that Badi happens in the reduction is the same
as the probability the event happens in the hybrid experiments.

Let Abort be the event that B aborts and outputs a random bit. Notice that:

Abort ≡ Invalid ∨ (C = 1).

Let Wrong be the event that ∃j : Dec(sk, Cm,j) = H(1−b); notice that the message
H(1−b) is independent of the view of the environment Z, thus the probability of
Wrong is at most n/|M|. Moreover, we have Badi ≡ ¬Abort ∧ ¬Wrong because,
by definition of ¬Wrong, all the ciphertexts that decrypt to � in Lm are indeed an
encryption of H(b); thus, assuming the event holds, C �= 1 iff Count(H(b), Vm) �= 1.
The probability of guessing the challenge bit when B aborts is 1

2 , thus we have:

Pr[b = b′] ≥ 1
2 Pr[¬Badi] + Pr[b = b′|Badi] Pr[Badi] − n

|M| (2)

We now compute the probability that b = b′ conditioned on Badi. First notice
that ¬Invalid implies that the ciphertexts in the lists Lh∗ , . . . , Lm decrypt cor-
rectly and that the proofs πj

mx for j > h∗ verify. Thus by applying the sumcheck-
admissibility w.r.t. PKE of the relation Rmx and by the ABO perfect soundness
of NIZKmx we have:

∑

j∈[n]

Dec(sk, Ch∗,j) −
∑

j∈[n]

Dec(sk, Cm,j) = 0.

If we condition on ¬Wrong then:
⎛

⎝H(b) +
∑

j �=ζh∗ (j∗)

Mh∗,j

⎞

⎠ −

⎛

⎝C · H(b) +
∑

j∈[n],Mm,j �=�
Mm,j

⎞

⎠ = 0.
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By solving the above equation for H(b), we obtain M = H(b), therefore B guesses
the challenge bit with probability 1 when conditioning on ¬Abort ∧ ¬Wrong.

Hybrid H6. Here we modify the decryption phase. When for all j ∈ [m] the
mixer has sent (VtDEC, sid, L, Lm) to FVtDec, the hybrid simulates the answer of
the ideal functionality sending the message (sid,b,M ′

o) where b is computed as
defined by the ideal functionality FVtDec and M ′

o is the empty list () if Invalid
occurs; else, if all the messages in L correctly decrypt and the mixer proofs
are valid, compute M ′

o ← (Mh∗−1,ζo(j))j∈[n], where ζo is an uniformly random
permutation. Notice that H6 does not use the map ψ−1

hide at decryption phase.
We show that this hybrid and the previous one are equivalently distributed. First,
by the change introduced in the previous hybrid, if the hybrid does not abort
then Vm = Vh∗−1. Moreover, the two sets below are equivalently distributed:

{(Mh∗−1,j , Hj) : j ∈ [n]} ≡ {(Mh∗−1,j , Hζo(j) : j ∈ [n])}

because the messages H1, . . . , Hn are uniformly distributed.

Hybrid H7. Similarly to what done in H3, in this hybrid we introduce the set
Ψin, and we populate it with the pairs (Mi, M̃i)i≤[n], where the messages Mi are
the inputs of the honest senders, and the messages M̃i are distinct and sampled
uniformly at random from the message space M. When we simulate the ideal
functionality FVtDec, in case all the ciphertexts decrypts, we output the list Mo :=
(Mo,i)i, where Mo,ζo(i) ← ψ−1

in (Mh∗−1,i). We notice that if Vh∗−1 ∩ MH �= ∅, the
map ψ−1

in would modify the returned value; however, since the messages M̃i are
not in the view of Z, there is a probability of at most n2

|M| that this event happens
and that Z distinguishes H6 from H7.

Hybrid H8. In this hybrid, we encrypt the simulated (honest) sender inputs M̃j

instead of the (honest) sender inputs Mj to populate the list L0. The proof that
this hybrid and the previous one are computationally indistinguishable follows
by the lRCCA security of PKE and the zero-knowledge of NIZKsd. The proof
follows along the same line of the proof for H5, the details can be found in the
full version [18].

We now introduce the latest two hybrids that ensure that none of the inputs of
the honest senders is duplicated or discarded: we start by introducing a check on
malicious senders, while in H10 we ensure that no malicious mixer can duplicate
or discard the honest inputs.

Hybrid H9. Let MH be the set of simulated messages {M̃i}i≤[n] for the honest
sender parties and let V0 be the decryption of the list of ciphertexts received by
the first mixer. If ¬Invalid and a message M ∈ MH appears more than once in
the list V0 then the simulation aborts. The analysis of this hybrid is very similar
to the analysis in Lemma 2, and we therefore defer it to the full version [18].

Hybrid H10. Recall that Vh∗ := (Mh∗,j)j∈[n] is the list of decrypted ciphertexts
output by the first honest mixer PMh∗ . In the hybrid H10 the simulation aborts
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if ¬Invalid and ∃i ∈ [n] such that Count(M̃i, Vh∗−1) �= 1, i.e., some of the
simulated honest inputs do not appear or appear more than once, encrypted, in
the list received in input by the first honest mixer. With this check we ensure
that none of the inputs of the honest senders has been discarded or duplicated
by the (malicious) mixers. The proof is given in the full version [18] since it is
similar to the proof of Lemma 1.

Simulator S.

Initialization. Simulate the ideal functionality Fcrs by sampling crsmx in ABO
Perfect Sound mode on the tag h∗, while crssd is honestly generated with
Init(1λ). Also, simulate FVtDec by a sampling key pair (pk, sk) ←$ KGen(prm).
Populate the set MH of the simulated honest inputs, by sampling uniformly
random (and distinct) messages from the message space M.

Honest Senders. On activation of the honest sender PSi
, where i ∈ [n], sim-

ulate by executing the code of the honest sender on input the simulated
message M̃j chosen uniformly at random, without re-introduction, from MH .

Extraction of the Inputs. Let Lh∗−1 be the list produced by the malicious
mixer PMh∗−1 . For any j ∈ [n], decrypt Mj ←$ Dec(sk, Ch∗−1,j) and if a
decryption error occurs, or some of the mixer proofs πj

mx is not valid, i.e. the
event Invalid occurs, abort the simulation. If Mj /∈ MH then submit it as
input to the ideal functionality FMix.

First Honest Mixer. Simulate by computing Lh∗ as a list of encryption of
random (distinct) messages H1, . . . , Hn, simulating the proof of mixing πh∗

mx.
Verification Phase. Receive from the ideal mixer functionality FMix the sorted

output (Mi)i∈[n]. Sample a random permutation ζo and populate the list of
outputs Mo := (Mo,i)i∈[n] with Mo,ζo(i) ← Mi.

We notice that there are some differences between H10 and the interaction
of S with the ideal functionality FMix. In particular, the hybrid defines the
function ψin by setting a mapping between the inputs of the honest senders and
the simulated ones, and, during the decryption phase, and uses ψ−1

in to revert this
change. S cannot explicitly set this mapping, because the inputs of the honest
senders are sent directly to the functionality and are unknown to S. However,
the simulator is implicitly defining the function ψin (and ψ−1

in ) since during the
simulation chooses a simulated input M̃i for each honest sender and at decryption
phase outputs the messages coming from the sorted list (given in output by the
ideal functionality) which contains the inputs of the honest senders.

5 A Concrete Mix-Net Protocol from RCCA-PKE

As already mentioned, to instantiate the blue-print protocol defined in Fig. 2 we
need two main components: (1) a Rand lRCCA PKE scheme PKE and (2) a
verify-then-decrypt protocol for such PKE.
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5.1 Split PKE

We start by introducing the notion of Split Public-Key Encryption scheme. Infor-
mally, a Split PKE scheme is a special form of PKE scheme that extends and
builds upon another PKE scheme. For example, CCA-secure PKE schemes alá
Cramer-Shoup [12] can be seen as an extension of CPA-secure PKE schemes.
We give the formal definition in the following.

Definition 3 (Split PKE). A split PKE scheme PKE is a tuple of seven ran-
domized algorithms:

Setup(1λ) : upon input the security parameter 1λ produces public parameters prm,
which include the description of the message (M) and two ciphertext spaces
(C1, C2).

KGenA(prm) : upon input the parameters prm, outputs a key pair (pkA, skA).
KGenB(prm, pkA) : upon inputs the parameters prm and a previously generated

public key pkA, outputs a key pair (pkB , skB).
EncA(pkA, M; r) : upon inputs a public key pkA, a message M ∈ M, and random-

ness r, outputs a ciphertext CA ∈ CA.
EncB(pkA, pkB , C; r) : upon inputs a pair of public keys (pkA, pkB), a ciphertext

C ∈ CA, and some randomness r, outputs a ciphertext CB ∈ CB.
DecA(pkA, skA, C) : upon inputs a secret key skA and a ciphertext C ∈ CA, outputs

a message M ∈ M or an error symbol ⊥.
DecB(pkA, pkB , skA, skB , C) : upon inputs secret keys skA, skB and a ciphertext

C ∈ CB, outputs a message M ∈ M or an error symbol ⊥.

Moreover, we say that a split PKE scheme PKE splits on a PKE scheme
PKEA := (KGenA,EncA,DecA) defined over message space M and ciphertext
space CA and we say that a split PKE scheme PKE forms a PKE PKE :=
(KGen,Enc,Dec) defined over message space M and ciphertext space CB where
KGen(prm) is the algorithm that first runs pkA, skA ←$ KGenA(prm), then runs
pkB , skB ←$ KGenB(prm, pkA) and sets pk := (pkA, pkB), sk := (skA, skB), where
Enc(pk, M) is the algorithm that outputs EncB(pkA, pkB ,EncA(pkA, M; r); r) and
Dec := DecB.

The correctness property is straightforward: a split PKE is correct if it forms a
PKE that is correct in the standard sense. Our definition is general enough to
capture a large class of schemes. We first note that any PKE scheme is trivially
split: it suffices that EncB on input C outputs C, and DecB runs DecA. A more
natural (and less trivial) example is the above-cited Cramer-Shoup.

In this paper, we will focus on PKE schemes that are Re-Randomizable and
Verifiable. Since, as we noted above, any PKE can be parsed as a Split PKE,
Re-Randomizability is captured by an additional algorithm Rand(pk, C; r) that
takes as input a ciphertext C and outputs a new ciphertext Ĉ.

As for the verifiability property, instead, there are three possible levels: (i)
both the secret keys are required to verify a ciphertext, or (ii) only skA is needed,
or (iii) no secret key is required at all. We refer to the third one as the public
setting, while the other two are different flavors of a private/designated-verifier
setting. We give the definition of (ii) in what follows.
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Definition 4 (verifiable split PKE). A verifiable split PKE is a split PKE,
as defined above, with an additional algorithm Vf(pk, skB , C) that takes as input
the public key pk, the secret key skB and a ciphertext C ∈ CB and outputs 1
whenever DecB(pk, sk, C) �= ⊥, otherwise outputs 0 for invalid ciphertexts.

5.2 A Protocol for Verify-then-Decrypt for Verifiable Split PKE

Fig. 6. UC ideal functionality for (n-out-n Threshold) Key-Generation and Decryption
of PKE

We realize the Verify-then-Decrypt ideal functionality (see Sect. 3) needed to
instantiate our Mix-Net protocol. Let PKE be a verifiable split PKE. We define
in Fig. 8 the protocol ΠVtDec that realizes FVtDec in the FCom-hybrid model.
Before doing that, we need to assume an extra property for our verifiable split
PKE, so we introduce the notion of linear key-homomorphism for a PKE.

Definition 5 (Linearly Key-Homomorphic PKE). We say that a PKE
PKE := (Setup,KGen,Enc,Dec) is linearly key-homomorphic if there exist PPT
algorithms GenPK,CheckPK and an integer s such that:

– KGen(prm), where prm contains the description of a group of order q, first
executes sk ←$ Z

s
q, and then produces the public key pk ←$ GenPK(sk).

– GenPK is linearly homomorphic in the sense that for any sk1, sk2 ∈ Z
s
q and

α ∈ Z
s
q we have GenPK(α · sk1 + sk2) = α · GenPK(sk1) + GenPK(sk2).

– CheckPK on input the public key pk outputs a bit b to indicate if the public
key belongs on the subgroup of PK spanned by GenPK. Namely, for any pk
we have CheckPK(pk) = 1 iff pk ∈ Im(GenPK(prm, ·)).
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Moreover, a split PKE PKE is linearly key-homomorphic it forms a linearly key-
homomorphic PKE and it splits to a key-homomorphic PKE.

It is not hard to verify that the key generation of a linearly key-homomorphic
split PKE can be seen as sampling two secret vectors skA ∈ Z

s
q and skB ∈ Z

s′
q

for s, s′ ∈ N and then applying two distinct homomorphisms GenPKA,GenPKB

to derive the public key.

Building Blocks. Let PKE be a split PKE that splits over PKEA, consider the
following building blocks:

1. An ideal functionality FPKEA

Dec for threshold decryption, as defined in Fig. 6,
of PKEA.

2. A single-sender multiple-receiver commitment ideal functionality FCom [8] for
strings, as defined in Fig. 7.

We describe the protocol in Fig. 8. At a high level, the protocol works as follows.
Each party Pi interacts with the ideal functionality FDec to get the public key pkA

and, after that, samples the pair of keys (pki
B , ski

B). The secret key is committed
through the ideal functionality FCom. After this step, the parties compute the
final key pkB as the sum of all their input public key shares. To verify the
ciphertexts CV , the parties reveal their secret key shares ski

B , verify that all the
keys are consistent, and locally verify the ciphertexts. Finally, to decrypt the
ciphertexts CD, the parties invoke FDec after checking that CD ⊆ CV .

Fig. 7. UC ideal functionality for (Single) Commitment.

Theorem 2. Let PKE be a verifiable split PKE that is linearly key-
homomorphic, let f be the leakage function that on input sk := (skA, skB) outputs
skB. The protocol ΠPKE

VtDec described in Fig. 8 UC-realizes the functionality FPKE,f
VtDec

described in Fig. 3 with setup assumptions FPKEA

Dec and FCom.
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Fig. 8. Our protocol ΠVtDec.

Proof. We now prove that there exists a simulator S such that no PPT environ-
ment Z can distinguish an interaction with the real protocol from an interaction
with S and the ideal functionality FVtDec.

Simulator S.

Public Key. S receives in input from Z the set of corrupted parties, and receives
from FVtDec the public key pk that is parsed as the tuple (pkA, pkB). S gets to
see the secret key shares of the corrupted parties when they send the message
(COMMIT, sid, ski

B). Let h∗ be the index of an honest party. S samples at
random the secret keys ski

B for all honest parties Pi, with i �= h∗, from
which can honestly compute the corresponding public keys through GenPK.
As for the h∗-th party, S checks if ∀j �= h∗ : CheckPK(pkA, pkj

B) = 1. If so it
computes directly the public key pkh∗

B := pkB −
∑

i�=h∗ pk
i
B , else it samples

skh∗
B and computes the corresponding public key.

Verification. When all the parties have sent the message (OPEN, sid,Pi) to the
commitment functionality FCom, the simulator receives the leakage (sid, skB)
from FPKE,f

VtDec , it computes the secret key for party Ph∗ , i.e. it computes skh∗
B :=

skB −
∑

i�=h∗ sk
i
B . From this point on, the simulation becomes trivial since

the simulator follows the protocol, and can easily verify and decrypt all the
ciphertexts by interacting with the ideal functionality FVtDec.
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We observe that the inputs simulated for the honest parties Pi, for i �= h∗, are
perfectly simulated since S chooses uniformly at random the matrices and the
vectors for the secret keys ski

B . The public key for the h∗-th party is chosen
dependently of the message of the corrupted parties. In particular, if one of
the corrupted parties sends an invalid public key the h∗-th mixer follows the
specification of the protocol, thus the simulation is perfect; if all the public
keys are valid, the public key of h∗-th party is chosen as a function of the
previously chosen keys and the public key given in input to the simulator. This
is distributed identically to a real execution of the protocol: the only difference
is that S computes the random public key, while in the real execution the party
Ph∗ would choose at random their secret key and then project it to compute
the corresponding public key, but this difference is only syntactical. In the next
steps, the simulation is perfect since it proceeds exactly as in the real protocol.

5.3 Our Concrete Verifiable Split PKE

In this section, we show that the Rand-PKE in [17] has all the properties needed
to instantiate our protocol ΠMix. In particular, in Fig. 9 we parse their PKE as
a split PKE, and we prove that the scheme is lRCCA w.r.t. the leakage function
f such that f(sk) := skB , and that the scheme is linearly key-homomorphic.

The schemes in [17] are proven secure under a decisional assumption that we
briefly introduce here. Let 
, k be two positive integers. We call D�,k a matrix
distribution if it outputs (in probabilistic polynomial time, with overwhelming
probability) matrices in Z

�×k
q .

Definition 6 (MatrixDecisionalDiffie-HellmanAssumption inGγ, [15]).
The D�,k-MDDH assumption holds if for all non-uniform PPT adversaries A,

| Pr[A(G, [A]γ , [Aw]γ) = 1] − Pr[A(G, [A]γ , [z]γ) = 1]| ∈ negl(λ),

where the probability is taken over G := (q,G1,G2,GT , e,P1,P2) ← GGen(1λ),
A←$D�,k,w ←$ Z

k
q , [z]γ ←$ G

�
γ and the coin tosses of adversary A.

Theorem 3. PKE described in Fig. 9 is linearly key-homomorphic and lRCCA-
secure w.r.t. f such that f(sk) := skB under the Dk+1,k-MDDH assumption.

The proof of Theorem 3 is in the full version of this paper [18].

5.4 Putting All Together

We can instantiate the ABO Perfect Hiding NIZK proof of membership NIZKmx

using Groth-Sahai proofs [14]. In particular, notice that the necessary tag-space
for NIZKmx is the set [m] which in typical scenarios is a constant small number
(for example 3 mixers). Thus we can instantiate the tag-based ABO Perfect
Hiding NIZKmx by considering an Init algorithm that samples m different common
reference strings (crsi)i∈[m], the prover algorithm (resp. the verify algorithm) on
tag j invokes the GS prover algorithm (resp. verifier algorithm) with input the
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Fig. 9. The Split RCCA-secure Scheme. prm include the description of a bilinear group.

common reference string crsj . We can instantiate the tag-based ABO Perfect
Sound NIZK NIZKsd using the technique presented in the full version of [17]. By
the universal composability theorem, once we compose the protocol ΠMix from
Fig. 5 and ΠVtDec from Fig. 8 we obtain a protocol with setup assumption FDec,
FCom and FCRS. The first ideal functionality can be implemented using classical
approaches (for example, see Benaloh [6]). Briefly, the mixers can compute the
shares of the public key [a	D]1 for KGenA as in Fig. 9 and prove the knowledge
of the secret key share a(i) where a =

∑

i a
(i), to obtain UC security in the

malicious setting against static corruptions we can use an ABO Perfect Hiding
NIZK proof system for this step. At decryption time, the mixers can compute
a batched zero-knowledge proof of knowledge for “encryption of zero”, they can
use a NIZK proof of membership and, for UC security, it is sufficient for such
proofs to be adaptive perfect sound.

Auditability. For space reasons, we only sketch the auditability of our proto-
col. Roughly speaking, a protocol Π is auditable if there exists a PT algorithm
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Audit that on input a transcript τ and an output y output 1 if and only if
the execution of the protocol that produces the transcript τ ends up with the
parties outputting y. We focus on the auditability of the protocol obtained com-
posing ΠMix from Fig. 5 and ΠVtDec from Fig. 8. The auditing algorithm, given
a transcript of ΠVtDec can reconstruct the secret key sk2 and can check that
Vf(sk2, Ci,j) = 1 for all i ∈ [m] and j ∈ [n] moreover it checks that all the NIZK
proofs verify. The checks performed guarantee that the protocol execution result-
ing to the transcript did not abort, moreover, the auditability is guaranteed by
the correctness of the protocol. Finally, we notice that the protocol for FDec

sketched in the previous section is auditable (see [6]).

Efficiency. We analyze the efficiency of the protocol obtained composing ΠMix

and ΠVtDec, and we consider the most efficient instantiation of the scheme in [17]
based on SXDH assumption, i.e. for k = 1. We denote with E1, E2 (resp. ET )
the cost of a multiplication in groups G1 and G2 (resp. exponentiation in GT ),
and with P the cost of computing a bilinear pairing. We give an intuition on
how much the protocol scales when a mixer is given N processors and may make
use of parallelism. We compare our results with the Mix-Net protocol of [17].
In our protocol ΠMix, each mixer re-randomizes a list of n ciphertexts which
requires n(7E1 + 7E2 + 2ET + 9P ), and additionally computes a proof πmx for
the sumcheck relation Rmx which requires n additions in Zq and 6E1 +8E2. Re-
randomization of a ciphertext in the list does not depend on other ciphertexts in
the list, so the parallel cost is n

N (7E1+7E2+2ET +9P ). Additionally, the mixers
verify all the sumcheck NIZK proofs, which requires 3nm additions in G1 and
around 8 pairings. The parallel cost is 8m

N pairings plus logN (3n)m
N additions.

In the protocol ΠVtDec, each mixer sends a commitment of their secret key
share, which requires a UC-commitment for the elements of the secret key sk,
and receives commitments of secret key shares of the other m − 1 mixers. Addi-
tionally, the mixers derives the public key shares, using GenPK, this corresponds
to the cost of generating m times a key pki

B and requires m(4ET + 6E1 + 6E2).
Finally, each mixer needs to verify the n ·m ciphertexts produced in the protocol
execution of the last list which requires n(m − 1)(6E1 + 4E2 + 4P ).

In the protocol of [17] the public key shares pki
B (and not the secret ones) are

committed using an equivocable commitment and an ABO NIZK proof (which
can be seen as a UC-secure commitment against static corruption). The parallel
cost of re-randomize their ciphertexts is n

N 36E1 + 45E2 + 6ET + 5P , while the
cost of verifying the ciphertexts and decrypting the last list is equal to nm

N 36P +
m
N (2E1 + 50P ). In comparison, our approach allows to save at least n

N (30E1 +
39E2 + 36P ) cryptographic operations, where we recall that n is the number of
shuffled ciphertexts.
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Abstract. Non-committing encryption (NCE) is an advanced form of
public-key encryption which guarantees the security of a Multi-Party
Computation (MPC) protocol in the presence of an adaptive adversary.
Brakerski et al. (TCC 2020) recently proposed an intermediate notion,
termed Packed Encryption with Partial Equivocality (PEPE), which
implies NCE and preserves the ciphertext rate (up to a constant fac-
tor). In this work, we propose three new constructions of rate-1 PEPE
based on standard assumptions. In particular, we obtain the first con-
stant ciphertext-rate NCE construction from the LWE assumption with
polynomial modulus, and from the Subgroup Decision assumption. We
also propose an alternative DDH-based construction with guaranteed
polynomial running time.

Keywords: Non-committing encryption · standard assumptions ·
ciphertext rate · equivocable encryption

1 Introduction

Non-committing encryption (NCE) was introduced by Canetti et al. [6] as a form
of encryption that guarantees the security of an MPC protocol in the presence
of an adaptive adversary. Informally, NCE is a form of public-key encryption
that allows one to generate “dummy” ciphertexts that can be later opened to an
arbitrary message. Intuitively, by using NCE as the encryption tool in an MPC
protocol, we can fool the adversary by opening the internal state of a newly
corrupted party to an arbitrary message while being able to prove that this
arbitrary internal state is consistent with the public transcript of the protocol.

An important property of an NCE scheme that determines its efficiency, like
any other public-key encryption scheme, is its ciphertext rate, i.e., the ratio of
ciphertext length to message length.
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Prior Works. There is a large literature on NCE and we will mostly focus on
NCE constructions achieving optimal round complexity without random oracles.

Canetti et al. [6] presented the first NCE constructions based on the RSA or
the computational Diffie-Hellman (CDH) assumptions. Each of their construc-
tions achieves a ciphertext rate of O(λ2). Beaver [1] proposed 3-round NCE con-
struction with ciphertext rate O(λ) from the DDH assumption. Damg̊ard and
Nielsen [10] generalized the work of Beaver and achieved 3-round NCE with the
same ciphertext rate based on simulatable public-key encryption and showed an
instantiation from the RSA assumption. Nielsen [19] proved that non-interactive
NCE is impossible without random oracles. In the following, we mostly discuss
2-round protocols. First improvements were only achieved after thirteen years by
Choi et al. [9]. In the latter work, the authors constructed an NCE scheme based
on the factoring problem and achieving linear ciphertext rate O(λ). Hemen-
way et al. [13] achieved sub-linear ciphertext-rate O(log �) from the Φ-hiding
assumption, where � is the length of message. Later, in [12], they improved their
result in terms of assumption and public key size, and removed the oblivious
sampling requirement that appeared in [13]. The latter construction is based
on the (Ring) Learning-with-Errors (LWE) assumption with super-polynomial
modulus-to-noise ratio and they achieved a rate of poly(log λ). Canetti et al. [8]
obtained optimal ciphertext-rate using the power of indistinguishability obfus-
cation (iO) and in the CRS model. Yoshida et al. [21] put forth an approach
allowing to construct NCE with ciphertext rate O(log λ) under the standard
Decisional Diffie-Hellman (DDH) assumption. Under standard assumptions, con-
stant ciphertext rate was recently achieved in two concurrent works: Yoshida et
al. [22] obtained constructions from DDH or LWE with super-polynomial mod-
ulus; Brakerski et al. [3] obtained similar results via a new abstraction which
yields a construction from the DDH assumption and a construction from LWE
with super-polynomial modulus-to-noise ratio.

1.1 Our Contributions

We follow the approach of Brakerski et al. [3] and obtain constant-rate NCE
by constructing an intermediate primitive called packed encryption with partial
equivocality (PEPE) that the latter authors proved to imply NCE with only
a constant factor loss in the ciphertext rate. NCE is obtained by composing
any PEPE scheme with a constant-rate error-correcting code (ECC), the latter
being implied by the existence of one-way functions: to encrypt a message, first
encode it using an ECC, and then encrypt the encoding using the PEPE encryp-
tion algorithm (decryption is done via decrypting-then-decoding). We refer the
reader to [3] for more details on this generic transform. We thus focus on con-
structing rate-1 PEPE from various assumptions, and rely on the transformation
of [3] to obtain constant-ciphertext-rate NCE. Specifically, we obtain three con-
structions of rate-1 PEPE, therefore of constant-ciphertext-rate NCE. Our first
construction is secure assuming the hardness of the LWE problem with polyno-
mial modulus and inverse-error rate, and our second construction is secure under
the DDH assumption. Assuming a common reference string (CRS), we then pro-
vide a construction of rate-1 PEPE from Subgroup Decision (SD) assumption
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in pairing-free composite order groups. To our knowledge, this construction is
the first rate-1 PEPE based on a factoring-related assumption.1 Our SD-based
construction requires a trusted setup (CRS) in order to generate the composite
order group. However, the trusted setup requirement appears to arise in any
PEPE construction based on the hardness of factoring as long as no individidual
party should learn the factorization. Table 1 provides a comparison between our
results and prior ones.

Table 1. Comparison between our NCE schemes and previously proposed NCE
schemes. λ denotes the security parameter and � denotes the message length. We only
discuss 2-round constructions without random oracle.

Ciphertext
Rate

Assumption Setup

[6] O(λ2) RSA, CDH -

[9] O(λ) Factoring Blum integers -

[13] O(log �) Φ-hiding
Oblivious sampling of
RSA modulus

[12] poly(log λ) LWE, Ring-LWE
superpolynomial LWE
modulus-to-noise ratio

[8] 1 + o(1) iO CRS

[21] O(log λ) DDH -

[3] O(1) LWE, DDH
superpolynomial LWE
modulus-to-noise ratio

[22] O(1) LWE, DDH
superpolynomial LWE
modulus-to-noise ratio

This Work O(1)
LWE, DDH

SD

-

CRS

LWE Construction. We propose the first constant ciphertext-rate NCE
scheme relying on the hardness of LWE with polynomial modulus-to-noise ratio.
This result improves the recent works of Brakerski et al. [3] and Yoshida et
al. [22], which rely on LWE with super-polynomial modulus-to-noise ratio. Our
construction is identical to the one from [3], except that we avoid the use of noise
flooding to equivocate the ciphertext randomness. Instead, we convolve discrete
Gaussians using a lemma from [17] to properly simulate the noise of simulated
ciphertexts.
1 In the proceedings version of [3], a PEPE candidate based on the quadratic residuos-
tity assumption was proposed. Besides a CRS, this construction required oblivious
sampling to avoid assuming erasures. In hidden-order groups, it is not clear how
to obliviously sample a group element without knowing the group order and while
satisfying the requirements of the security proof. The authors of [3] confirmed this
issue and removed the QR-based construction in an updated version of their paper.
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DDH Construction. We present a simple DDH-based construction of rate-1
PEPE, which differs from the construction in [3]. The latter uses a ciphertext
compression algorithm (which relies on sampling a PRF secret key such that
evaluation on some ciphertext-dependent messages satisfies some property) that
runs in expected polynomial time. Instead, we apply a universal hash function
to the encryption randomness and then encrypt the message using the output
of the hash as a one-time pad. Thus, we preserve the constant ciphertext rate
while avoiding the disadvantage of the compression algorithm. While our scheme
loses the linearly homomorphic property of [3], its encryption algorithm works
in strict polynomial time.

SD Construction. We propose the first constant ciphertext-rate NCE (via
PEPE) based on the subgroup decision (SD) assumption [2]. This construction
uses a CRS, which seems inherent when relying on the hardness of factoring. To
our knowledge, it is the first constant ciphertext-rate NCE construction based
on a factoring-related assumption.

1.2 Technical Overview

PEPE. As defined in [3], a Packed Encryption with Partial Equivocality (PEPE)
scheme is a tuple (KeyGen,Enc,Dec,EquivPK,EquivCT) of efficient (PPT) algo-
rithms such that KeyGen(b, I, rG) algorithm takes as input a bit b, a subset
I ⊂ [�], where � is the length of the messages that can be encrypted in the
scheme, and it uses some randomness rG to produce a public key pk and a secret
key sk. This algorithm runs in two modes: real mode (if b = 0), or ideal mode (if
b = 1). In the real mode, the scheme should satisfy the correctness property of
a regular public-key encryption scheme restricted to the subset I. Namely, the
output (of length �) of the decryption algorithm on a ciphertext encrypting a
message M should be equal to Mi, for i ∈ I.

The two other algorithms EquivPK and EquivCT can be used in the follow-
ing way: EquivPK(sk, b, (I, rG), I ′) on input I ′ ⊂ I, and sk, where (pk, sk) ←
KeyGen(b, I, rG), outputs a new randomness r′

G, such that r′
G is indistinguish-

able from any honest (real-mode) r′
G that is used in KeyGen(0, I ′, r′

G) for set
I ′. That is, an efficient adversary cannot distinguish between r′

G obtained by
equivocating with respect to I ′ from a larger set I ⊃ I ′, and honest r′

G that is
used in KeyGen(0, I ′, r′

G).
The second equivocation algorithm allows to equivocate ciphertexts in the

ideal mode: EquivCT(sk, (M, rE), {M ′
i}i/∈I), on input an encryption randomness

rE , and messages M and M ′, such that Mi = M ′
i for i ∈ I, outputs a new

encryption randomness r′
E . No efficient adversary should be able to tell apart

whether the distribution (pk,M ′, r′
E) was obtained by equivocating an encryp-

tion of a different message M in the ideal mode or by honestly encrypting in the
real mode.

We now dive into the details of our PEPE constructions.
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LWE Construction. We recall the LWE-based PEPE scheme of [3] which
requires a super-polynomial modulus-to-noise ratio, and then show how we mod-
ify their scheme and obtain a rate-1 PEPE scheme from LWE with polynomial
modulus. In the real mode, the public key consists of a random integer matrix
A $←− Z

n×k
q , and vectors {vi}�

i=1 that are either LWE samples vi = Asi + ei if

i ∈ I, or random vectors vi
$←− Z

n
q if i /∈ I. In the equivocal mode, the public key

has the same structure as in the real mode, except that the matrix A and random
vectors {vi}i/∈I now come from the columns of a random matrix B ∈ Z

n×(k+�−|I|)
q

for which a lattice trapdoor tdB [11,18] is available. Other vectors {vi}i∈I are
chosen as LWE samples as in the real mode. To encrypt a message M ∈ {0, 1}�,
they use the packed Regev encryption scheme [20] together with a masking noise

as follows: first, it samples a random vector r $←− Dn
σ and computes c1 ← rT A,

and w2,i ← rT vi + ei + �q/2�Mi ∈ Zq, where ei
$←− Dσ′ for each i ∈ [�]. Next,

it compresses (c1, {w2,i}�
i=1) using a technique introduced in [4]. This technique

changes a ciphertext of the form ct = (c0, w2,1, · · · , w2,�) ∈ Z
n
q ×Z

�
q into a tuple

(c0, {ci}i∈[�], z), where ci ∈ {0, 1} for each i ∈ [�], and z ∈ Zq. Decryption also
proceeds using the decryption algorithm of this compression procedure.

The equivocation of public key randomness for a subset I ′ ⊆ I is done simply
by outputting the secret keys for the indices that are in the subset I ′, and
the unmodified public key elements for the rest. Note that here, for indices in
I \ I ′, we are claiming that vi’s which are formed as Asi + ei (as the output of
KeyGen(b = 1, I, rG)), are indistinguishable from random vectors of Zn

q (as the
output of KeyGen(b = 0, I ′, r′

G)). This holds assuming the hardness of LWE.
We now explain the ciphertext equivocation algorithm of [3]. Recall that tdB

allows sampling a short vector of the lattice Λ⊥
y (B) = {r ∈ Z

n
q : BT · r =

y}, where y ∈ Z
k+�−|I|
q . Let us assume that (c1, {w2,i}�

i=1) is a packed Regev
encryption of a message M with the encryption randomness (r, {e∗

i }i∈[�]) and
we want to explain it as an encryption of a message M ′, where Mi = M ′

i for
i ∈ I. Using the lattice trapdoor tdB, one can sample a short (in fact, Gaussian)
r̄ ∈ Z

n such that

r̄T A = rT A and r̄T vi = w2,i − e′
i − �q/2�M ′

i ,

for i /∈ I, where e′
i is sampled from Dσ′ . This gives a Gaussian vector r̄ and

encryption noise e′
i, for indices i /∈ I, that can explain (c1, {w2,i}i/∈I) as a valid

encryption of bits {M ′
i}i/∈I . At this point, one still has to craft an encryption

noise e′
i for all i ∈ I such that

r̄T vi + e′
i + �q/2�M ′

i = rT vi + e∗
i + �q/2�Mi

i∈I=====⇒
Mi=M ′

i

r̄T vi + e′
i = rT vi + e∗

i

i∈I=======⇒
vi=Asi+ei

r̄T ei + e′
i = rT ei + e∗

i

=====⇒ e′
i = e∗

i + (r − r̄)T ei.

The security proof requires to make sure that the distribution of e′
i which is

computed by this equation is indistinguishable from the distribution Dσ′ used in
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the real mode. To this end, Brakerski et al. [3] use the noise flooding technique,
which is based on the property that, if B/σ′ is negligible (where B is bound
for |e|), then Dσ′ + e is statistically close to Dσ′ . Thus, if the modulus-to-noise
ratio is set to be super-polynomial, the equivocation algorithm of [3] outputs
randomnesses within negligible statistical distance from the correct distribution.

We remove this issue by relying on a Lemma from [17] which states that, for
matrices B ∈ Z

n×k′
q and E ∈ Z

n×�′
, given a tuple of the form (rT B, rT E + eT ),

where (r, e) is sampled from Dn
σ × D�′

σ′ , a trapdoor for B allows resampling a
short vector r̄ such that r̄T B = rT B while obtaining ē with the correct distribu-
tion such that r̄T E+ ēT = rT E+eT . We then tweak the equivocation algorithm
of [3] by resampling the Gaussian vector r̄ with an appropriate covariance matrix,
making sure that the output of the equivocation algorithm is statistically indis-
tinguishable from the real encryption randomness, without the super-polynomial
modulus-to-noise requirement.

DDH Construction. Under the DDH assumption, we work with a group G

of prime order p and generator g. Denote by n ∈ N some integer. In the real
mode, the public key is of the form ({gj}j∈[n], {hi,j}i∈[�],j∈[n]), where each gj is a

random element of the group G, and hi,j is equal to gsi
j , where si

$←− Zp if i ∈ I,
or it is sampled randomly from G, otherwise. Here, the secret key consists of the
subset I, and the secrets {si}i∈I . The public key has the same structure in the

ideal mode, except that we set each gj to be of the form gaj , where aj
$←− Zp,

and each hi,j is equal to gzi,j , where zi,j
$←− Zp, if i /∈ I. The secret key in this

case is of the form sk = (I, {si}i∈I , {aj}j∈[n], {zi,j}i/∈I,j∈[n]).

To encrypt a message M ∈ {0, 1}�, we first sample randomness r1, · · · , rn
$←−

Zp. We use a universal hash function, H : G → {0, 1}, to compute a ciphertext

as (c0, c1, · · · , c�), where c0 =
n∏

j

g
rj

j , and ci = Mi ⊕ H(
n∏

j=1

h
rj

i,j) ∈ {0, 1}. Note

that for each i ∈ [�], we have:

(i) If i ∈ I : ci = Mi ⊕ H

(
n∏

j=1

h
rj

i,j

)

= Mi ⊕ H

(

(
n∏

j=1

g
rj

j )si

)

= Mi ⊕ H(csi
0 )

(ii) If i ∈ [�] \ I : ci = Mi ⊕ H

(
n∏

j=1

h
rj

i,j

)

= Mi ⊕ H

(
n∏

j=1

gzi,j ·rj

)

(when b = 1)

To decrypt, each Mi can be computed as ci ⊕ H(csi
0 ) for all i ∈ I.

The equivocation of public key randomness for a subset I ′ ⊆ I is done simply
by outputting the secret keys for the indices that are in the subset I ′, and the
unmodified public key elements for the rest. Here again, for indices in I \ I ′,
we are claiming that hi,j ’s which are formed as gsi

j = gaj ·si (as the output of
KeyGen(b = 1, I, rG)), are indistinguishable from random elements of G (as the
output of KeyGen(b = 0, I ′, r′

G)). This holds assuming DDH in G.
The idea behind the EquivCT algorithm is inspired by the construction of

sender-equivocable lossy public-key encryption from the Matrix Diffie-Hellman
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assumptions [14]. Suppose that ct = (c0, c1, · · · , c�) encrypts the message
M ∈ {0, 1}� using the encryption randomness r1, · · · , rn. Let M ′ ∈ {0, 1}� a
targeted message such that Mi = M ′

i for all i ∈ I. To equivocate the ciphertext

randomness for M ′, we have to find r̄1, · · · , r̄n such that c0 =
n∏

j

g
r̄j

j , and

ci ⊕ M ′
i = H

( n∏

j=1

gzi,j ·r̄j
)
.

Note that, since M ′ agrees with M on indices i ∈ I, keeping c0 unchanged
guarantees that ci = M ′

i ⊕ H(csi
0 ) for all i ∈ I (Equation (i)). In order to find

such a randomness, we do as follows: we first find a random element ti of Zp, for
indices i /∈ I, such that ci = M ′

i ⊕ H(gti). Since H is a universal hash function,
due to the Leftover Hash Lemma, the distribution of H(gti) is statistically close
to uniform over {0, 1}. The probability Pr[H(gti) = ci ⊕ M ′

i ], for a random ti,
is thus ≥ 1/2 − negl(λ), where λ is the security parameter. Hence, this task
terminates in polynomial time with overwhelming probability if we repeatedly
sample ti until a suitable candidate is found. Then, we solve the following system
of equations to find a vector r̄ over Zq such that:

a · r̄T = a · rT

zi1 · r̄T = ti1
...

ziα
· r̄T = tiα

,

where {i1, · · · , iα} = [�] \ I, zik
= (zik,1, · · · , zik,n), a = (a1, · · · , an), and r =

(r1, · · · , rn). Note that, since a and each zik
are chosen uniformly at random,

this system of equation is full rank with overwhelming probability. We can thus
find suitable encryption randomness r̄ that explains the ciphertext ct as an
encryption of the message M ′.

On CRS and Oblivious Sampling Requirements. We now recall the impor-
tance of oblivious sampling. As illustrated above, public key elements are of 2
types; (1) elements for positions in I, for which we know the underlying secrets
(denoted by {si}i∈I) in both modes, and (2) elements outside I for which the
underlying secrets are only known in the ideal mode. To avoid relying on era-
sures, public key elements for indices outside I should be sampled obliviously
(i.e., without knowing the underlying secrets) in the real mode.

Recall that a PEPE scheme has to satisfy two properties: For indices in I,
decryption must be correct while, for indices outside I, ciphertexts must be
equivocable in ideal mode. In the ideal mode, the key components for indices
in and outside I thus have to satisfy different properties. Elements within I
should be associated with some secret information enabling decryption (e.g.,
their discrete logarithm). At the same time, in order to equivocate public key
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randomness, it should be possible to equivocate from a set I to a smaller set
I ′ without changing the public key. To this end, one requirement is that the
components for indices in I \I ′, which were originally sampled to enable decryp-
tion in either mode (e.g., as DDH tuples with known discrete logarithm), should
be indistinguishable from elements that were originally sampled outside I in the
real mode (e.g., random group elements). More specifically, they should be indis-
tinguishable even given the randomness used to generate the key components.
Since some computational assumption has to underlie the pseudorandomness of
key components in I \ I ′, some information should remain hidden about these
elements given the randomness (e.g., in the DDH case, it would be easy to know
whether they are DDH tuple or random group elements given their discrete log).
For this reason, public key elements outside I should be sampled obliviously.
Then, when equivocating, it is sufficient to directly include the public key ele-
ments for those indices in the key generation randomness, and use the hardness
assumption to prove indistinguishability.

However, there should be a way to explain how obliviously sampled elements
were chosen and this “explanation” should be compatible with a reduction from
the computational assumption that underlies the indistinguishability of public
key components. In the DDH case, for instance, there should be an inverse-
sampling algorithm that, on input of a group element h ∈ G which is part
of a DDH instance, samples uniformly from the set of random coins leading
the real oblivious sampling algorithm to output h. While oblivious sampling is
efficiently doable using standard techniques (see, e.g., [7, Section 4.3.2]), it is
more problematic in groups of hidden order where standard inverse-sampling
techniques require knowing the group order. In particular, the problem arises
if we try to use the Quadratic Residuosity assumption modulo a safe prime
product. Letting g be a generator of the subgroup QRN of quadratic residues, it
is not clear how to sample an element from QRN without knowing its discrete
logarithm with respect to g and while remaining able to use the Quadratic
Residuosity assumption in the security proof. The only obvious way to sample
from this group is to pick a random element from Z

∗
N and square it. In this

case, the key-generation randomness rG would have to contain these square
roots, which hinders a reduction from the QR assumption when we want to
prove the public-key randomness indistinguishablity property. To circumvent
this difficulty, our SD-based PEPE uses a group of public (but composite) order.

Regarding the need for a CRS, let us imagine a construction relying on
factoring-related assumption where a composite integer N = pq would be sam-
pled during the key generation in real mode (when b = 0). According to the
definition of PEPE, the randomness used to sample N should be included in the
key generation randomness rG. This randomness would include the factors p and
q (or a random seed allowing to recompute them). Then, when equivocating the
key generation randomness, it would not be possible to rely on any assumption
related to hardness of factoring N since p and q would be part of rG and thus
available to the adversary. As a result, we need to consider a separate Setup
algorithm that generates the group order N = pq as part of a common refer-
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ence string crs, for which a trapdoor (i.e., p and q) can be used by randomness
equivocation algorithms.

SD Construction. Our construction from the SD assumption avoids oblivi-
ous sampling difficulties (which arise in previous factoring-based constructions)
because it only requires to obliviously sample from a public order group. It works
over a multiplicative cyclic group G ≈ Gq × Gp, where G is of order N = pq,
Gp = {xq mod N : x ∈ G} is the subgroup of G of order p, and Gq = {xp

mod N : x ∈ G} is the subgroup of G of order q, and p and q are sufficiently
large prime numbers. Since the assumption is implied by the hardness of fac-
toring, we require that there exists a trusted Setup algorithm that generates a
group order N = pq, and provides the factorization p and q for randomness
equivocation algorithms. Let ĝ and ĥ, be generators of Gp, and Gq, respectively.
The public key contains (N, ĝ, ĥ, {gj}j∈[n], {hi,j}i∈[�],j∈[n]), where each gj = gaj ,

for a random element aj
$←− ZN , is sampled during the Setup, and hi,j = gsi

j ,

where si
$←− ZN if i ∈ I, or it is sampled randomly from G, otherwise. Here,

the secret key is sk = {I, {si}i∈I}. The public key has the same structure in the

ideal mode, except that we set each hi,j to be equal to h
δi,j

i ·gsi
j , where hi

$←− Gq,

and si
$←− ZN , if i /∈ I. The secret key in this case is sk = (I, {si}i∈[�], {hi}i/∈I).

The encryption, decryption and public key randomness equivocation algorithms
proceed more or less in the same way as in the DDH-based construction. The
equivocation of the ciphertext randomness is achieved regarding the fact that
c0 =

∏
j g

rj

j is an element of the subgroup Gp, so it only determines the random-
ness {ri}i∈[l] modulo the order of the group, p. So, it is enough to find r′

i = ri

mod p such that H(hr′
i

i · csi
0 mod N2) = ci ⊕ M ′

i for all i /∈ I. Since H is a
universal hash function and r′

i is considered modulo p, a similar argument as in
the DDH case shows that this task terminates in polynomial time with all but
negligible probability.

2 Preliminaries

We use λ to denote the security parameter. For a natural integer n ∈ N, the
set {1, 2, · · · , n} is denoted by [n]. For q ∈ N, we consider the rounding func-
tion �·�2 : Zq → Z2 to be �x�2 = �x · 2/q�( mod 2) for x ∈ Zq. We use bold
lowercase letters (e.g., v) to denote vectors and bold uppercase letters (e.g., V)
to denote matrices. For a vector v = (v1, · · · , vn), the vector (gv1 . · · · , gvn) is
denoted by gv. We write poly(λ) to denote an arbitrary polynomial function. We
denote by negl(λ) a negligible function in λ, and PPT stands for probabilistic
polynomial-time. Two distributions D1 and D2 are computationally (resp. statis-
tically) indistinguishable if no PPT (resp. unbounded) adversary can distinguish
them, and we write D1 ≈c D2 (resp. D1 ≈s D2). We write Δ(D1,D2) to denote
the statistical distance between the distributions D1 and D2. For a finite set S,
we write x

$←− S to denote that x is sampled uniformly at random from S. If D
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is a distribution over the set S, we write x ← D to denote that x is sampled
from S according to D. For an algorithm A, we denote by y ← A(x) the output
y after running A on input x. We use discrete Gaussian distributions, defined as
follows.

Definition 1 ((Univariate) Discrete Gaussian Distribution). For a real
σ > 0, the discrete Gaussian distribution with variance σ is denoted by Dσ that is
a probability distribution with support Z that assigns to each x ∈ Z a probability
proportional to exp(−πx2/σ2).

Definition 2. Let Λ be a full-rank n-dimensional lattice. Let Σ ∈ R
n×n be a

symmetric definite positive matrix, and r′, c ∈ R
n. DΛ+r′,Σ,c denotes the discrete

Gaussian distribution with support Λ+r′, covariance Σ, and mean c that assigns
to each x ∈ Λ + r′ a probability proportional to exp(−π(x − c)T Σ−1(x − c)).

We also restate the definition of universal hash functions and the Leftover
Hash Lemma:

Definition 3 (Universal Hash Function). A family of hash functions H =
{H : X → {0, 1}�} is universal if for all x1, x2 ∈ X , where x1 �= x2, we have

Pr[H $←− H,H(x1) = H(x2)] ≤ 1/2�.

Lemma 1 (Leftover Hash Lemma, [15]). Let H = {H : X → {0, 1}�} be a
universal family of hash functions. Let ε > 0 and D be a distribution over X
with min-entropy H∞(D) ≥ � + 2 log(1/ε). Then

Δ((H,H(x)), (H,U)) = ε ,

where H
$←− H, x

$←− D, and U
$←− {0, 1}�.

2.1 Reminders on Standard Assumptions

We now provide a brief reminder on standard hardness assumptions and classical
lattice results used throughout our work.

Lattices

Definition 4 (Learning With Errors assumption, [20]). Let λ be the secu-
rity parameter, k, q ∈ Z, and let χ be an efficiently samplable distribution over
Zq. The LWEk,q,χ assumption holds if for any polynomial n = n(λ) we have

(A,As + e) ≈c (A,u) ,

where A $←− Z
n×k
q , s $←− Z

k
q , e $←− χn, and u $←− Z

n
q .

In the above definition, if we set the error distribution χ to be a discrete Gaussian
distribution Dα.q, where α ∈ (

√
k/q, 1), then LWE is at least as hard as standard

worst-case lattice problems [5,20].
We also use the following lemma about lattice trapdoors.
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Lemma 2 ([18]). There exists a pair of PPT algorithms (TrapGen,SampleD)
such that the TrapGen algorithm on receiving the security parameter λ and
n, k′, q ∈ Z as input, outputs a matrix B ∈ Z

n×k′
q and a trapdoor td, where B is

2−k′
close to uniform. Also, the SampleD algorithm takes as input a trapdoor td,

a matrix B and a vector y ∈ Z
k′
q and outputs r ∈ Z

n
q such that r $←− DΛ⊥

y (BT ),σ.

We also need the following result about sampling from lattice Gaussians.

Lemma 3 ([5], Lemma 2.3). There exists a PPT algorithm that, given a basis
(bi)i≤k of a full-rank lattice Λ, vectors r′, c ∈ R

n, and a symmetric positive
definite matrix Σ ∈ R

n×n such that Ω(
√

log n).max
i

||Σ−1/2 · bi|| ≤ 1, returns a

sample from DΛ+r′,Σ,c.

We finally recall the following lemma which plays a central role in our LWE-
based PEPE construction for resampling randomness and noise.

Lemma 4 ([17], Lemma 11). Let B ∈ Z
n×k′
q and E ∈ Z

n×�′
. Sample (r, e) ←

Dn
σ × D�′

σ′ and define (u, f) = (rT B, rT E + eT ) ∈ Z
k′
q × Z

�′
. The conditional

distribution of r given (u, f) is D
SE,u,f

Λ⊥(BT )+r′,
√

Σ,c
with support

SE,u,f = {r̄ ∈ Λ⊥(BT ) + r′ : r̄ ∈ Z
n
q , (f − r̄T E) ∈ Z

�′
q } ,

where r′ is any solution to r′T B = u, and

Σ = σ2σ′2 · (σ2 ·ET ·E+ σ′2 · In)−1, c = σ2 · (σ2 ·ET ·E+ σ′2 · In)−1 ·ET · f .

Decisional Diffie-Hellman
Let G be polynomial-time a group generator that takes the security parameter

λ as input and outputs (G, p, g), where G is a multiplicative cyclic group of prime
order p and g is a generator of the group.

Definition 5 (Decisional Diffie-Hellman problem). Let λ be the security
parameter. We say that the decisional Diffie-Hellman problem is hard relative to
G if

(G, p, g, ga, gb, gab) ≈c (G, p, g, ga, gb, gc) ,

where (G, p, g) $←− G(1λ) and (a, b, c) $←− Zp.

Subgroup Decision Assumption
Here we provide some reminders on the subgroup decision assumption over

composite-order groups. The following definition is derived from the one of Boneh
et al. [2]. An important difference is that we do not require bilinear groups, which
allows us to reveal generators of both subgroups.

Let G be a polynomial-time algorithm that takes the security parameter λ as
input and outputs a tuple (p, q,G, g), where p and q are λ-bit prime numbers, and
G is (multiplicative) cyclic group of order N = pq, generated by g. In particular,
we have G ≈ Gq × Gp where Gp = {xq mod N : x ∈ G} is the subgroup of G
of order p and Gq = {xp mod N : x ∈ G} is the subgroup of G of order q. Note
also that gp (resp. gq) is a generator of Gq (resp. Gp).
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Definition 6 (Subgroup Decision, [2]). Let λ be the security parameter. We
say that the subgroup decision assumption is hard relative to G if

(N,G, gp, gq, x
q) ≈c (N,G, gp, gq, x) ,

where (p, q,G, g) $←− G(1λ), N = pq, gp (resp. gq) is a random element of Gp

(resp. Gq), and x is a random element of G.

Note that a cyclic group of composite order N can be obtained by considering
the subgroup of a-th residues in Z

∗
P , where a ∈ N is chosen so that P = a ·N +1

is prime. We insist that we use the assumption in groups without a pairing.

2.2 Non-Committing Encryption

Non-committing encryption (NCE) was first introduced in [6] as a central prim-
itive for constructing adaptively-secure multi-party computation. Here we recall
the formal definition of an NCE scheme.

Definition 7 (Non-Committing Encryption). Let a security parameter λ.
A Non-Committing Encryption (NCE) scheme consists of five PPT algorithms
(KeyGen,Enc,Dec,Sim1,Sim2) such that:

• KeyGen(1λ, rG) → (pk, sk): On input the security parameter λ and a random-
ness rG, the key-generation algorithm outputs a public key pk and a secret
key sk.

• Enc(pk,M, rE) → ct: On input the public key pk, a message M , and some
randomness rE, the encryption algorithm outputs a ciphertext ct.

• Dec(sk, ct) → M/⊥: On input the secret key sk and a ciphertext ct, the decryp-
tion algorithm outputs a message M or returns ⊥.

• Sim1(1λ) → (pk, ct, st): On input of the security parameter λ, the Sim1 algo-
rithm outputs a simulated public key pk and a ciphertext ct together with an
internal state st.

• Sim2(M, st) → (rG, rE): On input a message M and an internal state st,
the Sim2 algorithm outputs a key-generation and encryption randomness pair
(rG, rE).

We require an NCE scheme to satisfy the following properties:

• Correctness. For any message M ∈ {0, 1}l,

Pr

[

M ← Dec(sk, ct) :
(pk, sk) ← KeyGen(1λ)

ct ← Enc(pk,M)

]

≥ 1 − negl(λ) .

• Simulatability. The following two distributions should be computationally
indistinguishable:

REAL =

⎧
⎪⎪⎨

⎪⎪⎩
(M, pk, ct, rG, rE) :

(pk, sk) ← KeyGen(1λ, rG)

M ← A(pk)

ct ← Enc(pk,M, rE)

⎫
⎪⎪⎬

⎪⎪⎭
,
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and

IDEAL =

⎧
⎪⎪⎨

⎪⎪⎩

(M, pk, ct, rG, rE) :
(pk, ct, st) ← Sim1(1λ)

M ← A(pk)

(rG, rE) ← Sim2(M, st)

⎫
⎪⎪⎬

⎪⎪⎭

,

for any PPT adversary A, and any key-generation randomness rG and
encryption randomness rE in the REAL distribution.

Next, we recall the definition of PEPE, introduced in [3] by Brakerski et al.,
which is proven to imply non-committing encryption.

Definition 8 (PEPE). Let λ be a security parameter and {0, 1}λ be the mes-
sage space. A Packed Encryption with Partial Equivocality scheme consists of
five PPT algorithms (KeyGen,Enc,Dec,EquivPK,EquivCT) such that:

• KeyGen(1λ, b ∈ {0, 1}, I, rG) → (pk, sk): On input the security parameter λ, a
bit b, a subset of indices I ⊂ [�], and a key generation randomness rG, the
key-generation algorithm outputs a public key pk and a secret key sk. If b = 0,
we say that the keys are generated in the real mode. Otherwise, we say that
the keys are generated in the ideal mode.

• Enc(pk,M ∈ {0, 1}�, rE) → ct: On input the public key pk, a message M ∈
{0, 1}� and an encryption randomness, the encryption algorithm outputs a
ciphertext ct.

• Dec(sk, ct) → (Mi)i∈I : On input the secret key sk and a ciphertext ct, the
decryption algorithm outputs bits Mi for i ∈ I.

• EquivPK(sk, b, I, rG, I ′) → r′
G: On input the secret key sk, a bit b, subsets

I, I ′ ⊂ [n] and a (key-generation) randomness rG, the public-key-equivocation
algorithm outputs a randomness r′

G.
• EquivCT(sk, (M, rE), {M ′

i}i/∈I) → r′
E: On input the secret key sk, a pair of

message and randomness (M, rE), and some bits {M ′
i}i/∈I , the ciphertext-

equivocation algorithm outputs a randomness r′
E.

We require a PEPE scheme to satisfy the following properties:

• Correctness. For any message M ∈ {0, 1}l and any subset I ⊂ [l] we have

Pr

⎡

⎢
⎢
⎣{Mi}i∈I = {M ′

i}i∈I :
(pk, sk) ← KeyGen(1λ, 0, I, rG)

ct ← Enc(pk,M, rE)

(M ′
i)i∈I ← Dec(sk, ct)

⎤

⎥
⎥
⎦ ≥ 1 − negl(λ)

• Public key randomness indistinguishability. The random coins output
by the EquivPK algorithm should be computationally indistinguishable from
true random coins. Meaning that the two following joint distributions should
be computationally indistinguishable:
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REALpk =
{
rG : (pk, sk) ← KeyGen(1λ, 0, I, rG)

}
,

and

IDEALpkb
=

{

rG :
(pk, sk) ← KeyGen(1λ, b, I ′, r′

G)

rG ← EquivPK(sk, b, (I ′, r′
G), I)

}

,

for any subsets I, I ′ ⊂ [�] such that I ⊂ I ′, and for any key-generation ran-
domness rG in REALpk and r′

G in IDEALpkb
, for b ∈ {0, 1}.

• Ciphertext randomness indistinguishability. The random coins output
by the EquivCT algorithm should be statistically close to true random coins.
Meaning that for any subset I ⊂ [�], any rG, any r′

E, and any message M ′ ∈
{0, 1}�, the following two distributions should be statistically indistinguishable:

IDEALct =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(pk,M, rE) :

(pk, sk) ← KeyGen(1λ, 1, I, rG)

ct ← Enc(pk,M ′, r′
E)

M ← A(pk)

rE ← EquivCT(sk, (M ′, r′
E), {Mi}i/∈I)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

and

REALct =

⎧
⎪⎪⎨

⎪⎪⎩

(pk,M, rE) :
(pk, sk) ← KeyGen(1λ, 0, I, rG)

M ← A(pk)

ct ← Enc(pk,M, rE)

⎫
⎪⎪⎬

⎪⎪⎭

,

where A is an unbounded adversary which outputs M such that Mi = M ′
i for

all i ∈ I.

PEPE implies NCE via an efficient transform incurring only a constant loss in
the rate, we therefore focus on building more efficient rate-1 PEPE schemes.

3 PEPE Constructions

We now present our different rate-1 PEPE constructions. As already mentioned,
we propose the first construction from LWE with polynomial modulus, a DDH-
based construction with strict polynomial running time, and the first PEPE
construction from the subgroup decision assumptions. In all of our construc-
tions, we consider a mapping from the random coins used in the key generation
algorithm to the elements that it generates, and for the sake of simplicity, we
consider the key generation randomness (rG) to include those elements. We refer
the reader to the full version of the paper for the proof of our DDH-based and
SD-based constructions.

3.1 PEPE from LWE

We present a construction for PEPE from the LWE assumption. First, we recall
the post-processing technique of ciphertext shrinking introduced in [4] which is
used in our scheme.
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Ciphertext Shrinking Algorithm for LWE-Based Encryption Schemes.

Construction 1. Consider a public-key encryption scheme with ciphertexts of
the form (c1, w2,1. · · · , w2,�) ∈ Z

k
q×Z

�
q and secret key S ∈ Z

k×�
q , where decryption

is computed by �(w2,1, · · · , w2,�) − c1S�2 = �M + e�2 where e is sampled from a
B-bounded distribution. We describe the shrinking algorithms in detail:

• Shrink (pk, (c1, w2,1. · · · , w2,�)):

– Choose z
$←− Zq \ U , where

U =
�⋃

i=1

([− q
4

− w2,i − B, − q
4

− w2,i + B
] ∪ [

q
4

− w2,i − B, q
4

− w2,i + B
])

– For all i ∈ [�], compute c2,i = �w2,i + z�2 ∈ Z2.
– Output ct = (c1, c2,1, · · · , c2,�, z).

• ShrinkDec(sk = S, ct):
– Parse ct as (c1, c2,1, · · · , c2,�, z).
– Compute Mi ← (c2,i − �c1si + z�2) mod 2 where si is the i-th row of S.
– Output M = (M1, · · · ,M�).

Note that we can give a subset I ⊂ [�] as input to the ShrinkDec algorithm
and only receive {Mi}i∈I as output. In [4], the authors prove that if q > 4�B,
then this construction is correct.

We now detail our LWE-based PEPE scheme.

Construction 2. Let (Shrink,ShrinkDec) be the shrinking pair of algorithms
described in Construction 1, and TrapGen the PPT algorithm for generating
lattice trapdoors as proposed in [18].

• KeyGen(1λ, b ∈ {0, 1}, I, rG):
• if b = 0 do:

– Choose A $←− Z
n×k
q .

– For all i ∈ I, set vi = Asi + ei, where si
$←− Z

k
q , and ei

$←− Dn
σ .

– For all i /∈ I, set vi
$←− Z

n
q .

– Set pk = (A, {vi}i∈[�]), and sk = (I, {si}i∈I).
– The key generation randomness is rG = (A, {si}i∈I , {ei}i∈I , {vi}i/∈I).

• if b = 1 do:
– Run (B, tdB) ← TrapGen(1λ, n, k + l − |I|, q) and parse B as B =[

A
∣
∣
∣
∣V

]

∈ Z
n×(k+�−|I|)
q .

– For all i ∈ I, set vi = Asi + ei, where si
$←− Z

k
q , and ei

$←− Dn
σ .

– For all i /∈ I, set vi := Vi, where Vi is the i-th column of matrix V.
– Set pk = (A, {vi}i∈[�]), and sk = (I, {si}i∈I , tdB).
– The key generation randomness rG is the randomness used in the
TrapGen algorithm together with {si, ei}i∈I .

• Enc(pk,M ∈ {0, 1}�, rE):
– Parse pk = (A, {vi}i∈[�]).
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– Sample r $←− Dn
σ .

– Compute c1 ← rT A and w2,i = rT vi + ei + �q/2� · Mi ∈ Zq,∀i ∈ [�],

where ei
$←− Dσ′ .

– Compress (c1, w2,1, · · · , w2,�) into

ct = (c1, c2,1, · · · , c2,�, z) ← Shrink(pk, (c1, w2,1, · · · , w2,�)).

– Set rE = (r, {ei}i∈[�], z).
– Output ct.

• Dec(sk, ct):
– Use sk to run ShrinkDec(sk, ct) and recover M .
– Output {Mi}i∈I .

• EquivPK(sk, b, I, rG, I ′):
– If I ′ �⊆ I, abort.
– Let pk = (A, {vi}i∈[�]) be the output of KeyGen on input (1λ, b, I, rG).

Parse sk = (I, {si}i∈I) if b = 0, or sk = (I, {si}i∈I , tdB) if b = 1.
– Compute {ei = vi − Asi}i∈I′ , and output r′

G = (A, {si}i∈I′ , {ei}i∈I′ ,
{vi}i/∈I′).

• EquivCT(sk, (M, rE), {M ′
i}i/∈I):

– Parse sk = (I, {si}i∈I , tdB), pk = (A, {vi}i∈[�]), and compute ({ei}i∈I ,
{vi}i/∈I) from sk and pk. Let (c1, w2,1, · · · , w2,�) be the LWE encryption
of M w.r.t pk and rE = (r, {e∗

i }i∈[�], z).

– For i /∈ I, sample e′
i

$←− Dσ′ .

– Using tdB, sample r̄ $←− D
SE,u,f

Λ⊥(BT )+r′,
√

Σ,c
, where

E =
[
ei1 | · · · |ei|I|

]
for i1, · · · , i|I| ∈ I,

u = (c1, {w2,i − �q/2�M ′
i − e′

i}i/∈I),

f = rT E + e∗, where e∗ = (e∗
i1 , · · · , e∗

i|I|) for i1, · · · , i|I| ∈ I,

Σ = σ2σ′2 · (σ2 · ET · E + σ′2 · In)−1,

c = σ2 · (σ2 · ET · E + σ′2 · In)−1 · ET · f .

Regarding Lemma 4 the output of the sampling would be a vector r̄
satisfying r̄T B = u.

– For i ∈ I, set e′
i = e∗

i + (r − r̄)T ei.
– Output r′

E = (r̄, {e′
i}i∈[�], z).

Theorem 3. Assuming LWE, Construction 2 is a rate-1 PEPE scheme.

Proof. We now prove correctness, public key randomness indistinguishability,
and ciphertext randomness indistinguishability of the above construction.
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Correctness. Correctness follows from the fact that in the ciphertext shrinking
technique described in Construction 1 we have:

(c2,i − �c1si + z�2) mod 2 = �w2,i − c1si�2 ,

where i ∈ I. Also, similarly to Regev’s public-key encryption scheme [20], for all
i ∈ I we have

�w2,i − c1si�2 = �rT (Asi + ei) + ei + �q/2�Mi − rT Asi�2
= �rT ei + ei + �q/2�Mi�2 = Mi .

Thus, the scheme is correct.

Public Key Randomness Indistinguishability. We prove the public key
randomness indistinguishability using a sequence of games. Assume that b = 1
in the experiment IDEALpkb

. We start with H0 which is the experiment IDEALpk1 ,
and we end up at H2 which is the experiment REALpk. We show that the advan-
tage of an adversary in distinguishing between each two successive games is neg-
ligible. Hence, the distribution of the public key randomness is indistinguishable
in IDEALpk1 and in REALpk.

Hybrid H0. This is the experiment IDEALpk1 :
• (pk, sk) ← KeyGen(1λ, 1, I ′, r′

G), where pk = (A, {vi}i∈[�]) and sk =
(I ′, {si}i∈I′ , tdB).

• Run rG ← EquivPK(sk, 1, (I ′, r′
G), I).

• b ← A(rG).
Hybrid H1. Here, we replace the matrix A and the vectors {vi}i/∈I′ to be
uniform.

• Choose A $←− Z
n×k
q and for all i /∈ I ′, choose vi

$←− Z
n
q . For i ∈ I ′, do as

before.
• Run rG ← EquivPK(sk, 1, (I ′, r′

G), I).
• b ← A(rG).

Indistinguishability of H0 and H1 follows from Lemma 2, which guarantees
that matrix B is 2−k close to uniform. Thus, A and {vi}i/∈I′ are also statis-
tically close to uniform.
Hybrid H2. Here, we replace each vector {vi}i∈I′\I by a random vector from
Z

n
q .

• Choose A $←− Z
n×k
q and for all i /∈ I ′ and i ∈ I ′ \ I, choose vi

$←− Z
n
q . For

i ∈ I, set vi as before.
• Run rG ← EquivPK(sk, 1, (I ′, r′

G), I).
• b ← A(rG).

Indistinguishability of H2 and H1 immediately follows from the LWE assump-
tion. Since H2 is identical to experiment REALpk, this concludes the proof.
Note that hybrid H1 is identical to experiment IDEALpk0 . So, we also proved
that IDEALpk0 ≈c REALpk.



214 B. Libert et al.

Ciphertext Randomness Indistinguishability. For a key pair (pk, sk) ←
KeyGen(1λ, 1, I, rG), let ct = (c1, (c2,1, · · · , c2,�)) ← Enc(pk,M, rE) with rE =
(r, {e∗

i }i∈[�], z), where pk = (A, {vi}i∈[�]), and sk = (I, {si}i∈I , tdB). Now, let
M ′ ∈ {0, 1}� be such that Mi = M ′

i for all i ∈ I, and Mi �= M ′
i otherwise. After

running EquivCT((sk, rG), (M, rE), {M ′
i}i/∈I) we obtain

r′
E = (r̄, {e′

i}i∈[�], z).

First we show that the result of encrypting M ′ using r′
E is exactly equal to ct.

Let ct′ = (c′
1, (c

′
2,1, · · · , c′

2,�)) be the Regev encryption of M ′ w.r.t pk and r′
E .

We have:

– c′
1 = c1. In the third step of EquivCT algorithm, r̄ is sampled such that

r̄T B = u, so r̄ satisfies
r̄T A = c1 = rT A

So, c1 = c′
1.

– For all i /∈ I, c′
2,i = c2,i. Regarding how r̄ is sampled, for all i /∈ I we have

r̄T vi = w2,i − �q/2�M ′
i − e′

i,

so,
c′
2,i = �r̄T vi + �q/2�M ′

i + e′
i�2 = �w2,i�2 = c2,i.

– For all i ∈ I, c′
2,i = c2,i. For i ∈ I we have

rT vi + �q/2�Mi + e∗
i = rT vi + �q/2�M ′

i + e∗
i

= r̄T vi + �q/2�M ′
i + e′

i.

So, c′
2,i = c2,i.

Next, we prove that {e∗
i }i∈[�] ≈s {e′

i}i∈[�]. For all i /∈ I, we pick e′
i from the

same distribution as e∗
i . Also, for i ∈ I, we sample r̄ from a distribution with

parameters according to Lemma 4. It guarantees that the distribution of e′
i

is the same as e∗
i . Note that given a sampler for DΛ⊥(AT )+r′,

√
Σ,c we can

get independent samples from D
SE,u,f

Λ⊥(AT )+r′,
√

Σ,c
by rejection sampling. The

former exists regarding Lemma 3. Finally, since (pk, ct) remains the same
after the equivocation, and r′

E ≈s rE , the distribution of (pk,M ′, rE) in the
ideal mode is statistically close to that of the real mode.

This concludes the proof of Theorem 3. ��

3.2 PEPE from DDH

In this section, we detail our DDH-based construction that deviates from prior
constructions by using a universal hash functions. Doing so, we obtain a simpler
construction that additionally features an encryption algorithm running in strict
polynomial time. The construction is inspired from the lossy encryption scheme
of [14] and the hidden-bit-generator of [16].
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Construction 4. Let n ∈ N and H be a universal hash function from G to
{0, 1}.

• KeyGen(1λ, b ∈ {0, 1}, I, rG):
– Run (G, g, p) ← G(1λ).
– if b = 0 do:

• For all j ∈ [n], choose gj
$←− G.

• For all i ∈ I and j ∈ [n], set hi,j = gsi
j , for si

$←− Zp.

• For all i /∈ I and j ∈ [n], choose hi,j
$←− G.

• Set pk = (G, g, p, {gj}j∈[n], {hi,j}i∈[�],j∈[n]), and sk = (I, {si}i∈I).
• The key generation randomness is rG = (G, g, p, {gj}j∈[n], {si}i∈I ,

{hi,j}i/∈I,j∈[n]).
– if b = 1 do:

• For all j ∈ [n], choose aj
$←− Zp and set gj = gaj .

• For all i ∈ I and j ∈ [n], set hi,j = gsi
j , for si

$←− Zp.

• For all i /∈ I and j ∈ [n], set hi,j = gzi,j , for zi,j
$←− Zp.

• Define the public key as pk = G, g, p, ({gj}j∈[n], {hi,j}i∈[�],j∈[n]), and
the secret key as sk = (I, {si}i∈I , {aj}j∈[n], {zi,j}i/∈I,j∈[n]).

• The key generation randomness is rG = (G, g, p, {gj}j∈[n], {si}i∈I ,
{aj}j∈[n], {zi,j}i/∈I,j∈[n]).

• Enc(pk,M ∈ {0, 1}�, rE):
– Parse pk = (g, {gj}j∈[n], {hi,j}i∈[�],j∈[n]).

– Sample r1, · · · , rn
$←− Zp.

– Compute c0 =
n∏

j

g
rj

j , and for all i ∈ [�] compute

ci = Mi ⊕ H
( n∏

j=1

h
rj

i,j

) ∈ {0, 1}.

– Set rE = (r1, · · · , rn).
– Output ct = (c0, c1, · · · , c�).

• Dec(sk, ct):
– Parse sk = (I, {si}i∈I).
– For all i ∈ I, compute Mi = ci ⊕ H(csi

0 ).
– Output {Mi}i∈I .

• EquivPK(sk, b, I, rG, I ′):
– If I ′ �⊆ I abort.
– Let pk = (G, g, p, {gj}j∈[n], {hi,j}i∈[�],j∈[n]) be the output of KeyGen on

input (1λ, b, I, rG).
Parse sk = (I, {si}i∈I) if b = 0, or sk = (I, {si}i∈I , {aj}j∈[n],
{zi,j}i/∈I,j∈[n]) if b = 1.

– Set and output r′
G = (G, g, p, {gj}j∈[n], {si}i∈I′ , {hi,j}i/∈I′,j∈[n]).

• EquivCT(sk, (M, rE), {M ′
i}i/∈I):
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– Parse sk = (I, {si}i∈I , {aj}j∈[n], {zi,j}i/∈I,j∈[n]). Let (c0, c1, · · · , c�) be the
encryption of M w.r.t pk and rE = (r1, · · · , rn).

– For all i /∈ I, repeatedly sample ti
$←− Zp until H(gti) = ci ⊕ M ′

i . If no
such ti is found after λ attempts, abort and output ⊥.

– Let a = (a1, · · · , an), r = (r1, · · · , rn), and {i1, · · · , iα} = [�]\ I. Also, for
all i /∈ I, let zi = (zi,1, · · · , zi,n). Now sample uniformly a solution r̄ ∈ Z

n
p

for

⎡

⎢
⎢
⎢
⎢
⎢
⎣

a

zi1

...

ziα

⎤

⎥
⎥
⎥
⎥
⎥
⎦

· r̄T =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

arT

ti1
...

tiα

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (1)

– Output r′
E = r̄.

Due to space limitation, the security proof is deferred to the full version of
the paper.

3.3 PEPE from Subgroup Decision

We now present our construction from the SD assumption for which the security
proof is also given in the full version of the paper.

Construction 5. Consider a group G ≈ Gq × Gp of order N = pq, where
Gp = {xq mod N : x ∈ G} is the subgroup of G of order p, and Gq = {xp

mod N : x ∈ G} is the subgroup of G of order q. Let n ∈ N such that n > �,
and H be a universal hash function from G to {0, 1}.

• Setup(1λ, 1n):
– Sample (p, q,G, g) ← G(1λ). Let N = pq.

– Set ĝ ← uq, where u
$←− G. Note that ĝ is a random element (and a

generator) of Gp.

– For all j ∈ [n], choose gj ← ĝaj , where aj
$←− ZN . Note that each gj is a

random element of Gp.

– Set ĥ ← vp, where v
$←− G. Note that ĥ is a random element (and a

generator) of Gq.
– Output crs = (N,G, ĝ, ĥ, {gj}j∈[n]), and td = (p, q).

• KeyGen(crs, b ∈ {0, 1}, I, rG):
– Parse crs = (N,G, ĝ, ĥ, {gj}j∈[n]).
– if b = 0:

• For all i ∈ I and j ∈ [n], set hi,j = gsi
j ∈ G, where si

$←− ZN .

• For all i /∈ I and j ∈ [n], sample obliviously hi,j
$←− G.

• Set sk = (I, {si}i∈I). Also, rG = ({si}i∈I , {hi,j}i/∈I,j∈[n]).
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– if b = 1:
• For all i ∈ I and j ∈ [n], set hi,j = gsi

j ∈ G, where si
$←− ZN .

• For all i /∈ I and j ∈ [n], choose hi ← ĥbi , where bi
$←− ZN , and set

hi,j = h
δi,j

i · gsi
j ∈ G, where si

$←− ZN , and δi,j is the Kronecker delta.
• Set sk = (I, {si}i∈[�], {hi}i/∈I). Also, rG = ({si}i∈[�], {bi}i/∈I).

– Set pk = (N,G, ĝ, ĥ, {gj}j∈[n], {hi,j}i∈[�],j∈[n]).
• Enc(pk,M ∈ {0, 1}�, rE):

– Parse pk = (N,G, ĝ, ĥ, {gj}j∈[n], {hi,j}i∈[�],j∈[n]).

– Sample r1, · · · , rn
$←− ZN and

compute c0 =
n∏

j=1

g
rj

j ∈ G. Then, for each i ∈ [�], compute ci = Mi ⊕

H(
n∏

j=1

h
rj

i,j) ∈ {0, 1}.

– Set rE = (r1, · · · , rn).
– Output ct = (c0, c1, · · · , c�).

• Dec(sk, ct):
– Parse sk = (I, {si}i∈I).
– For all i ∈ I, compute Mi = ci ⊕ H(csi

0 ).
– Output {Mi}i∈I .

• EquivPK(sk, td, b, I, rG, I ′):
– If I ′ �⊆ I abort.
– Parse td = (p, q).
– Let pk = (N,G, ĝ, ĥ, {gj}j∈[n], {hi,j}i∈[�],j∈[n]) be the output of KeyGen

on input (crs, b, I, rG).
Parse sk = (I, {si}i∈I), if b = 0, or sk = (I, {si}i∈[�], {hi}i/∈I), if b = 1.

– Set and output r′
G = ({si}i∈I′ , {hi,j}i/∈I′,j∈[n]).

• EquivCT(sk, td, (M, rE), {M ′
i}i/∈I):

– Parse sk = (I, {aj}j∈[n], {si}i∈[�], {hi}i/∈I), and td = (p, q).
Let (c0, c1, · · · , c�) be the encryption of M w.r.t pk and rE = (r1, · · · , rn).

– For all i /∈ I, repeatedly sample r′
i

$←− ZN such that r′
i = ri mod p and

r′
i �= ri mod q until

H(hri
i · csi

0 ) = ci ⊕ M ′
i . (2)

If no candidate is found after λ attempts, abort and output ⊥.
– For all i ∈ I, set r′

i ← ri.
– Output r′

E = (r′
1, · · · , r′

n).

On Oblivious Sampling in SD Construction. We now explain how oblivious sam-
pling can be done in the above construction. The construction works over the
group G ≈ Gq × Gp of order N = pq. During the real-mode key generation, we
require that some public key elements be obliviously sampled from G. To see
why it can be done, we use the sampling technique as done in [7].

Let P = a ·N +1 be a prime number, where gcd(a,N) = 1. Since N is public,
then such P can be generated by a real-mode party. Now, since G is isomorphic
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to the subgroup of order N of Z∗
P , it is enough to be able to obliviously sample

from this subgroup. The idea for doing so is to generate a random element in
Z

∗
P , and then raise it to the a-th power. To generate random elements in Z

∗
P , for

a prime P , it is enough to pick a random bit string of length 2 log(P ), and then
reduce its decimal value modulo P . It turns out that the distribution of elements
sampled in this way, is statistically close to the uniform distribution over G.

Also, as explained in [7], the sampling is invertible, meaning that given a
random element h of the subgroup G, we can efficiently recover an underlying
random element hP ∈ Z

∗
P , such that ha

P = h( mod P ). This should be used in
the EquivPK algorithm, and can be done as follows: First, we find the inverse of a
modulo N , which exists since gcd(a,N) = 1. Let gP be a generator of Z∗

P . Now,
given an element h ∈ G, we set hp := ha−1 · giN

P mod P , where i is a random
element from Z

∗
a. It is easy to see that ha

p = h( mod P ). Also, it is a random
element among the elements of Z∗

P whose a-th power is equal to h. Generating
a random decimal value (thus a random bit string) who is equal to hP modulo
P is easily done by choosing a random k ∈ Zp and computing hP + kP .
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Abstract. Access Control Encryption (ACE) [4] allows to control infor-
mation flow between parties by enforcing a policy that specifies which
user can send messages to whom. The core of the scheme is a sanitizer,
i.e., an entity that “sanitizes” all messages by essentially re-encrypting
the ciphertexts under its key. In this work we investigate the natural ques-
tion of whether it is still possible to achieve some meaningful security
properties in scenarios when such a sanitization step is not possible. We
answer positively by showing that it is possible to limit corrupted users
to communicate only through insecure subliminal channels, under the
necessary assumption that parties do not have pre-shared randomness.
Moreover, we show that the bandwidth of such channels can be limited
to be O(log(λ)) by adding public ciphertext verifiability to the scheme
under computational assumptions. In particular, we rely on a new secu-
rity definition for obfuscation, Game Specific Obfuscation (GSO), which
is a weaker definition than VBB, as it only requires the obfuscator to
obfuscate programs in a specific family of programs, and limited to a
fixed security game.

1 Introduction

Designers of practical secure IT systems are often interested in controlling the
flow of information in their system. For this purpose one sets up a security policy
that contains rules on what operations the entities in the system are allowed to
execute. Crucially, such rules must constrain both write and read operations
as both types may lead to unwanted transfer of data. This was formalized in
the classical Bell-Lapadula security policy as the “no read up” (entities with
low security clearance cannot read top-secret data) and “no write-down” rules
(entities with a high security clearance cannot write to public files). If entities
are not assumed to be honest, such a security policy cannot be enforced unless
we assume a trusted party, often known as a sanitizer, which will stop and/or
modify unwanted communication. Of course, the sanitizer cannot do this unless
we assume that parties can only communicate via the sanitizer. In practical
systems one usually tries to ensure this by a combination of hardware security
and software design, for instance in the kernel of the operating system.
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In [4] Damg̊ard et al. asked whether cryptography can be used to simplify
the job of the sanitizer, and reduce the amount of trust we need to place in it.
To this end, they introduced the notion of Access Control Encryption (ACE).
Using an ACE scheme, the sanitizer does not need to know the security policy or
the identities of any parties in the system. It just needs to process every message
it receives and pass it on. The processing essentially amounts to re-randomize
every message received. Instead of asking the sanitizer to enforce the security
policy, an ACE scheme integrates the policy in the key generation algorithm,
which gives an encryption key to each sender, a decryption key to each receiver
and a sanitizer key for the sanitizer. The keys are designed such that, after
sanitization, a receiver can decrypt a message, only if it was encrypted by a
sender that is allowed to send to that receiver.

Observe that security requires the physical assumption that a corrupt sender
cannot bypass the sanitizer and send directly to any receiver she wants. Indeed,
it may seem that nothing non-trivial can be achieved if we drop this assumption.
On the other hand, assuming such a communication bottleneck may be hard to
justify in practice, and makes the system vulnerable to DDoS attacks (in case
the sanitizer is offline). It is then natural to wonder:

Can we achieve any meaningful security without sanitization?

2 Our Results

In this paper, we answer affirmatively to the previous question analyzing two
new models, both avoiding the need of preprocessing ciphertexts before delivery.
We present formal definitions of ACE in these models, and we instantiate them
under various computational assumptions. Along the way we obtain a standard
ACE with sender anonymity from standard assumptions, which had been left as
an open problem in [6] (deferred to the full version due to lack of space).

2.1 Modeling ACE Without Sanitization

ACE without Sanitizer (ACEnoS). Removing the sanitization bottleneck
implies that senders can now post to a bulletin board that receivers can read
from. As in standard ACE, parties have no other communication channel avail-
able, and key generation assumes a trusted party. However, senders are now free
to post whatever they want. What security properties can we hope to achieve in
such a model? Clearly, we can do what cryptography “natively” allows us to do,
namely what we call the No Read Rule (NRR): an honest sender can encrypt
a message such that only the designated receiver can extract information about
the plaintext from the ciphertext; furthermore we can guarantee that a cipher-
text does not reveal the identity of the sender. What we can do about a corrupt
sender is more subtle: clearly, we cannot stop a sender from simply posting any
message she wants, thus broadcasting confidential data. But, on the other hand,
this is often not what a corrupt sender wants to do. If, for instance, the data
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involved is extremely valuable, it may be more attractive to break the security
policy by sending a secret message that can only be decrypted by a specific
(corrupted) receiver she is not allowed to send to. This attack we can actually
hope to stop, through what we call the No Secret Write Rule (NSWR)1: parties
cannot communicate secretly if the policy does not allow it. If parties manage
to communicate against policy, then anyone can read their communication.

Communication Restrictions. For this goal to be meaningful, we can allow
corrupted senders and receivers to share a common strategy, but not randomness.
Without this constraint, any no secret write rule can trivially be broken just using
one-time-pad encryption, for instance. Assuming that the parties’ initial states
are uncorrelated, the rough intuition is that if the key generation does not supply
a corrupted sender and receiver with sufficiently correlated key material, the
receiver’s ability to decrypt a ciphertext cannot depend on the keys she has. But
if it does not, then anyone should be able to extract the message the corrupted
sender wants to leak, and so the message is effectively publicly available. Observe
that the assumption that parties do not have pre-shared randomness is not new:
in fact, Alwën et al. [1] already pointed out the need for such an assumption
when building collusion-free protocols.

Verifiable ACE (VACE). Our solution above implies that whatever informa-
tion a corrupt sender embeds in his message can in principle be accessed by
anyone. But there is no limit on the amount of information she can leak in this
way. Is there some way to plausibly limit such leakage? We answer affirmatively,
by adding a way to publicly verify the posted ciphertexts. Intuitively, if a cipher-
text verifies, it is correctly formed according to the encryption algorithm, not
something the sender can choose as he likes (e.g., no unencrypted messages).
However, a sender may still try to output a valid ciphertext that equals the
encoding of an n-bit subliminal message. The hope is that now the sender’s sit-
uation becomes somewhat similar to having to generate ciphertexts by calling a
random (encryption) oracle. In this scenario embedding a random n-bits string
requires a number of queries exponential in n, as the sender can only make a
polynomial number of calls and cannot control the (somewhat) random outputs.
This limits senders to leak up to a logarithmic number of bits, which is optimal2.

Finally, as anyone can verify, senders are discouraged from posting invalid
ciphertexts (e.g., unencrypted messages) – as in practice, content that does not
verify would be taken down and there might be consequences for the sender.
With this we obtain fast communication (no need of a sanitization bottleneck),
while maintaining some accountability. Observe that public verification yields
something different from a standard ACE, albeit very close. The difference is
1 This is closely related to the notion of subliminal channels [10], where the information

sent is hidden in messages that are seemingly created for a different purpose. In
that language, NSWR says that, while a corrupt sender may be able to establish a
subliminal channel to a receiver he should not send to, any such channel is non-secret.

2 This reasoning yields a clear lower bound: no ACEnoS can prevent a sender to embed
a logarithmic number of bits in a ciphertext (by generating ciphertexts until, say,
the first few bits of the string are equal to the message bits she wants to embed).
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that not only the sanitization key is public (as in [5]), but the sanitization step
(the verification in this case) can be performed by any party, after ciphertexts
are posted. This was not the case in [5], where the sanitizer does more than just
a routine check (in fact, it injects honestly generated randomness in ciphertexts).

2.2 Instantiating ACEnoS and VACE

Constructing ACEnoS. Even assuming parties not to have shared randomness,
it is not straightforward to obtain a ACEnoS by simply “removing” the saniti-
zation step from pre-existing ACE constructions: the security of existing ACE
schemes strongly relies on some transformation to be applied on a ciphertext
before its delivery. In our work, we give several constructions under various stan-
dard assumptions that match in efficiency the existing ACE constructions (e.g.,
[4,5]). One of these requires a new primitive, key-indistinguishable predicate
encryption. The definition is rather natural, and very useful, as it immediately
yields a solution of a problem left open by Kim and Wu [6] (see full version).

Constructing VACE. We give a construction of an ACE scheme with verifi-
cation and minimal leakage based on a new definition of obfuscation. The need
of a new assumption arises from the fact that building a VACE is highly non-
trivial. To see why, we can consider what seems at first a promising solution:
assume the sender is committed to a PRF key K and is supposed to compute the
ciphertext c she posts using randomness generated from K and the encrypted
message m, via the PRF, i.e., c = Epk (m,PRFK (m)). In addition, the sender
adds a non-interactive zero-knowledge proof that c was correctly computed. This
allows verification. Moreover, it also seems to imply that a malicious sender can-
not manipulate the randomness to embed a subliminal message m ′ in c. However
a closer look shows that this is not clear at all: the intuition assumes that the
sender chooses a message m to encrypt and the subliminal message m ′ first, then
generates randomness using the PRF key and hopes that the resulting cipher-
text will be an encoding m ′. In fact, the sender does not have to do this: she
might be able to instead compute simultaneously c and m from the subliminal
message m ′, in a way that depends on K , such that c = Epk (m,PRFK (m))
holds. The security properties of the PRF and the encryption function do not
imply that this is infeasible: the PRF is only secure if the key is not known, and
the encryption function is only hard to invert on a random ciphertext, and this
does not prevent the adversary from generating c and m simultaneously from K .
With this approach, it is completely unclear that c could not be an encoding of
a subliminal message m ′ that the adversary wants. One might be able to make
these problems go away if one is willing to model the PRF as a random oracle.
But now the problem is that the zero-knowledge proof requires access to the
code of the instantiation of the oracle. This code is no longer available once we
pass to the random oracle model, so it is not clear how to prove security.

In the absence of a solution based on standard assumptions, we rely on a
new model for security of obfuscation that we call Game-Specific Obfuscation
(GSO). As the name suggests, GSO only requires the obfuscator to obfuscate
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programs in a specific family of programs F used in a fixed security game G.
Roughly speaking, the security requirement is that the obfuscated program does
not help an adversary to win the specific game any more than oracle access
to the program would have allowed. Note that while implied by VBB, GSO
makes a much weaker demand than VBB: we assume that the obfuscation gives
nothing more than oracle access, only as far as winning G is concerned, and the
obfuscator only needs to obfuscate programs in F . In particular, the impossibility
result for VBB [2] does not apply to GSO. At the same time, GSO and iO
are somewhat incomparable: GSO has no specific requirement on the family
of programs, while iO needs them to compute the same function; on the other
hand, iO still guarantees indistinguishability for every game, while GSO targets a
specific one. Nevertheless, assuming GSO is a strong assumption, and our result
mainly serves to rule out impossibility results for VACE with minimal leakage.

2.3 Concurrent Work

Recently, Lu et al. [7] explore an analogous question in the context of collusion-
preserving MPC [1]: could one get rid of mediation? At a high level, their solution
is similar to our VACE construction: parties’ messages are encrypted, signed, and
sent on an authenticated broadcast channel by a trusted hardware, which thus
performs the same task as the obfuscated program in our construction. However,
to completely prevent subliminal channels they have to assume that senders
cannot run the trusted hardware multiple times and choose which ciphertext to
send, which is a stronger assumption than our communication model.

2.4 Future Directions

We believe that the question we study here is a fundamental one that is of
interest, also outside the scope of ACE, as it can be phrased in a much more
general context: assume a polynomial-time sender who is limited to sending
messages that satisfy some verification predicate. The question is to what extent
we can use the verification to limit the bandwidth of any subliminal channel that
the sender may be able to embed? Given our results, it seems that a logarithmic
number of bits per message can be achieved. However, we leave a solution based
on standard assumptions as an open problem.

3 Access Control Encryption Without Sanitization

Let [n] = 0, 1, . . . ,n for an integer n ∈ N, and λ be the security parameter.
Denote by |s| the length of a bit string s.

Parties. The protocol is run by n parties Pi. Each party can be either a sender
or a receiver. We denote by nS (resp., nR) the number of senders (resp.,
receivers); thus n = nS + nR.

Policy. A policy is a function P : [nS ] × [nR] → {0, 1} defined as follows:
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– P(i, j) = 1 means that the i-th sender can send messages to the j-th
receiver (i.e., Rj can decrypt ciphertexts generated by Si);

– P(i, j) = 0 means that the i-th sender cannot send messages to the j-th
receiver (i.e., Rj cannot decrypt ciphertexts generated by Si);

Finally, the party identity i = 0 represents a sender or receiver with no rights,
i.e., for all j ∈ [nR], k ∈ [nS ] it holds P(0, j) = P(k, 0) = 0.

Communication Model. We assume only one-way channels between parties:
– parties cannot share any randomness nor other key setup, and
– parties only communicate through a bulletin board, and do not have pri-

vate channels, or, in general, communication channels outside the protocol
(analogously to ACE). Senders are the only ones allowed to write on the
bulletin board, while receivers have read-only access to it.

An Access Control Encryption scheme without sanitizer (denoted by ACEnoS
in this work) is composed by four algorithms:

Setup: (pp,msk) ← Setup(1λ,P)
Takes as input the security parameter λ and the policy P, and outputs the
public parameters of the scheme (that include the message space M) and the
master secret key.

Key Generation: ki ← KGen(pp,msk , i, t)
Takes as input the public parameters of the scheme, the master secret key,
the identity of the party, and a type t ∈ {sen, rec}, and outputs a key ki,
generated depending on t and i as follows:

– ek i ← KGen(pp,msk , i, sen) is the encryption key for i ∈ [nS ];
– dk i ← KGen(pp,msk , i, rec) is the decryption key for i ∈ [nR];
– ek0 = dk0 = pp.

Encryption: c ← Enc(pp, ek i,m)
On input the secret key of Si and a message m ∈ M, outputs the ciphertext.

Decryption: m ′ ← Dec(pp, dk i, c)
On input a ciphertext and the secret key of the receiver i, it outputs either a
message or ⊥ (representing a decryption failure).

As in the original scheme, an ACE without sanitizer has to satisfy:

Correctness: a honestly generated ciphertext can always be decrypted by the
designated receivers.

No Read Rule: only the designated receiver can extract information about the
plaintext from a ciphertext; senders anonymity is guaranteed under natural
assumptions.

No Secret Write Rule: parties cannot communicate secretly if the policy does
not allow it. If parties manage to communicate despite being forbidden by
the policy, then anyone can read their communication.

When compared to the security definitions of ACE, only the No write Rule
requires major changes, as it is the only property where the sanitizer plays a fun-
damental role. Correctness and the No Real Rule only need small adjustments.
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Definition 3.1 (Correctness). An ACE without sanitizer is correct if for all
m ∈ M, i ∈ [nS ], j ∈ [nR] such that P(i, j) = 1 it holds

Pr

⎡
⎣Dec(pp, dk j ,Enc(pp, ek i,m)) �= m :

(pp,msk) ← Setup(1λ,P),
ek i ← KGen(pp,msk , i, sen),
dk j ← KGen(pp,msk , j, rec)

⎤
⎦ ≤ negl(λ),

where the probabilities are taken over the random coins of all the algorithms.

The NRR models the case in which a coalition of parties (both senders and
receivers) tries to either break the confidentiality of a message (payload privacy)
or to break the anonymity of target senders. We consider the most powerful
adversary, that has even access to the target senders’ encryption keys. This
guarantees sender’s anonymity (and payload privacy) even for senders whose
encryption key was leaked.

Definition 3.2 (No-Read Rule). Consider the following security experiment,
where A is a stateful adversary and b ∈ {0, 1},

Experiment ExpnrA,b(λ, P) Oracles

(pp,msk) ← Setup(1λ, P) OG(j, t) : OE(j,m):

(m0,m1, i0, i1, st) ← AOG(·), OE(·)(pp) If ∃ kj s.t. (kj , j, t) ∈ L, return kj ekj ← OG(j, sen)

cb ← Enc(pp, OG(ib, sen),mb) Else kj ← KGen(pp,msk , j, t) c ← Enc(pp, ekj ,m)

b′ ← AOG(·), OE(·)(st, cb) L ← L ∪ {(kj , j, t)} Return c.

Return b′. Return kj .

Given the following requirement,

Necessary Condition: b = b′, |m0| = |m1|, i0, i1 ∈ [nS ],

we say that A wins the experiment if one of the following holds:

Payload Privacy (PP). The Necessary Condition holds, and for all queries
q = (j, rec) to OG it holds that: P(i0, j) = P(i1, j) = 0.

Sender Anonymity (SA). The Necessary Condition holds, and for all queries
q = (j, rec) to OG it holds that: P(i0, j) = P(i1, j) and m0 = m1.

An ACE without sanitizer satisfies the No-Read rule if for all PPT A, b $←−{0, 1}

2 ·
∣∣∣∣Pr

[
(PP ∨ SA) : b′ ← ExpnrA,b(λ,P)

] − 1
2

∣∣∣∣ ≤ negl(λ).

NRR vs. Indistinguishability. The NRR corresponds to the indistinguishability
properties of the PKE, which in fact can be seen as special cases of the NRR:
Payload Privacy when i0 = i1 guarantees IND-CPA security, while the Sender
Anonymity case is analogous of key-indistinguishability [3].

The goal of the No Secret Write Rule is to prevent unauthorized communi-
cations. However, as the sanitization step is not present anymore, there is no
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countermeasure in place to prevent parties to try to establish subliminal chan-
nels [10]: parties might try to embed messages in the bits of a valid ciphertext
using some shared randomness (for example, bits of their secret keys). As com-
pletely preventing subliminal channels without some kind of sanitization step is
impossible (cf. Sect. 7.2), we settle for preventing secure exfiltration of informa-
tion: if two parties manage to communicate despite this being against the policy,
they can only succeed in establishing an insecure subliminal channel (i.e., they
can only send unencrypted messages). This is useful in scenarios where leaking
information by broadcasting it in the clear is not an option (e.g., if the informa-
tion allows to identify the party that leaked it). Thus we need to assume that
the corrupted sender and receiver do not share randomness or private commu-
nication channels. An obvious implication is that they cannot corrupt the same
party and they should only communicate through the bulletin board. In fact,
this imposes much bigger limitations to their corruption abilities:

– They cannot corrupt parties that have parts of the key in common (e.g., in
constructions relying on symmetric key cryptography), as in this case the
common bits can be used as shared randomness.

– They cannot corrupt parties whose keys can be recovered from each other (as
it is the case for public key cryptography, where usually the public key can
be recovered from the secret key).

– Neither of them can have both read and write access to the board, other-
wise they would have an (insecure but) two-way communication channel that
would then allow for key-exchange. This means that the corrupted sender
can only corrupt other senders, and analogously for the receiver. Moreover,
corrupted senders should not have access to an encryption oracle, while cor-
rupted receivers do: the first requirement is due to the fact that a corrupt
sender could trivially break the property by “replaying” encryptions under
keys of (honest) senders who are allowed to communicate to the corrupted
receiver, while the latter is due to the fact that we want to model that receivers
have access to the entire bulletin board, which may contain encryptions of
known messages under keys of known identities.

The definition says that if a corrupted receiver can recover a message, then
knowing some decryption keys did not help in the process. This is modeled by
imposing that a party B without access to keys can recover the message with a
similar success probability3. Remark that there is no consistency check on the
ciphertext s̄ output by the corrupted sender A1: s̄ could even be the entire view
of A1. In Sect. 7.2 we show that adding ciphertext verifiability yields stronger
limitation on the communication between unauthorized parties.

Definition 3.3 (No Secret Write (NSW) Rule). Let A = (A1,A2) be an
adversary and consider the following game (oracles OG and OE are the key
generation oracle and encryption oracle defined in Definition 3.2):

3 Alternatively one could require A2 (and consequently B) to distinguish whether a
ciphertext contains a subliminal message at all. This case is clearly implied by ours.
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Experiments
Expnsw(A1,A2)

(λ, P) Expnsw(A1,B)(λ, P)

(pp,msk) ← Setup(1λ, P) (pp,msk) ← Setup(1λ, P)

(m̄, s̄) ← A
OG(·,sen)
1 (pp) (m̄, s̄) ← A

OG(·,sen)
1 (pp)

m ′ ← A
OG(·,rec), OE(·)
2 (pp, s̄) m ′′ ← BOE(·)(pp, s̄)

Return 1 if m̄ = m ′, Return 1 if m̄ = m ′′,
0 otherwise. 0 otherwise.

Let Q1 (resp., Q2) be the set of all queries q = (i, sen) (resp., q = (j, rec))
that A1 (resp.,A2) issues to OG. The adversary wins the experiment if m ′ = m̄
while the following holds:

No Communication Rule (NCR). ∀ (i, sen) ∈ Q1, (j, rec) ∈ Q2, P(i, j) = 0.

Given λ and a policy P, an ACE without sanitizer satisfies the No Secret
Write rule if for all PPT A = (A1,A2) there exists a PPT algorithm B and a
negligible function negl such that

Pr
[
1 ← Expnsw(A1,B)(λ,P)

]
≥ Pr

[
1 ← Expnsw(A1,A2)(λ,P) ∧ NCR

]
− negl(λ).

Further remarks on defining NSWR security can be found in the full version,
alongside the intuition behind the impossibility to instantiate an ACE without
sanitization from symmetric key primitives.

4 Linear ACE Without Sanitizer from PKE

The first construction is akin to the original linear ACE from standard assump-
tions by Damg̊ard et al. [4]. In such scheme, senders are given the public keys of
all the receivers they are allowed to communicate with, and “decoy/placeholder”
public keys for the receivers they are not allowed to communicated with (to make
sure that ciphertexts generated by different senders have the same length). The
encryption algorithm then encrypts the message under all the keys. The i-th
receiver just decrypts the i-th ciphertext using its secret key. Sender’s anonymity
requires that ciphertexts do not leak any information about the key used to gen-
erate them, i.e., key indistinguishability [3].

Let (PKE.KeyGen,PKE.Enc,PKE.Dec) be a public key encryption scheme,
that is IND-CPA secure4 and IK-CPA. An ACE without sanitizer from PKE
(denoted ACEpke) can be instantiated as follow.

4 It is enough that the PKE is IND-CPA, as whenever the receiver has to distinguish
between the encryption of 2 different messages, it is not allowed to get the decryption
key (as it would be in the Payload privacy game). In the sender anonymity game,
when the adversary can ask for decryption keys, the only requirement is that is
should be impossible to identify a sender from the encryption key it uses, which is
guaranteed by the key-indistinguishability property.
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Communication Model: parties communicate through a bulletin board. Only
senders are allowed to write on the board. Receivers can only read from it.

Message Space: M := {0, 1}�.
Setup: (pp,msk) ← Setup(1λ,P)

It generates the message set, and the number of parties n, of senders nS ,
and of receivers nR; all are included in pp, along with the policy. The master
secret key is a list of 2nR (distinct) pairs of asymmetric keys, i.e.,

msk =
{

((pk0
j , sk

0
j ), (pk

1
j , sk

1
j )) :

For i = 1, 2
(pk i

j , sk
i
j) ← PKE.KeyGen(1λ)

}

j∈[nR]

.

Key Generation: ki ← KGen(pp,msk , i, t)
On input (i, t), the algorithm parses msk = {((pk0

j , sk
0
j ), (pk

1
j , sk

1
j ))}j , and

behaves as it follows.
– If i �= 0 and t = sen, it returns a vector ek i = (ek i[j])j∈[nR] such that

ek i[j] ← pkP(i,j)
j .

– If i �= 0 and t = rec, it returns dk i = sk1
i .

– If i = 0, returns ek0 = dk0 = pp.
Encryption: c ← Enc(pp, ek i,m)

Run cj ← PKE.Enc(ek i[j],m; ρj) for all j ∈ [nR] (ρj is a random string).
Return c = (cj)j=1,...,n .

Decryption: m ′ ← Dec(pp, dk j , c)
Let c = (c1, . . . , cnR

). Return the output of PKE.Dec(dk j , cj) (which could
be either a message m or ⊥).

Theorem 4.1. The ACEpke scheme is correct, and satisfies the properties of
No-Read and No Secret Write as described in Sect. 3 if the public key encryption
scheme is IND-CPA secure and key-indistinguishable.

Proof. The proof is as follows.

Correctness. Correctness directly follows from the correctness of the PKE
scheme.

No Read Rule. The No-Read Rule relies on both the IK-CPA and IND-CPA
properties of the PKE scheme. The proof is deferred to the full version, as it
closely follows the proof of [4, Theorem 3].

No Secret Write Rule. Given an adversary A = (A1,A2) that wins the game
Expnsw(A1,A2)(λ,P) with probability εA, to prove that the scheme satisfies the NSW
Rule we need to construct an algorithm B that wins game Expnsw(A1,B)(λ,P) with
essentially the same probability (up to a negligible difference). Upon receiving
s̄ from A1, the algorithm B runs A2 internally on input (pp, s̄) simulating the
oracles as follows. First, it generates 2nR pairs of PKE keys, and collects them
in a fresh master secret key m̄sk = {(( ¯pk0

j , s̄k
0
j ), (p̄k

1
j , s̄k

1
j ))}j∈[nR]. The oracles

are then simulated using msk ′:
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OG: on input (j, t) from A2, B generates new keys according to the policy P using
m̄sk . If t = sen B sends ek j = (p̄kP(j,i)

i )i∈[nR]; if t = rec, it sends dk j = s̄k1
j .

It stores the keys in a list K.
OE : simulates the encryption oracle as specified in the security experiment using

the appropriate key from K.

Finally, B outputs the message that A2 returns. By the definition of conditional
probability, the success probability of B is

Pr
[
1 ← Expnsw(A1,B)(λ,P)

]
= Pr

[
1 ← Expnsw(A1,A2)(λ,P) ∧ NCR

]
· Pr(E),

where we denote by E the event “A2 does not distinguish the simulated oracles
from real ones”. The only way A2 could distinguish, is if the answers of the
simulated oracles were inconsistent with the challenge ciphertext s̄. However, in
the real game the encryption keys queried by A1 are statistically independent
of the decryption keys queried by A2, and they do not share state, thus any
information encoded in s̄ is statistically independent of the keys A2 queries. The
only way A2 could get information about the encryption keys owned by A1 would
be by querying the encryption oracle on (i,m) for an i that A1 has corrupted
(such identity could be hardcoded in A2, so the attack can be performed even in
absence of shared state). If A2 can distinguish that the ciphertext is not generated
using the same key that A1 received, then A can be exploited to break the key
indistinguishability property of the PKE. Let qE be the number of queries by
A2 to the encryption oracle. One can prove this by a sequence of hybrid games:

Game 0. This is the No-Secret-Write experiment.
Hybrid k for 0 ≤ k ≤ 2nR. In all hybrid games the view of A1 is generated

according to the NSWR experiment, i.e., using the master secret key msk
generated at the beginning of the experiment. However, when generating the
view of A2, the challenger in Hybrid k generates the j-th key pairs in m̄sk as
follows:
Case j < �k/2: it generates fresh PKE key pairs (p̄k0

j , s̄k
0
j , p̄k

1
j , s̄k

1
j ).

Case j = k: it generates a fresh key pair (p̄k , s̄k), and sets the j-th PKE
pairs to be (p̄k , s̄k , pk1

j , sk
1
j ) if k is odd and (p̄k0

j , s̄k
0
j , p̄k , s̄k) if k is even,

where (pk0
j , sk

0
j , pk

1
j , sk

1
j ) is the j-th key pair in msk and (p̄k0

j , s̄k
0
j , ) ←

PKE.KeyGen(1λ).
Case j > �k/2: it uses the same PKE key pairs (pk0

j , sk
0
j , pk

1
j , sk

1
j ) as in

msk .
Let Ek be the event that A distinguishes between Hybrid k and Hybrid k −1.
Lemma 4.2 shows that Pr(Ek) ≤ 2

3qEεik-cpa(λ).
Game 1. This is the No-Secret-Write experiment as simulated by B. By defini-

tion, Hybrid 0 is exactly equal to Game 0, and Hybrid 2nR is the same as
Game 1. Therefore:

Pr(E) ≥ 1 − 3nRqEεik-cpa(λ),
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where εik-cpa(λ) is the probability of breaking the IK-CPA property of the
PKE scheme and qE = poly(λ) as A is a polynomial-time algorithm. ��

Lemma 4.2. Pr(Ek) ≤ 3εik-cpa(λ)qE for all k ∈ [2nR].

Proof. We split the proof in 3 cases:

Case 1: for all queries (j, sen) by A1 to OG, P(j, k) = 0.
Case 2: there are ī, j̄ ∈ [nS ] such that A1 queried (̄i, sen) and (j̄, sen) to OG and

P (̄i, k) = 1, P(j̄, k) = 0.
Case 3: for all queries (j, sen) by A1 to OG, P(j, k) = 1.

If k = 0 this is exactly the NSW experiment. If k = 2nR this is the NSW
experiment as simulated by B. Assume now 0 < k < 2nR.

Let us start from k odd. In Case 1 A1 sees pk0
k but not pk1

k, while A2 can
query dkk and receives sk1

k both in Hybrid k and in Hybrid k − 1. The only
difference is that in Hybrid k OE uses ¯pkk, pk1

k instead of pk0
k, pk1

k as in Hybrid
k−1. If A can distinguish in this case, we construct a PPT algorithm C that can
win the IK-CPA experiment running A as a subroutine. C receives pk0 and pk1

from the IK-CPA experiment and generates msk setting (pk0
k, sk0

k) = (pk0,⊥)
and (p̄k , s̄k) = (pk1,⊥). The rest of the master secret keys msk and m̄sk are
generated as specified by Hybrid k. Then it answers to OG using msk for the
queries by A1 and m̄sk for the queries by A2. To answer queries from A2 to OE ,
C selects a random q $←− [qE ] and behaves as follows:

– C answers to the first q−1 queries using pk0, pk
1
k as the k-th encryption keys.

– When A2 sends the q-th query (i,m), C returns m to the IK-CPA experiment
and receives a challenge ciphertext c̄. Then it generates the encryption of m
as follows:

cj ← PKE.Enc(pkP(i,j)
j ,m) for j = 1, . . . , k − 1

cj ← c̄ for j = k if P(i, k) = 0

cj ← PKE.Enc(pk1
j ,m) for j = k if P(i, k) = 1

cj ← PKE.Enc(p̄kP(i,j)
j ,m) for j = k + 1, . . . ,nR

– C answers to the remaining qE − q + 1 queries using pk1, pk
1
k as the k-th

encryption keys.

Thus it follows that for k odd

Pr(Ek | Case 1) ≤ |Pr(A wins Hybrid k − 1 | Case 1) − Pr(A wins Hybrid k | Case 1)|

≤ |
qE∑

Q=1

Pr(A wins the game | q = Q ∧ c̄ ← PKE.Enc(pk0,m))+

− Pr(A wins the game | q = Q ∧ c̄ ← PKE.Enc(pk1,m))|
≤ qEεik-cpa(λ).

In Case 2 A1 sees both pk0
k and pk1

k, while A2 cannot query dkk both in
Hybrid k and in Hybrid k − 1. The difference is that in Hybrid k OE uses
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¯pkk, pk1
k instead of pk0

k, pk1
k as in Hybrid k − 1. The reduction shown for Case

1 can be replicated without changes in this case. In Case 3 A1 sees pk1
k but not

pk0
k, while A2 cannot query dkk both in Hybrid k and in Hybrid k − 1. Again

the only difference is that in Hybrid k OE uses ¯pkk, pk1
k instead of pk0

k, pk1
k as

in Hybrid k − 1. Thus in this case the view of A in Hybrid k is statistically
indistinguishable from the view of A in Hybrid k − 1.

Finally, assume that k is even. In Case 1 A1 sees pk0
k but not pk1

k, while
A2 can query dkk and receives s̄k1

k in Hybrid k and sk1
k in Hybrid k − 1. The

encryption oracle OE uses ¯pkk
0
, p̄k in Hybrid k, and p̄k0

k, pk1
k in Hybrid k − 1.

As the adversary does not see pk1
k, the view of A in Hybrid k is statistically

indistinguishable by the view of A in Hybrid k − 1. In Case 3 A1 sees pk1
k but

not pk0
k, while A2 cannot query dkk both in Hybrid k and in Hybrid k − 1.

The difference is that in Hybrid k OE uses ¯pkk
0
, p̄k instead of p̄k0

k, pk1
k as in

Hybrid k − 1. The previous reduction can be adapted to this case as follows. C
receives pk0 and pk1 from the IK-CPA experiment and generates msk setting
(pk1

k, sk1
k) = (pk0,⊥) and (p̄k , s̄k) = (pk1,⊥). The rest of the master secret keys

msk and m̄sk are generated as specified by Hybrid k. Then it answers to OG

using msk for the queries by A1 and m̄sk for the queries by A2. To answer queries
from A2 to OE , C selects a random q $←− [qE ] and behaves as follows:

– C answers to the first q−1 queries using pk0, pk
1
k as the k-th encryption keys.

– When A2 sends the q-th query (i,m), C returns m to the IK-CPA experiment
and receives a challenge ciphertext c̄. Then it generates the encryption of m
as follows:

cj ← PKE.Enc(pkP(i,j)
j ,m) for j = 1, . . . , k − 1

cj ← PKE.Enc(p̄k0
j ,m) for j = k if P(i, k) = 0

cj ← c̄ for j = k if P(i, k) = 1

cj ← PKE.Enc(p̄kP(i,j)
j ,m) for j = k + 1, . . . ,nR

– C answers to the remaining qE − q + 1 queries using pk1, pk
1
k as the k-th

encryption keys.

Analogously to the case of k odd, for k even it holds that

Pr(Ek | Case 3) ≤ qEεik-cpa(λ).

Finally, in Case 2 A1 sees both pk0
k and pk1

k, while A2 cannot query dkk both in
Hybrid k and in Hybrid k − 1. The difference is again that in Hybrid k OE uses
¯pkk

0
, p̄k instead of p̄k0

k, pk1
k as in Hybrid k − 1. The reduction shown for Case 1

can be replicated without changes in this case. Therefore, for all k it holds that

Pr(Ek) =
3∑

i=1

Pr(Case i)Pr(Ek | Case i) ≤ 3qEεik-cpa(λ).

��
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5 Compact ACE from Hybrid Encryption

The previous construction has the problem that the length of ciphertexts depends
linearly on � · nR. This can be improved using a hybrid encryption technique:
combining ACEpke with a rate-1 symmetric key encryption (SKE) scheme yields
a more compact ACE (denoted by ACEhe), which outputs ciphertexts whose size
scales with � + nR instead. Interestingly, there is no known analogous hybrid
encryption version of the original construction of [4].

Let (SE.KeyGen,SE.Enc,SE.Dec) be a rate-1 symmetric encryption scheme
that is lor-cpa secure, and let ACEnoS = (ACE.Setup,ACE.KGen,ACE.Enc,
ACE.Dec) be an ACE without sanitizer that is NRR and NSWR secure.

Communication Model: parties communicate through a bulletin board;
senders and receivers have write-only and read-only access respectively.

Message Space: M := {0, 1}�.
Setup: (pp,msk) ← Setup(1λ,P)

Return (pp,msk) ← ACE.Setup(1λ,P).
Key Generation: ki ← KGen(pp,msk , i, t)

Return ki ← ACE.KGen(pp,msk , i, t).
Encryption: c ← Enc(pp, ek i,m)

Generate a one-time secret key sk ← SE.KeyGen(1λ), and encrypt the message
using it: c1 ← SE.Encsk (m). Then encrypt the key using the ACEnoS: c2 ←
ACE.Enc(pp, ek i, sk). Return c = (c1, c2).

Decryption: m ′ ← Dec(pp, dk j , c)
Parse c = (c1, c2). Decrypt the secret key sk ′ ← ACE.Dec(pp, dk j , c2). If
sk ′ = ⊥, return ⊥. Else return m ′ ← SE.Decsk ′(c1).

Efficiency, Storage Requirements, and Optimizations. The length of the cipher-
text is O(nR + �) using a rate-1 SKE. The full version contains a construction
from predicate encryption that outputs more compact ciphertexts (of length
O(log(nS)+λ)) when instantiated for policies such that minj∈[nR] Sj = O(log nS)
where Sj is the set of senders allowed to communicate with the receiver j.

Theorem 5.1. The protocol previously described is correct, and satisfies the
properties of No-Read and No Secret Write if the SKE is lor-cpa secure, and
ACEnoS satisfies correctness, NRR and NSWR as described in Sect. 3.

The security proof is akin to that of ACEpke, and is deferred to the full version.

6 Game-Specific Obfuscation

We suggest a variant of obfuscation that is weaker that Virtual Blackbox (VBB)
obfuscation and hence may be possible to implement in general. VBB obfuscation
requires that the obfuscated program gives nothing to the receiver, other than
oracle access to the original program, and it is well known that no obfuscator
can be capable of VBB-obfuscating every program.
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Fig. 1. Security experiment for Game-Specific obfuscation.

Here, we consider instead a security game G (formalized as an experiment
in Fig. 1), in which a challenger C plays against an adversary A, using an
obfuscator Obf. The game comes with a specification of a family of programs
F := {Pk ,p}k∈{0,1}λ,p∈{0,1}m , parameterized by k and by a label p of some length
m, so we have one member of the family for each pair (k , p). This is meant to
cover a wide range of applications where obfuscated programs may be used: very
often, an application bakes one or more cryptographic keys into the program,
this is modelled by the parameter k . The label p is useful in a multiparty sce-
nario, where parties may be given programs that depend on their identity, for
instance.

The game proceeds in rounds, where in each round of the game, A can query
C on various labels p to obtain obfuscated programs P̂p

k = Obf(Pp
k ), as well as

for other data (such as public parameters). At the end of each round, A returns
some final output zi, which is remembered between rounds. Optionally, the game
may allow A to remember additional state information between rounds (not
represented in Fig. 1). In the end, C decides if A won the game. Our definition
compares this to a similar experiment where, however, the adversary B only gets
oracle access to the programs.

Importantly, C can decide not to answer a query, based on the label and its
current state. This models conditions one would typically have in a game, such
as: the game models a scheme with several parties participating, some of which
are corrupt, and the adversary is not allowed to query a program that was given
to an honest player. Since the same C plays against both A and B, they are under
the same constraints, so B cannot “cheat” and make queries that A could not.

For simplicity, we let C choose a single parameter k initially. We can easily
generalize to cases where programs using several different values of k are used.

Definition 6.1 (Game-Specific Obfuscation). We say that Obf is a game-
specific secure obfuscator (GSO) relative to G and F if for every PPT adversary
A, there exists a PPT adversary B which plays G using only oracle access to each
obfuscated program, and where |Pr[1 ← ExpG0

A,Obf(λ,F , q)] − Pr[1 ← ExpG1

B,Obf(λ,
F , q)]| is negligible, where the challenger behaves as follows:
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Challenge Generation: on input (0; (λ,F , q)), it returns k ∈ {0, 1}λ and some
general public parameters pp.

Program Obfuscation: on input (1, k , p; st), it returns the obfuscation P̂p
k ←

Obf(Pp
k ) of the program, or ⊥.

Oracle Access to Programs: on input (2, (k , p,m); st) it returns the evaluation
of the program Pp

k (m), or ⊥.
Other Data: on input (3, ·; st) it can return additional data.
Winning Condition Check: on input (4, z1, . . . , zq; st) it returns 1 if the adver-

sary won the game, 0 otherwise.

Every mode of operation can update the state st of the challenger too, if required
by the game.

Note that this definition, while implied by VBB, makes a much weaker
demand than VBB: we assume that the obfuscation gives nothing more than
oracle access, only as far as winning G is concerned, and the obfuscator only
needs to obfuscate programs in F . Indeed, the impossibility result for VBB does
not apply to game-specific obfuscation in general, it just rules out its existence
for a specific game and family of programs. The notion is somewhat incompa-
rable to iO obfuscation: obfuscators secure in the iO sense are usually claimed
to be able to obfuscate any program, and can potentially be applied in any
security game, but on the other hand, iO only guarantees indistinguishability
between programs with the same input/output behavior. Even when restricting
to assume the existence of iO/GSO for specific programs (as it happens in con-
structions relying on iO), still iO and GSO target different aspects: GSO has no
specific requirement on the family of programs, while iO needs them to compute
the same function; on the other hand, iO still guarantees indistinguishability for
every game, while GSO targets a specific one.

As usual, we also require the obfuscators to preserve functionality (the input-
output behaviour of the obfuscated program is equivalent to the original pro-
gram) and polynomial slowdown (the obfuscated program should can at most be
polynomially slower/larger than the original one).

7 ACE with Ciphertext Verifiability

In this section we explore whether it is possible to obtain more than just pre-
venting parties from establishing secure subliminal channels. The intuition is
that it should be possible to restrict corrupted parties in the bandwidth of their
subliminal channels by adding some form of ciphertext verifiability to our model.
Ciphertext verifiability allows any party with access to the bulletin board to ver-
ify that ciphertexts appended to the public board have been generated honestly
and according to policy, even if the party is not allowed to decrypt them by the
policy. We then show a scheme that allows to restrict the bandwidth of cor-
rupted senders to logarithmic in the security parameter under a novel variant of
obfuscation, namely the GSO introduced in the previous section. We find this a
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promising indication that public verification can help to restrict subliminal com-
munication between corrupted parties. As a byproduct, we get a construction
whose complexity only scales polylogarithmically with the number of parties.

7.1 Ciphertext Verifiability

Parties, policies and the communication model are the same as in Sect. 3. The
difference is that an ACE with ciphertext verifiability (VACE) is composed by
5 algorithms (Setup,KGen,Enc,Verify,Dec). The verification algorithm Verify
allows receivers to verify that ciphertexts published in the bulletin board are
well-formed according to their decryption key:

Verification b ∈ {0, 1} ← Verify(dk j , c)
On input a ciphertext c and a decryption key, the algorithm outputs 1 if
c ← Enc(pp, ek i,m) for some (unknown) honestly generated sender’s key ek i

and message m ∈ M, and 0 otherwise.

Remark that the definition implies that verification can be done using dk0, i.e.,
the decryption key of the receiver with identity j = 0 which by policy cannot
receive messages5. Differently from ACEnoS, now dk0 might not be equal to the
public parameters (while ek0 still is). Moreover, dk0 is not part of them: it is
given only to receivers, not to the senders. This follows quite naturally from the
communication model: as senders have write-only access to the public board,
they cannot see (thus verify) ciphertexts by other senders than themselves6.

The introduction of such algorithm requires to modify the properties of secu-
rity and correctness as well. This new construction of ACE should satisfy both
correctness as defined in Sect. 3 and a completeness requirement (i.e., that hon-
estly generated ciphertexts pass verification).

Definition 7.1 (Completeness). A VACE scheme is complete if for all λ,m ∈
M, i ∈ [nS ], j ∈ [nR] it holds

Pr

⎡
⎣1 ← Verify(dk j ,Enc(pp, ek i,m)) :

(pp,msk) ← Setup(1λ,P),
ek i ← KGen(pp,msk , i, sen),
dk j ← KGen(pp,msk , j, rec)

⎤
⎦ = 1,

where the probabilities are taken over the random coins of all the algorithms.

To ensure that verification is meaningful, the outcome of verification should
be consistent when done with different keys.

5 The inclusion of the identity 0 for senders and receivers with no rights is standard
in normal access control encryption, cf. [4].

6 In fact, it seems to be necessary for a more technical reason related to the NSWR (as
the verification key could be seen as shared randomness between corrupted senders
and receivers).
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Definition 7.2 (Verification Consistency). Given a policy P, a VACE
scheme verifies consistently if, for every PPT adversary A there exists a neg-
ligible function negl such that

Pr

⎡
⎢⎢⎢⎢⎣

b0 �= b1 |

(pp,msk) ← Setup(1λ,P)
(i0, i1, c) ← AOG(·,·)(pp)
For k = 0, 1

dk ik
← KGen(pp,msk , ik, rec)

bk ← Verify(dk ik
, c)

⎤
⎥⎥⎥⎥⎦

≤ negl(λ),

where the OG returns ek j on input (j, sen), and dk j on input (j, rec).

The No Read Rule remains unchanged as such property is not concerned with
enforcing the policy, but with the anonymity and privacy of the scheme. On the
other hand, the winning condition of the No Secret Write Rule changes to impose
that the challenge ciphertext successfully verifies w.r.t. some fixed receiver key.
This, combined with consistency of verification (which we just defined) implies
that a successful verification w.r.t. even just the public verification key dk0 is
enough to guarantee it w.r.t. all receiver keys (which could be impossible to
check efficiently in the game if the number of receivers is superpolynomial).

The verification key dk0 is only given to the corrupted receiver A2 and to the
public verifier B but not to the corrupted sender A1, as the latter cannot read
from the public board, but just write on it.

Definition 7.3 (No Secret Write Rule). Let A = (A1,A2) be an adversary
and consider the following game:

Experiments

Expnusw(A1,A2)(λ, P) Expnusw(A1,B)(λ, P)

(pp, msk) ← Setup(1λ, P) (pp, msk) ← Setup(1λ, P)

(m̄, c) ← A
OG(·,sen)
1 (pp) (m̄, c) ← A

OG(·,sen)
1 (pp, m̄)

m′ ← A
OG(·,rec), OE(·)
2 (pp, c) m′′ ← BOE(·),OG(0,rec)(pp, c)

Return 1 if Return 1 if

m̄ = m′ ∧ 1 ← Verify(dk0, c), dk0 ← OG(0, rec), m̄ = m′′ ∧ 1 ← Verify(dk0, c), dk0 ← OG(0, rec),

0 otherwise. 0 otherwise.

Oracles

OG(j, t) : OE(j,m):
If ∃ kj s.t. (kj , j, t) ∈ L, return kj ek j ← OG(j, sen)
Else kj ← KGen(pp,msk , j, t) Return c ← Enc(pp, ek j ,m).

L ← L ∪ {(kj , j, t)}
Return kj .

Let Q1 (resp., Q2) be the set of all queries q = (i, sen) (resp., q = (j, rec))
that A1 (resp.,A2) issues to OG. The adversary wins the experiment if m ′ = m̄
and the ciphertext verifies while the following holds:

No Communication Rule (NCR). ∀ (i, sen) ∈ Q1, (j, rec) ∈ Q2, it should hold
that P(i, j) = 0.
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Given λ and a policy P, a ACE without sanitizer with verifiable ciphertexts
satisfies the No Secret Write rule if for all PPT A = (A1,A2) there exists a PPT
algorithm B and a negligible function negl such that

Pr
[
1 ← Expnsw(A1,B)(λ,P)

]
≥ Pr

[
1 ← Expnsw(A1,A2)(λ,P) ∧ NCR

]
− negl(λ).

Ciphertext Verifiability vs. Sanitization. It is fair to wonder whether adding
public verifiability yields an ACE with sanitization. This is not the case because:
(1) the sanitizer/verification key is public; (2) in the VACE case, behavior of
sanitizer/verifier is checkable by other receivers; (3) the access structure to a
public board usually requires an authentication layer: verification (and possible
identification of dishonest senders) can be enforced in that layer.

7.2 VACE from Game Specific Obfuscation

Verifiability of a ciphertext means that any party can verify that the ciphertext
satisfies some relation, i.e., that has some structure, which bounds the entropy
of the ciphertext. While this is not enough to prevent subliminal channels com-
pletely (as this seems to require the injection of true randomness, e.g., cf. [4,8]),
in this section we show that this is enough to meaningfully restrict the bandwidth
of corrupted senders.

We build a VACE following the IND-CCA PKE construction from iO by
Sahai and Waters [9], with the following changes: (1) we impose that every
ciphertext encrypts the identity of the sender in addition to the message, and
(2) decryption is done by an obfuscated program that checks the policy too. As
the original protocol outputs ciphertexts composed by two parts, the encryption
of the message and a value used as authentication/integrity check, we easily
get a VACE construction that is NRR secure assuming iO with a proof similar
to [9]. However, proving NSWR from iO seems impossible, thus we rely on a
GSO assumption on the obfuscator (further details in Sect. 7.3).

We now consider messages to be just one bit, i.e., M = {0, 1}, and assume
that nS = poly(λ) (as this is needed when using the puncturable PRF in the
proof of the NRR rule).

Setup: (pp,msk) ← Setup(1λ,P)
Generate the keys for the PRFs: Kk

$←− {0, 1}λ, k = 1, 2. The algorithm returns
pp = (λ,P,M) and the master secret key msk = (K1,K2).

Key Generation: ki ← KGen(pp,msk , i, t)
Generate the obfuscated circuits P̂s

i ← Obf(λ,Ps
i ), i ∈ [nS ] \ {0}, and P̂r

i ←
Obf(λ,Pr

i ), i ∈ [nR], of the programs Ps
i and Pr

j in Fig. 2, padded so that they
are as long as the programs in the reductions (cf. proof of Theorem 7.4 and
7.7).

– If i �= 0 and t = sen, return ek i = (P̂s
i ).

– If i = 0 and t = sen, return ek0 = pp.
– If t = rec, return dk i = (P̂r

i ).
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Fig. 2. Encryption and decryption programs.

Encryption: c ← Enc(pp, ek i,m)
Sample s $←− {0, 1}λ. Return c ← P̂s

i (m, s).
Decryption: m ′ ← Dec(pp, dk j , c)

Run (b,m ′) ← P̂r
j(c) and return m ′.

Verification: b ∈ {0, 1} ← Verify(dk j , c)
Run (b,m ′) ← P̂r

j(c) and return b.

For ease of exposition we split the security proof of the VACE in two theorems,
as the NRR and NSWR require different assumptions on Obf. In particular
Theorem 7.4 shows NRR security and only requires the standard notion of iO,
whereas Theorem 7.7 uses the novel GSO assumption. Note that one could also
have chosen to prove the NRR security of the VACE assuming GSO instead of
iO, but we opted for using the minimal assumptions for each theorem.

Theorem 7.4. The VACE previously defined satisfies correctness and complete-
ness, and has consistent verification, assuming the correctness of its building
blocks. In addition, if Obf is a iO and PRF1, PRF2 and PRG are two puncturable
PRF and a PRG respectively, the previous VACE and is NRR secure.

The proof of Theorem 7.4 relies on the standard techniques introduced in [9],
and is deferred to the full version. Remark that verification consistency follows
easily from the fact that the first bit of the output of P̂r

j is independent of the
value of j, thus it is the same for all j ∈ [nR].

7.3 No Secret Write Rule of VACE

We argue that indistinguishability obfuscation does not seem enough to prove
NSWR security for our VACE. A major hint in this direction is that proving
that the NSWR holds seems to require to show that A2 cannot distinguish the
real experiment from an experiment where both the encryption oracle and the
receiver keys are simulated using only the information available to B (i.e., the
encryption oracle and the verification key). However, we do not see a way to
simulate the decryption keys that preserves their I/O behavior without knowing
the master secret keys. Such a consistency in the I/O behavior of the keys is
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needed because A1 could still transmit information to A2 related to the behavior
of the senders’ keys queried by A1, e.g., the output on a particular input (s,m):
as B does not know which keys have been queried by A1, it cannot rely on
the encryption oracle to answer these queries consistently. However, simulation
can be done assuming Obf to be a secure GSO. In particular, the obfuscator is
assumed to be GSO secure for the following family of programs and game.

Definition 7.5 (F). The family F = {Pk ,p}k ,p contains all the possible keys:

– k = msk = (K1,K2), and
– p = (j, t) is the identity and type of party, and
– Pk ,(j,t) = Pt

j, t ∈ {s, r} as defined in Fig. 2.

Definition 7.6 (Gnsw). The game Gnsw runs for q = 2 rounds and is played by
a challenger Cnsw that behaves as follows:

– C(0, . . . ; st) returns (pp, k) = (pp,msk) ← Setup(1λ,P) and stores them in
st (alongside a round counter).

– C(1, (k , (j, t)); st) returns the output of KGen(pp,msk , j, t) and stores the
query in a list qi for i = 1, . . . , q in st.

– C(2, (k , (j, t),m); st) it returns the evaluation of the program Pt
j(m).

– C(3, st) returns ⊥ during round 1, and s̄ in round 2.
– C(4, z1, z2; st) parses z1 = (m̄, s̄) and returns 1 if the following three condi-

tions hold:
1. z2 = m̄
2. 1 ← Verify(dk0, s̄)
3. q1 (resp., q2) contains only queries for sender (resp., receiver) keys, and

for every (i, sen) ∈ q1 and (j, rec) ∈ q2 it holds that P(i, j) = 0.

Note that we have chosen to only use the GSO assumption where it is nec-
essary, namely the NSWR property. Therefore, since the NRR property is still
proven using the iO assumption, the PRFs used in the construction are still
puncturable even if this property is not explicitly used in the proof of the NSWR
property.

Theorem 7.7. Assuming Obf is a secure GSO for F and Gnsw as in Definition
7.5 and 7.6, and given two puncturable PRF and a PRG, the previous VACE is
NSWR secure. Moreover, assuming that only ciphertexts that pass the verification
are posted, it only allows for subliminal channels of bandwidth at most O(log(λ)).

Proof. Proving the NSWR relies on the hypothesis that Obf is a secure GSO
for (F , Gnsw). Indeed, the NSWR experiment in Definition 7.3 is exactly equal
to the game in Fig. 1 where (F , Gnsw) are as in Definition 7.5 and 7.6, and the
adversary A in the GSO experiment behaves like A1 in the first round, and like
A2 in the second. This implies that the probability that (A1,A2) win the NSWR
experiment is the same as the probability that A wins the GSO experiment. In
fact, from GSO security it follows that for any adversary A there exists a second
adversary A′ that has only oracle access to all the keys, but wins the game Gnsw

(i.e., the NSWR experiment) with almost the same probability:
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Pr
[
1 ← Expnsw(A1,A2)(λ,P) ∧ NCR

]
= Pr

[
1 ← Exp

G0
nsw

A,Obf(λ,F , 2)
]

≤ Pr
[
1 ← Exp

G1
nsw

A′,Obf(λ,F , 2)
]

+ εGSO. (1)

Let us now analyze the winning probability of A′. Denote by (A′
1,A

′
2) the execu-

tion of A′ in the first and second round of G1
nsw respectively. This adversary now

does not receive the sender (or receiver) keys, but is only given oracle access to
them. In fact, the oracle only evaluates the plaintext version of the keys, thus
it is possible to substitute the PRF and PRG used in the keys with random
functions, without significantly impacting the winning probability of A′:

Pr
[
1 ← Exp

G1
nsw

A′,Obf(λ,F , 2)
]

= Pr
[
1 ← Exp

G2
nsw

A′,Obf(λ,F , 2)
]

+ ερ, (2)

where ερ is the probability of distinguishing the PRF and PRG from a random
function, and the game G2

nsw is a modification of G1
nsw where C(2, ·) answers

the queries executing the code of Pt
i where PRF1, PRF2 and PRG have been

substituted by random functions.
At this point we can already observe that the bandwidth of the subliminal

channel (for ciphertexts that pass the verification) has to be at most O(log(λ)).
Indeed, in game G2

nsw the components t and cipher of the ciphertext are uni-
formly random while the tag sig is deterministically generated from them, thus
a corrupted sender is restricted to encode a subliminal message in a ciphertext
only through rejection sampling: A′

1 can only try encrypting randomly chosen
messages (the ciphertext does not reveal anything about the plaintext, thus it is
fair to assume that the subliminal message and the plaintext are independently
chosen) until the ciphertext finally encodes the subliminal message. If the sender
runtime is restricted to be polynomial-time, this limits the amount of rejection
sampling that it can do, restricting the amount of information encoded in the
ciphertext (the subliminal message) to O(log(λ)). The GSO assumption allows
to conclude the argument: as A1 cannot do (much) better than A′

1, the adversary
can send short subliminal messages in the real experiment too.

Finally, we conclude the proof of the NSWR by showing an algorithm B that
can win the NSWR experiment running A′

2 internally, with almost the same
probability as the adversary A. Recall that in game G2

nsw the sender keys oracle
(i.e., the simulated C(2, (·, (·, sen),m); st), which can be called in both rounds)
returns a uniformly random bit string. This in particular implies that the view
of A′

1 (i.e., A′ at round 1) and A′
2 are independent of the master secret key

msk generated at the beginning of the game. Therefore, a simulator B can win
the NSWR experiment running A′ at round 2 internally by generating a fresh
pp′,msk ′ for the VACE and use them to simulate C(2, ·). As the public parameters
of the scheme only contain λ, M and P, there is no way for A′

2 to distinguish
between the real and simulated experiment, and it holds that

Pr
[
1 ← Exp

G2
nsw

A′,Obf(λ,F , 2)
]

= Pr
[
1 ← Exp

G2
nsw

(A′
1,B),Obf(λ,F , 2)

]
= Pr

[
1 ← Expnsw(A1,B)(λ,P)

]
. (3)

Combining Eqs. (1), (2), and (3) yields the claim. ��
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On the Need of Ciphertext Verifiability. Ciphertext verifiability is crucial for the
previous argument to go through: if one cannot verify that the ciphertext has
been generated by the obfuscated program, a corrupted sender could just set the
ciphertext to be the (subliminal) message it wants to send. So long as the data
structure of the ciphertext fits the specifications, the subliminal channel cannot
be detected. The next lemma (which is a folklore result) shows that our result
is optimal: stricter restrictions on the subliminal channel require sanitization.

Lemma 7.8. Let λ be the security parameter. An encoding scheme
(KG,Enc,Dec) (either symmetric or asymmetric, deterministic or probabilistic)
such that the domain of Enck has dimension at least poly(λ) for every k out-
put by the key generation KG always allows for insecure subliminal channels
with bandwidth O(log(λ)) (in absence of a trusted sanitization step) assuming
the adversary runs in polynomial-time and has oracle access to the encryption
algorithm.

Proof. Consider an encoding (KG,Enc,Dec) that satisfies basic correctness
(reportend in the following for completeness):

Correctness: ∀λ ∈ N, ∀m ∈ M, ∃ε = negl(λ) : Pr(m ′ �= m | (ke, kd) ←
KG(1λ), c ← Enc(ke,m), m ′ ← Dec(kd, c)) ≤ ε.

Then a PPT adversary A1 that has only oracle access to the encryption algorithm
can transmit any subliminal message m̄ such that |m̄| ≤ O(log(λ)) to a PPT
receiver A2 by sending a single valid ciphertext, even in the worst case scenario
in which A2 cannot decrypt the ciphertext, nor it shares state with A1, and
independently of the security guarantees of the encoding scheme.

The attack is very simple. Having oracle access to the encoding algorithm
means that on input m, the oracle returns its encryption under a key fixed at the
beginning of the game (and unknown to A1). The adversary A1 can query the
encryption oracle to obtain q = poly(λ) distinct ciphertexts {ci}i=1,...,q (because
it runs in polynomial-time, and the domain of the encryption algorithm is large
enough for the ciphertexts to be distinct). As they are all distinct, there exists
w.h.p. a ciphertext ci whose (w.l.o.g.) first |m̄| bits are equal to m̄. ��
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Abstract. The current state of the art in watermarked public-key
encryption schemes under standard cryptographic assumptions suggests
that extracting the embedded message requires either linear time in
the number of marked keys or the a-priori knowledge of the marked
key employed in the decoder. We present the first scheme that obvi-
ates these restrictions in the secret-key marking model, i.e., the setting
where extraction is performed using a private extraction key. Our con-
struction offers constant time extraction complexity with constant size
keys and ciphertexts and is secure under standard assumptions, namely
the Decisional Composite Residuosity Assumption [Eurocrypt’99] and
the Decisional Diffie Hellman in prime order subgroups of square higher
order residues.

Keywords: Watermarking · Public-key encryption

1 Introduction

Watermarking is a mechanism used to secure copyrighted material and counter
the unauthorized distribution of digital content. In a high level, a watermarking
scheme embeds a “mark” into a digital object and ensures that (a) the water-
marked object is functionally equivalent to the original object (functionality
preserving), and (b) it is difficult for an adversary to remove the mark without
damaging the object (unremovability).

Recently, there has been an extensive line of research focusing in the special
case of software watermarking with software being modeled as a Boolean circuit
C. A software watermarking schemes consists of two main algorithms: the Mark
algorithm that takes as input a circuit C and optionally a mark τ (for the case
of message embedding watermarking) and outputs ˜C, and an Extract algorithm
that takes as input a circuit C and outputs marked or not alongside with the
mark τ if relevant.
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The first rigorous study and formal definitions of software watermarking
dates back to 2001 when Barak et al. [4,5] explored the relation between soft-
ware watermarking and indistinguishability obfuscation (iO) and provided an
impossibility result. In particular, they showed that if a marked circuit ˜C has
exactly the same functionality as the original, unmarked circuit C, then under
the assumption that iO exists, watermarking is impossible. To overcome this
impossibility result, a first line of work proposed schemes that are secure in
restricted models where the allowed strategies for the unremovability adversary
were limited [25,32]. Later, [14,15] considered a more relaxed, in the statistical
sense, variation of the functionality preserving property and propose a water-
marking scheme for any family of puncturable pseudorandom functions (PRFs).
Following the work of Cohen et al. [15], a long line of work has appeared in the
literature focusing on watermarking PRFs under different models and assump-
tions [8,22,23,28,31]. Beyond watermarking schemes for PRFs, a number of
works have focused on watermarking primitives such as encryption and signa-
tures [3,15,17,24,30]. This entails the topic of the present work.

Watermarking Public Key Primitives. Cohen et al. [14,15], were the first
to consider the notion of watermarking for the case of public-key cryptographic
primitives. In particular, they define the notions of “Watermarkable Public-key
Encryption” and “Watermarkable Signatures” making the important observation
that the marking and key generation algorithms can be fused into one. Such prim-
itives —watermarkable public-key encryption in particular— can be very useful
to the enterprise setting, where multiple users belonging to the same organiza-
tion use personal enterprise keys to access various services, such as a VPN. In
such a setting, an organization may want to embed marks on the cryptographic
algorithms used by employees and ensure that such marks can be extracted given
any functioning decoder of one of the users. Cohen et al. [14,15], proceeded to
describe how watermarkable schemes can be constructed by taking advantage
of the work of Sahai and Waters [29], where public key encryption schemes and
digital signature schemes are constructed based on iO. In the aforementioned
constructions, a decryption or a signing algorithm is essentially an evaluation of
a puncturable PRF. The idea of relying to the work of Sahai and Waters [29]
for constructing watermarkable primitives has subsequently been utilized in [30].
Yang et al. [30] introduce the notion of collusion-resistant watermarking, mean-
ing that an adversary is capable of receiving multiple watermarked copies of the
same initial circuit embedded with different messages. The authors provide a
watermarking scheme for PRFs and based on that and the constructions in [29]
propose constructions for primitives like public key encryption, digital signa-
tures, symmetric-key encryption and message-authentication codes.

The crucial question of whether watermarkable public key primitives can
be constructed from standard assumptions was subsequently addressed by the
works [3,17] and [24] where different watermarking models are considered.
Baldimtsi et al. [3] mainly focus on watermarking existing public key encryption
schemes under minimal hardness assumptions and they achieve this for a more
relaxed watermarking framework where a small public shared state is maintained
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between the marking and extraction algorithms. In their definitions, they follow
a general approach in defining watermarking for public key primitives by distin-
guishing between the notions of watermarking of a given scheme (watermarking
the implementation) versus constructing watermarkable instances of a public key
primitive in the sense of [14,15].

Goyal et al. [17], revisit the notion of watermarkable public key primitives
by considering stronger properties such as public marking, meaning that one can
mark circuits as a public procedure, and collusion-resistance. They provide a con-
struction for watermarkable signatures, as well as watermarkable constructions
for more generalized notions for encryption, such as Attribute-based encryption
(ABE) and Predicate Encryption (PE), by relying on standard assumptions.
Regarding their watermarkable constructions for encryption primitives, even for
the case of public key encryption, although they rely on the LWE assumption,
they require heavy tools like Mixed Functional Encryption [18] and Hierarhical
Functional Encryption [12].

Nishimaki [24] showed how to watermark existing public key cryptographic
primitives under the condition that they have a canonical all-but-one (ABO)
reduction, which is a standard technique usually employed for proving selective
security. Nishimaki presents a general framework which shows how to trans-
form a public key scheme with the above feature to a watermarked public key
primitive by utilizing the simulation algorithms that appear in the proofs as the
watermarked versions of the algorithms. Based on this novel idea, they provide
watermarking constructions for IBE, IPE, ABE which are secure under the same
assumptions as the underlying primitives. We note that a selective secure variant
for watermarking definitions is employed in [24].

One of the key issues in terms of the efficiency of watermarkable primitives
is the complexity of the extraction algorithm, i.e., the steps required to extract
(or detect) the embedded mark from a circuit. Ideally, the process of extraction
should be independent (or at least polylogarithmic) in the number of marked
programs. This is particularly crucial when in the underlying application extrac-
tion is time sensitive. For instance, for the application of tracing unauthorized
distribution of digital content there is often the need to immediately identify
(and potentially revoke) malicious users. Thus, if one assumes that the mark is
some identifiable user information, it is important to be able to extract efficiently.

Unfortunately, all previous approaches that provided constructions under
standard assumptions require a linear running time for this step. The linear
overhead either comes directly, e.g., in [3] where the extraction algorithm has
to re-generate one-by-one all the marked public keys in order to decide whether
a circuit is marked or not, or indirectly by requiring the marked public-key
as separate input to the extraction algorithm (an approach followed by [17,
24]). In the latter case, this is due to the fact that the extraction algorithm
needs to traverse all marked public keys in order to determine whose associated
decryption circuit is being detected (we discuss this in more details in Sect. 1.3).
Relying on non-standard assumptions, such as iO, is the only known approach
so far to allow for efficient extraction [15] without knowledge of the marked
public-key.
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Motivated by the above, in this work, we study the following question:

Can we build efficient watermarkable public key encryption schemes under
standard assumptions where the extraction algorithm is sublinear or even
constant in the number of marked programs, without relying on the knowl-
edge of the key in the given decoder?

We answer this question in the affirmative.

1.1 Our Contribution

We present a concrete watermarkable PKE scheme with the following features:
(1) The running time of the extraction algorithm is independent of the number
of generated marked circuits (decryption circuits in the case of PKE) and does
not require knowledge of the marked key, (2) the ciphertexts, the public and
secret keys have all constant size in all salient parameters exhibiting only a
linear dependency in the security parameter.

Our construction is an El-Gamal like scheme that shares features with Pail-
lier encryption and whose security relies on the Decisional Composite Resid-
uosity DCR assumption [27] as well the DDHSQNR assumption [20]. The latter
assumption is simply the Decisional Diffie Hellman assumption over prime order
subgroups of the group of n-th residues modulo n2, where n is an RSA modulus
as in Paillier encryption. We note that residuosity and discrete-logarithm related
assumptions over modular arithmetic groups have been studied extensively and
are considered standard assumptions compared to more recent cryptographic
assumptions such as those needed to obtain iO. We provide a technical overview
of our construction in Sect. 1.2.

Our scheme is proven secure in the secret-marking model, under the defini-
tional framework of [3,15] where there exists a single marking algorithm respon-
sible for both key-generation of the public-key encryption scheme and marking
at the same time (i.e., a mark is embedded into a circuit when generating public
and secret encryption keys). We provide a more detailed discussion of our model
and how it compares to related work in Sect. 1.3.

1.2 Technical Overview of Our Construction

Our main goal is to construct a watermarkable PKE scheme with an extraction
algorithm that is independent of the number of previously marked decryption
circuits. In a typical watermarked PKE scheme, the marked object is a decryp-
tion circuit C. As noted above, in all previous works in order to detect whether
C is marked or not, the extraction algorithm had to either re-generate and test
all marked public keys [3] or require the marked public-key as separate input to
the extraction algorithm [17,24]).

To avoid this linear dependency to the number of public keys, we need to
take a very different extraction approach. Our starting point is a PKE with the
following property: it should be possible to generate a probability distribution
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in the ciphertext space in a manner independent of the public-key. At the same
time, when such ciphertexts are sampled and given as input to a decryption
circuit C, it should be possible to extract information about the decryption key
hidden inside the decoder. Assume for example that by giving such a ciphertext
as input to C, one can reconstruct a public key indicating that the corresponding
secret key was used to decrypt the ciphertext. However, deciding whether C is
marked or not would still require to check whether the reconstructed public key
is one of the keys that had been previously marked by the marking service. Thus,
we additionally require the PKE to allow the embedding of some authenticated
information as part of the secret and public keys, which can only be recovered
by using the private extraction key.

Consider the El-Gamal PKE scheme with public parameters (G, q, g) where
G is a cyclic group of prime order q and g is a generator of that group. Assume
a public-secret key pair (gx, x) where x

$← Zq. An encrypted plaintext m is of

the form (gr, grx · m), where r
$← Zq, is indistinguishable from a random pair

(gr, gr′
), where r, r′ $← Zq. If (gr, gr′

) is fed to a decryption algorithm under
the secret key sk = x the result would be Dec(x, ((gr, gr′

)) = gr′−rx. Given
we have chosen r, r′, it is possible to apply a simple calculation over gr′−rx to
extract the public key gx. Therefore, assuming a circuit C as black-box, if one
runs it on input the pair (gr, gr′

) and then performs the computation described
above, one can deduce the public key (if the circuit indeed uses a single public
key). With respect to our objective however this approach is still too weak: since
we bound the extraction algorithm to be independent of the number of marked
circuits, having recovered the public-key cannot help us detect whether the key
was indeed marked or not. Here comes our second technical observation: we can
take advantage of the partial discrete logarithm trapdoor of Paillier’s encryption
scheme to turn the public-key of a marked scheme to something that the marking
algorithm can “decrypt” and identify some internal property of it to assist the
extraction algorithm.

To accomplish this plan, the first cryptographic design challenge is to create
this hybrid encryption scheme, that behaves like ElGamal from the perspective
of the user, while its public-key is akin to ciphertext for a Paillier-like encryp-
tion whose secret-key is used during the extraction process. This means that the
ElGamal variant has to operate within Z

∗
n2 and specifically within a suitable

order subgroup 〈g1〉 where DDH is expected to hold, while the public-key will
belong to a suitable coset 〈g1〉 · (1 + n)v with v containing the salient features
the extraction algorithm can recover via Paillier decryption. The second design
challenge, is that the extraction algorithm needs to check the integrity of the
recovered public-key; this is done by incorporating into v a message authentica-
tion code (actually a PRF) that tags the ElGamal component of the public-key.
The third design challenge is to be able to embed robustly an arbitrary mark
within the public-key without disturbing the functional properties of the public-
key itself. To achieve that we utilize an authenticated symmetric encryption that
extends the value v with a ciphertext that contains the mark.
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The final challenge is to ensure that decryption from the user side works
similarly to ElGamal and all the attributes that were inserted by the above
requirements into the public-key do not disturb the decryption operation of the
PKE.

1.3 Relations to Prior Work

In the first part of the introduction we covered related work in watermarkable
cryptographic primitives as well as watermarking in general. In this section we
provide a more extensive discussion on how our work differs from related work
in terms of definitional model, security properties and efficiency. We focus our
attention on related work for watermarkable public key primitives. Finally, we
also discuss the relation to traitor tracing.

Definitional Model. In this work, we adopt a model that is based on the defini-
tional framework proposed by Cohen et al. [15]. Namely, we define a watermark-
able PKE scheme where the Mark algorithm is responsible for both generating
a key pair instance (pk, sk) for the encryption scheme, as well as marking it at
the same time.

Other works [17,24,30] impose a stronger requirement where the key gen-
eration and marking algorithms are decoupled: (unmarked) keys can be inde-
pendently generated and, subsequently, marked. For completeness, we point out
some differences between the models considered in the aforementioned works.
First of all, in contrast to all other works, the model of Goyal et al. [17] con-
siders both public marking and public extraction. These properties are satisfied
by the watermarkable predicate encryption scheme presented in the same paper.
The model of [24] considers secret marking and secret extraction while [30] con-
siders public extraction and secret marking.

We note that the model of coupling key generation and marking is natu-
ral in certain applications (i.e. watermarking a VPN client). Most importantly
though, coupling key generation and marking does not trivialize the problem:
If one considered a trivial watermarking scheme where the marking authority
simply associates every secret key with the identity of the owner, it will have to
store one associated key with each identity. This is completely inefficient, since
it results in a stateful watermarkable encryption scheme with both linear state
and linear extraction time.

Security Properties. We require watermarkable PKE schemes to preserve IND-
CPA security and also support unremovability and unforgeability. In our unre-
movability definition we consider adversaries that have access to Challenge, Cor-
rupt and Extract oracles. This is a stronger definition than the one considered in
[15]. An important point when defining unremovability is in respect to when we
consider that the adversary successfully removed the mark. Cohen et al. required
the adversarial circuit to agree with a decryption circuit on a fraction of inputs.
However, as pointed in [17], this can lead to trivial attacks. We follow the defi-
nitional approach of [17] who in order to address this issue, they require that an
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adversary should output a “useful” circuit which is at the same time unmarked
(or marked with a different than the original message). We capture the notion
of “useful” by defining closeness and farness relations to capture the adversary’s
ability to create circuits that are close or far to marked ones.

Since we focus on the secret-marking setting we also consider unforgeabil-
ity which guarantees that an adversary cannot create a marked circuit with
sufficiently different functionality from that of given marked circuits without
access to a marking key. Similar to unremovability, we define unforgeability for
adversaries that have access to Challenge, Corrupt and Extract oracles. The
constructions of [14] do not support unforgeability. The more recent work of [24]
describes a possible direction to achieve unforgeability. Unforgeability does not
make sense as a property in the public marking setting of [17].

In addition, [17,30] consider the notion of collusion-resistance, or else
“Collusion-resistance w.r.t. watermarking” (as coined in [24]). A watermark-
ing scheme is collusion-resistant w.r.t. watermarking if it is unremovable even if
adversaries are given many watermarked keys for the same original key. We note
that the collusion-resistance property cannot be inherently considered in our
model since the user does not choose the initial key and request marked versions
embedded with different messages. Also, as noted in [24], this property is not
crucial for classic applications of watermarking such as ownership identification.

Efficiency. In this paragraph, we present several efficiency parameters of pre-
vious watermarkable public key encryption schemes, in particular [24] and [17],
and provide a comparison with the construction presented in this work. Starting
with [17], a watermarkable predicate encryption scheme can be instantiated from
hierarchical functional encryption scheme, which, in turn, according to [1] can
be constructed from any PKE scheme. In such a construction, the size of cipher-
texts is linear in the number of colluding users. In [24], the efficiency parameters
of the initial public key encryption scheme are almost preserved. Specifically,
the ciphertext size does not change, while the public and secret keys have also a
linear dependence on the size of the embedded message and the security param-
eter. Regarding the complexity of the extraction algorithm, in both [17,24] we
note that the master public key (which is the public key of a user in the case of
Watermarkable PKE) is part of the input of the extraction algorithm. This is
particularly limiting in applications where one might detect the use of marked
circuit in the wild (i.e. a stolen decryption circuit). Excluding the public key
from the input of the Extract algorithm, as in our model, implies that Extract
would have to search over all the public keys generated so far. The construction
presented in this work (cf. Sect. 4) achieves constant size ciphertexts, constant
size public-secret keys and the extraction time is independent of the number of
generated marked keys.

Relation to Traitor-Tracing. Watermarkable PKE is also related to the notion
of traitor tracing, which was put forth by Chor et al. [13] and studied exten-
sively (see e.g. [9–11,16,21] and references therein). Briefly speaking, in traitor
tracing, an authority delivers keys to a set of users and encrypts content which
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is intended to be decrypted by all users, or a subset of them in cases where an
authority is capable of revoking decryption keys (i.e. trace and revoke schemes).
In the occasion where a number of users collude by constructing an even partially
working implementation of the decryption function, the authority can identify
at least one of the colluding users.

Previous works [17,24,30], point to the relation between traitor tracing and
watermarkable encryption. In particular, Goyal et al. [17] present a generic con-
struction which shows how to obtain a watermarkable PKE scheme (in the sense
of Cohen et al. definition [15]) from a traitor tracing scheme with embedded iden-
tities and a regular public-key encryption. We note that a traitor tracing scheme
with embedded identities (cf. [19,26]) is an extension of the standard traitor
tracing where not only the index of a colluding user is traced, but a whole string
is extracted, i.e. the identity. Based on this, [17] argue that “in the particular
case where we allow a single algorithm that both generates the public/secret
keys together with the watermark” the notion of watermarkable PKE would be
entirely subsumed by traitor tracing. While valid, this observation sidesteps the
serious disadvantage that the generic construction blows up the complexity of
the watermarkable PKE to be at least as much as underlying traitor tracing. As
a result, the state of the art in traitor tracing cannot yield efficient watermark-
able PKE under standard assumptions, to the best of our knowledge (even the
most efficient construction in terms of keys and ciphertexts from [19], which is
provable under LWE, will require an extraction algorithm linear in the number
of users). Moreover, watermarking seems a simpler primitive than traitor tracing
since in the latter, users should share the decryption functionality and apply it
to the same ciphertext, while in watermarking users’ functionalities are entirely
decoupled. In our view, this is the key issue in the design of watermarking PKE
schemes and we demonstrate that we can obtain constructions where the size of
ciphertexts, the size of keys, as well as the extraction complexity is independent
of the number of users.

2 Preliminaries

Notation. By λ we denote the security parameter and by negl(λ) we denote a
negligible function in λ. By x||y, we denote the concatenation of the bitstrings

x, y. By x
$← S we denote that x is sampled uniformly at random from S. By

poly(λ) we denote a polynomial in λ. In addition, we write D1
c≈ D2 to denote

that the distributions D1, D2 are computationally indistinguishable.

Assumptions. We first introduce the assumptions which will be necessary for
proving the properties of our watermarkable PKE scheme.

Definition 1 (DCR assumption [27]). No PPT adversary can distinguish
between: (i) tuples of the form (n, un mod n2), where n is a composite RSA

modulus and u
$← Z

∗
n2 and (ii) tuples on the form (n, v), where v

$← Z
∗
n2 .



252 F. Baldimtsi et al.

Definition 2 (DDH for square n-th residues [20]). Let n be a composite
RSA modulus, i.e. n = pq, where p = 2p′+1, q = 2q′+1 and p′, q′ are also primes.
By Xn2 we denote the subgroup of Zn2 that contains all square n-th residues. The
Decisional Diffie Hellman assumption for square n-th residues (DDHSQNR) is

defined as follows: The distribution 〈n, g1, y, gr
1, y

r〉, where g1 generates Xn2 , y
$←

Xn2 and r
$← [p′q′], is computationally indistinguishable from the distribution

〈n, g1, y, gr
1, y

r′〉, where g1, y, r defined as above and r′ $← [p′q′].

In our construction we use a seemingly stronger variant of the above assump-
tion where the factorization of n is also provided as part of the tuples. While this
appears to provide more power to the adversary, it is straightforward to see that
it reduces, via the Chinese remainder theorem, to the two DDH assumptions
for the underlying subgroups 〈gq′

1 〉 and 〈gp′
1 〉 of prime order p′, q′ respectively.1

For simplicity and due to its relation to the DDH assumptions in the underlying
groups, we will use the same notation DDHSQNR to denote this variant.

Cryptographic Primitives. For completeness we recall the definitions of some
cryptographic primitives to be used below.

Definition 3 (Pseudorandom function). Let F : K × X → Y be a keyed
function with key space K, input space X and output space Y. We say that F is
a pseudorandom function (PRF) if for any PPT distinguisher D it holds that

∣

∣

∣Pr
k

$←K[DF (k,·)(1n) = 1] − Pr
f

$←F [Df(·)(1n) = 1]
∣

∣

∣ ≤ negl(λ),

where F is the set of all functions with input space X and output space Y and
X = {0, 1}n.

We consider an authenticated symmetric encryption scheme that satisfies the
notion of integrity of ciphertexts as defined in [7], i.e. an adversary that only has
access to a signing oracle, cannot produce any fresh valid ciphertext.

Definition 4. A symmetric encryption scheme (S.Gen,S.Enc,S.Dec) satisfies
integrity of ciphertexts if for any PPT adversary A it holds that

Pr[G int−ctxt
A (1λ) = 1] = negl(λ).

1 To see this, consider A DDH challenge for the two underlying groups 〈gq′
1 , yl, Gl, Yl〉

〈gp′
1 , yr, Gr, Yr〉, we can combine them to 〈g1, yl · yr, Gl · Gr, Y

q′
l · Y p′

r 〉. Observe that

if the challenge pair is DDH distributed then Gl · Gr = g
q′rl+p′rr
1 and Y q′

l · Y p′
r =

yq′rl
l yp′rr

r = g
(q′)2tlrl+(p′)2trrr
1 . Now observe that (q′tl + p′tr)(q′rl + p′rr) = (q′)2tlrl +

(p′)2trrr mod p′q′. Given that yl · yr = gq′tl+p′tr
1 , this establishes that the combined

challenge is DDH distributed. For the other case, when the challenge pair follows

the random distribution, then Y q′
l · Y p′

r = y
q′r′

l
l y

p′r′
r

r = g
(q′)2tlr′

l +(p′)2trr′
r

1 that can
be easily seen to be uniformly distributed over Xn2 and as a result the combined
challenge is randomly distributed.
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Fig. 1. The integrity of ciphertexts game.

Next, we state the definition of real-or-random CPA security for symmetric
encryption [6]. In a high level, an adversary should not be able to distinguish a
ciphertext from a random string from the ciphertext space (Fig. 1).

Definition 5. A symmetric encryption scheme (S.Gen,S.Enc,S.Dec) with plain-
text space {0, 1}ν and ciphertext space {0, 1}μ satisfies real-or-random security
against chosen plaintext attacks if for any PPT adversary A (Fig. 2),

Pr[Gror−cpa
A (1λ) = 1] = negl(λ).

Fig. 2. Real or Random CPA Security.

3 Watermarkable Public Key Encryption

We start by introducing the definition for a watermarkable public-key encryp-
tion scheme. Our definition follows the framework of [3,15] by considering a
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single algorithm, PKE.Mark responsible for both key-generation of the public-
key encryption scheme and marking at the same time (i.e., a mark is embedded
into a circuit when generating public and secret encryption keys).

Definition 6 (Watermarkable PKE). A watermarkable public key encryp-
tion scheme with message space M, tag space T and ciphertext space CT is
a tuple of algorithms (WM.Gen,PKE.Mark,Enc, Dec,Extract) with the following
syntax:

– WM.Gen(1λ) → (params,mk, xk): On input the security parameter λ, it out-
puts the public parameters params, a marking key mk, and an extraction
key xk. The marking key is private and it is kept by an authority, while
the extraction key may be either public or private depending on whether the
scheme allows public or private extraction.

– PKE.Mark(params,mk, τ) → (pk, sk): On input the marking key mk,
params, and a tag τ ∈ T , it outputs a public-secret key pair (pk, sk).

– Enc(pk,m) → c: On input a public key pk and a plaintext m ∈ M, it outputs
a ciphertext c.

– Dec(sk, c) → m: On input a secret key sk and ciphertext c, it outputs a
plaintext m.

– Extract(params, xk,C) → τ/⊥: On input xk, params and a circuit C which
maps CT to M, it outputs a tag τ ′ ∈ T or returns a special symbol ⊥,
indicating that the circuit is unmarked.

Remark 1. We say that a watermarkable PKE scheme supports public marking
if the marking key is equal to the public watermarking parameters are params =
mk. Otherwise we say that it only supports private marking. Similarly, we say
that a scheme supports public extraction if params = xk and private extraction
otherwise. In this work we focus in the private setting.

We now define correctness. In the definitions below, Decsk denotes a decryption
circuit with secret key sk embedded.

Definition 7 (Extraction correctness). We say that a watermarkable PKE
scheme satisfies extraction correctness if for any tag τ ∈ T , it holds that:

Pr

[

Extract(xk,Decsk) 
= τ (params,mk, xk) ← WM.Gen(1λ)
(pk, sk) ← PKE.Mark(params,mk, τ)

]

= negl(λ),

A watermarkable PKE scheme should be functionality-preserving, i.e. maintain
encryption correctness and IND-CPA security. We first define encryption cor-
rectness:
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Definition 8 (Encryption Correctness). We say that a watermarkable PKE
scheme satisfies encryption correctness if for any tag τ ∈ T and any plaintext
m ∈ M, it holds that:

Pr

⎡

⎣

(params,mk, xk) ← WM.Gen(1λ);
Dec(sk, c) 
= m (pk, sk) ← PKE.Mark(params,mk, τ);

c ← Enc(pk,m)

⎤

⎦ = negl(λ)

We now define IND-CPA security for watermarked PKE. We require that IND-
CPA should hold even if the adversary gets to see the marking and extraction
keys mk, xk.

Definition 9 (IND-CPA security). We say that a watermarkable PKE
scheme satisfies IND-CPA security if for any tag τ ∈ T and for any PPT adver-
sary A,

Pr

⎡

⎢

⎢

⎣

(params,mk, xk) ← WM.Gen(1λ);
(pk, sk) ← PKE.Mark(params,mk, τ);

A(cb) = b (m0,m1) ← A(1λ, params,mk, xk, pk);

b
$← {0, 1}; cb ← Enc(pk,mb);

⎤

⎥

⎥

⎦

=
1
2

+ negl(λ)

Before defining unremovability and unforgeability, we first define a number
of oracles, namely the Challenge, Corrupt and Extract oracles, which are crucial
part of the definitions of the security games of unremovability and unforgeability.

The Challenge, Corrupt and Extract Oracles. The Challenge oracle, on
input a tag τ calls the PKE.Mark algorithm and returns only the (marked) public
key as output, along with an index i which shows how many times PKE.Mark
has been invoked so far. We note that in the definitions of unremovability and
unforgeability security games the index i will be initialized to 0. The Corrupt
oracle, receives an index i as input and outputs the key pair (pki, ski) gener-
ated in the i-th Challenge oracle query by the PKE.Mark algorithm. Finally,
the Extract oracle, receives as input a circuit, simply runs Extract algorithm on
that input and returns the corresponding output of the algorithm. The formal
description of the oracles is given below in Fig. 3.

Furthemore, we define the notions of closeness and farness (cf. Defini-
tions 10, 11) which are crucial for correctly capturing the unremovability and
unforgeability notions respectively since those notions capture the notion of “use-
ful” circuits as discussed in Sect. 1.3. Specifically, in the simpler case of water-
marking where circuits are either marked or unmarked, when defining unremov-
ability we have to make sure that an adversary cannot create a circuit which
is “close” to a marked circuit but it is unmarked, while, unforgeability requires
that it should be difficult for an adversary to come up with a circuit which is
“far” from a marked circuit but it remains marked.

Definition 10. We say that a circuit C is ρ-close to a circuit Decsk, and we
denote C ∼ρ Decsk, if Pr

m
$←M[C(Encpk(m)) = m] ≥ ρ.
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Fig. 3. The Challenge, Corrupt and Extract oracles.

Definition 11. We say that a circuit C is γ-far from a circuit Decsk, and we
denote C �γ Decsk, if Pr

m
$←M[C(Encpk(m)) 
= m] ≥ γ.

We now proceed by defining ρ-unremovability. In plain words, an adversary
should not be able to create a circuit which is ρ-close to a marked circuit gen-
erated by the Challenge oracle and at the same time the extraction algorithm
returns a different tag or unmarked. As discussed in Sect. 1.3, our unremovability
definition is stronger than that of [15] as it gives oracle access to the adversary.

Definition 12 (ρ-unremovability). We say that a watermarking scheme sat-
isfies ρ-unremovability if for any PPT adversary A participating in the game
defined in Fig. 4 it holds that:

Pr[Gunrmv
ρ,A (1λ) = 1] = negl(λ).

Fig. 4. The ρ-unremovability game.
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Finally, we consider the notion of γ-unforgeability. At a high level, this prop-
erty requires that an adversary cannot create a marked circuit that is γ-far with
respect to any of the given marked circuits and at the same is marked.

Definition 13 (γ-unforgeability). We say that a watermarking scheme sat-
isfies γ-unforgeability if for any PPT adversary A participating in the game
defined in Fig. 5, it holds that:

Pr[Gunforge
γ,A (1λ) = 1] = negl(λ).

Fig. 5. The γ-unforgeability game.

4 Our Watermarkable PKE Scheme

As discussed in the introduction, our construction is based on a hybrid encryp-
tion scheme for which the public-key has a similar structure to a Pailler cipher-
text, while the rest of the scheme (from the point of view of the user) behaves
like an ElGamal encryption scheme. We exploit the structure of Z

∗
n2 , where

n = pq and p, q are primes. In our construction, p, q are safe primes, meaning
that they are of the form p = 2p′+1, q = 2q′+1 where p′, q′ are also primes. Wen
also require a pseudorandom function F , an authenticated symmetric encryption
scheme (S.Gen,S.Enc,S.Dec), and a collision resistant hash function H.

The tuple of (WM.Gen,PKE.Mark,Enc,Dec,Extract) algorithms that com-
prise our waterkable PKE scheme is presented below.

WM.Gen : On input 1λ,

– Run Param(1λ): Choose safe primes p = 2p′ +1 and q = 2q′ +1, where p, q are

of size at least λ/2� + 1. Sample g
$← Z

∗
n2 and compute g1 = g2n mod n2.

Return params = (n, g1).
We denote as Xn2 = 〈g1〉, the subgroup that contains all square n-th residues
modulo n2. Observe that the order of Xn2 is p′q′. Note that all elements in



258 F. Baldimtsi et al.

Zn2 can be written in a unique way as gr
1(1 + n)v(−1)α(p2p − q2q)β , where

r ∈ [p′q′], v ∈ [n], α, β ∈ {0, 1} and p1p
2 ≡ 1 mod q2 and q2q

2 ≡ 1 mod p2.
With Qn2 we denote the subgroup of quadratic residues modulo n2 which can
be seen that they contain all elements of the form gr

1(1+n)v, where r ∈ [p′q′]
and v ∈ Zn. The order of Qn2 is np′q′, one fourth of the order of Z

∗
n2 . Recall

that the order of Z
∗
n2 is nφ(n) = 4p′q′n.

– Let F : K × Y → {0, 1}λ/2 be a PRF and a key kp
$← K.

– Let (S.Gen,S.Enc,S.Dec) be an authenticated symmetric encryption scheme
with security parameter κ1 and message space T = {0, 1}κ2 and ciphertext
space {0, 1}λ/2. Run ke ← S.Gen(1κ1).

– Let H : {0, 1}∗ → {0, 1}κ3 be a hash function.
– Set the marking key as mk = (kp, ke), the extraction key as xk = (kp, ke, p′, q′)

and the public parameters params = (n, g1).
– Choose δ ≥ 1/poly(λ).

We assume that the parameters κ1, κ2, κ3 and λ are compatible.

PKE.Mark : On input mk = (kp, ke), and a tag τ ∈ T ,

– Choose x
$← [n/4].

– Compute gx
1 mod n2 and v1 = F (kp, (gx

1 , τ)).
– Compute v2 = S.Enc(ke,H(v1)||τ).
– Concatenate v1 and v2, i.e. compute v = v1||v2. Compute h = gx

1 (1 + n)v.
– Return pk = h = gx

1 (1 + n)v, sk = (x, v).

Enc : On input m ∈ M and pk = (n, g1, h), choose r
$← [n2/4] and compute a

ciphertext ψ = 〈gr
1 mod n2, (1 + n)r mod n2, hr · m mod n2〉.

Dec : On input ψ = 〈a, b, c〉 and sk = (x, v), compute m̂ = (axbv)−1c.

Extract: On input xk = (kp, ke, p′, q′) and a (decryption) circuit C,

(D1). Count ← [ ]
(D2). Set � = λ

δ2 and �∗ = λ
2δ2 .

(D3). For i = 1 to �:

(a) Choose r
$← [n/4], r′ $← [n/4], s, s′ $← Zn.

Compute ψi = 〈gr
1, (1 + n)s, gr′

1 (1 + n)s′〉.
(b) Run the algorithm Gext of Fig. 6 with inputs C and ψi.
(c) If Gext(C,ψi) returns

(

(yi, τi), vi,1

)

– if there is record
(

(yi, τi), vi,1, counti
)

in Count, set counti ← counti +
1. If no such record exists initialize counti = 1 and insert to the table
Count a record

(

(yi, τi), vi,1, counti
)

.
(D4). If there is a record

(

(yi, τi), vi,1, counti
)

in Count s.t. counti ≥ �∗ then
return τi, else, return unmarked.



Watermarkable Public Key Encryption with Efficient Extraction 259

Fig. 6. The Gext algorithm.

5 Security Analysis

In this section, we prove that the scheme (WM.Gen,PKE.Mark,Enc,Dec,Extract)
presented in Sect. 4 is a watermarkable PKE scheme according to the model
presented in Sect. 3.

Theorem 1. The scheme (WM.Gen,PKE.Mark,Enc,Dec,Extract) of Sect. 4 is a
watermarkable PKE scheme assuming (1) that the DCR assumption holds, (2)
the DDHSQNR assumption holds, (3) F is a PRF, (4) (S.Gen,S.Enc,S.Dec) is
an authenticated encryption scheme that additionally satisfies indistinguishabil-
ity between real and random ciphertexts and the hash function H is collision
resistant.

Proving Theorem 1 requires to prove that the properties defined in Sect. 3
are satisfied. We start in Subsect. 5.1 by proving that the watermarkable PKE
scheme satisfies encryption correctness and IND-CPA security. Then, we pro-
ceed in Sects. 5.2 by proving extraction correctness property, and finally, in
Sect. 5.3 we prove that ρ-unremovability and γ-unforgeability properties are sat-
isfied, where ρ ≥ 1/2 + 1/poly(λ) and γ ≤ 1/2 − 1/poly(λ). Regarding the ρ-
unremovability notion, we note that the lower bound of Cohen et al. [15] applies
to our message-embedding construction. In particular, Cohen et al. [15] showed
that message-embedding watermarking schemes satisfy ρ-unremovability only if
ρ ≥ 1/2 + 1/poly(λ).

Before proceeding to the detailed proofs, we present the following well-known
propositions which will be required for our analysis, i.e. Propositions 1, 2.

Proposition 1. Let Xn2 = 〈g1〉, the subgroup that contains all square n-th
residues modulo n2, with order p′q′. Let D1,D2 the following distributions.
D1 : (n, gr

1) where r ← [p′q′], D2 : (n, gr
1), where r ← [n/4]. D1,D2 are sta-

tistically indistinguishable.
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Proposition 2. Let Xn2 = 〈g1〉, the subgroup that contains all square n-th
residues modulo n2, with order p′q′. Let D3,D4 the following distributions.
D3 : (n, gr

1) where r ← [np′q′], D4 : (n, gr
1), where r ← [n2/4]. D3,D4 are

statistically indistinguishable.

5.1 Encryption Correctness and IND-CPA Security

Lemma 1 (Encryption Correctness). The Watermarkable PKE scheme
presented in Sect. 4 satisfies the encryption correctness property.

Proof. We prove that for any m ∈ Xn2 , and any (pk, sk) generated by the
PKE.Mark algorithm, it holds that Dec(sk,Enc(pk,m)) = m. It can be easily
seen that (grx

1 (1 + n)rv)−1grx
1 (1 + n)rvm = m. ��

Lemma 2 (IND-CPA security). The Watermarkable PKE scheme of Sect. 4
is IND-CPA secure under the DDHSQNR assumption.

Proof. We will prove this lemma by defining a sequence of games. By G0 we
denote the IND-CPA security game for the watermarkable PKE scheme.

GameG0: On input 1λ,

1. (n, g1) ← Param(1λ); kp
$← K; ke

$← S.Gen(1κ1);mk = (kp, ke);xk =
(p′, q′, kp, ke);

2. x
$← [n/4] ; v1 = F (kp, (gx

1 , τ)); v2 = S.Enc(ke,H(v1)||τ);v = v1||v2; h =
gx
1 (1 + n)v; pk = (n, g1, h); sk = (x, v);

3. (m0,m1) ← A(pk,mk, xk);
4. b

$← {0, 1}; r
$←

[

n2/4
]

; c = 〈gr
1, (1 + n)r, hr · mb〉;

5. b∗ ← A(c);

In the game G0, c = 〈gr
1, (1 + n)r, grx

1 (1 + n)rv · mb〉.
GameG1: G1 is the same as G0, except the following: At Step 4 of the game,

the Challenger samples r1
$← [n/4], s1

$← [n] and computes c = 〈gr1
1 , (1 +

n)s1 , gr1x
1 (1 + n)s1vmb〉.

GameG2: The game G2 is the same as G1 except the following: At Step 4 of game

G2, the Challenger chooses r∗ $← [n/4] and computes c = 〈gr1
1 , (1 + n)s1 , gr∗

1 (1 +
n)s1v〉.

We include the analysis in the full version of our paper [2].

5.2 Extraction Correctness

Lemma 3 (Extraction correctness). The Watermarkable PKE scheme of
Sect. 4 satisfies extraction correctness, under the following assumptions: (1) cor-
rectness is satisfied (cf. Lemma 1), (2) F is a pseudorandom function and (3)
the symmetric encryption scheme (S.Gen,S.Enc,S.Dec) is correct.
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Proof. Consider a pair (pk, sk) ← PKE.Mark(params,mk, τ), where sk = (x, v)
with v = v1||v2 s.t. v1 = F (kp, (gx

1 , τ)) and pk = (n, g1, h) with h = gx
1 (1 + n)v.

We will prove that if Extract receives as input Decsk, it always returns τ . Let ψi =
〈gr

1, (1 + n)s, gr′
1 (1 + n)s′〉 be a ciphertext generated as described at Step (D3)a

of the Extract algorithm. Following the steps 1–8 of the Gext algorithm of Fig. 6,
we prove that Extract on input Decsk and ψi returns ((gx

1 , τ), v1).

Step 1: Decsk(ψi) = gr′−xr
1 (1+n)s′−sv. Since m̂i = gr′−xr

1 (1+n)s′−sv ∈ Qn2 ,

we compute ĉ = m̂
φ(n)
i = g

φ(n)(r′−xr)
1 (1 + n)φ(n)(s′−sv) = (1 + n)φ(n)(s′−sv) =

1 + n[φ(n)(s′ − sv) mod n].
Step 2: ẑ = ĉ−1

n = φ(n)(s′ − sv) mod n.
Step 3: z = φ(n)−1ẑ mod n = φ(n)−1φ(n)(s′ − sv) = (s′ − sv) mod n.
Step 4: −s−1(z − s′) mod n = −s−1(s′ − sv − s′) mod n = v.

Step 5: f = g−nr′
1 m̂n

i mod n2 = g−nr′
1 g

n(r′−xr)
1 (1 + n)n(s′−sv) =

g−nr′
1 g

n(r′−xr)
1 = g−nxr

1 .
Step 6:

(

f [n−1 mod p′q′][r−1 mod p′q′]
)−1 mod n2 =

(

g
−nxr[n−1 mod p′q′][r−1 mod p′q′]
1

)−1 = gx
1 .

Step 7: Split the bit representation of v into two parts of λ/2 bits each, i.e.
v = v1||v2. Due to the correctness property of the symmetric encryption
scheme, it holds that H(v1)||τ ← S.Dec(ke, v2).
Step 8: It holds that v1 = F (kp, (gx

1 , τ)) and therefore Gext returns
((gx

1 , τ), v1).

Since Gext returns ((gx
1 , τ), v1) for any of the ciphertexts ψ1, . . . , ψ�, which are

generated by Extract at Step (D3)a , then Extract returns the message τ .

5.3 Proving Unremovability and Unforgeability Properties

As it will become clear in the proofs of unremovability and unforgeability prop-
erties in this section, it is crucial that our watermarkable PKE scheme satisfies a
property called ciphertext indistinguishability. At a high-level, no PPT adversary
should be able to distinguish between the ciphertexts constructed as described
at Step (D3)a of the Extract algorithm and standard encrypted plaintexts, under
any public key pk. For the simplicity, we will refer to the ciphertexts computed
at Step (D3)a as “extraction ciphertexts”. We intuitively explain why this prop-
erty is essential in proving unremovability and unforgeability by presenting below
some simple scenarios where it is assumed that a potential attacker could dis-
tinguish between standard ciphertexts and extraction ciphertexts. The examples
below refer to the simpler case of watermarking where circuits are either marked
or unmarked.

– Assume an attacker A against the ρ-unremovability game which has obtained
a pair (pki, ski) by issuing a CorruptOracle query. If A could distinguish
“extraction ciphertexts” from valid ciphertexts under pki, then it could con-
struct a circuit C∗ which runs Decski

when receving as input an encrypted
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plaintext under the key pki and returns ⊥ when receiving as input a “extrac-
tion ciphertext”. Therefore, A wins the ρ-unremovability game since C∗ is
“close” (specifically 1-close) to Decski

and Extract on input C∗ returns ⊥, i.e.
unmarked.

– Assume an attacker A′ against the γ-unforgeability game which has obtained
a pair (pki, ski) through a query to the CorruptOracle. If A′ could distinguish
“extraction ciphertexts” from valid ciphertexts under pki, then it could con-
struct a circuit C∗ which returns ⊥ when receiving as input a valid ciphertext
under pki and runs Decski

when receiving as input a “extraction ciphertext”.
In that case, A′ the attacker managed to break γ-unforgeability since C∗

which is “far” (specifically 1-far) from Decski
but Extract would decide that

C∗ is marked the decryption circuit under the key sk which is at the same
time marked.

Before proving unremovability and unforgeability, we present some interme-
diate lemmas which will be necessary in our proofs. First, we show that for any
public key pk, even if the adversary is given the corresponding secret key sk,
the adversary is not able to distinguish between ciphertexts encrypted under pk
from ciphertexts prepared under Extract algorithm.

Lemma 4. Let τ ∈ T and pk = (n, g1, h), sk = (x, v) returned by PKE.Mark

(mk, τ), where x
$← [n/4], v = v1||v2, v1 = F (K, (gx

1 , τ)), v2 = S.Enc(ke,H(v1)|
|τ) and h = gx

1 (1 + n)v. Assuming that the DCR assumption holds, F is a
PRF and the symmetric encryption scheme (S.Gen,S.Enc,Dec) satisfies real-or-
random security against chosen plaintext attacks (cf. Definition 5), it holds that

〈n, g1, x, v, gr
1, (1+n)r, gxr

1 (1+n)rv ·m〉 c≈ 〈n, g1, x, v, gr1
1 , (1+n)s1 , gr2

1 (1+n)s2〉,

where r
$← [n2/4], r1, r2, x

$← [n/4], s1, s2
$← Zn and m

$← Xn2 .

The proof of the above is included in the full version of our paper [2].
Next, we proceed with the proof of Lemma 5, which shows that if Gext on

input dk, C∗ and “extraction ciphertext” ψ, at Step 4 outputs a value v ∈ Zn

and at Step 6 it outputs y = gx
1 mod n2, then this implies that C∗ has run

Decsk(ψ), where sk = (x, v).

Lemma 5. Let ψ = 〈gr
1, (1 + n)s, gr′

1 (1 + n)s′〉 where r
$← [n/4], r′ $← [n/4],

s, s′ $← Zn and let C∗ be a circuit which on input ψ returns m̂ s.t. (1) Gext at
Step 4 outputs v, and (2) Gext and Step 6 outputs gx. Then, m̂ = gr′−xr

1 (1 +
n)s′−sv mod n2.

The proof of the above Lemma is included in in the full version of our paper [2].

Testing Closeness Between Circuits. Below, we include standard bounds which
are utilized for testing closeness and farness between circuits.
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Proposition 3. Let δ ≥ 1
poly(λ) , ρ > 1

2 + δ and γ ≤ 1
2 − δ (Fig. 7).

Fig. 7. Test algorithm.

– For any δ ≥ 1/poly(λ), if C∗ ∼ρ Decsk, then Pr[cnt < λ
2δ2 ] = negl(λ).

– For any δ ≥ 1/poly(λ), if C∗
�γ Decsk, then Pr[cnt < λ

2δ2 ] = 1 − negl(λ).

Proposition 3 holds by Chernoff bounds.

Lemma 6 (ρ-Unremovability). The watermarkable PKE scheme (WM.Gen,
PKE.Mark,Enc,Dec,Extract) satisfies ρ-Unremovability under the following
assumptions: (1) correctness property is satisfied (cf. Lemma 1), (2) F is a pseu-
dorandom function and (3) ciphertext indisinguishability holds (cf. Lemma 4),
(4) the symmetric encryption scheme (S.Gen,S.Enc,S.Dec) satisfied integrity of
ciphertexts and (5) the hash function H is collision resistant.

Proof Idea. We now provide the general idea behind our unremovability proof
and give the full proof in the full version of our paper [2].

Recall by the definition of the ρ-unremovability game that an adversary is
allowed to obtain a number of (watermarked) public-secret key pairs as well as
a number of public keys by issuing queries to the Corrupt and Challenge oracles
respectively. Given that, our first goal is to prove that an adversary is not able to
create a new valid watermarked secret key, e.g. possibly by combining the secret
keys that he possesses. In more detail, we prove that if an adversary issues a
circuit C as a query to the Extract oracle (or outputs C in the end of the game)
and the Extract oracle returns a tag τ , then this means that C implements the
decryption algorithm under one of the secret keys generated previously by the
challenger. We prove this via a sequence of hybrid games in the detailed proof.

In each of the hybrid games the algorithm Gext is gradually altered so that
in an intermediate game, the modified Gext performs as follows: On input a
circuit C and a extraction ciphertext ψ, if a value y = gx

1 is computed at Step 6
and a value v is computed at Step 4 it simply checks whether there is a secret
key (x, v) generated previously by the Challenge oracle. Recall by the definition
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of the ρ-unremovability game that the challenger stores every public-secret key
pair which is generated together with the corresponding tag (such information is
stored at a table called Marked). Therefore, if such secret key sk = (x, v) exists,
the tag τ associated with the secret key sk would be returned as the output of
the Extract algorithm (assuming that for the majority of extraction ciphertexts
given as input to Gext, the same (x, v) will be computed). Based on Lemma 5,
this implies that the decryption algorithm under the key sk = (x, v) has been
run by the circuit C for the majority of ciphertexts. Given that, in one of the
hybrid games the computation of the (modified) Gext algorithm, i.e. Steps 1–6,
are replaced by an algorithm which pre-computes how the extraction ciphertext
which is received as input is decrypted by each secret key that has been generated
so far. Then, by running the circuit with input the extraction ciphertext, and
matching the output with the previous results, the algorithm infers which secret
key has been used for the decryption (assuming there is one).

Then, since the first winning condition of the ρ-unremovability game is that
the circuit C∗ output by the adversary should be ρ-close to a marked decryption
circuit, the challenger can guess such a circuit. Based on that and the ciphertext
indistinguishability property of the watermarkable PKE scheme (cf. Lemma 4)
the challenger can gradually substitute extraction ciphertexts sampled in the
Step (D3)a with encrypted plaintexts under the marked public key guessed by
the challenger. We note that the plaintexts which are encrypted at this stage
are chosen uniformly at random from the plaintext space. The above change is
performed in a series of � hybrid games for this step where eventually the adver-
sarial circuit C∗ in run on input � encrypted plaintexts under the aforementioned
public key and it is checked how which portion of such ciphertexts is decrypted
correctly by C∗ in order to decide whether C∗ is marked or not. Last, by uti-
lizing a Chernoff bound, we prove that if C∗ is ρ-close to a decryption circuit
then it cannot decrypt correctly less than � ciphertexts except with negligible
probability. To put it differently, C∗ will be detected as marked with the tag τ
which was initially related with this specific public-secret key pair (i.e. was given
as input to the Mark algorithm).

Lemma 7 (γ-Unforgeability). The watermarkable PKE scheme (WM.Gen,
PKE.Mark,Enc,Dec,Extract) satisfies γ-unforgeability under the following
assumptions: (1)ciphertext indistinguishability holds (cf. Lemma 4), (2) IND-
CPA security holds , (3) F is a pseudorandom function.

Proof Sketch. Without loss of generality, we assume that an adversary A inter-
acting with a Challenger in the unforgeability game Gunforge

γ,A issues q1 queries
to the ChallengeOracle, q2 queries to the CorruptOracle and q3 queries to the
ExtractOracle. This means that q1 public-secret key pairs have been generated
by PKE.Mark, i.e. (pk1, sk1), . . . , (pkq1 , skq1), the adversary has obtained all the
public keys, but also A has obtained q2 public-secret key pairs, i.e. (pkj1 , skj1)
. . . , (pkjq2

, skjq2
). Recall that A wins if (1) for any Decski

∈ Corrupted, C∗ is
γ-far from Decski

, and (2) Extract(params, xk,C∗) = τ 
= ⊥.
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This proof is similar to the unremovability proof. Let us first provide some
intuition on a potential scenario where unforgeability is broken. Assume an
adversary which holds at least two secret keys could combine their components
(i.e. the values vi,1, vi,2 of the component v = vi,1||vi,2) and obtain a new valid
“watermarked” secret key, then the decryption algorithm would be far from
any decryption algorithm in the set Corrupted and Extract would return would
extract a tag indicating that the circuit is marked. Intuitively, this is prevented
due to the fact that the components vi,1, vi,2 are related between each other as
vi,2 encrypts H(vi,1)||τ . In addition, by requiring that the symmetric encryption
scheme is authenticated, an adversary cannot create new valid ciphertexts on
its own. This combination essentially ensures that new valid watermarked secret
keys cannot be easily created. We follow the same sequence of games as described
in the unremovability game.

In particular, in a series of games we prove that if an adversary issues a circuit
C as a query to the Extract oracle (or outputs C in the end of the game) that is
marked with a tag τ , then this means that C implements the decryption algo-
rithm under one of the secret keys generated previously by the challenger. Due
to Lemma 5, in an intermediate hybrid game the computation of the (modified)
Gext algorithm, i.e. Steps 1–6, are replaced by an algorithm which pre-computes
how the extraction ciphertext which is received as input is decrypted by each
secret key that has been generated so far. Then, due to ciphertext indistinguisha-
bility “extraction ciphertexts” can be replaced by standard ciphertexts under a
chosen public key (chosen uniformly at random by the challenger). Since for
any Decski

∈ Corrupted, C∗ should be γ-far from Decski
, by Proposition 3, C∗

decrypts correctly �∗ out of � ciphertexts only with negligible probability. There-
fore, the only chance that an adversary wins the unforgeability game is breaking
the IND-CPA security of the watermarkable PKE scheme (cf. Lemma 2), as the
adversary should decrypt correctly at least �∗ out of � ciphertexts under a secret
key that it does possess, i.e. it does not belong to the set Corrupted.

References

1. Ananth, P., Vaikuntanathan, V.: Optimal bounded-collusion secure functional
encryption. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11891, pp.
174–198. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36030-6 8

2. Baldimtsi, F., Kiayias, A., Samari, K.: Watermarkable public key encryption with
efficient extraction under standard assumptions. IACR Cryptology ePrint Archive
(2022)

3. Baldimtsi, F., Kiayias, A., Samari, K.: Watermarking public-key cryptographic
functionalities and implementations. In: Nguyen, P., Zhou, J. (eds.) ISC 2017.
LNCS, vol. 10599, pp. 173–191. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-69659-1 10

4. Barak, B., et al.: On the (im)possibility of obfuscating programs. J. ACM 59(2),
6 (2012)

5. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 1

https://doi.org/10.1007/978-3-030-36030-6_8
https://doi.org/10.1007/978-3-319-69659-1_10
https://doi.org/10.1007/978-3-319-69659-1_10
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1


266 F. Baldimtsi et al.

6. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: FOCS 1997, pp. 394–403 (1997)

7. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44448-3 41

8. Boneh, D., Lewi, K., Wu, D.J.: Constraining pseudorandom functions privately.
In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 494–524. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-662-54388-7 17

9. Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing with
short ciphertexts and private keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 573–592. Springer, Heidelberg (2006). https://doi.org/10.
1007/11761679 34

10. Boneh, D., Waters, B.: A fully collusion resistant broadcast, trace, and revoke
system. In: CCS 2006, pp. 211–220, November 2006

11. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2 27

12. Brakerski, Z., Chandran, N., Goyal, V., Jain, A., Sahai, A., Segev, G.: Hierar-
chical functional encryption. In: 8th Innovations in Theoretical Computer Science
Conference, ITCS, pp. 8:1–8:27 (2017)

13. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-48658-5 25

14. Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Water-
marking cryptographic capabilities. SIAM J. Comput. 47(6), 2157–2202 (2018)

15. Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Water-
marking cryptographic capabilities. In: STOC 2016, pp. 1115–1127, June 2016

16. Dodis, Y., Fazio, N., Kiayias, A., Yung, M.: Scalable public-key tracing and revok-
ing. In: PODC 2003, pp. 190–199, July 2003

17. Goyal, R., Kim, S., Manohar, N., Waters, B., Wu, D.J.: Watermarking public-key
cryptographic primitives. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019.
LNCS, vol. 11694, pp. 367–398. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-26954-8 12

18. Goyal, R., Koppula, V., Waters, B.: Collusion resistant traitor tracing from learning
with errors. In: STOC, pp. 660–670 (2018)

19. Goyal, R., Koppula, V., Waters, B.: New approaches to traitor tracing with embed-
ded identities. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp.
149–179. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36033-7 6

20. Kiayias, A., Tsiounis, Y., Yung, M.: Group encryption. In: Kurosawa, K. (ed.)
ASIACRYPT 2007. LNCS, vol. 4833, pp. 181–199. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-76900-2 11

21. Kiayias, A., Yung, M.: Traitor tracing with constant transmission rate. In: Knud-
sen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 450–465. Springer, Hei-
delberg (2002). https://doi.org/10.1007/3-540-46035-7 30

22. Kim, S., Wu, D.J.: Watermarking PRFs from lattices: stronger security via
extractable PRFs. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11694, pp. 335–366. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-26954-8 11

https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/978-3-662-54388-7_17
https://doi.org/10.1007/11761679_34
https://doi.org/10.1007/11761679_34
https://doi.org/10.1007/978-3-662-44371-2_27
https://doi.org/10.1007/3-540-48658-5_25
https://doi.org/10.1007/3-540-48658-5_25
https://doi.org/10.1007/978-3-030-26954-8_12
https://doi.org/10.1007/978-3-030-26954-8_12
https://doi.org/10.1007/978-3-030-36033-7_6
https://doi.org/10.1007/978-3-540-76900-2_11
https://doi.org/10.1007/3-540-46035-7_30
https://doi.org/10.1007/978-3-030-26954-8_11
https://doi.org/10.1007/978-3-030-26954-8_11


Watermarkable Public Key Encryption with Efficient Extraction 267

23. Kim, S., Wu, D.J.: Watermarking cryptographic functionalities from standard lat-
tice assumptions. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 503–536. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 17

24. Nishimaki, R.: Equipping public-key cryptographic primitives with watermarking
(or: a hole is to watermark). In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS,
vol. 12550, pp. 179–209. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64375-1 7

25. Nishimaki, R.: How to watermark cryptographic functions. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 111–125. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 7

26. Nishimaki, R., Wichs, D., Zhandry, M.: Anonymous traitor tracing: how to embed
arbitrary information in a key. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 388–419. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49896-5 14

27. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

28. Quach, W., Wichs, D., Zirdelis, G.: Watermarking PRFs under standard assump-
tions: public marking and security with extraction queries. In: Beimel, A., Dziem-
bowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 669–698. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03810-6 24

29. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: STOC 2014, pp. 475–484 (2014)

30. Yang, R., Au, M.H., Lai, J., Xu, Q., Yu, Z.: Collusion resistant watermarking
schemes for cryptographic functionalities. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT 2019. LNCS, vol. 11921, pp. 371–398. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-34578-5 14

31. Yang, R., Au, M.H., Yu, Z., Xu, Q.: Collusion resistant watermarkable PRFs from
standard assumptions. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020.
LNCS, vol. 12170, pp. 590–620. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-56784-2 20

32. Yoshida, M., Fujiwara, T.: Toward digital watermarking for cryptographic data.
IEICE Trans. 94–A(1), 270–272 (2011)

https://doi.org/10.1007/978-3-319-63688-7_17
https://doi.org/10.1007/978-3-319-63688-7_17
https://doi.org/10.1007/978-3-030-64375-1_7
https://doi.org/10.1007/978-3-030-64375-1_7
https://doi.org/10.1007/978-3-642-38348-9_7
https://doi.org/10.1007/978-3-662-49896-5_14
https://doi.org/10.1007/978-3-662-49896-5_14
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/978-3-030-03810-6_24
https://doi.org/10.1007/978-3-030-34578-5_14
https://doi.org/10.1007/978-3-030-34578-5_14
https://doi.org/10.1007/978-3-030-56784-2_20
https://doi.org/10.1007/978-3-030-56784-2_20


Authentication and Signatures



A Provably Secure, Lightweight Protocol
for Anonymous Authentication

Jonathan Katz(B)

Department of Computer Science, University of Maryland,
College Park, MD 20902, USA

jkatz2@gmail.com

Abstract. We propose a lightweight, anonymous authentication proto-
col that can be based on any block cipher and is suitable for use by,
e.g., RFID tags. We formally define three security properties that our
protocol is intended to satisfy—mutual authentication, anonymity, and
desynchronization resilience—and prove concrete bounds on the proba-
bility the protocol satisfies these properties in the presence of an active
attacker. Our protocol is more efficient than any other protocol we are
aware of that achieves these three properties.

1 Introduction

In this work we introduce an authentication protocol suitable for use by resource-
constrained devices such as Radio Frequency Identification (RFID) tags. The
protocol is intended to be run between a reader R (that can be viewed as a
“server”) and a tag T (that can be thought of as a “client”) that have estab-
lished some shared, secret information in advance. The protocol is primarily
intended to provide mutual authentication: the tag should be convinced it is
communicating with the legitimate reader, and the reader should be convinced
it is communicating with a legitimate tag, even in the presence of an active
adversary who can arbitrarily interact with both the reader and all the tags
in the system. An additional concern—motivated by, but not exclusive to, the
setting of RFID—is tag anonymity ; roughly speaking, this means it should be
infeasible for an attacker to track a tag over time. One way anonymity can be
achieved, which we pursue here, is to make both the tag and the reader state-
ful (aka synchronized) so their shared, secret information is updated each time
the protocol is successfully executed. This introduces a new security concern
called desynchronization resilience [10], which requires that it be infeasible for
an attacker to cause a legitimate tag and the reader to get out-of-sync to the
point where an honest execution of the authentication protocol between them
fails.

There is an extensive literature devoted to designing and analyzing protocols
for anonymous RFID authentication [2–4], and it is not our intention to survey
it here. However, in order to situate our protocol relative to prior work, we
highlight the desiderata that guided our design:
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Security Goals. As stated above, the security goals we targeted were mutual
authentication, anonymity, and desynchronization resilience. Some anonymous
RFID authentication protocols are designed to provide only unilateral authen-
tication of the tag (e.g., [11,15]). Other lightweight authentication protocols are
vulnerable to desynchronization attacks [9,10] that can lead to denial of service.

Provable Security Based on Symmetric-Key Primitives. Some anony-
mous RFID authentication protocols are based on public-key techniques; how-
ever, public-key techniques are too expensive for use on extremely low-cost tags.
At the other extreme, there have been several suggestions of “ultralightweight”
protocols that do not rely on any cryptographic primitives at all. Unfortunately,
such protocols have a poor track record, and have generally been broken soon
after their publication (see, e.g., surveys of prior such work [3,13]). Since a secure
mutual authentication protocol implies the existence of one-way functions, pro-
tocols that do not explicitly rely on some cryptographic assumption are unlikely
to be secure.

We take a middle ground, seeking to design a protocol based (only) on
symmetric-key primitives such as hash functions or block ciphers. The secu-
rity of our protocol can (provably) be reduced to the security of an underlying
block cipher modeled as a pseudorandom function, which lends confidence to
our overall design. From a practical perspective, there have been many propos-
als of lightweight block ciphers, and any of those could be used to instantiate
our protocol even on low-cost RFID tags.

Sublinear Complexity at the Reader. It is fairly easy to design anonymous
authentication protocols that are efficient for the tag, but require the reader to
do (cryptographic) work linear in the number of tags N in the system [12,14].
Since the number of tags in the system may be high, we sought a protocol in
which the reader performs only O(1) cryptographic operations.

We are aware of only two existing protocols that satisfy all the criteria out-
lined above. Burmester and Munilla [7] show a lightweight protocol for anony-
mous authentication that can be based on any pseudorandom number genera-
tor (PRNG). However, although they prove that their protocol achieves mutual
authentication, their definition of mutual authentication is weaker than ours
and their protocol does not satisfy our definition. (The reader in their protocol
is stateful but deterministic, and so it is possible for an attacker to interact with
a tag and then impersonate that tag to the reader at a later point in time.) In
addition, our protocol is more efficient than theirs; see further discussion in the
following section. On the other hand, the Burmester-Munilla protocol satisfies
stronger notions of anonymity (namely, forward/backward security) than our
protocol; see Sect. 2.4 for further discussion.

Our protocol shares some similarities with the modification of the OSK pro-
tocol [11] proposed by Avoine et al. [3, Fig. 5]. They use a cryptographic hash
function rather than a block cipher as their underlying primitive, although their
protocol could be suitably modified to rely on a block cipher instead. Our pro-
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tocol is more efficient than theirs; see the following section. Moreover, Avoine et
al. do not provide any concrete security analysis or proofs of security.

In concurrent work, Boyd et al. [6] formally define the notion of “synchroniza-
tion robustness” for key-exchange protocols, analogous to our notion of desyn-
chronization resilience. Our definitions are similar in spirit, though technically
different (in part because they consider key exchange while we only consider
authentication). We remark that they do not consider anonymity at all, and the
key-exchange protocol they design is not particularly lightweight even though it
relies on symmetric-key primitives (e.g., it relies on puncturable PRFs).

1.1 Our Contributions

We propose a protocol for lightweight anonymous authentication along with
formal definitions of security, and prove that our protocol achieves our defini-
tions. Our protocol is carefully designed to be suitable for implementation on
lightweight tags; specifically, we highlight:

– Our protocol has only three rounds, with low communication complexity.
– Our protocol requires only a pseudorandom function, not a pseudorandom

permutation. This could be realized by an appropriately keyed, lightweight
hash function, or by a (truncated version of a) lightweight block cipher. In the
latter case inversion of the cipher is not required, which reduces the footprint
of an implementation.

– The tag algorithm in our protocol need not maintain a clock, nor does it
require access to a source of randomness. On the other hand, in order to
ensure anonymity we do require the tag to maintain state that can be updated
over time. Our protocol is designed so the state stored by the tag is small.

– The algorithm run by the reader is efficient, even as the number of tags in
the system grows. In particular, the reader invokes the block cipher only O(1)
times per protocol execution, and runs in time sublinear in the number of tags
in the system.

Our protocol is more efficient than prior protocols satisfying our require-
ments [3,7]. An exact comparison is complicated by the fact that the various
protocols rely on different cryptographic building blocks and have different con-
crete security reductions, but for the purposes of our comparison we fix an n-
bit security level and assume equal cost for (1) evaluating a block cipher with
an n-bit block length, (2) evaluating a PRNG to obtain n bits of output, and
(3) evaluating a hash function on an n-bit input, and count each of these as a
single cryptographic operation. The Burmester-Munilla protocol runs in three
rounds in the normal case but requires five rounds when an attack is detected;
in either case, the tag performs five cryptographic operations in an execution
of the protocol. The protocol by Avoine et al. [3, Fig. 5] runs in three rounds
and requires the tag and reader to each perform four cryptographic operations
per execution. Our protocol also runs in three rounds, but requires only three
cryptographic operations by the tag and reader.
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1.2 Outline of the Paper

In Sect. 2 we provide formal definitions of our three security goals: mutual
authentication, tag anonymity, and desynchronization resilience. Our defini-
tion of mutual authentication follows the general approach of Bellare and Rog-
away [5], though simplified for our intended application scenario (where concur-
rent executions of the protocol by a tag are not supported) and adapted to the
case of stateful protocols. Several definitions of anonymity have been given in
the literature (see, e.g., [12,16]); our definition here is inspired by those, though
not identical to any of them. Our definition is intended to capture the notion
of unlinkability [1,7], which informally means that an eavesdropping adversary
should be unable to tell whether two interactions correspond to the same tag or to
two different tags. (We do not consider the stronger notions of forward/backward
security, which require that an adversary cannot link sessions of a compromised
tag; see Sect. 2.4.) Although desynchronization resilience has been considered
informally in many previous works [3,7,8,10,13,17], we are not aware of any
prior formal treatment of this problem.

We describe our protocol in Sect. 3. In Sect. 4 we prove that our protocol sat-
isfies our formal definitions. Our theorems specify concrete bounds quantifying
the security of the protocol as a function of the resources of an attacker.

2 Model and Definitions

In this section we provide an abstract syntax for stateful authentication proto-
cols, as well as a model and definitions of security.

2.1 Preliminaries

We assume a system with a single reader1 and multiple tags, where each tag
has a unique identity ID of some fixed length. An authentication protocol con-
sists of three algorithms Init,Tag, and Reader. The initialization algorithm Init,
run by some central authority, takes as input a tag identity ID and generates
(secret) initial state information st that is given to the tag, along with a record
corresponding to the tag that is given to the reader. The protocol itself is exe-
cuted by interactive algorithms Tag and Reader run by a tag and the reader,
respectively. Tag begins execution with current state st; algorithm Reader begins
execution holding a collection C of records, one for each tag in the system. Upon
termination, Tag either rejects, or else it accepts and locally outputs a session
identifier2 sid, and updated state st′. Upon termination, Reader either rejects,
or else it accepts and locally outputs a value ID, a session identifier sid, and

1 In practice, there may be multiple physical readers all communicating with a single
back-end server. The server in that case then plays the role of the reader.

2 A session identifier need not be output in the real-world protocol; we use it to define
mutual authentication.
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an updated collection C′, where only the record corresponding to the tag with
identity ID is updated.

In each of our eventual security definitions, we imagine an attacker running
in a given experiment; security is quantified by bounds on the probabilities of
certain events in that experiment. The experiments are defined within a common
framework, in which we allow the attacker to initialize as many tags as desired
with IDs of the attacker’s choice (with the restriction that IDs are unique),
eavesdrop on executions between tags and the reader, and to interact with tags
or the reader in an arbitrary way. To capture this formally, we provide the
attacker with access to various oracles that affect the global state of the system
(namely, the current states of all tags and the reader):

– The Init oracle allows the attacker to register new tags. On input ID, this
oracle runs Init(ID) to generate st and the corresponding record, creates a new
tag with identity ID holding state st, and adds the record to the collection
of records held by the reader.
As noted above, we impose the restriction that the attacker cannot query this
oracle with the same ID twice. This corresponds to the real-world assumption
that all tags are assigned unique identities.

– The SendR oracle models the attacker’s ability to impersonate a tag and
interact with the reader. Given an instance identifier inst (see below) and an
incoming message from the attacker, this oracle runs the next step of Reader
using the incoming message and the current state of the specified instance
of the reader, and returns an outgoing message (if any) to the attacker. The
oracle also updates the state of the specified instance of the reader. If the
specified instance of the reader accepts after receiving the message, this oracle
also returns to the attacker the values ID, sid output by that instance of the
reader. The attacker may submit a special start message to this oracle that
prompts Reader to initiate3 the protocol; this is a formalism of our framework,
but does not correspond to any real protocol message.
The instance identifier provides a formal way to enable concurrent executions
at the reader, and allows the attacker to specify the instance to which a
particular message is directed. In practice, separate instances could be defined
by separate physical readers connected to a back-end server, or by physical-
layer characteristics of the communication.

– The SendT oracle models the attacker’s ability to spoof the reader and interact
with a tag. The first input to this oracle specifies the ID of the tag with which
the attacker wishes to interact. The second input specifies a message from the
attacker. In response, this oracle runs the next step of Tag using the current
state of the tag with identity ID and the specified message, updates the state
of the tag accordingly, and returns the response (if any) to the attacker. If Tag
terminates after receiving the message, this oracle also returns to the attacker
the tag’s decision whether to accept or reject and, in the former case, also
returns the value sid output by that tag.

3 For simplicity, we assume the reader sends the first message of the protocol (as is
the case for our protocol).
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In our formal model, we provide a special abort message the attacker can sub-
mit that prompts Tag to terminate the protocol.4 For simplicity, we assume
that each tag supports only one active instance; i.e., concurrent executions
at a single tag are disallowed. In practice, it seems unlikely and unnecessary
for tags to support concurrent executions.

– The Execute oracle takes as input an ID and runs an honest execution of the
protocol between the tag holding ID and the reader, updating their state as
specified by the protocol. (If the tag with that ID is in the middle of a session
when this oracle is called, that session is first terminated.) The oracle returns
the transcript of this execution (i.e., all messages sent by either party) as
well as the sids output by both parties. This oracle is used to model passive
eavesdropping of protocol executions.

With the above in place, we can formally define correctness in the absence
of active interference. In response to a query Execute(ID), let sid be the session
identifier output by the tag, and let ID′, sid′ be the tag identity and session
identifier output by the reader. We say this execution failed if either the tag or
reader rejects, or they both accept but ID′ �= ID or sid′ �= sid. Let Fail be the
event that there is ever a failed execution. A protocol is correct if for all efficient
attackers A that only query Init and Execute (i.e., that do not carry out an active
attack), Pr[Fail] = 0.

In the following sections, we define our desired security properties against an
active attacker (i.e., an attacker who can query the SendT and SendR oracles).

2.2 Desynchronization Resilience

We consider desynchronization resilience first, since it is the simplest to define. It
can be viewed as a strengthening of the correctness requirement, where authen-
tication must succeed in an honest execution of the protocol even if the attacker
has previously carried out active attacks on tags and/or the reader. Namely,
consider an attacker A who has access to all the oracles described previously.
We say desynchronization occurs if A ever makes a query Execute(ID) and event
Fail (defined above) occurs. A protocol is desynchronization resilient if for all
efficient attackers A, the probability that desynchronization occurs is small.

2.3 Mutual Authentication

We follow the general approach of [5] in defining mutual authentication; however,
because we wish to allow for deterministic tag algorithms, we must weaken their
definition to have any hope of satisfying it. (See below.) To simplify things,
we assume a 3-message protocol in which the reader sends the first and third
messages and the tag sends the second message (as is the case for our protocol).

4 In the real world the tag might implement a “time-out” mechanism that would have
the same effect.
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Consider an attacker who can access all the oracles that were described ear-
lier. Fix a query SendR(inst,msg2) (i.e., a query to the reader corresponding to
the second message of the protocol) made at some time5 t2, following which the
reader accepts with local output ID, sid. The given instance of the reader can
only possibly accept if it had already initiated the protocol at some earlier time in
response to a query SendR(inst, start); let t1 be the time at which that query was
made. We say tag authentication holds for instance inst if a query SendT (ID, �)
or Execute(ID) was made at some time between t1 and t2. (Indeed, in that case
the tag with identity ID was involved in running the protocol at some point in
time between t1 and t2.) We say tag authentication fails for that instance (i.e.,
the attacker has succeeded in falsely impersonating the tag) otherwise.

In a model in which there are multiple readers, one can strengthen the above
definition by requiring that each inst as above is associated with a unique query
SendT (ID, �) or Execute(ID). This implies that the tag with identity ID ran the
protocol (at some appropriate point in time) at least once for every accepting
instance of some reader.

From the perspective of the tag, consider a query SendT (ID,msg3) (i.e.,
the second query made to some tag, corresponding to the third message of the
protocol) after which the tag holding ID accepts, and let sid be the session
identifier that is output locally by the tag. We say reader authentication fails
for that instance (i.e., the attacker has succeeded in falsely impersonating the
reader) if either (1) there is no prior (accepting) instance at the reader with
output ID, sid, or (2) there was a prior accepting instance of that same tag with
the same sid (this rules out trivial protocols in which, e.g., sid is always some
fixed value). See below for a discussion as to why the definition for the tag is
different from the one for the reader.

A protocol is said to achieve mutual authentication if for all efficient attack-
ers A, the probability that either tag authentication or reader authentication
ever fails is small.

Notes on the Definition. There is an asymmetry in how we define authenti-
cation for the reader and the tag. Roughly, successful impersonation of a tag to
the reader occurs if the attacker causes the reader to accept without that tag’s
executing the protocol at the same time, whereas a successful impersonation of
the reader to the tag occurs if the attacker causes a tag to accept but at no time
in the past was there a corresponding accepting session at the reader. Thus, the
notion of authentication we achieve is weaker with regard to impersonation of
the reader to a tag.

The reason for this asymmetry is that the tag algorithm in our protocol is
deterministic and does not update its state until successful completion of the
protocol. Any such protocol always admits the following “attack”:

5 “Time” can be quantified by the number of oracle queries made at some point in
the experiment.
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1. The adversary allows a tag and the reader to execute the protocol honestly
but drops the final message of the protocol from the reader to the tag so the
tag aborts (and does not accept or update its state).

2. Subsequently, the attacker initiates a second execution of the protocol with
the tag and simply replays all previous messages from the reader (including
the final message), thus causing the tag to accept.

The above is not considered an attack with respect to our definition. Whether
it is a concern depends on the environment in which the protocol is deployed.

We remark that the above “attack” could potentially be prevented by relying
on randomness generation at the tag, or synchronized clocks at the tags and the
reader. However, we do not wish to assume that lightweight tags have access to
a good source of randomness or a clock.

2.4 Tag Anonymity

Tag anonymity is intended to prevent an attacker from tracking a tag over time.
(We stress here that we consider anonymity at the protocol level; anonymity at
the physical level must be ensured by physical-layer considerations.) Roughly,
our formal definition ensures that an attacker who eavesdrops on executions of
the protocol cannot later identify a tag after interacting with it. We present here
a clean and simple definition of anonymity in which an attacker is allowed to
eavesdrop on known tags before eavesdropping on and/or interacting with an
unknown tag. We assume the attacker knows that the unknown tag in question
corresponds to one of two possible identities; the attacker violates anonymity if it
can determine which is the actual identity with probability better than random
guessing. Although one could imagine strengthening our definition in various
ways, doing so is cumbersome because of the need to rule out various “trivial”
attacks that apply to any protocol in which the tag is deterministic.

In the formal definition, we consider a two-phase experiment. In the first
phase, the attacker may initialize tags by querying Init, and passively eavesdrop
on tags by querying Execute. The first phase ends when the attacker outputs two
distinct identities ID0, ID1. In the second phase of the experiment, a uniform
bit b is chosen and then the attacker may interact with two new oracles:

– The Execute∗ oracle behaves exactly as Execute(IDb). This oracle models pas-
sive eavesdropping on the interaction between the reader and the tag holding
(unknown) identity IDb.

– The Send∗
T oracle models the attacker’s interaction with the tag holding IDb;

formally, Send∗
T (m) is defined to be the same as SendT (IDb,m).

At the end of its execution, A outputs a guess b′, and A succeeds if b′ = b.
Consider the above experiment, where b is a uniform bit chosen at the out-

set. The de-anonymization advantage of A is the absolute value of the differ-
ence between the probability that A succeeds and 1/2. A protocol achieves tag
anonymity if for all efficient A the de-anonymization advantage is small.
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Forward/Backward Security. Stronger notions of anonymity (namely, for-
ward/backward security [7]) have been considered in other work. Roughly, such
definitions ensure that even if the tag’s internal state is compromised, past/future
executions of that tag are unlinkable. We do not pursue such security guarantees
here, though we believe it would be possible to modify our protocol to achieve
them at the cost of an additional cryptographic operation by the tag and reader.

3 Protocol Description

We let F denote a block cipher with an n-bit block length, but remark that
our protocol does not require F to be invertible. For x ∈ {0, 1}n, we let [x]n−1

denote the n − 1 least-significant bits of x.

Overview. A tag’s state st includes a key K, a counter ctr, and two pseudoran-
dom values computed using K and ctr: a pseudonym IDS and a mask mask. (If
memory is constrained, the tag may avoid storing IDS,mask and simply recom-
pute then from K and ctr when needed.) The counter, pseudonym, and mask
are updated each time the tag successfully executes the protocol.

For each tag in the system, the reader stores a record that includes that
tag’s key and what is believed to be the current6 value of that tag’s counter, in
addition to both the current and previous versions of the tag’s pseudonym and
mask; the counter, pseudonyms, and masks are updated whenever the reader
successfully executes a protocol with that tag.

Our protocol proceeds in three rounds. In the first two rounds, the reader
sends a random challenge and the tag sends a response computed using its key.
In addition, the tag sends its current pseudonym, which is used by the reader
to identify the tag (and thus find the appropriate key as well as the current
value of the tag’s counter). The third round authenticates the reader to the tag,
effectively using the counter as a challenge. It also serves as a “confirmation”
message indicating that the reader has accepted. Upon successful completion of
the protocol, both the tag and the reader update their state to reflect new values
for the tag’s counter, pseudonym, and mask.

Formal Specification. We now formally describe the protocol. The initializa-
tion algorithm Init chooses a uniform key K for the block cipher, sets ctr = 0n−2

(importantly, ctr is always treated as a string of length exactly n − 2), and com-
putes the pseudonym IDS = FK (11 ‖ ctr) and the mask mask = FK (10 ‖ ctr).
The tag with identity ID is then given st = 〈K, ctr, IDS,mask〉, and the reader
is given the record (ID,K, 〈ctr, IDS,mask〉, 〈ctr, IDS,mask〉).7

6 Because messages may be dropped, the counter stored at the reader may be greater
than the counter stored by the tag. But the protocol ensures that the difference
between the counters is at most one.

7 At initialization time, the two vectors stored by the reader are redundant; following
a successful execution of the protocol, however, the first vector will store values
associated with the current counter, while the second will store values associated
with the previous counter.
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Fig. 1. High-level overview of the protocol. Note that this overview omits important
details of the protocol; see the text for a formal specification.

An execution of the protocol between a tag with state st =
〈K, ctr, IDS,mask〉 and the reader holding a collection C of records, as described
above, proceeds as follows (see Fig. 1):

1. The reader chooses a uniform nonce N ∈ {0, 1}n−1, and sends it to the tag.
2. Upon receiving the incoming message N , the tag computes mask∗ = [mask]n−1

followed by C = FK(0 ‖ (N ⊕ mask∗)), and then sends IDS,C to the reader.
3. Upon receiving IDS,C from a tag, the reader searches C to find a record

corresponding to IDS. This is done in the following way:
(a) The reader searches C for a record containing IDS in the third entry. If

such a record r = (ID,K, 〈ctr, IDS,mask〉, �) exists, the first such record
is removed from C and the reader uses ID, K, ctr, and mask in the rest
of the protocol.

(b) Otherwise, the reader searches C for a record with IDS in the last entry. If
such a record r = (ID,K, �, 〈ctr, IDS,mask〉) exists, the first such record
is removed from C and the reader uses ID, K, ctr, and mask in the rest
of the protocol.

(c) If both the above fail, the reader terminates the protocol (without accept-
ing).

Let mask∗ = [mask]n−1. The reader checks if FK(0 ‖ (N ⊕ mask∗)) ?= C. If
not, it stores the original record r back in C and terminates (without accept-
ing). Otherwise, it sends D = mask to the tag. The reader then computes8

IDS′ = FK(11 ‖ ctr + 1) and mask′ = FK(10 ‖ ctr + 1), and stores the (pos-
sibly updated) record (ID,K, 〈ctr + 1, IDS′,mask′〉, 〈ctr, IDS,mask〉) in C.
Finally, it accepts with local output ID and sid = IDS.

4. Upon receiving D, the tag checks if mask
?= D. If not, it terminates (without

accepting) and does not update its state. Otherwise, the tag accepts with
local output sid = IDS, computes IDS′ = FK (11 ‖ ctr + 1) and mask′ =
FK (10 ‖ ctr + 1), and updates its state to 〈K, ctr + 1, IDS′,mask′〉.

8 If the reader took branch 3(b) then this step is redundant and can be skipped.
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It is not hard to verify that the protocol is correct with overwhelming proba-
bility, assuming F is a secure block cipher. (A formal proof of correctness follows
from the proof of desynchronization resilience given later.)

4 Proofs of Security

We now prove that our protocol satisfies our definitions of security. In our proof,
we model F as a pseudorandom function (PRF). Formally, F is (t, q, ε)-secure
PRF if for any attacker A running in time at most t and making at most q
queries to its oracle, it holds that

∣
∣
∣Pr[AFK(·) = 1] − Pr[Af(·) = 1]

∣
∣
∣ ≤ ε,

where the first probability is taken over uniform choice of key K, and the second
probability is taken over uniform choice of a function f mapping n-bit inputs to
n-bit outputs.

For our proofs it will be useful to introduce the following notation. At any
given point of the experiment, and for ID the identity of some tag initialized
during the experiment, let ctrTID denote the value of ctr held by the tag with
identity ID, and let ctrRID be the value of ctr held by the reader in the third
entry of the record associated with the tag with identity ID (i.e., the reader
stores a record of the form (ID, �, 〈ctrRID, �, �〉, �)). We refer to the time period
when ctrTID = i as the ith tag-epoch for the tag with identity ID; note that
these epochs (for some fixed ID) are non-overlapping and contiguous. Finally,
for mask ∈ {0, 1}n we let mask∗ def= [mask]n−1.

4.1 Mutual Authentication

We begin by considering mutual authentication, arguably the most important
property.

Theorem 1. Fix an attacker A such that running the mutual authentication
experiment with A takes time t. Let I denote an upper bound on the number
of tags initialized by A, and let ttag, treader < 2n−2 be upper bounds on the
number of sessions initiated by A at tags and the reader, respectively. If F is
a (t, 2 + 3 · (ttag + treader), ε)-secure PRF, then the probability that mutual
authentication fails is at most

(

2 t2tag + 4 treaderttag + ttag + treader
)

· 2−n + I · ε .

Proof. We consider a sequence of experiments Expt0,Expt1,Expt2, where Expt0
corresponds to the one described in Sects. 2 and 2.3. We let Pri[·] denote the
probability of an event in Expti.

Let tFail be the event that tag authentication fails. Let rFail be the event that
there is an accepting session at some tag with identity ID having some sid, but
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there is no accepting instance at the reader with the same values ID, sid. Let
rFail′ be the event that there are two accepting sessions at some tag that have the
same sid; by definition, rFail∨ rFail′ is the event that reader authentication fails.
Since F is a block cipher, and hence FK(11‖ctr) �= FK(11‖ctr′) when ctr �= ctr′,
it is immediate that Pr0[rFail′] = 0. Defining δi = Pri[tFail ∨ rFail], we are thus
left with bounding δ0, the probability with which mutual authentication fails
in Expt0. We assume the experiment ends as soon as either tFail or rFail occur.

Expt1 is the same as Expt0 except that for each tag with identity ID we
replace the block cipher FK associated with that tag with a function fID chosen
uniformly and independently from the set of all functions with domain and
range {0, 1}n. Since at most I different tags are initialized during the experiment,
and the block cipher FK associated with any particular tag is evaluated on at
most 2 + 3 · (ttag + treader) different inputs during the course of Expt0 (in fact,
a tighter bound is possible), it follows from security of F that |δ1 − δ0| ≤ I · ε.

Let maskID,i
def= fID(10‖i) and IDSID,i

def= fID(11‖i) (where i is encoded
using n − 2 bits). In Expt2 we defer choice of maskID,i until the reader accepts
with output ID, IDSID,i and returns maskID,i as the final message of the pro-
tocol; when that happens we say maskID,i becomes defined. Thus, maskID,i is
undefined until ctrRID > i. For every undefined maskID,i, we maintain a set LID,i,
initially empty, containing pairs of the form (N,C); see below. It is convenient
to also maintain a set LID, initially empty, containing pairs of the form (x,C).
Whenever a query fID(0‖x) is made, if there is a pair of the form (x,C) in LID

we return C; otherwise, we choose uniform C ∈ {0, 1}n, return C, and add (x,C)
to LID.

We now formally describe how Expt2 is implemented by describing how the
oracles are modified:

– Init(ID) computes IDSID,0 as before, but now simply lets maskID,0 be a
formal variable.

– Consider an oracle call of the form SendT (ID,msg) and say ctrTID = i. If
maskID,i is defined, then the oracle call is answered as before. Otherwise,
there are two cases depending on whether the incoming message msg is the
first or last message of the protocol:

• In response to an initial message N , if there is a pair of the form (N,C)
in LID,i then return C; otherwise, choose a uniform C ∈ {0, 1}n, return C,
and add (N,C) to LID,i.

• If msg is the third message of the protocol, terminate without accepting.
– Oracle calls SendR(inst, start) are answered as before. Oracle calls of the form
SendR(inst, (IDS,C)) are answered in the following way. Let N be the ini-
tial message sent by instance inst of the reader. The reader searches C for a
record containing IDS as in Expt1. If it finds no record, it terminates without
accepting. If there is a matching record r, then remove that record from C
and let ID and ctr = i be the corresponding values that will be used for the
rest of the execution. There are two cases:

• Say maskID,i is defined (in which case ctrRID = i + 1), and let x = N ⊕
mask∗

ID,i. If (x,C) �∈ LID, then terminate without accepting. Otherwise,
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accept with output ID, IDS and return the final message maskID,i. In
either scenario, store r back in C.

• Say maskID,i is undefined (in which case ctrRID = i). If (N,C) �∈ LID,i,
then terminate without accepting and store r back in C. Otherwise, sam-
ple uniform maskID,i ∈ {0, 1}n (thus defining maskID,i), return maskID,i

as the response to the oracle query, and accept with output ID, IDS.
Also compute IDS′ = fID(11‖i + 1) and store the updated record
(ID, 〈i + 1, IDS′,⊥〉, 〈i, IDS,maskID,i〉) in C. (Note that maskID,i+1 is
undefined.) Finally, for every pair of the form (N,C) ∈ LID,i, if there is
no pair of the form (N ⊕mask∗

ID,i, �) in LID then add (N ⊕mask∗
ID,i, C)

to LID. Finally, set LID,i = ∅.
– Execute queries are handled by repeated invocation of SendR and SendT , in

the natural way.

At the end of the experiment it is useful to explicitly define any undefined values
maskID,i and then, for every (N,C) ∈ LID,i, if there is no pair of the form
(N ⊕ mask∗

ID,i, �) in LID then add (N ⊕ mask∗
ID,i, C) to LID. Finally, for each

ID, x for which there is no pair of the form (x, �) in LID, choose uniform C and
add (x,C) to LID.

The differences between Expt1 and Expt2 occur due to the following events:

1. There is an oracle call SendT (ID,N) when ctrTID = i and maskID,i is unde-
fined, and this represents the first message of the protocol. A pair (N,C) is
added to LID,i but then, when maskID,i becomes defined, there is already a
pair of the form (N ⊕ mask∗

ID,i, �) in LID.
For each (N,C) in one of the sets LID,i, the probability (over choice of
maskID,i) that there is a pair of the form (N ⊕mask∗

ID,i, �) in LID is exactly
|LID|/2n−1. Since at most ttag pairs are added to all the sets LID,i, and there
are at most ttag pairs in all the sets LID, the probability of this event is at
most t2tag/2n−1.

2. There is an oracle call SendT (ID,D) when ctrTID = i and maskID,i is unde-
fined, and this represents the final message of the protocol. Then, when
maskID,i becomes defined, it holds that maskID,i = D.
The probability of this event is easily seen to be at most ttag/2n.

3. There is an oracle call SendR(inst, (IDS,C)) when maskID,i is defined and
(x,C) �∈ LID at that time (so the oracle rejects), but at the end of the
experiment (x,C) ∈ LID.
Assuming the first event (above) does not occur, for each x exactly one
pair of the form (x, �) is added to each set LID. For any oracle call
SendR(inst, (IDS,C)) when maskID,i is defined and (x,C) �∈ LID at that time,
the probability that (x,C) ∈ LID at the end of the experiment is maximized
if every pair in LID,i+1 is of the form (�, C). In that case, (x,C) ∈ LID at the
end of the experiment if either (1) for some (N,C) ∈ LID,i+1 it holds that
N ⊕mask∗

ID,i+1 = x (this occurs with probability |LID,i+1|/2n−1 ≤ ttag/2n−1

over choice of maskID,i+1), or (2) when the pair (x,C ′) is added to LID it
holds that C ′ = C (assuming the former does not occur, this occurs with
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probability 1/2n). Taking a union bound over all instances of the reader, the
probability of this event is at most treader ·

(

ttag/2n−1 + 1/2n
)

.
4. There is an oracle call SendR(inst, (IDS,C)) when maskID,i is undefined and

(N,C) �∈ LID,i at that time (so the oracle rejects), but at the end of the
experiment (N ⊕ mask∗

ID,i, C) ∈ LID.
This case is like the previous one. In fact, since each SendR query is relevant to
either this case or the previous one, the probability that either occurs (assum-
ing the first event does not occur) is at most treader ·

(

ttag/2n−1 + 1/2n
)

.

Summarizing, we have

|δ2 − δ1| ≤
(

2t2tag + ttag + 2treaderttag + treader
)

· 2−n.

It is easily observed that reader authentication cannot fail in Expt2, and so
we turn to consideration of the probability with which tag authentication fails.
For an instance inst of the reader that has sent an initial message N at some
time t1 but has not yet received the second message of the protocol, we say that
instance is vulnerable if for some ID with ctrRID = i either (1) there is a pair of
the form (N,C) in LID,i or (2) there is a pair of the form (N ⊕ mask∗

ID,i−1, C)
in LID. Observe that tag authentication can only possibly fail in Expt2 for a
vulnerable instance. Moreover, the first time tag authentication fails—say, for
an instance of the reader that accepts with output ID, IDS—must be for an
instance that was vulnerable the moment it sent its initial message N . (The only
other possibilities are that the instance became vulnerable after sending its initial
message due to (1) a change in LID or LID,i, or (2) an update to the collection
C of records the reader holds. But either of those can only occur if the attacker
queries SendT (ID, �) or Execute(ID), in which case tag authentication holds for
the instance in question.) It is easy to see that the probability that the N chosen
as the initial message by some instance makes that instance vulnerable is at most
(|LID|+ |LID,i|)/2n−1 ≤ ttag/2n−1. A union bound over all SendR queries shows
that the probability that tag authentication fails is at most treaderttag/2n−1. �

4.2 Desynchronization Resilience

The proof of desynchronization resilience uses many of the ideas from the pre-
vious proof.

Theorem 2. Fix an attacker A such that running the desynchronization exper-
iment with A takes time t. Let I be an upper bound on the number of tags
initialized by A, and let ttag, treader < 2n−2 be upper bounds on the num-
ber of sessions initiated by A at tags and the reader, respectively. If F is a
(t, 2 + 3 · (ttag + treader), ε)-secure PRF, the probability that desynchronization
occurs is at most

(

2 I2 + 3 I · treader + 2t2tag + 2treaderttag + treader + ttag
)

· 2−n + I · ε.
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Proof. Let Expt0 be the experiment defined in Sect. 2, and for an experiment
Expti let δi denote the probability with which desynchronization occurs in Expti.
As in the proof of Theorem 1, we consider an experiment Expt1 that is identical to
Expt0 except that, for each tag with identity ID, we replace the block cipher FK

associated with that tag with a function fID chosen uniformly from the set of all
functions with domain and range {0, 1}n. As previously, we have |δ1 − δ0| ≤ I · ε.

Consider an honest execution in Expt1 between the reader and the tag with
identity ID holding state ctr, IDS,mask. There are two ways desynchronization
can occur: either the reader has more than one record containing IDS, or the
reader has no records containing IDS.

It is easy to bound the probability of the first event. At any given point in
time, the reader stores at most I records, each of which contains at most two
IDS values. When the reader accepts, it computes at most one new IDS value;
since that value is a uniform n-bit string, the probability that it is equal to
any of the existing IDS values stored by the reader is at most 2I/2n. Taking a
union bound over the IDS values generated during tag initialization as well as
the number of sessions initialized at the reader shows that the probability that
the reader ever stores two equal IDS values is at most 2I · (I + treader)/2n.

The second event occurs if, for some ID, we have ctrRID > ctrTID + 1 or
ctrTID > ctrRID. The only way the first case can occur is if at some point A
sends the reader a message IDS,C such that IDS = IDSID,i

def= fID(11‖i)
for some ID, even though ctrTID < i and so the tag with identity ID never
output a message containing IDSID,i. Since IDSID,i is a uniform n-bit string,
the probability this occurs in any particular interaction with the reader is at
most I/2n, and the probability that it occurs at any point is at most treaderI/2n.

On the other hand, if ctrTID > ctrRID then reader authentication has failed.
As in the proof of Theorem 1, the probability that this occurs is at most
(

2t2tag + ttag + 2treaderttag + treader
)

· 2−n. This completes the proof. �

4.3 Tag Anonymity

Theorem 3. Fix an attacker A such that running the anonymity experiment
with A takes time t. Let I be an upper bound on the number of tags initialized
by A, and let ttag, texecute < 2n−2 be upper bounds on the number of Send∗

T and
Execute/Execute∗ queries, respectively, made by A. If F is a (t, 2 + 3 · (ttag +
texecute), ε)-secure PRF, then the deanonymization advantage of A is at most

(

2I2 + 2I · texecute + 2ttagtexecute
)

· 2−n + I · ε.

Proof. Let Expt0 be the experiment defined in Sect. 2.4, and for an experiment
Expti let δi be the probability with which A succeeds in that experiment. As in
the previous proofs, we first consider an experiment Expt1 that is identical to
Expt0 except that, for each tag with identity ID, we replace the block cipher FK

associated with that tag with a function fID chosen uniformly from the set of all
functions with domain and range {0, 1}n. As previously, we have |δ1 − δ0| ≤ I · ε.
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Expt2 is the same as Expt1 except that it terminates, and A does not succeed,
if the reader ever stores two equal IDS values. As in the proof of Theorem 2,
we have |δ2 − δ1| ≤ 2I · (I + texecute)/2n. Note that desynchronization cannot
occur during the first phase of Expt2.

Let ID0, ID1 be the two identities output by the attacker at the end of
the first phase. For convenience, let f0, f1 denote fID0 , fID1 , and let IDS0,i =
f0(11‖i), mask0,i = f0(10‖i), IDS1,i = f1(11‖i), and mask1,i = f1(10‖i).

Say ctrTID0
= i0 and ctrTID1

= i1 at the end of the first phase. Since desynchro-
nization does not occur, we have ctrRID0

= i0 and ctrRID1
= i1 at that time as well.

Observe that the first phase of Expt2 does not depend on IDS0,j or mask0,j for
j ≥ i0, and similarly does not depend on IDS1,j or mask1,j for j ≥ i1. Moreover,
the second phase of Expt2 does not depend on IDS0,j or mask0,j for j < i0, and
similarly does not depend on IDS1,j or mask1,j for j < i0. (This holds regardless
of the value of the uniform bit b.) Thus, the first and second phases of Expt2
are independent unless there is a query of the form fb(0‖x) made in the second
phase for which either f0(0‖x) or f1(0‖x) was made in the first phase. As in the
analysis of the transition from Expt1 to Expt2 in the proof of Theorem 1 (only
the first event is relevant here), the probability with which that occurs is at most
ttag · texecute/2n−1. This completes the proof. �

For completeness, we describe two attacks that are outside our formal defi-
nition, but may nevertheless be a concern in some deployments of the protocol.

First, there is an obvious attack exploiting the fact that the tag repeatedly
sends the same IDS value until it successfully completes an execution. Thus, for
example, an attacker can interact with an unknown tag by sending an arbitrary
nonce N and receiving a response IDS,C; if the attacker later interacts with that
tag again, or even passively eavesdrops on an execution between that tag and
the reader, it will observe the same IDS value being sent (so long as the tag had
not successfully completed an execution in the interim) and thus know—with
overwhelming probability—that the same tag is involved in the execution.

There is also a man-in-the-middle attack that can be used to deanonymize
tags. Assume the attacker has eavesdropped on an execution of some known tag,
and let the transcript of that execution be N, (IDS,C),mask. The attacker thus
learns that C = FK(0 ‖ (N ⊕mask∗)), where K is the key held by the tag. Say the
attacker then interacts with an unknown tag at a later point in time, and wants
to determine if this tag is the same one as before. To do so, it can act as a man-
in-the-middle during an execution between that unknown tag and the reader,
forwarding all messages except the last. From the final message sent by the reader
(but not forwarded to the tag), the attacker learns the value mask currently held
by the tag. The attacker can then send initial message N ′ = N ⊕mask∗ ⊕mask ∗

to the unknown tag; if the tag is the same one as before, then it will respond
with some value IDS′ along with

C ′ = FK(0 ‖ (N ′ ⊕ mask ∗)) = FK(0 ‖ (N ⊕ mask∗)) = C.
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On the other hand, a different tag will send an entirely unrelated value C ′ (which
is unlikely to be equal to C). Thus, the attacker can learn—with overwhelming
probability—whether it is interacting with the same tag as before.
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Abstract. Anonymity and authenticity are apparently conflicting goals.
Anonymity means hiding a party’s identity whereas authenticity means
proving a party’s identity. So how can a set of senders authenticate their
messages without revealing their identity? Despite the paradoxical nature
of this problem, there exist many cryptographic schemes designed to
achieve both goals simultaneously, in some form.

This paper provides a composable treatment of communication chan-
nels that achieve different forms of anonymity and authenticity. More
specifically, three channel functionalities for many senders and one
receiver are introduced which provide some trade-off between authen-
ticity and anonymity (of the senders). For each of them, composably
realizing it is proved to corresponds to the use of a certain type of cryp-
tographic scheme, namely (1) a new type of scheme which we call bilat-
eral signatures (syntactically related to designated verifier signatures),
(2) partial signatures, and (3) ring signatures. This treatment hence
provides composable semantics for (game-based) security definitions for
these types of schemes.

The results of this paper can be interpreted as the dual of the work by
Kohlweiss et al. (PETS 2013), where composable notions for anonymous
confidential communication were introduced and related to the security
definitions of certain types of public-key encryption schemes, and where
the treatment of anonymous authenticated communication was stated as
an open problem.

Keywords: anonymous authenticity · composable security · bilateral
signatures · partial signatures · anonymous signatures · ring signatures

1 Introduction

1.1 Background and Motivation

When studying the security of public-key encryption (PKE) it is natural to con-
sider a setting with one sender and many receivers, each generating its own
key-pair and authentically transmitting the public key to the sender. Then a
reasonable concern is whether ciphertexts subsequently generated by the sender
for distinct receivers are (computationally) indistinguishable. This captures the
intuitive notion of receiver anonymity from the standpoint of an eavesdropper,
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and is formalized by the security definition of key-indistinguishability, first pro-
posed by Bellare et al. [5]. Almost a decade later, Abdalla et al. [1] introduced
another related notion for PKE, robustness, which intuitively captures the fact
that ciphertexts can only be meaningfully decrypted using the correct corre-
sponding private key, meaning that trying to decrypt with a wrong key results
in an error.

It turns out that this further property is crucially needed in conjunction
with key-indistinguishability in order to provide a “usable” form of anonymous
PKE, and this has been highlighted by Kohlweiss et al. [11] by showing that
both properties, together with IND-CCA security, are needed in order for a PKE
scheme to enhance an anonymous insecure broadcast channel into an anonymous
confidential broadcast channel. Importantly, their work also highlights how key-
indistinguishability is a security notion that exclusively preserves anonymity,
rather than “creating” it, whereas IND-CCA lifts insecurity to confidentiality,
thus “creating” more security along the secrecy axis.

On the other hand, for the security of digital signature schemes (DSS) the
natural setting to consider is the dual of the above: Many senders, each authen-
tically publishing their public verification key, send messages to the same party,
the receiver. Here too it is reasonable to consider anonymity (preservation), of
the sender in this case, from the standpoint of an eavesdropper. But in this set-
ting it is additionally also meaningful to study the stronger notion of anonymity
from the standpoint of the receiver, that is, we might want the senders to
remain anonymous not only towards an external attacker (the eavesdropper),
but towards the receiver as well. We distinguish those two separate notions of
anonymity in this setting as external and internal, respectively, where clearly the
latter implies the former (but not vice versa). However, unlike for PKE, the sit-
uation is arguably more intricate for DSS; in fact, providing external anonymity
alone already appears paradoxical: How can we guarantee (computational) indis-
tinguishability of signatures, when in the usual application of DSS it is assumed
that an eavesdropper has access to the corresponding message as well as all possi-
ble verification keys, and could therefore easily distinguish signatures generated
with different keys by simply verifying the signature on the message against all
keys?

A direct consequence of this apparent dilemma is that for the setting dis-
cussed above, the standard syntactic definition of a DSS cannot possibly achieve
any meaningful form of anonymity, as we prove later within our framework. This
is in fact the reason why in the cryptographic literature there exist a multitude
of different security notions capturing various forms of anonymity in relation
to syntactic modifications of the usual DSS definition. A non-exhaustive list of
examples includes: group signatures [8], ring signatures [17], anonymous signa-
tures [9,19,21], and partial signatures [6,18].

In this work we take an alternative approach in order to treat the apparently
oxymoronic problem of achieving anonymous authenticity: Instead of creating
new syntactic modifications of DSS and ad-hoc game-based security definitions
thereof, we begin from a more abstract point of view and identify possible appli-
cations where those two goals simultaneously come into play, and directly define
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security in a composable fashion, using the framework of constructive cryptog-
raphy of Maurer and Renner [13,15], requiring that a protocol realizes such
an application relying on the public-key infrastructure (PKI). More precisely,
we introduce three novel composable security notions for generic protocols, and
then present concrete protocols satisfying each of those. The first protocol makes
use of a novel cryptographic scheme, dubbed bilateral signatures, while the other
two employ partial signatures and ring signatures, respectively.

1.2 Related Work

The goal of this work is to fill a blank in the composable treatment of anonymous
communication.1 In order to illustrate this, we need to first briefly and informally
introduce some key concept that we will elaborate later.

As opposed to game-based security definitions, composable security defini-
tions in constructive cryptography are simulation-based; on an abstract level,
they are statements asserting that a cryptographic protocol constructs an ideal
resource from a set of real ones, where a resource is a mathematical object cap-
turing a certain functionality, and thus has interfaces through which parties,
honest and dishonest, can interact. In more detail, for the simple setting with
two honest parties—the sender and the receiver—and a dishonest party—the
adversary—we consider a real resource R and an ideal resource S, both hav-
ing the same set of interfaces, S for the sender, R for the receiver, and E for
the adversary. Then we say that a protocol π executed by the honest parties
constructs S from R, informally denoted as R �

π==⇒ S, if there exists a simula-
tor sim such that πS,R R (the resource resulting from applying the protocol at
the honest interfaces of the real resource) is indistinguishable from simE S (the
resource resulting from applying the simulator at the dishonest interface of the
ideal resource).

Typical resources used in this simple setting are the insecure channel INS
(which leaks everything the sender inputs to the adversary, and allows the latter
to inject messages), the authentic channel AUT, the confidential channel CNF,
and the secure (i.e., authentic and confidential) channel SEC, all allowing to
send multiple messages. But in order to capture anonymity, we are interested in
a setting where there are multiple parties. More concretely, we consider resources
with n senders S1, . . . , Sn and one receiver R (for which we use the intuitive nota-
tion n→1), and resources with one sender and n receivers (for which we use the
intuitive notation 1→n). If one considers the above channels, a natural approach
to extend them to this setting would be to simply compose them in parallel, but
this would imply that the leakage now includes the identities of the sender Si or
the receiver Ri, since the individual channels are distinguishable by definition by
the adversary. In the following table we summarize the guarantees provided by
resources combining such channels (which we also denote as channels) in terms
of what is leaked to the adversary relative to a message m input by a sender
and whether the adversary can inject messages (such that the receiver can not
distinguish whether the message was sent by the sender S or the adversary E).
1 In particular, we are not directly considering (anonymous) entity authentication.
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Channel Name Symbol Leaked Inject Symbol Leaked Inject

Insecure INSn→1 Si,m yes INS1→n Ri,m yes

Authentic AUTn→1 Si,m no AUT1→n Ri,m no

Confidential CNFn→1 Si, |m| yes CNF1→n Ri, |m| yes

Secure SECn→1 Si, |m| no SEC1→n Ri, |m| no

It seems natural that truly anonymous versions of these channels, that is,
channels capturing sender and receiver anonymity, must not leak such identities
to the adversary. Therefore we enhance the above channels with these guarantees
(adding the prefix A- for anonymous), and summarize the new channels in the
following table (note that in A-AUTn→1, A-CNFn→1, and A-SECn→1, the receiver
also obtains the identity Si of the sender, along with the message m).

Channel Name
Symbol

Leaked Inject
Sender anon. Receiver anon.

Anonymous & Insecure A-INSn→1 A-INS1→n m yes

Anonymous & Authentic A-AUTn→1 A-AUT1→n m no

Anonymous & Confidential A-CNFn→1 A-CNF1→n |m| yes

Anonymous & Secure A-SECn→1 A-SEC1→n |m| no

Other (non-anonymous) resources that we need in this setting are: KEYn↔1,
which provides each sender with a (different) shared secret-key with the receiver;
KEY1↔n, which provides each receiver with a shared secret-key with the sender
(in both resources, the adversary’s interface is inactive); 1-AUTn→1, which pro-
vides each sender with a (different) single-use authentic channel to the receiver;
1-AUT1←n, which provides the receiver with n (different) single-use authentic
channels, one to each of the senders.

We stress again that we are considering anonymity preservation, therefore
in the following we summarize the previous results from the literature in terms
of constructions among the anonymous channels mentioned above (plus shared
secret keys and one-time authentic channels). This means that both real and
ideal core resources are anonymous, and hence the enhancement of security pro-
vided by a construction happens along a different axis (namely confidentiality,
authenticity, or both).

– In the symmetric-key setting, two works provide sender anonymous construc-
tions:

• In [2], Alwen et al. show that for a simple protocol πpMAC based on key-
indistinguishable and unforgeable probabilistic MAC schemes,

[KEYn↔1,A-INSn→1] �

πpMAC====⇒ A-AUTn→1.
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• In [3], Banfi and Maurer show that for a simple protocol πpE based on
key-indistinguishable and IND-CPA probabilistic encryption schemes,

[KEYn↔1,A-AUTn→1] �

πpE===⇒ A-SECn→1,

and for a simple protocol πpAE based on key-indistinguishable and IND-
CCA3 probabilistic authenticated encryption schemes,

[KEYn↔1,A-INSn→1] �

πpAE===⇒ A-SECn→1.

– In the public-key setting, Kohlweiss et al. [11] show that for a simple pro-
tocol πPKE based on key-indistinguishable and robust IND-CCA public-key
encryption schemes,

[1-AUT1←n,A-INS1→n] �
πPKE===⇒ A-CNF1→n.

So far, no public-key constructions achieving sender anonymity were given,
and we fill precisely this gap here, stated as an open problem in [11].

1.3 Contributions

Referring to the above discussion, it is natural to ask whether it is possible to
construct A-AUTn→1 from 1-AUTn→1 and A-INSn→1, using a protocol based on
signature schemes achieving some form of anonymity. But it is rather easy to see
that for regular signature schemes, this is impossible. Using an intuitive notation,
the first result that we show is in fact that for any such protocol π,

[1-AUTn→1,A-INSn→1] ��
π==⇒ A-AUTn→1, (1)

that is, no protocol can construct A-AUTn→1 from 1-AUTn→1 and A-INSn→1

only. We prove this in the full version [4].
The main goal of this paper is to show how to get around this impossibility

result by rethinking what can actually be achieved in this setting. We still did
not discuss the guarantees of the receiver: In A-AUTn→1, while only the message
m is leaked to the adversary, the receiver will see both the message m and the
sender’s identity Si. Therefore, we identify two natural ways in which we can
modify this resource such that we can then make meaningful statements. We see
this systematic approach as a further contribution of this paper.

– We introduce the new resource de-anonymizable authentic channel
D-AUTn→1, which is similar to A-AUTn→1, except that it only guarantees
authenticity of a sender once it decides to give up its anonymity. In more
detail, a sender Si can send a message m, and both the adversary and the
receiver will only see m, but can decide at a later point to leak its identity
to both parties, and this capability is not available to the adversary. This
channel could be used for example in an anonymous auction, where bids need
to be anonymous but the winner is required to later give up its anonymity in
order to (authentically) claim the winning bet.
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– We also introduce the new ideal resource receiver-side anonymous authen-
tic channel RA-AUTn→1, which is similar to A-AUTn→1, except that the
anonymity of the sender is guaranteed also towards the receiver, not just
the adversary. Therefore, RA-AUTn→1 also captures internal anonymity.

In the following table we summarize the guarantees provided by those resources.

Channel Name Symbol Leaked Inject Received

Anonymous & Authentic A-AUTn→1 m no Si,m

De-Anonymizable & Authentic D-AUTn→1 m/(Si,m) m̃/(Sj , m̃) m/(Si,m)

Receiver-Side Anon. & Authentic RA-AUTn→1 m no m

We can now summarize our contribution as providing constructions that,
compared to (1), (i) use a different set of assumed resources, (ii) realize a different
kind of ideal resource, or (iii) both. For (i) we show that a new scheme that
we introduce, bilateral signatures, can be used to construct A-AUTn→1 if we
further assume a (single-use) authentic channel from the receiver to the senders,
1-AUTn←1. Informally, we show that

[1-AUTn→1, 1-AUTn←1,A-INSn→1] �
πBS===⇒ A-AUTn→1,

which amounts to giving composable semantics to bilateral signatures. For (ii)
we show that D-AUTn→1 can be constructed from the original set of assumed
resources from (1) using partial signatures from [6,18]. Informally, we show that

[1-AUTn→1,A-INSn→1] �
πPS===⇒ D-AUTn→1,

which amounts to giving composable semantics to partial signatures. Finally, for
(iii) we show that RA-AUTn→1 can be constructed using ring signatures [7,17]
if instead of 1-AUTn→1, we assume a (single-use) broadcast authentic channel,
1-AUTn�1, which from each sender authentically transmits a message to the
receiver, as well as all other senders. Informally, we show that

[1-AUTn�1,A-INSn→1] �
πRS===⇒ RA-AUTn→1,

which amounts to giving composable semantics to ring signatures.

1.4 Outline

In Sect. 2 we introduce our notation and the specific version of constructive
cryptography used to present our results. We present and relate game-based
and composable security notions for bilateral signatures in Sect. 3, for partial
signatures in Sect. 4, and for ring signatures in Sect. 5.
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2 Preliminaries

2.1 Notation

We write x, . . . ← y to assign the value y to variables x, . . ., and z, . . . ← D to
assign independently and identically distributed values to variables z, . . . accord-
ing to distribution D, where we usually describe D as a probabilistic function. ∅

denotes the empty set, N

.= {0, 1, 2, . . .} denotes the set of natural numbers, and
for n ∈ N, we use the convention [n] .= {1, . . . , n}. For a random variable X over
a set X , we define suppX

.= {x ∈ X |Pr [X = x] > 0}. For a logical statement S,
1 {S} is 1 if S is true, and 0 otherwise. Finally, for tuples we sometimes abuse
notation in the following way: (x, (y, z)) = (x, y, z).

2.2 Constructive Cryptography

In this work we use the composable framework of constructive cryptography (CC),
originally introduced by Maurer and Renner [13,15], incorporating ideas later
exposed in [16] and [10]. At the most abstract level, CC is a theory that allows
to define security of cryptographic protocols as statements about constructions
transforming a number of resources satisfying some real (easier to achieve) spec-
ification R into a resource satisfying an ideal (simple and abstract) specification
S. In this work we use the version of CC in which a specification S is simply
modeled as a subset of the set of all resources Φ, therefore, S ⊆ Φ. For a resource
R ∈ Φ we will often abuse notation and use the expression R in order to refer to
the singleton specification {R}.

On this abstract level, we define a constructor γ simply as a function Φ → Φ,
which given a resource R ∈ Φ, returns the constructed resource γ(R) ∈ Φ, and
we also consider the natural lift-up γ : 2Φ → 2Φ of constructor γ to specifications
by extending the definitions to include γ(S) .= {γ(R) |R ∈ S} ⊆ Φ. Therefore,
we formalize the concept of construction via the subset relation.

Definition 1. Given specifications R,S ⊆ Φ and constructor γ : Φ → Φ, γ

constructs R from S, denoted R γ−−→ S, if and only if γ(R) ⊆ S.

Since this implies that S, as a set, is potentially larger than γ(R), it also high-
lights the fact that the guarantees given by the specification S are generally
weaker than those given by R. This results in S having simpler and easier to
analyze guarantees, and therefore the statement can be interpreted as a distilla-
tion of the relevant properties.

Another important ingredient of CC is the concept of a relaxation. Given a
resource R ∈ Φ, a relaxation ρ : Φ → 2Φ maps R into a specification ρ(R) ⊆ Φ
and is such that R ∈ ρ(R). We use the shorthand notation Rρ .= ρ(R). As we
did for constructors, we also consider the natural lift-up ρ : 2Φ → 2Φ of a
relaxation ρ to a specification S ⊆ Φ by extending the definitions to include
Sρ .= ρ(S) .=

⋃
R∈S Rρ ⊆ Φ.

Systems, Resources, Converters, and Protocols. So far we defined CC
on an abstract level, now we specify more concretely what kind of resources we
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consider, and how constructors are concretely instantiated for such objects. We
model resources and constructors as random systems, just systems for short, as
introduced in [12] and later refined in [14]. Simplistically, such mathematical
objects can be considered as probabilistic discrete reactive systems, that can be
queried with labeled inputs in a sequential fashion, where each distinct label
corresponds to a distinct interface, and for each such input generate (possibly
probabilistically) an equally labeled output depending on the input and the
current state (formally defined by the sequence of all previous inputs and the
associated outputs). Systems can be composed in parallel: given two (or more)
systems S and T, we denote [S,T] as the system which can be independently
queried at the interfaces of both S and T. Following [3], we also use correlated
parallel composition, where S and T are not independent (they might for exam-
ple share a state, or depend on the same random variable), denoted 〈S,T〉. Such
a system can be modeled by introducing another system C that has access to
[S,T], that is, 〈S,T〉 = C[S,T].

In the following we consider only resources relevant to our setting for conve-
nience, but of course everything can be phrased at a more abstract level for any
kind of resource modeled as a system. Following [3], in this work all resources
are parameterized by an integer n ≥ 2, and each defines n + 2 interfaces: n for
the senders, denoted Si, for i ∈ [n], one for the adversary, denoted E, one for the
receiver, denoted R, and we define In

.= {S1, . . . , Sn, R,E}. In the following we
use the expression n-resource to make explicit such parameter, and denote the
set of all such resources as Φn. To any interface I ∈ In of an n-resource R ∈ Φn,
we can attach a converter α (also formally modeled as a random system) which
we assume results in a new n-resource, denoted as αI R ∈ Φn. We denote the
set of all converters as Σ, and assume that they naturally compose, that is, for
converters α, β ∈ Σ, αβ ∈ Σ is also a converter. Moreover, we assume commu-
tativity of converters attached at different interfaces, that is, considering con-
verters α, β ∈ Σ and interfaces I, J ∈ In, with I 
= J , then αI βJ R = βJ αI R.
Finally, we define the special converter id ∈ Σ as the identity converter such
that idI R = R, for any R ∈ Φn and I ∈ In.

In order to make security statements using CC, we still need to define con-
structors for this specific type of resources. To do so, we first model a protocol
π executed by n senders and one receiver (an n-protocol) as a list of n + 1
converters (α1, . . . , αn+1), where the adopted convention is that αi is attached
to sender interface Si, for i ∈ [n], while αn+1 is attached to the receiver inter-
face R. In the following, we use the short-hand notation πR for the n-resource
αS1

1 · · · αSn
n αR

n+1 R. This way, we can now instantiate the concept of a con-
structor γ simply as attachment of a n-protocol, that is, for each n-protocol
π, we consider the associated constructor γπ, and define γπ(R) .= πR. Moreover,
for a second n-protocol π′ .= (β1, . . . , βn+1), we define the composition of π′

with π as π′π .= (β1α1, . . . , βn+1αn+1), and therefore π′πR is the n-resource
(β1α1)S1 · · · (βnαn)Sn (βn+1αn+1)R R. Therefore composition of the construc-
tors corresponding to π and π′, that is, γπ′ ◦ γπ, is simply modeled as π′π.
In the following, we will just use the concept of protocol attachment rather than
the more abstract concept of a constructor.
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Finally, for n-resources R1, . . . ,R� ∈ Φn, we overload notation and define
their parallel composition [R1, . . . ,R�] also as an n-resource, but where each
interface I ∈ In exports � sub-interfaces Ij , for j ∈ [�], with the convention that
Ij provides direct access to the interface I of Rj .

Indistinguishability of Systems. In order to define security, we also need to
formalize the notion of indistinguishability of n-resources, and more in general
of systems. For that, we formally define a distinguisher D, also as a system
but with the exception that it initially produces an output with no need for an
input, and finally produces a binary output (which depends on the probabilistic
interaction with another system). We always tacitly assume that a distinguisher
D interacting with any system S has matching interfaces with S; for n-resources
we denote the set of all such distinguishers as Θn. We can attach a converter
α ∈ Σ also to any distinguisher D, at any of its interfaces, say I, which we
assume results in a new distinguisher, denoted as D Iα, and in the case of an
n-protocol π (and D being an appropriate distinguisher for an n-resource) we
can naturally consider Dπ. For a distinguisher D and systems S,T, we denote
D’s output after interacting with S as DS ∈ {0, 1}, and define D’s advantage in
S from T as

ΔD(S,T) .= |Pr [DS = 0] − Pr [DT = 0]| .
Considering a converter α ∈ Σ and an interface I, note that D IαS = DαI S, and
therefore ΔD(αI S, αI T) = ΔD Iα(S,T). Finally, given a function ε that maps
distinguishers to [0, 1], we can define the ε-indistinguishability relation between
systems S and T, called ε-closeness, as

S ≈ε T :⇐⇒ ∀D : ΔD(S,T) ≤ ε(D).

For a distinguisher D, ε(D) might be a negligible value (depending on some
security parameter, which we do not make explicit in this work). More generally,
ε maps a distinguisher D for systems S and T to the advantage that a new
distinguisher D̃ has in distinguishing two different systems S̃ and T̃, where D̃
uses D as a black-box. For this we need to define a reduction system C that on
one side exports all the interfaces of D (which has the same interface set as S
and T), and on the other side exports all interfaces of S̃ (which has the same
interface set as T̃). Then if C is composed with S̃ or T̃, denoted CS̃ or CT̃,
respectively, we usually show that S = CS̃ and T = CT̃. Just as we did for
converters, we can assume more generally that such a system C can be attached
to D resulting in a distinguisher system D̃ .= DC for S̃ and T̃. Then if we know
(or assume) that S̃ ≈ε̃ T̃, we have

ε(D) = ΔD(S,T) = ΔD(CS̃,CT̃) = ΔDC(S̃, T̃) ≤ ε̃(DC),

and by defining ε̃C(D) .= ε̃(DC), we establish the (function) inequality ε ≤ ε̃C

which entails that by showing (or just assuming) that ε̃ is negligible (for all
distinguishers), then so is ε.

Relevant Resource Specification Relaxations. Recall that for our specific
instantiation of CC, a specification S ⊆ Φn is a set of n-resources. Then for a
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converter α ∈ Σ and an interface I ∈ In, we define αI S .= {αI R |R ∈ S}, and
for an n-protocol π, we analogously define πS .= {πR |R ∈ S}. Next we define
two important relaxations, as introduced in [16].

First, we define the ε-relaxation of R as the set of all resources which are
ε-close to R, for some function ε : Θn → [0, 1], that is,

Rε .= {S ∈ Φn |S ≈ε R}.

We can naturally extend this notion to a specification S ⊆ Φn, that is, we define

Sε .=
⋃

R∈S
Rε = {S ∈ Φn | ∃R ∈ S : S ≈ε R}.

Secondly, we define the ∗-relaxation (spelled “star relaxation”) of R, relative
to a set of interfaces C ⊆ In, with t

.= |C| and C .= {I1, . . . , It}, as the set of all
resources which behave arbitrarily at those interfaces, that is,

R∗C .= {αI1
1 · · · αIt

t R |α1, . . . , αt ∈ Σ}.

We can again extend this notion to a specification S ⊆ Φn, that is, we define

S∗C .=
⋃

R∈S
R∗C = {αI1

1 · · · αIt
t R |α1, . . . , αt ∈ Σ, R ∈ S}.

This relaxation intuitively captures a scenario in which a set of parties is dishon-
est, namely those which are assigned to the interfaces in C. We often consider
the singleton C = {E} for which we write R∗E and S∗E instead of R∗{E} and
S∗{E} , respectively.

Constructions Capturing Anonymity. Using the specifications introduced
above, we can now illustrate the specific type of construction statements that
we will show in this work. Intuitively, we want to say that a weaker (that is,
“smaller”) specification S can be constructed from a stronger (that is, “larger”)
specification R by an n-protocol π if applying π to any n-resource R ∈ R
satisfying the specification R, results in an n-resource πR ∈ Φn not too far from
an n-resource S ∈ S satisfying the specification S. As usual in cryptography,
we also require that such n-resource S can exhibit arbitrary behavior at the
adversarial interface E, reflecting the fact that whatever the adversary can do
in the real-world, modeled by πR, it can also do in the ideal-world. This is
conventionally modeled by considering a special converter sim ∈ Σ (a simulator)
that is attached to S’s adversarial interface E, resulting in the resource simE S ∈
Φn. Therefore, on a high level the statement that one need to prove is R π−−→ S∗E ,
if we would consider perfect closeness, that is, information theoretic security. But
more in general, we formalize the concept of “not too far” by means of the ε-
relaxation, hence a more frequent kind of statement to prove in cryptography is
R π−−→ (S∗E )ε, which essentially allows us to rely on cryptographic assumptions.

But this specific type of construction still does not allow us to appropriately
model anonymity in our setting; in order to capture anonymity, we exploit the
power of the ∗-relaxation once more. Concretely, as pointed out earlier, we want
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to make statements about the preservation of anonymity: We want to capture
that a protocol neither increases, nor degrades anonymity, and we do so by
modeling the “level” of anonymity by a corruption set C ⊆ {Si}n

i=1. Then we
show that for any such corruption set C, if the senders which are not part of such
set execute the protocol, they still obtain the desired properties. To formalize
this for a protocol π

.= (α1, . . . , αn+1), we use the notation πC , by which we
mean the list of protocols (α1, . . . , αn+1), but where for any Si ∈ C, for some
i ∈ [n], αi is replaced by the identity converter id. We now formalize the specific
type of construction statements that we will make (and in the full version [4] we
show they compose).

Definition 2. For an n-protocol π, a function ε, and n-resources R,S, π anony-
mously constructs S from R within ε, denoted R ��

π,ε
===⇒ S, if for all C ⊆ {Si}n

i=1,

R∗C πC
−−→ (S∗C∪{E})ε, that is, πC R∗C ⊆ (S∗C∪{E})ε.

2.3 Anonymous and Authentic Resources

In this section we present the n-resources that we need later in order to make
our security statements (we provide more formal descriptions in the full version
[4]). Instead of bold-face letters, for such resources we will use suggestive sans-
serif abbreviations. We describe all resources first on an intuitive level, and then
formally following the model introduced in [3], in which communication is mod-
eled by a sender buffer S and a receiver buffer R, both allowing to insert single
elements and to read in chunks. Note that all our resources are parameterized
by a set, either K (ideally for public keys), M (ideally for messages), or X (for
anything), but we will make the instantiation of such set implicit when showing
constructions.

We begin by describing the three single-use authentic channels needed as
assumed resources in order to authentically exchange public keys. The first such
resource is 1-AUTn→1, which allows to input a value once at every sender inter-
face Si, for i ∈ [n], and allows to read these values at the receiver and adversary
interfaces, R and E, respectively. Based on this resource, we then simply define
1-AUTn←1 as somewhat the dual of this, namely, the resource that allows to input
a value once at the receiver interface R, and that allows to read this value at every
sender and adversary interface, Si, for i ∈ [n], and E, respectively. Finally, we
also need the resource 1-AUTn�1, which similarly to 1-AUTn→1 allows to input
a value once at every sender interface Si, for i ∈ [n], but additionally allows
to read these values at all the sender interfaces Si as well. We tacitly assume
that protocols first use those resources to exchange public-keys, and only once
all keys have been exchanged, they use the channel resources. We also point out
that our results are in a model in which public keys are therefore assumed to
always be honestly generated. We leave open the problem of strengthening the
model by replacing these resources by a certificate authority, which would allow
the adversary to also register keys.

We next describe the assumed channel resource A-INSn→1 as well as the
three different ideal anonymous channel resources A-AUTn→1, D-AUTn→1, and
RA-AUTn→1 (all depicted in Fig. 1).
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Fig. 1. Sketches of the anonymous channel resources for n = 2 senders (S1 sending m1

and S2 sending m2). For D-AUT, only S1 de-anonymizes its message.

– The anonymous insecure channel A-INSn→1 allows to input multiple values
at every sender interface Si, for i ∈ [n]. Those values are stored in the sender
buffer S, from which they can be read at the adversary interface E. More-
over, at this interface A-INSn→1 also allows the adversary to inject multiple
arbitrary values. Those values are stored in the receiver buffer R, from which
they can be read at the receiver interface R.

– In the anonymous authentic channel A-AUTn→1, the sender buffer S is used
exactly as in A-INSn→1, except that for every message sent, information about
the sender is also stored, but not leaked to the adversary. Unlike A-INSn→1,
at the interface E, A-AUTn→1 only allows the adversary to select which mes-
sages previously input by a sender will be transmitted to the receiver. Those
messages, along with the sender information, will be transferred from the
sender buffer S to the receiver buffer R, from which they can be read at the
receiver interface R.

– The de-anonymizable authentic channel D-AUTn→1 allows to input two type
of values at every sender interface Si, for i ∈ [n]: one to commit a message
m, (cmt,m), and the other to authenticate a previously committed message
m′, (aut, hm′), where hm′ is a handle for m′ generated by D-AUTn→1. Those
values are stored in the sender buffer S, from which they can be read at the
adversary interface E. Information about the sender is also stored, but is only
leaked to the adversary along with aut values. At the interface E, D-AUTn→1

allows the adversary to select which values (of both types) previously input
by a sender will be transmitted to the receiver, as well as to inject additional
cmt values. Those values, including sender information only in case of aut
values, will be transferred from the sender buffer S to the receiver buffer R,
from which they can be read at the receiver interface R.

– The receiver-side anonymous authentic channel RA-AUTn→1 works exactly
as A-AUTn→1, except that sender information is concealed from the receiver
as well (and therefore never stored in the buffers S and R).

3 Achieving Anonymous Authenticity

We start by introducing a new flavor of a signature scheme with some anonymity
property, dubbed bilateral signatures. This scheme shares the syntax of desig-
nated verifier signatures (DVS): both sender and receiver have a key-pair; sign-
ing a message requires the secret key of the sender and the public key of the
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receiver, and verifying a signature requires the secret key of the receiver and
the public key of the sender. The receiver’s key-pair is essentially what allows
to circumvent the impossibility result, by introducing one-time authenticated
information from the receiver to the senders: it enables indistinguishability of
signatures by making verification exclusive to the receiver, as opposed to public.

Definition 3 (Bilateral Signature Scheme). A bilateral signature scheme
(BSS) ΣBS

.= (GenS , GenR, Sgn, Vrf) over message-space M and signature-space
S (with ⊥ /∈ M ∪ S), is such that

– GenS is a distribution over the sender key-spaces SKS × PKS;
– GenR is a distribution over the receiver key-spaces SKR × PKR;
– Sgn : SKS × PKR × M → S is a probabilistic function;
– Vrf : SKR × PKS × M × S → {0, 1} is a deterministic function.

We require the above to be efficiently samplable/computable. For sender key-pair
(ssk, spk) ∈ SKS × PKS and receiver key-pair (rsk, rpk) ∈ SKR × PKR we use
the short-hand notation Sgnssk,rpk(·) for Sgn(ssk, rpk, ·) and Vrfrsk,spk(·, ·) for
Vrf(rsk, spk, ·, ·). Moreover, we assume correctness of ΣBS, that is, for all key-
pairs (ssk, spk) and (rsk, rpk) distributed according to GenS and GenR, respec-
tively, all messages m ∈ M, and all signatures σ ∈ S, Vrfrsk,spk(m,σ) =
1

{
σ ∈ supp (Sgnssk,rpk(m))

}
.

Note that we only introduce bilateral signatures as an abstract syntactic
object. As we discuss in the full version [4], there exist concrete schemes satisfying
such syntax, as well as the semantics we define later. Nevertheless, such schemes
provide additional security guarantees that are not required in our setting. We
leave the problem of finding a bilateral signature scheme which is minimal.

3.1 Game-Based Security of Bilateral Signatures

We begin our study of the semantics of bilateral signatures by defining their game-
base security. In order to define the security of a fixed scheme ΣBS, we define
the following systems (where the dependency on ΣBS is implicit), parameterized
by keys (ssk, spk) ∈ SKS × PKS , spk .= (spk1, . . . , spkn) ∈ PKn

S , for any n ∈ N,
and (rsk, rpk) ∈ SKR × PKR.

– 〈Sssk,rpk,Vrsk,spk〉:
• On input m ∈ M, return (m,σ) ∈ M × S, for σ ← Sgnssk,rpk(m).
• On input (m,σ) ∈ M × S, return m if Vrfrsk,spk(m,σ) = 1 and ⊥ other-

wise.
– 〈Sssk,rpk,V⊥〉: Set Q ⊆ M × S to ∅ and then:

• On input m ∈ M, return (m,σ) ∈ M×S, for σ ← Sgnssk,rpk(m), and set
Q to Q ∪ {(m,σ)}.

• On input (m,σ) ∈ M × S, return m if (m,σ) ∈ Q and ⊥ otherwise.
– Kspk,rpk: On input �, output (spk, rpk).
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In our definitions, all keys will always be random variables distributed (as key-
pairs) according to ΣBS’s GenS and GenR.

We define a combined notion for bilateral signatures capturing both authen-
ticity and anonymity at once. For this, we define a distinction problem between
a real system that correctly generates and verifies signatures, via signing and ver-
ification oracles for n (different) senders and one receiver, and an ideal system
that also correctly generates signatures and only correctly verifies signatures pre-
viously signed, but via n copies of signing and verification oracles for the same
(randomly selected) sender and one receiver.

Definition 4 (UF-IK-Secure Bilateral Signature). A bilateral signature
scheme ΣBS is (n, ε)-unforgeable-and-anonymous (or (n, ε)-UF-IK -secure) if

[〈Sssk1,rpk,Vrsk,spk1〉, . . . , 〈Ssskn,rpk,Vrsk,spkn〉,Kspk,rpk]
≈ε

[〈SsskI ,rpk,V⊥〉, . . . , 〈SsskI ,rpk,V⊥〉
︸ ︷︷ ︸

n times

,Kspk,rpk]

for key-pairs (ssk1, spk1), . . . , (sskn, spkn) ← GenS, (rsk, rpk) ← GenR, spk
.=

(spk1, . . . , spkn), and random variable I $← [n].

As we formally show in the full version [4], it is easy to see that if a bilateral
signature scheme is ε-UF-secure and (n, ε′)-IK-secure (as defined there), then it
is (n, εC + ε′)-UF-IK-secure, for a specific reduction C.

3.2 Composable Security of Bilateral Signatures

We continue our study of the semantics of bilateral signatures by defining their
composable security in the constructive cryptography framework. Recall that we
want to define composable security of a bilateral signature scheme ΣBS as the con-
struction of the resource A-AUTn→1 from the resources 1-AUTn→1, 1-AUTn←1,
and A-INSn→1. In order to make this statement formal, we need to define
how a protocol πBS, attached to the resource [1-AUTn→1, 1-AUTn←1,A-INSn→1],
naturally makes use of ΣBS. First, πBS runs GenS for every sender Si, for
i ∈ [n], generating key-pairs (ssk1, spk1), . . . , (sskn, spkn), as well as GenR for
the receiver R, generating the key-pair (rsk, rpk). Then it transmits the sender
public keys spk1, . . . , spkn to the receiver through 1-AUTn→1 and the receiver
public key rpk to each of the senders through 1-AUTn←1. After that, once a
sender Si inputs a message m on its interface, πBS uses sski and rpk to gen-
erate σ ← Sgnsski,rpk(m), and inputs (m,σ) to the interface Si of A-INSn→1.
Once the receiver R inputs � on its interface, πBS also inputs � to the inter-
face R of A-INSn→1, obtaining a set O ⊆ N × M × S, and outputs the set
{(j,m, i) | ∃ (j,m, σ) ∈ O, i ∈ [n] : Vrfrsk,spki(m,σ) = 1} to R. We call πBS the
protocol using ΣBS in the natural way.
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Definition 5. A bilateral signature scheme ΣBS is (n, ε)-composably secure if

[1-AUTn→1, 1-AUTn←1,A-INSn→1] �

πBS,ε====⇒ A-AUTn→1,

where πBS is the protocol using ΣBS in the natural way.

Finally, we show that game-based security of bilateral signatures implies their
composable security (we defer the proof to the full version [4]).

Theorem 1. There exists a reduction system C such that, if a bilateral signature
scheme ΣBS is (n, ε)-UF-IK-secure, then it is (n, εC)-composably secure.

4 Achieving De-anonymizable Authenticity

In the previous section we studied a way to achieve the anonymous resource
A-AUTn→1, at the cost of assuming additional one-time authenticated informa-
tion from the receiver to all senders. In this section we tackle what can be
interpreted as the dual problem, that is, we study what can at most be achieved
by only assuming one-time authenticated information from the receivers to the
sender (in addition to an insecure channel). Considering to our impossibility
result, we know that the constructed resource will need to be weaker than
A-AUTn→1.

Considering the constraint on the assumed resources, intuitively we need a
scheme that, on the sender side, requires the same input as regular signatures,
that is, just a secret key and a message. But since anonymity is unachievable if
both the message and the signature are disclosed, one either needs to relax the
security definition of digital signatures, or to slightly change their syntax.

A first workaround to this impossibility was initially studied by Yang et
al. [19], and subsequently refined independently by Fischlin [9] and Zhang and
Imai [21], where the first approach is taken and essentially the anonymity of the
signature alone is considered. Modeling such a security definition composably,
makes it apparent how, from an application point of view, this approach is moot:
it requires to assume that an adversary only sees signatures in transit, but not
messages. Clearly, a different kind of assumed resources is needed; ideally, the
message should be transmitted over a confidential channel. Composably, this
hints to the fact that anonymous signatures might only be appropriate in a
context where one wants to combine signatures with public-key encryption. This
can be interpreted as the study of anonymity preservation of signcryption, and
we briefly discuss this in the full version [4].

A different workaround, following the second approach, was independently
taken later by Saraswat and Yun [18] and by Bellare and Duan [6]. There, the
syntax of regular DSS was slightly modified to allow the signature to bear some
form of anonymity. More precisely, the security definitions are changed to capture
anonymity when the message and only a portion of the signature are disclosed,
and authenticity only once the full signature is disclosed. We remark that the
two works essentially introduce the same syntax and security notions, but [18]
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uses the term anonymous signatures introduced earlier in [19], whereas [6] adopts
the new term partial signatures, which we will adopt here as well. More precisely,
in such a scheme the signing function returns a signature that is defined as a
tuple (σ, τ), where σ is called the stub, τ the tag, and (σ, τ) the full signature.
Then the stub σ alone guarantees anonymity of the sender on a message m (but
not its authenticity), whereas authenticity of m (but not anonymity anymore)
is guaranteed once the tag τ is subsequently disclosed.

Definition 6 (Partial Signature Scheme). A partial signature scheme
(PSS) ΣPS

.= (Gen, Sgn, Vrf) over message-space M, stub-space S, and tag-space
T (with ⊥ /∈ M ∪ S ∪ T ), is such that

– Gen is a distribution over the key-spaces SK × PK;
– Sgn : SK × M → S × T is a probabilistic function;
– Vrf : PK × M × S × T → {0, 1} is a deterministic function.

We require the above to be efficiently samplable/computable. For key-pair
(sk, pk) ∈ SK × PK we use the short-hand notation Sgnsk(·) for Sgn(sk, ·) and
Vrfpk(·, ·, ·) for Vrf(pk, ·, ·, ·). Moreover, we assume correctness of ΣPS, that is,
for all key-pairs (sk, pk) distributed according to Gen, all messages m ∈ M, and
all signatures (σ, τ) ∈ S × T , Vrfpk(m,σ, τ) = 1 {(σ, τ) ∈ supp (Sgnsk(m))}.

4.1 Game-Based Security of Partial Signatures

We begin our study of the semantics of partial signatures by defining their game-
base security. Originally, in [19] anonymous signatures (the precursors of partial
signatures), were only defined to be unforgeable and anonymous, by requiring
that no adversary can forge valid signatures and distinguish signatures when
messages are withheld, respectively. In [18] and [6], for the succeeding partial sig-
natures, the unforgeability notion is essentially unchanged, whereas anonymity
is defined with a game where the adversary sees only a part of the signatures, but
also the whole associated messages. Additionally, both works realize that a cru-
cial third security guarantee is also necessary: unambiguouity (named unpretend-
ability in [18]). This notion ensures that only the original creator of a signature is
able to later show that it indeed generated it. This security guarantee is modeled
via a game where an adversary tries to come up with two messages m0,m1, a
stub σ, and two tags τ0, τ1, such that Vrfpk0(m0, σ, τ0) = Vrfpk1(m1, σ, τ1) = 1,
for two different public keys pk0, pk1, which in our setting must be two of the
n known (and fixed) sender public keys. In the full version [4] we relate those
notions from the literature to the new definitions we introduce next.

In order to define the security of a fixed scheme ΣPS, we define the following
systems (where the dependency on ΣPS is implicit), parameterized by keys sk ∈
SK, pk ∈ PK, pk .= (pk1, . . . , pkn) ∈ PKn, for any n ∈ N.

– 〈Ssk,Vpk〉:
• On input m ∈ M, return (m,σ, τ) ∈ M × S × T , for (σ, τ) ← Sgnsk(m).
• On input (m,σ, τ) ∈ M × S × T , return m if Vrfpk(m,σ, τ) = 1 and ⊥

otherwise.
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– 〈Ssk,V⊥〉: Set the (potentially) shared set Q ⊆ M × S × T to ∅ and then:
• On input m ∈ M, return (m,σ, τ) ∈ M × S × T , for (σ, τ) ← Sgnsk(m),

and set Q to Q ∪ {(m,σ, τ)}.
• On input (m,σ, τ) ∈ M × S × T , return m if (m,σ, τ) ∈ Q and ⊥

otherwise.
– S−

sk: On input m ∈ M, return (m,σ) ∈ M × S, for (σ, ·) ← Sgnsk(m).
– Kpk : On input �, output pk.

In our definitions, all keys will always be random variables distributed (as key-
pairs) according to ΣPS’s Gen.

We begin by defining a combined notion for bilateral signatures capturing
both authenticity and unambiguity at once. For this, we define a distinction
problem between a real system that correctly generates and verifies signatures,
via signing and verification oracles for n (different) senders, and an ideal sys-
tem that also correctly generates signatures for n (different) senders, but only
correctly verifies signatures previously signed by any signing oracle.

Definition 7 (UF-UA-Secure Partial Signature). A partial signature
scheme ΣPS is (n, ε)-unforgeable-and-unambiguous (or (n, ε)-UF-UA -secure) if

[〈Ssk1 ,Vpk1〉, . . . , 〈Sskn ,Vpkn〉,Kpk ] ≈ε [〈Ssk1 ,V
⊥〉, . . . , 〈Sskn ,V⊥〉,Kpk ],

for key-pairs (sk1, pk1), . . . , (skn, pkn) ← Gen and pk
.= (pk1, . . . , pkn).

As we formally show in the full version [4], it is easy to see that if a partial
signature scheme is ε-UF-secure and (n, ε′)-UA-secure (as defined there), then it
is (n, n · εC + ε′)-UF-UA-secure, for a specific reduction C.

We next define anonymity of partial signatures. For this, we define a dis-
tinction problem between a real system that correctly generates only stubs, via
(reduced) signing oracles for n (different) senders, and an ideal system that also
correctly generates only stubs, but via n copies of (reduced) signing oracles for
the same (randomly selected) sender.

Definition 8 (IK-Secure Partial Signature). A partial signature scheme
ΣPS is (n, ε)-anonymous (or (n, ε)-IK -secure) if

[S−
sk1

, . . . ,S−
skn

,Kpk ] ≈ε [S−
skI

, . . . ,S−
skI

,Kpk ]

for key-pairs (sk1, pk1), . . . , (skn, pkn) ← Gen, pk .= (pk1, . . . , pkn), and random
variable I $← [n].

Unlike what we did for bilateral signatures (and will later do for ring signa-
tures as well), it is not possible to define a combined security notion for par-
tial signatures capturing both UF-UA-security and IK-security at once. This is
because a unified distinction problem would necessarily require a full signing
oracle, in order to model unforgeability, thus making it possible to trivially dis-
tinguish signatures generated by different senders, that is, making the modeling
of anonymity impossible.
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4.2 Composable Security of Partial Signatures

As it is made clear by the concrete construction given in [6], partial signature
schemes inherently involve a special form of commitment. In fact, such straight-
forward construction from a regular signature scheme and a commitment scheme
involves generating a normal signature on the message, and committing to it and
the verification key. The resulting commitment bitstring will then be the stub σ
(the one ensuring anonymity, but not authenticity), and the opening (or “decom-
mital key”) will correspond to the tag τ (the one ensuring authenticity, but not
anonymity).

From this, it becomes immediately apparent that trying to capture security
of partial signatures in a composable fashion, would necessarily incur the so-
called simulator commitment problem. In this specific case, the issue is as follows:
Intuitively, in the real world a sender Si, for i ∈ [n], generates a full signature
(σ, τ) on a message m, and in a first phase sends only (m,σ) to the receiver R,
while in a second phase it sends (m,σ, τ), which must satisfy Vrfpki(m,σ, τ) = 1.
But in the ideal world, during the first phase the simulator only receives the
message m from D-AUTn→1, and does not know who the sender is (in particular,
it does not know the value i ∈ [n]). Even though it emulates all n secret/public
keys ski, pki of the senders, it must output a partial signature σ by producing a
full signature (σ, τ) for m using a different random secret key sk (this difference
in the real and ideal worlds is what exactly captures anonymity of the stub σ).
In the second phase, once it obtains the identity i of the sender Si who sent m,
the simulator must be able to output, along with the previously defined stub σ,
a valid tag τ that satisfies Vrfpki(m,σ, τ) = 1. But because upon generation of σ
from m, the simulator did not use ski, it is infeasible for it to correctly generate
such a valid τ .

Recently, a generic workaround to this problem was put forth by Jost and
Maurer [10], where the use of a new type of relaxation, the so-called interval-wise
relaxation, allows to make formal statements capturing security notions that in
regular composability frameworks would incur in the commitment problem. The
interval-wise relaxation builds upon the combination of two other relaxations,
the from-relaxation and the until-relaxation. Informally, given a resource R and
two monotone2 predicates P1, P2 (on the history of events happening globally in
an experiment involving R), the from-relaxation R[P1 consists of all resources
behaving arbitrarily until P2 is true and exactly as R afterwards, whereas the
until-relaxation RP2] consists of all resources behaving exactly as R until P1

is true and arbitrarily afterwards. Hence, intuitively the combined relaxation
R[P1,P2] consist of all resources behaving exactly as R from when P1 is true and
until P2 is true, and arbitrarily otherwise (technically, it actually corresponds
to the transitive closure of taking the from- and until-relaxation in alternat-
ing order). Finally, for a function ε : Θn → [0, 1], the interval-wise relaxation
R[P1,P2]:ε informally corresponds to all resources in R[P1,P2] that are also ε-close
to R. Formally, this is defined using the ε-relaxation introduced in Sect. 2.2 as
R[P1,P2]:ε .= ((R[P1,P2])ε)[P1,P2] (see [10] for more details).
2 A monotone predicate is a predicate that once becomes true cannot be false anymore.
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Recall that we want to define composable security of a partial signature
scheme ΣPS as the construction of the resource D-AUTn→1 from the resources
1-AUTn→1, and A-INSn→1. In order to make this statement formal, we need
to define how a protocol πPS, attached to the resource [1-AUTn→1,A-INSn→1],
naturally makes use of ΣPS. First, πPS runs Gen for every sender Si, for i ∈ [n],
generating key-pairs (sk1, pk1), . . . , (skn, pkn). Then it transmits the public keys
pk1, . . . , pkn to the receiver through 1-AUTn→1. After that, for each sender Si

it sets up two look-up tables, modeled here as sets Hi ⊆ N × M × S × T and
H′

i ⊆ N×M×S, as well as a handle value hi ∈ N, initially set to 0. Then sender
Si might input messages of two different types on its interface:

– (cmt,m), for some m ∈ M: in this case, πPS uses ski to generate (σ, τ) ←
Sgnski(m), and inputs (cmt,m, σ) to the interface Si of A-INSn→1. Then it
sets hi ← hi + 1 and Hi ← Hi ∪ {(hi,m, σ, τ)}.

– (aut, h), for some h ∈ N: in this case, πPS first checks whether (h,m, σ, τ) ∈ Hi,
for some m,σ, τ . If that is the case, then πPS inputs (aut,m, σ, τ) to the
interface Si of A-INSn→1.

Once the receiver R inputs � on its interface, πPS also inputs � to the interface R
of A-INSn→1, obtaining a set O ⊆ (N×{cmt}×M×S)∪(N×{aut}×M×S×T ).
Then it sets H′ ← H′ ∪ {(j,m, σ) | (j, (cmt,m, σ)) ∈ O}, computes the sets O′ .=
{(cmt, j,m) | ∃σ ∈ S : (j, (cmt,m, σ)) ∈ O}, O′′ .= {(aut, j′, j, i) | ∃m ∈ M, σ ∈
S, τ ∈ T : (j′, aut,m, σ, τ) ∈ O, (j,m, σ) ∈ H′, Vrfpki(m,σ, τ) = 1}, and outputs
the set O′ ∪ O′′ to R. We call πPS the protocol using ΣPS in the natural way.

Intuitively, we model composable security of a partial signature scheme by
making a statement for each interval defined by a sequence of inputs at the
sender interfaces {Si}n

i=1 that are of the same type, that is, either all are of the
form (cmt, ·) (messages), or all are of the form (aut, ·) (handles). This way, we
make sure that the individual security statement is within an interval in which
the simulator cannot incur the commitment problem. For this we define the
following predicates:

– Pmsg(j): true if j-th sender input is a message m (E would obtain (m,σ));
– Phnd(j): true if j-th sender input is a handle h (E would obtain (m,σ, τ));
– Pfst(j): true at first consecutive sender input of same type as the j-th;
– Plst(j): true at last consecutive sender input of same type as the j-th.

Definition 9. A partial signature scheme ΣPS is (n, t, εm, εh)-composably secure
if for all C ⊆ {Si}n

i=1,

πC
PS[1-AUTn→1,A-INSn→1]∗C ⊆

⋂
(P1,P2,ε)∈Ω (D-AUT∗C∪{E}

n→1 )[P1,P2]:ε,

for Ω = {(Pfst(j), Plst(j), εm)}j∈[t]:Pmsg(j)
∪{(Pfst(j), Plst(j), εh)}j∈[t]:Phnd(j)

, where t ∈
N is an upper-bound on the number of transmitted messages and πPS is the
protocol using ΣPS in the natural way.

Finally, we show that game-based security of partial signatures implies their
composable security (we defer the proof to the full version [4]).
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Theorem 2. There exist reduction systems Cm and Ch such that, if a partial
signature scheme ΣPS is (n, εm)-IK-secure and (n, εh)-UF-UA-secure, then it is
(n, t, εCm

m , εCh

h )-composably secure, for any t ∈ N.

Remark 1. It is natural to ask whether regular signatures would also achieve
the notion of Definition 9. This would correspond to asking whether a partial
signature scheme with empty strings as stubs would still satisfy Theorem 2.
The short answer is no, because it is easy to see that such a scheme does not
necessarily achieve unambiguity. Nevertheless, we point out that in principle
it should be possible to construct unambiguous regular signature schemes, but
still we chose to use partial signatures instead because they offer more: If the
adversary also publishes its public-key, then non-empty stubs and unambiguity
ensure that it cannot falsely claim any message of the honest senders. This would
follow trivially by appropriately extending our definitions, but it would not if a
regular signature scheme was used instead. We leave the problem of formalizing
this variant open for future work.

5 Achieving Receiver-Side Anonymous Authenticity

One of the first alternative signature schemes providing some form of anonymity
were group signatures, introduced by Chaum and Van Heyst [8]. The main idea
is that members of a group share a public verification key, which can be used
to verify a message-signature pair generated by any of the group members using
their own (different) secret keys. Anonymity is enforced by ensuring that the
verification process does not reveal any partial information about the secret key
used to generate the signature, hence effectively allowing a member to anony-
mously sign a message on behalf of the group. Technically, this is achieved by
assigning the role of group manager to a selected member, which is responsible
for generating all members’ secret keys as well as the group’s public verification
key. Therefore, the group manager also has the ability to reveal the original
signer.

This drawback of group signatures was later circumvented by Rivest, Shamir,
and Tauman [17], who introduced ring signature. In this new scheme, a signature
is generated by using not only the sender secret key, but also all the public keys
of the group’s members, called a ring in this context. Therefore, a signature
must be transmitted along with the list of all public keys used, and anonymity
is again enforced by requiring that the verification process does not reveal any
partial information about the secret key used to generate the signature. Another
advantage of ring signatures, compared to group signatures, is that the ring can
be dynamically chosen by the sender, and does not require any cooperation.

The syntax of a ring signature scheme, for a fixed ring size of n ∈ N, extends
that of a regular DSS as follows: each sender generates its key-pair (ski, pki),
for i ∈ [n], but in order to generate a signature σ on a message m, in addition
to ski, the list pk

.= (pk1, . . . , pkn) of all other senders public keys is needed.
Moreover, also the index i itself is required by the signing function, in order
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to link the given secret key to the public key of the sender. Then, the receiver
can verify that σ is a valid signature for m by using pk, and be assured that
the message was authentically transmitted by one of the known senders, and no
external adversary.

Definition 10 (Ring Signature Scheme). A ring signature scheme (RSS)
ΣRS

.= (Gen, Sgn, Vrf) for n ≥ 2 users over message-space M and signature-space
S (with ⊥ /∈ M ∪ S), is such that

– Gen is a distribution over the key-space SK × PK;
– Sgn : [n] × SK × PKn × M → S is a probabilistic function;
– Vrf : PKn × M × S → {0, 1} is a deterministic function.

We require the above to be efficiently samplable/computable. For index i ∈ [n]
and keys sk ∈ SK, pk .= (pk1, . . . , pkn) ∈ PKn, for any n ∈ N, we use the short-
hand notation Sgni,sk,pk(·) for Sgn(i, sk,pk, ·) and Vrfpk(·, ·) for Vrf(pk, ·, ·).
Moreover, we assume correctness of ΣRS, that is, for all n ≥ 2, all i ∈ [n],
all possible lists of n key-pairs (sk1, pk1), . . . , (skn, pkn) distributed according to
Gen, with pk

.= (pk1, . . . , pkn), all messages m ∈ M, and all signatures σ ∈ S,
Vrfpk(m,σ) = 1

{
σ ∈

⋃n
i=1 supp (Sgni,ski,pk

(m))
}
.

5.1 Game-Based Security of Ring Signatures

When ring signatures were introduced in [17], no formal game-based security
definitions were given, this was only done later in [7]. There, a stronger model
than the one considered here was introduced, namely one where the adversary
can generate and publish its own public key, which, as discussed in Sect. 2.3,
would require a certificate authority. Therefore, here we use adapted versions
of the weaker security notions of unforgeability against fixed-ring attacks and
basic anonymity from [7]. In the full version [4] we relate those notions from the
literature to the new combined definition we introduce next.

In order to define the security of a fixed scheme ΣRS, we define the following
systems (where the dependency on ΣRS is implicit), parameterized by index
i ∈ [n] and keys sk ∈ SK, pk .= (pk1, . . . , pkn) ∈ PKn, for any n ∈ N.

– 〈Si,sk,pk ,Vpk〉:
• On input m ∈ M, return (m,σ) ∈ M × S, for σ ← Sgni,sk,pk(m).
• On input (m,σ) ∈ M × S, return m if Vrfpk(m,σ) = 1 and ⊥ otherwise.

– 〈Si,sk,pk ,V⊥〉: Set Q ⊆ M × S to ∅, and then:
• On input m ∈ M, return (m,σ) ∈ M×S, for σ ← Sgni,sk,pk(m), and set

Q to Q ∪ {(m,σ)}.
• On input (m,σ) ∈ M × S, return m if (m,σ) ∈ Q and ⊥ otherwise.

– Kpk : On input �, output pk.

In our definitions, all keys will always be random variables distributed (as key-
pairs) according to ΣRS’s Gen.

We define a combined notion for ring signatures capturing both authenticity
and anonymity at once. For this, we define a distinction problem between a real
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system that correctly generates and verifies signatures, via signing and verifi-
cation oracles for n (different) senders, and an ideal system that also correctly
generates signatures and only correctly verifies signatures previously signed, but
via n copies of signing and verification oracles for the same (randomly selected)
sender.

Definition 11 (UF-IK-Secure Ring Signature). A ring signature scheme
ΣRS is (n, ε)-unforgeable-and-anonymous (or (n, ε)-UF-IK -secure) if

[〈S1,sk1,pk ,Vpk〉, . . . , 〈Sn,skn,pk ,Vpk〉,Kpk ]
≈ε

[〈SI,skI ,pk ,V⊥〉, . . . , 〈SI,skI ,pk ,V⊥〉
︸ ︷︷ ︸

n times

,Kpk ],

for key-pairs (sk1, pk1), . . . , (skn, pkn) ← Gen, pk .= (pk1, . . . , pkn), and random
variable I $← [n].

As we formally show in the full version [4], it is easy to see that if a ring
signature scheme is (n, ε)-UF-secure and (n, ε′)-IK-secure (as defined there), then
it is (n, εC + ε′)-UF-IK-secure, for a specific reduction C.

5.2 Composable Security of Ring Signatures

We continue our study of the semantics of ring signatures by defining their
composable security in the constructive cryptography framework. Composable
security notions for ring signatures have been previously studied in [20] within
the universal composability (UC) framework. There, an ideal functionality was
introduced, and it was shown to be securely realized by a protocol employing
ring signatures. Unlike with our approach, such functionality was completely
tailored to the ring signature scheme used by the protocol, that is, it exported
operations such as signing and verifying, it did not model a communication
channel between senders and receiver. Here we define an ideal resource, indepen-
dent of any cryptographic scheme, and show that (among other possible ones),
a protocol employing ring signatures indeed realizes such a resource.

Recall that we want to define composable security of a ring signature scheme
ΣRS as the construction of the resource RA-AUTn→1 from the resources 1-AUTn�1

and A-INSn→1. In order to make this statement formal, we need to define
how a protocol πRS, attached to the resource [1-AUTn�1,A-INSn→1], naturally
makes use of ΣRS. First, πRS runs Gen for every sender Si, for i ∈ [n], gen-
erating key-pairs (sk1, pk1), . . . , (skn, pkn). Then it transmits the public keys
pk

.= (pk1, . . . , pkn) to the receiver and all senders through 1-AUTn�1. After
that, once a sender Si inputs a message m on its interface, πRS uses ski and
pk to generate σ ← Sgni,ski,pk

(m), and inputs (m,σ) to the interface Si of
A-INSn→1. Once the receiver R inputs � on its interface, πRS also inputs � to the
interface R of A-INSn→1, obtaining a set O ⊆ N × M × S, and outputs the set
{(j,m) | ∃ (j,m, σ) ∈ O : Vrfpk(m,σ) = 1} to R. We call πRS the protocol using
ΣRS in the natural way.
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Definition 12. A ring signature scheme ΣRS is (n, ε)-composably secure if

[1-AUTn�1,A-INSn→1] �

πRS,ε====⇒ RA-AUTn→1,

where πRS is the protocol using ΣRS in the natural way.

Finally, we show that game-based security of ring signatures implies their
composable security (we defer the proof to the full version [4]).

Theorem 3. There exists a reduction system C such that, if a ring signature
scheme ΣRS is (n, ε)-UF-IK-secure, then it is (n, εC)-composably secure.

6 Concluding Remarks and Future Work

This work focused on filling a gap in the composable treatment of anonymity
preservation in the public-key setting. Being of definitional nature, it was cen-
tered around providing clear composable semantics of existing schemes, as well
as showing how existing and new game-based security notions for such schemes
imply composable statements. This is very desirable in order to understand how
such schemes should be used in practice.

Still, since the scope of this work was very ample, we see it as merely paving
the way. For example, additional alternative solutions circumventing our impossi-
bility result, employing different schemes, might be interesting to analyze. More-
over, all of our results hold under static corruptions, therefore a natural extension
would be to consider a stronger security model capturing adaptive corruptions.
This would allow to rely on stronger game-based notions from the literature for
partial signatures and ring signatures.
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Abstract. A major component of the entire digital identity ecosystem
are verifiable credentials. However, for users to have complete control
and privacy of their digital credentials, they need to be able to store
and manage these credentials and associated cryptographic key material
on their devices. This approach has severe usability challenges including
portability across devises. A more practical solution is for the users to
trust a more reliable and available service to manage credentials on their
behalf, such as in the case of Single Sign-On (SSO) systems and identity
hubs. But the obvious downside of this design is the immense trust that
the users need to place on these service providers.

In this work, we introduce and formalize a credential transparency
system (CTS) framework that adds strong transparency guarantees to
a credential management system while preserving privacy and usability
features of the system. CTS ensures that if a service provider presents
any credential to an honest verifier on behalf of a user, and the user’s
device tries to audit all the shows presented on the user’s behalf, the
service provider will not be able to drop or modify any show informa-
tion without getting caught. We define CTS to be a general framework
that is compatible with a wide range of credential management systems
including SSO and anonymous credential systems. We also provide a
CTS instantiation and prove its security formally.

Keywords: Credential transparency · SSO · anonymous credentials ·
zero-knowledge sets · accumulators · zero-knowledge proofs

1 Introduction

A major component of the entire digital identity ecosystem are verifiable creden-
tials. These credentials can range from simple ones such as email id’s to more
sophisticated ones such as government issued IDs [1,3]. Due to their wide-spread
use in the web, a W3C working group [5] is trying to standardize the mechanism
for expressing and exchanging different types of credentials on the web.

On the more academic research side, there has been a long line of work on
anonymous credentials that built privacy-preserving technology for presenting
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credentials in a flexible way while disclosing minimal information [6–10,13–15,
18,19,22].

However, for users to have complete control and privacy of their credential
presentations, they need to be able to store and manage these credentials and
associated cryptographic key material on their devices. This is notoriously hard
for an average user and has severe usability limitations. For example, it is difficult
to port these credentials across devices; these are not readily available in case
the primary device gets lost or stolen or when the user is traveling and using a
different device but she still needs to access her credentials. Yet another security
risk with user-device bound credentials is the threat of malware on the device:
the credentials can be stolen by malware and either exported or used without
the user’s knowledge.

The most practical solution is therefore that the users trust a more reli-
able and available (possibly cloud-based) service to manage credentials on their
behalf. For example, single sign-on (SSO) is a widely popular authentication
mechanism on the web that lets a user securely authenticate to multiple websites
using the same credential [4]. At a high level, SSO systems leverage the trust
relationship between the websites and the identity providers (such as Google,
Microsoft etc.) directly, rather than passing the credentials through the user.
The identity provider signs certain credentials of the user (e.g., the user’s email
address or a username) and passes this signature along with the signed iden-
tity information to the website. The website can thus be convinced about the
authenticity of these credentials.

While services to manage user credentials are great for usability, the obvious
downside of this approach is the immense trust that the users need to place on
these service providers. The users have to trust the service provider completely,
with no recourse, and do not even have any visibility into how their credentials
are used. For example, in case the service provider gets compromised, the users’
credentials could be used to open accounts on other services, completely without
the user’s knowledge. This begs the question of whether this complete trust is
inherent. In other words, is there any way we could reduce trust on the service
providers, while still maintaining the usability guarantees.

Trusting the service provider with the privacy of the users’ information (such
as their credentials and information necessary to present it on their behalf) seems
inherent in this setting. Similarly, if users can’t store local secrets (due to use-
ability and portability issues), the server will always be able to present the user’s
credential and claim to act on her behalf, without her permission. But can we
make the credential management transparent to the users, so that their devices
can monitor all the credential presentations on their behalf? We would like to
add strong transparency guarantees as in other transparency log applications
such as auditable public-key directories (CONIKS [20], SEEMless [11], Google
Key Transparency [2]) or software [17,21] or key recovery transparency [16]. This
means, we want to ensure that if a service provider presents any credential to an
honest verifier on behalf of a user, and the user’s device tries to monitor for all
the shows presented on the user’s behalf, the service provider will not be able
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to drop or modify any show information without an overwhelming probability
of getting caught. Note that we emphasize honest verifier here, since it seems
impossible to provide such strong detectability guarantees if both the service
provider and the verifier are malicious and colluding to share user information.

In this work, we aim to define a general credential transparency system (CTS)
framework that adds strong transparency guarantees to a credential management
system. CTS is compatible with a wide range of credential systems, ranging from
SSO systems to more sophisticated anonymous credential management systems.
This means we must define the framework carefully, so as not to introduce any
additional leakage in the underlying credential system. For example, in a clas-
sical anonymous credential system multiple verifiers verifying a certain user’s
credentials do not learn when/where else this user’s credentials were presented.
We retain this privacy guarantee in CTS. In addition, we preserve privacy of
the credential presentation mechanism of the underlying system (such as unlink-
ability in case of anonymous credentials) in CTS. We discuss this in detail in
Sect. 1.1.

Contributions

– To the best of our knowledge, this is the first work to introduce and formalize
a credential transparency framework (CTS). CTS adds strong transparency
guarantees to a credential management system, thereby reducing the trust
assumption on the service provider of a credential management system. The
guiding principle of CTS is retaining usability features for users, while pro-
viding strong (in a cryptographic sense) transparency guarantees. This means
we avoided any unrealistic assumption from the user (such as they can main-
tain a long-term cryptographic secret) in our design. We believe taking such
usability features into consideration from the very beginning is important in
building realistic security systems.

– We designed CTS to be compatible with a wide range of credential manage-
ment systems: from SSO systems to more sophisticated, unlinkable anony-
mous credentials. This means we had to be careful in preserving the privacy
requirements of the underlying credential management systems themselves.
For example, if the credential presentation system is such that every show of
the credential to a verifier is unlinkable from each other, we have to ensure
that CTS retains that feature. However, such strong unlinkability is not a
requirement in every application (e.g., SSO). So, we do not want CTS to
enforce such a feature if the application does not require it. Instead, we took
the approach of preserving the privacy requirement of the underlying creden-
tial management application in our formal definitions.

– Finally, we provide a CTS instantiation and prove its security formally. At a
high level, the construction works as follows. The service provider in CTS (also
called the cloud) manages the credentials on the users’ behalf. The provider
maintains a log internally, in which it stores all the credential shows for each
user’s credentials. Each verifier will ensure that every time the provider shows
it a credential on behalf of a user (potentially anonymously), that credential
is logged. The service provider also publishes privacy-preserving snapshots



316 M. Chase et al.

of this log periodically, which are audited for consistency. When devices of a
user monitor her credential show history, the service provider produces proofs
of the history, which are verified against these public snapshots.

Note that this requires that we can guarantee that all parties in the sys-
tem (in this case the users and verifiers and auditors) see the same snap-
shots. This requirement is shared by all previous transparency works, including
(CONIKS [20], SEEMless [11], Google Key Transparency [2]) software trans-
parency [17,21], and key recovery transparency [16]. There have been several
proposals for how to achieve this, including posting snapshots to a blockchain,
having parties or their representatives engage in a gossip protocol, or merely
posting the snapshot signed by the service provider/cloud to many honest web-
sites. Here we remain agnostic to the technique used and just assume that we
have some way of guaranteeing that all parties see the same snapshots or detect
misbehaviour.

In our instantiation, each snapshot contains two snapshots internally: one
append-only strong accumulator snapshot (SA) and one append-only zero-
knowledge set (ZKS) snapshot (for formal descriptions of these primitives, please
refer to the Appendix). The SA accumulates all the shows of all users and the
ZKS accumulates some special markers that count the number of shows per-
formed on a particular user’s behalf. Each user has a counter associated with
her (which starts from 1 for the first show that the cloud performs for this user).
If the counter reaches n for a some user such that n = 2α for some α ∈ N, then
the cloud adds α to the ZKS. The concept of using these α’s to speed up verifier’s
work was introduced in SEEMless [11]; following the notation of SEEMless we
call these “α”s markers.

Finally, as in SEEMless [11], we assume a set of auditors who audit the
snapshots for consistency; these auditors can be users or third parties - they do
not see any private information and we only need that at least one honest auditor
audits each pair of snapshots. Each time a credential is presented, an (honest)
verifier verifies that the show is correctly included in the log by checking that it
has been added to the SA and ZKS (if the count reached a marker). However,
we do not want to leak the counter and the marker of each show to the verifier.
So we prove validity of this statement using a zero-knowledge proof.

The cloud also needs to prove validity of a user’s history (when the user
device checks it) with respect to the latest snapshots. While learning counters
and markers for one’s own credential shows is not a leakage, we need to be careful
not to leak any information about other shows belonging to other users in the
log. This is guaranteed by the simulatability of proofs in SA and ZKS.

Difference with SEEMless [11]: SEEMless [11] is a privacy-preserving key
transparency system that enables a service provider to maintain an auditable
PKI for client certificates; auditable PKI which has strong application in end-
to-end encrypted messaging systems. Our CTS design is inspired from SEEMless,
but CTS has significant technical differences with SEEMless as we discuss below.
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Definitional Framework. We need to accommodate the diversity of the cre-
dential management system, to which we are adding transparency guarantee,
within our definitional framework. To do this, we depart from the privacy defini-
tion of SEEMless completely and introduce two new concepts in our definition:
user secret keys and pseudonyms. We discuss the details of our privacy formal-
ization in Sect. 1.1.

Construction. While the data structures we use in CTS have some similari-
ties with the data structures used in SEEMless [11], there are some significant
technical differences since CTS requires more privacy than SEEMless. SEEMless
data structures is composed of two ZKS. In the CTS instantiation we use one
ZKS and one SA instead: SA for storing the user show information and ZKS
for storing the markers for each user. In SEEMless, someone who communicates
with the user can search for user’s key inside the log and get access to the version
number (equivalent of the counter) to verify if the key is up to date. While this
leakage could be benign in case of a verifiable key directory such as SEEMless,
leaking the counter and marker to a verifier seems like a significant leakage as
it will leak how many shows for a user has been done to different verifiers. In
case the underlying credential system provides unlinkability we need to hide the
user identity from the verifier as well. This is why deviate from the SEEMless
design (which only used ZKS proofs) and use ZKS and SA proofs + a ZK proof
as described above.

1.1 Definitional Framework for Diverse Credential Systems

As discussed above, the techniques we use in our CTS proposal are compat-
ible with many different types of credential systems, from privacy-preserving
anonymous credentials to more common single sign-on systems. To capture this
diversity within one definitional framework we focus on two concepts: user secret
keys (usk) and pseudonyms.

The user secret key defines what is unique to the user, so that the basic goal
of CTS is to ensure that all credential presentations that use a given user secret
key must be listed when that user queries the log for her history1. In an SSO
system, this might simply be the user’s email or login ID. In a privacy-preserving
credential system, this would often be a random secret selected by the user (or
the user’s device together with the issuer) and known only to the user. This type
of secret is often used to tie together many credentials issued to the same user.

However, in these privacy-preserving schemes, the user secret key is obviously
not presented directly to the verifier. On the other hand, it is essential that the
credential presentation is in some way directly tied to the user secret key in

1 Note that, in cases where usk is not a human-memorable, we want the service
provider to commit to the mapping from a username (or equivalent user memo-
rable string) to usk. Then service provider would first show which usk corresponds
to the username, and then use CTS to show the presentations linked to that usk.
This additional mapping is just a straightforward append only ZKS, so we don’t
describe it here.
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question, so that there is a well defined user in whose history this presentation
should appear. To capture this, we use the notion of a pseudonym – a value which
encapsulates the user secret key and which will be given to the verifier as part
of the presentation. We require that the pseudonym be binding, in that there is
at most one usk which can be consistent with the pseudonym – so that there is
a unique user corresponding to each presentation. Depending on the credential
scheme, the pseudonym may provide varying degrees of privacy by hiding the
usk, in which case we guarantee that the CTS will not reveal more about the usk
than is directly revealed by the pseudonym. In a anonymous credential scheme,
the user will present the pseudonym and then prove possession of a credential
with appropriate attributes that has been issued to the usk represented by the
given pseudonym.

Our pseudonym will be allowed to depend on both the context of the pre-
sentation and the usk. This allows for credential schemes in which the user has
a different unlinkable pseudonym for every context, as well as those where the
user’s pseudonym is required to be consistent across different presentations to
the same verifier. If the context also includes a timestamp, nonce, or other value
that is guaranteed to be different for each presentation, then this can give full
unlinkability, in which every presentation looks like it could have come from a
different user.

Finally, we will require that the pseudonym be computed via a deterministic
function of the context and the usk. This is not strictly essential, but it sim-
plifies our definitions, construction, and analysis. This is trivial in non-privacy
preserving contexts, where the function can be defined to directly output the
usk (for example the user login) as a pseudonym. Technically, it is also not hard
to achieve in most credential schemes. For example, in the random oracle model,
there is a simple construction for any credential that supports discrete-log repre-
sentation proofs. (This includes RSA-based [9], prime-order group [6,8,13] and
pairing-based constructions [7,10,22].) This construction hashes some portion
of the context (depending on the privacy goals as described above) into the
group, and then raises the resulting group element to the usk. The base will
thus be computable by the verifier, and DDH will guarantee that when the con-
text changes appropriately the pseudonym will be unlinkable. If the credential
supports discrete-log representation proofs, then it is straightforward to prove
that the usk in the pseudonym matches that encoded in the credential.

2 Credential Transparency System (CTS)

In this section we will introduce a primitive called Credential Transparency Sys-
tem (CTS). A CTS consists of four types of parties: the users; the verifiers;
the cloud; and external auditors. The cloud manages the user’s credentials on
their behalf. In CTS, we want to guarantee that every credential show that the
cloud performs on behalf of the user is logged (in a tamper proof and privacy-
preserving manner), so that the cloud cannot lie about it later.

The verifiers (sometimes also referred to as Relying Parties or RPs) are the
consumers of the credentials. When they consume a credential show, they also
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check that the show is logged by the cloud service. When some user asks the
cloud service to show her credentials, the cloud issues a credential show that
the verifier checks. This show can be unlinkable and privacy preserving (as in
anonymous credentials), should the application require it to be so, or not privacy-
preserving such as in SSO [4]. This choice depends on the application and CTS
does not take any position on it. CTS captures both private and non-private
credential presentations by abstracting the presentation as a show and ensures
that adding logging guarantees does not introduce any significant additional
leakage over what the credential presentation system already leaks. This means,
if the credential presentation is unlinkable, CTS logging preserves this property.
We discuss this in more details in Sect. 1.1.

The cloud service provider maintains an internal log of all credential pre-
sentations of all users that it performs. After presenting some credential to a
verifier, the cloud will update its log by appending this show information and,
at regular intervals of time, it will publish snapshots (CTS.Publish) of its log and
prove to the verifiers that the updated log has correctly registered all the shows
that occurred in the interval (CTS.InclProof). It also maintains a data structure
of all the published snapshots so far.

The auditors in the system ensure global consistency of the published snap-
shots by checking update proofs (CTS.PublishVer), so that the cloud won’t be
able to equivocate. Auditing can be performed by Users or Verifiers, but also by
some third party as audit proofs do not reveal any sensitive information.

We do assume that there is some way of ensuring that all parties have con-
sistent views of the current snapshot or at least that they periodically compare
these values to make sure that their views have not forked. One way of doing
this would be for the cloud to publish the snapshots periodically to a blockchain.
Alternatively, this could be implemented using a gossip protocol. For further dis-
cussion on this, please see SEEMless [11].

The users’ devices query the cloud in the background to monitor the history
of shows presented on her behalf (using CTS.Hist).

Definition 1. A Credential Transparency Log consists of the Algorithms:
CTS.ParamSetup, CTS.ServerSetup, CTS.GetNym, CTS.Publish, CTS.PublishVer,
CTS.InclProof,CTS.InclVer,CTS.Hist,CTS.HistVer.

System Setup
� p̂p ← CTS.ParamSetup(1λ): This algorithm takes the security parameter as
input and outputs some public parameters pp for the scheme. We include this
algorithm mainly for compatibility with standard definitions. In reality we will
want to instantiate our protocols with schemes that don’t require trusted setup
or, if a common random string is required, we will generate it with a random
oracle so that we do not need any trusted party.

� (pp, st0) ← CTS.ServerSetup(p̂p): This algorithm is run by the cloud and
takes as input the public parameters p̂p, it generates the public parameters pp,
it outputs pp and initializes the state of the cloud server: st0. We consider pp
and p̂p to be implicit inputs to all the following algorithms.
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Credential Presentation
� nym ← CTS.GetNym(usk, ctext): This algorithm is run by the cloud. It takes
as input the user’s secret key usk and context information ctext. It outputs
a pseudonym called nym, which is used for the credential presentation. ctext
contains information about context in which the credential will be presented.
For example, this can be the verifier’s URL/identity information + timestamp
of presentation.

The pseudonym should be binding, meaning that for all ctext and
(usk1, usk2), usk1 �= usk2 implies that CTS.GetNym(usk1, ctext) �= CTS.GetNym
(usk2, ctext). We also assume the pseudonym is deterministic. Note that for
unlinkable presentations, additional privacy properties will be required of nym.
But, as explained above, CTS leaves it up to the application and minimally
requires the pseudonym to be binding. See Sect. 1.1 for more discussion.

Snapshot Publications
� (πUpd

t , snapt, stt) ← CTS.Publish(stt−1,Showt): This algorithm is run by the
cloud. It takes as input the current state of the Cloud stt−1 and a list Showt

of show information to register in the log. Each show corresponds to presented
credential information and includes the corresponding context ctext. It outputs
the updated state stt, a public snapshot snapt and a proof πUpd

t that nothing was
removed from the log. Note that, in case the usk’s used by the system are not
human-memorable strings, the Cloud is also required to maintain an auditable
mapping from a username (or equivalent user memorable string) to usk and
publish the mapping as a part of snap. This is a straight-forward addition to
make, so we do not make it explicit in CTS.

� 0/1 ← CTS.PublishVer(snapt, snapt−1, π
Upd
t ): This algorithm is run by the

external auditors. It takes in input the new snapshot snapt, the previous one
snapt−1 and a proof πUpd

t . It verifies consistency of the new snapshot with respect
to the last one. This outputs a bit indicating success or failure of this verification.

Verification of Inclusion in the New Snapshot
� πInc ← CTS.InclProof(stT , usk, ctext): This algorithm is run by the cloud. It
takes as input the state of the Cloud corresponding to the last published snapshot
stT , the user’s secret key usk and the context information of the show ctext Note
that the context information should be unique for every show because
it is used by the verifier to identify the show in order to verify its inclusion
later. It outputs a proof πInc of inclusion of the context information in the log.
In case, usk is not a human-memorable string, πInc will also include the human-
memorable username and the proof of mapping between the username and usk.
As we explain above, this is straight-forward to add to a CTS system. We do
not make it explicit to keep the description simple.

� 0/1 ← CTS.InclVer(snapT , nym, ctext, πInc): This algorithm is used by the
verifier. It takes as input the last published snapshot snapT , the pseudonym
of the user nym, the context information of the show ctext and a proof πInc. It
outputs a bit that indicates if the verification of πInc is correct or not.
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User Verification of History
� ((ctexti)n

i=1, π
Hist) ← CTS.Hist(stT , usk): This algorithm is run by the cloud.

It takes as input the state of the Cloud stT corresponding to the last pub-
lished snapshot snapT and the user’s secret key usk. It outputs a list of contexts
(ctexti)n

i=1 about the shows of the User’s credential and a proof πHist that those
contexts are correct and nothing is omitting with respect to the committed log.

� 0/1 ← CTS.HistVer(snapT , usk, (ctexti)n
i=1, π

Hist): This algorithm is used by
the user. It takes as input the last published snapshot snapT , the user’s secret
key usk, a proof πHist and a list of contexts (ctexti)n

i=1 about all the shows of
the user’s credential. It outputs a bit that indicates if the verification of πHist is
correct or not.

2.1 Security Properties

In this section we state the security properties of a CTS.

Completeness: The Completeness property is satisfied if all the verifications
of the proofs accept with overwhelming probability when all the parties behave
honestly. We define a completeness game in which the stateful adversary wins
if it finds an input for a proof algorithm that is rejected in the protocol; we let
the adversary choose all the shows that will be included in the log. Then the
snapshots are produced for every set of show, using CTS.Publish. Once all the
snapshots have been published, the adversary tries to find one proof that is not
valid to win the game.

Definition. The game GA
compl(λ) is defined in Fig. 1.

CTS is complete if for all n ∈ N, and all PPT stateful adversary A,
there exists a negligible function ν such that for all λ > 0, we have Pr[0 ←
Gcompl(λ, n)] < ν(λ).

Soundness: The Soundness property holds if the Cloud cannot cheat about
inclusion of show information in the Log. That is to say: the Cloud should not
be able to prove to the verifier that ctext information about a show under some
nym has been included while proving to the user under the nym that ctext is not
in the log.

In the soundness game, the adversary is the Cloud and will compute snap-
shots and proofs of updates of the log. Then it will output a proof πInc of inclusion
of ctextInc under the identity of nymInc at epoch iInc. It will also output a list of
(ctextHist,i)i corresponding to uskHist and a proof πHist of inclusion of those at
epoch iHist > iInc The adversary wins if all the proofs are valid, if nymInc corre-
sponds to uskHist and if ctextInc /∈ (ctextHist,i)i

Definition. The game GA
sound(λ) is defined in Fig. 2.

CTS is sound if for all PPT adversary A there exists a negligible function ν
such that for all λ > 0, we have Pr[1 ← GA

sound(λ)] < ν(λ).
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Fig. 1. CTS Completeness game

Fig. 2. CTS Soundness game
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Privacy: At a high level, the privacy guarantee of a CTS is that the outputs
of CTS.InclProof, CTS.Hist, or CTS.Publish should not reveal anything beyond
the answer and a well defined leakage function on the cloud’s log state. So, the
proofs for each of these queries should be simulatable given the output of the
leakage function and the response.

For the privacy definition, we assume that the verifier can collude with other
users; we call these corrupted users and record them in the set CU. There is also
a set for honest users HU. CTS should protect the privacy of users registered
in HU. We assume for this property that the Cloud is honest, otherwise he can
clearly reveal whatever information he chooses and guaranteeing any privacy is
impossible.

The adversary will play a game in which it has access to some Oracles. We
want to be able to replace all the oracles by simulators that will be constructed
without using any honest user secret information. We want the adversary not
to be able to distinguish if it interacts with the oracles or with the simulators.
This way, we can be sure that the protocol does not leak any information about
honest users (beyond a well defined leakage function).

Definition. The game GA
b,privacy(λ) for b ∈ {0, 1} is defined in Fig. 3.

CTS is private if for all PPT adversary A, there exists a negligeable function ν
such that for all λ > 0, we have |Pr[1 ← GA

1,privacy(λ)]−Pr[1 ← GA
0,privacy(λ)]| <

ν(λ).

3 CTS Construction

3.1 Overview of Our Construction

Here we give an overview of our construction and defer the pseudocode to the full
version. In the CTS construction, the Cloud maintains an append only Strong
Accumulator (SA) of (label, com) pairs. The label label is evaluated from the
user secret key usk and a counter count[usk] (which enumerates the shows of
this user) by applying a VRF on usk, count[usk]. com is a commitment to the
context information of the show. Each usk is being attributed a counter which
is incremented each time a show occurs.

In addition, the cloud maintains an append only Zero-Knowledge Set (ZKS).
The ZKS is used to store the number of uses of the user’s credential. For each user,
the cloud maintains a list of markers, which is the logarithms of the counters.
When the counter of one user reaches a new level: count[usk] = 2α, then the
Cloud will add marker := α = log2(count) together with usk to ZKS. This way
all the markers in [1, log2(count[usk])] are stored in ZKS as usk||marker.

To prove inclusion of an element in the log, the cloud will produce a proof
of inclusion in the SA of a label pair (label, com) and a proof of inclusion of
usk||marker in the ZKS. When the proof of inclusion is made for the user in
CTS.Hist, the Cloud will also reveal the context ctext that has been used to
compute the commitment. Every time one user asks the cloud for its history, the
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Fig. 3. CTS Privacy game
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cloud gives the proofs of inclusion of all the shows that concern this user. The
user can verify that the proofs are correct, and also that the shows are stored at
the right position inside the SA.

The cloud also needs to build proofs of inclusion of show information for
the verifier: it computes a proof that a (label, com) pair is included in the SA,
with com corresponding to ctext. The cloud computes a Zero Knowledge proof
of knowledge of the witness witness := (usk, count,marker, πVRF, πZKS) for the
statement statement = (nym, ctext, snapT,ZKS) such that:

– VRF.Verif(pp, (usk||count), label, πVRF) = 1, which proves that the label com-
puted corresponds to the user secret usk (thus the user will have access to it
via the algorithm CTS.Hist.

– nym = CTS.GetNym(usk, ctext) which proves that the pseudonym nym was
computed correctly.

– ZKS.Verif(pp, snapT,ZKS, (usk||marker), 1, πZKS) which proves that the marker
marker is correctly included inside the ZKS

– 2marker � count < 2marker+1 which proves that the marker marker corresponds
to the counter count.

We want the verifier not to be able to link multiple credential shows by a user (if
the underlying pseudonym is unlinkable), or learn the count or the marker. That’s
why we need the ZK proof described above. All the algorithms are described more
precisely in the next section.

In case usk is not a human memorable string, the Cloud will need to maintain
an additions ZKS that maps a human-memorable username to usk. Since this
can be easily implemented using a separate ZKS, we will not explicitly describe
this in our construction.

3.2 Construction Description

In this section we explain how the different algorithms of CTS are instantiated.
The algorithmic pseudocode is deferred to the full version [12].

We introduce an example to make the instantiation more concrete. We have
two users, Alice and Bob whose credentials are managed by the Cloud, and one
Verifier. On the first update, Alice requests two shows of her credential to the
verifier and Bob one.

CTS.ParamSetup: This algorithm is run by a trusted authority which gener-
ates the parameters for most of the schemes. It generates the public parameters
of the ZKS scheme, the VRF scheme, the commitment scheme and the ZK pro-
tocol. those parameters are grouped in p̂p which is outputed. We include this
mainly for compatability with the definitions of the building blocks. In reality
we will want to use random oracle based schemes for all of these building blocks,
so the setup will only include specifying the hash function.

CTS.ServerSetup: This algorithm takes as input the parameters p̂p. It gener-
ates lists and parameters for the server (cloud). First it initialises the snapshot
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and states of the ZKS and the SA, after that it generates the keys (cpk, csk)
for the VRF. Then it initialises the list List, the counter table count[] and the
maximum marker markerM = 2λ. It then groups those elements inside pp, snap0
and st0 and outputs pp and st0 (which contains snap0).

CTS.Publish: This algorithm takes as input a list of the public parameters pp,
the actual state stT−1 and a list of shows ShowT .

– It shuffles the set of Shows, so that it is not ordered (this operation is useful
for privacy).

– It initialises two lists, ST and CT which gather respectively the elements that
should be included inside the SA and the ZKS during the update.

– For every tuple (usk, ctext) in the set of shows :
• It increments the counter count[usk] (which counts the shows of usk) or

initialises the counter to 1 if it’s the first show for usk.
• It computes a label label using the VRF on usk||count[usk].
• It generates a random opening value open and uses it to build a commit-

ment com on ctext.
• It updates ST with the (label, com) pair and the list List with

(usk, count[usk], label, ctext, open).
• It verifies if the counter count[usk] reached a marker. If count[usk] :=

2marker for some marker ∈ [0,markerM], then it adds usk||marker in the list
CT .

– Then the algorithm updates the SA with the elements in ST and the ZKS
with the elements in CT . This generates a proof of update and a snapshot for
both the SA and the ZKS.

– The algorithm updates the state and outputs it with the proofs of update
and the snapshot of the SA and ZKS.

In our example, Alice made two shows, and Bob one. The shows are shuf-
fled so their initial order is not important. Alice’s counter is incremented two
times: count[uskAlice] = 2 and Bob, one time : count[uskBob] = 1. It computes
two labels for Alice labelAlice,i and one for Bob labelBob,1 using the VRF. It
also builds two commitments on the context information of Alice’s show
and same for Bob. Thus the SA is updated with the set ST which is equal
to {(labelAlice,1, comAlice,1), (labelAlice,2, comAlice,2), (labelBob,1, comBob,1)}. The
list List stores the following information:

List := {(uskAlice, 1, labelAlice,1, ctextAlice,1, openAlice,1)
(uskAlice, 2, labelAlice,2, ctextAlice,2, openAlice,2)
(uskBob, 1, labelBob,1, ctextBob,1, openBob,1)}

(1)

Alice’s counter reached two markers: 1 = 20 and 2 = 21, and the counter
of Bob reached the marker 1 = 20. Thus the ZKS is updated with the set
CT = {0||uskAlice, 1||uskAlice, 0||uskBob} containing the markers.
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CTS.PublishVer: This algorithm verifies the proofs of update and the snap-
shot provided by the algorithm CTS.Publish and outputs 1 if they are both
correct, 0 otherwise.

CTS.Hist: This algorithm takes as input the public parameters pp, the state
stT and the user secret key usk. It works as follows:

– First it computes the last marker marker := log2(count[usk]) reached by the
user. It also builds the maximum counter countM := 2marker+1 − 1 for which
corresponding labels needs to be verified in the SA.

– The algorithm uses the list List to obtain all the informations on shows related
to usk. The algorithm gets (usk, i, labeli, ctexti, openi)

count[usk]
i=1 from List.

– For every counter i from 1 to countM, the algorithm:
• Computes the label labeli on the value usk||i (note that for i � count[usk],

those have already been computed and stored in List. But this is not the
case for i > count[usk]).

• Obtain the commitment comi stored at the position labeli in the SA and
a proof of inclusion (if i > count[usk], we get comi = ⊥ and a proof of
emptiness).

• Proves that the label labeli is computed correctly from usk||i using the
VRF.

– Then, for every marker i from marker+ 1 to markerM, the algorithm builds a
non membership proof for usk||i in the ZKS.

– The algorithm outputs all the proofs, but also the labels computed, the com-
mitments, opening values and contexts which correspond to usk.

In our example, if Alice wants to check her history, then the algorithm
computes the marker marker = log(count[uskAlice]) = log(2) = 1 and deduces
the maximum counter that it must check : countM := 2marker+1−1 = 22−1 =
3. The algorithm produces membership proofs to prove the inclusion of
the pairs (labelAlice,1, comAlice,1), ((labelAlice,2, comAlice,2) in the SA. Then, it
computes the label for Alice associated with counter 3 using the VRF and
produces a non membership proof for this label. Finally, it produces non
membership proofs in the ZKS for all the markers from 2 to markerM := λ.

CTS.HistVer: This algorithm takes as input the public parameters pp, the
last snapshot snapT , the user secret key usk and all the proofs and the context
obtained from the algorithm CTS.Hist. It then verifies that all the proofs are
correct, but also that all the commitments are correctly computed from the
corresponding contexts. It outputs 1 if all the proofs verify and 0 otherwise.

CTS.InclProof: This algorithm takes as input the public parameters pp, the
state stT , the user secret key usk, the context ctext and the domain ctext. It
works as follows:
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– Computes the pseudonym nym of the user using the usk and ctext information.
– Search for the show corresponding to the usk and ctext given as input inside

the list List. It thus gets the tuple (usk, count, ctext, open) from List.
– Get the commitment com stored in the SA at the position label.
– Compute the marker marker := log2(count) corresponding to the counter of

this show.
– Compute a proof that the label was computed correctly by using the VRF on
usk||count.

– Build a membership proof for the marker marker inside the ZKS.
– Build the statement and the witness for the zero knowledge proof that fol-

lows. The statement is composed of (nym, ctext, snapT,ZKS) and the witness is
composed of (usk, count,marker, πVRF, πZKS).

– Compute the ZK proof, using the statement and witness. This should prove
the following properties:

• The VRF proof πVRF from the witness verifies.
• nym is a pseudonym for usk using the domain information.
• the ZKS proof πZKS from the witness verifies.
• 2marker � count < 2marker+1

– Output the ZK proof and the SA proof of inclusion, together with the label,
the opening open and the commitment com.

In our example, the verifier would have to check the inclusion of all the
three shows he received to check that they are included in the log. If the
verifier wants to check the first show of Alice, it means the algorithm uses
ctextAlice,1 as input. It gets (uskAlice, 1, labelAlice,1, ctextAlice,1, openAlice,1) from
the list List then, it gets the commitment comAlice,1 from the SA. It computes
the marker : marker = log(1) = 0 and a membership proof for this marker
inside the ZKS.

CTS.InclVer: This algorithm verifies the two proofs of the ZK and the SA and
also verifies that the commitment com is correctly computed from ctext.

3.3 Simulation Algorithms

In this section we describe the instantiation of the simulated algorithms intro-
duced in the privacy game in Fig. 3.

We start by describing the leakage functions. The first leakage function is
used for Sim.Publish and leaks the number of updates of the ZKS, the secret
key of corrupted users involved in the shows and the set C ∩ S′ which is the
intersection between the set C of update in the ZKS and the set S′ of values
for which non membership proofs have been produced (thus values that belong
only to corrupted users). The second leakage function is used for Sim.Hist and
Sim.Inc. It takes as input a show and outputs the epoch at which the show was
included inside the log.
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Leakage L1 : This leakage function takes as input a list of shows (ij , ctextj)k
j=1

and the list of corrupted users CU. It does the following:

– Initialises the table U := [] which remembers usk for all the shows of corrupted
users and the list C which stores the markers reached with the shows.

– For every index j from 1 to k, the algorithm:
• Updates the user’s counter count[ij ]: if count[ij ] is ⊥ then it initialises it

to 1, else it increments it.
• If count[ij ] ∈ {1, 2, 22, . . . , 2markerM}, then the counter reaches a new

marker marker := log2(count[ij ]) and C is updated with usk||marker.
• If ij is corrupted then, U[j] = usk else, U[j] = ⊥.

– The game outputs the size of C, the table U and the intersection C ∩ S′ (S′

is the set of all the usk||marker for which non-inclusion proofs were produced
during the game. This set is built in algorithm Sim.Hist and thus contains
only information for corrupted users.)

Leakage L2: This leakage function takes as input a show (i, ctext) and the global
show list ShowList. It outputs the epoch T at which the show was included inside
the SA.

Sim.ParamSetup: This algorithm is the simulation for the algorithm
CTS.ParamSetup. It uses the Simset algorithms for all the simulatable schemes,
to produce the public parameters together with a trapdoor which will be used
as input the simulation algorithms. It outputs all the public parameters and
trapdoors.

Sim.ServerSetup: This algorithm is the simulation for the algorithm
CTS.ServerSetup. It works as follows:

– Generates the public parameters for the SA and initial state and snapshot for
both the SA and the ZKS.

– Initializes the counter table count := [], the maximal marker markerM := 2λ.
– Initializes the lists and table:

• S′ := ( ) which will contain the usk||marker which have been proved non-
inclusion of during the game.

• LabList := ( ) which matches the label to the usk and the epoch T .
• HistList := ( ) which matches the com, ctext and open.
• UserList := ( ) which is used to recall which corrupted users have been

attributed some unused labels.
• LabTable := [] which stores the unused labels of corrupted users.

– Defines simList which regroups all those lists, pp which regroups the pub-
lic parameters, snap which regroups the snapshots and the state st (which
contains simList and snap).

– Outputs pp and st.

Sim.Publish: This algorithm is the simulation for the algorithm CTS.Publish.
It takes as input the state st, the number of updates k and a leakage L1 over the
shows. It does the following:
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– Get the output (c,U, CT ∩ S′) from L1 .
– Initialize ST = ( ) which contains the elements to put inside the SA.
– For index i from 1 to k:

• Define usk = U[i] (thus usk = uski if the user is corrupted, else usk = ⊥).
• If usk ∈ UserList, it means that some labels have been defined for usk, thus

we search in LabTable (which stores the labels) for the lowest counter j
such that LabTable[usk, j] is a label. We define label := LabTable[usk, j]
and we remove this label from LabTable[usk, j] so that we never use it
again. If there is no other labels for usk inside LabTable we remove usk
from UserList.

• Else sample label randomly.
• Use Com.Sim to generate a commitment (com, aux) and add (label, com)

to ST .
• Add (label, aux, usk, T ) to LabList.

– Update the SA with ST and update the ZKS using the simulation algorithm
ZKS.SimUpd with the number of updates c, the trapdoor and the intersection
CT ∩ S′ given as input. Update the state.

– Output the proofs and snapshots generated by the updates.

Sim.Hist: This algorithm is the simulation for the algorithm CTS.Hist. It takes
as input the state st, the user secret key usk, the list of contexts (ctexti)counti=1 and
a corresponding list of leakage of the L2 function. It works as follows:

– Compute the marker corresponding to the counter marker := log2(count) and
countM := 2marker+1 − 1.

– For index j from 1 to count:
• Use the Sim.Inc1 algorithm on ctextj (because a commitment of the SA

need to be attributed to ctextj).
• From ctextj , get the tuple (labelj , comj , openj , usk, ctextj) in HistList.
• Generate a proof of inclusion for the commitment comj inside the SA at

position labelj .
• Simulate a VRF proof that the label labelj was computed correctly.

– If count < countM, it means that the user will check more labels than the
labels already used for the context it checks. so we add usk to the list UserList
of user which have labels already.

– For index j from count + 1 to countM:
• Check in LabTable if the label is already defined for this user and counter

j. If LabTable[usk, j] = ⊥ then sample a random label an put it inside
LabTable[usk, j].

• Define the label label := LabTable[usk, j].
• Generate a proof that the SA is empty at position labelj .
• Simulate a VRF proof that the label labelj was computed correctly.

– For index j from marker+1 to markerM, simulate ZKS non membership proof
of usk||j and add usk||j to the list S′.

– Output all the proofs, labels, commitments, openings and contexts used in
the algorithm.
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Sim.Inc1: This algorithm is the simulation for the algorithm CTS.InclProof for
corrupted users. It takes as input the state st, the (corrupted) user secret key
usk, the context ctext and a leakage of L2 on the show. It works as follows:

– compute the pseudonym nym of the user using the usk and the ctext informa-
tion.

– Verify if (usk, ctext) ∈ HistList. If yes, it means that the open and commitment
com have already been attributed to ctext so:

• Get the corresponding tuple (label, open, com, usk, ctext) from HistList.
• Build the SA proof of inclusion of the commitment com at position label.
• Compute the ZK simulation proof using the same statement as in the

algorithm CTS.InclProof (statement := (label, nym, ctext, snapT,ZKS)).
– Else define T as the output of L2.
– Search for usk, T in LabList and get a corresponding tuple (label, aux, usk, T )

(If there are more than one tuple working, then pick one randomly).
– Get the commitment com from the SA using the SA.Incl algorithm and label.
– Compute a valid opening value using Com.SimOpen on com and ctext.
– Simulate a ZK proof using the same statement as in the algorithm
CTS.InclProof.

– Add the tuple (label, open, com, usk, ctext) to the list HistList to remember the
commitment and opening associated to ctext.

– Remove (label, aux, usk, T ) from the list LabList so that we do not reuse it.
– Output the proofs and the label, commitment, context.

Sim.Inc2: This algorithm is the simulation for the algorithm CTS.InclProof for
honest users. It is similar to Sim.Inc1, the differences are:

– It takes as input the pseudonym nym of the user instead of the usk and ctext.
– It stores the pseudonym nym in HistList instead of usk.
– It searches for ⊥, T in LabList and gets a corresponding tuple (label, aux,⊥, T ).

4 Security Proof

Theorem 1. The protocol CTS consisting of the algorithms CTS.ParamSetup,
CTS.ServerSetup, CTS.GetNym, CTS.Publish, CTS.PublishVer, CTS.InclProof,
CTS.InclVer,CTS.Hist,CTS.HistVer satisfies completeness, soundness and
privacy.

4.1 Intuition for the Proof of Soundness

The soundness of CTS is mainly based on the security properties of the building
blocks, namely, we use the extractability property of the Zero-Knowledge scheme,
the Append only properties of both the SA and the ZKS schemes, and the binding
properties of both the Commitment scheme and the VRF.

Since in this security game, the adversary has the role of the Cloud, it means
that as a challenger, we only get access to the verification algorithms of CTS.
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In the proof, we aim to build hybrids for those verification algorithms that will
make the game impossible to win for the adversary in the last hybrid. In the
last hybrid, the context ctextInc given as input to CTS.InclVer is necessarily one
of the contexts (ctextHist)counti=1 given as input to CTS.HistVer.

The first hybrid consists in modifying the CTS.InclVer algorithm which
verifies the zero knowledge proof by using the extractability property of the
ZK scheme. By doing this, we enforce the adversary to reveal the witness
witness = (uskInc, countInc,markerInc, πVRF, πZKS) it used to build the zero knowl-
edge proof.

The following hybrids match a lot of binding properties together to get the
result:

– First, the Append-Only property of the SA binds the commitments comi to
the labels labeli such that for some π we have 1 ← SA.Verif(pp, snapT , labeli,
comi, π). We get labeli = labelInc =⇒ comi = comInc.

– Second, the Binding property of the commitment scheme binds the com-
mitments comi to the contexts ctexti such that 1 ← Com.Verif(pp, ctexti,
open, comi). We get comi = comInc =⇒ ctexti = ctextInc.

– Third, the Append-Only property of the ZKS scheme matches the marker
marker computed in the history proof to the marker markerInc. It proves
that since the inclusion of markerInc was verified by getting 1 ←
ZKS.Verif(pp, snapT ,markerInc, 1, πInc) with the apprnd-only property of the
ZK scheme, we get that markerInc � marker, thus countInc � 2markerInc+1 − 1 �
2marker+1 − 1 = countM. It means that ∃i ∈ [1, countM] such that i = countInc.
We have matched one of the counters in the CTS.HistVer algorithm to countInc.

– Finally, we use the VRF binding property to bind the usk||i value to the
label labeli such that 1 ← VRF.Verif(pp, usk||i, labeli, π). We get that usk||i =
uskInc||countInc =⇒ labeli = labelInc.

In the end, we also need to use the binding property of the CTS.GetNym
algorithm to have nymInc = CTL.GetNym(uskHist, domain) imply uskHist = uskInc.
From this and the implications described above we get, for i = countInc:

uskHist||i = uskInc||countInc =⇒ labeli = labelInc =⇒ comi = comInc =⇒ ctexti = ctextInc.

Note that this also implies that countInc � count since otherwise we get
labeli = labelInc which implies comInc = comi = ⊥, which is impossible because
comInc is a valid commitment over the context ctextInc and thus comInc �= ⊥.

So in the end, we get that ctextInc belongs to the list of contexts (ctextHist)counti=1

given as input to CTS.HistVer which concludes the proof.

4.2 Intuition for the Proof of Privacy

To prove the privacy of CTS, we rely mainly on the Simulatable property of the
building blocks. Namely we use the simulatable property of the ZK scheme, of
the ZKS scheme, of the Commitment scheme and of the VRF scheme.
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The aim is to move from Game0,privacy to Game1,privacy defined in Fig. 3 by
building intermediate hybrids. In this game, the adversary represents a collusion
of the corrupted users and verifiers. Thus the challenger performs the Cloud
algorithms for the adversary as oracle requests.

The hybrids consist in modifying the algorithms CTS.Publish,CTS.Hist,
CTS.InclProof, CTS.ParamSetup, CTS.ServerSetup by their simulation equivalent
and also in modifying the oracles and introducing some leakage functions.

The first step consists in simulating the ZK scheme. This allows us to not
define the witness witness in the CTS.InclProof algorithm and thus, not produce
for example a membership proof for the inclusion of marker inside the ZKS.

After this, we can easily replace the ZKS algorithms by their simulations in
both the algorithm CTS.Publish (in which the ZKS is updated) and the algorithm
CTS.Hist (in which we produce non-membership proofs).

The next step consists in replacing the commitment algorithms by their sim-
ulation. In CTS.Publish, instead of picking a random open and use it to create a
regular commitment com on the context ctext, we use the simulation algorithm
Com.Sim to produce an empty commitment, and after that we create an open-
ing value open using the algorithm Com.SimOpen to match the commitment com
and the context ctext. This modification allows us to separate the definition of
the commitment and the moment at which the commitment is attributed to a
context. While we leave the commitment creation command Com.Sim inside the
algorithm CTS.Publish, we can move the command Com.SimOpen (which links
com to some context ctext) to the algorithm CTS.InclProof (in which the verifier
checks that some context has a commitment corresponding to it inside the SA).
Thus we can remove all the uses of contexts inside the CTS.Publish algorithm.

To make this consistent, we need to give more information to the algorithm
CTS.InclProof on the show which it proves inclusion of: we introduce the leakage
function L2 which reveals the epoch at which the show was included inside the
log. This is important because from the perspective of a corrupted user, the shows
included inside the log follow some order related to the different epochs T . The
user can check that this order is respected by using the CTS.Hist algorithm.

Then, we replace the VRF algorithms by their simulation. In order to do
that, we need to identify the moment at which the VRF of some value usk||i is
defined for the first time in the game, and store it in a table so that we don’t
redefine it again during the game. This is important because a simulation of
the VRF consists in replacing the VRF evaluation by a random sample which
must not change if the input is the same. We use a table (called LabTable in the
instantiation), to replace the VRF by its simulation. This modification allows to
remove all the use of usk (user identity) and count[usk] inside the CTS.Publish
algorithm. We still need a leakage function given as input of CTS.Publish to leak
the usk for the corrupted users concerned by the update (so that we can get
their labels if they were already defined by using CTS.Hist). We also need to
give as leakage the number of counters of users that reach a marker (number of
elements to add into the ZKS) during the update and the intersection CT ∩ S′,
which contains only information about corrupted users: CT are the markers that
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should be added to the ZKS with the update and S′ are the markers which
have been proved non membership of during the game (this happens only for
corrupted users in the algorithm CTS.Hist).

After all those modifications, we obtain the game Game1,privacy which does
not use any secret information from the honest users as input of the algorithms
(beyond the leakage).
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Abstract. Chakraborty, Prabhakaran, and Wichs (PKC’20) recently
introduced a new tag-based variant of lossy trapdoor functions,
termed cumulatively all-lossy-but-one trapdoor functions (CALBO-
TDFs). Informally, CALBO-TDFs allow defining a public tag-based
function with a (computationally hidden) special tag, such that the func-
tion is lossy for all tags except when the special secret tag is used. In
the latter case, the function becomes injective and efficiently invertible
using a secret trapdoor. This notion has been used to obtain advanced
constructions of signatures with strong guarantees against leakage and
tampering, and also by Dodis, Vaikunthanathan, and Wichs (EURO-
CRYPT’20) to obtain constructions of randomness extractors with
extractor-dependent sources. While these applications are motivated by
practical considerations, the only known instantiation of CALBO-TDFs
so far relies on the existence of indistinguishability obfuscation.

In this paper, we propose the first two instantiations of CALBO-TDFs
based on standard assumptions. Our constructions are based on the
LWE assumption with a sub-exponential approximation factor and on
the DCR assumption, respectively, and circumvent the use of indistin-
guishability obfuscation by relying on lossy modes and trapdoor mecha-
nisms enabled by these assumptions.

Keyword: Lossy trapdoor functions, cumulative lossiness, standard
assumptions

1 Introduction

As introduced by Peikert and Waters [48], lossy trapdoor functions (LTDFs) are
function families where evaluation keys can be sampled in two modes: In the
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injective mode, a function Fek(·) is injective and can be inverted using a trap-
door tk that comes with the evaluation key ek; In the lossy mode, a function
Fek(·) has a much smaller image size and thus loses a certain amount of infor-
mation about its input. The standard security of an LTDF requires that the
two modes be indistinguishable. That is, no efficient distinguisher can tell apart
lossy evaluation keys from injective ones.

Lossy trapdoor functions have been built from a variety of standard cryp-
tographic assumptions, such as the Decisional Diffie-Hellman (DDH) [25,29,48]
and Learning with Errors (LWE) assumptions [2,8,48], the Quadratic Residu-
osity (QR) [24,25,37] and Composite Residuosity (DCR) assumptions [25], the
Phi-hiding assumption [3,41] and more [46,53]. They have found numerous appli-
cations in cryptography, including chosen-ciphertext security, trapdoor func-
tions with many hard-core bits, collision-resistant hash functions, oblivious trans-
fer [48], deterministic [9,50] and hedged public-key encryption [6,52] in the stan-
dard model, instantiability of RSA-OAEP [41], computational extractors [23,27],
pseudo-entropy functions [18], selective-opening security [7], and more.

Several generalizations of LTDFs have been considered. Of particular interest
are the tag-based variants, where algorithms take an additional tag as input. In
all-but-one LTDFs [48] for instance, the evaluation key obtained by running the
sampling algorithm with a special tag tag∗ is such that the function Fek(·, tag)
is injective for all tags tag �= tag∗, but the function Fek(·, tag∗) is lossy. All-but-
one LTDFs have been generalized to all-but-N LTDFs [36] (which admit N > 1
lossy tags) or all-but-many lossy trapdoor functions (where arbitrarily many lossy
tags can be adaptively created). The latter notion notably found applications to
selective-opening chosen-ciphertext security with compact ciphertexts [14,39,43].

In a setting where multiple lossy evaluations are provided (e.g., for multiple
lossy evaluation keys in the context of standard LTDFs or for multiple lossy tags
in the context of tag-based LTDFs), one may want to guarantee that multiple
lossy evaluations on the same input x do not reveal more information about x
than a single evaluation. This additional property was termed cumulative lossi-
ness in [19] where it was formalized by requiring the existence of a (possibly
inefficient) algorithm that starts with some fixed, partial information about x
and recovers the entire information provided by the multiple lossy evaluations.
The fact that all these evaluations can be recovered (even inefficiently) from the
same amount of partial information on x then guarantees that multiple lossy
evaluations on the same input x preserve the entropy of x. In particular, they
do not end up leaking x entirely.

In this paper, we investigate the notion of cumulatively all-lossy-but-one trap-
door functions, suggested by Chakraborty, Prabharkaran and Wichs [19], which
considers the case where all tags are lossy, except one. This notion has been used
to obtain advanced constructions of randomness extractors [23] and signatures
in the leakage and tampering model [19].

Cumulatively All-Lossy-But-One Lossy Trapdoor Functions. A cumula-
tively all-lossy-but-one trapdoor functions (CALBO-TDFs) is a tag-based LTDFs
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where the function Fek(·, tag) is lossy for any tag tag except one special injec-
tive tag tag∗, for which Fek(·, tag∗) is invertible using a trapdoor td associated
with ek. In addition, the lossiness is required to be cumulative in the sense that
multiple evaluations Fek(x, tagi) for lossy tags tagi �= tag∗ always leak the same
information about x. Finally, the evaluation key should computationally hide
the special injective tag and evaluation keys generated with distinct injective
tags are required to be (computationally) indistinguishable.

In [23], the notion of CALBO-TDFs was relaxed by not requiring the exis-
tence of a trapdoor for the injective tag tag∗. This relaxed notion, termed
CALBO functions (or CALBOs for short), is also implicit in [18,26]. By drop-
ping the trapdoor requirement, these works obtained CALBOs from standard
lossy functions (without trapdoor). Therefore it has been possible to construct
CALBOs from many standard assumptions such as DDH, LWE, or DCR.

The design of CALBO-TDFs, for which a trapdoor is required in injective
mode, is much harder. Indeed, the only known instantiation so far [19] relies on
the existence of indistinguishability obfuscation [28] (iO) besides the DDH (or
LWE) assumption. At a high level, the construction of [19] starts with cumulative
LTDFs (C-LTDFs), which can be built from LWE or DDH, and combines it with
iO and puncturable PRFs [13,15,40]. The idea of [19] is to generate a CALBO-
TDF evaluation key as an obfuscated program in which the special injective tag
tag∗ is hard-wired together with an injective evaluation key for the underlying C-
LTDF. This program, on input tag, outputs the hard-wired injective evaluation
key if tag = tag∗; Otherwise, it samples a lossy evaluation key using randomness
derived from a puncturable PRF (of which the key is also hard-wired in the
program) evaluated on the input tag, and finally returns the resulting evaluation
key. When it comes to evaluating a function for an input x and a tag tag, [19]
evaluates the underlying C-LTDF on input x using the evaluation key obtained
by running the obfuscated program on input tag. The injectivity on the special
tag tag∗ and the cumulative lossiness property immediately follow from the same
properties in the underlying C-LTDF. Indistinguishability of evaluation keys
simply follows from the security of iO, the pseudorandomness of the puncturable
PRF when puncturing the tags, and the indistinguishability of lossy and injective
keys in the underlying C-LTDF.

In [19], CALBO-TDFs served as a building block to construct leakage and
tamper resilient signature schemes with a deterministic signing algorithm, a
notion that provides a natural solution to protect signature schemes against
leakage, e.g. physical analysis and timing measurements, or tampering attacks,
where the adversary deliberately targets the randomness used by the algorithms.
The complexity of the CALBO-TDF candidate of [19] motivates the search for
simpler, more efficient instantiations of CALBO-TDFs that avoid the use of
heavy hammers like obfuscation and rely on more standard assumptions.

1.1 Our Contributions

We present two constructions of CALBO-TDFs based solely on standard assump-
tions. Our first construction relies on the LWE assumption [51] with sub-
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exponential approximation factor in reducing LWE to a worst-case lattice prob-
lem1, while our second construction relies on Paillier’s Composite Residuosity
assumption [47] (DCR).

We thus avoid the use of indistinguishability obfuscation (which was used to
hide the hard-wired values including the special tag and the injective evaluation
key) by relying on lossy modes and trapdoor mechanisms enabled by LWE and
DCR. The first construction uses the lossy mode and trapdoor mechanism of
LWE in a similar way to [2,32,45]. By exploiting ideas from [44], it achieves a
mildly relaxed notion of cumulative lossiness, where cumulative lossiness only
holds with overwhelming probability over the choice of (non-injective) tags. The
same relaxed notion was used in the LWE+iO-based construction of [19]. This
relaxation does not hurt any of the applications, as shown [19]. Our second
construction relies on the lossiness and trapdoor mechanism of the Decision
Composite Residuosity (DCR) assumption. In particular, it uses the Damg̊ard-
Jurik cryptosystem [20] in a similar way to the LTDF of Freeman et al. [25].

1.2 Technical Overview

Relaxed CALBO-TDFs from LWE. We start from the observation that
CALBOs (without a trapdoor) can be viewed as selectively secure unpredictable
functions when the key of the function is the CALBO’s input and the input
of the function serves as the CALBO’s tag. We then upgrade the LWE-based
PRF of Libert, Stehlé and Titiu [44] whose security proof precisely relies on the
cumulative lossiness of the LWE function (in its derandomized version based on
the rounding technique of [4]) for an appropriate choice of parameters. The LWE
function (which maps a pair of short integer column-vectors (s, e) ∈ Z

n ×Z
m to

s�A+e�, for a random matrix A ∈ Z
n×m
q ) is known [32] to provide a lossy func-

tion, and even a lossy trapdoor function for an appropriate choice of parameters
[2,8]. The PRF of [44] interprets a variant of the key-homomorphic PRF of [11]
as a lossy function in its security proof. More specifically, letting �·�p : Zq → Zp

denote the rounding function of [4] for moduli p < q defined as �x�p = �(p/q)·x�,
the function mapping x ∈ Z

n
q to

⌊
x� · A

⌋
p

is injective when A ∈ Z
n×m
q is uni-

formly random and lossy (as shown in [2]) when A is of the form D� · B + E
for some random B ∈ Z

�×m
q ,D ∈ Z

�×n
q , � � n, and some small-norm matrix E.

The PRF of [44] maps an input x to �s�A(x)�p, where s ∈ Z
n is the secret key

and A(x) ∈ Z
n×m
q is an input-dependent matrix derived from public matrices.

The latter matrix is actually obtained using fully homomorphic encryption tech-
niques, by multiplying Gentry-Sahai-Waters (GSW) ciphertexts [31] indexed by
the bits of x. The security proof of [44] “programs” A(x) in such a way that all
evaluation queries reveal a lossy function of the secret key s while the challenge
evaluation reveals a non-lossy function �s�A(x�)�p of s. By choosing a large

1 The approximation factor is closely related to the modulus-to-noise ratio q/σ if the
LWE problem is defined over the ring of integers modulo q and the errors are sampled
from a discrete Gaussian distribution Dσ.
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enough ratio q/p, they show that all evaluation queries reveal the same informa-
tion about the secret key s, which is exactly what we need to prove cumulative
lossiness in the CALBO setting. At the same time, [44] shows that �s�A(x�)�p

retains a large amount of entropy conditionally on the information revealed by
all evaluation queries.

We introduce two modifications in the function of [44]. First, we only need
a selectively secure version of their PRF since the injective tag tag∗ is known
ahead of time in the security experiment whereas [44] has to prove adaptive secu-
rity using an admissible hash function [10]. We thus remove the admissible hash
function and directly compute A(x) as a product of public GSW ciphertexts
indexed by the tag bits without encoding them first. As a second modification
w.r.t [44], we need to extend the tag-dependent matrix A(x) so as to ensure
invertibility in injective mode.

Our CALBO construction can be outlined as follows. Given the injective tag
tag∗ ∈ {0, 1}t, the setup algorithm first generates A = D� · B + E ∈ Z

n×m
q as

a lossy matrix, where B ∈ Z
�×m
q , D ∈ Z

�×n
q and E ∈ Z

n×m, with � � n < m.
Then, the setup algorithm embeds (A,B) in the evaluation key ek via a set of
GSW ciphertexts [31]

Ai,b = A · Ri,b + δb,tag∗
i

· G ∀i ∈ [t], b ∈ {0, 1} (1)

where tag∗
i denotes the i-th bit of tag∗, δb,tag∗

i
= (b ?= tag∗

i ), G ∈ Z
n×�n·log q�
q is

the gadget matrix of Micciancio and Peikert [45], and Ri,b ∈ {0, 1}m×�n·log q� for
each i ∈ [t]. The trapdoor tk (which allows inverting in injective mode) contains
{Ri,b}i∈[t],b∈{0,1}. The computational indistinguishability of keys for different
injective tags follows from the LWE assumption. The latter implies that the
lossy matrix A = D� · B + E is indistinguishable from a uniform matrix in
Z

n×m
q . When A is uniform, the Leftover Hash Lemma implies that each product

A · Ri,b is statistically close to the uniform distribution U(Zn×m
q ). This ensures

that matrices (1) statistically hide tag∗ as they are statistically indistinguishable
from i.i.d. random matrices over Zq.

In order to evaluate the function on an input x for a tag tag, the evaluation
algorithm computes a product of GSW ciphertexts {Ai,tagi

}t
i=1 chosen among

{(Ai,0,Ai,1)}t
i=1 and then obtains a ciphertext A(tag) encrypting the logical

AND Ctag(tag∗) �
∧t

i=1(tagi = tag∗
i ), where {tagi}t

i=1 are the bits of tag. Said
otherwise, the tag-dependent matrix A(tag) = A · Rtag + Ctag∗(tag) · G is an
encryption of Ctag(tag∗) =

∏t
i=1 δtagi,tag

∗
i
, where the circuit Ctag(·) is homomor-

phically evaluated by computing a subset product of GSW ciphertexts in the
most sequential way (according to the terminology in [5]) so as to minimize
the noise growth. This is done by making sure that each multiplication always
involves a fresh GSW ciphertext.

Finally, the output of the evaluation is
⌊
x� · [A |A(tag)]

⌋
p
. Here, we slightly

modify [44] where the challenge evaluation is of the form
⌊
x�A(tag)

⌋
p
. The

reason is that, in order to ensure invertibility for the injective tag tag∗, we need
to exploit the fact that A(tag∗) depends on G. To this end, we need an injective
evaluation of x to be of the form
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⌊
x� · [A |A(tag∗)]

⌋
p

=
⌊
x� · [A |A · Rtag∗ + G]

⌋
p

for some small-norm matrix Rtag∗ ∈ Z
n×�n·log q�. In this case, the binary matrices

Ri,b contained in tk can be used to compute Rtag∗ , which is a Micciancio-Peikert
trapdoor [45] for the matrix [A |A(tag∗)] and allows inverting the function x →⌊
x� · [A |A(tag∗)]

⌋
p

in the same way as in the LTDF of [2].
In lossy mode (when tag differs from tag∗ in at least one bit), we can achieve

cumulative lossiness only for a fixed input, due to the error introduced by the
rounding operation. The argument is essentially the same as that in [44]: We
exploit the lossy form of A and the fact that, for any lossy tag tag �= tag∗, the
matrix [A |A(tag)] = [A |A · Rtag] does not depend on G. Then, with over-
whelming probability, evaluations

⌊
x� · [A |A · Rtag]

⌋
p

always reveal the same
information about x ∈ Z

n since w.h.p. we have
⌊
x� · [A |A · Rtag]

⌋
p

=
⌊
x� · D� · B | (x� · D� · B) · Rtag]

⌋
p

when q/p is sufficiently large. Hence, evaluations
{⌊

x� · [A |A(tag)]
⌋

p

}

tag �=tag∗

do not reveal any more information than D · x ∈ Z
�
q. Concerning the relaxation

of cumulative lossiness, Chakraborty et al. [19] have the same restriction in their
use of the LWE assumption. However, as discussed in [19, Apppendix A], this
relaxed notion is not a problem in their applications of CALBO-TDFs.

CALBO-TDFs from DCR. We give a construction of CALBO-TDFs based
on the Damg̊ard-Jurik homomorphic encryption scheme [20] with additional
insights from [21,22]. The construction is obtained by composing together multi-
ple instances of the DCR-based lossy trapdoor permutation of Freeman et al. [25],
which is index-dependent as its domain depends on the evaluation key. Recall
that the Damg̊ard-Jurik cryptosystem uses the group Z

∗
Nζ+1 , where N = pq is

an RSA modulus and ζ ≥ 1 is some natural number. Given an injective tag
tag∗ ∈ {0, 1}t, the evaluation key ek of our CALBO-TDFs includes (N, ζ) and
the following Damg̊ard-Jurik ciphertexts

gi,b = (1 + N)δb,tag∗
i · αNζ

i,b mod N ζ+1 ∀(i, b) ∈ [t] × {0, 1} ,

where αi,b ←↩ U(Z∗
N ) for each i ∈ [t], b ∈ {0, 1}, δb,tag∗

i
= (b ?= tag∗

i ) and tag∗
i

denotes the i-th bit of tag∗. The trapdoor tk consists of the Damg̊ard-Jurik
decryption key.

For an evaluation of an input x ∈ ZNζ+1 given a tag tag, we first write
x0 := x = y0 · N + z0 for (y0, z0) ∈ ZNζ × ZN . Then, we iterate for i ∈ [t] and,
at each iteration, we compute a Damg̊ard-Jurik ciphertext xi of yi−1:

xi = g
yi−1
i,tagi

· zNζ

i−1 mod N ζ+1 .

The output of the function consists of xt.
In the injective mode (where tag = tag∗), we have that gi,tag∗

i
is an encryption

of 1 for each i ∈ [t]. Then, each xi is an encryption of yi−1. Using tk, the inverter
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can thus recover (yi−1, zi−1) from xi and eventually recover (y0, z0) and x = x0

as long as zi−1 ∈ Z
∗
N at each iteration. For any input x such that zi−1 /∈ Z

∗
N

at some iteration, the evaluation algorithm outputs 0 (analogously to an index-
dependent DCR-based LTDF proposed by Auerbach et al. [3, Sect. 6.1]). We
note that our DCR-based construction is not perfectly invertible injective mode,
the fraction of inputs for which the function is not invertible is overwhelming.
Moreover, finding such inputs is as hard as factoring N and thus contradicts the
DCR assumption.

In the lossy mode (where tag �= tag∗), let the smallest index i ∈ [t] such that
tagi �= tag∗. For this index i, gi,tagi

is a Damg̊ard-Jurik encryption of 0, and so is
xi at the i-th evaluation step. This implies that xi loses information about yi−1

as it can take at most ϕ(N) values.
We then observe that injectivity and indistinguishability follow from the

correctness and semantic security of Damg̊ard-Jurik. Cumulative lossiness can be
argued using the same arguments as in the CALBO function of [23, Sect. 5.3.1].
At each evaluation step, the information (yi−1, zi−1) ∈ ZNζ ×ZN about x is fully
carried over to the next step of the evaluation if tagi = tag∗

i and zi−1 ∈ Z
∗
N . As

soon as tagi differs from tag∗
i , the information about yi−1 is lost and subsequent

evaluation steps (and therefore the final output of the evaluation) only depend
on at most log ϕ(N) < log N bits of x. Since there are t positions where a lossy
tag can differ from tag∗ for the first time, the function {Fek(·, tag)}tag �=tag∗ has
image size ≤ ϕ(N)t. So, the union of all lossy evaluations {Fek(x, tag)}tag �=tag∗

on some input x reveals at most log(ϕ(N)t) < t · log N bits about x.

1.3 Related Work

Dodis, Vaikuntanathan and Wichs [23, Sect. 5.3.1] considered a notion of cumula-
tively all-lossy-but-one (CALBO) functions without trapdoor, which they used to
extract randomness from extractor-dependent sources. They showed that CAL-
BOs can be generically realized from standard lossy functions by relaxing the
injectivity property. Due to their relaxed notion of injectivity, their construction
is not invertible in injective mode. Our DCR-based CALBO-TDF is inspired
by their construction (which is itself similar to the pseudo-entropy function of
Braverman et al. [18]) with the difference that we do not need to compose a
standard lossy function with a compressing d-wise independent function at each
iterative evaluation step. This is the reason why our injective mode is invertible.

In a recent work, Quach, Waters, and Wichs [49] introduced a new notion of
targeted lossy functions (TLFs), where lossy evaluations only lose information on
some targeted inputs and no trapdoor allows efficiently inverting in the injective
mode. Quach et al. [49] also extended TLFs to targeted all-lossy-but-one (T-
ALBOs) and targeted all-injective-but-one (T-AIBOs) variants. Interestingly, it
was shown in [49] that, in contrast with lossy trapdoor functions, TLFs, T-
ALBOs, and T-AIBOs can be realized in Minicrypt. We can also consider the
relaxation of targeted lossiness alone, while still asking for a trapdoor in the
injective mode. This notion was discussed in [29] where a construction based on
the Computational Diffie-Hellman assumption was given.
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Lossy algebraic filters (LAFs) [38,42] are tag-based lossy functions that were
used to construct public-key encryption schemes with circular chosen-ciphertext
security [38]. They provide similar functionalities to CALBO in that they explic-
itly require multiple evaluations {Fek(x, tagi)}i on distinct lossy tags to always
leak the same information about x. One difference is that LAFs admit arbi-
trarily many injective tags and arbitrarily many lossy tags. The requirement is
that lossy tags should be hard to find without a trapdoor key. In contrast with
CALBO-TDF, LAFs do not support efficient inversion on injective tags.

2 Background

We write [n] to denote the set {1, 2, . . . , n} for an integer n. For any q ≥ 2, we
let Zq denote the ring of integers with addition and multiplication modulo q,
containing the representatives in the interval (−q/2, q/2). We always set q as a
prime integer. For 2 ≤ p < q and x ∈ Zq, we define �x�p := �(p/q) · x� ∈ Zp

where the operator �y� means taking the largest integer less than or equal to y.
This notation is readily extended to vectors over Zq. Given a distribution D, we
write x ∼ D to denote a random variable x distributed according to D. For a
finite set S, we let U(S) denote the uniform distribution over S. If X and Y are
distributions over the same domain D, then Δ(X,Y ) denotes their statistical
distance. We write ppt as a shorthand for “probabilistic polynomial-time” when
considering the complexity of algorithms. We use a generalized version of the
Leftover Hash Lemma [35].

Lemma 1 ([1], Lemma 14). Let H = {h : X → Y }h∈H be a family of uni-
versal hash functions. Let f : X → Z be some function. Let T1, . . . , Tk be k
independent random variables over X and we define γ := maxk γ(Ti) where
γ(Ti) := maxt∈X Pr[Ti = t]. Then, we have

Δ
(

(h, h(T1), f(T1), . . . , h(Tk), f(Tk)) ;
(
h,U

(1)
Y , f(T1), . . . , U

(k)
Y , f(Tk)

) )

≤ k

2

√
γ · |Y | · |Z|

where U
(1)
Y , . . . , U

(k)
Y denote k uniformly random variables over Y .

2.1 Cumulatively All-Lossy-But-One Trapdoor Functions

We now recall the definition of cumulatively all-lossy-but-one trapdoor functions
(CALBO-TDFs), a notion recently introduced in [19,23] as an extension of lossy
trapdoor functions. We also recall its variant with relaxed cumulative lossiness
that we achieve assuming LWE. We refer the reader to the introduction for an
overview of these notions in the general context of lossy trapdoor functions.

Definition 1 (CALBO-TDF). Let λ ∈ N be a security parameter and
�, α : N → N be functions. Let T = {Tλ}λ∈N be a family of sets of tags. An
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(�, α)-cumulatively-all-lossy-but-one trapdoor function family (CALBO-TDF)
with respect to the tag family T is a triple of algorithms (Sample,Eval, Invert),
where the first is probabilistic and the latter two are deterministic:

– Sample(1λ, tag∗): on inputs 1λ and tag∗ ∈ Tλ, sample and output (ek, tk).
– Eval(ek, tag, x): on inputs x ∈ {0, 1}�(λ), an evaluation key ek and tag, output

an element y in some set R of images.
– Invert(tk, tag, y): on inputs y ∈ R, a trapdoor key tk, and tag, output x′ ∈

{0, 1}�(λ).

We require the following properties:

– (Injectivity) There exists a negligible function negl : N → N such that for all
λ ∈ N, tag∗ ∈ Tλ, (ek, tk)←Sample(1λ, tag∗) we have

|{x ∈ {0, 1}�(λ) : Invert(tk, tag∗,Eval(ek, tag∗, x)) = x}|
2�(λ)

≥ 1 − negl(λ) .

– (α-cumulative lossiness) For all λ ∈ N, all tags tag∗ ∈ Tλ, and all (ek, tk)←
Sample(1λ, tag∗), there exists a (possibly inefficient) function compressek :
{0, 1}�(λ) → Rek where |Rek| ≤ 2�(λ)−α(λ) such that for all tag �= tag∗ and x ∈
{0, 1}�(λ), there exists a (possibly inefficient) function expandek,tag : Rek → R
satisfying

Eval(ek, tag, x) = expandek,tag(compressek(x)) . (2)

– (Indistinguishability) For all tag∗
0, tag

∗
1 ∈ Tλ, the two ensembles

{ek0 : (ek0, tk0)←Sample(1λ, tag∗
0)}λ∈N

{ek1 : (ek1, tk1)←Sample(1λ, tag∗
1)}λ∈N

are computationally indistinguishable.

An alternative, relaxed notion of CALBO-TDFs was also proposed in [19,23]. In
this relaxed variant, cumulative lossiness is slightly simplified by requiring Equa-
tion (2) to only hold with overwhelming probability over the choice of tags. This
minor relaxation does not impact applications, as the relaxed notion was proven
sufficient for all known applications of CALBO-TDFs in [19, Appendix A]. We
use this relaxation in our LWE-based construction in Sect. 3.1, and recall it
below. We refer to this notion as relaxed CALBO-TDFs.

(relaxed α-cumulative lossiness) There exists a negligible function negl : N →
(0, 1) and for sufficiently large λ ∈ N, for any tag∗ ∈ Tλ, for all (ek, tk) ←
Sample(1λ, tag∗), there exists a (possibly inefficient) function compressek :
{0, 1}�(λ) → Rek where |Rek| ≤ 2�(λ)−α(λ) such that for any fixed randomly
chosen x ∈ {0, 1}�(λ), there exists a (possibly inefficient) function expandek,tag :
Rek → R satisfying

Pr[Eval(ek, tag, x) = expandek,tag(compressek(x))] ≥ 1 − negl(λ) ,

where the probability is taken over the choices of tag �= tag∗. We call negl(λ)
the lossiness error of the CALBO-TDF.
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Lossiness Rate. We define the lossiness rate of an (�, α)-CALBO-TDF by the
rate of bits lost on lossy tags, namely 1 − (� − α)/� = α/�. This is similar to the
notion of lossiness rate used in [29,48]. Ideally, we want this rate to be as close
to 1 as possible, for example 1 − o(1).

2.2 Lattices

Unless stated otherwise, we write vectors as column vectors. For a full-row rank
matrix A ∈ Z

n×m
q , we define the lattice Λ(A) admitting A as a basis by Λ(A) =

{s� · A : s ∈ Z
n
q }. We also define the lattice Λ⊥(A) = {x ∈ Z

m : Ax = 0 mod
q}. Given a vector x ∈ Z

n
q , we define its �∞-norm as ‖x‖∞ = maxi∈[n] |x[i]|

where x[i] denotes the i-th coordinate of x. We let ‖x‖2 =
√

x[1]2 + · · · + x[n]2
denote the Euclidean norm of x. The minimum distance measured in �∞-norm
of a lattice Λ is given by λ∞

1 (Λ) := minx�=0 ‖x‖∞. For a basis B of R
n, the

origin-centered parallelepiped is defined as P1/2(B) := B · [−1/2, 1/2)n. We also
use the following infinity norm for matrices B ∈ Z

n×m:

‖B‖∞ = max
i∈[n]

⎛

⎝
m∑

j=1

|Bi,j |

⎞

⎠ .

Let Σ ∈ R
n×n be a symmetric positive definite matrix and c ∈ R

n be a vector.
We define the Gaussian function over Rn by ρΣ, c(x) = exp(−π(x− c)�Σ-1(x−
c)) and if Σ = σ2 · In and c = 0, we write ρσ for ρΣ, c. For any discrete
set Λ ⊂ R

n, the discrete Gaussian distribution DΛ,Σ,c has probability mass
PrX∼DΛ,Σ,c

[X = x] = ρΣ, c(x)
ρΣ, c(Λ) , for any x ∈ Λ. When c = 0 and Σ = σ2 · In we

denote DΛ,Σ,c by DΛ,σ.

Learning-with-Errors Assumption. Our first CALBO-TDF relies on the
LWE assumption.

Definition 2. Let α : N → (0, 1) and m ≥ n ≥ 1, q ≥ 2 be functions of a
security parameter λ ∈ N. The Learning with Errors (LWE) problem consists
in distinguishing between the distributions (A, s�A + e�) and U(Zn×m

q × Z
m
q ),

where A ∼ U(Zn×m
q ), s ∼ U(Zn

q ) and e ∼ DZm,αq. For an algorithm A : Zn×m
q ×

Z
m
q → {0, 1}, we define

AdvLWE
q,m,n,α(A) =

∣
∣Pr[A

(
A, s�A + e�)

= 1] − Pr[A (A,u) = 1
∣
∣ ,

where the probabilities are over A ∼ U(Zn×m
q ), s ∼ U(Zn

q ), u ∼ U(Zm
q ) and

e ∼ DZm,αq and the internal randomness of A. We say that LWEq,m,n,α is hard
if for all ppt algorithm A, the advantage AdvLWE

q,m,n,α(A) is negligible in λ.

We require that α ≥ 2
√

n/q for the reduction from worst-case lattice problems
and refer the readers to, e.g., [17] for more details.
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We will need the techniques for homomorphic encryption (HE) [31] in order
to build CALBO-TDFs from LWE. In this paper, we consider only binary circuits
with fan-in-2 gates for homomorphic evaluation. We use the terms size and depth
of a circuit to refer to the number of its gates and the length of its longest input-
to-output path, respectively. We note that in our construction from LWE, we do
not need the general fully homomorphic encryption thanks to the fact that all
evaluated circuits have bounded depths, for the sole purpose of comparing tags.
Hence, leveled homomorphic encryption suffices for our purposes.

Gadget Matrix. We recall the “gadget matrix” from [45] and their homo-
morphic properties. The technique is later developed further in [12,33,34].
For an integer modulus q, the gadget vector over Zq is defined as g =
(1, 2, 4, . . . , 2�log q�−1). The gadget matrix Gn is the tensor (or Kronecker) prod-
uct In ⊗ g ∈ Z

n×n′
q where n′ = �n log q�. There exists an efficiently computable

function G-1
n : Zn×n′

q → {0, 1}n′×n′
such that Gn·G-1

n (A) = A for all A ∈ Z
n×n′
q .

In particular, we can define G-1
n to be the entry-wise binary decomposition of

matrices in Z
n×n′
q . In the following, we omit the subscript n and write G when

it is clear from context. Lemma 2 helps bound the noise of the output cipher-
text after homomorphically evaluating a depth-τ circuit C containing only AND
gates. This will affect our parameter choices for the LWE-based CALBO-TDFs
as well as our later argument for its relaxed cumulative lossiness.

Lemma 2 (Adapted from [12,16,31]). Let λ ∈ N and m = m(λ), n = n(λ).
We define n′ := �n log q�. Let C : {0, 1}t → {0, 1} be a AND Boolean circuit of
depth τ . Let Ai = A ·Ri +bi ·G ∈ Z

n×m
q with A ∈ Z

n×m
q , Ri ∈ {−1, 1}m×n′

and
bi ∈ {0, 1}, for i ≤ t. There exist deterministic algorithms FHEval and EvalPriv
with running time poly(4τ , t,m, n, log q) that satisfy:

FHEval(C, (Ai)i) = A · RC + C(b1, . . . , bt) · G = A · RC +
t∧

i=1

bi · G,

where RC = EvalPriv
(
C, ((Ri, bi))i

)
and ‖RC‖∞ ≤ maxi{‖Ri‖∞} · (n′ + 1)τ .

Lossy mode of LWE. We recall the Lossy sampler for LWE that is introduced
by Goldwasser et al. in [32] and later developed by Alwen et al. in [2].

Definition 3. Let χ = χ(λ) be an efficiently sampleable distribution over Z. We
define an efficient lossy sampler (A, B)←Lossy(1m, 1n, 1�, q, χ) via:

Lossy(1m, 1n, 1�, q, χ): Sample B ←↩ U(Z�×m
q ),D ←↩ U(Z�×n

q ),E ←↩ χn×m,
where � � n, and output A = D� · B + E ∈ Z

n×m
q together with B.

We remark that the lossy sampler reveals the coefficient matrix B along with
A but as long as the secret matrix D is not leaked, this does not compromise
the pseudorandomness of A. Indeed, it can be shown that under the LWEq,m,�,α

assumption, A is computationally indistinguishable from a uniformly random
matrix. Intuitively, the dimension of the secret is now � and we view each row
of D� as a secret vector, B as the uniform coefficients and each row of A as the
resulting LWE vector. Formally, we have the following lemma:
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Lemma 3 ([32]). Let a random matrix Ã ←↩ U(Zn×m
q ) and let a pair (A, B)←

Lossy(1m, 1n, 1�, q, χ), where χ = DZ,αq is an error distribution. Then, under
the LWEq,m,�,α assumption, the following two distributions are computationally
indistinguishable: A

comp
≈ Ã.

Trapdoor Mechanisms for LWE. Micciancio and Peikert [45] introduced a
trapdoor mechanism for LWE. Their technique makes use of the “gadget matrix”
G ∈ Z

n×n′
q , where n′ = �n log q�, and for A′ ∈ Z

n×(m+n′)
q , they call a short

matrix R ∈ Z
m×n′

a G-trapdoor of A′ if A′ · [R� | Im]� = HG for some invert-
ible H ∈ Z

n×n
q . Micciancio and Peikert also showed that using a G-trapdoor

allows one to invert the LWE function (s, e) �→ s�A′ + e� for any s ∈ Z
n
q and

any error e ∈ Z
m+n′

such that ‖e‖2 ≤ q/O(
√

n log q). More specifically, we have
the following lemma:

Lemma 4 ([45], Theorem 4.1 and Sect. 5). Let n′ = �n log q� and δ =
negl(n). Assume that m ≥ n log q + 2 log n′

2δ . Then there exists a ppt algorithm
GenTrap that takes as inputs matrices A ∈ Z

n×m
q ,H ∈ Z

n×n
q , outputs a short

matrix R ∈ {−1, 0, 1}m×n′
and A′ = [A | − A · R + H · G] ∈ Z

n×(m+n′)
q such

that if H is invertible, then R is a G-trapdoor of A′ and we call H the invert
tag of A′.

In particular, inverting the function gG(s, e) := s� · G + e� can be done in
quasi-linear time O(n · logc n) for any s ∈ Z

n
q and any e ∈ P1/2(q · (B-1)�),

where B is a basis of the lattice Λ⊥(G) = {z ∈ Z
n′

: G · z = 0 (mod q)}.

In a follow-up work, Alwen et al. [2] used GenTrap to construct trapdoors for
inverting Learning with Rounding (LWR) instances

⌊
s�A

⌋
p
. Their main obser-

vation is that one can convert
⌊
s�A

⌋
p

to s�A + e� where ‖e‖2 ≤ √
mq/p,

by first multiplying with q/p then taking the ceiling value. Afterwards, using a
G-trapdoor of A, e.g. a sample from GenTrap, allows one to compute back s.
Formally, we have the following lemma:

Lemma 5 ([2], Lemma 6.3). Let n′ = �n log q� and δ = negl(n). Assume
that m ≥ n log q + 2 log n′

2δ and p ≥ O(
√

(m + n′)n′). Then there exists a ppt
algorithm LWRInvert that takes as inputs (A′,R) with R being a G-trapdoor of
A′, together with some c ∈ Z

m+n′
p such that c =

⌊
s�A′⌋

p
for some s ∈ Z

n
q , then

outputs s.

We will also need the following technical lemmas. Lemma 6 comes from a
work by Gentry, Peikert, and Vaikuntanathan [30].

Lemma 6 ([30], Lemma 5.3). Let � and q be positive integers and q be prime.
Let n ≥ 2� log q. Then for all but an at most q−n fraction of D ∈ Z

�×n
q , we

have λ∞
1 (Λ(D)) ≥ q/4, where Λ(D) = {s�D : s ∈ Z

�
q} and λ∞

1 (Λ(D)) is the
minimum distance of Λ(D) measured in the �∞-norm.
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Lemma 7 ([2], Lemma 2.7). Let p, q be positive integers and p < q. Let R >
0 be an integer. Then, the probability that there exists e ∈ [−R,R] such that
�y�p �= �y + e�p, where y ←↩ U(Zq), is at most 2pR/q.

The following lemma is well-known, e.g. a simple proof can be found in [44,
Lemma 2.3].

Lemma 8. Let q be a prime a Dm,n,q be a distribution over Z
n×m
q such that

Δ(Dm,n,q, U(Zn×m
q )) ≤ ε. Then, let Vn,q be any distribution over Z

n
q , we have

Δ(V �
n,q · Dm,n,q, U(Zm

q )) ≤ ε + α ·
(
1 − 1

qm

)
where α := Pr[v ←↩ Vn,q : v = 0].

2.3 Composite Residuosity

Our second construction of CALBO-TDFs relies on Paillier’s composite residu-
osity assumption.

Definition 4 ([20,47]). Let a composite N = pq, for primes p, q, and let an
integer ζ ≥ 1. The Decision Composite Residuosity (ζ-DCR) problem is to
distinguish between the distributions D0 := {z = zNζ

0 mod N ζ+1 | z0 ←↩ U (Z∗
N )}

and D1 := {z ←↩ U
(
Z

∗
Nζ+1

)
}.

For each ζ > 0, the ζ-DCR assumption was shown to be equivalent to the original
1-DCR assumption [20]. Damg̊ard and Jurik [20] initially gave their security
proof using a recursive argument (rather than a sequence of hybrid experiments)
that loses a factor 2 at each step, thus incurring an apparent security loss 2ζ .
However, the semantic security of their scheme under the 1-DCR assumption
for any polynomial ζ is a well-known result. The proof of Lemma 9 is perhaps
folklore but for completeness we will include it in the full version of this paper.

Lemma 9 (Adapted from [20]). Let ζ = poly(λ). Then ζ-DCR is equivalent
to 1-DCR with a security loss at most ζ.

3 Cumulatively All-Lossy-But-One Trapdoor Functions

We now describe two constructions of CALBO-TDFs from standard assump-
tions. So far, the only known CALBO-TDFs construction was proposed by
Chakraborty et al. [19] and relies on puncturable PRFs, cumulatively-lossy-
trapdoor functions (C-LTDFs) and indistinguishability obfuscation (iO). This
construction relies on iO to obfuscate a program, which first compares a given
input tag with the hardcoded injective tag and outputs the hardcoded injective
evaluation key if the comparison goes through. Otherwise, it generates a fresh
lossy key. All auxiliary key generations in the program are realized using the
algorithms from the underlying C-LTDF. The obfuscated program is described
in the evaluation key for the CALBO-TDF. An evaluation on a pair of tag and
input proceeds by first calling the obfuscated program on the given tag to get a
C-LTDF key, then use the evaluation of the C-LTDF on the received key and the
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given input. The obfuscated program uses a puncturable PRF, which receives
the given tag as input, to generate randomness needed for producing a fresh
lossy key. Our constructions are much simpler and require neither CPRFs nor
iO. They thus drastically improve the efficiency compared to [19].

We construct CALBO-TDFs from the LWE and DCR assumptions. Our LWE-
based CALBO-TDFs only achieves the relaxed variant of cumulative lossiness
while our DCR-based construction achieves the full notion. The fact that we
have to relax the cumulative lossiness in the LWE case seems intrinsic due to
the noise that appears in the LWE samples. We remark that Chakraborty et al.
faced a similar problem when constructing C-LTDFs from LWE as well as when
boostrapping C-LTDFs to CALBO-TDFs using iO in [19].

3.1 Relaxed CALBO-TDFs from LWE

In this section, we describe our construction of CALBO-TDFs from LWE. It is
inspired from the PRF from [44], which can be seen as a CALBO-TDFs without
inversion. We extend ideas from [44] to achieve inversion via trapdoors.

Let λ be a security parameter and let � = �(λ), n = n(λ),m = m(λ), q =
q(λ), p = p(λ), t = t(λ), β = β(λ) be natural numbers and χ = χ(λ) = DZ,αq

be an LWE error distribution. We denote n′ = �n log q�. The tag space is Tλ =
{0, 1}t. Our construction now goes as follows:

Sample(1λ, tag∗): Sample (A, B) ← Lossy(1m, 1n, 1�, q, χ), then set the evalua-
tion keyek :=

(
A ∈ Z

n×m
q , B ∈ Z

�×m
q , {Ai,0,Ai,1}t

i=1

)
where

Ai,b = A · Ri,b + δb,tag∗
i

· G ∈ Z
n×n′
q ∀i ∈ [t], b ∈ {0, 1}

for Ri,b ← U({0, 1}m×n′
), tag∗

i denotes the i-th bit of tag∗, and δb,tag∗
i

= (b ?=
tag∗

i ). Afterwards, set the trapdoor key tk := {Ri,b}i∈[t],b∈{0,1} and output
(ek, tk).

Eval(ek, tag,x ∈ [0, β]n): Let Ctag : {0, 1}t → {0, 1} be the circuit Ctag(tag′) =∏t
i=1 δtagi,tag

′
i
and δtagi,tag

′
i
= 1 if and only if tagi = tag′

i. Parse the evaluation
key ek = (A, B, {Ai,0,Ai,1}t

i=1) and perform the homomorphic evaluation

A(tag) := FHEval
(
Ctag,

(
Ai,tagi

)t

i=1

)
= A · Rtag + Ctag(tag∗) · G

=

{
A · Rtag + G if tag = tag∗

A · Rtag otherwise
∈ Z

n×n′
q (3)

where the procedure FHEval is specified by:

FHEval
(
Ctag,

(
Ai,tagi

)t

i=1

)
:= A1,tag1 · G-1

(
A2,tag2 · G-1

(
· · ·G-1(At,tagt

) · · ·
))

and Rtag ∈ Z
m×n′

. Finally, compute and output
⌊
x� · [A |A(tag)]

⌋
p

.
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Invert(tk, tag∗,y ∈ Z
m+n′
p ): Parse the trapdoor key tk = {Ri,b}i∈[t],b∈{0,1}

then compute FHEval
(
Ctag∗ ,

(
Ai,tag∗

i

)t

i=1

)
= A · Rtag∗ + G, and following

Lemma 2, obtain EvalPriv
(
Ctag∗ , ((Ri,tag∗

i
, tag∗

i ))i∈[t]

)
= Rtag∗ . Afterwards,

compute x←LWRInvert([A |A · Rtag∗ + G],−Rtag∗ ,y) as per Lemma 5 and
output x.

The way we carry out the homomorphic computation FHEval involved in
equation (3) is not unique. Roughly speaking, at each step of the homomor-
phic evaluation of Ctag, we “decompose” the result from the previous step
using G-1 (the decomposed entries become binary) before multiplying so as to
obtain a ciphertext for the AND gate’s output. This gives the smallest possible
increase in the error term of the resulting homomorphic ciphertext, following
Lemma 2. Different approaches for computing FHEval will lead to different error
increases. Indeed, we homomorphically evaluate the circuit Ctag in the most pos-
sible “sequential” way, which is inspired by [5], and always multiply ciphertexts
whose noise terms are not too large. A less sequential computation will work,
but at the cost of a larger modulus, which then becomes exponential not only
in the security paramter but also in the depth of Ctag.

Parameter Selection. Let λ be the security parameter. First of all, we set the
bound β = 1 for the entries of inputs, which gives a domain {0, 1}n. We set the
tag length t = log λ, which means the circuits to be homomorphically evaluated
have depths bounded by t− 1 ≤ log λ. By Lemma 6, we must choose � such that
n ≥ 2� log q. In addition, for the trapdoor mechanism to work, Lemma 5 requires
that m ≥ n log q + 2 log n′

2δ and p ≥ O(
√

(m + n′)n′), where n′ = �n log q� and
δ = negl(n).

We will need m ≥ n log q + ω(log n) in order to apply Lemma 3. Moreover,
for the LWEq,m,n−1,α problem to be hard, it is necessary that q ≤ 2nε

< 2n and
2
√

n/q ≤ α ≤ n · 2−nε

, for some 0 < ε < 1. We refer to [17, Corollary 3.2] for
more details on these bounds for q and α. Similarly, we also need to ensure that
the LWEq,m,�,α problem is hard. Last but not least, we need q/p > 2λ for the
rounding operation to anihilate the noise term, following Lemma 7. Concretely,
let 0 < ε < 1 be a constant and d ≥ 1, we set up the parameters as follows:

n = Θ(λd); n′ = n log q = Θ
(
λd+dε

)
; β = 1; t = log λ; q = 2nε

= Θ
(
2λdε

)
;

α = n · 2−nε

= Θ
(
λd · 2−λdε

)
; m = 2λ + �n log q� = Θ

(
λd+dε

)
;

� =
n

2 log q
= Θ

(
λd−dε

)
; p = Θ

(√
(m + n′)n′

)
= Θ

(
λd+dε

)
.

Theorem 1. Let λ ∈ N be a security parameter. Under the LWEq,m,�,α and
LWEq,m,n−1,α assumptions, the above construction (Sample,Eval, Invert) is a
relaxed (n, n − � log q)-cumulatively-all-lossy-but-one trapdoor function family
with tag space Tt = {0, 1}t.

Proof. We now prove each of the required properties.
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Injectivity. The correctness of FHEval and EvalPriv in Invert follows Lemma 2.
It is straightforward to see that −Rtag∗ is a G-trapdoor for the matrix A′ :=
[A |A ·Rtag∗ +G]. Hence, given as inputs y = Eval(ek, tag∗,x) =

⌊
x� · A′⌋

p
and

the pair (A′,−Rtag∗), the algorithm LWRInvert will be able to compute back x
as per Lemma 5.

Indistinguishability. Let tag∗
0, tag

∗
1 ∈ {0, 1}t and (ekb, tkb)←Sample(1λ, tag∗

b)
for b ∈ {0, 1}. We want to prove that ek0 and ek1 are indistinguishable. Let
b ∈ {0, 1}. The evaluation key ekb is parsed as

ekb =
(
A(b) ∈ Z

n×m
q , B(b) ∈ Z

�×m
q , {A(b)

i,0 ,A(b)
i,1}t

i=1

)

where (A(b),B(b)) ← Lossy(1m, 1n, 1�, q, χ) and B(b) ∼ U(Z�×m
q ), A(b)

i,b′ are
encryptions of δb′,tag∗

b,i
∈ {0, 1} for i ∈ [t] and tag∗

b,i is the i-th bit of tag∗
b ,

respectively. Similarly to the proof of semantic security for the GSW encryp-
tion scheme [31], we first notice that A(b) is indistinguishable from a uniformly
random matrix Ã(b) in Z

n×m
q thanks to Lemma 3 and the parameter choice

m ≥ n log q+2λ. Hence, changing A(b) to Ã(b) is computationally indistinguish-
able under LWE.

We then apply Lemma 1 for the family of universal hash functions H =
{hA : Z

n
q → Z

m
q } where hA(x) := x� · A is indexed by A ∈ Z

n×m
q and q is

prime. Therefore, it holds that
(
Ã(b)R(b)

i,tag∗
b,i

)

i∈[t]
is statistically close to a t-

tuple of independent uniformly random matrices. As a result, for all i, the pair
(Ã(b)

i,0 , Ã(b)
i,1), where Ã(b)

i,b′ := Ã(b)R(b)
i,tag∗

b,i
+ δb′,tag∗

b,i
· G for b′ ∈ {0, 1}, is statisti-

cally close to a pair of uniformly random matrices. In the end, for b ∈ {0, 1}, ekb

is computationally indistinguishable from ẽkb whose components are sampled
uniformly at random in the corresponding domain and the indistinguishability
is concluded.

Relaxed Cumulative Lossiness. Let tag∗ ∈ Tt, (ek, tk) ← Sample(1λ, tag∗),
and fix an input x ∈ [0, β]n = {0, 1}n by the parameter choice β = 1. For every
tag ∈ Tt such that tag �= tag∗, we need to describe two functions compressek and
expandek,tag such thatEval(ek, tag,x) = expandek,tag(compressek(x)) except for a
negligible probability over the choices of tag �= tag∗.

The function compressek(x ∈ {0, 1}n) is described as follows:

1. Parse ek as ek := (A, B, {Ai,0,Ai,1}t
i=1) then use A ∈ Z

n×m
q and B ∈ Z

�×m
q

to recover (inefficiently) D ∈ Z
�×n
q and E ∈ Z

n×m. This is essentially inverting
an LWE function (D,E) → D�B + E for the matrix B.

2. Compute and output D · x ∈ Z
�
q.

Let y ∈ Z
�
q and tag ∈ Tt such that tag �= tag∗. The function expandek,tag(y) is

described as follows:
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1. Parse the ek as ek := (A, B, {Ai,0,Ai,1}t
i=1) then use (A,B) to (inefficiently)

recover D ∈ Z
�×n
q and E ∈ Z

n×m
q . Using A and {Ai,0,Ai,1}t

i=1, compute
A(tag) as in the Eval algorithm, i.e.

A(tag) := FHEval
(
Ctag,

(
Ai,tagi

)t

i=1

)
= A · Rtag + Ctag(tag∗) · G
(∗)
= A · Rtag ∈ Z

n×n′
q

where the (∗) equality comes from the fact that tag �= tag∗. We will denote
A′ := [A | A(tag)] = [A |

(
D� · B + E

)
· Rtag] ∈ Z

n×(m+n′)
q .

2. Compute (inefficiently) a matrix F ∈ Z
�×n′
q such that F is an LWE secret for

(D,A(tag)). Specifically, the matrix F statisfies that A(tag) = D� ·F+Etag

where Etag ∈ Z
n×n′

has bounded entries. The bound will be analyzed below.
3. Compute (inefficiently) an arbitrary but small matrix R′ ∈ Z

m×n′
such that

B · R′ = F.
4. Compute and return

⌊
[y� · B |y� · F]

⌋
p

∈ Z
m+n′
p .

Given a fixed input x ∈ {0, 1}n, for tag ∈ Tt and tag �= tag∗, we consider

expandek,tag(compressek(x)) = expandek,tag(D · x) =
⌊
[(Dx)� · B|(Dx)� · BR′]

⌋
p

where B,D,R′,F are computed as specified in compressek and expandek,tag.
To begin with, we analyze the bound of the entries in the error matrix

Etag so that the matrix F computed in step 2 of expandek,tag is uniquely deter-
mined. It suffices to bound the infinity norm of E ·Rtag. We evaluate homomor-
phically the ciphertexts Ai,b on a circuit Ctag defined as a sequential AND-
ing of t bits in tag and has depth t − 1. Moreover, the matrices Ai,b are
obtained using binary Ri ∈ {0, 1}m×n′

, for all i ∈ [t] and b ∈ {0, 1}. As
a corollary of Lemma 2, we have ‖Rtag‖∞ ≤ n′(n′ + 1)t. With E ∈ Z

n×m
q ,

we also have ‖E‖∞ = maxi∈[n]

(∑m
j=1 |Ei,j |

)
≤ mαq. This implies that

‖E · Rtag‖∞ ≤ ‖E‖∞ · ‖Rtag‖∞ ≤ n′(n′ + 1)t · m · αq. We choose the parameters
for n′(n′ + 1)t · m · αq to be small enough, for example smaller than q/4 given
a sufficiently large λ. Thus

(
D� · B + E

)
· Rtag uniquely determines B · Rtag

as a corollary of Lemma 6. Consequently, the (inefficient) step 2 of expandek,tag
will be able to find the unique F = B · Rtag. Then, we have B · R′ = B · Rtag

and
⌊
[(Dx)� · B | (Dx)� · B · R′]

⌋
p

=
⌊
[(Dx)� · B | (Dx)� · B · Rtag]

⌋
p
. Let us

define an event BAD as
⌊
[(Dx)� · B | (Dx)� · B · Rtag]

⌋
p

�=
⌊
[(Dx)� · B + x�E | (Dx)� · B · Rtag + x� · E · Rtag]

⌋
p

and we observe that the right-hand side is actually Eval(ek, tag,x). A simple
computation gives us Pr[Eval(ek, tag,x) = expandek,tag(compressek(x))] ≥ 1 −
Pr[BAD] where the probabilities are taken over the choices of tag ∈ Tt such that
tag �= tag∗, for the fixed input x ∈ {0, 1}n. The following lemma proves that
Pr[BAD] is negligible under current parameter and completes the proof.
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Lemma 10. We have the following bound:

Pr[BAD] ≤ 2t+1 · p · mα ·
(
1 + n′(n′ + 1)t

)
.

A proof for Lemma 10 can be found in the full version of this paper. ��

3.2 CALBO-TDFs from DCR

In this section we give a construction of CALBO-TDF achieving non-relaxed
cumulative lossiness from the DCR assumption. We start by recalling the
Damg̊ard-Jurik encryption scheme, whose decryption algorithm along with other
useful properties are used in our CALBO-TDFs.

Damg̊ard-Jurik Encryption. Damg̊ard and Jurik introduced in [20] a gen-
eralization of Paillier’s cryptosystem based on the ζ-DCR assumption. Given
a modulus N = pq such that gcd(N,ϕ(N)) = 1, where p and q are primes,
Damg̊ard and Jurik proved that the multiplicative group Z

∗
Nζ+1 is isomorphic to

the direct product of ZNζ and Z
∗
N :

Theorem 2 ([20], Theorem 1). For any N satisfying gcd(N,ϕ(N)) = 1 and
for ζ < min(p, q), the map ψζ : ZNζ × Z

∗
N → Z

∗
Nζ+1 given by (m, r) �→ (1 +

N)mrNζ

(mod N ζ+1) is invertible in polynomial time using lcm(p − 1, q − 1).

The Damg̊ard-Jurik encryption exploits this isomorphic property: a public
key is a pair (N, ζ) associated with secret key (p, q) and ψζ is the encryption func-
tion (where r plays the role of randomness), that can be inverted (decryption)
given (p, q). Semantic security is easily proven under the ζ-DCR assumption [20,
Theorem 2]. We are now ready to describe our construction of CALBO-TDFs
from the ζ-DCR assumption. We remark that the domain is currently index-
dependent, i.e. inputs are taken in Z

∗
Nζ+1 where N and ζ are specified in the

evaluation key. The domain can be made index-independent by using {0, 1}n for
some bitlength n in the same way Freeman et al. have done in [25], e.g. we can
choose any n ∈ N such that n < min(log p, log q).

Sample(1λ, tag∗): Given tag∗ ∈ Tt = {0, 1}t, generate an evaluation key ek :=(
N, ζ, {gi,0, gi,1 ∈ Z

∗
Nζ+1 }t

i=1

)
, consisting of the following components:

– A modulus N = pq such that p, q > 2l(λ) and gcd(N,ϕ(N)) = 1, where
l : N → N is a polynomial dictating the bitlength of p and q as a function
of λ, and an integer ζ > t.

– Elements gi,0, gi,1 ∈ Z
∗
Nζ+1 which are generated as

gi,b = (1 + N)δb,tag∗
i · αNζ

i,b mod N ζ+1 ∀(i, b) ∈ [t] × {0, 1},

where αi,b ←↩ U(Z∗
N ) for each i ∈ [t], b ∈ {0, 1}, tag∗

i denotes the i-th bit

of tag∗, and δb,tag∗
i

= (b ?= tag∗
i ). We note that gi,b is a Damg̊ard-Jurik

ciphertext of δb,tag∗
i
.
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Output ek and tk = (p, q).
Eval(ek, tag, x): Given an input x ∈ ZNζ+1 and tag ∈ Tt = {0, 1}t, let x0 = x.

Find (y0, z0) ∈ ZNζ ×ZN such that x0 = y0 ·N +z0. If gcd(z0, N) > 1, output
0. Otherwise, for i = 1 to t, do the following:
1. Parse xi−1 ∈ ZNζ+1 as a pair of integers (yi−1, zi−1) ∈ ZNζ × Z

∗
N such

that xi−1 = yi−1 · N + zi−1.
2. Compute xi = g

yi−1
i,tagi

· zNζ

i−1 mod N ζ+1.
In the end, output z = xt ∈ Z

∗
Nζ+1 .

Invert(tk, tag, z): Set xt = z and find (yt, zt) ∈ ZNζ × ZN such that xt =
yt · N + zt. If gcd(zt, N) > 1, output 0. Otherwise, for i = t down to i = 1,
conduct the following steps:
1. Using tk = (p, q), compute the unique pair (yi−1, zi−1) ∈ ZNζ × Z

∗
N such

that xi = g
yi−1
i,tagi

· zNζ

i−1 mod N ζ+1. This is done by first recovering yi−1 =
Dec((p, q), xi) ∈ ZNζ using the Damg̊ard-Jurik decryption algorithm for

obtaining zi−1 =
(
xi·g−yi−1

i,tagi
mod N ζ+1

)N−ζ

mod N. Note that zi−1 ∈ Z
∗
N

is well-defined thanks to the isomorphism ψ-1
ζ used in Damg̊ard-Jurik

decryption.
2. Let xi−1 = yi−1 · N + zi−1. Output x0 when i = 1.

The check gcd(z0, N) = 1 in Eval implies that, as long as factoring is hard, it
is infeasible to find non-invertible inputs, i.e. x = y0 · N + z0 ∈ ZNζ+1 such that
gcd(z0, N) > 1 for (y0, z0) ∈ ZNζ ×ZN . Moreover, the fraction of non-invertible
inputs is bounded by N ζ · (p+q)/N ζ+1 = (p+q)/N , which is negligible. We now
prove that the above construction is a CALBO-TDF assuming ζ−DCR holds.

Theorem 3. Let λ ∈ N is a security parameter. Let ζ = ζ(λ), l = l(λ), t = t(λ)
be functions in λ such that ζ > t. Assuming the ζ-DCR assumption, the triplet
(Sample,Eval, Invert) is a ((ζ +1) log N, (ζ +1) log N − t log N −1)-cumulatively-
all-lossy-but-one trapdoor function family with tag space Tt = {0, 1}t.

Proof. We prove injectivity, indistinguishability and cumulative lossiness prop-
erties as defined in Sect. 2.1. Let λ ∈ N be a security parameter and ζ = ζ(λ), l =
l(λ), t = t(λ) be polynomials in λ such that ζ > t. Let tag∗ ∈ Tt be the injective
tag and (ek, tk)←Sample(1λ, tag∗).

We first justify why we only need to check gcd(z0, N) = 1 and can be sure
that if it holds, gcd(zi, N) = 1 for all i ≥ 1. Indeed, let i ∈ [t]. By construction
xi = yi · N + zi for (yi, zi) ∈ ZNζ × ZN . Suppose z0 ∈ Z

∗
N , we verify the claim

by induction. Indeed x1 = ψζ(y0, z0) ∈ Z
∗
Nζ+1 . Hence gcd(z1, N) = gcd(z1 +

y1 · N,N) = gcd(x1, N) = 1. For the inductive step, suppose zi−1 ∈ Z
∗
N , then

xi = ψζ(yi−1, zi−1) ∈ Z
∗
Nζ+1 . By the same argument, we have gcd(zi, N) =

gcd(zi + yi · N,N) = gcd(xi, N) = 1.
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Injectivity. Let tag∗ ∈ {0, 1}t be an injective tag. We consider two cases for
invertibility of Eval(ek, tag∗, x) given the trapdoor tk of tag∗. If x ∈ ZNζ+1 \
Z

∗
Nζ+1 , equivalently by Theorem 2 it holds that x = y0·N+z0 and gcd(z0, N) > 1,

then Eval(ek, tag∗, x) = 0 by construction and cannot be inverted using tk. The
fraction of such inputs in ZNζ+1 is N ζ · (N − ϕ(N))/N ζ+1 = (p + q − 1)/N,
which is negligible in λ.

Otherwise, suppose that x ∈ Z
∗
Nζ+1 . By the correctness of Damg̊ard-Jurik

decryption algorithm and Theorem 2, for each i = t down to 1, step 1 in Invert
correctly recovers yi−1 ∈ ZNζ and zi−1 ∈ Z

∗
N such that xi−1 = yi−1 · N + zi−1,

where xi−1 is used at step i − 1 in Eval(ek, tag∗, x). Inductively, x0 = y0 · N + z0
is recovered correctly. In summary, Invert(tk, tag∗,Eval(ek, tag∗, x)) = x for an
overwhelming fraction of the domain ZNζ+1 and the injectivity is concluded.

Indistinguishability. Let tag∗
0, tag

∗
1 ∈ {0, 1}t and (ekb, tkb)←Sample(1λ, tag∗

b)
for b ∈ {0, 1}. We want to prove that ek0 and ek1 are indistinguishable. Let
b ∈ {0, 1}. The evaluation key ekb is parsed as

ekb =
(
N, ζ, {g

(b)
i,0 , g

(b)
i,1 ∈ Z

∗
Nζ+1 }t

i=1

)

where g
(b)
i,b′ is a Damg̊ard-Jurik encryption of δb′,tag∗

b,i
for i ∈ [t] and b′ ∈ {0, 1},

respectively and tag∗
b,i is the i-th bit of tag∗

b . The indistinguishability readily
follows the semantic security of the Damg̊ard-Jurik encryption scheme under a
standard hybrid argument.

Cumulative Lossiness. For (ek, tk) ← Sample(1λ, tag∗) and tag ∈
{0, 1}t such that tag �= tag∗, we want to describe two (possibly inef-
ficient) functions compressek and expandek,tag satisfying Eval(ek, tag, x) =
expandek,tag(compressek(x)) for all x ∈ ZNζ+1 .

Given x ∈ ZNζ+1 , the function compressek(x) is described as follows:

1. Parse the evaluation key as ekb =
(
N, ζ, {gi,0, gi,1 ∈ Z

∗
Nζ+1 }t

i=1

)
and (inef-

ficiently) factor N = pq.
2. Initialize a list List to empty. Compute (y, z) ∈ ZNζ × ZN such that x =

y · N + z. If gcd(z,N) > 1 then add 0 to List and output List.
3. Otherwise, having p, q, for all (i, b) ∈ [t] × {0, 1}, use the Damg̊ard-Jurik

decryption Dec((p, q), gi,b) = δb,tag∗
i

and in the end obtain tag∗ ∈ {0, 1}t.
Moreover, use the isomorphism ψ-1

ζ from Theorem 2 to also recover all the
αi,b ∈ Z

∗
N while knowing gi,b ∈ Z

∗
Nζ+1 and δb,tag∗

i
∈ ZNζ .

4. For i = 1 to t, define

siblingi := tag∗
[1..(i−1)] ‖ (1 − tag∗

i )

where tag∗
[1..(i−1)] denotes the first i − 1 bits of tag∗.

5. For j = 1 to t, perform the following:
– Let x0 = x and find (y0, z0) such that x0 = y0 · N + z0.
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– For k = 1 to j − 1, compute

xk = g
yk−1

k,siblingj [k]
· zNζ

k−1 (mod N ζ+1)

where siblingj [k] is the k-th bit of siblingj .
– Let b = siblingj [j]. Compute (yj−1, zj−1) such that xj−1 = yj−1 ·N +zj−1

and add
(αyj−1

j−1,b · zj−1)Nζ

(mod N ζ+1) ∈ ZN

to List.
6. Output List ∈ Z

t
N .

Given tag �= tag∗ and a List ∈ Z
t
N , the function expandek,tag(List) is given

below:

1. Parse the evaluation key as ekb =
(
N, ζ, {gi,0, gi,1 ∈ Z

∗
Nζ+1 }t

i=1

)
and (inef-

ficiently) factor N = pq.
2. If List contains only one element 0, output 0.
3. Otherwise, having p, q, for all (i, b) ∈ [t] × {0, 1}, use the Damg̊ard-Jurik

decryption Dec((p, q), gi,b) = δb,tag∗
i

and in the end obtain tag∗ ∈ {0, 1}t.
4. Compute i = minj∈[t](tagj �= tag∗

j ). It holds that 1 ≤ i ≤ t is well-defined
because tag �= tag∗.

5. Let xi = List[i]. For k = i + 1 to t, conduct the following:
– Compute (yk−1, zk−1) satisfying xk−1 = yk−1 · N + zk−1.
– Compute

xk = g
yk−1
k,tagk

· zNζ

k−1 (mod N ζ+1) .

6. Output xt ∈ Z
∗
Nζ+1 .

Relating to cumulative lossiness, we evaluate |{compressek(x) : x ∈ ZNζ+1}|.
By construction, for x ∈ Z

∗
Nζ+1 , the output of compressek(x) is a list of t elements

in ZN . If x ∈ ZNζ+1 \ Z
∗
Nζ+1 , compressek(x) outputs a list of one single element,

namely 0. We then have the bound

|{compressek(x) : x ∈ ZNζ+1}| = N t + 1 ≤ 2 · N t .

We want to prove that Eval(ek, tag, x) = expandek,tag(compressek(x)) for all
x ∈ ZNζ+1 and tag �= tag∗. If x ∈ ZNζ+1 \ Z

∗
Nζ+1 , then Eval(ek, tag, x) = 0 by

construction. Moreover, we have x = y · N + z for (y, z) ∈ ZNζ × ZN such that
gcd(z,N) > 1. Thus, compressek(x) outputs List containing only 0 and step 2 in
expandek,tag(List) recovers exactly 0. Otherwise, suppose x ∈ Z

∗
Nζ+1 . Our main

observation is that for i = minj∈[t](tagj �= tag∗
j ), the value xi will uniquely

determine xt, by the fact that ψζ is an isomorphism from Theorem 2. Moreover,
because tagi �= tag∗

i and tagk = tag∗
k for all k < i, we have

xi = (αyi−1
i−1,b · zi−1)Nζ

(mod N ζ+1)

and the sequence (x0, . . . , xi−1 = yi−1 · N + zi−1) stays the same as if the
input tag is tag∗. By definition of siblingi, it is easily verified that the loop 5 in
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compressek constructs List such that List[i] = xi and i = minj∈[t](tagj �= tag∗
j ).

Finally, the loop 5 in expandek,tag(List) performs exactly the same computation as
Eval(ek, tag, x) would do, starting from i. Hence, the equality Eval(ek, tag, x) =
expandek,tag(compressek(x)) is justified. ��

Remark 1. The domain is ZNζ+1 and its size is log(N ζ+1) = (ζ + 1) log N .
Moreover, by setting the tag length t = O(λ) and the exponent ζ = ω(λ) so that
our CALBO-TDFs can be used for the applications to randomness extractors
in [23, Corollary 5.12], the lossiness rate of the above construction becomes

(ζ + 1) log N − log(2 · N t)
(ζ + 1) log N

= 1 − t

ζ + 1
− 1

(ζ + 1) log N
= 1 − o(1)

and is indeed better than what the LWE-based CALBO-TDF achieves, which is
1 − Θ(1) by the parameter choices.
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Abstract. Related-key attacks (RKA) are powerful cryptanalytic
attacks, where the adversary can tamper with the secret key of a crypto-
graphic scheme. Since their invention, RKA security has been an impor-
tant design goal in cryptography, and various works aim at design-
ing cryptographic primitives that offer protection against related-key
attacks. At EUROCRYPT’03, Bellare and Kohno introduced the first
formal treatment of related-key attacks focusing on pseudorandom func-
tions and permutations. This was later extended to cover other prim-
itives such as signatures and public key encryption schemes, but until
now, a comprehensive formal security analysis of authenticated encryp-
tion schemes with associated data (AEAD) in the RKA setting has been
missing. The main contribution of our work is to close this gap for the
relevant class of nonce-based AEAD schemes.

To this end, we revisit the common approach to construct AEAD from
encryption and message authentication. We extend the traditional secu-
rity notion of AEAD to the RKA setting and consider an adversary that
can tamper with the key Ke and Km of the underlying encryption and
MAC, respectively. We study two security models. In our weak setting, we
require that tampering will change both Ke and Km, while in our strong
setting, tampering can be arbitrary, i.e., only one key might be affected.
We then study the security of the standard composition methods by
analysing the nonce-based AEAD schemes N1 (Encrypt-and-MAC), N2
(Encrypt-then-MAC), and N3 (MAC-then-Encrypt) due to Namprem-
pre, Rogaway, and Shrimpton (EUROCRYPT’14). We show that these
schemes are weakly RKA secure, while they can be broken under a strong
related-key attack. Finally, based on the N3 construction, we give a novel
AEAD scheme that achieves our stronger notion.

1 Introduction

The security of cryptographic schemes fundamentally relies on the secrecy of
its keys. In particular, the secret key used by cryptographic algorithms must
neither be revealed to the adversary nor must the adversary be able to change
it. Unfortunately, countless advanced cryptanalytical attacks illustrate that the
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assumption on the secrecy of a key ceases to hold in practice. Prominent exam-
ples include side-channel attacks such as power analysis or timing attacks that
partially reveal the secret key [26,27]; or tampering and fault attacks [17], where
the adversary can change the secret key and observe the effect of this change
via the outputs. The latter type of attack often is referred to as a related-key
attack (RKA), and has been intensively studied by the research community over
the last years [1,4–6,8,12,13,16,19,21,23,24,28,29,37]. But related keys may
not only appear when the adversary actively tampers with the key. Another
important setting where we have to deal with related keys is key updates. In
this setting related-key cryptanalysis may exploit the relation of keys caused by
bad key updates [14–16,25]. Another scenario are devices with related keys. As
a simple example consider a manufacturer that has some master key K . Rather
than generating a fresh key for each device, it derives the key from the master
key and some device id – for instance XORing the two.

The first work that provided a formal model for related-key attacks is the
seminal work of Bellare and Kohno [8]. In this model, the related-key attacker
can specify a related-key-deriving (RKD) function ϕ (from some set Φ) together
with each black-box query to the cryptographic primitive, and observe the
input/output behaviour for the primitive under the related key ϕ(K ). For
instance, consider a PRF F(K , ·), that the adversary can query on some input X .
As a result of a related-key attack the adversary receives F(ϕ(K ),X ), where ϕ
is the RKD function. Starting with [8], several works extend the notion of RKA
security to a wide range of cryptographic primitives. This includes pseudoran-
dom functions [1,6], pseudorandom permutations [5], encryption schemes [4],
and MACs [12,37].

Somewhat surprisingly, RKA security has not been considered for the impor-
tant case of authenticated encryption schemes with associated data1 (AEAD).
AEAD is a fundamental cryptographic primitive used, e.g., to secure commu-
nication in the Internet and is therefore ubiquitously deployed, especially in
TLS 1.3 [32]. Lately, AEAD has received a lot of attention, for instance through
the CAESAR competition [11] and the ongoing NIST standardization process
on lightweight cryptography [31]. An important type of AEAD schemes, and
simultaneously the focus of the NIST standardization process [31], are so-called
nonce-based schemes [33]. These schemes have the advantage that they are deter-
ministic, and hence their security does not rely on good quality randomness
during encryption. Instead, they use nonces (e.g., a simple counter) and require
that these nonces are never repeated to guarantee security [33].

1.1 Our Contribution

The main contribution of our work is to extend the notion of RKA security
to nonce-based AEAD schemes. We study the common generic composition
paradigms to construct AEAD from encryption schemes and MACs, and explore

1 Associated data corresponds to header information that has to be authenticated but
does not need to be confidential.
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if RKA security of the underlying primitives carries over to the AEAD scheme.
More concretely, let Ke and Km be the keys of the encryption and MAC, respec-
tively. Assuming that the encryption scheme is secure against the class Φe of
related-key deriving functions and the MAC is secure against Φm, then we ask
if the AEAD scheme is secure with respect to related-key derivation functions
from the Cartesian product Φe ×Φm.2 In particular, we show that under certain
restrictions of Φe × Φm the schemes N1, N2, and N3 by Namprempre et al. [30],
falling into the composition paradigms E&M, EtM, and MtE, respectively, are
secure under related-key attacks. By giving concrete attacks against all schemes
in case the restrictions are dropped, we show further that these restrictions are
necessary. Finally, on the positive side, we give a new construction for AEAD
that is secure for the general case of functions from Φe × Φm, i.e., without the
aforementioned restrictions. We provide more details on our contribution below.

RKA Security Notions for Nonce-Based AEAD Schemes. We give two
RKA security notions s-RKA-AE and RKA-AE for nonce-based AEAD schemes.
In our weaker notion (RKA-AE), we assume that the key is updated such that
each underlying primitive never uses the same key twice.3 This is modelled by
imposing an additional restriction on the adversary, where the adversary is not
allowed to make queries with RKD functions that would result in keys that have
already appeared during earlier RKA queries. More precisely, let K i

e and K i
m the

result of the i-th RKA query. We require that for all i, j, we have K i
e = K j

e if
and only if K i

m = K j
m. In our stronger notion (s-RKA-AE), the above restriction

is not imposed on the adversary, i.e., it is allowed to make queries i, j such that
K i

e = K j
e and K i

m �= K j
m. Note that any adversary can trivially make such

queries by repeating the RKD function for key Ke while using two different
RKD functions for Km. One may object that our weaker security notion looks
rather artificial for modelling tampering attacks. We believe however that it is
interesting to study for what key relations state-of-the-art AEAD constructions
that are widely deployed remain secure under related-key attacks. Moreover, we
emphasize another setting where such weak key relations may occur naturally
– so-called bad key updates. In this setting the RKA adversary may observe
ciphertexts for different related keys, where the relation stems from the key
updates described by the RKD functions. Since the users update the keys, the
relation between the keys is in fact not chosen by the adversary. Hence, the
weaker notion guarantees security if the users ensure that, after each update,
both keys Ke and Km are fresh. In contrast, the stronger notion guarantees
security even in the case when the users might only update one of the keys.
Further details on these two notions are given in Sect. 3.

RKA Security of the N1, N2, and N3 Construction. We study the secu-
rity of the N1, N2, and N3 constructions for nonce-based AEAD schemes [30],
2 A similar question using the Cartesian product of the related-key deriving functions

from the underlying primitives is answered in [5] for Feistel constructions.
3 Note that the adversary can still ask for several encryptions under each key.
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which follow the Encrypt-and-MAC (E&M), Encrypt-then-MAC (EtM), and
MAC-then-Encrypt (MtE) paradigm [9], respectively. These constructions build
a nonce-based AEAD scheme from a nonce-based encryption scheme and a MAC.
We show that all schemes achieve our weaker security notion, i.e., when it is
ensured that both keys are updated properly. The overall proof approach is sim-
ilar to the classical setting. The challenge lies in the analysis that all queries
by the reduction are permitted due to the related keys. Regarding our stronger
security notion, we show that all schemes have limitations. We show that N1
and N2 are insecure, irrespective of the underlying primitive, by giving concrete
attacks. For N3, we show that the security crucially depends on the underlying
encryption scheme, by giving an attack against any instantiation using a stream
cipher. These results appear in Sect. 4.

RKA-Secure AEAD Scheme. Finally, we give a new construction, called N*,
of an AEAD scheme which is based on the N3 construction, and follows the MAC-
then-Encrypt (MtE) paradigm. The underlying encryption scheme relies on an
RKA-secure block cipher and a MAC. The resulting AEAD scheme achieves our
stronger security notion s-RKA-AE, in fact, even in the case of nonce misuse.
For simplicity we omit details regarding the nonce here, and discuss this setting
more detail in Sect. 3. The construction and the proof is shown in Sect. 5.

RKA-Secure Encryption and MAC from Pseudorandom Functions.
We show that RKA-secure nonce-based encryption schemes and MACs can be
built from RKA-secure pseudorandom functions. Combined with the results for
the N1, N2, and N3 constructions, this reduces the task of constructing RKA-
secure nonce-based AEAD schemes to the task of constructing RKA-secure pseu-
dorandom functions which is a general goal in the RKA literature. More pre-
cisely, we show that the nonce-based encryption scheme and the MAC proposed
by Degabriele et al. [18] in the setting of leakage-resilient cryptography achieve
RKA security if the underlying pseudorandom function is RKA-secure. This is
shown in the extended version of the paper [20].

1.2 Related Work

Based on the initial work by Biham [13] and Knudsen [24], the first formalisa-
tion of RKA security has been given by Bellare and Kohno [8]. They studied
pseudorandom functions as well as pseudorandom permutations and showed an
inherent limitation on the set of allowed RKD functions. Bellare and Cash [6]
proposed RKA-secure pseudorandom functions based on the DDH assumption,
which allowed a large class of RKD functions. Abdalla et al. [1] further increased
the allowed class of RKD functions. Several other works study the RKA secu-
rity for various primitives, e.g., pseudorandom permutations from Feistel net-
works [5], encryption schemes [4], and MACs [12,37]. Harris [22], and later
Albrecht et al. [3], showed inherent limitations of the Bellare-Kohno formalism
by giving a generic attack against encryption schemes if the set of related-key
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deriving functions can depend on the primitive in question. The practical rele-
vance of the alternative model by Harris has been questioned by Vaudenay [36].

Closer to our setting is the work by Lu et al. [29], who also study RKA
security for authenticated encryption schemes. However, instead of nonce-
based authenticated encryption schemes, they analyse probabilistic authenti-
cated encryption schemes and only for the specific case of affine functions. More-
over, Han et al. [21] found their proof to be flawed, invalidating the results. To
the best of our knowledge, these are the only works that consider RKA security
for authenticated encryption schemes.

The practical relevance of RKA security has been shown by a number of
works [16,19,23,28] which present attacks against concrete primitives.

2 Preliminaries

In Sect. 2.1 we recall the used notation. The syntax of the cryptographic prim-
itives and existing RKA security notions are given in Sect. 2.2 and Sect. 2.3,
respectively. Additional background on security notions in the classical setting
is given in the extended version of the paper [20].

2.1 Notation

By {0, 1}∗ and {0, 1}x we denote the set of bit strings with arbitrary length
and length x, respectively. We refer to probabilistic polynomial-time algorithms
as adversaries if not otherwise specified, and use the code-based game-playing
framework by Bellare and Rogaway [10]. For a game G and adversary A, we write
GA ⇒ y to indicate that the output of the game, when played by A, is y. Likewise,
AG ⇒ y indicates that A outputs y when playing game G. In case A has access to
an oracle O we write AO. We only use distinguishing games in which an adversary
A tries to guess a secret bit b. The advantage of A in such a distinguishing
game G is defined as AdvG(A) := |2 Pr[GA ⇒ true] − 1|. Equivalent notions
using adversarial advantages are |Pr[AG ⇒ 0 | b = 0] − Pr[AG ⇒ 0 | b = 1]|
and |Pr[AG ⇒ 1 | b = 1] − Pr[AG ⇒ 1 | b = 0]|. For sets X and Y, the set of
all functions mapping from X to Y is denoted by Func(X ,Y) and the set of
permutations over X by Perm(X ). We write Func(K,X ,Y) and Perm(K,X ) for
keyed functions in Func(X ,Y) and Perm(X ), respectively, where K denotes the
key space. Tables f are initialised with ⊥ if not mentioned differently. For sets S
and T , we write S ←∪ T instead of S ← S ∪ T . Our main focus lies in the RKA
setting and we use the term classical setting whenever we refer to the setting
which does not consider related-key attacks.

2.2 Primitives

A nonce-based authenticated encryption scheme with associated data (AEAD),
is a tuple of two deterministic algorithms (Enc, Dec). The encryption algorithm
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Enc : K × N × A × M → C maps a key K , a nonce N , associated data A, and a
message M , to a ciphertext C . The decryption algorithm Dec : K×N ×A×C →
M ∪ {⊥} maps a key K , a nonce N , associated data A, and a ciphertext C , to
either a message or ⊥ indicating an invalid ciphertext. The sets K, N , A, M,
and C, denote the key space, nonce space, associated data space, message space,
and ciphertext space, respectively. An AEAD scheme is called correct if for any
K ∈ K, any N ∈ N , any associated data A ∈ A, and any M ∈ M, it holds
that Dec(K ,N ,A, Enc(K ,N ,M ,A)) = M . It is called tidy if for any K ∈ K,
any N ∈ N , any associated data A ∈ A, any M ∈ M, and any C ∈ C with
Dec(K ,N ,A,C ) = M , it holds that Enc(K ,N ,A,M ) = C .

A nonce-based symmetric key encryption is similarly defined. The difference
is that neither algorithm permits associated data as an input and only rejects
ciphertext, i.e., outputs ⊥, if computed on values outside the corresponding sets.
For both primitives, we let c denote the length of a ciphertext.

A message authentication code (MAC) is a tuple of two deterministic algo-
rithms (Tag, Ver). The tagging algorithm Tag : K × X → {0, 1}t maps a key K
and message X to a tag T . The verification algorithm Ver : K × X × {0, 1}t →
{	,⊥} takes as input a key K , a message M , and a tag T , and outputs either
	, indicating a valid tag, or ⊥, indicating an invalid tag. Correctness requires
that Ver(K ,X , Tag(K ,X )) = 	, for any K ∈ K and X ∈ X . We denote the
length of tags by t .

2.3 Security Notions Against Related-Key Attacks

We recall some of the existing RKA security notions. All notions follow the
style introduced by Bellare and Kohno [8]. That is, the set of admissible RKD
functions is fixed at the start of the game. All our results, however, also apply to
the alternative definition given by Harris [22], where the adversary first picks the
set of RKD functions before the concrete scheme (from a family of primitives) is
chosen by the game. This prevents an inherent limitation of the Bellare-Kohno
formalism as the RKD function can not depend on the primitive.4

Φ-Restricted Adversaries. For RKA security notions, the adversary is typically
restricted to a set of functions that it can query to its oracles. This restriction is
necessary, as Bellare and Kohno [8] showed that RKA security is unachievable
without such restrictions. Let K be the key space of some primitive, then the set
of permitted RKD functions is Φ ⊂ Func(K,K). We call an adversary that only
queries functions from the set Φ to its oracles, a Φ-restricted adversary.

Repeating Queries. To avoid trivial wins certain queries must be excluded from
the security games. In case of a MAC, we must forbid the adversary to query its
challenge verification oracle on a tag it obtained from its tagging oracle. To do
this, one can either adapt the game by keeping a list of such queries and let the

4 It is questionable whether RKD functions that depend on the actual primitive are
relevant in practice.
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verification oracle check for such forbidden queries. The other option, would be
to simply exclude adversaries that do such queries in the security definition. For
ease of exposition, we use the latter approach.

Game rkaSUF

b ←$ {0, 1}
K ←$ K
b′ ← AVer,Tag()

return (b′ = b)

Ver(M ,T , ϕ)

if b = 0

return Ver(ϕ(K ),M ,T )

else

return ⊥

Tag(M , ϕ)

T ← Tag(ϕ(K ),M )

return T

Fig. 1. Security game rkaSUF.

RKA Security for MACs and Pseudorandom Functions/Permutations. We give
the definition of related-key attack security of MACs. Existing notions define
it as an unforgeability game where the adversary finally outputs a forgery
attempt [12,37]. In this work, we define unforgeability of a MAC against RKA
as a distinguishing game. Here the adversary aims to distinguish whether its
challenge oracle implements the real verification algorithm or simply rejects any
queried tag.

Definition 1 (RKA-SUF Security). Let Γ = (Tag, Ver) be a MAC and Φ ⊂
Func(K,K). Let the game rkaSUF be defined as in Fig. 1. For a Φ-restricted RKA
adversary A, that never forwards a query from its oracle Tag, we define its
RKA-SUF advantage as

AdvrkaSUF
Γ (A, Φ) = 2 Pr[rkaSUFA ⇒ true] − 1.

Games rkaPRF, rkaPRP

b ←$ {0, 1}
K ←$ K
F

′ ←$ Func(K, X , Y)

P
′ ←$ Perm(K, X )

b′ ← AF()

return (b′ = b)

F(X , ϕ) in rkaPRF

if b = 0

y ← F (ϕ(K ),X )

else

y ←$ F
′(ϕ(K ),X )

return y

F(X , ϕ) in rkaPRP

if b = 0

y ← F (ϕ(K ),X )

else

y ← P
′(ϕ(K ),X )

return y

Fig. 2. Security games rkaPRF and rkaPRP.

RKA-Security for pseudorandom functions (PRFs) and pseudorandom permu-
tations (PRPs) have been studied in many works, e.g., [3,6–8], and are defined
as the advantage in distinguishing the real function/permutation from a random
function/permutation when having access to an oracle implementing either of
these.
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Definition 2 (RKA-PRF Security). Let F : K × X → Y and Φ ⊂ Func(K,K).
Let the game rkaPRF be defined as in Fig. 2. For a Φ-restricted RKA adversary
A, that never repeats a query, we define its RKA-PRF advantage as

AdvrkaPRF
F (A, Φ) = 2 Pr[rkaPRFA ⇒ true] − 1.

Definition 3 (RKA-PRP Security). Let F : K × X → X and Φ ⊂ Func(K,K).
Let the game rkaPRP be defined as in Fig. 2. For a Φ-restricted RKA adversary
A, that never repeats a query, we define its RKA-PRP advantage as

AdvrkaPRP
F (A, Φ) = 2 Pr[rkaPRPA ⇒ true] − 1.

3 RKA Security Notions for Nonce-Based AEAD

In this section, we define security for nonce-based encryption schemes and
nonce-based AEAD schemes under related-key attacks. RKA security notions for
encryption and authenticated encryption schemes have been proposed by Bel-
lare et al. [7] and Lu et al. [29], respectively. However, neither notion considers
nonce-based primitives and instead considers the case of probabilistic primitives.
Furthermore, both works define indistinguishability in a left-or-right sense, while
we follow the stronger IND$ (indistinguishability from random bits) approach
put forth by Rogaway [34]. For this notion, the adversary has to distinguish
the encryption of a message from randomly chosen bits. We discuss how the
classical property of nonce-respecting adversaries is extended to the RKA set-
ting in Sect. 3.1 and provide two RKA security notions for nonce-based AEAD
schemes in Sect. 3.2. In Sect. 3.3, we extend the notion to the nonce misuse
case and Sect. 3.4 provides the RKA security notion for nonce-based encryption
schemes.

3.1 Nonce Selection

Security notions in the classical setting are often restricted to adversaries which
are nonce-respecting. These are adversaries that never repeat a nonce across their
encryption queries. Hence, security proven against nonce-respecting adversaries
guarantees security as long as the encrypting party never repeats a nonce. Below
we argue why this adversarial restriction needs to be updated in the RKA setting.

Consider the following scenario. Alice and Bob communicate using an AEAD
scheme across several sessions. In each session, Alice will send several encrypted
messages to Bob, each time using a fresh nonce implemented as a counter. Instead
of exchanging a fresh secret key for each session, they exchange a key for the
first session and between two consecutive sessions, they update the key using
some update function F. There is no guarantee that Alice does not reuse a nonce
in different sessions. In fact, due to using a simple counter which might be reset
between the sessions, this is likely to happen. This means that an adversary can
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observe encryptions using the same nonce under related keys, where the relation
is given by the update function F.

The same applies to the scenario where different devices have related keys.
Every user would only ensure unique nonces for the own device while there will
be colliding nonces across related devices.

If we declare an RKA adversary to be nonce-respecting if and only if it
never repeats a nonce, then a proof of security does not tell us anything for
the scenarios depicted above. Instead, we define an RKA adversary to be RKA-
nonce-respecting if it never repeats the pair of nonce and RKD function. An
interpretation of this definition is that nonce-respecting is defined with respect
to individual keys. Since in the classical setting there is only ever one key, this
interpretation reflects this.

3.2 RKA-Security Notions for AEAD Schemes

We extend security for AEAD schemes to the RKA setting. Instead of the app-
roach used in [29], which defines two separate RKA security notions for con-
fidentiality and authenticity, we follow the unified security notion by Rogaway
and Shrimpton [35]. That is, the adversary has access to two oracles Enc and
Dec. The goal of the adversary is to distinguish the real world, in which the ora-
cles implement the encryption and decryption algorithm, from the ideal world,
where the first oracle returns random bits while the latter rejects any ciphertext.
The adversary wins the game if it can distinguish in which world it is. To make
our new RKA security notion achievable, we impose standard restrictions on the
adversary. That is, first, the adversary is not allowed to forward the response of
an encryption query to the decryption query and, second, the adversary must not
repeat a query to its encryption oracle.5 More precisely, we say that an adversary
forwards a query from its encryption oracle, if it queries its decryption oracle
on a ciphertext C that it has obtained as a response from its encryption oracle,
while the other queried values N ,A, ϕ are the same for both queries. We call
the resulting notion s-RKA-AE, the “s” indicating strong. The reason for that
is that we introduce a weaker notion below.

Definition 4 (s-RKA-AE Security). Let Σ = (Enc, Dec) be an AEAD scheme
and Φ ⊂ Func(K,K). Let the game s-rka-AE be defined as in Fig. 3. For an RKA-
nonce-respecting and Φ-restricted RKA adversary A, that never repeats/forwards
a query to/from Enc, we define its RKA-AE advantage as

Advs-rka-AE
Σ (A, Φ) = 2 Pr[s-rka-AEA ⇒ true] − 1.

The above definition treats the AEAD scheme to have a single key K . Such
schemes, however, are often constructed from smaller building blocks which have

5 The latter restriction can also be handled by letting the encryption oracle return
the same response as it did when the query was made the first time. For ease of
exposition, we simply forbid such queries to avoid additional bookkeeping in the
security games.
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Game s-rka-AE

b ←$ {0, 1}
K ←$ K
b′ ← AEnc,Dec()

return (b′ = b)

Enc(N ,A,M , ϕ)

if b = 0

C ← Enc(ϕ(K ),N ,A,M )

else

C ←$ {0, 1}c

return C

Dec(N ,A,C , ϕ)

if b = 0

M ← Dec(ϕ(K ),N ,A,C )

else

M ← ⊥
return M

Fig. 3. Security game s-rka-AE.

individual keys. This encompasses the N constructions [30], on which we focus in
the next section, but also all other constructions combining an encryption scheme
and a MAC into an AEAD schemes. In this case, the set of RKD functions of
the AEAD scheme is the Cartesian product of the set of RKD functions for the
individual primitives. More precisely, let E and M be the underlying primitives
and Φe and Φm be the respective sets of RKD functions. Then for the combined
primitive AE, the set of RKD functions is Φae = Φe × Φm. Thus the s-RKA-AE
security game above allows the adversary to query the encryption oracle on
(N , ϕe, ϕm) ∈ N ×Φe ×Φm and later querying it on (N , ϕe, ϕ

′
m) ∈ N ×Φe ×Φm,

where ϕm �= ϕ′
m. This essentially allows the adversary to bypass the nonce-

respecting property of the underlying primitive.
Recall the key-update scenario described above. Allowing the adversary to

query the same nonce while the queried RKD functions agree in exactly one
part, models a scenario in which the key update either does not update one of
the keys or later updates a key to a previously used key. We introduce a weaker
security notion, in which these queries are forbidden. Security according to this
notion then reflects security as long as the pair of keys is updated appropriately.

Definition 5 (RKA-AE Security). Let Σ = (Enc, Dec) be an AEAD scheme
and Φ = Φe × Φm ⊂ Func(K,K). Let the game rka-AE be defined as in Fig. 4.
For an RKA-nonce-respecting and Φ-restricted RKA adversary A, that never
repeats/forwards a query to/from Enc, we define its RKA-AE advantage as

Advrka-AE
Σ (A, Φ) = 2 Pr[rka-AEA ⇒ true] − 1.

The weaker security notion bears similarities to split-state non-malleable
codes [2]. Here, the secret is encoded in such a way that it is secure against
fault attacks as long as the left and right half of the code are tampered inde-
pendently. In more detail, the decoding of such tampered codes is independent
from the original secret and might be invalid. However, if we consider key-related
devices or bad-key updates, non-malleable codes are not helpful any more since
they are used for faults and not bad randomised keys. The reason for this is that
after each key update we need to take care that the resulting key is still valid.
Further, we do not want to update the keys independently but simultaneously
such that all keys are fresh after the key update. So the requirement to the
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Game rka-AE

b ←$ {0, 1}
(Ke ‖ Km) ←$ K
S ← ∅
b′ ← AEnc,Dec()

return (b′ = b)

Enc(N ,A,M , ϕe, ϕm)

if ∃ϕ′
e �= ϕe st (N , ϕ′

e, ϕm) ∈ S
return ⊥

if ∃ϕ′
m �= ϕm st (N , ϕe, ϕ

′
m) ∈ S

return ⊥
S ←∪ {(N , ϕe, ϕm)}
if b = 0

C ← Enc(ϕe(Ke) ‖ ϕm(Km),N ,A,M )

else

C ←$ {0, 1}c

return C

Dec(N ,A,C , ϕe, ϕm)

if ∃ϕ′
e �= ϕe st (N , ϕ′

e, ϕm) ∈ S
return ⊥

if ∃ϕ′
m �= ϕm st (N , ϕe, ϕ

′
m) ∈ S

return ⊥
S ←∪ {(N , ϕe, ϕm)}
if b = 0

M ← Dec(ϕe(Ke) ‖ ϕm(Km),N ,A,M )

else

M ← ⊥
return M

Fig. 4. Security game rka-AE. The set S is used to detect forbidden queries, that is,
queries where the triple of nonce and the two RKD functions differ in exactly one of
the functions. Both oracles reject such queries by returning ⊥.

weaker notion is the opposite of that of non malleable codes. For key updates,
it is a reasonable assumption to say that all underlying keys have to be updated
for a new session.

3.3 RKA-Security Against Nonce Misuse

Similar to the classical setting, we extend security to nonce-misuse resistance.
In this case, the adversary is allowed to repeat nonces to the encryption oracle.
Below we define security in this stronger sense for s-RKA-AE security. Note that
the game is the same as in Definition 4 (cf. Fig. 3), the sole difference is that the
adversary is no longer restricted to be RKA-nonce-respecting.

Definition 6 (mr-s-RKA-AE Security). Let Σ = (Enc, Dec) be an AEAD
scheme and Φ ⊂ Func(K,K). Let the game s-rka-AE be defined as in Fig. 3. For an
RKA-respecting and Φ-restricted RKA adversary A, that never repeats/forwards
a query to/from Enc, we define its mr-s-RKA-AE advantage as

Advmr-s-rka-AE
Σ (A, Φ) = 2 Pr[s-rka-AEA ⇒ true] − 1.

In the same way, we can extend RKA-AE security to the nonce misuse scenario.
However, we believe this notion not to be meaningful. The RKA-AE security
notion already requires that keys are updated properly, i.e., they do not repeat.
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Since this task is way more complex than ensuring that nonces do not repeat,
it seems strange to require this one while simultaneously dropping the simple
requirement of unique nonces.

3.4 RKA-Security Notions for Encryption

The following definition extends the classical IND-CPA security notion for nonce-
based encryption schemes to the RKA setting. The adversary has to tell apart
the real encryption oracle from an idealised encryption oracle which returns
random bits. The main distinction lies in the nonce selection of the adversary as
it is allowed to repeat a nonce if the RKD functions are different.

Game rkaIND

b ←$ {0, 1}
K ←$ K
b′ ← AEnc()

return (b′ = b)

Enc(N ,M , ϕ)

if b = 0

C ← Enc(ϕ(K ),N ,M )

else

C ←$ {0, 1}c

return C

Fig. 5. Security game rkaIND.

Definition 7 (RKA-IND Security). Let Σ = (Enc, Dec) be an encryption
scheme and Φ ⊂ Func(K,K). Let the game rkaIND be defined as in Fig. 5. For an
RKA-nonce-respecting and Φ-restricted RKA adversary A, that never repeats a
query, we define its RKA-IND advantage as

AdvrkaIND
Σ (A, Φ) = 2 Pr[rkaINDA ⇒ true] − 1.

4 RKA Security of the N1, N2, and N3 Constructions

In this section we study the security of the nonce-based AEAD schemes N1,
N2, and N3 [30], which fall into the generic composition paradigms Encrypt-
and-MAC (E&M), Encrypt-then-MAC (EtM), MAC-then-Encrypt (MtE) [9].
We analyse each scheme with respect to the two security notions RKA-AE and
s-RKA-AE defined above. The analysis reveals that all schemes achieve RKA-AE
security if the underlying primitives are RKA-secure. Regarding the stronger
s-RKA-AE security, the situation is more involved. We show that both N1 and
N2 are insecure irrespective of the underlying primitives. For N3, we provide
a concrete attack exploiting any instantiation using a stream cipher for the
underlying encryption scheme.

Section 4.1 covers the analysis of the N1 construction. The N2 construction
is analysed in Sect. 4.2 while we analyse the N3 construction in Sect. 4.3.
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Fig. 6. The AEAD schemes N1 (left), N2 (middle), and N3 (right) [30].

4.1 N1 - Instantiation of Encrypt-and-MAC

The N1 construction composes a nonce-based encryption scheme and a MAC
into an AEAD scheme. It follows the E&M paradigm. The encryption algorithm
is used to encrypt the message as is the MAC to compute a tag for the message.
The ciphertext of the AEAD scheme consists of the ciphertext and the tag.

The following theorem shows that the N1 construction achieves RKA-AE
security if the underlying primitives are RKA-secure. The overall proof approach
is similar to the classical setting but needs some extra treatment when analysing
that all queries of the reductions are permitted. The full proof is given in the
extended version of the paper [20].

Theorem 8. Let Σ = (Enc, Dec) be an encryption scheme and Γ = (Tag, Ver)
be a MAC with RKA function sets Φe and Φm, respectively. Further, let N1 be the
AEAD scheme built from Σ and Γ using the N1 construction with RKA function
set Φae = Φe ×Φm. Then for any RKA-nonce-respecting and Φae-restricted RKA
adversary A against N1, that never repeats/forwards a query to/from Enc, there
exists an RKA-nonce-respecting and Φe-restricted RKA adversary Ase, a Φm-
restricted RKA adversary Amac, and a Φm-restricted RKA adversary Aprf such
that

Advrka-AE
N1 (A, Φae) ≤ AdvrkaIND

Σ (Ase, Φe) + AdvrkaSUF
Γ (Amac, Φm)

+ AdvrkaPRF
Tag (Aprf , Φm).

�

Proof (Sketch). The proof consists of multiple game hops. In the first game hop,
the decryption oracle is replaced by ⊥ which is bound by the RKA security
of Γ . In the subsequent game hops, first the tag and then the ciphertext are
replaced by random values which is bound by the RKA security of Tag and Σ,
respectively.

The following theorem shows that the N1 construction does not achieve the
stronger s-RKA-AE security. The reason is that a ciphertext is the concatena-
tion of a ciphertext from the underlying encryption scheme and tag from the
underlying MAC. By making two queries which solely differ in one of the RKD
functions, the adversary can easily distinguishing between the real and the ideal
case. The proof appears in the extended version of the paper [20].
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Theorem 9. Let Σ = (Enc, Dec) be an encryption scheme and Γ = (Tag, Ver)
be a MAC with RKA function sets Φe and Φm, respectively. Further, let N1 be
the AEAD scheme built from Σ and Γ using the N1 construction with RKA
function set Φae = Φe ×Φm. Then N1 is not s-RKA-AE-secure. There exists an
RKA-nonce-respecting and Φae-restricted RKA adversary A such that

Advs-rka-AE
N1 (A) = 1.

4.2 N2 - Instantiation of Encrypt-then-MAC

The N2 construction composes a nonce-based encryption scheme and a MAC into
an AEAD scheme. It follows the EtM paradigm and is displayed in Fig. 6. The
scheme first encrypts the message using the encryption scheme. Subsequently,
the MAC is used to compute a tag for the ciphertext. The ciphertext of the
AEAD scheme consists of both the ciphertext and the tag.

The theorem below shows that the N2 construction achieves RKA-AE secu-
rity if the underlying primitives are sound. The overall proof follows the classical
one, except for a more complex analysis regarding the permitted queries. The
full proof is given in the extended version of the paper [20].

Theorem 10. Let Σ = (Enc, Dec) be an encryption scheme and Γ = (Tag, Ver)
be a MAC with RKA function sets Φe and Φm, respectively. Further, let N2 be the
AEAD scheme built from Σ and Γ using the N2 construction with RKA function
set Φae = Φe ×Φm. Then for any RKA-nonce-respecting and Φae-restricted RKA
adversary A against N2, that never repeats/forwards a query to/from Enc, there
exists an RKA-nonce-respecting and Φe-restricted RKA adversary Ase, a Φm-
restricted RKA adversary Amac, and a Φm-restricted RKA adversary Aprf such
that

Advrka-AE
N2 (A, Φae) ≤ AdvrkaIND

Σ (Ase, Φe) + AdvrkaSUF
Γ (Amac, Φm)

+ AdvrkaPRF
Tag (Aprf , Φm).

Proof (Sketch). In the first game hop, the decryption oracle is replaced by ⊥
which is bound by the RKA security of Γ . In the subsequent game hops, first
the tag and then the ciphertext are replaced by random values which is bound
by the RKA security of Tag and Σ, respectively. �

Below we show that the N2 construction does not achieve s-RKA-AE security.
It exhibits the same structure as the N1 construction, that is, a concatenation
of a ciphertext and a tag from the underlying primitives. The difference is the
tag is computed on the ciphertext rather than the message. While we give two
attacks against the N1 construction, only one attack also applies against the N2
construction. The proof is given in the extended version of the paper [20].

Theorem 11. Let Σ = (Enc, Dec) be an encryption scheme and Γ = (Tag, Ver)
be a MAC with RKA function sets Φe and Φm, respectively. Further, let N2 be
the AEAD scheme built from Σ and Γ using the N2 construction with RKA
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function set Φae = Φe ×Φm. Then N2 is not s-RKA-AE-secure. There exists an
RKA-nonce-respecting and Φae-restricted RKA adversary A such that

Advs-rka-AE
N2 (A) = 1.

4.3 N3 - Instantiation of MAC-then-Encrypt

The N3 construction composes a nonce-based encryption scheme and a MAC
into an AEAD scheme. It follows the MtE paradigm and is displayed in Fig. 6.
The message is first used as an input to the MAC and then both the message and
the tag are encrypted. In contrast to the other compositions, the ciphertext of
the AEAD scheme consists only of the ciphertext from the underlying encryption
scheme.

In the theorem below, we show that the N3 construction is RKA-AE secure
if both of the underlying primitives are secure. The overall proof follows the
classical setting, except for the analysis that all queries by the reductions are
indeed valid queries.

Theorem 12. Let Σ = (Enc, Dec) be an encryption scheme and Γ = (Tag, Ver)
be a MAC with RKA function sets Φe and Φm, respectively. Further, let N3 be the
AEAD scheme built from Σ and Γ using the N3 construction with RKA function
set Φae = Φe ×Φm. Then for any RKA-nonce-respecting and Φae-restricted RKA
adversary A against N3, that never repeats/forwards a query to/from Enc, there
exists an RKA-nonce-respecting and Φe-restricted RKA adversary Ase, a Φm-
restricted RKA adversary Amac, and a Φm-restricted RKA adversary Aprf such
that

Advrka-AE
N3 (A, Φae) ≤ AdvrkaIND

Σ (Ase, Φe) + AdvrkaSUF
Γ (Amac, Φm)

+ AdvrkaPRF
Tag (Aprf , Φm).

Proof. We prove the theorem using the hybrid games G0, G1, G2, and G3 dis-
played in Fig. 7. For sake of simplicity, the games do not contain the set S to
detect invalid queries. Instead, we assume that the adversary does not make
such queries, which the reduction can simply answer with ⊥. Game G0 is rka-AE
instantiated with N3 and secret bit b fixed to 0. In G1, the decryption oracle is
modified to reject any ciphertext. In G2, encryption oracle computes a random
tag which is then encrypted along with the message. Game G3 equals rka-AE with
secret bit b fixed to 1, where the encryption oracle outputs random ciphertexts
and the decryption oracle rejects any ciphertext. We have

Advrka-AE
N3 (A) = Pr[Arka-AE ⇒ 0 | b = 0] − Pr[Arka-AE ⇒ 0 | b = 1]

= Pr[AG0 ⇒ 0] − Pr[AG3 ⇒ 0]

=
3∑

i=1

Pr[AGi−1 ⇒ 0] − Pr[AGi ⇒ 0].
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Game Gi

(Ke,Km) ←$ K
b′ ← AEnc,Dec()

Dec(N ,A,C , (ϕe, ϕm)) in G0

M ‖ T ← Dec(ϕe(Ke),N ,C )

if Ver(ϕm(Km),N ,A,M ,T ) = 	
return M

return ⊥

Dec(N ,A,C , (ϕe, ϕm)) in G1, G2, G3

return ⊥

Enc(N ,A,M , (ϕe, ϕm)) in G0, G1

T ← Tag(ϕm(Km),N ,A,M )

C ← Enc(ϕe(Ke),N ,M ‖ T )

return C

Enc(N ,A,M , (ϕe, ϕm)) in G2

T ←$ {0, 1}t

C ← Enc(ϕe(Ke),N ,M ‖ T )

return C

Enc(N ,A,M , (ϕe, ϕm)) in G3

C ←$ {0, 1}c

return C

Fig. 7. Hybrid games Gi used to prove Theorem 12 (RKA-AE security of N3).

To bound the term Pr[AG0 ⇒ 0] − Pr[AG1 ⇒ 0] we construct the follow-
ing adversary Amac against the RKA-SUF security of Γ . It chooses a ran-
dom key Ke for the encryption scheme Σ and then runs A. When A makes
a query (N ,A,M , (ϕe, ϕm)) to Enc, Amac proceeds as follows. It queries its ora-
cle Tag on (N ,A,M , ϕm) to obtain a tag T . Then it locally computes C ←
Enc(ϕe(Ke),N ,M ‖ T ) and sends C back to A. For queries (N ,A,C , (ϕe, ϕm))
to Dec by A, Amac locally computes M ‖ T ← Dec(ϕe(Ke),N ,C ) and queries
(N ,A,M ,T , ϕm) to its challenge oracle Ver. If the response is ⊥, it forwards it
to A, otherwise, it sends M to A. When A outputs a bit b′, Amac outputs the
same bit.

Ir remains to argue that Amac never makes a forbidden query (forwarding
from Tag to Ver) conditioned on A making only permitted queries. Assume, for
sake of contradiction, that A makes a valid query (N ,A,C , ϕe, ϕm) to Dec for
which Amac makes a forbidden query. By construction Amac computes M ‖ T ←
Dec(ϕe(Ke),N ,C ) and queries Ver on (N ,A,M ,T , ϕm). This query is forbidden
if Amac has queried (N ,A,M , ϕm) to Tag which resulted in T . This happens if
A has made a query (N ,A,M , ϕ′

e, ϕm) to Enc. We need to distinguish between
the case ϕ′

e = ϕe and ϕ′
e �= ϕe. The former is forbidden as this means that A

forwards a query from Enc to Dec. The latter is forbidden since game rka-AE
forbids queries that agree on the nonce and exactly one of the RKD functions
while disagreeing on the other RKD function. Hence Amac only makes permitted
queries.

By construction, Amac simulates either G0 or G1 for A, depending on its
secret bit b from game rkaSUF. More precisely, it simulates G0 and G1 if its own
challenge is 0 and 1, respectively. This gives us

Pr[AG0 ⇒ 0] − Pr[AG1 ⇒ 0] ≤Pr[ArkaSUF
mac ⇒ 0 | b = 0] − Pr[ArkaSUF

mac ⇒ 0 | b = 1]

≤AdvrkaSUF
Γ (Amac, Φm).
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For the term Pr[AG1 ⇒ 0] − Pr[AG2 ⇒ 0], we construct an adversary Aprf

against the RKA-PRF security of the tagging algorithm Tag. First, Aprf chooses
a random key Ke to simulate all encryption related functionalities. Queries to Dec
by A are answered with ⊥. Queries (N ,A,M , (ϕe, ϕm)) to Enc, are processed
as follows. The reduction Aprf invokes its own oracle F on (N ,A,M , ϕm) to
obtain T , locally computes C ← Enc(ϕe(Ke),N ,M ‖ T ), and sends C back to
A. When A terminates, Aprf also terminates and outputs whatever A does.

We briefly argue that Aprf never repeats a query to F. By construction, every
query (N ,A,M , ϕm) by Aprf stems from a query (N ,A,M , ϕe, ϕm) by A. The
only cases that result in a repeating query are (1) A repeats a query and (2)
A makes two queries which only differ in ϕe. However, both cases are forbidden
queries for A. This yields that every output of Tag is a random value.

The adversary Aprf simulates game G1 for A if its own challenge bit b equals
0, while it simulates G2 for A if b equals 1. Thus it holds that

Pr[AG1 ⇒ 0] − Pr[AG2 ⇒ 0] ≤ Pr[ArkaPRF
prf ⇒ 0 | b = 0] − Pr[ArkaPRF

prf ⇒ 0 | b = 1]

≤ AdvrkaPRF
Γ (Aprf , Φm).

We bound the final term Pr[AG2 ⇒ 0] − Pr[AG3 ⇒ 0] by constructing an adver-
sary Ase against the RKA-IND security of the underlying encryption scheme Σ.
At the start, Ase chooses a random key Km. Any query to Dec is answered with
⊥. When A queries its oracle Enc on (N ,A,M , (ϕe, ϕm)), Ase chooses a random
tag T of length t , invokes its oracle Enc on (N ,M ‖ T , ϕe) to obtain C , and
sends C to A. At the end, Ase outputs whatever A outputs.

It holds that Ase is RKA-nonce-respecting as any query (N ,M ‖ T , ϕe)
stems from a query (N ,A,M , ϕe, ϕm) by A. This means that Ase repeats a pair
of nonce N and RKD function ϕe if A makes two queries using (N , ϕe, ϕm)
and (N , ϕe, ϕ

′
m). We can distinguish between the cases (1) ϕm = ϕ′

m and (2)
ϕm �= ϕ′

m. Case (1) does not occur, as A is RKA-nonce-respecting and case (2) is
forbidden in game rka-AE. The other option would be that A makes two queries
differing only in the associated data A. This turns out not to be an issue, as the
tag T that Ase queries along with the message depends on A, i.e., different A
results in a different message queries by Ase.

The adversary Ase perfectly simulates games G2 or G3 for A depending on
its own challenge from rkaIND. Hence we have

Pr[AG2 ⇒ 0] − Pr[AG3 ⇒ 0] ≤ Pr[ArkaIND
se ⇒ 0 | b = 0] − Pr[ArkaIND

se ⇒ 0 | b = 1]

≤ AdvrkaIND
Γ (Ase, Φe).

Collecting the bounds above proves the claim. �

Unlike for the N1 and N2 construction, the s-RKA-AE security of the N3 con-
struction is more subtle. The difference is that the tag is appended to the cipher-
text for both the N1 and N2 construction while it is encrypted alongside the
message for the N3 construction. The attacks against the N1 and N2 construc-
tion rely on the property that the ciphertext consists of two parts which can
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be manipulated separately. Due to the construction such attacks do not work
against the N3 construction.

It turns out that the s-RKA-AE security of the N3 construction crucially
depend on the used encryption scheme. Namely, if the underlying encryption
scheme is a stream cipher, then the N3 construction is s-RKA-AE insecure.
Below we show an attack against any instantiation using a stream cipher. For
such ciphers the ciphertext is the XOR of the message and a keystream derived
from the key and the nonce.

Theorem 13. Let Σ = (Enc, Dec) be a stream cipher and Γ = (Tag, Ver) be
a MAC with RKA function sets Φe and Φm, respectively. Further, let N3 be
the AEAD scheme built from Σ and Γ using the N2 construction with RKA
function set Φae = Φe ×Φm. Then N3 is not s-RKA-AE-secure. There exists an
RKA-nonce-respecting and Φae-restricted RKA adversary A such that

Advs-rka-AE
N3 (A) = 1.

Proof. Adversary A chooses a nonce N , associated data A, a message M , RKD
functions ϕe, ϕm, and ϕ′

m from the respective sets such that ϕm �= ϕ′
m. Then it

queries its encryption oracle Enc on (N ,A,M , (ϕe, ϕm)) and (N ,A,M , (ϕe, ϕ
′
m))

to obtain ciphertext C1 and C2. If the first |M | bits of C1 and C2 are equal, A
outputs 0, otherwise, it outputs 1.

In case b = 0, we have C1 = Enc(ϕe(Ke),N ,M ‖ Tag(ϕm(Km),N ,A,M ))
and C2 = Enc(ϕe(Ke),N ,M ‖ Tag(ϕ′

m(Km), N ,A,M )). Since the encryption
uses the same nonce and the same key, the same keystream for the stream cipher
will be used. Together with the fact that the first |M | bits are identical as the
same message is encrypted, this yields that C1 and C2 agree on the first bits. In
case b = 1, both C1 and C2 are chosen at random, hence they will not agree on
the first |M | bits.6 �

In the attack above, the RKA-nonce-respecting adversary essentially bypasses
the nonce-respecting property of the underlying encryption scheme by repeating
the nonce N and the RKD function ϕe for the encryption scheme. Then it
exploits the fact that the underlying stream cipher is secure only against nonce-
respecting adversaries. We conjecture that any instantiation using an encryption
scheme that can be broken in the nonce-misuse case results in an s-RKA-AE
insecure instantiation of the N3 construction. The problematic part is that both
the message and the tag are encrypted. While the adversary has full control
over the former, it can not choose the latter at will. This seems to thwart a
simple proof showing that any nonce-misuse adversary against the underlying
encryption scheme can be turned into an s-RKA-AE adversary against N3.

6 Note that there is a negligible chance that the ciphertexts will agree on their first
|M | bits which we drop here for simplicity.
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5 RKA Nonce-Misuse-Resistant AEAD

As described in Sect. 4, N1, N2, and N3 are not secure in the strong RKA set-
ting.7 In this section we give a new AE scheme, N*, that achieves mr-s-RKA-AE
security and hence also s-RKA-AE security. The construction, following the N3
construction, is displayed in Fig. 8. The message, nonce, and associated data are
first used as an input to the MAC, and then both the message and the tag are
encrypted. The difference to the N3 construction is that the encryption scheme
no longer takes the nonce as input. Instead, the (pseudorandom) tag ensures
that the encryption is randomised.

N

M

A

CEnc

Tag

Fig. 8. The AEAD scheme N* [This work].

The theorem below shows that the new construction achieves our strong RKA
security notion conditioned on the encryption scheme being an RKA-secure block
cipher (pseudorandom permutation).

Theorem 14. Let Σ = (Enc, Dec) be an encryption scheme and Γ = (Tag, Ver)
be a MAC with RKA function sets Φe and Φm, respectively. Further, let N* be
the AEAD scheme built from Σ and Γ using the N* construction with RKA
function set Φae = Φe × Φm. Then for any Φae-restricted RKA adversary A
against N* with q queries to the encryption and decryption oracle, that never
repeats/forwards a query to/from Enc, there exists Φe-restricted RKA adversaries
Aprp, and Φm-restricted RKA adversaries Amac and Aprf such that

Advmr-s-rka-AE
N* (A, Φae) ≤ AdvrkaSUF

Γ (Amac, Φm) + AdvrkaPRP
Σ (Aprp, Φe)

+ AdvrkaPRF
Tag (Aprf , Φm) +

2q2

2c
.

Proof. Game G0 in Fig. 9 is the mr-s-rka-AE security game instantiated with N*
and secret bit b = 0 and game G5 is the mr-s-rka-AE security game with b = 1.
To estimate the security of N*, four additional games G1, G2, G3, and G4 are
needed. Starting with mr-s-rka-AE with b = 0 (G0), we modify the intermediate
games as follows: In game G1 the decryption always outputs ⊥ except if the
resulting message was sent to the encryption oracle with the same N , A, and
ϕm before. In G2, the underlying encryption scheme is replaced by a random
permutation. In G3, the decryption oracle always outputs ⊥. In G4, the Tag

7 One solution would be to use the key derivation technique proposed in [7]. However,
this requires the usage of an additional PRF on top of the existing AE scheme.
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algorithm is replaced by a random function. Finally, in game G5, the encryp-
tion oracle ignores the input, and outputs a uniform random cipher C as in
mr-s-rka-AE with b = 1. With Advmr-s-rka-AE

N* (A, Φae) ≤ Adv(AG0 ,AG5) and
Adv(AG0 ,AG5) ≤

∑4
i=0 Adv(AGi ,AGi+1), Claim 15–19 conclude the proof. �

Game Gi

(Ke,Km) ←$ K
T ← ∅
F ←$ Func(Km, N × A × M, {0, 1}t)

P ←$ Perm(Ke, {0, 1}c)

b′ ← AEnc,Dec()

Enc(N ,A,M , (ϕe, ϕm)) in G0, G1

T ← Tag(ϕm(Km),N ,A,M )

C ← Enc(ϕe(Ke),M ‖ T )

T ←∪ {(N ,A,C , (ϕe, ϕm))}
return C

Enc(N ,A,M , (ϕe, ϕm)) in G2, G3

T ← Tag(ϕm(Km),N ,A,M )

f [N ,A, ϕm] ←∪ {(M ,T )}
C ← P(ϕe(Ke),M ‖ T )

T ←∪ {(N ,A,C , (ϕe, ϕm))}
return C

Enc(N ,A,M , (ϕe, ϕm)) in G4

T ← F(ϕm(Km),N ,A,M )

return C ← P(ϕe(Ke),M ‖ T )

Enc(N ,A,M , (ϕe, ϕm)) in G5

return C ←$ {0, 1}c

Dec(N ,A,C , (ϕe, ϕm)) in G0

if (N ,A,C , (ϕe, ϕm)) ∈ T
return ⊥

M ‖ T ← Dec(ϕe(Ke),C )

V ← Ver(ϕm(Km),N ,A,M ,T )

if V = ⊥
return ⊥

return M

Dec(N ,A,C , (ϕe, ϕm)) in G1

if (N ,A,C ′, (ϕ′
e, ϕm)) ∈ T with ϕe �= ϕ′

e

if Dec(ϕe(Ke),C ) = Dec(ϕ′
e(Ke),C ′)

(M ‖ T ) ← Dec(ϕ′
e(Ke),C ′)

return M

return ⊥

Dec(N ,A,C , (ϕe, ϕm)) in G2

if (N ,A,C ′, (ϕ′
e, ϕm)) ∈ T with ϕe �= ϕ′

e

for (M ,T ) ∈ f [N ,A, ϕm]

if C = P(ϕe(Ke),M ‖ T ))

return M

return ⊥

Dec(N ,A,C , (ϕe, ϕm)) in G3, G4, G5

return ⊥

Fig. 9. Hybrid games Gi used to prove Theorem 14.

Claim 15. For any Φae-restricted RKA distinguisher A between game G0 and
G1 defined in Fig. 9, there exists a Φm-restricted RKA adversary Amac such that

Adv(AG0 ,AG1) ≤ AdvrkaSUF
Γ (Amac, Φm).

Proof. In the following, an adversary Amac is given that wins the game with
the advantage of A. Amac simulates the game by using the oracles of the
security game rkaSUF to get the tags T for the encryption and to verify T
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for the decryption of the N* scheme. Further, Amac computes the encryption
scheme Σ locally with a key Ke chosen uniform at random to simulate the
encryption oracle of game G0 and G1. Amac simulates both games perfectly
and A can only distinguish both games if it requests a decryption of a valid
ciphertext (N ,A,C , (ϕe, ϕm)) with (M ‖ T ) = Dec(ϕe(Ke),N ,C ), such that
(N ,A,M ,T , ϕm) is new and the Tag T is valid. Hence, (N ,A,M , ϕm) was
not forwarded to the Tag oracle of rkaSUF and Amac can use this request to
win the game rkaSUF by forwarding (N ,A,M ,T , ϕm) to the verification oracle
Ver of rkaSUF, since it was not sent to the oracle Tag of rkaSUF before. Hence,
Amac is a Φm-restricted RKA adversary because A is Φae-restricted, and it holds
Pr[AG0 ⇒ 0] − Pr[AG1 ⇒ 0] ≤ Pr[ArkaSUF

mac ⇒ 0 | b = 0] − Pr[ArkaSUF
mac ⇒ 0 | b = 1],

and therefore Adv(AG0 ,AG1) ≤ AdvrkaSUF
Γ (Amac, Φm). �

Claim 16. For any Φae-restricted RKA distinguisher A between game G1 and
G2 defined in Fig. 9, there exists an Φe-restricted RKA adversary Aprp such that

Adv(AG1 ,AG2) ≤ AdvrkaPRP
Σ (Aprp, Φe).

Proof. Before we describe the simulator, we transform G1 to G′
1 to avoid that

we need to query the inverse of the oracle F in rkaPRP. In G′
1
8 we replace the

underling decryption function with the encryption function in such a way that
the input/output behaviour of G1 and G′

1 is still the same.

Dec(N ,A,C , (ϕe, ϕm)) in G′
1

if (N ,A,C ′, (ϕ′
e, ϕm)) ∈ T with ϕe �= ϕ′

e

for (M ,T ) ∈ f [N ,A, ϕm]

if C = Enc(ϕ′
e(Ke),N ,M ‖ T )

return M

return ⊥

Enc(N ,A,M , (ϕe, ϕm)) in G′
1

T ← Tag(ϕm(Km),N ,A,M )

C ← Enc(ϕe(Ke),N ,M ‖ T )

f [N ,A, ϕm] ←∪ {(M ,T )}
T ←∪ {(N ,A,C , (ϕe, ϕm))}
return C

In G1 the decryption oracle only returns the decrypted message M if M was
sent to the encryption oracle before. Since the underlying Enc is deterministic,
we can also save the queries to the encryption oracles in f and test if it encrypts
to C as we do in the decryption oracle of G′

1. Hence, it holds that the games are
identical and it is enough to show that Adv(AG′

1 ,AG2) ≤ AdvrkaPRP
Σ (Aprp, Φe).

We construct an adversary Aprp simulating G′
1 and G2 by computing the MAC

locally with a uniform random key Km and using oracle F of rkaPRP for the
encryption. Aprp is Φe-restricted because A is Φae-restricted. Hence, Aprp per-
fectly simulates G′

1 if the challenge bit of rkaPRP is 0, and G2 if the challenge
bit is 1. It holds Adv(AG1 ,AG2) = Adv(AG′

1 ,AG2) ≤ AdvrkaPRP
Σ (Aprp, Φe). �

Claim 17. For any Φae-restricted RKA distinguisher A with q queries between
game G2 and G3 defined in Fig. 9, it holds

Adv(AG2 ,AG3) ≤ q2

2c
.

8 This transformation allows us to use a normal PRP for the simulation, and not a
strong PRP.
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Proof. Both games only differ if A asks for a decryption of a cipher text C which
maps to a message which was already encrypted with the same (N ,A, ϕm). Since
the underlying encryption is a random permutation this collision happens with
probability less then q2−q

2c . In detail A makes qe queries to the encryption oracle,
and qd queries to the decryption oracle with qe+qd = q . The collision probability
is less then qe

2c for each query to the decryption oracle. Hence, the probability
to get at least one collision is less then qeqd

2c with qd queries to the decryption
oracle. Hence, Adv(AG1 ,AG2) ≤ q2

2c . �

Claim 18. For any Φae-restricted RKA distinguisher A between game G3 and
G4 defined in Fig. 9, there exists a Φm-restricted RKA adversary Aprf such that

Adv(AG3 ,AG4) ≤ AdvrkaPRF
Tag (Aprf , Φm).

Proof. Aprf simulates G3 and G4 for A with the oracles of the security game
rkaPRF. For any request (N ,M ,A, (ϕe, ϕm)) to the oracle Enc, Aprf forwards
(N ,A,M , ϕm) to the rkaPRF game’s oracle F to get the tag T , computes the
ciphertext C ← Enc(ϕe(Ke),N ,M ‖ T ) locally with a random key Ke, and sends
the ciphertext C to A. Since A is Φae-restricted, Aprf is Φm-restricted and Aprf

perfectly simulates Gb+3 where b is the challenge bit of game rkaPRF and outputs
b′ if A does. It holds that Pr[AG3 ⇒ 0] − Pr[AG4 ⇒ 0] ≤ Pr[ArkaPRF

prf ⇒ 0 | b =
0] − Pr[ArkaPRF

prf ⇒ 0 | b = 1]. Hence, Adv(AG3 ,AG4) ≤ AdvrkaPRF
Tag (Aprf , Φm). �

Claim 19. For any Φae-restricted RKA distinguisher A between game G4 and
G5 with q queries to the encryption oracle defined in Fig. 9, it holds

Adv(AG4 ,AG5) ≤ q2

2c
.

Proof. Both games only differ from the choice of the underlying encryp-
tion. Game G4 uses a random permutation and G5 generates randomly cho-
sen ciphertexts. Since the adversary is not allowed to query the same tuple
(N ,A,M , (ϕe, ϕm)) and F is a real random function, it follows T is fresh and
uniform distributed or ϕe is fresh. In case of a fresh ϕe, it follows directly that C
is chosen uniformly at random. If ϕe was already used, an adversary can only dis-
tinguish both games if it finds a collision in G5 since G4 uses a permutation it is
not possible to get the same C twice with the same ϕe. The probability for such a
collision is less then q2−q

2c . In detail we know that the probability to get a collision
for the ith query is less then i−1

2c and hence Adv(AG4 ,AG5) ≤
∑q

i=1
i−1
2c ≤ q2

2c .
This proves the claim. �

Similar to the N* construction, we can also use a block cipher (PRP) in the
N3 construction to achieve security in the stronger security model. As discussed
in the previous section this only works for N3 since the attack on N1 and N2
work independent of the underlying encryption scheme. Further, the security
proof for N3 is similar to the proof of Theorem 14, we only have to adapt the
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block cipher that it also takes the nonce as input. We emphasize that the new
construction N* is more efficient then N3, since the block cipher does not receive
the nonce as an input. For the instantiation of the block cipher we refer to [5],
where the authors construct an RKA-secure PRP using a three-round Feistel
construction. The construction contains three RKA-secure PRFs, where the last
two PRFs are initialized with the same key. Hence, with Theorem 14, we can
build an mr-s-RKA-AE-secure AE scheme out of four RKA-secure PRFs, three
to instantiate the block cipher and one for the MAC.

Acknowledgements. This work was funded by the German Research Foundation
(DFG) – SFB 1119 – 236615297 and the Emmy Noether Program FA 1320/1-1 of the
German Research Foundation (DFG).
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Abstract. A union-only signature (UOS) scheme (informally intro-
duced by Johnson et al. at CT-RSA 2002) allows signers to sign sets
of messages in such a way that (1) any third party can merge two signa-
tures to derive a signature on the union of the message sets, and (2) no
adversary, given a signature on some set, can derive a valid signature on
any strict subset of that set (unless it has seen such a signature already).

Johnson et al. originally posed building a UOS as an open problem.
In this paper, we make two contributions: we give the first formal def-
inition of a UOS scheme, and we give the first UOS constructions. Our
main construction uses hashing, regular digital signatures, Pedersen com-
mitments and signatures of knowledge. We provide an implementation
that demonstrates its practicality. Our main construction also relies on
the hardness of the short integer solution (SIS) problem; we show how
that this assumption can be replaced with the use of groups of unknown
order. Finally, we sketch a UOS construction using SNARKs; this addi-
tionally gives the property that the size of the signature does not grow
with the number of merges. (A full version of this paper, with all proofs
and preliminaries, is available on the ePrint Archive).

Keywords: homomorphic signatures · union-only signature schemes ·
history-hiding · software implementation

1 Introduction

A set-homomorphic digital signature is a signature scheme which supports the
computation of set operations—for example union and difference—over signed
messages. Let Sign(sk,M) be the signing operation for such a signature scheme,
for some private signing key sk and a set of messages M .

For sets of messages X = {x1, . . . , xk} and Y = {y1, . . . , yn} which were
signed as Sign(sk,X) and Sign(sk, Y ), any third party can compute the signature
on their union as Sign(sk,X)×Sign(sk, Y ) (we use × to denote the homomorphic
union operation). If the homomorphic operation × is invertible, and X ⊆ Y , one
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can also compute the signature on their difference Sign(sk,X\Y ) = Sign(sk,X)×
Sign(sk, Y )−1. The notion was initially introduced by Johnson et al. [15], together
with a practical construction based on RSA accumulators, but there are instan-
tiations based on hardness assumptions other than integer factorization [1,16].

A union-only signature (UOS) scheme is a special case of a set-homomorphic
signature scheme where the homomorphic operation is not invertible (that is,
it is one-way). In a UOS scheme, computing a signature on a set of messages
is easy given signatures on subsets of those messages, but computing the signa-
ture on the difference of two sets (the inverse operation) is hard. Constructing
union-only signatures was first posed as an open problem in the seminal work of
Johnson et al. [15]. Because previous set-homomorphic constructions represent
signatures as multiplicative structures (rings and multiplicative groups), com-
puting the difference operation amounts to inverting elements in such structures,
which can be done efficiently. For this reason, building a UOS based on those
constructions is challenging, and implies the existence of groups with infeasible
inversion (GIIs) [19], a powerful algebraic structure that further implies strong
associative one-way functions [22], efficient two-party secret key agreement pro-
tocols, and direct transitive signatures [14]. In a GII, computing the inverse of
a group element is required to be hard, while performing the group operation
is computationally efficient. While GIIs are not known to exist, there are recent
candidate constructions based on self-bilinear maps assuming indistinguishabil-
ity obfuscation [24] and isogeny graphs [5].

Contributions. In this paper, we make two contributions. First, we take the
opportunity to formalize the definition of a secure UOS scheme. Second, we
present two constructions which circumvent the roadblock described above by
choosing the signature format to not have a multiplicative structure. Our first
construction is based on hashing, Schnorr signatures, Pedersen commitments
and signatures of knowledge instantiated with elliptic curves. It also relies on
the hardness of the short integer solution (SIS) problem [3,18]. We show how to
replace this assumption with the use of groups of unknown order in a variant. A
second construction based on SNARKs appears in the full version of this paper.

All of our constructions support multiple signers and offer a notion of privacy
which precludes an adversary from learning how the signatures were derived (i.e.,
which subsets were actually signed by the signer, and which order the signatures
were merged in). The first construction performs much better, so we explore
it in detail; the SNARK-based construction produces constant-size signatures,
offering a trade-off between performance and compactness.

In our first construction, we employ multisets; we design a scheme that pre-
serves duplicates in the intersection of the merged sets instead of removing them,
which technically makes it homomorphic with respect to multiset sum. However,
this naturally coincides with the union operation for disjoint input sets and satis-
fies the original intuition of UOS given by Johnson et al. [15]. From this point on,
we abstract this technicality away in the scheme’s interface and refer only to the
set union operation for simplicity. We provide a proof-of-concept implementation
in Rust that shows that the construction is indeed efficient and scalable.
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Applications. To the best of our knowledge, the literature does not contain
concrete applications specific to UOS schemes. We devise application scenarios
considering a minimum of 4 parties:

Signer(s): Assumed to be honest, one or more Signers sign(s) sets of messages
with their signing keys, and make them available to a Merger. Importantly,
signatures over sets containing individual messages should not be publicly
available; otherwise, a third party (e.g. Prover) can remove them from a
merged signature simply by re-executing the merge on all the other signatures.

Merger: A Merger merges signatures following a public procedure and for-
wards the resulting signature to a Prover. The merger must be independent
of the signer(s), and is trusted only to discard the merge history (when hiding
the history is desirable for privacy reasons).

Prover: A Prover trusts the public key(s) belonging to the Signer(s), and
therefore can be convinced that signatures are valid. It attempts to convince
a Verifier that all relevant messages are included in the merged signature
provided by the Merger.

Verifier: A Verifier verifies the signature and wants to check that the prover
did not exclude any messages from the set.

Figure 1 illustrates the workflow. In terms of incentives, signers want to pub-
lish their signed messages for credibility or to achieve some common goal. They
do not trust each other unconditionally (e.g. they still want privacy against one
another) and thus have their own key pairs. Signatures are merged by the merger,
and used by the prover to convince external parties (verifiers) that uncomfortable
messages or data points were not omitted on purpose.

Fig. 1. Application scenario illustrating how authenticated data flows from Signer(s)
to the interaction between Prover and Verifier, after being merged by the Merger.

The general framework motivates a few scenarios. In epidemiology studies,
healthcare providers sign patient medical records (e.g. containing vaccination or
infection information) that are of interest to researchers. An independent govern-
ment entity merges the medical records from multiple providers, with an incen-
tive to have as many as possible for credibility, even if specific data points are
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not desirable. In this case, the government does not have a trusted signing key to
include new authenticated records (otherwise, we could imagine the government
using this key to inflate the number of records). Researchers can then perform
statistical analysis of the records and verifiably convince the public that all data
points available were taken into consideration to reach the conclusions. Privacy
guarantees are important to prevent the public from matching certain patient
data to a given healthcare provider, increasing their chances of de-anonymizing
the patient in question.

In a biodiversity setting, databases are jointly built1 by multiple curators con-
tributing data points (e.g. wildlife sightings for species in danger of extinction).
The database infrastructure merges the individual datasets with an incentive to
have as much data as possible available to researchers, who can then analyse
records and provide guarantees to the public that all data was considered. We
argue that privacy guarantees are important to collect data and perform impact-
ful research in these domains, as to prevent the public from being able to track
down and further jeopardize endangered species.

Related Work. Homomorphic signatures were initially proposed by Johnson et
al. [15]. Many possibilities for the homomorphic operation were developed in
the literature [7,10,11,23], but the original paper already gave constructions for
redactable and set-homomorphic signatures. For the latter, assume that N is an
RSA modulus for which only the signer knows the factorization sk = (p, q). For
X = {x1, . . . , xk}, define Sign(sk,X) = v1/d mod N for random v ∈ Z

∗
N and a

hash function h(·) that maps elements to a set of primes and d =
∏k

i=0 h(xi).
Given a signature σ on X, one can compute a signature on a subset X\{xi}
by computing σh(xi) mod N . For d,X as above and Y = {y1, . . . , yn}, e =∏n

j=0 h(yj), a signature on X∪Y can be computed as v1/lcm(d,e) = (v1/d)a(v1/e)b

mod N with integers (a, b) such that ae + bd = GCD(d, e). The multiplica-
tive structure of the signatures allows efficient union/difference by respectively
adding/removing elements from the accumulator, but complicates the design of
UOS. Because of the set difference operation, this does not imply UOS.

Abiteboul et al. [1] study homomorphic signatures for modifiable collections,
with applications to access control and secure data aggregation. They first recast
the scheme above as delete-only, for which an initial signature is computed over
the entire universe of elements and individual elements can be progressively
removed. They also give privacy definitions in a single-signer context and propose
an insert-only signature scheme satisfying computational privacy that supports
both insertion of individual elements and computation of a set intersection. The
scheme is constructed from a cryptographically-enforced “write-only” memory
and the delete-only scheme as building blocks, and imposes an upper bound on
the collection size, forcing a key refresh when the limit is reached. Additional
constructions based on zero-knowledge proofs are given for both delete- and
insert-only schemes, but without privacy claims.

1 Global Biodiversity Information Facility: https://www.gbif.org/.

https://www.gbif.org/
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Kaaniche et al. [16] propose pairing-based set-homomorphic signatures sup-
porting union, difference and intersection for secure data aggregation within
the Internet of Things. The construction builds on efficient accumulators from
bilinear maps instead of RSA accumulators. Privacy is informally defined as
the adversary not being able to link signatures to signers or to detect removed
content. In terms of performance, pairing-based schemes rely on rather special
pairing-friendly curves, which are known to be less efficient than plain elliptic
curves due to their larger parameters [8].

A generalized notion introduced by Ahn et al. in [2] is P -homomorphic sig-
natures, in which anyone can derive a signature for a message m′ from the
signatures of a set of messages M as long as the predicate P (M,m′) holds.
The paper puts forward not only the abstract notion, but also a few concrete
constructions for fixed predicates, including string subset. Many homomorphic,
transitive and redactable signature schemes can be recast under this notion,
but it is not clear how to extend such constructions for the union-only pred-
icate efficiently. Another related notion is mergeable signatures [20,21], which
are defined for redactable signature schemes which allow a subset operation by
design. A construction based on signed RSA accumulators is also given, together
with applications such as merging databases while redacting specific entries.

A last related notion is that of extendable threshold ring signatures [6], where
signatures can be thought of as homomorphic with respect to the set of signers
(i.e., given a message signed by an anonymous subset of a set of signers, new
signers can contribute their support and potentially expand the anonymity set).
However, extendable threshold ring signatures do not offer any homomorphism
when it comes to the message in question. They also offer a very different notion
of privacy: they protect the identities of the signers, while our history-hiding
property protects the history and origins of the message set.

The schemes discussed previously do not satisfy the UOS requirement of
allowing union of messages as the only homomorphic operation, since they sup-
port deletion and/or set intersection, or operate over the set of signers.

Organization. The paper is organized as follows. Section 2 defines the syntax
for UOS, and Sect. 3 defines the desired security notions. Section 4 presents our
main and most efficient construction. The experimental results supporting our
efficiency claims are discussed in Sect. 5, followed by the conclusion. An interested
reader can find our SNARK-based construction in the full version of this paper.

2 Syntax

As described above, in a UOS scheme, signers sign sets of messages, and any
third party can merge signatures on such sets.

Definition 1 (Union-only Signature Scheme). A UOS = (Setup,KeyGen,
Sign, Merge,Verify) consists of five algorithms with the following syntax:

Setup(1λ) → p takes the security parameter λ and outputs public parameters p
which are implicitly given to all algorithms.
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KeyGen() → (pk, sk) generates a public-secret key pair.
Sign(sk,M) → σ takes a secret key sk and a set of messages M . Outputs a

signature σ.
Merge({(σi,Mi, PKi)}μ

i=1) → σ takes a set of μ tuples, where each tuple consists
of a set of messages Mi, a signature σi and a set public keys PKi. Outputs a
new signature σ (which should verify for the message set M = ∪μ

i=1Mi under
the public key set PK = ∪μ

i=1PKi).
Verify(σ,M,PK) → {accept, reject} takes a signature σ, a set of messages M

and a set of public keys PK, and outputs either accept or reject.

These algorithms should satisfy the natural notion of correctness; that is, the
output of any sequence of honestly executed Sign and Merge operations should
be a verifying signature. They should also satisfy Definition 4 and Definition 3,
described in Sect. 3.

3 Security Definitions

We require two properties of a UOS: unforgeability and history-hiding. Informally,
unforgeability demands that an adversary not be able to sign on behalf of a set
of signers none of whom are corrupt. History-hiding demands that an adversary
not be able to determine how a given signature was derived.

3.1 Notation

We formalise the power of the adversary through four oracles, with access to some
common state, described in Fig. 4. The first three oracles provide bookkeeping
of identities: KeyGenO adds a new honest party to the system, while CorruptO
corrupts an existing party, and RegKeyO registers a new corrupt party. The keys
in the system are stored by the oracles in a list LK ; the indices corresponding
to honest and corrupt parties in the key list are tracked in the sets H and C
respectively.

The final oracle we define is the signing oracle, denoted MergeO. It takes a
sequence of sign and merge operations described by the adversary, and outputs
the resulting signature. The oracle maintains a set of past queries LT , and a
counter qs for the number of queries made. For ease of notation, we define a
query tree T representing the kind of query an adversary can submit to a signing
oracle in our security games. (Since a signature can be derived by merging other
signatures, our signing oracle takes queries that are more complex than a single
message set and the signer the adversary wishes to see a signature from).

In a query tree T , each leaf l represents a signature on a set of messages
l.M by signers in l.PK. If a leaf does not contain a signature provided by the
adversary and l.PK is a singleton containing the public key pkl.i of an honest
signer l.i, we call this an honest leaf. The leaves of T may be partitioned into the
set of honest leaves hl(T ) and the set of corrupt leaves cl(T ). Corrupt leaves may
have an arbitrary l.PK and can contain a signature provided by the adversary.
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The signing oracle MergeO only answers queries where corrupt leaves contain
verifying signatures. To enforce this we introduce the VerifyLeaves procedure,
which checks that all corrupt leaves verify (Fig. 2).

Fig. 2. VerifyLeaves. This algorithm checks that all signatures included in a query tree
by the adversary verify. It is used in Fig. 4. The set of public keys PK contains all
public keys pki associated with the tree. Note that. if l.σ is not provided, verification
will always return ⊥.

Each internal node n of T represents the signature derived by merging its
children. So, each node n has associated message and signer sets n.M and n.PK
respectively. These are defined as the union of the corresponding sets across the
children of n. We denote the set of signers at the root of the tree as T.PK.

When given a query tree T , the challenger signs the appropriate leaves on
behalf of the honest signers, and merges the nodes as specified by the tree struc-
ture, until it derives the signature associated with the tree root. That signature
will be the query answer. The MergeO oracle produces signatures following the
SignAndMerge procedure, described in Fig. 3. It uses a depth first approach to
signing and merging following the structure of the tree T . During the traversal
signatures are produced for each honest leaf, while corrupt leaves already contain
a signature provided by the adversary. The signatures at leaves are progressively
merged towards the root, such that each node contains the signature produced
by merging the signatures of its children.

3.2 Unforgeability

We define unforgeability with respect to the security game described in Fig. 6.
Informally, we don’t want an adversary to be able to forge a signature on behalf
of a set of honest signers, as long as that signature is on a set of messages that
could not have been obtained through taking unions of message sets on which the
signing oracle was queried. To formalize this, we define an outside span algorithm
(Definition 2, Fig. 5) that determines whether a given set of messages and honest
signer identities are outside the span of the set of signing oracle queries.

Definition 2 (Outside span). We define the predicate

OutsideSpan(M∗, PK∗, {(Mh
i , PKh

i )}i∈[n])
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Fig. 3. SignAndMerge. The set of secret keys SK contains all honest parties’ secret
keys ski.

for sets of messages and public keys Mh
i , PKh

i as

� ∃S ⊆ [n] :
(
M∗ =

⋃

i∈S

Mh
i

)
∧

(
PK∗ =

⋃

i∈S

PKh
i

)
.

This can be efficiently checked as described in the algorithm in Fig. 5.

For instance, imagine that we asked the signing oracle the set of queries
S = {({m1}, {pk1}), ({m2}, {pk2})}; in other words, we requested a signature on
m1 under pk1, and a signature m2 under pk2 from the signing oracle. Then, a sig-
nature on {m1,m2} under {pk1, pk2} should be computable in a UOS scheme; so,
it is within the span (in other words, OutsideSpan({m1,m2}, {pk1, pk2}, S) = ⊥).
However, anything which is not computable via union operations is outside
the span. As an example, a signature on {m1,m2} under pk1 alone should
not be computable (so, OutsideSpan({m1,m2}, {pk1}, S) = 
). A signature on
{m1,m2,m3} under {pk1, pk2} should also not be computable (so, OutsideSpan(
{m1,m2,m3}, {pk1, pk2}, S) = 
).

Definition 3 (Unforgeability). A UOS scheme is unforgeable if for all PPT
adversaries A it holds that

|Pr[A wins EUF(λ)]| ≤ negl(λ)

with the game EUF defined in Fig. 6.

3.3 History Hiding

We define history-hiding for UOS schemes to require that no adversary can tell
the difference between signatures on trees which are “similar enough”. We leave



Union-Only Signatures for Data Aggregation 395

Fig. 4. Oracles for key generation, signing and corruption, used in the Unforgeability
and History Hiding games.

Fig. 5. OutsideSpan

the definition of “similar enough” as a parameter of the history-hiding property,
formalized as an equivalence relation ≡T . We describe two options for ≡T here.

≡strong: This equivalence relation deems two trees T0 and T1 equivalent if the
union of their leaf message sets, and the union of their leaf identities, are the
same.

≡weak: This equivalence relation deems two trees T0 and T1 equivalent if:
1. The set of corrupt leaves on the two trees are the same.
2. The number of leaves per honest signer is equal.
3. The multiset union of the honest leaf message sets are equal.

The use of both these relations within the history-hiding definition demands
that honest signers who contribute signatures to a merged signature cannot
be linked to a specific subset of the signed messages, even in the presence of
malicious signers. The use of ≡strong additionally demands that even corrupt
parties cannot be linked to a specific subset of messages.
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Fig. 6. The Unforgeability Game

Fig. 7. The History-Hiding Game

Definition 4 (History Hiding). A UOS scheme is history-hiding with
respect to equivalence relation ≡T if for all PPT adversaries A = {A1,A2}
it holds that

|Pr[A wins HH0(λ)] − Pr[A wins HH1(λ)]| ≤ 1
2

+ negl(λ)

with the game HHb defined in Fig. 7.
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Remark 1. Note that the equivalence of the trees (T0 ≡T T1) depends on which
signers are corrupt; for that reason, the equivalence check is performed after the
adversary (possibly using access to the corruption oracle) produces the bit b′.

4 A UOS Scheme

In this section, we present a concrete UOS scheme. The construction uses signa-
tures, Pedersen commitments and signatures of knowledge. The proof of secu-
rity additionally uses additive and multiplicative secret sharing, the discrete
logarithm assumption, and either the short integer solution (SIS) assumption or
groups of unknown order. Formal preliminaries are presented in the full version of
this paper; here, we go directly to the construction. We first describe an intuitive
construction similar the anonymously aggregatable signature of SwapCT [13]
which doesn’t quite give us the unforgeability guarantees we would like. We
then describe the two ways to obtain those guarantees.

4.1 Initial Construction

When signing a set of messages {mj}μ
j=1, the signer assigns each message mj

a random proxy sj ∈ G.2 The signer commits to the proxy as Cj = GsjHrj ,
using a freshly chosen random witness rj . To ensure that the signer knows the
commitment opening (i.e. to ensure that she didn’t simply copy someone else’s
commitment without knowing its contents), and to bind the commitment to the
message mj , the signer creates a signature of knowledge πj of mj , using sj and
rj as the witness.

To complete the signature, the signer adds up all of the proxies as s :=∑μ
j=1 sj , and commits to s as D := Gs. She then signs D using a regular signa-

ture scheme Sig, resulting in σ′.
The resulting UOS signature σ contains three parts:

1. The value D and the associated signature σ′ (together with the public signa-
ture verification key of the signer, for ease of notation). We denote this part
of the signature as

L = {(σ′,D, pk)}.

(We write this as a set to facilitate notation for merging later).
2. The set of messages mj , commitments Cj and associated signatures of knowl-

edge πj . We denote this part of the signature as

R = {(πj , Cj ,mj)}μ
j=1.

3. The sum r :=
∑μ

j=1 rj of all the values rj used in the commitments.3

2 A signer might want to sign an empty message set, if she is contributing the signature
solely for the purposes of expanding the others’ anonymity set. If this is the case,
and the message set is empty, a placeholder message ⊥ outside of the message space
is added.

3 If the order of the group G is known, the sum can be computed modulo that order.
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To merge two signatures σ1 = (L1, R1, r1) and σ2 = (L2, R2, r2), any third
party can simply compute σ = (L1 ∪ L2, R1 ∪ R2, r = r1 + r2).

Note that the public verification key pk is included in L, and the messages
mj are included in R, even though the public keys and the messages are inde-
pendently given to verification algorithm. This is done to make clear that a
given public key should be used to verify σ′ on D, and that a given message
corresponds to commitment Cj . This mapping is necessary for verification of
σ = (L,R, r), during which the verifier checks the following three things:

1. For (σ′,D, pk) ∈ L, the signature σ′ on D verifies under the key pk.
2. For (π,C,m) ∈ R, the signature of knowledge π verifies on the message m for

the corresponding statement C.
3. Let D′ =

∏
(·,D,·)∈L D, and C ′ =

∏
(·,C,·)∈R C. Then, HrD′ = C ′.

Informally, we get the weak history hiding property because the items in L
correspond to signers and the items in R correspond to messages, but there is
nothing to link a given item in L to a given item in R. Unforgeability is a bit
trickier to argue. There are several kinds of forgeries we would like to prevent:

1. One where the attacker adds a new value D.
2. One where the attacker uses a subset of D’s produced by the honest signers,

but changes the set of corresponding C’s.

We can rule out the first kind of forgery simply by relying on the unforgeability
of the underlying digital signature scheme: the attacker cannot sign a new value
D on behalf of any of the honest signers. Within the second kind of forgery, we
must consider the case where the attacker uses a strict subset of the honestly
produced C’s, and the case where the attacker adds new values of C. In the first
case, we can use the attacker to find the discrete logarithm relationship between
G and H.

However, in the second case, there is a trivial attack—the attacker can add
the message m to any signature σ = (L,R, r) by (1) choosing r′ randomly, (2)
choosing s = 0 modulo the order of the group G, (3) computing (π,C,m) using
those values of s and r′, and (4) setting the new signature to be

σ′ = (L,R ∪ {(π,C,m)}, r + r′).

This new signature will verify, since we have not changed the exponent of G on
either side, and have made sure that the exponents of H change consistently on
the two sides (by adding r′ to r).

We can preclude this kind of attack in one of two ways: by relying on groups
of unknown order, or by relying on the hardness of the short integer solution
problem. We describe our construction formally in Fig. 8, and informally below.

4.2 Secure Variant from Groups of Unknown Order

If we require that every signature of knowledge π additionally prove that the
s contained in the witness is positive, then to carry out the above attack, the
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Fig. 8. Constructions for UOS. We mark steps only present in the variant based on a
group of unknown order in blue; and steps only present in the lattice variant in teal.
(Color figure online)
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adversary would need to find a (set of) value(s) s whose sum is positive, but is
zero modulo the order of G. Then, we can use any adversary who can carry out
the attack described above to take roots in the group G, which should be hard
to do in a group of unknown order. However, using groups of unknown order is
very costly in terms of modulus size, since the parameters scale closer to RSA
than to elliptic curves [12].

4.3 Secure Variant from Lattices

We could instead make sure that we can use any adversary who carries out
the attack described above to solve the short integer solution (SIS) problem.
We can embed a SIS instance by using several additional generators G1, . . . , Gw

and several hash functions H1, . . . ,Hw, and by modeling each hash function as
a random oracle.

During signing, the signer does almost everything as before. However, she
additionally computes hk,j = Hk(Cj) for each k ∈ [1, . . . , w] and j ∈ [1, . . . , μ],
sets hk =

∑μ
j=1 hk,j , and changes D to be D = Gs

∏w
k=1 Ghk

k . The third step of
the verification algorithm now consists of checking that

Hr
n∏

i=1

Di =
μ∏

j=1

(CjG
H1(Cj)
1 . . . GHw(Cj)

w ).

If an adversary now succeeds in adding new commitments, either we can use her
to solve for the discrete logarithm relationship of some of the generators, or we
can use her to solve an instance of the SIS problem which we can embed into
the hash values (by means of the random oracle assumption).

4.4 Security Analysis

In Fig. 8, we describe our constructions formally.

Theorem 1. The construction based on lattices described in Fig. 8, including
teal steps, is unforgeable (Definition 3) assuming that (a) the SIS(w,m, q,

√
m)

problem is hard (where the parameters are w hash functions, m random oracle
queries, and group order q), (b) the discrete logarithm problem is hard in for
group generation algorithm GroupGen, (c) the signature scheme Sig is secure,
and (d) the signature of knowledge scheme SoK is secure.

We prove Theorem 1 in Sect. 4.4.1.

Theorem 2. Both variants of the construction described in Fig. 8 are history-
hiding (Definition 4) with respect to equivalence relation ≡weak assuming that
the signature of knowledge scheme SoK is secure.

We prove Theorem 2 in Sect. 4.4.2.
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Theorem 3. The construction based on groups of unknown order described in
Fig. 8, including blue steps, is unforgeable (Definition 3) assuming that (a) the
discrete logarithm problem is hard in group G, (b) finding roots is hard for group
generation algorithm GroupGen (as it produces groups off unknown order), (c)
the signature scheme Sig is secure, and (d) the signature of knowledge scheme
SoK is secure.

The proof of Theorem 3 may be found in the full version of this paper.

4.4.1 Proof of Theorem 1
To prove this theorem we rely on reducing to discrete log in the final step.
Achieving a tight reduction proves difficult, since if the reduction included the
discrete log challenge in any single commitment the adversary would have to
exclude that specific commitment while keeping the corresponding left side fixed
for it to be possible to solve the challenge. Similarly, trying to embed the chal-
lenge in any one leaf of the tree when producing a signature does not yield a
tight reduction. To avoid this we must instead take special care to embed the
challenge throughout an entire signature.

Lemma 1 shows how a discrete log challenge P may be embedded through-
out the values produced by signing while maintaining the same distribution as
honestly produced signatures. Given this lemma, we can exploit the properties
of additive secret sharing to construct the values we will need for our reduction.

Lemma 1. Consider the distribution

((D′
1, . . . , D

′
n), ((C1

1 , . . . Cμ1
1 ), . . . , (C1

n, . . . Cμn
n )), r)

where

– P,G and H are generators in a group of prime order q,
– s, t, r are independent uniformly random values modulo q,
– D′

i = Gsleft
i P tlefti for additive secret sharings 〈s〉 = (slefti )i∈[n] and 〈t〉 =

(tlefti )i∈[n],

– Cj
i = Gsright

i,j P trighti,j Hri,j for fresh additive secret sharings (srighti )i∈[n], (trighti )i∈[n]

and (ri)i∈[n] of s, t and r, with secondary sharings 〈srighti 〉 = (srighti,j )j∈[μj ],
〈trighti 〉 = (trighti,j )j∈[μj ] and 〈ri〉 = (ri,j)j∈[μj ].

Then, the following properties hold:

1. For any strict subset I ⊂ [n], {tlefti }i∈I is independent of {trighti,j }i∈[n],j∈[μi].
2. For any strict subset I ⊂ {(i, j)|i ∈ [n], j ∈ [μi]}, {trighti,j }(i,j)∈I is independent

of {tlefti }i∈[n].
3. The distribution is independent of t and the subsequent choices of {tlefti }i∈[n]

and {trighti,j }i∈[n],j∈[μi].
4. The distribution conditioned on t, s and subsequent choices of {tlefti }i∈[n],

{trighti,j }i∈[n],j∈[μi] is independent of the choices of {srighti }i∈[n].
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Note that (3) and (4) imply that the described values would be indistinguish-
able to those produced by the construction in Fig. 8 (where each Di is set to
D′

i

∏μi

j=1 GH(Cj
i )). The construction fits the case where all tlefti and trighti,j are 0

and {srighti }i∈[n] = {slefti }i∈[n].

Proof. We prove the four parts of the lemma separately. First, we note that (1)
and (2) follow directly from the properties of additive secret sharing.

(3) follows from the fact that for every fixed value ((D′
1, . . . , D

′
n),

((C1
1 , . . . Cμ1

1 ), . . . , (C1
n, . . . Cμn

n )), r) in the distribution and for every choice of
values {tlefti }i∈[n], {trighti,j }i∈[n],j∈[μi] and {ri,j}i∈[n],j∈[μi] (consistent with r), there
exists a unique choice of values {slefti }i∈[n] and {srighti,j }i∈[n],j∈[μi] that explains
((D′

1, . . . , D
′
n), ((C1

1 , . . . Cμ1
1 ), . . . , (C1

n, . . . Cμn
n )), r).

(4) follows from the fact that for every fixed t, s, r and subsequent
choice of {trighti,j }i∈[n],j∈[μi], for every choice of {srighti,j }i∈[n],j∈[μi] and every set
{Cj

i }i∈[n],j∈[μi] such that GsP tHr =
∏

i∈[n],j∈[μi]
Cj

i , there exists a unique choice

of {ri,j}i∈[n],j∈[μi] such that Gsright
i,j P trighti,j Hri,j = Cj

i .

Now, we move on to prove Theorem 1.

Proof (of Theorem 1). We reduce the unforgeability of our lattice-based con-
struction to the assumptions enumerated in the theorem. The construction relies
on the hardness of the SIS and discrete log problems, as well as the security of
the underlying signature scheme and the signature of knowledge scheme.

In the following hybrids we will consider an adversary producing a verifying
forgery σ∗,M∗, PK∗, where σ∗ is of the form (L∗, R∗, r∗) = ({(σz,Dz, pkz)}n∗

z=1,

{(πj , Cj ,mj)}μ∗
j=1, r

∗). We define a reduction R in a sequence of hybrids:

1. In this hybrid, the reduction runs the challenger according to the instructions
in Fig. 6.

2. In this hybrid, the reduction aborts if it gets a forged (underlying) signature.
This hybrid is indistinguishable from the previous one by the unforgeability
of the underlying signature scheme.
At this point, since PK∗ must all belong to honest parties, all signatures
must be generated by the challenger, allowing us to only consider honestly
generated Dz.

3. In this hybrid, the reduction uses a trapdoor to simulate the SoKs.
This hybrid is indistinguishable from the previous one by the zero knowledge
property of the SoK scheme.

4. In this hybrid, the reduction aborts if it cannot extract a witness from any
signature of knowledge.
This hybrid is indistinguishable from the previous one by the simulation
extractability of the SoK scheme. At this point the reduction knows a witness
for each commitment which is part of a verifying forgery.

5. In the following hybrid the reduction aborts if the adversary provides a ver-
ifying forgery where Cj = GsjHrj for each j ∈ [μ∗], but r∗ �= ∑μ∗

j=1 rj .



Union-Only Signatures for Data Aggregation 403

That is, the reduction aborts if the provided r∗ does not correspond appro-
priately to the witnesses extracted from the sigantures of knowledge.
This is indistinguishable from the previous hybrid as an adversary providing
a forgery where this is the case may be used to solve a discrete log challenge
H base G.
Each Gk for k ∈ [w] may be chosen at setup by the reduction as a uni-
form power of G. Since the forgery is valid, Hr∗ ∏n∗

z=1 Dz =
∏μ∗

j=1(Cj

∏w
k=1

G
Hk(Cj)
k ) must hold. The reduction knows a witness for each commitment, and

the exponents for Dz, which it itself must have produced in response to signing
queries. It can then find the discrete logarithm of H, since r∗ − ∑μ∗

j=1 rj �= 0.
6. In the following two hybrids we will address the case where the forgery

is a valid merging of the outputs of the signing oracle queries, with some
extra commitments C1, . . . , Cv on the right-hand side. As all other com-
mitments are part of a verifying signature and r∗ =

∑μ∗

j=1 rj the extra
commitments must not affect the product in the verification formula, i.e.
∏v

j=1(G
sj

∏w
k=1 G

Hk(Cj)
k ) = 1.

In this hybrid, the reduction will abort if either
∏v

j=1 Gsj �= 1 or
∏v

k=1 G
Hk(Cj)
k �= 1 for any k ∈ [w]. In the next hybrid we will exploit the sep-

aration of these generators to embed an instance of the SIS problem, where
each generator Gk may be used for a separate dimension of the problem. This
hybrid is indistinguishable from the previous by a reduction to a discrete log
challenge.
For notational convenience, throughout the rest of this hybrid, we will denote
G as G0 and define s0,j = sj and sk,j = Hk(Cj). Note the reduction knows
both the powers sj and Hk(Cj). To find the discrete log of a challenge Y base
X the reduction proceeds by first choosing Gk for k ∈ [w] ∪ {0} as XakY bk

where ak and bk are uniformly random integers modulo q.
For an adversary successfully producing a forgery where
(
∏

k∈[w]∪{0}
∏v

j=1 G
sk,j

k ) = 1 but there is an i such that:

v∏

j=1

G
si,j

i = Z �= 1,
∏

k∈[w]∪{0}
k �=i

(
v∏

j=1

G
sk,j

k ) = Z−1 �= 1,

the reduction may find the discrete log with probability at least 1 − 1/q.
The only case where a discrete log cannot be found is when

ai(
v∑

j=1

si,j) =
∑

k∈[w]∪{0}
k �=i

ak(
v∑

j=1

sk,j).

Consider the distribution of G0, . . . , Gk provided to the adversary by the
reduction. A fixed Gi may have been produced by any choice of ai ∈ Zq

along with the one possible corresponding bi, where each of these cases is
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indistinguishable to the adversary. When all other values are fixed the above
equality may only hold for exactly one value of ai, thus the reduction will
only fail to find a discrete log of Y with probability 1/q.

7. In this hybrid, the reduction embeds an instance of the SIS(w,m, q,
√

m)
problem by programming the random oracle. Recall we are still focusing on
the case where the forgery is a valid merge of the outputs of the signing ora-
cle queries, with some extra commitments C1, . . . , Cv on the right-hand side.
This hybrid now aborts if this is the case.
The indistinguishability of this hybrid from the previous will follow from the
hardness of the SIS(w,m, q,

√
m) problem. For a bound m on the number of

random oracle queries made by the adversary, we may consider a uniformly
random matrix A ∈ Z

w×m
q provided by an SIS(w,m, q,

√
m) challenger. We

let Ai,j denote the jth entry of the ith row of A.
For each distinct query to the random oracle we may embed one column of
the matrix A in the oracle responses. Specifically, for the ith unique com-
mitment C queried to the random oracle we define Hk(C) = Ak,i for each
k ∈ [w]. The output distribuition of the random oracle is unchanged by this
as each entry Ai,j is uniform and independent.
Due to the previous hybrid we know that verification with only extra com-
mitments C1, . . . , Cv implies

∏v
k=1 G

Hk(Cj)
k = 1 for all k ∈ [w]. Thus the

adversary has provided commitments such that
∑v

j=1 Hk(Cj) = 0 mod q for
each k ∈ [w].
Let t(j) be the index of the first query of Cj to the oracle. The adversary will
then have found indices t(j), such that

∑μ
j=1 Ak,t(j) = 0 for each k ∈ [w].

This provides a solution to the SIS(w,m, q,
√

m) instance defined by A, as the
vector v which is one exactly for each index in {t(j)}j∈[v] and zero otherwise
satisfies A · v = 0. Note v satisfies the length requirements as each commit-
ment must be unique and the �2-norm of a zero-one vector of dimension m is
bounded by

√
m.

8. In this hybrid, the reduction embeds a discrete log challenge P base G. An
adversary breaking the unforgeability of our UOS may be used to find the
discrete log with high probability. In this hybrid the H and Gk for k ∈ [w]
are chosen as uniform powers of G. The reduction proceeds as follows:
(a) For each query to the oracle MergeO(Ti), instead of using the

SignAndMerge procedure in Fig. 3 the challenger generates values for
the honest leaves following the structure of Lemma 1. This produces
((D′

1, . . . , D
′
n), ((C1

1 , . . . , Cμ1
1 ), . . . , (C1

n, . . . , Cμn
n )), r), and the reduction

sets Di := D′
i

∏μi

j=1

∏w
k=1 G

Hk(C
j
i )

k . Now, Di and (C1
i , . . . Cμi

i ) correspond
to the values of the ith honest leaf. The reduction produces the necessary
signatures and simulates each required SoK.
From properties (3) and (4) of Lemma 1, it follows that this is indistin-
guishable from the original distribution. The distribution produced by
the SignAndMerge procedure corresponds to the case where all tlefti and
trighti,j are 0, and (slefti )i∈[n] = (srighti )i∈[n].
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(b) Say the adversary produces some forgery σ∗,M∗, PK∗ winning the EUF
game, where σ∗ is of the form (L∗, R∗, r∗) = ({(σz,Dz, pkz)}n∗

z=1, {(πj ,

Cj ,mj)}μ∗
j=1, r

∗). We may start by removing elements from L∗ and R∗

where the adversary has used the entire content of a signature σi pro-
duced by the reduction on Mh

i ⊆ M∗, such that Lh
i ⊆ L∗ and Rh

i ⊆ R∗.
The forged signature σ∗ is updated to (L∗\Lh

i , R∗\Rh
i , r∗ − rh

i ). Mes-
sages which no longer appear in R∗ are removed from M∗, and public
keys which no longer appear in L∗ are removed from PK∗. This must
leave R∗ non-empty, as a winning forgery must satisfy OutsideSpan(M∗,
PK∗, {(PKh

i ,Mh
i )}qs

i=1), i.e. M∗ cannot be produced as the union of hon-
estly signed message sets. Importantly, if the original forgery verified,
then Hr∗ ∏

D∈L∗ D =
∏

C∈R∗ C
∏w

k=1 G
Hk(C)
k is maintained. We update

n∗ := |L∗| and μ∗ := |R∗|.
There are three cases for the contents of L∗ and R∗; we state them now
and analyze them below.
i. L∗ is empty and R∗ contains only fresh C’s (not produced by the

reduction).
ii. At least one C was produced by the reduction (in response to a signing

oracle query), but is now linked to a new message via a new signature
of knowledge.

iii. The above don’t hold, and for at least one signing oracle query, either
a D is missing from L∗ or a C is missing from R∗.

We consider these cases separately.
(i) This option is excluded, as the reduction did not abort in hybrid (7).
(ii) The adversary reuses a commitment Cj = Gsright

j P trightj Hrj with a new
signature of knowledge (on a new message) separately. Extracting
the witness from the SoK would give s, r such that Cj = GsHr. This
clearly allows finding the discrete log of P base G when trightj �= 0
which is the case except with probability 1/q. The distribution seen
by the adversary is independent of trightj by property (3) of Lemma 1

(iii) Now, we move on to consider the case where the adversary did not
reuse a commitment with a new signature of knowledge. Verifica-
tion requires Hr∗ ∏n∗

z=1 Dz =
∏μ∗

j=1(Cj

∏w
k=1 G

Hk(Cj)
k ). The commit-

ments Cj were either produced earlier by the challenger (such that
Cj = Gsright

j P trightj Hrj for known srightj , trightj and rj) or constructed by
the adversary with an accompanying signature of knowledge π (such
that srightj , rj satisfying Cj = Gsright

j Hrj can be extracted; this may be
regarded as a special case where trightj = 0).
Since we did not abort in hybrid (2), and the forgery may not contain
any corrupt signer public keys, we may be certain all Dz ∈ L∗ were
signed by the reduction. Therefore the reduction knows sleftz , tleftz such
that Dz = Gsleft

z P tleftz for each z ∈ [n∗].
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The reduction may find the discrete log of P as long as
∑

j∈[n∗] t
left
j �=

∑
j∈[μ∗] t

right
j , we argue that the adversary cannot avoid this with non-

negligible probability.
For any Lh

i ⊂ L∗ at least one element of Rh
i must not be in R∗.

We denote the included subset as R′ ⊂ Rh
i . Due to property (2)

from Lemma 1, the difference in powers of P between Lh
i and R′,

∑
Dz∈Lh

i
tleftz − ∑

Cj∈R′ trightj will be uniformly random and indepen-

dent. Therefore even if the adversary knew all remaining tleftz , trightj

they would not be able to make
∑

j∈[n∗] t
left
j =

∑
j∈[μ∗] t

right
j with

probability better than chance, 1/q.
The case where Rh

i ⊂ R∗ and Lh
i �⊂ L∗ is largely analogous, but using

property (1). If both Lh
i and Rh

i are partially included the difference
in powers of P will also be uniform and independent following both
properties (1) and (2).

4.4.2 Proof of Theorem 2
Proof (of Theorem 2). We reduce the history hiding of our UOS construction to
the simulatability property of the signature of knowledge scheme or the hiding
property of the commitment scheme. (Since the Pedersen commitment scheme
used in our construction is perfectly hiding, this does not require an additional
assumption.) We define a reduction R in a sequence of hybrids as follows:

1. In this hybrid, the reduction runs the challenger according to the instructions
in Fig. 7.

2. In this hybrid, when answering a SignAndMerge query, the reduction uses a
trapdoor to simulate SoKs.
This hybrid is indistinguishable from the previous one by the simulatability
of the SoK scheme.

3. In this hybrid, when answering a SignAndMerge query, for each honest leaf
i ∈ H containing μi messages, the reduction computes the right side R of the
signature as follows:

– For j ∈ [μi], it picks the commitment Ci,j as a random element of G.
It then independently computes ri as follows:

– For j ∈ [μi], it picks ri,j at random (from the appropriate space; either
at random modulo q, or as a random 2κ-bit integer).

– It computes ri as the modular or integer sum of the ri,j ’s. (Note that
when the modular sum is used, this is the same as choosing ri at random
directly, without going through the step of choosing the ri,j ’s).

It computes the final R and r as per the merge algorithm (including the values
from the corrupt leaves). Finally, the reduction produces the left side L of
the signature as follows, to ensure a total lack of coupling between elements
of R and elements of L:

– It computes D as (
∏

C∈R C
∏w

k=1 G
Hk(C)
k )/Hr, and computes the indi-

vidual Di’s (for honest leaves) as a random factoring of D (divided by
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corrupt leaf Di’s). That is, it produces all but the last honest Di as ran-
dom elements of G; it picks the last honest Di as D divided by all other
Di’s (including the corrupt ones).

– It signs the honest Di’s on behalf of the honest parties.
This hybrid is indistinguishable from the previous one because the responses
to the challenge SignAndMerge query are indistinguishable (identical) in the
two hybrids, by the perfect hiding property of the commitment scheme; for
each choice of factoring of D, there exists a unique consistent multiplicative
decomposition of Hr.
Observe that now, there is no link at all between the Di’s (linked to party
identities) and the Cj ’s (linked to messages). So, the outputs of SignAndMerge
on T0 and T1 are identically distributed as long as T0 ≡weak T1.

5 Performance

To evaluate the performance of our signature scheme, we provide an imple-
mentation in Rust based on the curve25519-dalek crate implementing the
edwards25519 elliptic curve [9] and the Ristretto encoding for points. The signa-
ture scheme used is a Schnorr signature. As hash function, we use SHA256 which
is hardware accelerated on modern processors. Most of the signature generation
and verification is independent of each other. This allows parallel execution on
multi-core processors. As our benchmarking system, we use an Intel Core i7-
6820HQ CPU at 2.70 GHz for a total of 8 threads.

Figure 9 shows the signing and verification time for an increasing number
of messages and different number of hash functions. There are clearly visible
and linear steps at multiples of 8 messages, supporting our claim of efficient
parallelization. To achieve a difficulty for the SIS problem similar to the discrete
logarithm in edwards25519, we require 478 dimensions. We used the approach
described in [17] with the model put forward by Albrecht et al. [4] to estimate the
bit-security of SIS(w,m, q,

√
m). In this case m = 2128 is a bound on the number

of oracle queries, and q is the order of the edwards25519 curve, allowing us to
find the smallest dimension w providing the necessary difficulty. This results in
signatures which require 1 group element and the size of the Schnorr signature
(1 group element and 1 scalar) for each merged leaf plus an additional 2 group
elements and 2 scalars for each message. Concretely, 100 merged signatures, over
100 messages each for a total of 10,000 messages, requires 1.2 MB.

The merging of signatures consists of adding the randomness, which is inde-
pendent of the messages and linear in the number of parts. To maintain history
hiding, the inputs and outputs need to be sorted, which is possible in O(n log k)
where n is the total number of messages and k is the number of already ordered
signatures to be merged. There are always less or equal signatures to be sorted.

Figure 10 shows the time required for merging signatures. The two depen-
dencies are the number of signatures on the x-axis and we measured this for
different numbers of messages per signature. For all experiments with more than
one message per signature, we notice that the majority of time is required copy-
ing memory and sorting the messages and adding the randomness is marginal.
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Fig. 9. Signing and verification time depending on number of messages with 8 threads.

Fig. 10. Merging of signatures with n messages in each signature. The operation is
mostly memory bound and depends on the amount of signatures copied. It is indepen-
dent on the security parameter of the number of hash functions

This observation is derived from the fact, that merging with an equal number of
messages have the same timings. Each step right are 10 times more signatures
but a 10th of the messages per signature, resulting in the same total number.
For single message signatures, adding the randomness is noticeable and they are
a bit slower than the experiment with an equal number of messages distributed
in a 10th of the signatures.

In absolute terms, our implementation handles merging a million messages
in less than half a second, making it usable for large datasets.
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6 Conclusion

We presented two constructions for UOS schemes, closing the open problem
posed by Johnson et al. [15]. This is made possible by the fact that our signatures
do not have a multiplicative structure. Our first construction is experimentally
evaluated as computationally efficient when instantiated with a state-of-the-art
elliptic curve implementation, but not compact in terms of signature size. Our
second construction is based in SNARKs and produces constant-size signatures,
but with a significant performance penalty due to the inherent cost of SNARKs.
We finish by pointing out that our first step may lead to more efficient UOS
constructions, and hope that it provides techniques useful to close the other
open problem of concatenable signatures posed in the same paper.
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Abstract. Many attribute-based anonymous credential (ABC) schemes
have been proposed allowing a user to prove the possession of some
attributes, anonymously. They became more and more practical with,
for the most recent papers, a constant-size credential to show a subset
of attributes issued by a unique credential issuer. However, proving pos-
session of attributes coming from K different credential issuers usually
requires K independent credentials to be shown. Only attribute-based
credential schemes from aggregate signatures can overcome this issue.

In this paper, we propose new ABC schemes from aggregate signatures
with randomizable tags. We consider malicious credential issuers, with
adaptive corruptions and collusions with malicious users. Whereas our
constructions only support selective disclosures of attributes, to remain
compact, our approach significantly improves the complexity in both
time and memory of the showing of multiple attributes: for the first
time, the cost for the prover is (almost) independent of the number of
attributes and the number of credential issuers. Whereas anonymous
credentials require privacy of the user, we also propose the first schemes
allowing traceability by a specific tracing authority.

1 Introduction

In an anonymous credential scheme, a user asks to an organization (a credential
issuer) a credential on an attribute, so that he can later claim its possession,
even multiple times, but in an anonymous and unlinkable way.

Usually, a credential on one attribute is not enough and the user needs cre-
dentials on multiple attributes. Hence, the interest of an attribute-based anony-
mous credential scheme (ABC in short): depending on the construction, the user
receives one credential per attribute or directly for a set of attributes. One goal
is to be able to express relations between attributes (or at least selective disclo-
sure), with one showing. As different attributes may have different meanings (e.g.
a university delivers a diploma while a city hall delivers a birth certification),
there should be several credential issuers. Besides multiple credential issuers, it
can be useful to have a multi-show credential system to allow a user to prove
an arbitrary number of times one credential still without loosing anonymity. For
that, the showings are required to be unlinkable to each other.
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Classically, a credential is a signature by the credential issuer of the attribute
with the public key of the user. The latter is thus the only one able to prove
the ownership with an interactive zero-knowledge (ZK) proof of knowledge of
the secret key. Anonymity is provided by the probabilistic encryption of the
signature. As many signature schemes with various interesting properties have
been proposed, many ABC schemes have been designed with quite different
approaches. We can gather them into two families: the ABC schemes where a
credential is obtained on a set of attributes and then, according to the proper-
ties of the signature, it is possible either to prove the knowledge of a subset of
the attributes (CL-signatures [7,8], blind signatures [1,11]), or to modify some
of the attributes to default values (sanitizable signatures [10]), or simply to
remove them (unlinkable redactable signatures [6,17], SPS-EQ with set com-
mitments [12]); and the ABC schemes where the user receives one credential
per attribute and then combines them (aggregate signatures [9]). In the former
family, whereas it is possible to efficiently show a subset of attributes issued
in a unique credential, showing attributes coming from K different credential
issuers requires K independent credentials to be proven. On the other hand,
with aggregate signatures, credentials on different attributes can be combined
together even if they have been issued by different credential issuers. This leads
to more compact schemes and this paper follows this latter approach.

Moreover, except some constructions based on blind signatures where the
credentials can be shown only once, all ABC schemes allow multi-shows. To this
aim, they exploit advanced properties of the signature scheme, with randomiz-
ability for anonymity and unlinkability of the showings. Before these properties,
one had to use encryption for anonymity and complex zero-knowledge proofs for
unforgeability.

1.1 Our Contributions

Our goal is to obtain a compact ABC system with a compact-size credential
allowing different credential issuers. Our first contribution is then the formal
definition of the scheme which supports possibly malicious credential issuers.

Following the path of anonymous credentials from aggregate signatures [9]
and inspired by the definition of linearly homomorphic signatures, our second
contribution is the formalization of an (aggregate) signature scheme with ran-
domizable tags (ART-Sign). It comes with a practical construction based on
a signature scheme of Hébant et al. [14, Appendix C.5]. With such a primi-
tive, two signatures of different messages under different keys can be aggregated
only if they are associated to the same tag. In our case, tags will eventually be
like pseudonyms, but with some properties which make them ephemeral (hence
EphemerId scheme) and randomizable. After randomization, while they are still
associated to the same user, they will be unlinkable. This will provide anonymity.

The EphemerId scheme provides ephemeral keys to users, that will allow
anonymous authentication. Public keys being randomizable, still for a same
secret key, multiple authentications will remain unlinkable. In addition, these
public keys will be used as (randomizable) tags with the above ART-Sign scheme
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when the credential issuer signs an attribute. Thanks to aggregation, multiple
credentials for multiple attributes and from multiple credential issuers but under
the same tag, and thus for the same user, can be combined into a unique compact
(constant-size) credential.

We achieve the optimal goal of constant-size multi-show credentials even for
multiple attributes from multiple credential issuers and we stress that aggrega-
tion can be done on-the-fly, for any selection of attributes issued by multiple
credential issuers: our scheme allows multi-show of any selective disclosure of
attributes. About security, whereas there exists a scheme proven in the uni-
versal composability (UC) framework [6], for our constructions, we consider a
game-based security model for ABC inspired from [12]. As we support different
credentials issuers, we additionally consider adaptive corruptions of both creden-
tial issuers and users. However, the keys need to be honestly generated, thus our
proofs hold in the certified key setting. This is quite realistic, as this is enough to
wait for a valid proof of knowledge of the secret key before certifying the public
key. As most of the recent ABC schemes, our constructions rely on signature
schemes proven in the bilinear generic group model.

Our last contribution is traceability, in the same vein as group signatures:
whereas showings are anonymous, a tracing authority owns a tracing key for
being able to link a credential to its owner. In such a case, we also consider
malicious tracing authorities, with the non-frameability guarantee. As in [10]
we thus define trace and judge algorithms to trace the defrauder and prove its
identity to a judge. This excludes malicious behavior of the tracing authority.
Very few papers deal with traceability: the first one [10] exploits sanitizable sig-
natures, where the sanitizer can be traced back, but a closer look shows privacy
weaknesses (see the full version [15]) and a more recent one [16] that has there-
after been broken [19]. Our scheme is thus the first traceable attribute-based
anonymous credential scheme.

1.2 Related Work

The most recent papers on attribute-based anonymous credential schemes
are [12,17]. The former proposes the first constant-size credential to prove k-
of-N attributes, with computational complexity in O(N − k) for the prover and
in O(k) for the verifier. However, it only works for one credential issuer (K = 1).
The latter one improves this result enabling multiple showings of relations (r)
of attributes. All the other known constructions allow, at best, selective (s) dis-
closures of attributes.

In [9], Canard and Lescuyer use aggregate signatures to construct an ABC
system. It is thus the closest to our approach. Instead of having tags, their
signatures take indices as input. We follow a similar path but, we completely
formalize this notion of tag/index with an EphemerId scheme. To our knowledge,
aggregate signatures are the only way to deal with multiple credential issuers
but still showing a unique compact credential for the proof of possession of
attributes coming from different credential issuers. However, the time-complexity
of a prover during a verification depends on the number k of shown attributes.
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Fig. 1. Comparison of different ABC systems.

We solve this issue at the cost of a larger key for the credential issuers (but
still in the same order as [12,17]) and a significantly better showing cost for the
prover (also better than [12,17]).

1.3 Comparison of Different ABC Systems

In Fig. 1, we provide some comparisons with the most efficient ABC schemes,
where the column “P” (for policy) specifies whether the scheme just allows selec-
tive disclosure of attributes (s) or relations between attributes (r). The column
“T” (for traceability) indicates whether traceability is possible or not. Then, “|CI
key|” gives the size of the keys (public keys of the credential issuers) required to
verify the credentials, “|Show|” is the communication bandwidth during a show,
while “Prover” and “Verifier” are the computational cost during a show, for the
prover and the verifier respectively. Bandwidths are in number of elements G1,
G2, GT and Zp. Computations are in number of exponentiations in G1, G2 and
GT , and of pairings. Due to their negligible impact on performance, we ignore
multiplications. We denote N the global number of attributes owned by a user,
k the number of attributes he wants to show and K the number of credential
issuers involved in the issuing of the credentials. In the first table, we focus on
the particular case of proving a credential with k attributes, among N attributes
issued from 1 credential issuer. Our first scheme, from Sect. 5.2, is already the
most efficient, but this is even better for a larger K, as shown in the second table.
However this is for a limited number of attributes. Our second scheme, in the
full version [15], has similar efficiency, but with less limitations on the attributes.



Traceable Constant-Size Multi-authority Credentials 415

Note that both schemes have a constant-size communication for the showing of
any number of attributes, and the computation cost for the prover is almost
constant too (as we ignore multiplications). Our two instantiations are derived
from the second linearly-homomorphic signature scheme of [14, Appendix C.5].
As already said, our scheme is the first traceable attribute-based anonymous
credential scheme, hence the only one in the tables.

2 Preliminaries

A reminder on the classical notations and assumptions (namely DL and DDH)
used in this paper is given in the full version [15]. In an asymmetric bilinear
setting (G1,G2,GT , p, g, g, e), or just in a simple group G, we can define the
following assumptions:
Definition 1 (Square Discrete Logarithm (SDL)Assumption). In a group
G of prime order p, it states that for any generator g, given y = gx and z = gx2 ,
it is computationally hard to recover x.

Definition 2 (Decisional Square Diffie-Hellman (DSqDH) Assumption).
In a group G of prime order p, it states that the two following distributions are
computationally indistinguishable:

Dsqdh = {(g, gx, gx2
); g

$← G, x
$← Zp} G

3
$ = {(g, gx, gy); g

$← G, x, y
$← Zp}.

It is worth noticing that the DSqDH Assumption implies the SDL Assumption: if
one can break SDL, from g, gx, gx2 , one can compute x and thus break DSqDH.
Such Square Diffie-Hellman triples will be our tags, or ephemeral public keys.
For anonymity, we will use the following theorem:
Theorem 3. The DDH and DSqDH assumptions imply the indistinguishability
between the two distributions, for g0, g1

$← G and x, y
$← Zp

D0 = {(g0, gx
0 , gx2

0 , g1, gx
1 , gx2

1 )} D1 = {(g0, gx
0 , gx2

0 , g1, gy
1 , gy2

1 )}.

Proof. For this indistinguishability, one can show they are both indistinguishable
from random independent 6-tuples (the distribution G

6
$):

D0 ≈ {(g0, gx
0 , gy

0 , g1, gx
1 , gy

1 ), g0, g1
$← G, x, y

$← Zp} under DSqDH
≈ {(g0, gx

0 , gy
0 , g1, gu

1 , gv
1), g0, g1

$← G, x, y, u, v
$← Zp} = G

6
$ under DDH

≈ {(g0, gx
0 , gx2

0 , g1, gu
1 , gu2

1 ), g0, g1
$← G, x, u

$← Zp} = D1 under DSqDH

For unforgeability in our construction, we will use the following theorem on
Square Diffie-Hellman tuples, stated and proven in [14, Appendix C.5]:
Theorem 4. Given n valid Square Diffie-Hellman tuples (gi, ai = gwi

i , bi =
awi

i ), together with wi, for random gi
$← G

∗ and wi
$← Z

∗
p, outputting (αi)i=1,...,n

such that (G =
∏

gαi
i , A =

∏
aαi

i , B =
∏

bαi
i ) is a valid Square Diffie-Hellman

tuple, with at least two non-zero coefficients αi, is computationally hard under
the DL assumption.



416 C. Hébant and D. Pointcheval

Intuitively, from Square Diffie-Hellman tuples where the exponents are known
but random (and so distinct with overwhelming probability) and the bases are
also known and random, it is impossible to construct a new Square Diffie-
Hellman tuple melting the exponents (with linear combinations).

3 Multi-authority Anonymous Credentials

In this section, we define a multi-authority anonymous attribute-based credential
scheme by adapting the model of [12,17] to the multiple credential issuers, and
then, provide the associated security definitions.

3.1 Definition

Throughout the paper, we will consider the certified key setting. Indeed, we
assume a Certification Authority (CA) first checks the knowledge of the secret
keys before certifying public keys and then, that the keys are always checked
before being used by any players in the system. Moreover, we assume that an
identity id is associated (and included) to any verification key vk, which is in
turn included in the secret key sk.

Our general definition of anonymous credential scheme supports multiple
users (Ui)i and multiple credential issuers (CIj)j :

Definition 5 (Anonymous Credential). An anonymous credential system is
defined by the following algorithms:

Setup(1κ): It takes as input a security parameter and outputs the public param-
eters param;

CIKeyGen(ID): It generates the key pair (sk, vk) for the credential issuer with
identity ID;

UKeyGen(id): It generates the key pair (usk, uvk) for the user with identity id;
(CredObtain(usk, vk, a),CredIssue(uvk, sk, a)): A user with identity id (associated

to (usk, uvk)) runs CredObtain to obtain a credential on the attribute a from
the credential issuer ID (associated to (sk, vk)) running CredIssue. At the end
of the protocol, the user receives a credential σ;

(CredShow(usk, (vkj ,aj , σj)j),CredVerify((vkj ,aj)j)): In this two-party protocol, a
user with identity id (associated to (usk, uvk)) runs CredShow and interacts
with a verifier running CredVerify to prove that he owns valid credentials (σj)j

on (aj)j issued respectively by credential issuers IDj (associated to (skj , vkj)).
At the end of the protocol, the verifier receives 1 if the proof is correct and 0
otherwise;

3.2 Security Model

As for the definition, we follow [12,17] for the security model, with multi-show
unlinkable credentials, but considering multiple credential issuers. Informally,
the scheme needs to have the three properties:
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– Correctness: the verifier must accept any set of credentials honestly obtained;
– Unforgeability: the verifier should not accept a set of credentials if one of

them has not been legitimately obtained by this user;
– Anonymity: credentials shown multiple times by a user should be unlinkable,

even for the possibly malicious credential issuers. This furthermore implies
that credentials cannot be linked to their owners.

Definition 6 (Correctness). An anonymous credential scheme is said correct
if, for any user id, any set of honest credential issuers HCI, and any set A of
attributes:

param ← Setup(1κ),
(usk, uvk) ← UKeyGen(id),
(skj , vkj) ← CIKeyGen(IDj) for IDj ∈ HCI,

σj ← (CredObtain(usk, vkj , aj),CredIssue(uvk, skj , aj)) for aj ∈ A,

then, 1 ← (CredShow(usk, (vkj ,aj , σj)j),CredVerify((vkj ,aj)j)).

For the two security notions of unforgeability and anonymity, one can consider
malicious adversaries able to corrupt some parties. We thus define the following
lists: HU the list of honest user identities, CU the list of corrupted user identities,
similarly we define HCI and CCI for the honest/corrupted credential issuers. For
a user identity id, we define Att[id] the list of the attributes of id and Cred[id] the
list of his individual credentials obtained from the credential issuers. All these
lists are initialized to the empty set. For both unforgeability and anonymity,
the adversary has unlimited access to the oracles (in any order, but queries are
assumed to be atomic):

– OHCI(ID) corresponds to the creation of an honest credential issuer with
identity ID. If he already exists (i.e. ID ∈ HCI∪CCI), it outputs ⊥. Otherwise,
it adds ID ∈ HCI and runs (sk, vk) ← CIKeyGen(ID) and returns vk;

– OCCI(ID, vk) corresponds to the corruption of a credential issuer with identity
ID and optionally public key vk. If he does not exist yet (i.e. ID /∈ HCI∪CCI),
it creates a new corrupted credential issuer with public key vk by adding ID
to CCI. Otherwise, if ID ∈ HCI, it removes ID from HCI and adds it to CCI
and outputs sk;

– OHU(id) corresponds to the creation of an honest user with identity id. If the
user already exists (i.e. id ∈ HU ∪ CU), it outputs ⊥. Otherwise, it creates
a new user by adding id ∈ HU and running (usk, uvk) ← UKeyGen(id). It
initializes Att[id] = {} and Cred[id] = {} and returns uvk;

– OCU(id, uvk) corresponds to the corruption of a user with identity id and
optionally public key uvk. If the user does not exist yet (i.e. id /∈ HU ∪ CU),
it creates a new corrupted user with public key uvk by adding id to CU.
Otherwise, if id ∈ HU, it removes id from HU and adds it to CU and outputs
usk and all the associated credentials Cred[id];
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– OObtIss(id, ID, a) corresponds to the issuing of a credential from an honest
credential issuer with identity ID (associated to (sk, vk)) to an honest user
with identity id (associated to (usk, uvk)) on the attribute a. If id /∈ HU
or ID /∈ HCI, it outputs ⊥. Otherwise, it runs σ ← (CredObtain(usk, vk, id),
CredIssue(uvk, sk, a)) and adds (ID, a) to Att[id] and (ID, a, σ) to Cred[id]. The
adversary receives the full transcript;

– OObtain(id, ID, a) corresponds to the issuing of a credential from the adver-
sary playing the role of a malicious credential issuer with identity ID (asso-
ciated to vk) to an honest user with identity id (associated to (usk, uvk)) on
the attribute a. If id /∈ HU or ID /∈ CCI, it outputs ⊥. Otherwise, it runs
CredObtain(usk, a) and adds (ID, a) to Att[id] and (ID, a, σ) to Cred[id];

– OIssue(id, ID, a) corresponds to the issuing of a credential from an honest
credential issuer with identity ID (associated to (sk, vk)) to the adversary
playing the role of a malicious user with identity id (associated to uvk) on
the attribute a. If id /∈ CU or ID /∈ HCI, it outputs ⊥. Otherwise, it runs
CredIssue(uvk, sk, a) and adds (ID, a) to Att[id] and (ID, a, σ) to Cred[id];

– OShow(id, (IDj , aj)j) corresponds to the showing by an honest user with iden-
tity id (associated to (usk, uvk)) of credentials on the set (IDj , aj)j ⊂ Att[id]
(with IDj associated to vkj). If id /∈ HU or ∃j, (IDj , aj) /∈ Att[id], it outputs
⊥. Otherwise, it runs CredShow(usk, (vkj , aj , σj)j) with the adversary playing
the role of a malicious verifier.

Let O be the list of all the above oracles: O = {OHCI, OCCI, OHU, OCU,
OObtIss, OObtain, OIssue, OShow}.

Definition 7 (Unforgeability). An anonymous credential scheme is said
unforgeable if, for any polynomial time adversary A having access to oracles
listed in O, the advantage Advunf(A) = Pr[ExpunfA (1κ) = 1] is negligible with
ExpunfA (1κ) defined in Fig. 2.

Intuitively, the unforgeability notion guarantees it is impossible to make accepted
a bad credential to a verifier. To be able to interact with the verifier, the adversary
needs to corrupt at least one user and can corrupt credential issuer(s). Hence, in
the security experiment in Fig. 2, the adversary chooses the honest and malicious
credential issuers: for the honest ones, the adversary provides their identities
and the attributes in which they have authority for; while for the malicious
ones, the adversary directly gives public keys and attributes. Attributes from
the corrupted credential issuers can be generated by the adversary itself, using
the secret keys.

Thus, the adversary wins the security game if it manages to prove its owner-
ship of a credential, on behalf of a corrupted user id ∈ CU whereas this user did
not ask the attributes to the honest credential issuers. In other words, if among
the corrupted users there is one (id ∈ CU) having credentials on all the proposed
attributes for a forgery issued by either:
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Fig. 2. Unforgeability and anonymity experiments

– corrupted credential issuers,
– honest credential issuers (in that case, for IDj honest, (IDj , aj) is in Att[id]),

then, the forgery is a trivial one and excluded by definition. This is not a legiti-
mate attack.

Definition 8 (Anonymity). An anonymous credential scheme is said anony-
mous if, for any polynomial time adversary A having access to oracles listed in
O, the advantage Advano(A) = | Pr[Expano−1

A (1κ) = 1] − Pr[Expano−0
A (1κ) = 1]|

is negligible with Expano−b
A (1κ) defined in Fig. 2.

The anonymity is defined by an unlinkability notion: the adversary tries to dis-
tinguish if two showings come from the same user or not. More precisely, the
adversary wins the security game if it can distinguish showings from (honest)
users id0 and id1 of its choice, on the same set of attributes {(IDj , aj)}j , even
after having seen/verified credentials from the two identities, as it has access to
the oracle OShow to interact with them. Note that we do not hide the attributes
nor the issuers during the showings: uvk0 and uvk1 are given to the adversary.

As for the unforgeability, the adversary is authorized to corrupt as many
credential issuers as it wants (possibly all of them) and at any time thanks to
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the oracle OCCI. For the honest ones, the adversary provides their identities and
the attributes in which they have authority for; while for the malicious ones, the
adversary directly gives their public keys and their attributes.

Contrarily to [17], unless the attributes contain explicit ordering (as it will
be the case with our first construction), we are dealing with unlinkability as
soon as the sets of attributes are the same for the two players (with the second
construction).

4 Anonymous Credentials from New Primitives

Before we present our credential scheme, let us formally define the way users
will be identified.

4.1 Anonymous Ephemeral Identities

In attribute-based authentication, a credential usually consists of a signature on
some attributes together with the public key of a user. The identity of the user is
then ensured by the correctness of its key provided by a Certification Authority
(CA). Hence, one can represent the identity of a user in an anonymous credential
scheme by a pair (τ̃ , τ), where τ̃ is a secret tag and τ the associated public tag,
that requires to be randomizable for anonymity.

Formally, one defines this tag pair as an ephemeral identity provided by an
EphemerId scheme:

Definition 9 (EphemerId). An EphemerId scheme consists of the algorithms:

Setup(1κ): Given a security parameter κ, it outputs the global parameter param,
which includes the tag space T ;

GenTag(param): Given a public parameter param, it outputs a secret tag τ̃ and
an associated public tag τ ;

RandTag(τ): Given a public tag τ as input, it outputs a new tag τ ′ and the
randomization link ρτ→τ ′ between τ and τ ′;

DerivWitness(τ̃ , ρτ→τ ′): Given a witness τ̃ (associated to the tag τ) and a link
between the tags τ and τ ′ as input, it outputs a witness τ̃ ′ for τ ′;

(ProveVTag(τ̃),VerifVTag(τ)): This (possibly interactive) protocol corresponds to
the verification of the tag τ . At the end of the protocol, the verifier outputs 1
if it accepts τ as a valid tag and 0 otherwise;

(ProveKTag(s, τ̃),VerifKTag(s, τ)): This (possibly interactive) protocol corre-
sponds to a fresh proof of knowledge of τ̃ using the state s. At the end of
the protocol, the verifier outputs 1 if it accepts the proof and 0 otherwise.

With the above algorithms, one can define the sets:

Lτ̃ = {τ ∈ T , τ public tag associated to τ̃} L = ∪x∈Z∗
p
Lx

and, as the set of all the Lτ̃ is a partition of L, an equivalence relation
∼ between tags: τ ∼ τ ′ ⇔ ∃τ̃ , (τ, τ ′ ∈ Lτ̃ ). Hence, each authorized user will be
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associated to a secret tag τ̃ , and represented by the class generated by the public
tag τ . One may have to prove the actual membership τ ∈ L to prove the user
is authorized. On the other hand, one may also have to prove the knowledge of
the witness τ̃ , in a zero-knowledge way, for authentication.

The latter proof of knowledge can be performed, using the (interactive) proto-
col (ProveKTag(τ̃),VerifKTag(τ)). Interactive protocol or signature of knowledge
on a fresh message will be useful for the freshness in the authentication process,
and to avoid replay attacks. The former proof of validity can also be proven using
an (interactive) protocol (ProveVTag(τ̃),VerifVTag(τ)). However this verification
can also be non-interactive or even public, without needing any private witness.
The only requirement is that this proof or verification of membership should not
reveal the private witness involved in the proof of knowledge, whose soundness
will guarantee the authentication of the user.

Security. The security notions are the usual ones for zero-knowledge proofs for
the protocols (ProveKTag(τ̃),VerifKTag(τ)) and (ProveVTag(τ̃),VerifVTag(τ)):

– Soundness: the verification process for the validity of the tag should not accept
an invalid tag (not in the language);

– Knowledge-Soundness: if the verification process for the proof of knowledge
of the witness accepts with good probability, a simulator can extract it;

– Zero-knowledge: the proof of validity and the proof of knowledge should not
reveal any information about the witness.

When the two protocols output 1, the witness-word pair is said to be valid.

Correctness. For an honestly generated pair (τ̃ , τ) ← GenTag(param), the
witness-word pair must be valid (i.e. both protocols (ProveVTag(τ̃),VerifVTag
(τ)) and (ProveKTag(s, τ̃),VerifKTag(s, τ)) must output 1).

From an honestly generated witness-word pair (τ̃ , τ) ← GenTag(param), if
(τ ′, ρ) ← RandTag(τ) and τ̃ ′ ← DerivWitness(τ̃ , ρ) then (τ̃ ′, τ ′) must also be a
valid witness-word pair.

Unlinkability. The algorithm RandTag must randomize the tag τ within the
equivalence class in an unlinkable way: for any pair ((τ̃1, τ1), (τ̃2, τ2)) issued
from GenTag, the two distributions {(τ1, τ2, τ ′

1, τ ′
2)} and {(τ1, τ2, τ ′

2, τ ′
1)}, where

τ ′
1 ← RandTag(τ1) and τ ′

2 ← RandTag(τ2), must be (computationally) indistin-
guishable.

4.2 Tag-Based Signatures

For a pair (τ̃ , τ), where τ̃ is a secret tag and τ the associated public tag, one can
define a new primitive called tag-based signature:
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Definition 10 (Tag-Based Signature).

Setup(1κ): Given a security parameter κ, it outputs the global parameter param,
which includes the message space M and the tag space T ;

Keygen(param): Given a public parameter param, it outputs a key pair (sk, vk);
GenTag(param): Given a public parameter param, it generates a witness-word

pair (τ̃ , τ);
Sign(sk, τ, m): Given a signing key sk, a tag τ , and a message m, it outputs the

signature σ under the tag τ ;
VerifSign(vk, τ, m, σ): Given a verification key vk, a tag τ , a message m and a

signature σ, it outputs 1 if σ is valid relative to vk and τ , and 0 otherwise.

The security notion would expect no adversary able to forge, for any honest
pair (sk, vk), a new signature for a pair (τ, m), for a valid tag τ , if the signature
has not been generated using sk and the tag τ on the message m.

Two classical cases are: (τ̃ = sk, τ = vk), which corresponds to a classical
signature of m; τ̃ = τ , with no secret witness, this is just a classical signature of
(τ, m). In fact, more subtle situations can be handled, as shown below.

Signatures with Randomizable Tags. When randomizing τ into τ ′, one
must be able to keep track of the change to update τ̃ to τ̃ ′ and the signatures.
Formally, we will require to have the algorithm:

DerivSign(vk, τ, m, σ, ρτ→τ ′): Given a valid signature σ on tag τ and message m,
and ρτ→τ ′ the randomization link between τ and another tag τ ′, it outputs
a new signature σ′ on the message m and the new tag τ ′. Both signatures
are under the same key vk.

For compatibility with the tag and correctness of the signature scheme, we
require that for all honestly generated keys (sk, vk) ← Keygen(param), all tags
(τ̃ , τ) ← GenTag(param), and all messages m, if σ ← Sign(sk, τ, m), (τ ′, ρ) ←
RandTag(τ) and σ′ ← DerivSign(vk, τ, m, σ, ρ), then VerifSign(vk, τ ′, m, σ′) should
output 1.

For privacy reasons, in case of probabilistic signatures, it will not be enough
to just randomize the tag, but the random coins of the signing algorithm too:

RandSign(vk, τ, m, σ): Given a valid signature σ on tag τ and message m, it
outputs a new signature σ′ on the same message m and tag τ .

Correctness extends the above one, where the algorithm VerifSign(vk, τ ′, m, σ′′)
should output 1 with σ′′ ← RandSign(vk, τ ′, m, σ′). One additionally expects
unlinkability: the distributions D0 and D1 are (computationally) indistinguish-
able, for any vk and m (possibly chosen by the adversary), where for i = 0, 1,
(τ̃i, τi) ← GenTag(1κ), σi ← Sign(sk, τi, m), (τ ′

i , ρi) ← RandTag(τi), σ′
i ←

DerivSign(vk, τi, m, σi, ρi) and σ′′
i ← RandSign(vk, τ ′

i , m, σ′
i), and for b = 0, 1, we

set Db = {(m, vk, τ0, σ0, τ ′
b, σ′′

b , τ1, σ1, τ ′
1−b, σ′′

1−b)}. We stress that this indistin-
guishability should also hold with respect to the signer, who knows the signing
key, after randomization of the signature (and not just of the tag) in case of
probabilistic signature.
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Signatures with Randomizable Tags on Vectors. We will extend the above
algorithms to vectors of keys �sk, �pk, messages �m, and signatures �σ, of the same
length, but for a common tag τ , by applying the algorithms on the component-
wise elements:

Sign(�sk, τ, �m) outputs �σ where each component σi ← Sign(ski, τ, mi), for the
common tag τ ;

VerifSign( �vk, τ, �m, �σ) outputs the conjunction of the Boolean output by all the
verifications VerifSign(vki, τ, mi, σi) on each component, under the common
tag τ (whether all the verifications accept or not);

DerivSign( �vk, τ, �m, �σ, ρτ→τ ′) outputs �σ′ where each component is derived as σ′
i ←

DerivSign(vki, τ, mi, σi, ρτ→τ ′);
RandSign( �vk, τ, �m, �σ) outputs �σ′ where each component is randomized as σ′

i ←
RandSign(vki, τ, mi, σi), for the common tag τ .

This is a preliminary step towards aggregate signatures that will allow a compact
representation of �σ, independent of the length of the vector, when the tag τ is
the same for all the components. This will be the core of our compact anony-
mous credentials. In both cases, with vectors of any length or of length 1, some
properties will be required.

Correctness. From any valid tag-pair (τ̃ , τ) and honestly generated pairs of
keys (skj , vkj) ← Keygen(param), if σj = Sign(skj , τ, mj) are valid signatures on
message mj ∈ M, for j = 1, · · · , �, if (τ ′, ρ) ← RandTag(τ):

– either after the derivation for the tag, �σ′ ← DerivSign( �vk, τ, �m, �σ, ρ), and the
randomization of the signature, �σ′′ ← RandSign( �vk, τ ′, �m, �σ′)

– or after the randomization of the signature �σ′ ← RandSign( �vk, τ, �m, �σ), and
the derivation for the tag, �σ′′ ← DerivSign( �vk, τ, �m, �σ′, ρ)

then the verification VerifSign( �vk, τ ′, �m, �σ′′) should output 1.

Unforgeability. In the Chosen-Message Unforgeability security game, the
adversary has unlimited access to the following oracles, with lists KList and
TList initially empty:

– OGenTag() outputs the tag τ and keeps track of the associated witness τ̃ ,
with (τ̃ , τ) appended to TList;

– OKeygen() outputs the verification key vk and keeps track of the associated
signing key sk, with (sk, vk) appended to KList;

– OSign(τ, vk, m), for (τ̃, τ)∈TList and (sk, vk)∈KList, outputs Sign(sk, τ, m).

It should not be possible to generate a signature that falls outside the range of
DerivSign or RandSign:
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Definition 11 (Unforgeability for RT-Sign). An RT-Sign scheme is said
unforgeable if, for any adversary A that, given signatures σi for tuples (τi,vki, mi)
of its choice but for τi and vki issued from the GenTag and Keygen algorithms
respectively (for Chosen-Message Attacks), outputs a tuple ( �vk, τ, �m, �σ) where
both τ is a valid tag and �σ is a valid signature w.r.t. ( �vk, τ, �m), there exists a
subset J of the signing queries with a common tag τ ′ ∈ {τi}i such that τ ∼ τ ′,
∀j ∈ J, τj = τ ′, �vk = (vkj)j∈J , and �m = (mj)j∈J , with overwhelming probability.
Since there are multiple secrets, we can consider corruptions of some of them:

– OCorruptTag(τ), for (τ̃ , τ) ∈ TList, outputs τ̃ ;
– OCorrupt(vk), for (sk, vk) ∈ KList, outputs sk.

The forgery should not involve a corrupted key (but corrupted tags are allowed).
Note again that all the tags are valid (either issued from GenTag or verified).
In the unforgeability security notion, some limitations might be applied to the
signing queries: one-time queries (for a given tag-key pair) or a bounded number
of queries.

Unlinkability. Randomizability of both the tag and the signature are expected
to provide anonymity, with some unlinkability property:
Definition 12 (Unlinkability for RT-Sign). An RT-Sign scheme is said
unlinkable if, for any �vk and �m, no adversary A can distinguish the dis-
tributions D0 and D1, where for i = 0, 1, we have (τ̃i, τi) ← GenTag(1κ),
(τ ′

i , ρi) ← RandTag(τi), �σi is any valid signature of �m under τi and �vk, and even-
tually �σ′

i ← DerivSign( �vk, τi, �m, �σi, ρi) and �σ′′
i ← RandSign( �vk, τ ′

i , �m, �σ′
i), and for

b = 0, 1 we set Db = {(�m, �vk, τ0, �σ0, τ ′
b, �σ′′

B , τ1, �σ1, τ ′
1−b, �σ′′

1−b)}.
We stress that this indistinguishability should also hold with respect to the
signer, who might have generated the initial signatures �σ0 and �σ1, but then after
randomization of the signature (and not just of the tag, with derivation) in case
of probabilistic signature.

4.3 Anonymous Credential from EphemerId and RT-Sign

We first explain how EphemerId and RT-Sign can lead to anonymous credentials,
in a black-box way. Our concrete constructions will thereafter exploit aggregate
RT-Sign, to achieve compactness, independently of the number of credentials
and authorities (credential issuers).

Let E be an EphemerId scheme and Srt an RT-Sign scheme, one can construct
an anonymous attribute-based credential scheme. The user’s keys will be tag
pairs and the credentials will be RT-Sign signatures on both the tags and the
attributes. Since the tag is randomizable, the user can anonymously show any
set of credentials: multiple showings will use unlinkable tags.

Furthermore, as the signature scheme tolerates corruptions of users and sign-
ers, we will be able to consider corruptions of users and credential issuers, and
even possible collusions:
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Setup(1κ): Given a security parameter κ, it runs Srt.Setup and outputs the public
parameters param which includes all the parameters;

CIKeyGen(ID): Credential issuer CI with identity ID, runs Srt.Keygen(param) to
obtain his key pair (sk, vk);

UKeyGen(id): User U with identity id, runs E .GenTag(param) to obtain his key
pair (usk, uvk);

(CredObtain(usk, vk, a),CredIssue(uvk, sk, a)): User U with identity id and key-
pair (usk, uvk) asks the credential issuer CI for a credential on attribute a:
σ = Srt.Sign(sk, uvk, a), which can be checked by the user;

(CredShow(usk, (vkj , aj , σj)j),CredVerify((vkj , aj)j)): User U randomizes his
public key (uvk′, ρ) = E .RandTag(uvk). Then, it adapts the secret key
usk′ = E .DerivWitness(usk, ρ), thanks to ρ, as well as the signatures (σ′

j)j =
Srt.DerivSign((vkj)j , uvk, (aj , σj)j , ρ), using the above algorithm on vectors.
It then randomizes them: (σ′′

j )j = Srt.RandSign((vkj)j , uvk′, (aj , σ′
j)j). It

eventually sends the anonymous credentials ((vkj , aj , σ′′
j )j , uvk′) to the ver-

ifier V. The verifier first checks the freshness of the credentials with a
proof of ownership of uvk′. This is performed using the interactive proto-
col (E .ProveKTag(usk′), E .VerifKTag(uvk′)). It then verifies the validity of
the credentials with Srt.VerifSign((vkj)j , uvk′, (aj , σ′′

j )j).

We stress that for all the above notations (uj)j , we use the algorithms on vectors,
that apply the initial algorithms component-wise. This does not lead to compact
credentials, as they are vectors (σj)j , but we only consider security in this section.
Efficiency will be dealt in the next section, with aggregate signatures.

If one considers corruptions, when one corrupts a user or a credential issuer,
the corresponding secret key is provided.

With secure EphemerId and RT-Sign schemes, the above construction is an
anonymous attribute-based credential scheme, with security results stated below
and proven in the full version [15].

Theorem 13. Assuming EphemerId achieves knowledge-soundness and RT-Sign
is unforgeable, the generic construction is an unforgeable attribute-based creden-
tial scheme, in the certified key model.

Theorem 14. Assuming EphemerId is zero-knowledge and RT-Sign is unlink-
able, the generic construction is an anonymous attribute-based credential scheme,
in the certified key model.

5 Constructions

Our concrete constructions will provide compact credentials. To this aim, we
need more compact signatures on vectors than vectors of signatures. We thus
recall the notion of aggregate signatures, and define the aggregate signatures
with randomizable tags.
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5.1 Aggregate Signatures with Randomizable Tags

Aggregate Signatures. Boneh et al. [4] remarked it was possible to aggregate
the BLS signature [5], we will follow this path, but for tag-based signatures, with
possible aggregation only between signatures with the same tag, in a similar way
as the indexed aggregated signatures [9]. We will even consider aggregation of
public keys, which can either still be a simple concatenation or a more evolved
combination as in [3]. Hence, an aggregate (tag-based) signature scheme (Aggr-
Sign) is a signature scheme with the algorithms:

AggrKey((vkj)�
j=1): Given � verification keys vkj , it outputs an aggregated veri-

fication key avk;
AggrSign(τ, (vkj , mj , σj)�

j=1): Given � signed messages mj in σj under vkj and
the same tag τ , it outputs a signature σ on the message vector �m = (mj)�

j=1
under the tag τ and aggregated verification key avk.

One can note that avk can be �vk or a more compact encoding. Similarly, the
aggregate signature σ from �σ = (σj)j can remain this concatenation or a more
compact representation.

While we will still focus on signing algorithm of a single message with a single
key, we have to consider verification algorithm on vectors of keys and message,
but on a compact signature.

Correctness of an aggregate (tag-based) signature scheme requires that for
any valid tag-pair (τ̃ , τ) and honestly generated keys (skj , vkj) ← Keygen(param),
if σj = Sign(skj , τ, mj) are valid signatures for j = 1, · · · , �, then for both key
avk ← AggrKey((vkj)�

j=1) and signature σ = AggrSign(τ, (vkj , mj , σj)�
j=1), the

verification VerifSign(avk, τ, (mj)�
j=1, σ) should output 1.

Aggregate Signatures with Randomizable Tags. We can now provide the
formal definition of an aggregate signature scheme with randomizable tags, where
some algorithms exploit compatibility between the EphemerId scheme and the
signature scheme:

Definition 15 (Aggregate Signatures with Randomizable Tags (ART-
Sign)). An ART-Sign scheme, associated to an EphemerId scheme E = (Setup,
GenTag, RandTag, DerivWitness, (ProveVTag,VerifVTag)) consists of the algo-
rithms (Setup, Keygen, Sign, AggrKey, AggrSign, DerivSign, RandSign, VerifSign):

Setup(1κ): Given a security parameter κ, it runs E .Setup and outputs the global
parameter param, which includes E .param with the tag space T , and extends
it with the message space M;

Keygen(param): Given a public parameter param, it outputs a key-pair (sk,vk);
Sign(sk, τ, m): Given a signing key, a valid tag τ , and a message m ∈ M, it

outputs the signature σ;
AggrKey((vkj)�

j=1): Given � verification keys vkj, it outputs an aggregated veri-
fication key avk;
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AggrSign(τ, (vkj , mj , σj)�
j=1): Given � signed messages mj in σj under vkj and

the same valid tag τ , it outputs a signature σ on the vector �m = (mj)�
j=1

under the tag τ and aggregated verification key avk;
VerifSign(avk, τ, �m, σ): Given a verification key avk, a valid tag τ, a vector �m and

a signature σ, it outputs 1 if σ is valid relative to avk and τ , and 0 otherwise;
DerivSign(avk, τ, �m, σ, ρτ→τ ′): Given a signature σ on a vector �m under a valid

tag τ and aggregated verification key avk, and the randomization link ρτ→τ ′

between τ and another tag τ ′, it outputs a signature σ′ on the vector �m under
the new tag τ ′ and the same key avk;

RandSign(avk, τ, �m, σ): Given a signature σ on a vector �m under a valid tag
τ and aggregated verification key avk, it outputs a new signature σ′ on the
vector �m and the same tag τ .

We stress that all the tags must be valid: their verification must be performed
before the verification of the signatures.

Note that using algorithms from E , tags are randomizable at any time, and
signatures adapted and randomized, even after an aggregation: avk and �m can
either be single key and message or aggregations of keys and messages. Note
that only protocol (ProveVTag,VerifVTag) from E is involved in the ART-Sign
scheme, as one just needs to check the validity of the tag, not the ownership.
The latter will be useful in anonymous credentials with fresh proof of ownership.

Correctness, unforgeability, and unlinkability are the same as above, where
the compact aggregate signature σ replaces the vector �σ.

5.2 Constructions

We can now instantiate the different primitives. More precisely, we provide two
constructions of a multi-authority anonymous credential scheme each one based
on a construction of an ART-Sign scheme: a one-time version and a bounded
version. In the first construction, we consider attributes where the index i deter-
mines the attribute type (age, city, diploma) and the exact value is encoded in
ai ∈ Z

∗
p (possibly H(m) ∈ Z

∗
p if the value is a large bitstring), or 0 when empty.

The second construction (see the full version [15]) does not require any such
ordering on the attributes. Arbitrary bit strings are supported. However, the
construction of the EphemerId scheme is in common.

SqDH-based EphemerId Scheme. With tags in T = G
3
1, in an asymmet-

ric bilinear setting (G1,G2,GT , p, g, g, e), and τ = (h, hτ̃ , hτ̃2) a Square Diffie-
Hellman tuple, one can define the SqDH EphemerId scheme:

Setup(1κ): Given a security parameter κ, let (G1,G2,GT , p, g, g, e) be an asym-
metric bilinear setting, where g and g are random generators of G1 and G2
respectively. The set of (valid and invalid) tags is T = G

3
1. We then define

param = (G1,G2,GT , p, g, g, e; T );
GenTag(param): Given a public parameter param, it randomly chooses a gener-

ator h
$← G

∗
1 and outputs τ̃

$← Z
∗
p and τ = (h, hτ̃ , hτ̃2) ∈ G

3
1.
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RandTag(τ): Given a tag τ as input, it chooses ρτ→τ ′
$← Zp and constructs

τ ′ = τρτ→τ′ the derived tag. It outputs (τ ′, ρτ→τ ′).
DerivWitness(τ̃ , ρτ→τ ′): The derived witness remains unchanged: τ̃ ′ = τ̃ .
ProveVTag(τ̃),VerifVTag(τ): The prover constructs the proof π = proof(τ̃ : τ =

(h, hτ̃ , hτ̃2)) (see the full version [15] for a non-interactive proof using the
Groth-Sahai [13] framework). The verifier outputs 1 if it accepts the proof
and 0 otherwise.

Valid tags are Square Diffie-Hellman pairs in G1:

L = {(h, hx, hx2
), h ∈ G

∗
1, x ∈ Z

∗
p} = ∪x∈Z∗

p
Lx Lx = {(h, hx, hx2

), h ∈ G
∗
1}

The randomization does not affect the exponents, hence there are p − 1 different
equivalence classes Lx, for all the non-zero exponents x ∈ Z

∗
p, and correctness

is clearly satisfied within equivalence classes. The validity check (see the full
version [15]) is sound as the Groth-Sahai commitment is in the perfectly binding
setting. Such tags also admit an interactive Schnorr-like zero-knowledge proof
of knowledge of the exponent τ̃ for (ProveKTag(τ̃),VerifKTag(τ)) which also
provides extractability (knowledge-soundness). With the Fiat-Shamir heuristic
and the random oracle, this proof of knowledge can be transformed into a non-
interactive one, also called a signature of knowledge. Under the DSqDH and
DL assumptions, given the tag τ , it is hard to recover the exponent τ̃ = x. The
tags, after randomization, are uniformly distributed in the equivalence class, and
under the DSqDH-assumption, each class is indistinguishable from G

3
1, and thus

one has unlinkability: see Theorem 3.

One-Time SqDH-based ART-Sign Scheme. The above EphemerId scheme can
be extended into an ART-Sign scheme where implicit vector messages are signed.
As the aggregation can be made on signatures of messages under the same tag
but from various signers, the description is given for multiple and independent
signers, each indexed by j, and any signed message by the j-signer for coordinate
i is indexed by (j, i).

We stress that this one-time scheme needs to be state-full as there is the
limitation for a signer j not to sign more than one message with index (j, i)
for a given tag: a signer must use two different indices to sign two messages for
one tag. This is due to the linearly-homomorphic signature scheme: each coor-
dinate a is signed, as a pair (g, ga), in a subspace of dimension 2. The linearity
limits to Diffie-Hellman pairs with constant ratio a. But with two independent
2-dimension vectors, one can generate the full subspace G1 × G1.

Our construction of aggregate signature with randomizable tags is based on
the second linearly-homomorphic signature scheme of [14, Appendix C.5]:

Setup(1κ): It extends the above setup with the set of messages M = Zp;
Keygen(param): Given the public parameters param, it outputs the signing and

verification keys

skj,i = ( SKj = [ tj , uj , vj ], SK′
j,i = [ rj,i, sj,i ] ) $← Z

5
p,

vkj,i = ( VKj = [ gtj , guj , gvj ], VK′
j,i = [ grj,i , gsj,i ] ) ∈ G

5
2.



Traceable Constant-Size Multi-authority Credentials 429

Note that one could dynamically add new SK′
j,i and VK′

j,i to sign implicit
vector messages: skj = SKj ∪ [SK′

j,i]i, vkj = VKj ∪ [VK′
j,i]i;

Sign(skj,i, τ, m): Given a signing key skj,i = [t, u, v, r, s], a message m ∈ Zp and
a public tag τ = (τ1, τ2, τ3), it outputs the signature (of m, by the j-th signer
on the index (j, i)): σ = τ t+r+ms

1 × τu
2 × τv

3 ∈ G1.
AggrKey((vkj,i)j,i): Given verification keys vkj,i, it outputs the aggregated veri-

fication key avk = [avkj ]j , with avkj = VKj ∪ [VK′
j,i]i for each j;

AggrSign(τ, (vkj,i, mj,i, σj,i)j,i): Given tuples of verification key vkj,i, message
mj,i and signature σj,i all under the same tag τ , it outputs the signature
σ =

∏
j,i σj,i ∈ G1 of the concatenation of the messages verifiable with

avk ← AggrKey((vkj,i)j,i). Note that one needs to keep track of the indices
of the mj,i in the concatenation;

DerivSign(avk, τ, �M, σ, ρτ→τ ′): Given a signature σ on tag τ and a vector �M (of
tuples), and ρτ→τ ′ the randomization link between τ and another tag τ ′, it
outputs σ′ = σρτ→τ′ ;

RandSign(avk, τ, �M, σ): The scheme being deterministic, it returns σ;
VerifSign(avk, τ, �M, σ): Given a valid tag τ = (τ1, τ2, τ3), an aggregated veri-

fication key avk = [avkj ] and a vector �M = [mj ], with both for each j,
avkj = VKj ∪ [VK′

j,i]i and mj = [mj,i]i, and a signature σ, one checks if the
following equality holds or not, where nj = #{VK′

j,i}:

e(σ, g) = e

⎛

⎝τ1,
∏

j

VKj,1
nj ×

∏

i

VK′
j,i,1 · VK′

j,i,2
mj,i

⎞

⎠

× e

⎛

⎝τ2,
∏

j

VKj,2
nj

⎞

⎠ × e

⎛

⎝τ3,
∏

j

VKj,3
nj

⎞

⎠ .

In case of similar public keys in the aggregation (a unique index j), avk =
VK ∪ [VK′

i]i and verification becomes, where n = #{VK′
i},

e(σ, g) = e

(

τ1,VK1
n ×

n∏

i=1
VK′

i,1 · VK′
i,2

mi

)

× e (τ2,VK2
n) × e (τ3,VK3

n) .

Recall that the validity of the tag has to be verified, either with a proof of
knowledge of the witness (as it will be the case in the ABC scheme, or with
the proof π = proof(τ̃ : τ = (h, hτ̃ , hτ̃2)) (such as the one given in the full
version [15]).

Security of the One-Time SqDH-based ART-Sign Scheme. As argued in the arti-
cle [14, Appendix C.5], the signature scheme defined above is unforgeable in the
generic group model [18], if signing queries are asked at most once per tag-index
pair. About unlinkability, it relies on the DSqDH assumption, but between signa-
tures that contain the same messages at the same shown indices (the same vector
�M). Both security properties are stated below and proven in the full version [15]:
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Theorem 16. The One-Time SqDH-based ART-Sign is unforgeable with one
signature only per index, for a given tag, even with adaptive corruptions of keys
and tags, in the generic group model.

Theorem 17. The One-Time SqDH-based ART-Sign is unlinkable under the
DSqDH and DDH assumptions.

The Basic SqDH-based Anonymous Credential Scheme. The basic con-
struction directly follows the instantiation of the above construction with the
SqDH-based ART-Sign:

Setup(1κ): Given a security parameter κ, let (G1,G2,GT , p, g, g, e) be an asym-
metric bilinear setting, where g and g are random generators of G1 and G2
respectively. We then define param = (G1,G2,GT , p, g, g, e, H), where H is
an hash function in G1;

CIKeyGen(ID): Credential issuer CI with identity ID, generates its keys for n kinds
of attributes

skj = ( SKj = [ tj , uj , vj ], SK′
j,i = [ rj,i, sj,i ]i ) $← Z

3+2n
p ,

vkj = ( VKj = [ gtj , guj , gvj ], VK′
j,i = [ grj,i , gsj,i ]i ) ∈ G

3+2n
2 .

More keys for new attributes can be generated on-demand: by adding the
pair [rj,i, sj,i] $← Z

2
p to the secret key and [grj,i , gsj,i ] to the verification key,

the keys can works on n + 1 kinds of attributes;
UKeyGen(id): User U with identity id, sets h = H(id) ∈ G

∗
1, generates its secret

tag τ̃
$← Z

∗
p jointly with CA (to guarantee randomness) and computes τ =

(h, hτ̃ , hτ̃2) ∈ G
3
1: usk = τ̃ and uvk = τ = (h, hτ̃ , hτ̃2);

(CredObtain(usk, vk, ai),CredIssue(uvk, sk, ai)): User U with identity id and uvk=
(τ1, τ2, τ3) asks to the credential issuer CI for a credential on the attribute
ai: σ = τ t+ri+aisi

1 × τu
2 × τv

3 ∈ G1. The credential issuer uses the appropriate
index i, making sure this is the first signature for this index;

(CredShow(usk, (VKj ,VK′
j,i, aj,i, σj,i)j,i), CredVerify((VKj ,VK′

j,i, aj,i)j,i)):
First, user U randomizes his public key with a random ρ

$← Z
∗
p into

uvk′ = (τρ
1 , τρ

2 , τρ
3 ), concatenates the keys avk = ∪j([VKj ] ∪ [VK′

j,i]i), agre-
gates σ =

∏
j,i σj,i ∈ G1, and adapts the signature σ′ = σρ. Then it sends

the anonymous credential (avk, (aj,i)j,i, uvk′, σ′) to the verifier. The latter
first checks the freshness of the credential with a proof of both ownership
and validity of uvk′ using a Schnorr-like interactive proof and then verifies
the validity of the credential, with nj = #{VK′

j,i}:

e(σ′, g) = e

⎛

⎝τ1,
∏

j

VKj,1
nj ×

∏

i

VK′
j,i,1 · VK′

j,i,2
aj,i

⎞

⎠

× e

⎛

⎝τ2,
∏

j

VKj,2
nj

⎞

⎠ × e

⎛

⎝τ3,
∏

j

VKj,3
nj

⎞

⎠ .
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We stress that for the unforgeability of the signature, generator h for each tag
must be random, and so it is generated as H(id), with a hash function H in
G1. This way, the credential issuers will automatically know the basis for each
user. There is no privacy issue as this basis is randomized when used in an
anonymous credential. Moreover, the user needs his secret key τ̃ to be random.
Therefore, he jointly generates τ̃ with the Certification Authority (see the full
version [15]). During the showing of a credential, the user has to make a fresh
proof of knowledge of the witness for the validity of the tag. Again, in the security
proof of unforgeability, one may need a rewinding, but only for the target alleged
forgery.

In this construction, we can consider a polynomial number n of attributes per
credential issuer, where ai is associated to key vkj,i of the Credential Issuer CIj .
Again, to keep the unforgeability of the signature, the credential issuer should
provide at most one attribute per key vkj,i for a given tag. At the showing time,
for proving the ownership of k attributes (possibly from K different credential
issuers), the users has to perform k − 1 multiplications in G1 to aggregate the
credentials into one, and 4 exponentiations in G1 for randomization, but just one
element from G1 is sent, as anonymous credential, plus an interactive Schnorr-
like proof of SqDH-tuple with knowledge of usk (see the full version [15]: 2
exponentiations in G1, 2 group elements from G1, and a scalar in Zp); whereas
the verifier first has to perform 4 exponentiations and 2 multiplications in G1
for the proof of validity/knowledge of usk, and less than 3k multiplications and
k exponentiations in G2, and 3 pairings to check the credential. While this is
already better than [9], we can get a better construction (see the full version [15]).

We additionally remark that the aggregation σ is deterministic and can thus
be kept for another showing of the same credentials. Only a new randomization
of uvk into uvk′ with the adaptation of σ into σ′ is required for anonymity.

6 Traceable Anonymous Credentials

As the SqDH-based ART-Sign schemes provide computational unlinkability only,
it opens the door of possible traceability in case of abuse, with anonymous but
traceable tags.

The idea is that one can extend an EphemerId scheme with a modified
GenTag algorithm and additional TraceId and JudgeId ones and use this traceable
EphemerId to construct a traceable anonymous credentials, with similar proper-
ties as the ones defined for group signatures [2]: an opener or a tracing authority
can revoke anonymity (traceability), and publish the identity of the guilty, with-
out being able to accuse an innocent (non-frameability or exculpability).

6.1 Traceable EphemerId

To help the reader, we extend the notations used in the anonymous credential
to define the traceable EphemerId scheme:
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Definition 18 (Traceable EphemerId). Based on an EphemerId scheme:

GenTag(param): Given a public parameter param, it outputs the user-key pair
(usk,uvk) and the tracing key utk;

TraceId(utk, uvk′): Given the tracing key utk associated to uvk and a public key
uvk′, it outputs a proof π of whether uvk ∼ uvk′ or not;

JudgeId(uvk, uvk′, π): Given two public keys and a proof, the judge checks the
proof π and outputs 1 if it is correct.

Construction. One can enhance our SqDH-based EphemerId scheme:

GenTag(param): Given a public parameter param, it randomly chooses a gener-
ator h

$← G
∗
1 and outputs usk = τ̃

$← Z
∗
p, uvk = τ = (h, hτ̃ , hτ̃2) ∈ G

3
1 and

utk = gτ̃ ;
TraceId(utk, uvk′): Given the tracing key utk associated to uvk = (τ1, τ2, τ3) and

a public key uvk′, it outputs a Groth-Sahai proof π (as shown in the full
version [15]) that proves, in a zero-knowledge way, the existence of utk such
that

e(τ1, utk) = e(τ2, g) e(τ2, utk) = e(τ3, g) (1)
e(τ ′

1, utk) = e(τ ′
2, g) e(τ ′

2, utk) = e(τ ′
3, g); (2)

JudgeId(uvk, uvk′, π): Given two public keys and a proof, the judge checks the
proof π and outputs 1 if it is correct.

Correctness. The tracing key allows to check whether τ ′ ∼ τ or not: e(τ ′
1, utk) =

e(τ ′
2, g) and e(τ ′

2, utk) = e(τ ′
3, g). If one already knows the tags are valid (SqDH

tuples), this is enough to verify whether e(τ ′
1, utk) = e(τ ′

2, g) holds or not. How-
ever we provide the complete proof in the full version [15], as it is already quite
efficient. The first Eq. (1) proves that utk is the good tracing key for uvk = τ ,
and the second line (2) shows it applies to uvk′ = τ ′ too. It can be observed this
can also be a proof of innocence of id with key uvk if the first Eq. (1) is satisfied
while the second one is not.

The trapdoor allows traceability, and the soundness of the proof guarantees
non-frameability or exculpability, as one cannot wrongly accuse a user.

6.2 Traceable Anonymous Credentials

For traceability in an anonymous credential scheme, we need an additional
player: the tracing authority. During the user’s key generation, this tracing
authority will either be the certification authority, or a second authority, that
also has to certify user’s key uvk once it has received the tracing key utk.

We consider a non-interactive proof of tracing, produced by the TraceId algo-
rithm and verified by anybody using the JudgeId algorithm. This proof could be
interactive.
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Non-frameability. In case of abuse of a credential σ under anonymous key uvk′,
a tracing algorithm outputs the initial uvk and id, with a proof a correct tracing.
A new security notion is quite important: non-frameability, which means that
the tracing authority should not be able to declare guilty a wrong user: only
correct proofs are accepted by the judge.

A successful adversary A against non-frameability is able to forge a valid
credential σ∗ under the key uvk∗ and a valid proof π = TraceId(utk∗, uvk) for
some honest user with identity id and key uvk which is not possible without
breaking the unforgeability of the credential or the soundness of the proof. Hence,
the tracing authority cannot frame a user and we obtain the first secure traceable
anonymous credential scheme.
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Abstract. Distributed Oblivious RAM (DORAM) protocols allow a
group of participants to obliviously access a secret-shared array at a
secret-shared index, and DORAM is the key tool for secure multiparty
computation (MPC) in the RAM model.

In this work we present an efficient DORAM protocol with O((κ +
D) log N) communication per access, where N is the size of the memory,
κ is a security parameter and D is the block size.

Our DORAM protocol is secure in the 3-party honest-majority set-
ting, and is built from two novel, efficient components.

The first is a novel data structure for answering set membership
queries. This data structure has asymptotically optimal (with tiny con-
stants) memory usage, lookup cost and negligible failure probability. We
show how this data structure can also be efficiently instantiated under
MPC. The second is a Distributed Oblivious Hash Table protocol (in the
3-party honesty-majority setting) with asymptotically optimal memory
usage and O(κ+D) communication per access. To our knowledge, this is
the first Distributed Oblivious Hash Table with this efficiency that does
not use homomorphic encryption.

Finally, we use this to build the aforementioned DORAM protocol.
Our protocol performs polylogarithmic computation and does not require
homomorphic encryption. Under natural parameter choices, it is the most
communication-efficient DORAM with these properties.

1 Introduction

Oblivious RAM (ORAM) [23,43] provides a method for a trusted processor to
execute a program that reads from and writes to an untrusted memory array
such that the access pattern is independent of the (private) inputs to the program
itself. Although traditional encryption algorithms can protect the content of the
data, protecting data access patterns is critical for security.

The original application of ORAM was for software protection, where a
tamper-resistant CPU had to maintain program security while making use of
an untrusted external memory. This problem is exemplified in systems that
make use of “secure enclaves” like Intel’s SGX [2,13,29,38] and AMD’s SEV
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[31] that read and write to untrusted system memory. Indeed, several types of
“cache-attacks” (e.g. [27,53]) have shown that access pattern leakage can be
used to extract secret key material, and that even trusted enclaves like SGX are
vulnerable [9,41].

A similar application of ORAM arises in the setting of cloud storage, where a
client wants to outsource its data storage needs to an (untrusted) cloud provider.
Encryption can hide the contents of the data, but not the access pattern. This
setting is similar to the setting of trusted CPU, but the data sizes are larger,
and the bandwidth is reduced. On the other hand, in the cloud-storage setting,
it may be reasonable to assume the cloud provider is willing to perform some
amount of computation in order to respond to a user’s request, and the efficiency
requirements may be relaxed somewhat compared to the CPU setting.

Most ORAM protocols aim to minimize the amount of communication
between the client and the server, and the efficiency of an ORAM protocol is
measured by the (multiplicative) communication increase incurred by executing
the ORAM protocol. In other words, the overhead of an ORAM protocol is the
communication cost of accessing t blocks (of size D) under the ORAM protocol
divided by tD (as the number of database accesses, t, tends towards infinity).
Sometimes, the asymptotic overhead depends on the relationship between D and
other parameters. In this case it is often simpler to explicitly state the amor-
tized communication cost, which we often refer to just as the communication
cost, which is the cost of t accesses divided by t.

Early ORAM protocols were designed to allow a single, trusted processor
to make a series of reads and writes to a single untrusted memory store. The
application we target, however, is secure multiparty computation (MPC).

The goal of MPC is to allow a group of data owners to securely compute a
function of their joint data without revealing any information beyond the output
of the computation. This notion of security requires that MPC protocols be data
oblivious, in particular the running time, memory accesses and communication
patterns of the participants cannot depend on other private data. To achieve
data obliviousness, most MPC protocols work in the circuit-model. Circuits are
inherently data-oblivious, and the MPC protocol securely computes the target
circuit gate by gate. Although any computation can be expressed as a circuit,
this representation may not be compact. Thus for efficiency reasons, it would
be highly desirable to securely compute RAM programs. (A time-bounded RAM
program of size O(N) can be converted to a circuit of size O

(
N3 log N

)
[12,48],

but in most situations this efficiency loss is unacceptable.) Combining ORAM
with a traditional, circuit-based MPC protocol provides a method for securely
computing RAM programs, and can drastically increase the efficiency of certain
types of secure computations.

This type of MPC-compatible ORAM protocol is called Distributed ORAM
(DORAM). One of the challenges of building a DORAM protocol is that there is
no longer a trusted client who is allowed to learn the indices being queried. Note
that this is different from multi-server ORAM protocols (e.g. [25,26,34,37,45])
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which aim to increase efficiency by using multiple, non-colluding servers, but
still require a trusted client.

Our main construction is a novel 3-party DORAM protocol that has O((κ +
D) log N) communication and is extremely efficient in theory and in practice.

Theorem 1 ((3, 1)-DORAM (informal)). There exists a 3-server DORAM
protocol with amortized communication complexity O((κ + D) log N) bits. The
protocol provides security in the semi-honest model against one corruption.

Our construction builds on the “hierarchical ORAM” solution of [23]. In prin-
ciple a hierarchical ORAM is built by constructing several Oblivious Hash Tables,
protocols which provide oblivious memory accesses provided the same item is
not queried twice. However, Oblivious Hash Tables are hard to implement effi-
ciently. Thus, most hierarchical ORAMs instead use variants of Oblivious Hash
Tables which cannot store all of the desired elements, and reinsert the leftover
elements back into the ORAM. These ORAMs therefore break the abstraction
of a hierarchical ORAM being composed of Oblivious Hash Tables. Breaking
this abstraction is unsatisfactory from a theoretical standpoint, and has led to
widespread errors [18].

In this paper we present the first Distributed Oblivious Hash Table construc-
tion with O(κ + D) communication per access (without requiring of Homomor-
phic Encryption).

Theorem 2 (Distributed Oblivious Hash Table). Protocol ΠOHTable

(Fig. 6) implements a 3-party Distributed Oblivious Hash Table with amortized
communication complexity O(κ + D) bits. The protocol provides security in the
semi-honest model against one corruption.

This is made possible by our novel set-membership data structure that has
negligible failure probability, and only reads O (log N) bits per access.

Theorem 3 (Set-Membership Data structure). The data structure out-
lined in Sect. 6 can store n = ω(log N) elements, from a universe of size N ,
with linear storage overhead (O(n log N)-bits), negligible false-positive rate (in
N), zero false-negative rate, negligible probability of build failure (in N) and
logarithmic lookup cost (O(log N) bits).

Note that these properties are not simultaneously satisfied by existing data
structures like Cuckoo Hash Tables and Bloom Filters. Cuckoo hashing has
a non-negligible probability of build failure, cuckoo-hashing with a stash has
O (

log2 N
)

lookup cost, and Bloom Filters cannot simultaneously achieve log-
arithmic lookup cost and negligible false-positive rates. See Sect. 6 for a more
detailed discussion.

2 Prior Work

It is possible to convert any ORAM protocol into a DORAM protocol by emu-
lating the client using an MPC protocol, and allowing the MPC participants to
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play the role of the untrusted server(s). This is a common approach to building
DORAMs, and thus a cursory overview of ORAM is in order.

Early ORAM protocols had an overhead of O
(
log3 N

)
[23], while later works

improved this to O (log N) [6,52,55] which is known to be optimal [23,35]. These
early works considered a model with a single, trusted client, and a single, server
that could only store and retrieve data.

Several other models have been developed in an attempt to improve perfor-
mance. These include adding multiple (non-colluding) servers, or allowing the
server(s) to perform computation.

Active ORAM: If the ORAM server(s) are allowed to compute on data, rather
than just store and retrieve data, the O (log N) lower-bound of [23,35] can be
avoided, and several active ORAM protocols achieve constant client-server over-
head [4,14,20,49,50].

Multi-server ORAM: The communication complexity of ORAM protocols
can also be improved by allowing multiple (non-colluding) servers. Multi-server
ORAM protocols include [11,25,26,34,37,45,50]. Although multi-server ORAM
and DORAM both involve multiple servers, the models are fairly different. Multi-
server ORAM assumes a single, trusted client (who can perform operations
locally), whereas in DORAM, there is no “client.”

It is worth noting that any k-server DORAM protocol trivially yields a k-
server active ORAM with O(log N) client-server communication, since you can
always add a fully-trusted, lightweight, client whose queries consist of secret-
sharing an index without compromising security.1

More relevant for this work, it is also possible to go in the opposite direction,
that is, to convert ORAM protocols to DORAM protocols by simulating the
client under MPC. Since MPC requires a significant computational overhead,
simulating the ORAM client under MPC is only practical if the ORAM client
uses minimal computational and storage resources. Circuit ORAM [55] is an
ORAM protocol particularly amenable to secure multiparty computation, since
its client can be efficiently represented as a circuit. Instantiating Circuit ORAM
with a generic MPC protocol (e.g. garbled circuits or BGW [7]) yields a DORAM
scheme with O (

log3 N + D log N
)

communication. The (3, 1)-DORAM protocol
of [30] also builds on Circuit ORAM, and achieves communication complex-
ity O

(
κ log3 N + D log N

)
, where D is the record size. Although the asymp-

totic communication complexity of the [30] protocol is κ times larger than that
of a generic 3PC implementation of Circuit ORAM, the round complexity is
improved from O (

log2 N log log N
)

to O (log N).
Since DORAM protocols already require multiple, computing servers, it is

natural to create DORAM protocols by using MPC to emulate the trusted
client in a multi-server or active ORAM protocol. This is a promising approach

1 Note that a k-server DORAM protocol does not immediately yield a (k − 1)-server
active ORAM by allowing one of the DORAM servers to play role of the trusted
client, because in active ORAM the client must use sublinear storage, and there is
no such restriction for DORAM servers.
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since several efficient multi-server ORAM protocols exist [25,26,34,37,45,50] and
some have even been implemented [15,25,56,58]. Unfortunately, most of these
multi-server ORAM protocols are not suited for secure multiparty computation,
because their clients often perform complex computations that cannot be effi-
ciently executed inside an MPC. For instance, [34]’s PIR solutions require that
the client generate a key for a Distributed Point Function.

[37] is an exception, in that the [37] client can be (asymptotically) efficiently
instantiated using a generic MPC protocol. [37] builds on the (single-server)
“hierarchical solution” [23,43,44], but uses two (non-colluding) servers, each
holding alternate levels of the hierarchy. Each level holds an Oblivious Hash
Table, storing encryptions of the elements on that level. To construct a level,
one server passes all the (encrypted and shuffled) elements for that level to the
client, who then decrypts and re-encrypts them, and passes them to the other
server. The client also provides PRF outputs to the other server, which allows
the server to build the Oblivious Hash Table in the clear since it knows which
location each item should be placed, even though the items are encrypted. This
server then passes the level back to the client, who decrypts it, re-encrypts
it, and passes the encrypted Oblivious Hash Table back to the original server.
This process means that the Oblivious Hash Table build, which is usually a
bottleneck, can be performed in the clear, but requires the client to perform a
linear number of (symmetric-key) encryptions. In the traditional ORAM setting,
this is cheap, since the client can perform symmetric-key encryption extremely
efficiently (e.g. using AES with hardware acceleration). Unfortunately, when
using the ORAM protocol within a secure computation, the client is simulated by
the MPC protocol, and thus all the client operations (including the encryptions)
need to be performed under MPC. Although encryptions can be performed under
MPC, this cost dominates the cost of the overall protocol, and makes the entire
scheme inefficient in practice.

Nevertheless, this scheme is in fact efficient asymptotically. Assuming execut-
ing a symmetric cipher on D bits with security parameter κ under MPC requires
O(κ + D) communication (see the full version of this work [17] for a justifica-
tion of this claim) the communication cost of [37] is O ((κ + D) log N). This is
better than that achieved by subsequent DORAM protocols [10,16,30,55,56].
This was observed in [16], but seems to have been largely ignored in later works
(e.g. [10,30]). Our scheme has the same asymptotic behavior as [37], but dra-
matically better constants. An encryption under MPC can be performed by a
Shared-Input, Shared-Output PRP (SISO-PRP), which are explained in Sect. 4.
In the full version of this work, [17], we calculate the concrete number of SISO-
PRP calls, and show that our construction achieves the same asymptotics, but
reduces the concrete number of SISO-PRP calls by a factor of 50.

Bunn et al. use an alternative approach based on Function Secret-Sharing
(FSS) [8,22] to build a (3, 1)-DORAM [10]. Although FSS-based protocols have
bad asymptotics ([10] has O

(√
N

)
communication, and O (N) server-side com-

putation), they are extremely efficient in practice (note that
√

N < log3 N for
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N < 6 · 108). The FSS-based DORAM of [10] is also the only known DORAM
protocol with constant round complexity.

Asymptotically, the best communication efficiency is achieved by instantiat-
ing the 2-server hierarchical ORAM of [37] using a generic MPC, but in prac-
tice schemes with suboptimal asymptotics, e.g. the BGW-instantiated Circuit
ORAM with a cost of O (

log3 N + D log N
)

are superior. See Table 1.
Our work achieves amortized communication cost O ((κ + D) log N), but

with dramatically better concrete cost than the only other DORAM protocol
with this asymptotic cost.

Table 1. Communication complexity of DORAM protocols. N denotes the number of
records, κ is a cryptographic security parameter, σ is a statistical security parameter,
and D is the record size. Although instantiating the [37] 2-party ORAM using generic
MPC has the same asymptotic complexity as our protocol, concretely, we reduce the
number of SISO-PRP calls by a factor of more than 50 (see the full version, [17], for a
detailed accounting).

GC Circuit ORAM [55] O (
κ log3 N + κD log N

)

2PC Sqrt-ORAM [58] O
(
κD

√
N log3 N

)

2PC FLORAM [15] O (√
κDN log N

)

2PC ORAM [28] O (√
κDN log N

)

BGW Circuit ORAM [55] O (
log3 N + D log N

)

BGW 2-server hierarchical [37] O ((κ + D) log N)

3PC ORAM [16] O (
κσ log3 N + σD log N

)

3PC ORAM [30] O (
κ log3 N + D log N

)

3PC ORAM [10] O
(
D

√
N

)

Our protocol O ((κ + D) log N)

Implementations: Several works have implemented DORAM protocols. [25]
implements the [51] ORAM using garbled circuits, SCORAM [56] uses the
ObliVM [54] MPC framework. [58] uses the Obliv-C MPC framework to imple-
ment the original square-root ORAM solution [23]. FLORAM [15] uses the Obliv-
C framework to implement function-secret-sharing-based ORAM.

Hierarchical ORAM: Our work builds on the “hierarchical ORAM,” which
was explored in the single-server setting [23,33] and the multi-server setting
[34,37].

In the hierarchical model, the server stores a hierarchy of Oblivious Hash
Tables of geometrically increasing sizes. An Oblivious Hash Table has the prop-
erty that physical memory accesses leak no information about virtual accesses
provided each item is only queried once. Hierarchical ORAMs satisfy this condi-
tion by building smaller tables that act as memory caches for the larger tables.
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Then, when an item is found in a smaller table, the protocol searches for a nonce
instead of the real value in all larger tables. See the full version of this work [17]
for a more detailed explanation of hierarchical ORAM.

In the original “hierarchical ORAM” scheme [23], each oblivious hash table
required accessing O(log N) elements. It was realized [47] that using Cuckoo
Hashing, oblivious hash tables could be constructed that only required access-
ing O(1) elements. However, when a cuckoo hash table is built, there is a
non-negligible probability that some items cannot be stored in the main table.
Because of this, the initial cuckoo-based ORAM [47] had a flaw (identified in
[33]) so subsequent works [6,24,33,34,37,46], instead of creating true Oblivious
Hash Tables, took items that could not be stored in the cuckoo table and rein-
serted them into the top level. Doing this näıvely results in a subtle flaw [18].
Even though this flaw can be remedied for the ORAM setting, these works still
do not create true Oblivious Hash Tables. This work instead presents a method
of efficiently implementing true Distributed Oblivious Hash Tables in the (3, 1)
semi-honest setting.

3 Preliminaries

Let P1, P2 and P3 be the three parties in the protocol. For a positive integer B,
we use single square brackets, [B], to represent the set {1, . . . , B}.

We assume the parties have access to an Arithmetic Black Box (ABB) func-
tionality FABB (Fig. 1). This is a reactive functionality that provides input,
retention and output of secret-shared data. It also provides basic arithmetic
operations and some advanced operations which we explain further below.

We use standard secret-sharing notation to represent variables stored in the
ABB. Each variable in the ABB has a public identifier and �x� denotes the public
identifier for a variable x that is stored in the ABB. We use notation from [5]
that a

(
n

t+1

)
-sharing is a secret sharing where t + 1 of the n shares are sufficient

and necessary to learn the secret.
For notational convenience, we use normal assignment notation to show a

new variable being stored in the ABB and drop its variable name from the
function declaration. For instance, FABB.AND(�x�, �y�, z) will alternatively be
written as �z� = FABB .AND(�x�, �y�). Assignment notation is similarly used to
show a new local variable being assigned based on a call to Output. We also
use the notation �z� = �x� to show that the value of �x�, stored in the ABB,
was copied to a new location, �z�. Lastly, we occasionally place constants in the
secret-sharing notation (e.g. �true�). In this case, the constant is implicitly first
input as a secret variable from any party.

The ABB abstracts away the details of the secret-sharing implementation
and underlying MPC framework. Our efficiency results are based on instantiat-
ing FABB with the generic MPC protocol of Araki et al. [5]. We use this pro-
tocol because it is designed for our setting ((3, 1) semi-honest) and is extremely
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Fig. 1. Arithmetic Black Box functionality

communication-efficient at Boolean operations. XORs are free and AND gates
require only 3 bits of communication, total. However, the number of rounds of
communication is equal to the AND-depth of the circuit.2

In addition to basic arithmetic and IO functionalities, our ABB also has
the ability to convert between

(
2
2

)
-sharings and

(
3
2

)
-sharings. Our protocol never

computes on
(
2
2

)
shares, so the functionality does not define any calculations

that occur on
(
2
2

)
-shared data. A detailed explanation of the resharing protocol

can be found in the full version [17].
One way to implement the functionality FABB . Shuffle is to use the 3-party

shuffle of [36]. This shuffle has concrete communication cost of 24nD bits to
shuffle n bits, each of size D. See the full version of this paper, [17], for a detailed
accounting of the communication cost.

2 Our protocol could also be executed using garbled circuits. This would increase the
communication cost by a factor of κ, since 2 ciphertexts would need to be sent per
AND gate [57]. However the round complexity would be reduced to linear in the
“openings” depth of the protocol, rather than the AND depth of the circuit.
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Table 2. Communication costs of FABB . Costs ignore a setup phase in which each
pair of parties pick a PRG key for generating identical randomness. This set-up phase
occurs only once for FABB and requires 3κ bits of communication. FABB .Equal,
FABB .IfThenElse, FABB .PRP keygen and FABB . PRP eval are executed as boolean
circuits using the aforementioned operations from [5].

Functionality Communication Source

(bits, total)

FABB .Input 4 (per input bit) [5] §2.1

FABB .ReshareTo2Sharing 0 [17]

FABB .ReshareFrom2Sharing 8 (per input bit) [17]

FABB .XOR 0 [5] §2.1

FABB .AND 3 [5] §2.1

FABB .OR 3 Using 1 AND and NOTs

FABB .Equal (n bits) 3(n-1) Standard, e.g. [3]

FABB .IfThenElse (n bits) 3n Mux z = (b ∧ (x ⊕ y)) ⊕ y

FABB .PRP keygen 0 [5] §3.4

FABB .PRP eval (D bits) 21(κ + D) [1], [17]

FABB .Shuffle (n each D bits) 24nD [36], [17]

FABB .Output 3 [5], send xi to Pi+1

We will be looking at an ORAM of size N , i.e., it represents a RAM of size
N . We assume N is a power of 2, so that indices are representable by log N
bits where all logs are base-2. We will seek to achieve statistical failure that is
negligible in N . Each data block will be of size D, where D = Ω(log N).

Our protocol achieves κ-bit security, by which we mean the protocol achieves
symmetric security roughly equivalent to AES-κ. We assume a PRP exists with
κ-bit security that can be represented as a circuit with O(κ) AND gates. We
suggest instantiating this with LowMCv3 which requires about 7κ AND gates
to achieve κ-bit security (see Sect. 4). Throughout this work, as is standard, we
assume κ = ω(log N).

4 SISO-PRPs

A pseudo-random function (PRF) is a keyed deterministic function such that
the output appears random to any polynomially bounded adversary.

A Shared-Input, Shared-Output PRF (SISO-PRF) is a multiparty protocol
to securely evaluate a PRF when the input, outputs and keys are secret-shared
between the participants. Note that this is slightly different from the notion of an
Oblivious Pseudo-Random Function (OPRF) [21]. Most OPRF protocols have
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focused on a 2-party evaluation of a PRF, where one party holds a key, k, and
the other holds an input, x, and the output, Fk(x) is delivered to one party.

In our applications, however, it is critical that the inputs to the PRF are
secret-shared, thus most existing OPRF protocols are not applicable. In prin-
ciple, it is possible to evaluate any PRF with secret-shared keys, inputs and
outputs, using generic MPC protocols, but this is often fairly inefficient.

In this work, we will focus on Shared-Input Shared-Output PRPs (SISO-
PRPs) where the pseudorandom function is actually a permutation.

Concretely, we imagine implementing our SISO-PRP using the “MPC-
friendly” LowMC block cipher, which is highly optimized for evaluation as a
SISO-PRP [1]. In addition to being MPC-friendly, LowMC has two additional
features that make it useful in our setting. (1) LowMC has configurable block
sizes, allowing us to reduce the communication and computational costs when
the index space is small, and (2) when the maximum number of queries to the
PRP is bounded (as is the case in our construction), LowMC can be instantiated
with more aggressive parameters, increasing efficiency.

In Table 3, we compare the efficiency of LowMC, vs AES for 128-bit security.
We present various parameter choices for LowMC using the LowMCv3 secu-
rity estimator.3 In Table 3, “Data” represents the log of the number of PRP
evaluations the adversary will ever learn.

Table 3. Block cipher costs for 128-bit Security (AES-128 from [1][Table 2], LowMC
from LowMCv3 security estimator )

Cipher Blocksize Data rounds AND gates

AES 128 128 40 5120

LowMC 128 128 19 1824

LowMC 128 128 252 861

LowMC 10 10 32 288

LowMC 10 10 94 282

5 Construction Overview

Our main construction is a (3, 1)-DORAM protocol with amortized
O ((κ + D) log N) communication cost.

Our construction builds on the “hierarchical solution” which is essentially a
tool for converting an oblivious hash table that only provides obliviousness on
distinct queries into an oblivious data structure that provides obliviousness on
repeated queries. We describe the hierarchical solution in more detail in Sect. 9.

3 https://github.com/LowMC/lowmc/blob/master/determine rounds.py.

https://github.com/LowMC/lowmc/blob/master/determine_rounds.py
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Informally, an oblivious hash table is a data structure that provides oblivi-
ousness on distinct queries, thus the hierarchical solution reduces the problem
of designing a DORAM protocol to building an oblivious hash table that can be
built and queried efficiently in a distributed manner.

Starting with [47], Cuckoo Hash Tables have been widely used in ORAM
protocols [6,24,33,34,37,46]. The key property of Cuckoo Hash Tables is that
in a series of distinct queries, the physical access pattern is independent of the
underlying queries.

However, it is tricky to correctly incorporate Cuckoo Hash Tables into a
hierarchical ORAM protocol. Cuckoo Hash Tables have a non-trivial probabil-
ity of build failure (and a failure would leak information). Thus Cuckoo Hash
Tables are instantiated with a “stash” of size ω(1) to hold elements that can-
not be stored in the main Cuckoo Hash Table [32]. In the hierarchical solution,
adding a separate stash at every level of the hierarchy increases the asymptotic
query complexity, thus most hierarchical ORAM protocols sought to combine
the stashes across different levels of the hierarchy. This breaks the abstraction of
each level of the hierarchy being an Oblivious Hash Table and was often done in
a way that led to flaws in the ORAM protocol [18]. In short, while Cuckoo Hash
Tables with combined stashes can be used to implement hierarchical ORAM
protocols efficiently, this makes the protocol and its analysis undesirably com-
plicated.

Rather than instantiating the hierarchical solution with Cuckoo Hash Tables,
we design a novel Oblivious Hash Table that requires Θ(κ + D) bits of commu-
nication per access (amortized). Our starting point is the observation [39] that
once it is known whether an element is stored in a table, Distributed, Oblivious
Hash Tables can be constructed using any non-oblivious, but secret-shared, hash
table structure by searching for distinct pre-inserted dummy elements when an
element is not in the set.

This essentially reduces the problem to that of designing an efficient data
structure for set membership. We do this by building a Cuckoo Hash Table with
a stash, but instantiating the stash with a Bloom Filter. Surprisingly, this simple
combination increases the asymptotic efficiency of the data structure beyond
what can be achieved by Cuckoo Hash Tables or Bloom Filters alone.

The main technical challenge is then to construct the Oblivious Set Member-
ship structure and Oblivious Hash Tables in the distributed setting efficiently,
and without leaking any sensitive data.

We solve this in the (3, 1)-security setting by using a shared-input PRP,
where one party learns the outputs in the clear during builds and the other two
parties to learn the PRP outputs during accesses. We show that a single party
can construct the Bloom Filter and Cuckoo Table objects in the clear based
on the PRP evaluations alone, but without any shares of the actual indexes or
data. The Bloom Filter and Cuckoo Table data structures can then be secret-
shared between the remaining two parties who can then evaluate lookups without
revealing any PRP outputs to the third party.
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We present our Oblivious Set Membership protocol in Sect. 7 followed by our
full Oblivious Hash Table protocol in Sect. 8. Finally, we use our novel Oblivious
Hash Table protocol together with the hierarchical solution to construct a (3, 1)-
DORAM protocol (Sect. 9).

The formal definitions of hashing, oblivious hashing, Bloom Filters and
Cuckoo Hash Tables can be found in the full version of this paper [17].

6 Set Membership

Let there be some set of n elements from a universe of size N , each represented by
log N ≥ log n bits. In this section we outline a novel data structure that supports
set membership queries that simultaneously achieves the following properties:

1. Linear storage overhead (O(n log N))
2. Negligible false-positive rate in N
3. Zero false-negative rate
4. Negligible probability of build failure in N
5. Logarithmic lookup cost (O(log N))

Bloom filters and Cuckoo hash tables are widely used data structures that
provide efficient storage and retrieval, but they do not satisfy all of the above
design criteria simultaneously.

Example 1 (Cuckoo Hashing). Standard Cuckoo Hash Tables have linear storage
overhead, zero false-positive rate, and logarithmic4 lookup cost. Unfortunately,
Cuckoo Hash Tables (without a stash) have a non-negligible probability of build
failure.

Example 2 (Cuckoo Hashing with a stash). Modifying a standard Cuckoo Hash
Table to include a “stash” of size s = Θ(log N), for any n = ω(log N) makes
the failure probability negligible in N [42]. Unfortunately, every lookup query
scans the entire stash, which requires reading s locations, which means lookups
require accessing Θ(log2 N) bits of memory.

Example 3 (Bloom filters). The false-positive rate for a Bloom filter of size m

storing n elements (using k hash functions) is about
(
1 − e− kn

m

)k

. A standard
analysis (e.g. [40] [Chapter 5]) shows that the false-positive rate is minimized
when k = log(2) · (m/n), which makes the false-positive probability approxi-
mately (log 2)−m/n. Thus to make the false-positive probability negligible in N ,
we need m = ω(n log N), which means that the storage overhead is super-linear.

4 Note that lookups require looking in a constant number of locations, but each loca-
tion stores an identifier which must be at least log n bits, so the total lookup cost
requires transmitting (at least) a logarithmic number of bits. Even Cuckoo filters
[19] requires storing keys that are at least log n bits.
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Although Cuckoo Hashing, and Bloom filters alone cannot achieve our five
goals (linear storage overhead, negligible false-positive rate, zero false-negative
rate, negligible probability of build failure and logarithmic lookup cost), combin-
ing the Cuckoo Hashing with Bloom filters allows us to simultaneously achieve
all these goals. This is achieved simply by creating a Cuckoo Hash table with a
stash, but storing the stash in a Bloom filter.

Fig. 2. Set Membership

Theorem 4. When n = ω (log N), the Set Membership protocol of Fig. 2 pro-
vides a data structure with linear storage overhead, negligible false-positive rate
(in N), zero false-negative rate, negligible probability of failure (in N) and loga-
rithmic lookup cost (in bits).

The proof of Theorem 4 is straightforward and can be found in the full version
of this work [17].

7 3-Party Oblivious Set Membership Protocol

We now show how we can securely build and access the set-membership data
structure presented in Sect. 6. This will be fundamental to our efficient Oblivious
Hash Table construction.
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The core idea is that a single party, say P1, can locally construct the Cuckoo
Hash table and Bloom Filter objects. Since the indices must remain secret shared,
the Cuckoo Hash table and Bloom Filter are constructed not from the indices Xi,
but on PRP evaluations of the indices qi = PRPk(Xi). This PRP is evaluated in
a secure computation, and the output revealed to P1, who constructs the Cuckoo
Hash Table and Bloom Filter and secret-share these between P2 and P3. The
hash functions for the Cuckoo Hash Table and Bloom Filter can be public, since
the data structures are secret-shared.

If an index x is queried, the parties securely evaluate q = PRPk(x) and reveal
this to P2 and P3. The locations to be accessed in the secret-shared Cuckoo
Hash table and the secret-shared Bloom Filter depend only on q and public
hash functions. P2 and P3 can therefore access the required locations of the
secret-shared Cuckoo Hash Table and Bloom Filter and securely calculate the
result of the set membership query.

Our protocol works in the FABB-hybrid model, where FABB is defined in
Fig. 1. The Oblivious Set functionality is defined below. Note that it reveals
any repetitions in the array of inputs, or in the array of queries (but does not
reveal publicly relationships between queries and inputs). This is necessary since
certain parties will learn the PRP evaluations of the inputs, or the queries (but
no parties will learn both). This will allow these parties to learn of any duplicates.

Fig. 3. Oblivious Set functionality
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Fig. 4. 3 Party Secure Set Membership
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Theorem 5. Protocol ΠOSet (Fig. 4) securely implements FOSet (Fig. 3) in the
FABB-hybrid model, in the (3, 1) semi-honest setting

Proof. Build: Observe that ΠOSet.Build has a probability of failure, whereas
FOSet.Build does not. However the failure probability is negligible (Theorem 4),
so cannot be used to distinguish the real and ideal executions.

Let SBUILD,1 be the simulator for P1 for ΠOSet.Build. It is provided with
P1’s input and output, and only needs to produce the messages P1 received from
FABB , namely qLocal1, . . . , qLocaln. It proceeds as follows:

1. SBUILD,1 is given first.
2. Let unused = {1, . . . , N}
3. For i ∈ {1, . . . , n}

(a) If firsti = i select an element r of unused uniformly at random, remove
r from unused, and set qLocali = r.

(b) Otherwise let j = firsti. Set qLocali = qLocalj .

Firstly, observe that if qLocali = qLocalj in the program execution, then
firsti = firstj , so qLocali = qLocalj in the simulator’s transcript. The unique
values in qLocal1, . . . , qLocaln are results of a truly random permutation. There-
fore, distinguishing the values of qLocal from the real and simulated executions
amounts to distinguishing the pseudo-random permutation from a truly random
permutation. Since viewπ

1 (x, y, z) is indistinguishable from S1(1n, x, f1(x, y, z)),
and f(x, y, z) and outputπ(x, y, z, n) are deterministic functions of S1(1n, x,
f1(x, y, z)) and viewπ

1 (x, y, z) respectively, the combined distributions (S1(1n, x,
f1(x, y, z)), f(x, y, z)) and (viewπ

1 (x, y, z, n), outputπ(x, y, z, n)) are computa-
tionally indistinguishable. P2 and P3 receive no messages during a build.

Query: There is a negligible probability of a false positive and zero probabil-
ity of a false negative (Theorem 4). Therefore, the event of a false result does
not allow the true and simulated executions to become computationally distin-
guishable. The simulator for P2 during a query is almost identical to that of P1

during a build, except that rather than receiving an entire list of pseudo-random
permutations to simulate, it receives one at a time. The simulator has to gener-
ate a single value that is consistent with a PRP evaluation. It is given a value
firstFound for the current query call. It keeps track of all previous values of
firstFound, as well as all views generated for previous calls to the query. If
firstFound < nQueries, SQUERY,2 sets the message q to the same one that
was generated in the firstFoundth query. Otherwise it generates a new, unused
message from [N ] and sets this to be the message q for the current round. Since
P2 and P3 have symmetric roles in the protocol, their simulators for the query
are identical. P1 receives no messages during a query.

The communication costs of ΠOSet are stated below as Theorems 6 and 7.
Their proofs follow from a straightforward accounting of the cost of each step,
and can be found in the full version [17].
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Theorem 6. Protocol ΠOSet.Build (Fig. 4) requires O(κn) communication. In
particular it requires n calls to FABBPRP eval.

Theorem 7. Protocol ΠOSet.Query (Fig. 4) requires O(κ) communication. In
particular it requires 1 call to FABBPRP eval.

7.1 3 Party Oblivious Set Membership for Small n

Our hierarchical ORAM protocol will need Oblivious Hash Tables, and Oblivious
Sets, where n is not ω(log N). In this case, the data structure presented above
will have non-negligible failure probability.

To solve this, when n is small we use a modified set membership protocol
ΠOSetSmall, which uses larger Bloom filters and no Cuckoo Hash Tables. We
have some security parameter κ, where κ = ω(log N). If n < κ, the Cuckoo
Hash Table is not used, and P1 places all n PRP evaluations in the Bloom
Filter, and makes the Bloom filter of size B = nκ. As before the number of hash
functions is log N . This makes the probability of a false positive(

1 − e− log Nn
nκ

)log N

=
(
1 − e− log N

κ

)log N

which is negligible in N . The proof of security is identical to that of the
ΠOSet, since the only messages revealed are the PRP evaluations, so ΠOSetSmall

securely implements FOSet for n < ω(log N).
The communication complexity of a build remains O(κn) with n secure PRP

evaluations and the communication complexity of a query remains O(κ) with 1
secure PRP evaluation.

Therefore, in terms of security and communication cost, other protocols can
call ΠOSetSmall in place of ΠOSet when n is small and the behavior will be the
same. One small difference, however, is that ΠOSetSmall needs superlinear storage
(Θ(κn) rather than Θ(n log N)). Nevertheless, in the ORAM data structure,
only the smaller levels will be instantiated with this data structure, so it will not
increase the asymptotic memory usage.

8 (3, 1)-Secure Oblivious Hash Table

We will now present how an Oblivious Set can be used to construct an efficient
Oblivious Hash Table. The essential realization is that once it is known whether
an item is in the Hash Table, the protocol can choose whether to search for the
item itself or to search for a pre-inserted dummy element. This means that the
protocol need not hide where in the data structure data is stored, nor need it
hide the location that is accessed. All that needs to be hidden is whether an item
is a dummy element or not, and if not, to avoid revealing any information about
which element it is. As such, Oblivious Sets turn out to handle the hardest part
of the problem, and any regular hash table may be used to store the data.

Like the Oblivious Set, the Oblivious Hash Table will reveal which indices
in the input are duplicates of each other, and will also reveal which queries are
repetitions of each other. (In our final ORAM protocol, it will be ensured that
there are no duplicates, so this will leak no information.)
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The Oblivious Hash Table contains a fixed number of pre-inserted dummy
items, and since each distinct non-member query needs to access a distinct
dummy, the Oblivious Hash Table will only support a limited number of queries.
(The table can be rebuilt with new dummies if need be, but this will not be
needed for the Oblivious RAM application.) These pre-inserted dummy items
are searched for also using a PRP. This increases the size of the inputs space of
the PRP to log(2N).

The Oblivious Hash Table is parameterized by the set of keys and values,
(X1, Y1), . . . , (Xn, Yn), the size of the domain of the indices, N , and the maxi-
mum number of distinct queries allowed, T . (By definition T ≤ N .)

Fig. 5. Oblivious Hash Table functionality

Theorem 8. ΠOHTable (Fig. 6) securely implements FOHTable in the FABB-
FOSet-hybrid model in the (3, 1) semi-honest security setting.

Proof. Build: FOSet generates first exactly according to the requirement for
FOHTable. Furthermore this output is a deterministic function of the inputs. It
follows that we only need to show that simulators exist for each party whose gen-
erated messages are computationally indistinguishable from the real messages.

P1 receives no messages. P2 receives Q̂1, . . . , Q̂n+T . S2 generates n + T ran-
dom distinct log(4N)-bit messages in place of these. Since these are the result
of PRP evaluations on distinct inputs, any entity that could distinguish these
from random distinct messages would be able to distinguish the PRP from a
random permutation. Hence, by the security of the PRP, the output of S2 is
indistinguishable from the view of P2. P3’s role is symmetric to P2.
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Fig. 6. Oblivious Hash Table
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Query: We need to show both that the correct value firstFound is returned
and that �res� is set to the correct value. Based on the definition of firstFound
in FOSet, and the fact that every query to ΠOHTable results in exactly 1 query to
FOSet, the value firstFound that FOSet reveals will satisfy exactly FOHTable.
If x has been queried before, the protocol stores in �res� the same value as it
stored last time, so if x is correct on all new queries it will also be correct on
all repeated queries. If x has not been queried before, then there are two cases.
Either �x� ∈ �X�, in which case x is queried, or �x� /∈ �X�, in which case 2N + j
is queried. If �x� ∈ �X�, then q = fk(x). Let ρ be the permutation of the shuffle,
and let i represent the indices prior to the shuffle and j = ρ(i) represent the
indices following the shuffle. Since x = Xi for some i ∈ [n], and Qi = fk(Xi),
then q = Q̂j for some j such that Ŷj = Yi, so �res� is set to the correct value.
If �x� /∈ �X� then q = fk(2N + t). Since 1 ≤ t ≤ T , q = Qn+t. As such, there is
some j such that Q̂j = q and �Ŷj� = �Yn+t� = �⊥�. Therefore �res� is set to �⊥�
as required.

This shows that the query protocol is correct, but it remains to show that it
is secure. If the index was queried before, no messages are sent to any player and
the protocol is trivially secure. If the index was not queried before, then P1 learns
the index of the accessed item in the shuffled array. SQUERY,1 will generate a
random index in [n + T ] that has not been accessed before. By the definition of
FABB .Shuffle, the accessed items after the shuffle will be truly random distinct
values. As such the distribution of the view of P1 is identical to the distribution
generated by SQUERY,1. P2 receives, in each query, the message q = Q̂j . The
simulator SQUERY,2, simulates this by selecting an element of Q̂j uniformly at
random from among the elements that have not previously been selected. Again,
from the security of the shuffle, each accessed element in the real protocol will also
be selected uniformly at random from among the unaccessed elements. Therefore
the real and simulated views are identical. Since P3 is symmetric to P2 its proof
of security is the same.

Extract: �res� will contain n+T − t elements as required. If x = Xi for i ∈ [n],
and x was queried, then, from above, the index of x will be visited, so Xi and
its data Yi will not be stored in �res�. If x = Xi for i ∈ [n], but x was not
queried, then Qi = fk(Xi) was never revealed as a result of query, so index ρ(i)
was never visited in the permuted array. Since Yi is a real data element Yi �= ⊥,
so �Xi�, �Yi� will be stored in �res�. All remaining elements stored in �res� will
be for some Xi /∈ X, i.e., i > N . In these cases Yi = ⊥, (�⊥�, �⊥�) will be stored
in �res� as required. The security of Extract is trivial since no parties receive
messages.

The communication costs of ΠOHTable are stated below as Theorems 9–11.
The Theorems below follow from a straightforward accounting of the cost of each
step, and their proofs can be found in the full version [17].

Theorem 9. ΠOHTable.Build (Fig. 6) requires O(κn + Dn + DT ) communica-
tion. In particular, it requires 2n calls to FABB .PRP eval.
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Theorem 10. ΠOHTable.Query (Fig. 6) requires O(κ) communication and, in
particular, at most 2 calls to FABB .PRP eval.

Theorem 11. ΠOHTable.Extract (Fig. 6) requires O((n+T − t)D) communica-
tion and no calls to FABB .PRP eval.

9 Hierarchical ORAM

In order to convert our Oblivious Hash Table functionality into a full-fledged
ORAM protocol, we make use of the Hierarchical ORAM construction.

Oblivious Hash Tables (Fig. 5) have several limitations: they only allow writes
during the build, they leak duplicated items in the build and they leak query
repetitions.

By contrast, the Oblivious RAM functionality (presented formally in Fig. 7)
allows a client to read and write into an array, without revealing the sequence of
indices being accessed, without these limitations.

Fig. 7. Oblivious RAM functionality

The Hierarchical ORAM technique can transform any Oblivious Hash Table
to an Oblivious RAM and incurs O(log N) overhead [23,43,44]. It does this by
caching results obtained from a larger hash-table in smaller hash-tables, ensuring
that an item is only searched for once in each hash-table before that table is
rebuilt. This technique is well-known and oft-used in ORAM solutions (e.g. [18,
24,33,37,47] [Theorem 1]). It applies both in the original client-server setting
and the distributed multi-party setting.

Appling the Hierarchical ORAM technique to our novel Oblivious Hash Table
(Fig. 6) yields our main result (Theorem 1) The proof is standard, but for com-
pleteness, it can be found in the full version of this work [17].
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Abstract. Private set intersection (PSI) allows two parties, who each
hold a set of items, to learn which items they have in common, without
revealing anything about their other items. Some applications of PSI
would be better served by revealing only one common item, rather than
the entire set of all common items. In this work we develop simple special-
purpose protocols for privately finding one common item (FOCI) from
the intersection of two sets. The protocols differ in how that item is
chosen—e.g., uniformly at random from the intersection; the “best” item
in the intersection according to one party’s ranking; or the “best” item
in the intersection according to the sum of both party’s scores. All of our
protocols are proven secure against semi-honest adversaries, under the
Decisional Diffie-Hellman (DDH) assumption and assuming a random
oracle. All of our protocols leak a small amount of information (e.g., the
cardinality of the intersection), which we precisely quantify.

1 Introduction

Suppose Alice and Bob want to schedule a meeting, without sharing their entire
calendars with each other. One method they might use is private set inter-
section (PSI). If they run a PSI protocol, with each party using the set of
available time slots as their input, then they will learn only the set of common
available times—i.e., the intersection of those sets—and nothing else about their
calendars.

However, for the application of scheduling a meeting, it is not necessary for
them to learn the entire intersection of their availabilities. Instead, it is enough
that they learn just a single item from the intersection. We refer to this problem
as (privately) finding one common item (FOCI). We may consider different
ways that single item may be chosen. The parties may want to simply learn a
random common item. Alternatively, one or both parties may have preferences
about the items (e.g., “I am free at these times but prefer Tuesdays/Thursdays
and prefer mornings.”) and they want to learn the “best” item in the intersection
according to those preferences.
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1.1 Related Work

To the best of our knowledge, there has not been work studying this particular
variant of PSI. We briefly recall the state of the art for plain PSI, and also discuss
secure multi-party computation methods that could be used to achieve FOCI.

Plain PSI. The first PSI protocols date back to the classic Diffie-Hellman-based
PSI of Huberman, Franklin, and Hogg [10]. Their protocol has roots dating back
to Meadows [16]. Our protocols take inspiration from the protocol of Huberman,
Franklin, and Hogg; we elaborate on this connection later. Many other protocols
have built on this paradigm, improving its efficiency [12,25] and extending it
to achieve security against malicious adversaries [4,5,25]. Besides the Diffie-
Hellman paradigm, there are other approaches for PSI—most notably, oblivious
polynomial evaluation [6,8,13] and oblivious transfer [3,14,17–19,22–24].

PSI based on oblivious transfer is the most efficient for large sets, and the
fastest PSI protocol in that paradigm is due to Rindal and Raghuraman [23].
For small sets, PSI based on the Diffie-Hellman approach is more efficient, and
the fastest protocol in that paradigm is due to Rosulek and Trieu [25]. In their
work, they found that the Diffie-Hellman approach was faster for sets of around
500 items or fewer.

Computing on the Intersection. Finding one common item is a special case of
computing arbitrary functions of the intersection. There is a line of work on this
problem, where some PSI techniques are used but the intersection is fed into a
generic secure multi-party computation protocol [7,9,19–21].

1.2 Our Results

It is possible to privately find one common item, using the approaches just listed
above (for computing arbitrary functions of the intersection).1 However, we point
out two issues with these approaches:

1. They all use techniques from oblivious-transfer-based PSI. These techniques
are the most scalable for large sets, but they have certain inherent fixed costs
(base OTs). In the case of plain PSI, these fixed costs are a significant frac-
tion of the entire protocol cost for small sets. For this reason, Diffie-Hellman
techniques are more efficient on small sets (in practice, several hundred items
for each party).
Our motivating application to calendar scheduling is indeed in this regime of
set sizes, with ∼360 half-hour time slots in one month of business hours.

2. They all use general-purpose MPC (e.g., garbled circuits or GMW protocol) to
compute the function of the intersection. This adds an inherent level of com-
plexity to the protocol. On the other hand, Diffie-Hellman PSI techniques are
relatively simple. While describing a real-world and large-scale deployment

1 All protocols for computing functions of the intersection can be readily augmented
to support data associated with the items, e.g., scores/ranks.
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of PSI, Ion et al. [11] explicitly listed protocol simplicity as a major design
constraint, motivating simplicity as follows:

It is difficult to overstate the importance of simplicity in a practi-
cal deployment, especially one involving multiple businesses. A simple
protocol is easier to explain to the multiple stakeholders involved, and
greatly eases the decision to use a new technology. It is also easier
to implement without errors, test, audit for correctness, and modify.
It is also often easier to optimize by parallelizing or performing in a
distributed manner. Simplicity further helps long-term maintenance,
since, as time passes, a constantly increasing group of people needs to
understand the details of how a solution works.

We propose simple protocols for the following variants of privately finding
one common item:

– Alice learns the cardinality of the intersection and Bob learns one item chosen
uniformly from the intersection. This variant is a simple (and likely folklore)
modification of the classic Diffie-Hellman-based PSI protocol of [10].

– Bob has assigned ranks to each of his items, and he learns the item in the
intersection with the highest rank. Alice learns the cardinality of the intersec-
tion, but nothing about the contents of the intersection, and nothing about
Bob’s ranks. For example, Alice would not learn whether item x was in the
intersection, and she would not learn whether Bob’s favorite or least favorite
item is in the intersection.

– Both parties have assigned scores to each of the items, and for every item
in the intersection we define its combined score as the sum of Alice’s and
Bob’s scores for that item. Bob learns the item in the intersection with the
highest combined score. Alice learns the cardinality of the intersection and
the (unordered) set of combined scores for items in the intersection—i.e., she
does not learn which scores are associated with specific items, and she does
not learn the individual contributions of Alice’s/Bob’s scores to the combined
scores. For example, if Alice ranks the item x with score 3 and Bob ranks it
with score 7, then Alice will learn that there is some item of combined rank
10 in the intersection.2

All of our protocols are conceptually simple and practical. Each is proven
secure against semi-honest adversaries, under the standard DDH assumption,
and in the random oracle model. The second protocol (with only Bob ranking
the items) requires an order-revealing encryption [2], but there exist compact
ORE schemes based only the minimal assumption of a PRF [15].

2 There are some situations where Alice could use this leakage to deduce some infor-
mation about the intersection and about Bob’s ranks. For example, suppose Alice
assigns ranks r1 < r2 < · · · to her items x1, x2, . . ., respectively, and then she later
learns that the intersection contains an item with combined rank r∗. If r∗ < r2 (and
all ranks are nonnegative), she can deduce that item x1 is in the intersection, and
that Bob must have assigned rank r∗ − r1 to that item.
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Our protocols reveal more than the minimum amount of information—i.e.,
more than just the identity of one common item. All three protocols leak the
cardinality of the intersection to Alice, for example. However, each protocol hides
non-trivial information about the sets; each protocol reveals nothing about items
not in the intersection; and leakage about the intersection is disassociated from
specific items.

2 Preliminaries

2.1 Decisional Diffie-Hellman Assumption

Definition 1. Let G be a cyclic group with generator g and order q. The deci-
sional Diffie-Hellman (DDH) assumption is that the following two distri-
butions are indistinguishable:

DH1,G:

a, b ← Zq

return (ga, gb, gab)

Rand1,G:

a, b, c ← Zq

return (ga, gb, gc)

Using a standard and straight-forward rerandomization technique [1], the
DDH assumption is equivalent to the following:

Proposition 2. Let G be a cyclic group with generator g and order q. The DDH
assumption is equivalent to the assumption that, for all n (polynomially bounded
by the security parameter), the following two distributions are indistinguishable:

DHn,G:

a1, . . . , an, b ← Zq

return (ga1 , . . . , gan , gb, ga1b, . . . , ganb)

Randn,G:

a1, . . . , an, b, c1, . . . , cn ← Zq

return (ga1 , . . . , gan , gb, gc1 , . . . , gcn)

2.2 Secure Two-Party Computation

In this work we consider secure two-party computation in the presence of semi-
honest adversaries. Let the two parties be denoted P1 and P2, and let their
private inputs be x1 and x2, respectively. Let f(x1, x2) = (f1(x1, x2), f2(x1, x2))
denote an ideal functionality, which receives x1, x2 from the parties and gives
output fi(x1, x2) to party Pi.

Let viewπ
i (x1, x2) denote the view of party Pi (consisting of internal random-

ness and protocol messages received) when the parties run protocol π honestly,
on respective inputs x1 and x2.

Definition 3. A protocol π securely realizes a functionality f = (f1, f2) if, for
i ∈ {1, 2} there exists a simulator Si such that for all x1, x2, the distributions
viewπ

i (x1, x2) and Si(xi, fi(x1, x2)) are indistinguishable.

In other words, the view of party Pi can be simulated given only their input
xi and ideal output fi(x1, x2).
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2.3 Symmetric-Key Encryption

We require a simple one-time, symmetric-key encryption scheme, where decryp-
tion fails if the wrong (independently random) key is used. Let K be the set of
keys and let M be the set of plaintexts. Specifically, we require the following
properties:

– Correctness: Dec(k,Enc(k,m)) = m with probability 1 for all k ∈ K and
m ∈ M.

– One-time security: For all m0,m1 ∈ M, the distributions E0 and E1 are indis-
tinguishable, where:

Eb:

k ← K
return Enc(k,mb)

– Robust decryption: For all m ∈ M, the following process outputs true with
negligible probability:

k, k′ ← K
c ← Enc(k,m)
return ⊥ �= Dec(k′,m)

2.4 Order-Revealing Encryption

Order-revealing encryption (ORE) is a symmetric-key encryption scheme that
reveals no more than the ordering of the plaintexts. See [2,15] for example con-
structions.

We specialize the notation of ORE for later convenience.

– Syntax: An ORE consists of algorithms Enc,Dec,Argmax. The set of keys is
K and the set of plaintexts is M. Without loss of generality, M = ZN for
some integer N , and we use the natural total ordering of ZN .

– Correctness: Dec(k,Enc(k,m)) = m with probability 1 for all k ∈ K and
m ∈ M.

– Order-revealing: Argmax(Enc(k,m1), . . . ,Enc(k,mn)) = arg maxj mj , with
probability 1 for all k ∈ K and m1, . . . ,mn ∈ M.

– Security: for all distinct m1, . . . ,mn ∈ M, the following distributions are
indistinguishable:

D0:

k ← K
for i = 1 to n:

ci = Enc(k, mi )
return shuffle({c1, . . . , cn})

D1:

k ← K
for i = 1 to n:

ci = Enc(k, i )
return shuffle({c1, . . . , cn})

In other words, encryptions of distinct plaintexts are indistinguishable from
encryptions of the sequence 1, . . . , n.



Finding One Common Item, Privately 467

3 Finding a Random Item of the Intersection

Our first simple protocol allows Bob to learn a single, randomly chosen, item
from the intersection, while Alice learns only the cardinality of the intersection.
For simplicity, we present our protocols for the case where both parties have
n items, but all of the protocols are easily generalized for the case where the
parties have sets of different sizes.

3.1 Warmup: Cardinality-Only Protocol and Blind Exponentiation

We start by recalling the classic protocol of Huberman, Franklin, and Hogg [10],
which allows Alice & Bob to learn the cardinality of their intersection. The heart
of the protocol is a blind exponentiation subprotocol, in which Alice has a set of
items that get raised to a secret exponent known to Bob. Alice learns only the
unordered set of resulting values. The subprotocol is shown in Fig. 1.

Fig. 1. Blind Exponentiation subprotocol.

Our convention when writing protocols and proving security is that sets are
unordered. So when Alice/Bob send each other a set during the protocol, that
set is assumed to be randomly permuted (equivalently, the set can be sorted).

Lemma 4. Alice’s output is (the unordered set) {mb | m ∈ M}. Furthermore, if
Alice is semi-honest, then her view in Fig. 1 can be simulated given only this output.

Proof. Correctness follows from the fact that

{(m′′)1/a | m′′ ∈ M ′′} = {((m′)b)1/a | m′ ∈ M ′} = {((ma)b)1/a | m ∈ M}.

Alice’s view consists of M ′′ and random exponent a. This can be simulated by
a simulator choosing random a and then raising every item of the output to the
a power.
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Lemma 5. If Bob is semi-honest, and Alice’s inputs have the form mi = H(xi),
for distinct xi values (chosen by the adversary), then Bob’s view in Fig. 1 is
indistinguishable from random (assuming the DDH assumption, and with H a
random oracle).

Proof. Consider the following reduction algorithm. Given α1, . . . , αn, β1, . . . , βn:
Simulate a random oracle while programming it as H(xi) = αi—this is pos-
sible since the xi’s are distinct. Then simulate Alice’s message M ′ as M ′ =
{β1, . . . , βn}. If each βi = αa

i then Bob’s view is exactly as in the protocol. If
the βi values are independently random, then Bob’s view is of a random set M ′.
The two cases are indistinguishable from the DDH assumption (Sect. 2.1).

Cardinality-Only Protocol. In the cardinality protocol of [10], the parties first
perform blind exponentiation. If Alice’s input set is X, then her input to blind
exponentiation subprotocol is {H(xi) | xi ∈ X}. She learns X ′ = {H(xi)b | xi ∈
X} where b is a random exponent chosen by Bob. Bob also sends Y ′ = {H(yi)b |
yi ∈ Y }, where Y is his input set. The cardinality |X ′ ∩ Y ′| corresponds to
the cardinality |X ∩ Y |. The protocol corresponds to all but the last protocol
message of Fig. 3.

Since the outputs of the blind exponentiation subprotocol are randomly per-
muted, Alice does not know the correspondence between matching H(z)b values
and her original xi values.

3.2 Choosing a Random Item

After performing the basic cardinality protocol, Alice can simply identify a ran-
dom element from the intersection according to its H(z)b value. In this way,
Bob will learn a single item from the intersection, while Alice learns only the
cardinality of intersection. For the sake of completeness, we describe the ideal
functionality for this FOCI variant in Fig. 2, and the protocol in Fig. 3.

Fig. 2. Ideal functionality for sampling a random item from the intersection.

Lemma 6. The protocol in Fig. 3 is correct.

Proof. If z ∈ X∩Y then H(z)b will surely be included in A′ and also as one of the
Ki values. For all other items x �= y, Pr[H(x)b = H(y)b] = Pr[H(x) = H(y)]—
i.e., these items contribute to the intersection only in the case of a collision under
the random oracle.



Finding One Common Item, Privately 469

Lemma 7. The protocol in Fig. 3 securely realizes Fig. 2 against a semi-honest
Bob.

Fig. 3. Protocol for identifying a random item from the intersection.

Proof. Simulation for Bob is trivial. Bob’s view consists only of his view from
BlindExp (which is indistinguishable from random), and the final protocol mes-
sage j∗, which is trivially computable from his ideal output.

Lemma 8. The protocol in Fig. 3 securely realizes Fig. 2 against a semi-honest
Alice.

Proof. Alice’s view consists mainly of her output A′ from the blind exponentia-
tion subprotocol and the Ki values from Bob. Using a standard reduction from
DDH (which programs the H(xi) and H(yi) values in the random oracle), all
values of the form H(z)b are indistinguishable from random. For z ∈ X ∩ Y ,
such H(z)b value appears in A′ and as one of the Ki values. For y ∈ Y \X, the
corresponding H(y)b appears only as one of the Ki values. Since the A′ set is
unordered, and Bob’s set is randomly permuted, then Alice’s view can be simu-
lated knowing only |X ∩ Y |—i.e., knowing how many values repeat between A′

and the set of Ki values.

4 Finding the Best Item According to a Unilateral Rank

In this section we consider the following variant. Alice holds a set of xi values,
and Bob holds a set of (yi, vi) pairs. The value vi denotes Bob’s rank of the item
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yi—i.e., a number between 1 and n. We consider the problem of identifying the
common item with highest rank. We assume that Bob has assigned distinct
ranks to each of the items in his set.

In this variant, Alice learns only how many common items they have (i.e.,
the cardinality of the intersection). In particular, she does not learn anything
about the relative rankings of items in the intersection vs items outside of the
intersection (e.g., she cannot learn that the intersection contains only Bob’s least
favorite items). Bob learns only the identity of the item with highest rank.

In Fig. 4 we formally define the ideal functionality for this variant of sampling
from the intersection. In the case that there are no common items, V will be
empty. We use the following notational conventions for that case: if V = ∅ then
max(V ) = ⊥; if the value of j∗ = ⊥ then yj∗ = ⊥.

Fig. 4. Ideal functionality for sampling the best item from the intersection, according
to a unilateral rank.

4.1 Intersection Protocol

The high-level idea behind the protocol is as follows. The parties can first perform
the basic PSI-cardinality protocol from Sect. 3. This protocol computes a key
Kz = H(z)b associated to each item z. Alice learns the key corresponding to
every item in her set, but all other keys appear random to her.

Hence, Bob can use these keys to encrypt some information about his items’
ranks. What should be the payload/associated data that Bob encrypts with each
key? It should be enough to allow Alice to determine the highest ranked item
in the intersection, without revealing that rank, and without revealing anything
also about the relative ranks of items in the intersection.

The appropriate tool for the job is order-revealing encryption (ORE;
Sect. 2.4). If Bob has item y with rank v, then he can use the PSI key Kv to
encrypt an ORE encryption of v. Alice can therefore decrypt the outer cipher-
texts to obtain ORE encryptions of the ranks of all items in the intersection.
These ORE ciphertexts allow Alice to identify the item with highest rank, but
they leak nothing else about the ranks.

Lemma 9. The protocol in Fig. 5 is correct.

Proof. If (yi, vi) ∈ Y and yi ∈ X then A′ will contain H(yi)b, and we will also
have Ei = Enc(H(yi)b, Oi). As such, Alice will eventually decrypt this Ei to
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Fig. 5. Protocol for identifying the best item according to a unilateral rank.

obtain Oi, an ORE encryption of vi. If yi �∈ X then Alice will decrypt Ei with
only independently generated keys, which will fail with overwhelming probability
(cf. robust decryption Sect. 2.3). She will later compute Argmax({Oj}) which by
the ORE correctness is the index j∗ of the maximum vj rank in the intersection.

Lemma 10. The protocol in Fig. 5 securely realizes Fig. 4 against a semi-honest
Bob.

Proof. Simulation for Bob is trivial. Bob’s view consists only of his view from
BlindExp (which is indistinguishable from random), and the final protocol mes-
sage j∗, which can be easily computed from his ideal output.

Lemma 11. The protocol in Fig. 5 securely realizes Fig. 4 against a semi-honest
Alice (assuming the DDH assumption).

Proof. Alice’s view consists of received protocol messages A′, E1, . . . , En, and
her view of the random oracle. These values are computed as in Hybrid 0 in
Fig. 6. Here A denotes the adversary that receives Alice’s view along with oracle
access to the random oracle H. For convenience in Hybrid 0 we have named
values H(z)b as K∗

z —if both Alice and Bob have a common element z then they
will both refer to the same K∗

z .
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In Hybrid 3 we present a simulator for Alice’s view. Although this hybrid is
written to take both parties’ sets as input, it uses these inputs only to calculate
the size m of the intersection. It then uses m to compute the remainder of the
view. The hybrid also uses permutations μ, π—μ is used to index into elements
of A′, and π is used to randomly choose which m values are simulated as part
of the intersection. Note that A′ is given to Alice only as an unordered set—i.e.,
indices of these items are not meaningful.

It suffices show that adjacent hybrids in Fig. 6 are indistinguishable.

Hybrids 0 & 1: The only difference is that K∗
z values are chosen uniformly. The

hybrids are indistinguishable via a reduction to the DDH problem. Specifically,
consider a reduction algorithm that receives (α1, . . . , αm, B, β1, . . . , βm). For each
zi ∈ {x1, . . . , xn, y1, . . . , yn}, the reduction algorithm programs H(zi) = αi and
sets K∗

zi
= βi. Otherwise, the reduction algorithm runs the code of Hybrid 1. If

the input is from the DH distribution—i.e., if B = gb and βi = αb
i—then the

output of the reduction algorithm is exactly that of Hybrid 0. If the input is from
the random distribution, then the reduction algorithm is exactly as Hybrid 1.

Hybrids 1 & 2: Consider a value yi that is distinct from all {xj} values—i.e., an
item not in common to the two parties. Then the only place K∗

yi
is used in Hybrid

1 is as the value Ki, when the ciphertext Ei = Enc(Ki, Si) is generated. Hence, a
straight-forward reduction to the one-time security of Enc (Sect. 2.3) shows that
Ei is indistinguishable from an encryption of a dummy value 0. Performing such
a reduction for each such yi yields Hybrid 2.

Hybrids 2 & 3: Instead of sampling all K∗
i values upfront, they are sampled

later, as needed. In the second for-loop of Hybrid 2, m of the ciphertexts
(m = the cardinality of the intersection) are encrypted with keys appearing
in A′. Furthermore, since the yi values are randomly shuffled (and the ordering
of A′ is not meaningful), the choice of m common keys is random. The same is
true of Hybrid 3, which uses the random permutations μ and π to select which
m keys are common.

The only other difference is that the Oi values in Hybrid 2 are encryptions of
vi plaintexts, whereas in Hybrid 3 they are encryptions of {1, . . . ,m} plaintexts.
By a straightforward reduction to the ORE security property (Sect. 2.4), the two
hybrids are indistinguishable.

5 Finding the Best Item According to a Combined Score

In this section we consider the following variant. Alice holds a set of (xi, ui) pairs,
and Bob holds a set of (yi, vi) pairs. If Alice and Bob hold a common item, say
z = xi = yj , then define that item’s score as ui + vj . In other words, an item’s
score is the sum of its scores from both parties. We consider the problem of
identifying the common item with highest score.

In this variant, Alice will learn (1) how many common items they have (i.e.,
the cardinality of the intersection), and (2) the set of combined scores for all
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Fig. 6. Hybrids in the security proof for the protocol in Fig. 5

common items. Alice does not learn the individual contributions of the parties
(i.e., the ui and vj value that are added to give an item’s score), nor does she learn
which scores correspond to which items, or which items are in the intersection.
Bob learns only the identity of the item with highest combined score.

In Fig. 7 we formally define the ideal functionality for this variant of sam-
pling from the intersection. Alice receives a vector (w1, . . . , wn), such that if k
items are common to the parties, then all but k entries in the vector will be ⊥.
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The remaining k entries will contain the combined scores of the common items.
The vector w is uniformly permuted, and so Alice learns only the cardinality
of the intersection and the (unordered) set of combined scores for items in the
intersection.

In the case that there are no common items, all wi values will be ⊥. We
use the following notational conventions for that case: if every wi = ⊥ then
arg maxi wi = ⊥; if the value of j∗ = ⊥ then yj∗ = ⊥.

In our protocol Alice will learn a value of the form Dwi and will need to
compute dlogD(Dwi) = wi. Our protocol therefore supports inputs where the
scores (wi values) have polynomial magnitude.

Fig. 7. Ideal functionality for sampling the best item from the intersection, according
to a combined score.

5.1 2-Blind Exponentiation

Our protocol requires a variant of the blind exponentiation subprotocol from
Sect. 3.1. See Fig. 8.

In this variant, Alice has a set of pairs. For each such pair (�, r) Alice wants
to learn (�b, rd) where b, d are exponents chosen by Bob. The two components
of each pair are kept together, but the set of pairs is randomly shuffled. Alice
learns only the unordered set of (�b, rd) values.

The following lemmas are proven analogously to those in Sect. 3.1:

Lemma 12. Alice’s output is {(�b, rd) | (�, r) ∈ M}. Furthermore, if Alice is
semi-honest and Bob’s inputs b, d are uniform, then Alice’s view in Fig. 8 can be
simulated given only this output.

Lemma 13. If Bob is semi-honest, and Alice’s inputs have the form (�i, ri) =
(H(xi), tiH(xi)) for distinct xi values (xi and ti values chosen by the adversary),
then Bob’s view in Fig. 8 is indistinguishable from random (assuming the DDH
assumption).
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Fig. 8. 2-Blind-Exp subprotocol.

5.2 Intersection Protocol

We first present the high-level intuition behind the protocol. The challenge is
to allow Alice to learn the combined score ui + vj for a common item xi = yj ,
without revealing the individual ui and vj terms.

The main idea is to blind Alice’s value ui with some random mask, and blind
Bob’s value vj with a complementary mask, so that the two masks can cancel
out revealing only ui + vj . The main question is: what random value shall serve
as the mask? Alice and Bob must apply the same mask if they have a common
item (xi = yj), so the mask must be derived from the identity of the item. Our
approach is as follows.

– For each (xi, ui) in Alice’s set, she computes gui · H(xi).
– Using a blind exponentiation protocol, Alice obtains [gui · H(xi)]d where d is

a random exponent chosen by Bob. Here the value H(xi)d is pseudorandom
from Alice’s view, so it serves as a blinding mask to the score gui .

– For each item (yj , vj) in Bob’s set, he can compute [gvj · H(yj)−1]d. He can
encrypt these values (similar to the previous protocol), so that Alice learns
them only if she has the matching item in her set.

Given her blinded value and the blinded value obtained from Bob, she can
compute:

[gui · H(xi)]d · [gvj · H(yj)−1]d = (gd)ui+vj

If Bob also sends gd then Alice can compute the discrete log with respect to base
gd to obtain ui + vj . As mentioned above, computing the discrete log requires
the combined ranks to be polynomial in magnitude.

Lemma 14. The protocol in Fig. 9 is correct.
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Fig. 9. Protocol for identifying the best item according to a combined score.

Proof. If z =xj = yi for some i, j then A′ will contain a tuple
(
H(z)b, [gujH(z)]d

)

and we will also have Ei = Enc
(
H(z)b, [gviH(z)−1]d

)
. As such, Alice will even-

tually decrypt this Ei and compute

wi = dlog
D

(
[gujH(z)]d · [gviH(z)−1]d

)
= dlog

D

(
Duj+vi

)
= uj + vi

If yi �∈ {x1, . . . , xn} then Alice will decrypt Ei with only independently gener-
ated keys, which will fail with overwhelming probability (cf. robust decryption
Sect. 2.3). Hence, she sets wi = ⊥.

Overall, Alice’s vector w contains exactly the combined scores of all items in
the intersection. From this, the correctness of the last protocol message follows
easily.

Lemma 15. The protocol in Fig. 9 securely realizes Fig. 7 against a semi-honest
Bob.

Proof. Simulation for Bob is trivial. Bob’s view consists only of his view from
2BlindExp (which is indistinguishable from random), and the final protocol mes-
sage j∗, which can be easily computed from his ideal output.
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Lemma 16. The protocol in Fig. 9 securely realizes Fig. 7 against a semi-honest
Alice.

Proof. Alice’s view consists of received protocol messages A′,D,E1, . . . , En, and
her view of the random oracle. These values are computed as in Hybrid 0 in
Fig. 10. Here A denotes the adversary that receives Alice’s view along with oracle
access to the random oracle H. For convenience in Hybrid 0 we have given values
H(z)b and H(z)d names K∗

z and T ∗
z , respectively—if both Alice and Bob have

a common element z then they will both refer to the same K∗
z and T ∗

z .
In Hybrid 3 we present a simulator for Alice’s view. Although this hybrid

is written to take both parties’ sets as input, it uses these inputs only to first
compute a vector w that is Alice’s output from the ideal functionality. It then
uses w to compute the remainder of the view. The hybrid also uses a partial
permutation μ that is used to index into the elements of the set A′. This is
for notational simplicity, as A′ is given to Alice only as an unordered set—i.e.,
indices of these items are not meaningful.

It suffices show that adjacent hybrids in Fig. 10 are indistinguishable.

Hybrids 0 & 1: The only difference is that K∗
z and T ∗

z are chosen uni-
formly. The hybrids are indistinguishable via two separate reductions to
the DDH problem. Specifically, consider a reduction algorithm that receives
(α1, . . . , αm, B, β1, . . . , βm). For each zi ∈ {x1, . . . , xn, y1, . . . , yn}, the reduction
algorithm programs H(zi) = αi and sets K∗

zi
= βi. Otherwise, the reduction

algorithm runs the code of Hybrid 1. If the input is from the DH distribution—
i.e., if B = gb and βi = αb

i—then the output of the reduction algorithm is exactly
that of Hybrid 0. If the input is from the random distribution, then the reduc-
tion algorithm is like that of Hybrid 0 except that K∗

i values are chosen as in
Hybrid 1.

With another reduction to the DDH assumption (setting D = B and T ∗
zi

=
βi), the output of the reduction algorithm becomes exactly that of Hybrid 1.

Hybrids 1 & 2: Consider a value yi that is distinct from all {xj} values—i.e., an
item not in common to the two parties. Then the only place K∗

yi
is used in Hybrid

1 is as the value Ki, when the ciphertext Ei = Enc(Ki, Si) is generated. Hence, a
straight-forward reduction to the one-time security of Enc (Sect. 2.3) shows that
Ei is indistinguishable from an encryption of a dummy value 0. Performing such
a reduction for each such yi yields Hybrid 2.

Hybrids 2 & 3: Instead of sampling all K∗
i and T ∗

i values upfront, they are
sampled later, as needed. If z = yi = xj for some i, j, then Hybrid 2 would
first sample S′

j = DujT ∗
z and then Si = Dvi(T ∗

z )−1. Since these are the only
two places where T ∗

z is used, and T ∗
z is uniform, this is equivalent to Hybrid 3’s

behavior of setting S′
j ← G and then Si = Duj+vi(S′

j)
−1. If z = yi �∈ {x1, . . . , xn}

then Hybrid 2 uses K∗
z only as encryption to a single ciphertext.
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Fig. 10. Hybrids in the security proof for the protocol in Fig. 9
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Abstract. Introduced by Benhamouda and Lin [TCC’20], a multi-party
reusable non-interactive secure computation protocol (mrNISC) con-
sists of a commitment phase and an unbounded number of computation
phases. In the commitment phase, a number of parties first commit to
their input in a single broadcast round. Later in a computation phase,
any subset of the parties can compute a function on their joint input by
each sending a single broadcast message.

Benhamouda and Lin [TCC’20] constructed the first mrNISC for all
functions based on standard hardness assumptions in pairing groups.
Soon after their work, two concurrent papers by Benhamouda et
al. [EUROCRYPT’21] and Ananth et al. [EUROCRYPT’21] constructed
mrNISC for all functions based on the hardness of LWE with super-
polynomial modulus-to-noise ratio.

In this work we build the first mrNISC for all functions based solely
on LWE with polynomial modulus-to-noise ratio. We thus place mrNISC
in the same category as public-key encryption and leveled fully homo-
morphic encryption in terms of the required LWE hardness assumption.
We achieve our result by carefully introducing a bootstrapping step in
the construction of Behamouda et al..

1 Introduction

Secure multi-party computation (MPC) is one of the most investigated, if not the
most investigated, topics in cryptography. An MPC protocol allows potentially
dishonest parties to compute a function on their joint input without learning
anything beyond what the output of the function reveals naturally.

An extensively studied direction in MPC research is to reduce the number of
rounds of the protocol. Minimizing the round complexity is important in settings
where the protocol is deployed in WANs and communication can potentially
become the bottleneck. Recent works have constructed MPC protocols having
as low as 2 rounds under various assumptions and in different models [1,3,6,11,
13,14,21].

A natural question to ask is what can be done in a single round. While it is
well known that any single round MPC protocol is vulnerable to residual function
attack, Benhamouda and Lin [7] introduced the notion of multi-party reusable
non-interactive secure computation (mrNISC). In a mrNISC protocol each party
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commits to its input in an initial first round and broadcasts this commitment to
other parties. These initial commitments allow any subset of parties to securely
compute a function on their joint input by each one just sending one additional
message. In particular, the initial commitments are reusable across any number
of computations.

Benhamouda and Lin [7] built the first mrNISC. Their work is based on
a standard hardness assumption in pairing groups and supports evaluation of
all polynomial sized functions. Furthermore, it provides semi-malicious adaptive
security in the plain model. Soon after [7], two concurrent works [2,5] constructed
mrNISC for all polynomial sized functions based on the hardness of the learning
with errors (LWE) problem.

A caveat of the constructions in [2,5] is that, when basing their hardness
solely on LWE, they both rely on the hardness of LWE with super-polynomial
modulus-to-noise ratio (in fact sub-exponential modulus-to-noise ratio for achiev-
ing λ bits of security). The modulus-to-noise ratio is an important parameter in
the LWE problem which is related to its concrete hardness and its connection
to lattice problems [23,25]. In more detail, for a fixed noise width parameter,
a smaller modulus results in a stronger security guarantee and a smaller lat-
tice dimension. Therefore, while LWE with a super-polynomial modulus is still
supported by worst-case to average-case hardness reductions [23,25] and is pre-
sumed to be quantum-resistant, we strongly prefer using hardness of the plain
LWE problem, which is hardness of LWE with polynomial modulus-to-noise
ratio against polynomial sized adversaries. This brings us to the main question
we investigate in this paper:

Can we build mrNISC for all functions based on polynomial hardness of
LWE with polynomial modulus?

1.1 Our Contribution

We answer this question positively and build the first mrNISC for all functions
based solely on LWE with polynomial modulus.

Theorem 1 (Main Theorem). Assuming polynomial hardness of LWE with
polynomial modulus, there exists a mrNISC for all functions.

As shown by [5], such a mrNISC protocol can be used to construct a thresh-
old leveled multi-key FHE scheme [20,21] for bounded number of participants
based on LWE with polynomial modulus. Previous constructions needed super-
polynomial hardness of LWE.

Corollary 1. Assuming hardness of LWE with polynomial modulus, there exists
a leveled multi-key FHE scheme for any polynomially bounded number of partic-
ipants.
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1.2 Technical Overview

We start by giving a very high-level overview of the mrNISC construction of
Benhamouda et al. in [5]. Benhamouda et al. construct a mrNISC for all func-
tions via a three step process. In the first step, they consider mrNISC protocols
for two parties supporting a class of functionalities called functional OT which
is an extension of OT. A functional OT consists of two public functions fS

and fR corresponding to the sender and receiver respectively. The function fS

takes the sender’s hidden input xS and outputs a pair of sender messages m0,m1.
The receiver’s function fR acts on its hidden input xR and outputs the receiver’s
choice bit b. The final output of the functional OT on input (xS , xR) is defined as
mb. Benhamouda et al. build a functional OT by providing an intriguing inter-
play between LWE-based homomorphic commitments [16,18] and LWE-based
two-round statistical sender private OT [8]. Furthermore, for OT functionalities
where the receiver function fR has bounded logarithmic depth (and there is no
restriction on fS), they are able to base their construction on LWE with just a
polynomial modulus by using the evaluation techniques in [10].

Next, in the second step, they upgrade the mrNISC constructed in the first
step to support receiver functions of all depth. Roughly speaking, at this step,
they transform any mrNISC for functional OT where the receiver function fR

can support evaluation of a PRF, to a mrNISC without any restrictions on
fR. The high-level idea here is using randomized encodings [4] to defer the full
depth computation of the receiver function to the sender function which is not
depth-limited.

In the final step, Benhamouda et al. build a compiler based on mrNISC
for functional OT, 2-round MPC (in fact constant round MPC), and garbled
circuits to construct a mrNISC for all functions (supporting any number of
parties) (Fig. 1).

Fig. 1. The three steps of building mrNISC for all functions in [5]

Based on this description of [5], the main obstacle that prevents this construc-
tion from being based on LWE with polynomial modulus is the second step. As
we already stated, this step needs a PRF with evaluation circuit in NC1. Unfor-
tunately, building a PRF which (i)is based on LWE (or RLWE) with polynomial
modulus, and, (ii)can be evaluated by an NC1 circuit, and, (iii)provides λ bits
of security, is an open problem.

Our main idea is to circumvent this reliance on PRFs in NC1 by bootstrap-
ping mrNISC for functional OT. More specifically we bootstrap any mrNISC for
functional OT where fR is in NC1 to a mrNISC for functional OT where fR

can be any polynomially-bounded-depth circuit. We call the latter a mrNISC
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for leveled functional OT. Fortunately, a standard instantiation of the GGM
paradigm [17] with any one way function from LWE with polynomial modulus,
gives a PRF that can be evaluated in bounded polynomial depth. In particular
such a PRF along with the mrNISC for leveled functional OT can be used in the
second step of [5] to obtain mrNISC for unbounded functional OT from LWE
with polynomial modulus and consequently mrNISC for all functions from the
same assumption.

Our bootstrapping is rather simple and follows the general blueprint of boot-
strapping using FHE which has been applied in various contexts such as obfus-
cation [12,19,26] and correlation intractable hash functions [24] to name a few.
In more detail, in our transformation, each one of the parties encrypts its private
input x under FHE to obtain a ciphertext ct. It then commits to the message x
along with the FHE secret key sk using the underlying mrNISC and publishes
the commitment along with ct. Now, to generate second messages corresponding
to a public function f = (fS , fR) where fR possibly has polynomially bounded
depth, each party first computes ctReval by homomorphically evaluating fR on the
receiver’s ciphertext ctR and then replaces fR with FHE decryption function with
ctReval hardwired, that is, using the underlying mrNISC, each party generates a
second message corresponding to the function ˜f = (fS ,FHE.Dec(·, ctReval)). The
key observation here is that, by using a proper FHE scheme [10,16] the decryption
function FHE.Dec can be implemented in NC1 while keeping the LWE modulus
polynomially bounded (Fig. 2).

Fig. 2. The [5] process after introducing our bootstrapping step.

2 Preliminaries

We denote the security parameter by λ. For any � ∈ N, we denote the set of the
first � positive integers by [�]. For a set S, x ← S denotes sampling a uniformly
random element x from S.

2.1 Learning with Errors

For a positive integer dimension n and modulus q, and an error distribution χ
over Z, the LWE distribution and decision problem are defined as follows. For an
s ∈ Z

n, the LWE distribution As,χ is sampled by choosing a uniformly random
a ← Z

n
q and an error term e ← χ, and outputting (a, b = 〈s,a〉 + e) ∈ Z

n+1
q .

Definition 1. The decision-LWEn,q,χ problem is to distinguish, with non-
negligible advantage, between any desired (but polynomially bounded) number of
independent samples drawn from As,χ for a single s ← Z

n
q , and the same number

of uniformly random and independent samples over Z
n+1
q .
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A standard instantiation of LWE is to let χ be a discrete Gaussian distribu-
tion (over Z) with parameter r = 2

√
n. A sample drawn from this distribution

has magnitude bounded by, say, r
√

n = Θ(n) except with probability at most
2−n. For this parameterization, it is known that LWE is at least as hard as quan-
tumly approximating certain “short vector” problems on n-dimensional lattices,
in the worst case, to within Õ(q

√
n) factors [23,25]. Classical reductions are also

known for different parameterizations [9,22].

2.2 (Leveled) Fully Homomorphic Encryption

We recall the notion of leveled FHE from [15]. In this work, we consider leveled
FHE schemes with low-depth decryption.

Definition 2. A leveled fully homomorphic encryption scheme is a tuple of
algorithms FHE=(Gen,Enc,Dec,Eval) with the following interfaces (we use only
a symmetric-key version, which is sufficient for our purposes):

– Gen(1λ, 1d) outputs a secret key sk.
– Enc(sk,m ∈ {0, 1}∗), where m is a message, outputs a ciphertext c ∈ CTλ,d,

where, CTλ,d denotes the ciphertext space of FHE for security parameter λ
and depth parameter d. We also assume that CTλ,d is efficiently sampleable.

– Eval(C, c), where C is a boolean circuit of depth (at most) d, deterministically
outputs a ciphertext c′.

– Dec(sk, c) outputs a message (deterministically).

It should satisfy the following properties:

1. Completeness: For any circuit C of depth at most d and message m,
Dec(sk,Eval(C, c)) = C(m) with probability 1, over the random choice of
sk ← Gen(1λ, 1d) and c ← Enc(sk,m).

2. Pseudorandomness of ciphertexts: for any sequence of messages {mλ}λ, and
any sequence {dλ}, the distribution ensembles

{Enc(sk,mλ) : sk ← Gen(1λ, 1dλ)}λ (1)

and
{ct ← CTλ,dλ

}λ (2)

are computationally indistinguishable.
3. Compactness and low-depth decryption: the complexity of Dec is a fixed poly-

nomial in λ alone. Furthermore, Dec can be implemented by a circuit in NC1.

In this work we use the GSW [16] leveled FHE scheme and the techniques in [10]
which keep the modulus size polynomially bounded.

Theorem 2 ([10,16]). Assuming hardness of LWE with polynomial modulus to
noise ratio, there exists a leveled FHE scheme with NC1 decryption.
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2.3 Multiparty Reusable Non-interactive Secure Computation

We recall the definition of mrNISC [2,5,7].

Definition 3. A mrNISC scheme for a class of functions F = {Fλ}λ∈N is a
tuple of PPT algorithms Π = (Com,Encode,Eval) with the following interface:

– Com(1λ, x), on input a security parameter and a bitstring x ∈ {0, 1}∗ outputs
an input encoding x̂ and an internal state st.

– Encode(f, {x̂j}j∈[k], i, sti), on input a function f : ({0, 1}∗)k → {0, 1}∗ ∈ Fλ,
k encoded inputs {x̂j}j∈[k], index i ∈ [k], and the internal state for the ith
input sti, outputs a computation encoding αi.

– Eval(f, {x̂j}j∈[k], {αj}j∈[k]), on input a function f : ({0, 1}∗)k → {0, 1}∗ ∈
Fλ, k encoded inputs {x̂j}j∈[k], and k computation encodings {αj}j∈[k], pro-
duces an output y.

We consider the following two properties for mrNISC”

1. Completeness: For any λ ∈ N, any function f ∈ Fλ, and any k input strings
{xj}j∈[k] that are compatible with the input domain of f :

Eval(f, {x̂j}j∈[k], {αj}j∈[k]) = f({xj}j∈[k]).

where, for each i ∈ [k], (x̂i, sti) ← Com(1λ, xi) and
αi ← Encode(f, {x̂j}j∈[k], i, sti).

2. Adaptive semi-malicious security: There exists a PPT simulator algorithm S,
such that, for any PPT adversary A, the distribution ensembles

{RealΠA(1λ)}λ∈N

and
{IdealΠA,S(1λ)}λ∈N

are computationally indistinguishable, where, the experiments RealΠA(1λ) and
IdealΠA,S(1λ) are defined as follows:

Experiment RealΠA(1λ): The experiment is run by a challenger which inter-
acts with the adversary A. The adversary starts by specifying the number
of the parties n and a honest subset of the parties H ⊆ [n]. The adversary
then, submits an arbitrary number of input and computation encoding queries
in arbitrary order. The only restriction is that A submits at most one input
encoding per party. The challenger answers these queries as follows:
– Corrupt input encoding.

• Parse the input as (i, xi, ρi), where, i ∈ [k] is the party index, xi is
the input string, and ρi is the encoding randomness.

• Compute (x̂i, sti) := Com(1λ, xi; ρi).
• Save (x̂i, sti).

– Honest input encoding.
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• Parse the input as (i, xi), where, i ∈ H is the party index, and xi is
the input string.

• Compute (x̂i, sti) ← Com(1λ, xi).
• Send x̂i to A and save (x̂i, sti).

– Honest computation encoding.
• Parse the input as (i, I, f), where, i ∈ H is the party index, i ∈ I ⊆ [k]

is the participating subset of parties, and f ∈ Fλ is the function.
• If there is an index j ∈ I for which A hasn’t submitted an input

encoding query yet, output ⊥.
• Compute αi ← Encode(f, {x̂j}j∈I , i, sti).
• Send αi to A.

The experiment ends when A terminates, outputting whatever A outputs.

Experiment IdealΠA,S(1λ): The setting here is exactly the same as RealΠA(1λ),
except that the challenger has access to the simulator S and answers the
queries as follows
– Corrupt input encoding.

• Parse the input as (i, xi, ρi) .
• Save xi.

– Honest input encoding.
• Parse the input as (i, xi).
• Send i to S to receive the simulated encoded input x̂i.
• Forward x̂i to A and save xi.

– Honest computation encoding.
• Parse the input as (i, I, f).
• If there is an index j ∈ I for which A hasn’t submitted an input

encoding query yet, output ⊥.
• If for all j ∈ (I ∩ H)\{i}, A has submitted an honest computation

encoding query corresponding to function f , set y := f({xj}j∈I). Oth-
erwise, set y := ⊥.

• Forward (i, I, f, y) to S and receive αi from it.
• Send αi to A.

The experiment ends when A terminates, and, outputting whatever A outputs.

We refer to a mrNISC for 2 parties by the term 2rNISC. For 2rNISC we are
interested in a special class of functionalities called functional OT [5] which we
denote by FOT .

Definition 4 (Bounded-depth Functional OT). A depth-d functional OT
is a function f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ that can be represented by two sub-
functions fS : {0, 1}∗ → {0, 1}∗ ×{0, 1}∗ and fR : {0, 1}∗ → {0, 1} such that, fR

can be implemented by a circuit of depth at most d(λ), and evaluation of f on
an input (xS , xR) proceeds as follows,

– First, compute (m0,m1) := fS(xS).
– Next, compute b := fR(xR).
– Output mb.
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For a depth parameter d = d(λ), and a positive integer λ ∈ N, let FOT
λ,d be the

set of all depth-d functional OTs. Then, FOT
d is defined as FOT

d = {FOT
λ,d }λ∈N .

As shown in [5], 2rNISC for log-depth functional OT can be built based on
the hardness of LWE with polynomial modulus.

Theorem 3 (Imported from [5]). Assuming hardness of LWE with polyno-
mial modulus, for every d = d(λ) = O(log λ), there exists a 2rNISC for FOT

d .

When describing 2rNISC protocols for functional OT, instead of indexing the
parties by integers, we use the letters S and R to refer to the sender and the
receiver respectively.

3 Our Transformation

In this section we describe our 2rNISC for bounded-logarithmic-depth functional
OT to 2rNISC for leveled functional OT transformation. Fix a depth parameter
d = d(λ). Our transformation uses the following ingredients:

– A leveled FHE scheme FHE, where the depth of FHE.Dec is ˜d = ˜d(λ).
– A 2rNISC ˜Π for depth ˜d functional OT.

Construction 1 (2rNISC for leveled functional OT). We describe the
three algorithms.

– Com(1λ, x)
• Sample an FHE key sk ← FHE.Gen(1λ, 1d).
• Using ˜Π, commit to (x, sk) to get (x̃, ˜st) ← ˜Π.Com(1λ, (x, sk)).
• Encrypt x using sk to get ct ← FHE.Enc(sk, x).
• Output (x̂ := (ct, x̃), st := ˜st).

– Encode(f, x̂S , x̂R, i, sti)
• Parse f = (fS , fR), i ∈ {S,R}, x̂S = (ctS , x̃S), and x̂R = (ctR, x̃R).
• Compute ctevalR := FHE.Eval(ctR, fR).
• Define ˜f := ( ˜fS , ˜fR) as ˜fS(x, sk) := fS(x) and

˜fR(x, sk) := FHE.Dec(sk, ctevalR ).
• Output αi ← ˜Π.Encode( ˜f, x̃S , x̃R, i, sti).

– Eval(f = (fS , fR), x̂S , x̂R, αS , αR).
• Define ˜f exactly as in Encode.
• Output ˜Π.Eval( ˜f, x̃S , x̃R, αS , αR).

The correctness of Construction 1 follows from the correctness of FHE and
the correctness of ˜Π. Now we prove its security. The proof proceeds by first
switching to a hybrid where the input and computation encoding made through
˜Π are simulated instead of being generated honestly. This implies that these
queries can be answered without knowing the FHE secret keys used to generate
the honest input encodings. Consequently, due to the semantic security of FHE
we can switch to a final hybrid where FHE ciphertexts are sample uniformly at
random an in particular without knowing the honest inputs. Therefore, this final
hybrid is identical to the ideal experiment.
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Theorem 4 (Adaptive semi-malicious security). Assuming ˜Π satisfies
adaptive semi-malicious security and FHE has pseudorandom ciphertexts, Con-
struction 1 satisfies adaptive semi-malicious security.

Proof. Let ˜S be the simulator for ˜Π. We define a simulator S as follows. The
simulator S runs an instance of ˜S and responds to queries as follows:

– Corrupt input encoding.
• Parse the input as (i, xi, ρi), where, i ∈ {S,R}.
• Parse ρi as ρi := (ρi,gen, ρi,enc, ρi, ˜Π).
• Compute ski := FHE.Gen(1λ, 1d; ρi,gen) and cti := FHE.Enc(ski, xi;

ρi,enc).
• Send (i, (xi, ski), ρi, ˜Π) to ˜S and save cti internally.

– Honest input encoding.
• Parse the input as i ∈ {S,R}.
• Send i to ˜S to obtain x̃i.
• Sample a uniformly random ciphertext cti from the ciphertext space of

FHE.
• Output (cti, x̃i) and save cti.

– Honest computation encoding.
• Parse the input as (i, f = (fS , fR), y).
• If either of ctS or ctR have not been generated yet, output ⊥ and abort

this query.
• Compute ctevalR := FHE.Eval(ctR, fR).
• Define ˜f := ( ˜fS , ˜fR) as ˜fS(x, sk) := fS(x) and ˜fR(x, sk) := FHE.Dec

(sk, ctevalR ).
• Send (i, ˜f , y) to ˜S and receive the response α̃. Output α̃.

We now show via a series of hybrids that for any PPT adversary A, the
experiments RealΠA and IdealΠA,S are computationally indistinguishable.

Hybrid H0: This is the real experiment. In particular the queries are answered
as follows:

– Corrupt input encoding.
• Parse the input as (i, xi, ρi), where, i ∈ {S,R}.
• Parse ρi as ρi = (ρi,gen, ρi,enc, ρi, ˜Π).

• Using ˜Π, commit to ski to get (˜ski, ˜sti) = ˜Π.Com(1λ, ski; ρi, ˜Π).
• Compute ski := FHE.Gen(1λ, 1d; ρi,gen) and cti := FHE.Enc(ski, xi;

ρi,enc).
• Output x̂i := (cti, ˜ski) to A and save (x̂i, ˜sti).

– Honest input encoding.
• Parse the input as (i, xi), where, i ∈ {S,R}.
• Sample an FHE key ski ← FHE.Gen(1λ, 1d).
• Using ˜Π, commit to (xi, ski) to get (x̃i, ˜sti) ← ˜Π.Com(1λ, ski).
• Encrypt xi using ski to get ct ← FHE.Enc(sk, x).
• Output x̂i := (cti, x̃i) to A and save (x̂i, ˜sti).
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– Honest computation encoding.
• Parse the input as (i, f = (fS , fR)), where, i ∈ {S,R}.
• If either of x̂S or x̂R has not been generated yet, abort query and output

⊥.
• Compute ctevalR := FHE.Eval(ctR, fR).
• Define ˜f := ( ˜fS , ˜fR) as ˜fS(x, sk) := fS(x) and ˜fR(x, sk) := FHE.Dec(sk,

ctevalR ).
• Compute αi ← ˜Π.Encode( ˜f, x̃S , x̃R, ˜sti). Output αi.

Hybrid H1: The difference between this hybrid and H0 is how the honest com-
putation and input encoding queries are answered. Specifically, these queries are
answered by using ˜S as follows:

– Honest input encoding.
• Parse the input as (i, xi).
• Sample an FHE key sk ← FHE.Gen(1λ, 1d).
• Send i to ˜S to obtain x̃i.
• Encrypt xi using sk to get cti ← FHE.Enc(sk, x).
• Output x̂i := (cti, x̃i) to A and save cti.

– Honest computation encoding.
• Parse the input as (i, f = (fS , fR)).
• If either of x̂S or x̂R has not been generated yet, abort query and output

⊥.
• Compute ctevalR := FHE.Eval(ctR, fR).
• Define ˜f := ( ˜fS , ˜fR) as ˜fS(x, sk) := fS(x) and ˜fR(x, sk) := FHE.Dec

(sk, ctevalR ).
• If this is the last query corresponding to f , let y := f(xS , xR). Otherwise,

let y := ⊥.
• Send (i, ˜f , y) to ˜S and receive the response α̃i. Output α̃i.

Hybrid H2: The only modification in this hybrid is the way honest input encod-
ing queries are answered. Here, the honest inputs are no longer encrypted under
FHE and instead, randomly sampled FHE ciphertext is used. In more detail,
honest input queries are answered as follows:

– Honest input encoding.
• Parse the input as (i, xi).
• Send i to ˜S to obtain x̃i.
• Sample a uniformly random ciphertext cti from the ciphertext
space of FHE.

• Output x̂i := (cti, x̃i) to A and save cti.

Observe that H2 is identical to IdealΠA,S .

Lemma 1. Assuming ˜Π is adaptively semi-malicious secure, H0
c≈ H1.
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Proof. Let A be an adversary trying to distinguish between H0 and H1. Using A
we build an adversary β against the adaptive semi-malicious security of ˜Π with
the same advantage. The algorithm β runs A and whenever A makes a query it
answers them as follows:

– Corrupt input encoding. These queries are answered exactly as in H0.
– Honest input encoding.

• Parse the input as (i, xi).
• Sample an FHE key ski ← FHE.Gen(1λ, 1d).
• Forward (i, (xi, ski)) to the challenger and receive x̃i as response.
• Encrypt xi using ski to get cti ← FHE.Enc(ski, xi).
• Output x̂i := (cti, x̃i) to A and save (x̂i, ˜sti).

– Honest computation encoding.
• Parse the input as (i, f = (fS , fR)).
• If either of x̂S or x̂R has not been generated yet, abort query and output

⊥.
• Compute ctevalR := FHE.Eval(ctR, fR).
• Define ˜f := ( ˜fS , ˜fR) as ˜fS(x, sk) := fS(x) and ˜fR(x, sk) := FHE.Dec

(sk, ctevalR ).
• Forward (i, ˜f) to the challenger and receive α̃i as response. Output α̃i

to A.

Finally, when A terminates, β outputs A’s output. Observe that when β is in
the real experiment RealΠ̃β , then A’s view is identical to its view in H0. On the

other hand, when β is in the ideal experiment IdealΠ̃
β,S̃ , the view of A is identical

to its view in H1. This completes the proof.

Lemma 2. Assuming FHE has pseudorandom ciphertexts, H1
c≈ H2.

Proof. This is a direct consequence of the pseudorandomness of FHE ciphertexts.

This completes the proof.
Given Theorem 2 and Theorem 3, we thus have proved the following theorem.

Theorem 5. Assuming hardness of LWE with polynomial modulus, there exists
a 2rNISC for leveled functional OT.

3.1 Putting Everything Together

In this section, we prove the main theorem of this paper. First, we stated the
following theorem which is implicitly proved in [5].

Theorem 6 (implied in [5]). Assuming the existence of a PRF whose eval-
uation function can be implemented by a circuit of depth d = d(λ), and the
existence of a 2rNISC for {FOT

d(λ)}λ∈N
, there exists a mrNISC for all functions.

We defer the complete proof of Theorem 6 to the full version of this paper.
We conclude by proving our main theorem.
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Proof (of Theorem 1). We can build a PRF from LWE with polynomial modulus
(and with polynomial-depth evaluation circuit) by instantiating the GGM [17]
transformation with any LWE-based one-way function. Therefore, the proof fol-
lows from Theorem 6 and Theorem 5.
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Abstract. Identifiable abort is the strongest security guarantee that is
achievable for secure multi-party computation in the dishonest majority
setting. Protocols that achieve this level of security ensure that, in case
of an abort, all honest parties agree on the identity of at least one cor-
rupt party who can be held accountable for the abort. It is important
to understand what computational primitives must be used to obtain
secure computation with identifiable abort. This can be approached by
asking which oracles can be used to build perfectly secure computation
with identifiable abort. Ishai, Ostrovsky, and Zikas (Crypto 2014) show
that an oracle that returns correlated randomness to all n parties is suf-
ficient; however, they leave open the question of whether oracles that
return output to fewer than n parties can be used.

In this work, we show that for t ≤ n−2 corruptions, oracles that return
output to n − 1 parties are sufficient to obtain information-theoretically
secure computation with identifiable abort. Using our construction recur-
sively, we see that for t ≤ n − � − 2 and � ∈ O(1), oracles that return
output to n − � − 1 parties are sufficient.

For our construction, we introduce a new kind of secret sharing scheme
which we call unanimously identifiable secret sharing with public and pri-
vate shares (UISSwPPS). In a UISSwPPS scheme, each share holder is
given a public and a private share. Only the public shares are necessary
for reconstruction, and the knowledge of a private share additionally
enables the identification of at least one party who provided an incorrect
share in case reconstruction fails. The important new property of UISSw-
PPS is that, even given all the public shares, an adversary should not be
able to come up with a different public share that causes reconstruction
of an incorrect message, or that avoids the identification of a cheater if
reconstruction fails.
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1 Introduction

In the setting of secure multiparty computation we have n parties, each with
their own private input xi, that would like to compute an arbitrary function
f(x1, . . . , xn) of their inputs in the presence of an adversary, who may actively
corrupt up to t of the parties. In particular, the parties would like to compute
the function in a way that prevents the adversary from learning any unnecessary
information, i.e. the corrupted parties should learn no more than what they can
deduce from their own inputs and outputs. From a correctness point of view,
we would ideally like to guarantee that the honest parties always obtain the
output no matter what the corrupted parties do, but unfortunately, such strong
guarantees are unattainable when t ≥ n/2 parties are corrupt, as was shown by
Cleve [4].

For this reason, protocols tolerating this many corruptions usually aim for
the weaker notion of active security with unanimous abort (UA), where the hon-
est parties either all obtain the correct output or all unanimously output abort.
The drawback of such protocols, however, is that they do not provide the hon-
est parties with a mechanism for determining who caused the abort in a failed
execution, thus potentially allowing an adversary to perform a denial-of-service
attack on the whole computation by only corrupting a single party. To overcome
this issue, Ishai, Ostrovsky, and Zikas [9] introduced the notion of active security
with identifiable abort (IA), which enables the honest parties to always unani-
mously agree on at least one corrupted party that will be held responsible for
an abort.

To eventually construct efficient protocols for either notion, it is important
to understand the minimal computationally secure building blocks necessary.
Towards this goal, it is convenient to study the task of constructing information-
theoretically secure protocols in a world where the parties have access to oracles
that compute certain sub-functions correctly and securely on their behalf. In
such a world, the question of finding the minimal building blocks reduces to
finding the “simplest” oracles. The hope of this approach is that simpler oracles
lead to computationally less expensive solutions in an oracle-free world, where
the oracles are replaced by computationally secure protocols that often represent
the main efficiency bottleneck of the overall protocol.

Fitzi et al. [6] characterize the oracles necessary for secure n-party compu-
tation that guarantees output delivery when no broadcast is available. When
broadcast is available, for secure computation with UA or IA in the presence
of an adversary that corrupts less than half of the parties, i.e. t < n/2, no ora-
cles are needed [1,12].1 For UA and any t ≥ n/2, oracles are necessary and
oracles that realize two-party oblivious transfer [11] are sufficient [5,10]. In con-
trast to this, an impossibility result by Ishai, Ostrovsky, and Seyalioglu [8] rules
out secure computation with IA from any two-party oracle for t ≥ 2n/3. The
authors of [9], on the other hand, show that blackbox access to adaptively-secure

1 We assume that parties have access to point-to-point and broadcast channels, and
we do not consider those as explicit oracles in this paper.
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two-party oblivious transfer is sufficient for constructing protocols with IA for
t > n/2. (We note that assuming blackbox access to a primitive is a stronger
assumption than assuming oracle access, which is the focus of this work. Given
blackbox access to a primitive or protocol, independent parties can, for instance,
rerun it on the same random tapes and compare protocol transcripts. This is
not an option when only given oracle access.) Furthermore, the authors of [9]
show that an n-party oracle for setting up correlated randomness is sufficient
for secure computation with IA for any t. For t ≥ n/2 and oracles that realize
k-party functionalities for 2 < k < n, very little is known about the feasibility of
IA. The only known (upper) bounds are due to Brandt et al. [3], who show that
IA with security against t corruptions can be realized from certain (t + 2)-party
oracles, when n ∈ O(log λ/ log log λ), where λ is the security parameter. The
authors conjecture that analogous results for larger n are not possible unless
P = NP .2

1.1 Our Contribution

In this work, we make the first progress towards constructing n-party protocols
with IA for any n ∈ poly(λ) from k-party oracles for k < n. In particular, we
show the following theorem.

Theorem 1 (Informal). Any number of parties n can securely compute any
function f in the presence of t corruptions with IA and information-theoretic
security, when given access to oracles that compute arbitrary k-party functions
with IA for t ≤ n − � − 1 and k = n − � for any constant � > 0.

Our result refutes the conjecture of Brandt et al. mentioned above. As a
technical tool, which may be of independent interest, we introduce the notion of
unanimously identifiable secret sharing with public and private shares (UISSw-
PPS), which is inspired by the notion of unanimously identifiable secret sharing
(UISS) of Ishai, Ostrovsky, and Seyalioglu [8].

Lastly, we remark that in our work, we only focus on oracles that provide
us with IA, since oracles that realize k-party functionalities with UA are of no
help. To see this, observe that in our parameter settings every call to an oracle
necessarily includes a corrupted party, thus the adversary can guarantee that all
those calls abort without the honest parties learning anything.

1.2 Subsequent Work

In a work subsequent to ours, Brandt [2] shows that our upper bound can be
slightly improved by constructing an n-party protocol that is secure against t ≤
n− 2 corruptions from an oracle that computes arbitrary k-party functionalities
for k = n − 2.

2 After our work appeared online, the authors have removed the conjecture from their
work.



On Sufficient Oracles for Secure Computation with Identifiable Abort 497

1.3 Technical Overview

The starting point of our work is a result of Ishai, Ostrovsky, and Zikas [9], which
shows that an n-party oracle with IA for distributing correlated randomness is
sufficient for general n-party computation with IA. An n-party oracle generat-
ing correlated randomness takes no private inputs from the parties, computes
(r1, . . . , rn) using some setup function Setup, and returns ri to party i. To solve
the general secure computation problem with IA, we can thus focus on the prob-
lem of realizing those oracles specifically from k-party oracles for k < n. We will
require that the number of corruptions t is at most k − 1 to ensure that every
oracle call includes at least one honest party, which we need for our construction.
Let us focus on the case of k = n−1 for now, which can then be easily extended
to any k = n − � for any constant � via recursion.

From a high-level perspective, we proceed to construct functionalities of grad-
ually increasing security and expressiveness starting from a functionality that we
have oracle access to as depicted in Fig. 1.

Fig. 1. High-level overview of our approach. On the very left, we have an (n−1)-party
functionality FSetup′,n−1,x,O, which we have oracle access to. On the very right, we have
Fn for computing arbitrary functions among n parties with IA.

The basic idea of our approach is to pick a party x ∈ [n] and exclude it from
the computation. The remaining n−1 parties use their oracle access to compute
a function FSetup′,n−1,x,O, which uses Setup to generate correlated randomness,
provides every party with its output and additionally secret shares the output rx
belonging to party x among the n−1 parties. After calling the oracle, all parties
send their share of rx to party x, who reconstructs its correlated randomness. If
all parties behave honestly, then everybody receives the correct output. Privacy
of the value rx is guaranteed, since at least one honest party participated in the
oracle call.

To make this approach work in the presence of an active adversary, we need
to deal with malicious parties sending incorrect shares to party x or that party
itself being malicious and falsely claiming that some received share was bad or
not received at all. Through the use of an appropriate secret sharing scheme, we
ensure that any tampering of the shares is detectable during reconstruction by
party x. If tampering is detected, the excluded party x proceeds to a complain
phase, which does not unanimously identify a malicious party, but establishes
conflicts between the n parties participating in the computation. After establish-
ing those conflicts, the parties again try to use oracle FSetup′,n−1,x,O to generate
correlated randomness. The new oracle invocation will also get a set O as input,
which contains the (publicly known) indices of parties that party x has a conflict
with. Parties in the set O will not receive a share of the output of party x.
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To ensure that our protocol can establish “good” conflicts during the com-
plain phase, we rely on our new secret sharing notion of UISSwPPS. In a nutshell,
this secret sharing scheme provides every participant with a public and a private
share. The public shares are used for reconstructing the secret and allow the
excluded party to detect if some share is malformed. The private shares allow
honest share holders to agree on a set of public shares they believe to be mal-
formed; even if the adversary outputs its public shares after seeing all other
public shares.

Now if FSetup′,n−1,x,O aborts too many times, then the parties decide to
switch to a different excluded party and start over. All those executions corre-
sponding to one excluded party x realize a functionality FSetup′,n,x, which does
not achieve IA, but a much more relaxed version thereof. Using a combinatorial
argument, we show that the honest parties can agree on at least one malicious
party, if too many invocations of FSetup′,n,x (for different x) have not produced
the output.

The approach outlined above realizes our desired functionality FSetup,n with
IA for generating correlated randomness, albeit with a still slightly weaker secu-
rity notion, where the adversary can choose one of several possible outputs or
abort3. We prove that such a functionality is secure enough to be used in com-
bination with the approach of Ishai, Ostrovsky, and Zikas [9] for realizing secure
n-party computation with IA of arbitrary functions, i.e. functionality Fn.

1.4 Notation

We write [n] to denote the set {1, . . . , n} and we write ≡s to denote statistical
indistinguishability.

2 Secure Multiparty Computation (MPC) Definitions

We follow the real/ideal world simulation paradigm.
An n-party protocol Π = (P1, . . . , Pn) is an n-tuple of probabilistic

polynomial-time (PPT) interactive Turing machines (ITMs), where each party
Pi is initialized with input xi ∈ {0, 1}∗ and random coins ri ∈ {0, 1}∗. We let
A denote a special ITM that represents the adversary and that is initialized
with input that contains the identities of the corrupt parties, their respective
private inputs, and an auxiliary input. The protocol is executed in rounds (i.e.,
the protocol is synchronous), where each round consists of the send phase and
the receive phase, where parties can respectively send the messages from this
round to other parties and receive messages from other parties. In every round
parties can communicate either over a broadcast channel or a fully connected
point-to-point (P2P) network, where we additionally assume all communication
to be private and ideally authenticated.

3 Note that in regular security with IA, the adversary gets to see one output and then
has to decide, whether to accept it or to abort.
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During the execution of the protocol, the corrupt parties receive arbitrary
instructions from the adversary A, while the honest parties faithfully follow the
instructions of the protocol. We consider the adversary A to be rushing, i.e.,
during every round the adversary can see the messages the honest parties sent
before producing messages from corrupt parties.

At the end of the protocol execution, the honest parties produce output,
the corrupt parties produce no output, and the adversary outputs an arbitrary
function of its view. The view of a party during the execution consists of its
input, random coins and the messages it sees during the execution.

Definition 1 (Real-world execution). Let Π = (P1, . . . , Pn) be an n-party
protocol and let C ⊆ [n], of size at most t, denote the set of indices of the parties
corrupted by A. The joint execution of Π under (A, C) in the real world, on
input vector x = (x1, . . . , xn), auxiliary input aux to A and security parameter λ,
denoted REALΠ,C,A(aux)(x, λ), is defined as the output vector of P1, . . . , Pn and
A(aux) resulting from the protocol interaction.

Definition 2 (Ideal Computation). Let f : ({0, 1}∗)n → ({0, 1}∗)n be an
n-party function and let C ⊆ [n], of size at most t, be the set of indices of the
corrupt parties. Then, the joint ideal execution of f under (S, C) on input vec-
tor x = (x1, . . . , xn), auxiliary input aux to S and security parameter λ, denoted
IDEALf,C,S(aux)(x, λ), is defined as the output vector of P1, . . . , Pn and S(aux)
resulting from the interaction to the ideal functionality F (Fig. 2) with the simu-
lator S and the honest parties. After interacting with F , the hones parties output
the message received from F . The corrupt parties output nothing. The simula-
tor S outputs an arbitrary function of the initial inputs {xi}i∈C , the messages
received by the corrupt parties from the trusted party and its auxiliary input.

Fig. 2. Functionality Ff,n for secure computation of function f among n parties with
identifiable abort.
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Definition 3. Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party function. A protocol
Π t-securely computes the function f if for every real-world adversary A there
exists a simulator S whose running time is polynomial in the running time of A
such that for every C ⊆ [n] of size at most t, it holds that

{
REALΠ,C,A(aux)(x, λ)

}
x∈({0,1}∗)n,λ∈N

≡s

{
IDEALf,C,S(aux)(x, λ)

}
x∈({0,1}∗)n,λ∈N

.

3 Unanimously Identifiable Secret Sharing with Public
and Private Shares

A secret sharing schemes allows a dealer to split a message into shares such
that certain authorized subsets of those shares can be used to reconstruct the
message, whereas unauthorized subsets reveal no information about the message
whatsoever.

Definition 4 (Secret Sharing Scheme). A secret sharing scheme for mes-
sage space {0, 1}∗ consists of a probabilistic polynomial-time algorithm Share
and a deterministic polynomial-time algorithm LRec with the following syntax:

Share(msg) → (s1, . . . , sn): takes as input a message msg ∈ {0, 1}∗ and outputs
shares s1, . . . , sn.

LRec(si, {sj}j∈S) → (msg, L): takes as input a share si and a subset of shares
{sj}j∈S, where i ∈ S ⊂ [n], and outputs a reconstructed message in {0, 1}∗ ∪
{⊥} and a set of accusations L ⊂ [n].

Furthermore, (Share, LRec) should satisfy correctness (Definition 8, with
appropriate syntactic modifications and ignoring the requirements on Rec, which
we do not have in a regular secret sharing scheme) and privacy (Definition 9,
with appropriate syntactic modifications).

We introduce the notion of unanimously identifiable secret sharing with pub-
lic and private shares (UISSwPPS). In such a scheme, each share holder will
receive one private and one public share. On an intuitive level, the public shares
will correspond to a secret sharing of the message shared by the dealer. The
private shares, on the other hand, will be used by the share holders to detect
any tampering with public shares. In particular, having additional private shares
for each share holder allows us to satisfy a stronger notion of local identifiability,
which we define below. We show a construction of UISSwPPS in Sect. 5.

Definition 5 (Secret Sharing Scheme with Public and Private Shares).
A secret sharing scheme with public and private shares for message space {0, 1}∗

consists of a probabilistic polynomial-time algorithm Share and deterministic
polynomial-time algorithms Rec and LRec with the following syntax:

Share(msg) → (spub1 , . . . , spubn , spriv1 , . . . , sprivn ): takes as input a message msg ∈
{0, 1}∗ and outputs public shares spub1 , . . . , spubn and private shares spriv1 , . . . ,
sprivn .
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Rec({spubi }i∈S) → msg/⊥: takes as input a subset of public shares {spubi }i∈S

(where S ⊂ [n]) and outputs a value in {0, 1}∗ ∪ {⊥}.
LRec(sprivi , {spubj }j∈S) → (msg, L): takes as input a private share sprivi and a sub-

set of public shares {spubj }j∈S (where S ⊂ [n]) and outputs a reconstructed
message in {0, 1}∗ ∪ {⊥} and a list of accusations L ⊂ [n].

We will use our new secret sharing scheme in combination with a new access
structure that effectively corresponds to a threshold access structure with addi-
tional observers that hold no information about the dealer’s message. Even
though these observers are not helpful for reconstructing the message, they will
still be able to verify whether other published shares are valid or not.

Definition 6 (Threshold Access Structure). For an arbitrary but fixed
threshold t ∈ [n], the t-threshold access structure is defined as An,t = {S ⊂
[n] | |S| ≥ t}.
Definition 7 (Threshold Access Structure with Observers). For an arbi-
trary but fixed threshold t ∈ [n] and set O ⊂ {1, . . . , n}, the t-threshold access
structure with observers O is defined as A

O
n,t = {S ⊂ {1, . . . , n} | |S \ O| ≥ t}.

Definition 8 (Correctness). A secret sharing scheme with public and private
shares (Share, Rec, LRec) for access structure A is correct if for any S ∈ A, for
any i ∈ S, for any message msg ∈ {0, 1}∗, there exists a negligible function
negl(·) such that

Pr

[[
spub1 , . . . , spubn

spriv1 , . . . , sprivn

]
← Share(msg), (msg, ⊥) ← LRec

(
sprivi , {spubj }j∈S

)
: msg = msg

]
= 1 − negl(λ)

and

Pr

[[
spub1 , . . . , spubn

spriv1 , . . . , sprivn

]
← Share(msg),msg ← Rec

(
{spubj }j∈S

)
: msg = msg

]
= 1 − negl(λ)

where the probability is taken over the random coins of the Share algorithm.

Definition 9 (Privacy). A secret sharing scheme (Share, LRec) for access
structure A is private if for any unbounded adversary A, for any S �∈ A, for
any two messages msg,msg′ ∈ {0, 1}∗ with |msg| = |msg′|, it holds that

Pr
[
A({(spubi , sprivi )}i∈S) = 1

∣∣∣
[
spub1 , . . . , spubn

spriv1 , . . . , sprivn

]
← Share(msg)

]

−Pr
[
A({(spubi , sprivi )}i∈S) = 1

∣∣∣
[
spub1 , . . . , spubn

spriv1 , . . . , sprivn

]
← Share(msg′)

]
≤ negl(λ).

where the probability is taken over the random coins of Share and A.

For our new notion of (adaptive) local identifiability, we consider an adversary
that can see all public shares before outputting any tampered shares.
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Definition 10 (Adaptive Local Identifiability). Consider the game
described in Fig. 3. A secret sharing scheme with public and private shares
(Share, Rec, LRec) for access structure A has adaptive local identifiability if for
any message msg ∈ {0, 1}∗ and adversary A, there exists a negligible function
negl(·) such that

Pr[A wins gameali(A)] ≤ negl(λ)

where the probability is taken over the random coins of C and A.

Fig. 3. Security game for adaptive local identifiability.

Remark 1. We will assume that local reconstruction outputs message ⊥ when-
ever the list of accusations is not empty.

We require a UISSwPSS to satisfy a mild notion of error detection for out-
side parties that receive a set of potentially tampered shares and attempt to
reconstruct the secret.
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Definition 11 (Publicly Detectable Failures). Consider the game described
in Fig. 4. A secret sharing scheme with public and private shares
(Share, Rec, LRec) has publicly detectable failures if for any message msg ∈
{0, 1}∗ and adversary A, there exists a negligible function negl(·) such that

Pr[A wins gamepdf(A)] ≤ negl(λ)

where the probability is taken over the random coins of Share and A.

Fig. 4. Security game for publicly detectable failures.

Finally, we require that Rec fails whenever LRec fails.

Definition 12 (Consistent Failures). Consider the game described in Fig. 5.
A secret sharing scheme with public and private shares (Share, Rec, LRec) for
access structure A has consistent failures if for any message msg ∈ {0, 1}∗ and
adversary A, there exists a negligible function negl(·) such that

Pr[A wins gamecf(A)] ≤ negl(λ)

where the probability is taken over the random coins of C and A.

Definition 13 (Predictable Failures with respect to LRec). Consider the
game described in Fig. 6. A secret sharing scheme (Share, LRec) for access struc-
ture A has predictable failures if there exists a probabilistic polynomial-time algo-
rithm SLRec such that for any message msg ∈ {0, 1}∗ and adversary A, there
exists a negligible function negl(·) such that

Pr[A wins gamepflrec(A)] ≤ negl(λ)

where the probability is taken over the random coins of C and A.
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Fig. 5. Security game for consistent failures.

Fig. 6. Security game for predictable failures with respect to LRec.

Definition 14 (Predictable Failures with respect to Rec). Consider the
game described in Fig. 7. A secret sharing scheme with public and private shares
(Share, Rec, LRec) for access structure A has predictable failures with respect
toRec if there exists a probabilistic polynomial-time algorithm SRec such that for
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any message msg ∈ {0, 1}∗ and adversary A, there exists a negligible function
negl(·) such that

Pr[A wins gamepfrec(A)] ≤ negl(λ)

where the probability is taken over the random coins of C and A.

Fig. 7. Security game for predictable failures with respect to Rec.

We say that a secret sharing scheme with public and private shares
(Share, Rec, LRec) is a UISSwPPS, if it simultaneously satisfies Definition 8,
9, 10, 11, 12, 13 and 14.

4 Bootstrapping MPC with Identifiable Abort

In this section, we describe how to instantiate MPC with identifiable abort for
n parties and t ≤ n − 2 given MPC with identifiable abort for n − 1 parties and
t ≤ n− 2. In Sect. 4.1, we describe the protocol. In the full version of this paper,
we prove its security.

4.1 Protocol

Ishai et al. [9] show that given correlated randomness, it is possible to securely
compute any function with any threshold t, with identifiable abort and with
information-theoretic security. Let Setup() → (r1, . . . , rn) be the randomized
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function that produces the appropriate correlated randomness. Setup takes no
inputs (since correlated randomness is independent of the parties’ inputs), and
outputs n correlated objects, one for each party.

We would like to make use of the availability of MPC with identifiable abort
for n − 1 parties to run Setup (for n parties). In order to do this, we define
Setup′

x to be Setup augmented to return shares of rx to parties i ∈ [n]\{x}, and
nothing to party x. We then expect parties i ∈ [n]\{x} to send those shares to
party x. Of course, we need to make sure that party x won’t accept incorrect
shares; so, we use UISSwPPS to authenticate the shares.

If party x is dissatisfied with the shares she receives, she broadcasts all the
shares. Then, one of two things happens. Either (1) all parties acknowledge that
they sent the broadcast shares to party x, in which case, because of the adaptive
local identifiability (Definition 10) of the secret sharing, we obtain identifiable
abort among the parties who participated in the MPC; or (2) one of the parties
(say, party i) claims that party x misrepresented the share she sent, in which
case we have established a conflict between parties i and x, and can repeat the
MPC excluding party i from the set of parties who hold public shares of rx.

We define Setup′
x,O to be the augmented correlated randomness setup func-

tion that distributes shares of rx to parties i ∈ [n] with observers O ⊆ [n] (where
x ∈ O). (We only create an observer share for party x for ease of notation; this
share is never used.) Setup′

x,O is described in Fig. 8.

Fig. 8. Algorithm Setup′
x,O

Figure 10 describes the functionality FRS(k),Setup,n that computes Setup
with identifiable abort; the subscript RS(k) signifies that we allow rejection
sampling by the adversary, who is able to request fresh outputs of Setup
up to k times. Figure 14 describes the protocol ΠRS(k=n2),Setup,n that realizes
FRS(k),Setup,n for k = n2. This protocol calls upon a weaker ideal functional-
ity FRS(k=n),Setup,n,x, which is described in Fig. 11; this ideal functionality only
has identifiable abort among n − 1 of the parties (party x cannot necessar-
ily identify a cheater). FRS(k=n),Setup,n,x either (1) distributes the correlated
randomness successfully, (2) identifiably aborts, or (3) identifiably aborts only
among [n]\{x}, in which case ΠRS(k=n2),Setup,n calls FRS(k=n),Setup,n,x again
with a different x. Figure 13 describes the protocol ΠRS(k=n),Setup,n,x that real-
izes FRS(k=n),Setup,n,x. ΠRS(k=n),Setup,n,x in turn calls upon an ideal functionality
FSetup′,n,x,O; this ideal functionality computes Setup′ among n − 1 parties with
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identifiable abort (without rejection sampling). We do not give a protocol realiz-
ing FSetup′,n,x,O, as we assume that secure protocols with identifiable abort exist
for any (n − 1)-party function.

The flow of ΠRS(k=n2),Setup,n is described in Fig. 9.

Fig. 9. A diagram of ΠRS(k=n2),Setup,n

Theorem 2. Protocol Π
FSetup′,n−1,x,O

RS(k=n),Setup,n,x (Fig. 13) securely realizes the function-
ality FRS(k=n),Setup,n,x (Fig. 11) against t ≤ n − 2 corruptions, assuming the
availability of a broadcast channel and oracle access to FSetup′,n−1,x,O.

Theorem 3. Protocol Π
FRS(k=n),Setup,n,x

RS(k=n2),Setup,n (Fig. 14) securely realizes the function-
ality FRS(k=n2),Setup,n (Fig. 10) against t ≤ n − 2 corruptions, assuming the
availability of a broadcast channel and oracle access to FRS(k=n),Setup,n,x.

Theorem 4. If a protocol Π securely realizes Ff,n given a single oracle access to
FSetup,n as a first action (which can be thought of as a single output of the oracle
given as setup), then Π also securely realizes Ff,n given a single oracle access
to FRS(k=n2),Setup,n as a first action (where FRS(k=n2),Setup,n replaces FSetup,n).

Given these three theorems, if we have a protocol Π
F(k=n),Setup,n,x

(k=n2),Setup,n realizing
FRS(k=n2),Setup,n, we can use that setup to achieve secure computation with
identifiable abort of any function f using the approach of Ishai et al. Since
Π

F(k=n),Setup,n,x

(k=n2),Setup,n only requires oracle access to FRS(k=n),Setup,n,x—which in turn
can be realized given only oracle access to FSetup′,n−1,x,O—we can claim the
following corollary.
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Fig. 10. Functionality FRS(k),Setup,n for secure computation of the correlated random-
ness setup function Setup among n parties with identifiable abort, which allows the
simulator to reject the output (requesting a redo) at most k times.

Fig. 11. Functionality FRS(k),Setup,n,x for secure computation of the correlated ran-
domness setup function Setup among n parties with identifiable abort among all the
parties except for x which allows the simulator to reject the output (requesting a redo)
at most k times. The functionality uses the gadgabort output flag if party x is unable to
identify a cheater; it uses the abort output flag if all honest parties are able to identify
a cheater (which happens only when party x is the cheater identified).

Corollary 5. For any function f , there exists a protocol that securely realizes
the functionality Ff,n (with identifiable abort) against t ≤ n − 2 corruptions,
given oracle access to FSetup′,n−1,x,O.

By using our construction recursively to realize FSetup′,n−1,x,O given oracle
access to a (n−2)-party ideal functionality, and so on, we can claim the following
corollary.
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Fig. 12. Functionality FSetup′,n−1,x,O for secure computation of function Setup′
x,O with

identifiable abort among n − 1 parties (parties i ∈ [n]\{x}).

Corollary 6. For any function f , for any constant �, there exists a protocol
that securely realizes the functionality Ff,n (with identifiable abort) against t ≤
n − � − 2 corruptions, given oracle access to (n − �)-party ideal functionalities
(with identifiable abort).

We require that the recursion depth l be constant because every (n−�)-party
instance calls at most n − � (n − � − 1)-party instances, and additionally may
require p′(n − �, λ) = p(λ) work for some polynomials p′, p. Thus, we can only
guarantee that the protocol is polynomial time if p�(λ) ∈ poly(λ), which is only
true when � is constant.

Conflict Graphs. Before presenting our protocol Π
F(k=n),Setup,n,x

(k=n2),Setup,n , which
requires keeping track of conflict graphs (that is similar to the notion of incon-
sistent graphs described in [7]), we introduce some notation that we use for such
graphs. We let Sx be the set of conflicts (denoted as tuples (i, j)) occurring
among parties [n] \ {x}. These conflicts result from a call to a functionality with
identifiable abort among these n − 1 parties. Parties i and j are considered to
be in conflict if they accuse different parties of aborting the functionality. Since
we do not allow a party to accuse itself, this includes the case when one of them
accuses the other. For simplicity, we let Si

x denote the set of parties that party
i is in conflict with within Sx.

The proofs of Theorem 2, Theorem 3 and Theorem 4 can be found in the full
version of this paper.

5 Building UISSwPPS

In this section, we build a unanimously identifiable secret sharing scheme with
public and private shares. In Sect. 5.1, we describe two building blocks: unan-
imously identifiable commitments and unanimously identifiable secret sharing.
In Sect. 5.2, we describe our construction and prove its security.
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Fig. 13. Protocol Π
FSetup′,n−1,x,O

RS(k=n),Setup,n,x for secure computation of the correlated random-

ness setup function Setup among n parties (with identifiable abort among all of the
parties except for x, with threshold t = n − 2) given access to an ideal functionality
FSetup′,n−1,x,O that distributes the output of Setup′ to n − 1 parties (with identifiable
abort, with threshold t = n − 2).
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Fig. 14. Protocol ΠRS(k=n2),Setup,n for secure computation of the correlated random-
ness setup function Setup among n parties (with identifiable abort, with threshold
t = n − 2) given access to an ideal functionality FRS(k=n),Setup,n,x that distributes the
output of Setup to n parties (with identifiable abort amongall the parties except for
x, with threshold t = n − 2).

5.1 Building Blocks

Unanimously Identifiable Commitments. Unanimously identifiable com-
mitments (UIC) have been introduced by Ishai, Ostrovsky, and Seyalioglu [8].
Such commitments allow a trusted dealer to commit to a message msg by dis-
tributing com1, . . . , comn among n recipients and providing a sender with decom-
mitment information dec. From a security point of view, we require that the
joint view of all recipients should contain no information about msg and that
any decommitment information dec′ published by the sender either causes all
honest parties to reconstruct msg or all parties to unanimously abort. Ishai,
Ostrovsky, and Seyalioglu have shown how to construct such commitments with
information-theoretic security.

Definition 15 (Unanimously Identifiable Commitments). A UIC scheme
consists of a probabilistic polynomial-time algorithm Commit and a deterministic
polynomial-time algorithm Open with the following syntax:

Commit(s) → (com1, . . . , comn, dec): takes as input a message msg ∈ {0, 1}∗, and
outputs n commitments com1, com2, . . . , comn, and decommitment informa-
tion dec.

Open(comi, dec) → msg/⊥: takes as input comi and the decommitment informa-
tion dec, and outputs a value in {0, 1}∗ ∪ {⊥}.
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Furthermore, (Commit, Open) should satisfy correctness (Definition 16), pri-
vacy (Definition 17), and binding with agreement on abort (Definition 18).

Definition 16 (Correctness). A UIC (Commit, Open) is correct if for any
msg ∈ {0, 1}∗ and any i ∈ [n],

Pr[(com1, com2, . . . , comn, dec) ← Commit(msg) : Open(comi, dec) = msg] = 1.

Definition 17 (Privacy). A UIC (Commit, Open) is private if for any
msg,msg′ ∈ {0, 1}∗ with |msg| = |msg′|

{(com1, . . . , comn) | (com1, com2, . . . , comn, dec) ← Commit(msg)}
≡{(com1, . . . , comn) | (com1, com2, . . . , comn, dec) ← Commit(msg′)}.

Definition 18 (Binding with Agreement on Abort). Consider the security
game described in Fig. 15. A UIC (Commit, Open) is binding with agreement on
abort if for any message msg ∈ {0, 1}∗ and adversary A, there exists a negligible
function negl(·) such that

Pr[A wins gamebaa(A)] ≤ negl(λ)

where the probability is taken over the random coins of C and A.

Fig. 15. Security game for binding with agreement on abort.

Remark 2. For technical convenience, we slightly modified the security game
gamebaa(A) by allowing the adversary to first obtain dec and then query the set
C. The original UIC construction of Ishai, Ostrovsky, and Seyalioglu [8] directly
satisfies our new notion and if necessary all of our proofs can also be done with
the original security definition; albeit with a slightly larger security loss.



On Sufficient Oracles for Secure Computation with Identifiable Abort 513

Unanimously Identifiable Secret Sharing. Unanimously identifiable secret
sharing (UISS) is another primitive that has been introduced and constructed
with information-theoretic security by Ishai, Ostrovsky, and Seyalioglu [8].

Definition 19 (Unanimously Identifiable Secret Sharing Scheme). A
unanimously identifiable secret sharing scheme for message space {0, 1}∗ is a
secret sharing scheme (Definition 4) that additionally satisfies local identifiabil-
ity (Definition 20) and predictable failures (Definition 14 with the appropriate
syntactic modifications).

A secret sharing scheme is said to be unanimously identifiable if all share
holders either reconstruct the correct message, or unanimously agree on some
subset of shares which they consider to be invalid.

Definition 20 (Local Identifiability). Consider the game described in
Fig. 16. A secret sharing scheme (Share, LRec) for access structure A is locally
identifiable if for any message msg ∈ {0, 1}∗ and adversary A, there exists neg-
ligible function negl(·) such that

Pr[A wins gameli(A)] ≤ negl(λ)

where the probability is taken over the random coin of C and A.

Fig. 16. Security game for local identifiability.
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5.2 Construction

Theorem 7. Let A
O
n,t be a threshold access structure with k observers, where

k < n. Let (UISS.Share, UISS.Rec) be a UISS for Am,t, where m = n − k.
Let (Commit, Open) be a n-party UIC. Then, the construction in Fig. 17 is a
UISSwPPS for A

O
n,t.

The proofs of Theorem 7 can be found in the full version of this paper.

Fig. 17. UISSwPPS construction.
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Abstract. This paper introduces Prio+, a privacy-preserving system for
the collection of aggregate statistics, with the same model and goals in
mind as the original and highly influential Prio paper by Henry Corrigan-
Gibbs and Dan Boneh (NSDI 2017). As in the original Prio, each client
holds a private data value (e.g. number of visits to a particular website)
and a small set of servers privately compute statistical functions over
the set of client values (e.g. the average number of visits). To achieve
security against faulty or malicious clients, unlike Prio, Prio+ clients
use Boolean secret-sharing instead of zero-knowledge proofs to convince
servers that their data is of the correct form and Prio+ servers execute
a share conversion protocol as needed in order to properly compute over
client data. This allows us to ensure that clients’ data is properly for-
matted essentially for free, and the work shifts to novel share-conversion
protocols between servers, where some care is needed to make it effi-
cient. Our overall approach is simpler than Prio and our Prio+ strategy
reduces the client’s computational burden by at least two orders of mag-
nitude (or more depending on the statistic) while keeping server costs
comparable to Prio. Prio+ permits computation of exactly the same wide
range of complex statistics as the original Prio protocol, including high-
dimensional linear regression over private values held by clients.

We report detailed benchmarks of our Prio+ implementation and com-
pare these to both the original Go implementation of Prio and the Mozilla
implementation of Prio. Our Prio+ software is open-source and released
with the same license as Prio.

1 Introduction

Modern society has exploded with a wave of internet-enabled devices. Smart-
watches, cell-phones, cars, and ATMs constantly collect data on their surround-
ings to improve performance. For many cloud services controlling such devices,
collecting and computing statistics over such a large pool of data has become a
hugely profitable endeavor. Navigation apps detect congestion with user location
data [16], fitness trackers collect average data for user comparison [15]. Aggregate
statistics are one of the principal currencies in the modern data-driven economy.
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These services usually want only to compute aggregate statistics, not collect
individual data. However, their methods often involve storing users’ personal
data in the clear. A centralized cache of sensitive user data presents clear security
risks. A motivated attacker may steal and disclose this sensitive information
[18,27], cloud services could misuse or sell this information for profit [26], and
intelligence agencies may acquire the data for targeting or mass surveillance [14].

Our problem in its simplest form is as follows: each client Pi for i ∈ [n] holds
a private value xi ∈ {0, 1}, and they wish to learn the sum

∑
i xi. As described in

the original Prio paper [4], several previous systems have also attempted to solve
this problem. One such attempt involves using a randomized response system
to provide differential privacy [11,13]. That is, some user data is replaced with
random data according to some fixed probability p < 0.5. By aggregating this
“noisy” data, data collectors can get a somewhat accurate estimate of overall
statistics. This technique scales well and provides robustness (each malicious
client can at most affect the sum by ±1), but the privacy guarantees are relatively
weak. There is an inherent trade-off between the privacy guarantee to the client
and the accuracy of the overall statistic. Another option is to have clients submit
encryptions of their data to the servers. Then, servers can sum up the ciphertexts
and only decrypt the final sum [7,9,17,19–21]. This achieves stronger privacy
guarantees but sacrifices robustness: a malicious client can affect the final sum
arbitrarily because servers cannot tell the difference between an encryption of
0/1 and an encryption of some large integer. If used for a voting scheme, this
would allow any client to submit as many votes as they like. These attacks can be
mitigated using zero-knowledge proofs [10], but this heavily impacts scalability.
Servers require expensive public-key operations to verify these proofs, and clients
are burdened with the computationally difficult task of generating the proofs.

Prio is a brilliant and highly influential private aggregation system which
successfully resolves this discrepancy between privacy, robustness, and scalabil-
ity. Prio works within the client-server model in which the n clients rely on a
small number of computationally powerful servers in order to compute aggre-
gate statistics. Prio provides strong privacy guarantees: it guarantees privacy
so long as at least one of the computation servers is honest. It also provides
robustness: a malicious client cannot affect the protocol beyond misreporting
their private data value. For example, if the client is supposed to submit a value
in the range [0, 64], Prio servers can syntactically reject submissions of any value
outside that range, but not learn anything else about where it is in the range.
To achieve this, Prio utilizes a new technique called SNIPs (secret-shared non-
interactive proofs), which allow servers to collaboratively check a shared proof
of correctness with little communication. In particular, the bandwidth used by
servers during verification remains constant as the size of user inputs increases.
The Prio protocol has been widely adopted, and has even been re-implemented
by Mozilla for use in privately collecting web usage statistics. It is being run as
a service for other web-based organizations by the Internet Services Research
Group (ISRG), a non-profit focused on reducing barriers to secure communica-
tion over the internet. Google has also begun using it to perform analytics in
their exposure notifications express (ENX) system for measuring health data.
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Prio achieves highly desirable security guarantees, and their solution is sig-
nificantly more efficient than comparably secure data-collection systems. One
drawback, however, is that the client-side computation and client-to-server com-
munication of their solution increases at a superlinear rate as the size of user data
increases (see Table 1). Client computation and communication costs are most
often the bottlenecks for overall efficiency since clients are on low-power devices
and high-latency connections whereas servers are usually collocated high-power
machines. For example, clients usually run on either web browsers or cell phones
when using the Mozilla Firefox browser. Requiring clients to use SNIPs to verify
simple properties like input size places a computational burden on these devices.

In this paper, we present Prio+, a new and improved version of Prio that
aims to reduce this burden on the client. Prio+ uses Boolean secret-sharing to
let clients prove the size of their input at essentially zero computational cost.
Servers then execute a Boolean-to-arithmetic share conversion protocol (if nec-
essary) and compute the output as in the original Prio protocol. For some statis-
tics, Prio+ still uses SNIPs, as they are well-suited for verifying multiplicative
relationships. We do not, however, use them to verify everything about client
inputs (as is done in Prio). For most statistics, Prio+ uses no SNIPs at all. Fur-
thermore, for some statistics (AND/OR, MAX/MIN) Prio+ does not even use
share conversion, and for these statistics, we achieve monumental improvements
to both client and server efficiency compared to Prio.

Our strategy significantly reduces both client computation and client-to-
server communication, the two most expensive computational resources in our
efficiency model. Even for the few statistics where SNIPs are still necessary
(variance and linear regression), the size of the SNIPs and work to gener-
ate them decreases dramatically. The result is a system which computes the
same set of complex statistics as Prio with identical privacy and robustness
guarantees but with reduced client computation and client-to-server communi-
cation. For example, when collecting the distribution of tens of thousands of
client responses to a true/false question, Prio+ clients encode their data over
350x faster than Prio clients, and the client’s message size is nearly 5x smaller.
Prio+ also often improves server efficiency: for the example given above, once
servers have received all client inputs, Prio+ servers compute the output 85x
faster with essentially the same server-to-server communication. As input size
increases, Prio+ server communication increases whereas Prio’s server commu-
nication stays constant. But, for practically sized inputs, Prio+ servers still com-
municate only a few hundred bytes per client submission.

Both Prio and Prio+ compute complex statistics beyond just summation.
While Prio applies a general SNIP-based solution, Prio+ applies a specialized
approach for each complex statistic and uses SNIPs for lighter relations as needed
(the Prio+ protocol for sum, the main statistic used by Mozilla, does not require
any SNIPs). This means that the efficiency of Prio+ varies depending on the
statistic being computed. For some statistics, Prio+ dramatically improves per-
formance across the board. E.g., when computing the maximum of client data
in the range [0, 128], Prio+ servers communicate a constant 16 bytes per client,
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Table 1. Table of asymptotic comparisons between Prio and the protocols Π com-
prising Prio+. M is the number of multiplication gates required to check if an input
is properly encoded for the relevant statistic. λ is the bit-length of each client’s input,
M ′ := M − λ is the number of multiplication gates not used for checking bit-length,
and n is the total number of clients. Note M ≥ λ because λ multiplication gates
are always used for checking bit-length in Prio. ‘Serv Comm.’ is the communication
between servers in bits. Note that Prio and the Linear PCP extension implement a gen-
eral protocol for all statistics, whereas Prio+ uses different protocols for each statistic.
Thus the entries in the first two rows represent all statistics computed by Prio, where
the value M varies depending on the particular statistic. Note that Πsum, Πvar/linReg, Πfrq

also use λ symmetric key operations (oblivious transfers) during pre-computation. Θ(·)
notation suppressed to improve readability.

Client Mults Proof Size Server Mults Serv Comm.

Prio [4] M log M M (M log M)n n

Linear PCPs [3] M log M log M (M log M)n n

Πsum None None λ n + λ2

Πand/or/max/min None None None n

Πvar/linReg M ′ log M ′ M ′ (M ′ log M ′ + λ)n n + λ2

Πfrq None None nλ (n + λ) log n

compared to a constant 740 bytes for Prio servers. This is in addition to a nearly
750x faster client encode time, 5x smaller client message size, and a 43x improve-
ment in server computation time. Even for the few statistics where Prio+ still
utilizes SNIPs, we see significant improvements in client encode time, client mes-
sage size, and server compute time at little-to-no server bandwidth cost.

Contributions: We summarize our contributions below:

– Provide a detailed daBit-based semi-honest Boolean-to-arithmetic share con-
version protocol with output in a field Zp, which was not explicit in [23],

– demonstrate how to use Boolean-to-arithmetic share conversion with Boolean
secret-sharing and smaller-scope SNIPs for particular relations in order to
provide robustness and privacy in a large-scale data collection system,

– demonstrate that client usage of Boolean representation avoids expensive
zero-knowledge proofs leading to dramatic speed-ups of the system, and

– exhibit the effectiveness of our protocols with a full-scale and publicly avail-
able implementation allowing private and robust computation of a wide range
of complex statistics.

Below we state our results for a single protocol (Πsum). We establish similar
results for the remaining protocols according to the asymptotics given in Table 1.
Although we state our results in the two-server case, all results generalize trivially
to the case of k servers and provide identical security guarantees to those of Prio.
Informally, a protocol is private if it leaks nothing to any client/server besides
the output, and is robust if no client can affect the output beyond misreporting
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their private data. Note that the number of multiplications required by servers
when computing some are independent of the number of clients, and depend
only on the length of their inputs.

Theorem 1 (Informal). Suppose n players P1, . . . , Pn each hold a private λ-
bit integer xi, and they wish to rely on two servers SL and SR to compute the
sum f(x1, . . . , xn) =

∑
i xi. There exists a protocol Πsum, returning the sum f(·)

to each client and returning no output to either server, which is both private
and robust against a coalition of up to n malicious clients and one semi-honest
server and requires zero client multiplications, no zero-knowledge proofs, O(λ)
multiplications per server, and O(n) bits of communication between servers.

With Prio+, we aim to provide the same benefits as Prio to systems and orga-
nizations whose clients cannot withstand the burden of generating and sending
expensive zero-knowledge proofs.

2 Technical Overview

Arithmetic vs. Boolean Secret-Sharing: Additive secret-sharing is a cryp-
tographic tool which allows a user to “share” a private value x into a set of
values such that any strict subset of these values reveals nothing about x, but
all values together can be used to reconstruct x. Prio is built around arithmetic
secret-sharing: shares are random values in a ring ZM (often this is a field and
M = p) such that they sum to x. Clients share their private inputs and send one
share to each server. Servers then sum shares locally and return the summed
shares to clients who add them together and learn the output. Servers restrict
the size of client data by requiring clients to also submit zero-knowledge proofs.

Boolean secret-sharing is an alternative secret-sharing scheme in which a
client holding x secret-shares each bit xi of x as two random bits such that their
XOR is xi. Similar to arithmetic secret-sharing, each Boolean share appears
random except when combined with all other shares. The crucial difference is
this: if each Boolean share consists of λ bits, then the private value x is always a
λ-bit integer. This allows servers to verify the bit-length of a client’s submitted
private value via simple local checks on the shares themselves, without zero-
knowledge proofs. Note: to distinguish Boolean shares from arithmetic shares,
arithmetic shares will be denoted [x]A, and Boolean shares will be denoted [x]B .

Boolean-to-Arithmetic Share Conversion: Using Boolean shares presents
an issue: how do servers compute the sum over Boolean shares of client inputs?
Prio’s method of summing shares locally and then returning those aggregated
values to clients only works with arithmetic shares, not Boolean shares. Prio+
servers use Boolean-to-arithmetic share conversion, which converts Boolean
shares of x to arithmetic shares of the same x. Such protocols have been studied
extensively [5,8,12,23], and the most efficient method based on oblivious trans-
fer (OT) is due to [8] and outputs arithmetic shares in a ring ZM . For use with
SNIPs, M should be a prime.
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Semi-Honest Boolean-to-arithmetic Share Conversion into Zp via
daBits: For more efficient share conversion in this case, we use an offline phase to
generate pre-computed daBits (double-authenticated bits) from [23], which allow
share conversion with less communication and only use one OT to generate each
beforehand. This cheap offline phase makes the resulting online protocol much
more efficient than Prio. A daBit is a known primitive used for various function-
alities, including share conversion. A daBit is a secret-shared pair ([b]A, [b]B)
where b ∈ {0, 1} is a random secret bit. It is known how to convert Boolean
shares of an λ-bit integer to arithmetic shares using λ daBits [23] in the mali-
cious setting, so we present an efficient semi-honest version of this protocol for
quick parallelizable share conversion. Malicious security is not necessary since all
servers are semi-honest (following the threat model of Prio), and they perform
the conversion. Details of the generation and share conversion, as well as mea-
sures of the complexity of these procedures, are in Sect. 8. Although we would like
to provide an analytical comparison between the efficiency of resulting protocol
with Prio, the Prio paper does not give analytic measures of their complexity
to enable such a comparison. Thus we rely on a practical comparison of the two
systems.

Complex Statistics: Prio+ computes the same statistics as Prio. In addition
to SUM, clients can compute Boolean AND/OR (where a client holds a single
bit), MAX/MIN, frequency count FRQ (where a client holds a value in some
small range [0,K]), variance VAR and standard deviation STDDEV (where a
client holds an λ-bit integer), and linear regression linReg (where a client holds
a degree d feature vector of λ-bit integers). Many of these statistics (AND, OR,
MAX, MIN) are even simpler than SUM, requiring no share conversion, no zero-
knowledge proofs, and virtually no communication between servers. FRQ, similar
to SUM, requires share conversion to allow aggregation, but does not require
any zero-knowledge proofs. Instead, servers use simple logical mechanisms on
the Boolean shares to detect improperly encoded inputs, details of which can be
found in the full paper [1]. The only statistics which do require zero-knowledge
proofs are VAR, STDDEV, and linReg. In these cases, clients encode their private
values in such a way that SNIPs are the most efficient method for verifying that
encoding. The key difference is that SNIPs in this case are only being used to
verify one small part of the encoding, whereas in Prio they are used to verify
every property of the encoded value. At a high level, we have removed the need
for SNIPs to verify the length of client inputs, reducing the overall complexity.
Since SNIPs operate on arithmetic shares of the input, we first apply daBit-
based Boolean-to-arithmetic share conversion on the clients’ submitted Boolean
shares, which we need to do anyway to perform aggregation after the validation.

Practical Comparison: We compared Prio+ to both the original Go imple-
mentation of Prio (Prio (Go)) as well as another implementation by Mozilla (Prio
(Mozilla)) which only computes SUM, no complex statistics. We would have pre-
ferred to simply compare against the more efficient of the two implementations,
but since some statistics are only supported by the Go implementation, we chose
to provide both comparisons. We did not benchmark against the updated Prio
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construction given in [3] because it has not yet been implemented and in the
case of practically-sized inputs, large constant terms overshadow its asymptot-
ically smaller client message sizes. All implementations were executed using a
two-server setup. Although the original Prio paper included an evaluation for a
large number of servers, the purpose of that evaluation was to show that Prio’s
server bandwidth remained constant, even as the number of servers and size of
data increased. Since our focus is on client efficiency, our evaluation focuses on
the two-server case for simplicity. First, we compared all three implementations
in evaluating SUM for tens of thousands of clients each with 1-bit, 8-bit, 16-bit,
and 32-bit integers. We measured encode time, client message size, server com-
pute time, and server communication. Prio+ clients encoded inputs up to 3000x
faster than Prio clients. Client messages in Prio+ were up to 23x smaller than
in Prio. Prio+ servers also processed client submissions up to 300x faster than
Prio servers online. Even accounting for precomputation time of daBits, Prio+
is still up to 120x faster. Prio+ also requires significantly less bytes, 44x less
than Prio (Go) and half as many as Prio (Mozilla). Accounting for precompu-
tation of daBits, the end-to-end time does increase compared to the online time
of Prio as the size of the user inputs increases. For 1-bit integers, end-to-end is
comparable to Prio (Mozilla) and 18x less than Prio (Go). For 32-bit inputs, the
full end-to-end run still communicates 3x less than Prio (Go), and just 7x more
than Prio (Mozilla). This improvement is made even more significant by the fact
that daBits can be pre-computed during off-hours.

We ran similar experiments between Prio+ and Prio (Go) for MAX and
linReg. Since MAX requires no SNIPs and no share conversion in Prio+, we saw
improvements across the board: for client values in the range [0, 128], Prio+ client
encode time was 750x less, client message size was 5x smaller, server compute
time was 43x less, and server communication was 46x less than Prio (Go). Even
though linReg still requires some SNIPs (with reduced scope), we saw up to 30x
reduced client encode time, and up to 4x smaller client message size. Server
computation (online) is between 2.5x to 14x faster, and communication is 5x to
10x lower depending on input size. When including pre-computation, linReg in
Prio+ ranges from equal time to 7x faster, but takes between 1.7x to 20x more
bytes to generate and run.

3 Preliminaries

Here we describe our ideal functionality, the client/server setup, our efficiency
model, the set of adversaries we defend against, and the assumptions we rely
upon to build our protocol.

“Two-Party” Setting: Prio+ securely computes a wide range of aggregate
statistics in the client-server model. That is, n clients with private data wish to
compute statistics on that data with the help of two honest-but-curious servers.
The basis of our system is a secure two-party protocol between these servers.
Each client with an input, secret-shares his/her input between the two compu-
tation servers (which are assumed to not collude). Then, the two servers run the
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secure two-party computation (2PC) protocol on the input shares which reveals
no information about client inputs. Finally, they send the output shares back
to the clients who reconstruct the output. This technique of using 2PC in the
client-server setting was first described in the ABY framework of [8] and has
found many applications since, including [4].

Formally, a Prio+ deployment consists of n clients {P1, . . . , Pn} and 2 servers
SL and SR. Each client Pi holds some private input xi. Each client can commu-
nicate with each server (but not with other clients) and servers can communicate
with both clients and the other server via private channels. Although Prio+ is
described as a two-server protocol, it can be generalized to a k server protocol for
any positive integer k by using k-wise instances of all primitives (secret-sharing,
share conversion, and SNIPs when needed).

Efficiency Model: We assume clients have low computational power and
servers have high computational power. Similarly, we assume a low-bandwidth
connection from clients to servers, and a high-bandwidth connection between
servers. Thus we seek to minimize client computation and communication as
our highest priority, and server costs as an afterthought. In general, we assume
network latency is the greatest computational bottleneck and are concerned more
with optimizing communication than computation for both clients and servers.

Security Against Semi-honest Servers, Malicious Clients: Prio+ protects
client privacy as long as at most one server is passively/semi-honest corrupted
(regardless of malicious client misbehavior). Our system cannot tolerate mali-
cious, misbehaving servers as this comes at a direct cost of performance, as dis-
cussed in [4]. Our deployment always provides robustness (correctness) so long
as neither server maliciously misbehaves. We summarize our security definitions
here and defer formal definitions to the full version of the paper [1].

Privacy: Intuitively, our deployment provides f -privacy for an aggregation func-
tion (statistic) f if an adversary controlling any number of clients and one server
learns nothing about the honest clients’ inputs besides what is revealed by the
output of f . More formally, any such adversary can simulate its view of the
protocol run given the output of f . For some aggregation functions, we weaken
our protocol to provide f̂ -privacy where f̂ leaks slightly more information to
the clients than the statistic itself (for example, execution may require clients to
learn the number of clients who provided invalid inputs).

Robustness: A protocol is t-robust if a coalition of t malicious clients cannot
affect the output of the protocol beyond misreporting their private data values.
This is the strictest notion of correctness in the malicious security model, since
a client’s private input is known to nobody but themselves, meaning we cannot
prevent them from misreporting it. If this data value is meant to come from a
specific domain, however, malicious clients should not be able to submit data
from outside of that domain. This is particularly relevant in our setting, where
client data must be encoded in specific formats. Clients should not be able to
submit improperly encoded data as this would affect the protocol output. Prio+
is robust against malicious clients, but not against malicious servers. Though
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robustness against malicious servers seems desirable, it comes at a direct cost to
performance, as argued in [4].

Analogously to [4], we assume cryptographic primitives for the establishment
of pairwise authenticated channels (CCA-secure public key encryption [6], dig-
ital signatures [24,25], etc.). We make no synchronicity assumptions about our
network and do not rely on external systems to provide users anonymity.

Notation: We write x⊕y to denote the XOR operation (addition modulo 2). All
addition is interpreted as integer addition unless otherwise clear from context.
When �x, �y ∈ Z2λ are vectors of bits, we will write �z = �x ⊕ �y to denote the
bitwise-XOR operation. That is, (�z)i = (�x)i ⊕ (�y)i for each 0 ≤ i < λ. We
assume a maximum bit-length λ on all integer data and thus treat all integer-
valued data as elements of the ring Z2λ unless otherwise specified that the data
should be interpreted within a field Zp. [x]A denotes an arithmetic secret-sharing
of x, [x]B denotes a Boolean secret-sharing of x. We exclusively use two-party
secret-sharing, and thus shares held by server SL will be written [x]tL, t ∈ {A,B},
and similarly [x]tR for shares held by SR. For an integer x, we refer to the i’th
least significant bit of the binary representation of x as (x)i. We will say that
a function f : N → R is negligible if for every positive polynomial poly there
exists an integer Npoly such that for x > Npoly, |f(x)| < 1

poly(x) .

4 Necessary Primitives

For our purposes, we focus on having N = 2 servers with secrets shared between
them. Clients hold a secret value x, and want to split it into two shares Share(x) =
[x]L, [x]R for servers L and R. This can also be reversed, where Rec([x]L, [x]R) =
x. Privacy here is straightforward, where any one server can’t recover the secret,
but both together can. Correctness means that Rec succeeds in the presence of
both shares.

Definition 1 Arithmetic Secret-Sharing: Given an integer x ∈ ZM , an
arithmetic secret-sharing of x is a random pair a, b ∈ ZM subject to the con-
dition a + b = x (mod M).

Semantics: The two-party arithmetic secret-sharing scheme consists of the
following pair of functions:

– Share+,M : ZM −→ (ZM )2, Share+,M (x) = ([x]AL , [x]AR), which are random
elements of ZM subject to the constraint [x]AL + [x]AR = x (mod M).

– Rec+,M : (ZM )2 −→ ZM , Rec+,M ([x]AL , [x]AR) = [x]AL + [x]AR (mod M).

Addition/Scalar Multiplication: Addition and scalar multiplication over
arithmetic secret shares are trivial. To compute a share of z = x + y given
shares [x]A and [y]A, each server i ∈ {L,R} locally computes [z]Ai = [x]Ai + [y]Ai .
Similarly, to compute scalar multiplication [w]A = c · [x]A for public c ∈ ZM ,
each server locally computes [w]Ai = c · [x]Ai .
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Definition 2 Boolean Secret-Sharing. Given an integer x ∈ Z2, a Boolean
secret-sharing of x is a random pair c, d ∈ Z2λ subject to the condition c⊕d = x.

Semantics: The two-party λ-bit Boolean secret-sharing scheme consists of the
following pair of functions:

– Share⊕,λ : Z2λ −→ (Z2λ)2, Share⊕,λ(x) = ([x]BL , [x]BR), which are random
elements of Z2λ subject to the constraint [x]AL ⊕ [x]AR = x.

– Rec⊕,λ : (Z2λ)2 −→ Z2λ , Rec⊕,λ([x]AL , [x]AR) = [x]AL ⊕ [x]AR.

XOR: Computing XOR over Boolean shares is trivial. [z]B = [x]B ⊕ [y]B. Each
server s ∈ {L,R} locally computes [z]Bs = [x]Bs ⊕ [y]Bs .

These two schemes each have strengths and weaknesses. If client data is arith-
metically secret-shared under a large modulus M , servers can efficiently compute
the sum of shared values via associativity of addition by locally summing their
shares modulo M , as in Prio [4]. This is not efficient with Boolean shares as they
are built using bitwise XOR instead. On the other hand, Boolean shares of x
are the same bit-length as x itself, meaning servers can trivially verify the size
of client inputs. Prio+ leverages both of these advantages to privately compute
complex aggregate statistics efficiently. Prio+ clients submit their data in the
Boolean scheme (so that servers can verify the bit-length efficiently) and then
servers convert these shares back to the arithmetic scheme in order to sum the
data together and compute the given statistic.

Boolean to arithmetic share conversion is a well-studied technique. The cur-
rent most efficient protocol in the semi-honest two-party setting is due to [8]
and is based on Oblivious Transfer (OT). In particular, to convert a pair of λ-
bit Boolean shares to arithmetic shares in Z2λ , they use λ independent instances
of OT where each OT transfers on average a string of length (λ+1)/2. The total
communication cost is λ(κ + (λ + 1)/2) = O(λ2) [8].

To achieve share conversion with more efficient online work, we utilize pre-
computed pairs called daBits (doubly-authenticated bits), discussed in [23].
Although they are primarily used in the malicious setting, we are able to use
them very efficiently in the semi-honest setting, which to our knowledge hasn’t
been detailed explicitly. Compared to OT share conversion above, for the same
number of bits converted this uses the same number of OTs for generating the
precomputed daBits, and then only communicates a single bit between servers,
per bit converted using daBits. They require the same OTs to generate as the
share conversion protocol in [8], and only require a single bit communicated per
converted bit to perform the computation. See Sect. 8 for further details.

The final piece of Prio+, used only for a few statistics, is the secret-shared
non-interactive zero-knowledge proof (SNIP) which underpins the Prio protocol
of [4]. Although we claim that Prio overuses SNIPs in unnecessary situations,
SNIPs are an incredibly efficient method for verifying multiplicative relationships
on secret-shared inputs. Below we review how SNIPs allow servers to efficiently
verify that some client input x is valid without learning any additional informa-
tion. The following description comes directly from [4].
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A secret-shared non-interactive proof (SNIP) protocol consists of an inter-
action between a client (the prover) and multiple servers (the verifiers). At the
start of the protocol:

– Each server i holds a share [x]Ai ∈ Fλ for some field F.
– The client holds the secret input (vector) x =

∑
i[x]Ai ∈ Fλ.

– All parties hold an arithmetic circuit representing Valid : Fλ −→ F.

The client’s goal is to convince the servers that Valid(x) = 1 without revealing
any additional information about x. To do so, the client sends a proof string
to each server. After receiving these proof strings, the servers gossip amongst
themselves and then conclude either that Valid(x) = 1 (accept x) or Valid(x) �= 1
(reject x).

A valid SNIP must satisfy correctness, soundness, and zero-knowledge.

– Correctness. If all parties are honest, the servers will accept x.
– Soundness. If all servers are honest, and if Valid(x) �= 1, then for all malicious

clients, even ones running in super-polynomial time, the servers will reject
x with overwhelming probability. In other words, no matter how the client
cheats, the servers will almost always reject.

– Zero-knowledge. If the client and at least one server are honest, then the
servers learn nothing about x, except that Valid(x) = 1. More precisely, there
exists a simulator (that does not take x as input) that accurately reproduces
the view of any proper subset of malicious servers executing the SNIP proto-
col.

The construction in [4], based on a generalized version of the polynomial-
based batched multiplication verification technique of Ben-Sasson et al. [2], sat-
isfies each of these properties as proven in their Appendix D.

5 The Non-robust SUM Scheme

The following simple scheme for computing the sum of clients’ private bits is
the basis of both Prio and Prio+, and is described further in [4]. Each client
Pi, i ∈ {1, . . . , n}, holds a private bit xi ∈ {0, 1}. They wish to learn the sum
f(x1, . . . , xn) =

∑n
i=1 xi. Consider the following flawed protocol.

1. Upload: Each Pi computes Share+,M (xi) = ([xi]AL , [xi]AR). The client then
sends one additive share to each server over secure pairwise-authenticated
channels. Note: although xi is a single bit, we treat it here as an element of
ZM for M > n.

2. Aggregate: SL and SR hold accumulator values AL, AR ∈ Zp respectively,
initially set to zero. For each i, when SL receives [xi]AL from Pi, computes
AL ← AL + [xi]AL (mod M). SR does the same with its accumulator AR

upon receiving [xi]AR from Pi.
3. Publish: Once data is collected, servers publish their accumulator values

AL, AR to every client.
4. Client Computation: Clients compute the sum of the accumulator values

AL + AR (mod M).



Prio+: Privacy Preserving Aggregate Statistics via Boolean Shares 527

Note that if all players behave, each client’s output is AL + AR =
∑

i[xi]AL +∑
i[xi]AR (mod M) =

∑
i xi (mod M), as long as M > n. The authors of [4]

make two crucial observations about this simple scheme. First, it provides privacy
as long as one server is honest. The adversary’s view includes a single share,
say [x]AL , of an honest client’s input, which appears totally random without
[x]AR. Second, the scheme does not provide robustness against malicious clients.
A single malicious client can corrupt the protocol output by submitting (for
example) shares of a random integer r ∈ ZM .

6 Protecting Correctness

The reason a malicious client can cheat and submit xi �∈ {0, 1} in the non-robust
scheme is that a single arithmetic share of xi reveals nothing about the size of
xi. Prio [4] solves the robustness issue by forcing clients to construct and submit
SNIPs proving xi ∈ {0, 1}. This is effective, but requires expensive computation
on the clients’ part to construct and send these SNIPs to the servers. Since
clients are computationally weak compared to servers in our model and latency
is high between clients and servers, this is not ideal.

Instead, suppose that Pi shares xi via the 1-bit Boolean scheme as xi =
[xi]BL ⊕ [xi]BR . If [xi]BL ∈ {0, 1} and [xi]BR ∈ {0, 1}, this implies xi ∈ {0, 1}. Using
Boolean-to-arithmetic share conversion, servers can then compute corresponding
arithmetic shares [xi]A in some large ring ZM and continue computation via the
simple scheme. As long as conversion is secure, the xi remains private. Thus, to
make the simple scheme robust against malicious clients we need a Boolean-to-
arithmetic share conversion protocol achieving the following ideal functionality
FB2A.

Definition 3 The two-player λ-bit ideal functionality FB2A (with output in ZM )
behaves as follows:

– FB2A receives [x]BL , [x]BR ∈ Z2λ as inputs from SL, SR respectively.
– FB2A computes x = [x]BL ⊕ [x]BR
– FB2A computes Share+,M (x) = ([x]AL , [x]AR) where [x]AL + [x]AR = x (mod M).
– FB2A returns [x]AL , [x]AR to SL, SR respectively as outputs.

Share conversion is well-studied in both theoretical limitations [5] and practi-
cal performance [8]. In this case we use a daBit (double-authenticated bit) based
Boolean-to-arithmetic share conversion (see [23] for discussion of daBits). Share
conversion is further detailed in Sect. 8.

We can now strengthen the simple scheme from Sect. 5 to prevent malicious
clients from corrupting the output as previously described. A formal description
of this strengthened protocol ΠbitSum is below. For detailed proofs of its privacy
and robustness, we defer to the full version of the paper [1].
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ΠbitSum

Inputs: xi ∈ {0, 1} for i ∈ [n].
Output :

∑n
i=1 xi.

1. Upload:
(a) Each client Pi computes Share⊕,1(xi) −→ [xi]

B
L , [xi]

B
R via Definition 2

(b) Each Pi sends [xi]L, [xi]R to SL, SR respectively.
2. Verify Bit-Length: Initially, n′ = n. If a server receives a share which is not 1

bit in length from Pi (assume SL w.l.o.g.):
(a) SL sends the index i to SR.
(b) Both servers discard [xi]

B .
(c) Both servers set n′ ← n′ − 1

3. Convert Shares: SL and SR jointly evaluate B2A1,2λ({[xi]
B
L , [xi]

B
R}) on each of

the n′ valid pairs of Boolean shares. SL receives as output {[xi]
A
L}i and SR receives

as output {[xi]
A
R}i.

4. Aggregate: SL locally adds all arithmetic shares into an accumulator AL, initially
zero. That is: AL ←− AL +

∑
i[xi]

A
L . SR analogously accumulates its arithmetic

shares into AR ←− AR +
∑

i[xi]
A
R.

5. Publish: Once all n′ shares have been accumulated, SL and SR publish AL and
AR to every client.

6. Client Computation: Clients output AL + AR.

This minor modification of the simple scheme guarantees both privacy and
robustness without any heavy client-side computation. It easily generalizes to
summing λ-bit integers, by sharing data in the λ-bit Boolean scheme. This pro-
tocol for computing the sum is sufficient for computing the arithmetic mean
as well as long as servers reveal the number of inputs included in the sum. In
addition, Prio [4] also computes a wide variety of aggregation functions, which
Prio+ replicates as described below in Sect. 7.

7 Complex Statistics

Here we describe the statistics which Prio+ computes. For each statistic, we
describe the encoding which enables its computation. That is, the encoding of
xi (written en(xi)) such that the statistic f we wish to compute is given by
f(x1, . . . , xn) =

∑
i en(xi) (or some locally computable function of this sum).

These encodings are referred to as “affine aggregatable encodings,” or AFEs.
Note that we use the same AFEs as in the original Prio paper [4], these are not
novel to our construction. We omit a detailed discussion of AFEs and instead
refer readers to [4] for more information. We also include formal protocols for
computing AND. Formal protocols for most remaining statistics can be found in
the full paper [1].

Each client Pi holds input xi from some secret-space D which will be encoded
as en(xi). They wish to compute f(x1, . . . , xn) using servers SL, SR. The servers
must verify that en(xi) is a proper encoding of some xi ∈ D, sum the encodings,
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and return them to clients for reconstruction of the value f(x1, . . . , xn). For each
statistic f , we give the domain D of the input xi (also referred to as the “secret-
space”), the necessary encoding, and a brief intuition of why this encoding is
sufficient and how the servers will use it to compute f .

SUM(x1, . . . , xn) =
∑n

i=1 xi

MEAN(x1, . . . , xn) = 1
n · SUM(x1, . . . , xn)

Secret-Space: D = Z2λ

Encoding : enint(xi) = xi

Intuition: Clients submit their data secret-shared via the λ-bit Boolean scheme.
Servers use B2A to convert valid λ-bit Boolean shares to arithmetic shares of the
same secret xi in ZM for M > n and then locally sum the resulting arithmetic
shares. In order to compute the mean, we allow the servers to modestly leak
the number of players n − c whose valid shares are included in the aggregate.
Then clients can locally compute the mean. Note: this means our integer mean
protocol achieves only f̂ -privacy, where f̂ leaks n − c.

AND(x1, . . . , xn) = 1 ⇐⇒ ∀i, xi = 1
OR(x1, . . . , xn) = 0 ⇐⇒ ∀i, xi = 0
Secret Space: D = {0, 1}
Encoding : enand(xi) = (1−xi)�r ∈ Fλ

2 for some parameter λ and random �r ∈ Fλ
2 .

That is, if xi = 1, enand(xi) = �0, and if xi = 0, enand(xi) = �r.
enor(xi) = xi · �r ∈ Fλ

2 for some parameter λ and random �r ∈ Fλ
2 . That is, if

xi = 0, enor(xi) = �0, and if xi = 1, enor(xi) = �r.

Intuition: Here, share conversion is unnecessary because the aggregation oper-
ator and the reconstruction operator for the Boolean secret-sharing scheme are
both XOR. Thus, servers can simply locally XOR their valid shares and pub-
lish these aggregated values to clients, who will then XOR the aggregated values
together to produce the output. When computing AND, if every client has xi = 1,
then every en(xi) = �0, and so the XOR of these encodings will certainly be �0.
In this case, clients can conclude AND(x1, . . . , xn) = 1. Otherwise, if some client
has xi = 0, then en(xi) = �r and the XOR of the encodings will be non-zero with
probability 1 − 1

2λ . In this case, they conclude that AND(x1, . . . , xn) = 0. The
argument is analogous in the case of OR.

MAX(x1, . . . , xn) = maxi xi

MIN(x1, . . . , xn) = mini xi

Secret Space: D = {0, . . . , M} for small M ∈ Z
Encoding : enmax(i) = (�r1, . . . , �ri,�0, . . . ,�0) ∈ Fλ×M

2 , for random �rj ∈ Fλ
2 . This

is equivalent to applying the enor() function to each component of the vector
(1, . . . , 1, 0, . . . , 0) ∈ FM

2 where the first i components are 1.
Intuition: To compute the maximum, servers run the OR protocol M times in
parallel on each component of the encoded input. That is, they analogously
XOR their shares locally, and return them to clients to XOR and reconstruct
the output. The clients parse this (λ × M)-bit string in λ-bit chunks, reading
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each chunk as a 0 if and only if every bit of that chunk is 0. The clients compute
the largest index k for which the corresponding OR protocol gave output 1, and
conclude the maximum is k. That is, they compute the largest value k such that
the k’th substring of λ consecutive bits contains a 1. This is certainly bounded
above by the maximum, and the probability that it undershoots the maximum
by Δ is 1

2λ×Δ , which is negligible in the security parameter λ.
To compute the minimum, clients first represent their input xi as χi = M−xi,

and compute the maximum of these χi values, yi = MAX(χ1, . . . , χn), as above.
The desired minimum will be precisely MIN(x1, . . . , xn) = M −yi, with the same
error bounds as the MAX protocol.

VAR(x1, . . . , xn) = 1
n

∑n
i=1(xi − MEAN(x1, . . . , xn))2

STDDEV(x1, . . . , xn) =
√

VAR(x1, . . . , xn)
Secret Space: D = Z2λ

Encoding : envar(xi) = (xi, x
2
i )

Intuition: Servers parse the encoded input into its two parts and compute shares
of (

∑
i xi,

∑
i x2

i ) using two parallel instances of our protocol for SUM, which
they return to clients. The clients divide these values by n, which is a public
parameter, to compute E[X] and E[X2], where X is a random variable taking
on each value xi with equal probability. From this, clients can locally compute
VAR(x1, . . . , xn) = E[X2] − (E[X])2. Note: in the case where clients may mis-
behave, this protocol is only f̂ -private, where f̂ leaks E[X] and the remaining
number of behaving players n′ in addition to the output. Clients who wish to
compute the standard deviation simply add a local square root operation to the
end of the protocol.

linReg((x1, y1), . . . , (xn, yn)) = (c0, c1), where ŷ(x) = c0 + c1x is the line which
minimizes the sum of squares loss

∑
i(yi − ŷ(xi))2.

Secret Space: D = Z2λ × Z2λ

Encoding : enreg(xi, yi) = (xi, x
2
i , yi, xiyi)

Intuition: Analogously to VAR, servers compute the sum of the various parts of
the encoding in parallel and return shares of (

∑
i xi,

∑
i x2

i ,
∑

i yi,
∑

i xiyi) to all
clients. The clients can solve for the desired real regression coefficients c0 and c1
locally using the following linear system:

(
n

∑
xi∑

xi

∑
x2

i

)

·
(

c0
c1

)

=
( ∑

yi∑
xiyi

)

(1)

Note that again, in the case of misbehaving clients, this implies servers must
also reveal the number of aggregated values n′, introducing a modest leak-
age. Thus this protocol will also be f̂ -private, where f̂ leaks n′ in addition to
the output. This technique trivially generalizes to d-dimensional client inputs
(x(0), x(1), . . . , x(d)) for d > 2 as described by [4].

FRQ(x1, . . . , xn) = �h = (f1, . . . , fk) ∈ Zk
n+1, where fj = |{xi : xi = j}| ≤ n is

the frequency of input j ∈ Zk
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Secret Space: D = {0, . . . , k − 1} for small k ∈ Z
Encoding : enfrq(xi) = (δxi

) ∈ Z2k , where the xi’th component of (δxi
) is 1 and

all other components are 0. That is, (δxi
) is an impulse at xi.

Intuition: If all players behave, taking the sum of these encodings yields the
desired vector �h. Thus, servers evaluate k independent instances of B2A on each
vector (one for each component) and then locally sum the resulting vectors of
arithmetic shares. They then publish these aggregated vectors to clients who
add them together to get �h in the same manner as our SUM protocol.

The above details how the servers can efficiently and privately compute these
desired statistics. For validation, Boolean Shares provide quick length validation,
as the length of the secret cannot be greater than the length of a share, so
servers simply expect shares of the right length and discard any others. This is
sufficient for SUM, AND, and MAX, and used in linReg, Var, and FRQ. For linReg
and Var, servers must verify multiplicative relationships among different parts
of the secret-shared encoded inputs, done using SNIPs similarly to [4] described
in Sect. 2. For FRQ, servers can efficiently validate that the vector is an impulse
with a single 1, with details in the full paper [1].

Below, we provide the formal protocol for computing AND. It is the simplest
type of protocol, requiring no share conversion or SNIPs, and is the most efficient
type of protocol in Prio+. bitSum is an example of a protocol requiring share
conversion but no SNIPs in Prio+, and Var is an example of a protocol requiring
both. Full descriptions and detailed breakdowns of all protocols can be found in
the full paper [1].

Πand

Inputs: xi ∈ {0, 1} for i ∈ [n].
Output : 1 if and only if xi = 1 for all i ∈ {1, . . . , n}.

1. Upload: Each Pi encodes their as input as:
x̂i = 0 ∈ Z2λ if xi = 1
x̂i = r ∈ Z2λ if xi = 0, where r is uniformly random

Pi then computes Share⊕,λ(x̂i) = ([x̂i]
B
L,λ, [x̂i]

B
R,λ) as in Definition 2 and sends one

share to each server.
2. Verify Bit-Length: Initially, n′ = n. If some server, say SL, receives from Pi

[xi]
B
L,λ which is an λ′-bit integer, λ′ �= λ:

(a) SL sends the index i to SR.
(b) Both servers discard [xi]

B
λ (removing from accumulator if necessary).

(c) Both servers set n′ ← n′ − 1
3. Aggregate: SL and SR hold accumulator values AL, AR ∈ Z2λ , initially set to

0. Once a λ-bit share is sent to SL by Pi, SL immediately XORs it with AL:
AL ← AL ⊕ [x̂i]L. SR does the same with its accumulator AR upon receiving
a valid share. If either server learns that a share already accumulated should be
discarded, they simply XOR it with their accumulator again.

4. Publish: SL publishes AL to all clients, SR publishes AR to all clients.
5. Client Computation: Clients compute A = AL ⊕ AR ∈ Z2λ . If A = 0, clients

output 1. Otherwise, they output 0.
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8 Share Conversion

The core of the semi-honest share conversion is to efficiently convert Boolean
shares of a single bit [b]B to arithmetic shares [b]A, i.e. b = [b]BL ⊕ [b]BR =
[b]AL + [b]AR for secret bit b. Then for an arbitrary λ-bit value x shared using
Boolean shares, we can convert the shares to arithmetic in parallel and combine
them. Namely, given [x]B = ([x0]B , . . . , [xλ−1]B) where xi ∈ {0, 1} is the ith bit
of x, we have [x]A =

∑λ−1
i=0 2i[xi]A, noting that x =

∑λ−1
i=0 2i([xi]BL ⊕ [xi]BR) =

∑λ−1
i=0 2i([xi]AL+[xi]AR). This means that converting a λ-bit Boolean share requires

L parallel conversions of a single bit, which requires the same number of rounds.
This fact is used by both the OT-based protocol of [8], and the daBit based
protocol here in Prio+. Recall that the OT-based protocol of [8] uses OT in the
online phase to accomplish the same goal of semi-honest Boolean to arithmetic
share conversion.

A daBit is merely a shared correlated pair ([b]B , [b]A) for some random bit
b, where the Boolean share is a single bit, and each server has one share of [b]B

and one share of [b]A. To convert some single bit Boolean share [xi]B to [xi]A,
the servers compute their respective shares of [xi]B ⊕ [b]B and swap them to get
v = xi ⊕ b in the clear. Then, they locally compute [xi]AL = v + [b]AL − 2v[b]AL and
[xi]AR = [b]AR−2v[b]AR. This requires communication of only a single Boolean value
v. If both players behave honestly, we get [xi]AL + [xi]AR = v + b − 2vb = v ⊕ b
since v and b are single bits, and v ⊕ b = xi by definition of v. To convert a λ-bit
integer x, servers convert each bit xi in parallel and then locally compute [x]A =
∑λ−1

i=0 2i[xi]A (mod p) to get arithmetic shares of x. Because we are working in
the semi-honest case, as these are used only by the semi-honest servers, this is
more efficient than in [23], where they needed to use an arithmetic Beaver triple
to generate each daBit in the malicious setting.

The servers are able to generate each daBit in parallel offline using a single
OT each. To convert a single bit, the daBit B2A share conversion only needs
to communicate a single bit in the online phase (and consume a daBit), while
OT share conversion in [8] requires an online OT (OT where inputs depend on
client data). Hence, our daBits share conversion is much faster in the online
phase. End to end, daBits B2A requires an OT to generate a daBit in the offline
phase to precompute the correlated daBit, so end-to-end daBit share conversion
including the offline phase only requires a single bit more than the OT protocol in
[8]. Formal protocols for daBit generation and share conversion are given below.

daBitGenp

Inputs: one OT
Output : A random daBit ([b]A, [b]B) per server.

1. Sample Both servers i ∈ {L, R} samples a random bit bi ∈ {0, 1}. SL also samples
a random integer x mod p.

2. Use OT
– SL acts as the OT sender, sending (x, x + bL). SL also sets yL = −x (mod p).
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– SR acts as the OT receiver, using bR as the choice bit. SR receives yR = x+bLbR

(mod p)
3. Compute

(a) Both servers set [b]Ai = bi − 2yi (mod p).
(b) They also set [b]Bi = bi.

4. Output Server Si outputs ([b]Ai , [b]Bi ).

B2Ap

Inputs: Boolean shares of a single bit [x]BL , [x]BR ∈ Z2. A single dabit ([b]A, [b]B)
Output : Arithmetic shares of the same bit [x]AL , [x]AR ∈ Zp.

1. Compute v = x ⊕ b
(a) Both servers i ∈ {L, R} compute [v]Bi = [x]Bi ⊕ [v]Bi .
(b) Servers send their share [v]Bi to each other.
(c) Servers now have v = x ⊕ b = [v]BL ⊕ [v]BR in the clear.

2. Convert
(a) Both servers locally compute [x]Ai = v + [b]Bi − 2v[b]Bi (mod p).
(b) Since v is in the clear, specifically server λ computes [x]AL = v + [b]BL − 2v[b]BL

(mod p), and server R computes [x]AR = [b]BR − 2v[b]BR (mod p).
3. Output Server Si outputs [x]Ai .

9 Security

Here we briefly describe the security properties of Prio+, deferring formal state-
ments and proofs of security to the full version of the paper [1]. Let 0 ≤ c∗ ≤ n
be the number of corrupted clients who submit invalid input shares. For every
protocol, up to n malicious players colluding with one semi-honest server learn
nothing but the output except with negligible probability. Clients may learn a
modest leakage in some cases based on the specific AFE construction. E.g., to
compute MEAN servers must reveal the number of players n − c∗ whose inputs
were included in the aggregate. Servers must also give this value when comput-
ing linReg. Due to the AFE construction for VAR, the output necessarily leaks
the expected value in addition to the variance. All of these modest leakages are
analogous to the results of [4]. All protocols are robust against malicious clients.

10 Practical Evaluation

We implemented our scheme in 10,000 lines of C/C++. We utilized the libOTe
toolkit [22] for OT and silent OT-extension. Silent OT is a variant of OT which
we use to speed up our offline pre-computation phase. Our scheme uses semi-
honest OTs, since our servers are assumed to be semi-honest. Our implementa-
tion supports secure computation of SUM,AND,OR,MAX, MIN, VAR, STDDEV,
FRQ and linReg. Two implementations of the original Prio protocol exist which
we benchmarked against: the original implementation Prio (Go), written in Go,
supports secure computation of SUM,AND,OR,MAX, MIN, and linReg. Since the
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original paper’s publication, another implementation Prio (Mozilla) was written
by Mozilla in C. The Mozilla implementation only supports SUM.

We provide comparison data for three statistics: SUM,MAX, and linReg.
These represent our three categories of protocols: SUM requires share conversion
but no SNIPs, MAX requires neither share conversion nor SNIPs, and linReg
requires both share conversion and SNIPs. We collected four types of data for
comparison: client encode time (microseconds per client), client message size
(bytes per client per server), server compute time (microseconds per server per
client), and server communication (bytes per server per client). Most metrics
are linear in the total number of clients, and so we ran multiple trials with 10k,
50k, and 100k clients and then averaged the result. The one exception is server
compute time for linReg, which increases sub-linearly with number of clients,
in which case we used a constant 50k clients for each trial. In our end-to-end
implementation we used the exact same servers as the original Prio paper, two
c4.2x large AWS servers. All protocols were implemented using just two servers
located in the us-east-1f zone as to mimic a low-latency, high bandwidth connec-
tion. The client code was run from a separate instance of the same c4.2x large
AWS server, and all client data was randomly generated. All three implementa-
tions (Go, Mozilla, Prio+) use this same 2-server setup. For some measurements,
particularly client encode times, measurements were gathered for a large batch
of clients and then averaged to get encode time per client. Since Prio+ has such
fast encode time, we chose to represent these times in microseconds rather than
milliseconds, simply for ease of comparison with Prio. The original measure-
ments were made in milliseconds, ensuring stability of the resulting data. For
more comparison charts, see the full paper [1].

10.1 Data: SUM

For SUM, we compared Prio+ to both Prio implementations. We ran four sep-
arate experiments with clients holding 1-bit, 8-bit, 16-bit, and 32-bit integers.
We also measured end-to-end runtime of our system including the offline phase.
In total, our Prio+ implementation computes the sum of 100,000 16-bit integers
in 0.23 s. Also accounting for pre-computing the necessary 800,000 daBits, this
becomes 0.63 s in total.

Analysis: Prio+ overwhelmingly outperforms Prio in terms of client encode time
and client message size (Figs. 1 and 2). Prio+ also heavily outperforms Prio both
in terms of server compute time and communication. Also including precompu-
tation, end-to-end Prio+ servers still heavily outspeed Prio’s online time. Prio+
has comparable end-to-end server communication to the online Prio (Mozilla)
when summing single-bit integers, but as the size of the integers increases, Prio+
servers communicate more. End-to-end Prio+ servers communicate less than
Prio (Go) servers except in the 32-bit case.



Prio+: Privacy Preserving Aggregate Statistics via Boolean Shares 535

10.2 Data: MAX

Since Prio (Mozilla) does not support MAX, we compared Prio+ only to Prio
(Go). Clients held integers in the range [0, x] for x ∈ {16, 32, 64, 128}. In total,
our Prio+ implementation computes the maximum of 100,000 4-bit integers in
5.25 s.

Analysis: Prio+ MAX requires no share conversion and no SNIPs, resulting
in dramatic performance benefits for both clients and servers. Most relevant
is a nearly 1,000x improvement in client encode time (Fig. 3). Without share
conversion, we get an added benefit of sharply decreased server costs.

Fig. 1. Time necessary for a client to encode a private value, construct proof(s), and
compute shares of the encoding and proof(s) when computing SUM (Prio+ has no
proofs)).

Fig. 2. Size of the message that Pi (holding private value xi) sends to each server when
executing a protocol to compute SUM(x1, . . . , xn). Data is arranged according to the
number of bits in xi.
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Fig. 3. Time for a client to encode a private value, compute proof(s), and secret-share
the encoding/proof(s) when computing MAX. Arranged by range of client values.

10.3 Data: linReg

linReg is also only supported by Prio+ and Prio (Go). We performed four exper-
iments in which the feature vectors held by clients are of degree 2, 4, 6, and 8
respectively. Results are averaged between experiments with 10k, 50k and 100k
clients except for server compute time for which all experiments were performed
with 50k clients. In total, our Prio+ implementation computes a line-of-best-fit
over 100,000 ordered pairs of 8-bit integers in 7.41 s.

Analysis: Prio+ significantly reduces client costs to compute linReg, also sig-
nificantly reduces online server time with comparable end-to-end time. Client
encode time is up to 30x faster (Fig. 4), with up to 4x smaller client messages.
Online server work is between 2.5x to 14x less, with between 5x and 10x fewer
bytes communicated. Accounting for full end-to-end work of Prio+ to also gen-
erate daBits, the server runtime is between equal time to 7x faster, and between
1.7x to 20x more bytes to generate and run. As degree increases, additional share
conversion is needed for the increasing amount of shares per input, while SNIPs
take up the same amount of space, meaning costs go up as degree increases.

10.4 Data: Offline Pre-computation

Prio+ requires pre-computed data which is independent of client data. In our
semi-honest setting, we are able to use a single OT to generate a daBit, leading to
very efficient generation. On average, our daBit generation can produce around
4,000,000 daBits per second. Thus it takes 1.25 s to compute enough daBits to
perform 8-bit degree 2 linear regression of 100,000 submissions.
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Fig. 4. Time for a client to encode a private value, compute proof(s), and secret-share
the encoding and proof(s) when computing linReg. Each input is a degree d vector of
8-bit integers. Data arranged by degree d.

11 Conclusions and Future Work

Prio+ privately computes aggregate statistics with minimal burden on the client,
often also reducing server costs. For SUM, client performance and server compute
time dramatically improve with slightly increased server communication for large
inputs. For MAX, Prio+ significantly reduces the burden on both clients and
servers. Using precomputed daBits, Prio+ beats Prio in all examined metrics.

Prio+ requires an offline pre-computation phase, but this is relatively efficient
and can be done during otherwise idle times. Even adding in the pre-computation
timing for the dabits generation, Prio+ is still faster in all metrics, and requires
slightly more server bandwith for large linReg inputs but still requires less for
simpler inputs. We hope to expand Prio+ to compute additional aggregate statis-
tics, especially those which require no SNIPs or share conversion.
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Abstract. We present new constructions of multi-party homomorphic
secret sharing (HSS) based on a new primitive that we call homo-
morphic encryption with decryption to shares (HEDS). Our first con-
struction, which we call Scooby, is based on many popular fully homo-
morphic encryption (FHE) schemes with a linear decryption property.
Scooby achieves an n-party HSS for general circuits with complexity
O(|F | + log n), as opposed to O(n2 · |F |) for the prior best construc-
tion based on multi-key FHE. Scooby can be based on (ring)-LWE with
a super-polynomial modulus-to-noise ratio. In our second construction,
Scrappy, assuming any generic FHE plus HSS for NC1-circuits, we obtain
a HEDS scheme which does not require a super-polynomial modulus.
While these schemes all require FHE, in another instantiation, Shaggy,
we show how in some cases it is possible to obtain multi-party HSS with-
out FHE, for a small number of parties and constant-degree polynomials.
Finally, we show that our Scooby scheme can be adapted to use multi-key
fully homomorphic encryption, giving more efficient spooky encryption
and setup-free HSS. This latter scheme, Casper, if concretely instantiated
with a B/FV-style multi-key FHE scheme, for functions F which do not
require bootstrapping, gives an HSS complexity of O(n · |F | + n2 · log n).

1 Introduction

One of the more interesting cryptographic constructions to be developed in recent
years has been homomorphic secret sharing (HSS). This concept, which can be
seen as a distributed analogue of homomorphic encryption, was introduced in
[6], where a two party construction for branching programs was presented based
on the decisional Diffie-Hellman assumption. The idea of HSS starts from the
concept of a (traditional) secret sharing scheme, where an input x to some
function is split into n shares, (x1, . . . ,xn). This sharing, that in this work
we always assume to be a full threshold sharing, is created via an algorithm
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(x1, . . . ,xn) ← ShareHSS(x). An HSS scheme has two additional algorithms, the
first yi ← EvalHSS(F ;xi) takes a function description F and a share xi and pro-
duces a corresponding output share yi. The second RecHSS(y1, . . . , yn) takes the
output shares and reconstructs the result F (x). To avoid trivial solutions one
requires that the length of the yj ’s should be compact, i.e. it only depends on
the output length of the function F and the security parameter. An important
class of HSS schemes are those with additive reconstruction, where the function
RecHSS simply computes y1+ . . .+yn. We refer to these as additive HSS schemes.
It is such additive HSS schemes that we focus on in this work.

Motivation for HSS. The main application of HSS is towards secure two-party
or multi-party computation with succinct communication. Indeed, the break-
through work of [6] showed that for a large class of circuits, it’s possible to
achieve secure computation with sublinear communication in the circuit size
under DDH, which was previously only known using fully homomorphic encryp-
tion. Since then, HSS has proven useful in various other applications, and is
closely related to pseudorandom correlation generators [3] and pseudorandom
correlation functions [4], which allow generation of correlated randomness with
a minimal amount of interaction. HSS for simple classes of functions, partic-
ularly the case of distributed point functions [21], has also proven useful for
applications including private information retrieval [7] and secure RAM compu-
tation [17]. On a more theoretical side, HSS has also been used to build 2-round
secure computation and nearly optimal worst-case to average-case reductions [8].

Additive reconstruction is an important feature of HSS in many secure com-
putation settings, where it may be desirable for the output shares to be re-used
in another secure computation based on secret sharing. This is the case, for
instance, when using HSS to generate preprocessing material for multi-party
computation protocols in the dishonest majority setting [3]. It can also be a use-
ful feature in scenarios where a client reconstructing the output is constrained
to perform only lightweight computations.

Current State of HSS and Related Primitives. Related to HSS is the dual concept
of function secret sharing (FSS) [5,7]. In FSS, the shared data is a secret function
F (from some publicly known class of functions), such that the parties can locally
obtain secret shares of F (x), for any public input x. For general function classes
such as polynomially-sized circuits, function secret sharing and homomorphic
secret sharing are equivalent.

Obtaining efficient n-party HSS and FSS is complex for general functions.
The most efficient known scheme is that based on an LWE-construction from
spooky encryption. Spooky encryption, introduced by Dodis et al. [16], is a
rather complex construction based on a multi-key variant of FHE [15,23], and
for our purposes we are only interested in additive-function-sharing spooky
encryption (or AFS-spooky encryption). Spooky encryption is a semanti-
cally secure public-key encryption scheme consisting of the usual three algo-
rithms (KeyGenSpooky,EncSpookypk ,DecSpookysk ) as well as an additional algorithm
EvalSpookypk1,...,pkn

(F, ct1, . . . , ctn). The EvalSpooky algorithm, given a function F on n
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arguments from a given class, and n ciphertexts cti, encrypting xi under pki, pro-
duces n new ciphertexts ct′1, . . . , ct

′
n such that, computing yi ← DecSpookyski

(cti),
we have that y1 + . . . + yn = F (x1, . . . , xn).

In [16], it is shown that it is possible to build FSS from AFS-spooky encryp-
tion. Roughly, to share an input function F the dealer first generates n AFS-
spooky key pairs (pki, ski) ← KeyGenSpooky(1λ). The dealer also generates an
n-out-of-n description of the function F , i.e. functions Fi(x) such that F (x) =
F1(x)+ . . .+Fn(x). Finally, the function secret sharing of the input function F is
defined to be the tuple Fi = (ski, pk1, . . . , pkn,EncSpookypk1

(F1), . . . ,Enc
Spooky
pkn

(Fn)).
To define the FSS evaluation we create a function Cx which takes as input

the n additive shares of a function F , and evaluates it on the input x, which is
hard-coded into Cx. By applying

EvalSpookypk1,...,pkn

(
Cx,EncSpookypk1

(F1), . . . ,Enc
Spooky
pkn

(Fn)
)

,

we obtain ciphertexts ct′1, . . . , ct
′
n, where ct′i can be decrypted (using ski) to

obtain yi such that y1 + . . . + yn = F (x).
In [8], Boyle et al. showed how the FSS construction from spooky encryption

can be modified to enable an additive HSS scheme. The ShareHSS(x) opera-
tion additively shares x into x = x1 + . . . + xn, generates n spooky key pairs
(pk1, sk1) ← KeyGenSpooky(1λ), and then encrypts xi via cti ← EncSpookypki

(xi).
The share values xi output by ShareHSS(x) being xi = ({pki}n

i=1, {cti}n
i=1, ski).

The EvalHSS(F,xi) function executes EvalSpookypk1,...,pkn
on the function F and the

ciphertext (ct1, . . . , ctn) so as to obtain n ciphertexts ct′1, . . . , ct
′
n. The output of

EvalHSS(F,xi) then being DecSpookyski
(ct′i).

Thus, there is a strong connection between HSS, FSS and spooky construc-
tions, and, as mentioned above, the prior most efficient n-party HSS and FSS
constructions for circuits arise from AFS-spooky based on LWE (and a circular
security assumption). The best current construction for AFS-spooky encryption
of Dodis et al. [16] has a complexity of O(n2 · |F |). In particular, each gate of
the underlying arithmetic circuit F requires a bootstrapping operation which in
the multi-key FHE setting has complexity O(n2).

1.1 Our Contribution

We present new constructions of homomorphic secret sharing in the multi-party
setting, supporting up to n − 1 out of n corruptions. Our constructions improve
upon the only previous general construction, based on AFS-spooky encryp-
tion [16], either by being more efficient, or in some cases, relying on different
assumptions.

HSS from Homomorphic Encryption with Decryption Shares. We
present our constructions as a new primitive called homomorphic encryption
with decryption to shares (HEDS), which can be seen as a homomorphic encryp-
tion scheme with a special decryption algorithm that (non-interactively) outputs
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an n-party secret share of the encrypted message. HEDS is closely related to both
spooky encryption and homomorphic secret sharing (HSS): the major difference
compared to spooky is that HEDS needs to set up private decryption keys under
a common public key with either a trusted setup algorithm or a secure multiparty
computation protocol, while the difference with HSS is that the homomorphic
evaluation algorithm is public. As is the case for spooky, HEDS immediately
implies additive HSS for the same class of functions.

Scooby Construction: HEDS from Linear Decryption FHE. We show
that HEDS can be built using any FHE scheme with a special decryption prop-
erty, which we call linear decryption based fully homomorphic encryption (LD-
based FHE) schemes. Examples of such LD-based FHE schemes are LWE-based
constructions like BGV [11], BFV [18], GSW [20] and TFHE [13,14]. Notice this
special property of almost all FHE schemes, where the decryption function is
a linear function of the secret key, has been exploited previously, including for
HSS in the two-party setting [9,16] and other applications [10,19].

Any of these schemes can be used to instantiate our Scooby construction,
giving additive HSS for circuits. Recall in AFS-spooky the key generation is run
independently by the n-parties, in our variation the keys are instead generated
by a trusted third party.1

Since this construction only requires single-key FHE and not multi-key FHE,
we obtain n-party HSS that is simpler and more efficient than the AFS-spooky-
based construction. In particular, the computational complexity grows as O(|F |+
log n), whereas AFS-spooky has complexity O(n2 · |F |) for n parties. In addition,
when instantiated with BGV we show that the standard parameter sets for
bootstrapping are sufficient for our construction.

At a high level, at the core of Scooby is a well-known 2-party distributed
decryption procedure, which non-interactively decrypts an LWE-based cipher-
text into two shares, assuming the ciphertext modulus has super-polynomial size.
This trick has been used previously, including in the construction of AFS-spooky.
Our main contribution is to bootstrap this 2-party non-interactive algorithm into
an n-party non-interactive algorithm. We do this by placing the n parties on the
leaves of a binary tree, and then homomorphically evaluating the two party pro-
tocol at each internal node of the tree. Each party only needs to evaluate the
2-party protocol at each node on the path from the root to its leaf. Each homo-
morphic evaluation at the internal nodes is exactly equivalent to a bootstrapping
operation, namely a homomorphic evaluation of the decryption circuit for some
key. Thus, decryption into shares costs O(log n) operations per party.

Removing the Super-polynomial Modulus. The problem with Scooby,
as well as all LWE-based additive HSS schemes, is that we require a super-
polynomial modulus-to-noise ratio in the underlying LD-based FHE scheme.

1 In some sense the “spooky” behaviour exhibited by spooky encryption cannot really
be explained, whereas our “spooky” behaviour can be explained by the setup proce-
dure. This setup procedure in some sense acts like the janitor in Scooby-Doo, who
has set up the spooky goings-on.
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This is a stronger form of LWE assumption that usually requires larger param-
eters to compensate. We give a variant of the construction where we only need
standard FHE, together with an HSS scheme for NC1 circuits. Using recent con-
structions of HSS [1,25,27] based on either Paillier encryption or class groups, we
obtain the first additive HSS schemes for circuits that do not require LWE with
a super-polynomial modulus. The complexity of the HSS is also O(|F | + log n),
however, it is likely to be less efficient in practice than Scooby. We call this
construction Scrappy. We summarize our results in Table 1.

Table 1. Summary of n-party HSS Constructions. All FHE-based constructions allow
arbitrary functions F , and assume circular security to avoid blow-up in the key sizes
(this assumption can be removed by relaxing to bounded-depth circuits). The asymp-
totic complexities ignore potential factors in λ that are independent of n and F .

Construction Assumptions Setup Complexity

DHRW [16] LWE with Uniform CRS O(n2 · |F |)
(AFS-Spooky) super-polynomial modulus

Scooby: §5 LD-based FHE with Trusted O(|F | + log n)
(HEDS) super-polynomial modulus

Scrappy: §6.1 Generic FHE + Trusted O(|F | + log n)
(HEDS) 2-party HSS for NC1

Shaggy: §6.2 2-party HSS for NC1 Trusted O(|F |)
(HEDS) (n = 4, constant-deg F )

Casper: (Full Version) Specific MK-FHE with Uniform CRS O(n · |F | + n2 · log n)
(AFS-Spooky) super-polynomial modulus or O(n2 · |F | + n2 · log n)

Avoiding FHE Entirely. We also show that in certain cases, we can obtain
multi-party HSS without using any form of FHE whatsoever. We do this through
a variant of the previous construction, where we bootstrap a HEDS scheme to
handle more parties by homomorphically evaluating its own decryption circuit.
This transformation is more challenging to apply without resorting to FHE,
and we are only able to obtain a 4-party HEDS scheme for constant-degree
polynomials, based on Paillier encryption. Nevertheless, as far as we are aware,
this is the first instance of > 2-party, dishonest majority HSS for constant-degree
polynomials, without relying on FHE. We call this construction Shaggy.

Spooky from HEDS. In addition, in the full version, we show how our Scooby
scheme can be adapted to give a true AFS-spooky encryption, i.e. with no trusted
setup and independent keys, if we base our construction on specific multi-key
FHE (MK-FHE). This instantiation can have a simpler complexity than that
given in [16], in particular, assuming the function F can be evaluated without
bootstrapping, our complexity is O(n · |F |+n2 · log n). If F requires a bootstrap-
ping for all the operations, it is O(n2 · |F | + n2 · log n). We call this construction
Casper.

In the full version we give two variants of Casper, based on two different under-
lying FHE schemes. We note that being MK-FHE schemes, the construction will
be less efficient than our Scooby scheme, which works over most (practical) FHE
schemes. It is interesting to note that the spooky construction from [16] also goes
via MK-FHE. In particular, they make use of the MK-FHE scheme of [15,23].
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The route though is more complex than our tree-based construction, leading to
an increased complexity.

2 Preliminaries

For a set S, we denote by a ← S the process of drawing a from S with a
uniform distribution on the set S. If D is a probability distribution, we denote
by a ← D the process of drawing a with the given probability distribution. For
a probabilistic algorithm A, we denote by a ← A the process of assigning a
the output of algorithm A; with the underlying probability distribution being
determined by the random coins of A.

All reductions modulo an integer p will be assumed to be centered, i.e. in the
interval (−p/2, . . . , p/2).

We let R = Z[X]/(XN + 1) and Rp denote the localisation of R at p, i.e.
(Z/pZ)[X]/(XN + 1). For a real interval I we let RI denote the restriction of
the set R to have coefficients in the support of I. Thus as sets (but not as rings)
we have Rq = R(−q/2,...,q/2).

2.1 Homomorphic Secret Sharing

The following definition of public-key HSS is adapted from [9]. Note that, as we
are only interested in schemes with additive reconstruction, we can disregard the
decoding algorithm, DecHSSsk , that is given in the more general definition of HSS
[8]. Concretely, in additive HSS the decoding algorithm simply adds up all the
shares.

Definition 2.1 (Additive Public Key Homomorphic Secret Sharing).
An n-party, public-key homomorphic secret sharing (HSS) scheme for a class of
functions F over a ring R with input space I ⊆ R consists of PPT algorithms
(KeyGenHSS,ShareHSSpk ,EvalHSSpk ) with the following syntax:

– KeyGenHSS(1λ, n) → (pk, (ek1, . . . , ekn)): Given a security parameter 1λ, the
setup algorithm outputs a public key pk and n evaluation keys (ek1, . . . , ekn).

– ShareHSSpk (pk, x) → (x1, . . . ,xn): Given public key pk and private input value
x ∈ I, the share algorithm outputs shares (x1, . . . ,xn).

– EvalHSSpk (F ;xi, eki) → yi: On input a function F ∈ F , the parties share xi,
and it’s evaluation key eki, the homomorphic evaluation algorithm outputs
yi ∈ R, which is party i’s share of an output y ∈ R.

This definition is in the multi-input setting, meaning that it supports a com-
pact evaluation of a function F on shares of inputs x(1), . . . , x(ρ) given by ρ par-
ties that are usually referred to as clients. More concretely, each client inputs
x(i) to the Share algorithm which returns shares x(i)

j , j ∈ [n], to n parties (the

servers). Each server can then locally run Eval on input (x(1)
j , . . . ,x(ρ)

j ) obtain-
ing a share yj such that F (x(1), . . . , x(ρ)) =

∑
j∈[n] yj . Note that the KeyGenHSS
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algorithm cannot be run by any single party, so can be seen as a form of corre-
lated randomness generated by a trusted dealer. We describe the required secu-
rity properties for the algorithms (KeyGen,Share,Eval) according to this more
general formulation.

Fig. 1. Security Experiment ExpHSS,sec
A,j (λ)

Definition 2.2 (HSS (Statistical) Correctness). We say that an n-party
public-key HSS scheme (KeyGenHSS,ShareHSSpk ,EvalHSSpk ) is correct for a class of
functions F if, for all security parameters λ ∈ N, for all functions F ∈ F , for
all x(1), . . . , x(ρ) ∈ I (where I is the input space of F ), for all (pk, ek1, . . . , ekn)
← KeyGenHSS(1λ) and for all (x(i)

1 , . . . ,x(i)
n ) ← ShareHSSpk (pk, x(i)), i ∈ [ρ], we

have

Pr
[
y1 + · · · + yn = F (x(1), . . . , x(ρ))

]
≥ 1 − negl(λ),

where
yj ← EvalHSSpk (F ; (x(1)

j , . . . ,x(ρ)
j ), ekj), j ∈ [n],

where the probability is taken over the random coins of KeyGenHSS, ShareHSSpk and
EvalHSSpk .

Definition 2.3 (HSS Security). Let I be the set of corrupt servers. For each
j ∈ I and non-uniform adversary A (of size polynomial in the security parameter
λ), it holds that ∣∣∣Pr[ExpHSS,sec

A,j (λ) = 1]
∣∣∣ ≤ 1

2
+ negl(λ),

where ExpHSS,sec
A,j (λ) is the experiment defined in Fig. 1.

Remark 2.1 (Private-key HSS). HSS can also be defined in the single-input,
private key setting, which is weaker than the public-key flavour above. Here,
there is no KeyGen algorithm, and Share is run only once on all inputs together,
so can be seen as a trusted dealer algorithm that distributes the shares.
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2.2 Spooky Encryption

“Spooky” encryption is a type of public key encryption scheme which exhibits
a form of limited malleability, so called “spooky action at a distance” [16]. The
particular form of spooky encryption we will use is so called additive-function-
sharing spooky encryption (or AFS-spooky encryption). We present a definition
which works for any finite ring R, and arithmetic circuit C, and not just for the
case of F2 as originally presented.

Definition 2.4 (AFS-spooky Encryption). An AFS-spooky encryption
scheme, over a finite field Fp, is a public-key encryption scheme given by a tuple
of four algorithms (KeyGenSpooky,EncSpookypk ,DecSpookysk ,EvalSpookypk1,...,pkn

) with the fol-
lowing syntax:
– KeyGenSpooky(1λ): This is a probabilistic polynomial time algorithm which on

input of a security parameter λ outputs a public/private key pair (pk, sk).
– EncSpookypk (m): This probabilistic polynomial time algorithm takes a message

m ∈ R and generates a ciphertext ct encrypting that message under the public
key pk.

– DecSpookysk (ct): Given a ciphertext ct encrypted under the public key associated
to sk, this algorithm produces the underlying plaintext.

– EvalSpookypk1,...,pkn
(C, ct1, . . . , ctn): Given an arithmetic circuit description C :

Rn −→ R, n public keys pk1, . . . , pkn, and n of ciphertexts ct1, . . . , ctn, this
produces n ciphertexts ct′1, . . . , ct

′
n

An AFS-spooky encryption scheme must be correct, as an encryption scheme,
i.e. we must have

∀(pk, sk) ← KeyGenSpooky(1λ), ∀m ∈ R : DecSpookysk ( EncSpookypk (m) ) = m.

It must also be IND-CPA as an encryption scheme and satisfy the following form
of limited malleability called AFS-spooky correctness.
Definition 2.5 (AFS-spooky Correctness). There exists a negligible func-
tion ν such that for all λ ∈ N, every arithmetic circuit C computing a n-argument
function f : Rn −→ R, and all inputs x1, . . . , xn of C, we have

Pr

⎡
⎢⎢⎢⎣

∑
i∈[n]

yi = C(x1, . . . , xn) :

∀i ∈ [n], (pki, ski) ← KeyGenSpooky(1λ),

∀i ∈ [n], cti ← EncSpookypk (xi),

(ct′1, . . . , ct
′
n) ← EvalSpookypk1,...,pkn

(C, ct1, . . . , ctn),

∀i ∈ [n], yi ← DecSpookyski
(ct′i)

⎤
⎥⎥⎥⎦ ≥ 1−ν(λ)

In [16], it is shown how to construct an AFS-spooky encryption scheme in
the CRS model using an LWE-based multi-key FHE [15,23] and assuming a
circular security assumption. The common reference string (output by a separate
generation algorithm), necessary in the multi-key FHE construction, is assumed
as input to the key generation algorithm, and correctness and security hold for
all outputs of the common reference string generator.

In their work, Dodis et al. [16] show that AFS-spooky encryption implies
FSS for general circuit; in [8], Boyle et al. show that AFS-spooky also enables
HSS for multiple inputs; in fact, it implies HSS without any setup, where the
key generation algorithm is simply run locally by each client providing input.
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3 Homomorphic Encryption with Decryption to Shares
(HEDS)

In this section we formally introduce the notion of a scheme which implements
Homomorphic Encryption with Decryption to Shares (HEDS) and relate it with
other concepts described in previous sections. Loosely speaking, a HEDS encryp-
tion scheme is similar to public-key HSS, except with a public evaluation algo-
rithm that outputs a ciphertext, more akin to evaluation in homomorphic encryp-
tion. The ciphertext is then convert into shares in the decryption algorithm,
which uses one party’s private key. In addition, similarly to HSS, but unlike in
spooky encryption, the parties need to engage in a protocol, or assume a trusted
third party, to set up the associated public and secret keys. Thus the action
from the outside seems spooky, but this can be explained away as an effect of
the setup protocol.

We start by giving the definition of HEDS, and then we show that it enables
both homomorphic and function secret sharing.

Definition 3.1 (HEDS Encryption). A HEDS encryption scheme for a class
of functions F : R∗ → R, over a ring R, is given by a tuple of PPT algorithms
(SetUpHEDS,EncHEDS

pk , DecHEDS
sk , EvalHEDS

pk ), with the following syntax:

– SetUpHEDS(1λ, n): This randomized algorithm takes as input a security param-
eter λ, a number of parties n. It outputs the tuple (pk, sk1, . . . , skn).

– EncHEDS
pk (m): This takes as input the public key and a message m ∈ R, and

outputs a ciphertext ct.
– DecHEDS

ski (ct): Given a ciphertext ct encrypted under the public key this outputs
a value yi for each i ∈ [n].

– EvalHEDS
pk (C, (ct1, . . . , ctρ)): On input of the public key pk, a set of n cipher-

texts, and an arithmetic circuit description C : Rρ −→ R of a function from
the specified class, this produces a ciphertext ct.

The algorithms
(
SetUpHEDS,EncHEDS

pk ,DecHEDS
sk ,EvalHEDS

pk

)
should satisfy the

following correctness and security requirements.
Definition 3.2 (HEDS Correctness). There exists a negligible function ν
such that for all λ ∈ N, every arithmetic circuit C computing a ρ-argument
function f : Rρ −→ R in F , and all inputs x1, . . . , xρ of C, we have

Pr

⎡
⎢⎢⎣

∑
i∈[n]

yi = C(x1, . . . , xρ) :

(pk, sk1, . . . , skn) ← SetUpHEDS(1λ, n),

∀i ∈ [ρ], cti ← EncHEDS
pk (xi),

ct ← EvalHEDS
pk (C, (ct1, . . . , ctρ)),

∀i ∈ [n], yi ← DecHEDS
ski

(ct)

⎤
⎥⎥⎦ ≥ 1 − ν(λ).

Definition 3.3 (HEDS Security). For all subsets A ⊂ [n] of size < n, and
all probabilistic polynomial time adversaries (A1,A2) we have

Pr

⎡
⎢⎢⎣ b = b′ :

(pk, sk1, . . . , skn) ← SetUpHEDS(1λ, n), b ∈ {0, 1},
(m0,m1, state) ← A1(pk, {ski}i∈A),
ct ← EncHEDS

pk (mb),
b′ ← A2(ct, state)

⎤
⎥⎥⎦ ≤ negl(λ),
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i.e. the encryption scheme is IND-CPA, even when up to n − 1 secret keys are
given to the adversary.

Compactness. Just as with fully homomorphic encryption, we say that HEDS
is compact if the share decryption algorithm is independent of the evaluated
function.

3.1 Multi-input HSS from HEDS Encryption

Here we relate HEDS encryption and HSS showing that HEDS encryption implies
HSS with multiple inputs. Let P be a set of n servers and C be a set of m clients.
Let C be a circuit representing a function F : Rm → R in a class function F . To
build an HSS-scheme, we need to define three algorithms KeyGenHSS, ShareHSS,
EvalHSS as in Definition 2.1. Let (SetUpHEDS,EncHEDS

pk , DecHEDS
sk , EvalHEDS

pk ) be a
HEDS encryption scheme for F , as defined in the previous section, we proceed
as follows.

– KeyGenHSS(1λ, n):
1. Run (pk, sk1, . . . , skn) ← SetUpHEDS(1λ, n)
2. For each i ∈ [n], set eki := ski

3. Return pk and (ek1, . . . , ekn)
– ShareHSSpk (x(j)): Each client Pj ∈ P, on input x(j) performs the following steps.

We recall that the goal is to obtain shares (x1, . . . ,xn) of (x1, . . . , xm).
1. For i ∈ [n] and j ∈ [m], generate x

(j)
i such that x(j) = x

(j)
1 + . . . + x

(j)
n .

2. For each x
(j)
i , compute ct

(j)
i = EncHEDS

pk (x(j)
i ).

3. Set xi = {ct(j)i }j∈[m], for i ∈ [n].
– EvalHSSpk (F ;xi, eki): Given a function F : Rm → R, each server i ∈ [n] com-

putes circuit description C of F and proceeds as follows.
1. Compute cti = EvalHEDS

pk

(
C, (ct(1)i , . . . , ct

(m)
i )

)

2. Compute yi = DecHEDS
eki (cti)

By Definition 3.2, we know that the evaluation algorithm outputs to the servers
the shares y1, . . . , yn such that

∑
i∈[n] yi = y = F (x(1), . . . , x(m)).

Proposition 3.1. Assuming the existence of a HEDS encryption scheme for a
class of functions F , there exists a public-key multi-input HSS scheme for F .

Proof. Correctness follows by inspection of the scheme described above and by
correctness of the underlying HEDS construction. Security also follows from the
security of HEDS. 
�

In the other direction, we observe that a public-key HSS scheme implies
HEDS for the same class of functions, however, the resulting HEDS scheme
may not be compact. This is because the HSS evaluation algorithm will have to
be carried out in the HEDS decryption step, since HSS uses a private key for
evaluation.
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4 Linear-Decryption Based FHE

Our main constructions are based on a form of FHE which comes from LWE-style
systems. We abstract much of the details of the specific construction away in
what follows, for example the specific key generation and encryption algorithms.
This allows us to capture schemes as diverse as BGV [11], BFV [18], GSW [20]
and TFHE [13,14]. These schemes all have the same form of decryption equation,
namely one based on a linear inner product combination of the ciphertext with
the secret key, modulo the ciphertext modulus. The result of this inner product
is then processed to produce the plaintext (which is an element of Rp for some
prime p) in one of two distinct ways, depending on whether the message is
embedded at the top of the range modulo q (as in FV), or the bottom of the
range modulo q (as in BGV). We refer to these two types of decryption as FHE
as being of type msb and type lsb respectively. We call the whole class of such
FHE systems Linear Decryption based, or LD-based FHE. Similar definitions
have been considered previously [9,10,19].

Let sec denote some statistical security parameter and λ denote a compu-
tational security parameter. We define such a scheme as follows, the precise
encryption and evaluation algorithms are not important for our discussion.

Definition 4.1 (LD-based FHE). An LD-based FHE scheme is given by a
tuple of algorithms (KeyGenFHE,EncFHEpk ,DecFHEsk ,EvalFHEpk ), as follows:

– KeyGenFHE(1λ, p): This randomized algorithm takes as input the secu-
rity parameter λ and a plaintext modulus space p. It outputs a tuple
(q,N,B, d,Δ, S, pk, sk). The value q will correspond to the ciphertext mod-
ulus2, the value N will be the LWE-ring dimension (which for convenience
we assume is a power of two), the value B will be a “noise bound”, the value
d is one less than the dimension of the ciphertext space, the value Δ is set to
be �q/p, the value S is a bound on the secret key size S, and pk (resp. sk)
will be the public (resp. private) keys.
The private key sk = (s1, . . . , sd) is assumed to be a random element in Rd

q

sampled such that ‖sk‖∞ ≤ S. Note, this is not necessarily sampled uniformly
at random subject to this constraint.
All subsequent algorithms are assumed to take the tuple (N, q, d,B,Δ) implic-
itly as input parameters.

– EncFHEpk (m, type): On input of m ∈ Rp this will output a ciphertext ct ∈ Rd+1
q

such that

ct · (1,−sk) =
{

m + p · ε (mod q) If type = lsb,
Δ · m + ε (mod q) If type = msb.

A ciphertext such that ‖ε‖∞ ≤ B will be called valid. The encryption algo-
rithm produces such a valid ciphertext. The precise algorithm use for encryp-

2 In practice there may be many ciphertext moduli depending on which level a cipher-
text is sitting at, at a high level this can be ignored. Although it can be important
in practice.
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tion will depend on the public key, and the specific scheme. All that concerns
us is the form of the ciphertext.

– EvalFHEpk (F (x1, . . . , x�), {ct1, . . . , ct�}): On input of � valid ciphertexts cti and
an arithmetic function F (x1, . . . , x�) this function will homomorphically eval-
uate the function F over the ciphertexts, producing a valid ciphertext as out-
put.

– DecFHEsk (ct): On input of a valid ciphertext and a secret key this will compute
the message as

m =

{
(ct · (1,−sk) (mod q)) (mod p) If type = lsb,⌊

(ct · (1,−sk) (mod q)) · p/q
⌉

If type = msb.

The correctness requirement simply says that EvalFHE, when given � valid
ciphertexts, outputs a valid encryption of the correct result. The security require-
ment is the standard notion of IND-CPA security.

For example: In the case of the BGV scheme [11] from ring-LWE we will have
that ct = (c0, c1), so that decryption is given by ct · (1,−sk) = c0 − s1 · c1, and,
hence, for this scheme we have n = 1 and sk = s1. The BFV scheme [18] has the
same structure, the main difference being that BFV uses the msb decryption,
while BGV uses lsb.

In the case of Ring-GSW, a ciphertext is in R
(d+1)×(d+1)�
q , with d = 1 and

sk = s1. In practice it is composed by 2 · � FV-like ciphertext (i.e., with the
message encrypted in the msb). To decrypt a Ring-GSW ciphertext, we only
decrypt one of these ciphertexts: the others contain redundant information.
Another way of seeing a Ring-GSW ciphertext, is with a very sparse secret key
sk = (sk1, . . . , sk2�), where all the keys corresponding to the FV-like ciphertext
that we are not going to decrypt are set to zero. The TFHE scheme [13,14] uses
a combination of FV-like ciphertexts (with message encrypted in the msb, called
LWE and RLWE ciphertexts) and Ring-GSW ones.

Parameters for Decryption to Shares. For such LD-based FHE schemes we
have a special form of non-interactive two party distributed decryption, which
we shall now outline in the lsb and the msb cases. We will require the parameters
are selected so that

q > 2 · p · (B + 1) · 2sec, (1)

where sec is the statistical security parameter. This two-party distributed decryp-
tion, which is essentially the same technique as in [9,16], will form the basis of
our first multi-party HEDS construction in Sect. 5.

4.1 Two-Party Distributed Decryption: Type lsb

Suppose sk is split into two keys sk1 and sk2 with sk = sk1 + sk2 (mod q), with
sk1 held by party P1 and sk2 held by party P2. Now we can, without interaction,
given a valid ciphertext ct encrypting a message m, compute an additive sharing
of m = m1 + m2 (mod p) between P1 and P2 as follows. We require that the
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parties have agreed upon a public random value for each decryption, but later
will remove this using a PRF.

2-party DistDeclsb: Let R ← Zq be a public random nonce.
1. P1 computes d1 ← ct · (1,−sk1)+R (mod q) and then m1 ← d1 (mod p).
2. P2 computes d2 ← ct · (0,−sk2)−R (mod q) and then m2 ← d2 (mod p).

We prove that this leads to a correct result with overwhelming probability.

Proposition 4.1. Given an LD-based FHE scheme of type msb (Definition 4.1),
where (q,N,B, d,Δ, S, pk, sk) ← KeyGenFHE(1λ, p), with q > 2·p·(B+1)·2sec and
sk1 + sk2 = sk. Let (ct,m) be a pair of ciphertext/plaintext messages and m1 and
m2 values obtained with the 2-party distributed decryption procedure described
above. Then, it holds that

m = m1 + m2 (mod p),

with probability at least 1 − N · 2sec.

Proof. First we notice that

m = ((d1 + d2) (mod q)) (mod p),

and that we will always have m = m1 + m2 (mod p) if the internal reduction
modulo q in the decryption equation for m does not need to compensate for a
wrap around. However, since we know ct is valid (i.e., ct · (1,−sk) = m + p · ε
(mod q) with ‖ε‖∞ ≤ B) we also know that the coefficients of d1 + d2 (mod q)
will lie in the range (−p·(B+1), . . . , p·(B+1)). Thus, the distributed decryption
will potentially result in an error if and only if the coefficients of d1 lie in one of
the two ranges (−q/2,−q/2+p·(B+1)) or (q/2−p·(B+1), q/2). Since each party
added or subtracted the random R, it holds that d1 is uniformly distributed in
the range (−q/2, . . . , q/2). Therefore, the probability there is a wraparound in
a single coefficient is bounded by 2 · p · (B + 1)/q < 2−sec. However, we also
known that, if there is a wrap around, it will definitely result in an invalid
distributed decryption, as the error only consists of the addition of a single
value of q (mod p) �= 0. Thus, a single coefficient will be correct with probability
1 − 2−sec. To obtain a correct decryption we need all coefficients to be correct,
which will happen with probability

(
1 − 2−sec

)N ≈ 1 − N · 2−sec.


�
We report details on the two party distributed decryption for the type msb

in the full version.
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5 Scooby: Multi-party HEDS from LD-Based FHE

In this section we detail how to construct a HEDS encryption scheme for the
underlying ring Rp, from generic LD-based FHE. We call our construction
Scooby, as it is similar to a spooky encryption but with a trusted setup. To
denote the specific nature of this construction we refer to SetUpScooby, EncScoobypk ,
etc., instead of SetUpHEDS, EncHEDS

pk , etc.
At the core of Scooby is the 2-party distributed decryption procedure

described in the previous section. We show that, assuming an LD-based FHE
scheme, this directly yields a 2-party Scooby. We then show how to bootstrap
the 2-party scheme to the multi-party setting.

5.1 HEDS Key Generation

First, we need to slightly modify the KeyGen algorithm for the underlying FHE
scheme to take a “special” form that is common to all standard FHE construc-
tions. More concretely, the algorithm KeyGenFHE(1λ, p) proceeds as follows, using
two sub-procedures ParamGen() and PubKeyGen():

1. params ← ParamGen(1λ, p): This algorithm takes as input a security param-
eter λ, a plaintext modulo p and produces the scheme parameters params =
(q,N,B, d,Δ, S).

2. sk ← Rn
q such that ‖sk‖∞ ≤ S.

3. pk ← PubKeyGen(1λ, sk, params): This algorithm, on input the secret key and
scheme parameters, samples and outputs an associated public key pk.

5.2 Security Assumption

In our construction, we generate an FHE public key based on a secret-key sk =
sk0 + sk1, where sk0, sk1 are both sampled uniformly with coefficients bounded
by the parameter S. For security, we require that the scheme defined by (pk, sk)
satisfies the standard IND-CPA security notion, even when the adversary is given
one of the original secret keys ski. This is formalized as follows.

Definition 5.1 (Bounded secret key IND-CPA security). Let FHE =
(KeyGenFHE,EncFHEpk ,DecFHEsk ,EvalFHEpk ) be a linear decryption-based FHE scheme,
where KeyGenFHE is split into two sub-routines ParamGen,PubKeyGen as above.

We require that for (q,N,B, d,Δ, S) ← ParamGen(1λ, p), and sk0, sk1 ← Rd
q

with ‖ski‖ ≤ S, sk = sk0 + sk1 and pk ← PubKeyGen(sk), it holds that for any
PPT algorithm A, for any σ ∈ {0, 1}, messages m0,m1 and bit b ← {0, 1}:

Pr[A(1λ, pk, skσ,EncFHEpk (mb)) = b] ≤ 1/2 + negl(λ).

It is straightforward to verify that, given a linear decryption-based FHE
scheme that satisfies the bounded secret-key IND-CPA security, we obtain a
2-party Scooby encryption scheme using the prior algorithms for 2-party dis-
tributed decryption into shares described in the previous section. Indeed, this
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2-party distributed decryption forms the basis of the 2-party spooky construction
in [16] and HSS construction in [9]. However, to obtain an n-party generalization
is not immediate. A direct application of the trick used for 2-party to, say, 3-
parties results in decryption errors due to unaccounted for wrap-arounds in the
reduction modulo q of the local decryption. Coping with these wrap-arounds,
without resorting to interaction, thus seems a challenge. A challenge which we
solve in the next section.

5.3 From 2-party to n-party HEDS

Here we give the details of our construction Scooby, for n-party HEDS. The
encryption and evaluation algorithms of Scooby are identical to that of the
underlying linear decryption FHE scheme, so here we only describe the setup and
share decryption procedures. We give two different variants of the construction,
depending on whether the FHE scheme encodes the message in the lsb or msb
of the ciphertext. In this section, we focus on a linear decryption FHE scheme
that encodes the message in the lsb of the ciphertext; in the full version, we give
a variant for the msb type.

Scooby Setup. Recall that the setup algorithm in HEDS takes as input a security
parameter and outputs a global public key pk, as well as secret keys sk1, . . . , skn

to each of the n parties. For Scooby, in both the lsb and msb variants of LD-based
FHE scheme, the underlying SetUpScooby algorithm is the same. Note that in the
following, the SetUpScooby algorithm should be seen as a trusted setup procedure
that is either run by a trusted third party, or executed via an MPC protocol,
which can be done, for instance, based on the techniques from [26].

The SetUpScooby algorithm is described in Fig. 2. Recall that the main chal-
lenge is to setup up some key material which allows n parties to convert an
FHE ciphertext into shares of the message, while using the 2-party distributed
decryption method from the previous section. We build a binary tree with n
leaves, where the original FHE ciphertext lives at the root node. We split the
FHE secret key skFHE into two shares s̃k0, s̃k1, and then generate a fresh FHE key
pair for each of the two child nodes, and encrypt each s̃kb, for b ∈ {0, 1}, under
the corresponding public key. This process is repeated with the FHE secret keys
generated for the children, and so on throughout the tree. Note that we abuse
notation by writing ctv = EncFHEpkv

(s̃kv), even though s̃kv may not lie in the plain-
text space; we implicitly assume here that s̃kv is broken up into bits (or possibly
larger chunks), so ctv is actually a vector of ciphertexts encrypting each bit
separately.

The idea is that, during the decryption phase, the parties can homomorphi-
cally evaluate the 2-party distributed decryption function at each node of the
tree, obtaining a share of the message, now encrypted under a child node’s pub-
lic key. The i-th party repeats this for each node on the path to leaf i, where it
finally obtains a ciphertext encrypting an n-party sharing of the original mes-
sage, which it can decrypt.
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Fig. 2. Trusted setup algorithm for the Scooby construction

Given this setup procedure we define EncScoobypk and EvalScoobypk exactly as is
the case in the underlying LD-based FHE scheme. Next, we detail the DecScoobyski
procedure in the lsb case.

ScoobyDecryption. The decryption algorithms for Scooby in the lsb/msb-mode
are described in Fig. 3 and the full version, respectively. The decryption algo-
rithm requires �log n� − 1 evaluations of the EvalFHE function for the underlying
LD-based FHE scheme, each for a different public key. Note that the circuit used
in EvalFHE is almost exactly the decryption circuit, so the complexity of each of
these homomorphic operations is the same as a bootstrapping operation in the
underlying FHE scheme.

It is also clear that, due to the fact that at each internal branch we are
homomorphically evaluating the two-party distributed decryption method from
either Sect. 4.1 (for the lsb case) or the method for the msb case given in the full
version, the final n messages mi will sum up to the decryption of the ciphertext
ct. The only difference is that instead of adding or subtracting a random nonce
R, the parties are using the PRF F to randomize their shares in distributed
decryption; thus, the correctness property of the scheme relies on the security
of F .
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Fig. 3. Decryption to shares for lsb-based Scooby

Theorem 5.1. Let F be a pseudorandom function, and suppose there is an LD-
like FHE scheme which satisfies the hardness assumption from Definition 5.1,
such that (q,N,B, d,Δ, S) ← ParamGen(1λ, p) with q > 2 · p · (B +1) · 2sec. Then
the Scooby construction in Fig. 2–3 is a secure n-party homomorphic encryption
scheme with decryption to shares.

The proof is given in the full version.

Remark 5.1. Note that for correctness to hold it is not sufficient that for a single
party the path from the root to the node is correctly split. We need this to happen
for all parties simultaneously. This means that the obtained probability is in fact
1 − n · N · 2− sec and not, as initially might be believed, 1 − log(n) · N · 2− sec.

A Simpler Variant Relying on Circular Security. The previous construc-
tion avoids relying on a circular security assumption by switching to a freshly
sampled FHE key at each node of the tree. We could instead simplify this
slightly, with a variant of the construction where only one set of FHE secret
keys is used. Here, we would start by sampling an independent secret key
s̃ki for each leaf i. The public key associated with node v is then defined as
pkv = PubKeyGen(1λ, skv, params), where skv is the sum of all the leaf secret
keys that are descendants of v. We additionally encrypt sk under pkv and give
this out to the relevant parties. This introduces a circular security assumption,
however, it does not seem to offer any significant efficiency benefits except for a
slightly simpler setup algorithm.
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5.4 BGV Parameters Supporting Scooby

It would appear that at first sight the parameters needed for Scooby are larger
than those needed for standard FHE bootstrapping, due to the increase in q
required by Eq. (1). However, this is not necessarily the case, as we now explain
in the case of the BGV encryption scheme.

Standard BGV decryption simply requires the bound q > 2 · p · (B + 1) for
valid decryption, so we appear to have boosted the size of q by a factor of 2sec.
However, bootstrappable BGV as implemented in (say) HELib [22] utilizes an
underlying leveled SHE scheme. At level zero, where no further homomorphic
operations may take place without bootstrapping, we have a ciphertext modulus
q0 which satisfies q0 > 2 · p · (B + 1). At level L, i.e., the initial encryption level,
we have a ciphertext modulus qL which satisfies qL > 2 · p · (B +1) · 2bp·L, where
bp is the (average) bits-per-level of the chain of ciphertext moduli. On passing
from each level from L down to zero, the size of the ciphertext modulus drops
by (on average) 2bp . Note that, when bootstrapping a ciphertext from level zero,
we do not end up with a ciphertext at level L, instead we obtain a ciphertext at
level U (which denotes the so-called “usable” number of levels).

To see how this affects Scooby, we need to remember that at the end of the
EvalScoobypk procedure we will have a ciphertext at level U . This will satisfy our
bound in Eq. (1) if 2bp·U ≥ 2sec. Then, in executing DecScoobyski

, at each level of
the tree we notice that we are actually executing an operation equivalent to
bootstrapping. This is because at each node v = u‖b, where u is the parent node
and b ∈ {0, 1}, we are essentially either performing a homomorphic decryption

with the key (1,−s̃k
FHE

u‖1 ), or a homomorphic decryption with the key (0,−s̃k
FHE

u‖0 ).
Thus, at each stage of the execution of DecScoobyski

we have a ciphertext ct which
is at level U .

Examining the bootstrappable BGV parameters proposed in [22] we see that
in all cases we have 2bp·U ≥ 2128. Thus the Eq. (1) does not actually result in
any increase in parameters, at least in the case of the BGV scheme.

6 Multi-party HEDS from Weaker Assumptions

We now present alternative constructions to the previous section, without relying
on FHE with linear decryption and a super-polynomial modulus. In the first
construction, in Sect. 6.1, we use any generic FHE scheme and a 2-party HSS
scheme that supports homomorphic evaluation of the FHE decryption circuit.
This means we no longer need the local decryption trick from Sect. 4.1, so can
use FHE based on LWE with a polynomial modulus [12]. All LWE-based FHE
constructions have decryption in NC1, so the 2-party HSS can be instantiated
based on the Paillier assumption [25] or on class groups [1], which support HSS
for all of NC1.

In Sect. 6.2, we also give a variant of the construction that only requires
2-party HSS, and not FHE. This gives a way to bootstrap two-party HSS con-
structions to the multi-party setting. We show how it can be used to transform
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two-party HSS for branching programs, based on Paillier encryption, into 4-party
HSS for homomorphic evaluation of constant-degree polynomials.

6.1 Scrappy: HEDS from Standard FHE + HSS for NC1

This construction, shown in Fig. 4, follows the tree-based structure of Scooby
from the previous section. Previously, though, at each node of the tree, an FHE
ciphertext was split into two ciphertexts encrypting shares of the message, by
doing a special homomorphic decryption procedure tailored to the linear decryp-
tion property of the FHE scheme. In Scrappy, we instead do the homomorphic
decryption procedure inside a 2-party HSS scheme. Since most FHE schemes
have decryption in NC1, it suffices to rely on HSS for NC1, which can be built
from non-LWE-based assumptions. Of course, if done naively, this means we no
longer get encrypted shares of the previous message, but would actually obtain
the shares directly due to use of HSS. To avoid leaking all intermediate shares,
we use an additional FHE scheme on each level of the tree, and use this to
homomorphically evaluate the HSS evaluation procedure. The HSS evaluation
keys are then only given out at the leaves of the tree, while at higher levels they
are encrypted under FHE. Note that we only need the weaker, private-key form
HSS, from Remark 2.1, where the sharing algorithm can be seen as done by a
trusted dealer.

Theorem 6.1. Suppose there exists fully homomorphic encryption, and a 2-
party HSS scheme that supports homomorphic evaluation of the FHE scheme’s
decryption circuit. Then, there exists an n-party homomorphic encryption
scheme with decryption to shares, for any n = poly(λ).

The proof of the theorem is given in the full version. The above theorem implies
n-party HEDS assuming (1) LWE with a polynomial modulus [12], (2) circular
security, and (3) HSS for NC1 circuits, which can be based on decisional com-
posite residuosity [25] or a DDH-like assumption in class groups [1]. If we only
require n-party HEDS for bounded-depth circuits, we can remove the circular
security assumption, since we only required leveled FHE.

6.2 Shaggy: Bootstrapping HEDS to More Parties

We now give a separate transformation that increases the number of parties in
HEDS, without relying on fully homomorphic encryption. The construction, in
Fig. 5, essentially applies one layer of the previous, tree-based construction, with
a branching factor of n instead of 2. Additionally, instead of alternating between
FHE and HSS evaluation, we always evaluate within an n-party HEDS scheme.
This allows bootstrapping any sufficiently powerful n-party HEDS to support
n2 parties.
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Fig. 4. Constructing n-party HEDS using standard FHE and 2-party HSS

Theorem 6.2. Let n-HEDS be an n-party HEDS for a class of circuits C, whose
decryption algorithm, when viewed as a function of ski, can be written as a circuit
in C. Then, n2-HEDS (in Fig. 5) is an n2-party HEDS for C. Its encryption
and evaluation algorithms are the same as in n-Scooby, while the complexity of
decryption increases by a polynomial factor.

The proof is given in the full version. Note that the decryption complexity of
the bootstrapped construction n2-HEDS is increased by a polynomial factor.
Depending on the original n-party scheme, then, it may not be possible to apply
the transformation more than once, if the new decryption algorithm is no longer
in the class C.
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Fig. 5. Bootstrapping n-party HEDS to n2 parties

Instantiation with HSS from Paillier. We show how to apply the above
transformation to two-party HSS based on the decisional composite residuosity
assumption used in Paillier encryption. We can only apply the transformation
once, so we obtain a 4-party HEDS/HSS scheme, which can support homomor-
phic evaluation of constant-degree polynomials. As the underlying two-party
scheme n-HEDS, we can use the HSS construction from [25] or [27].

First, we need to frame the 2-party HSS constructions of [25,27] in our HEDS
framework. The constructions are given in a “public-key” flavour of HSS, with
SetUpHSS and EncHSS algorithms which are the same as in HEDS. The EvalHSS

algorithm, however, requires knowing a secret key, unlike the syntax for EvalHEDS.
To make this fit our HEDS framework, we define EvalHEDS in the scheme to
simply be the identity function, and move homomorphic evaluation into DecHEDS

ski .
This makes the resulting HEDS non-compact, but it can still be used for the
construction in Fig. 5.

Complexity of Evaluation in Paillier-based HEDS. We now analyze the circuit
complexity of the resulting DecHEDS algorithm, which performs HSS evaluation
of constant-degree polynomials. We can assume the polynomial is a simple mono-
mial f(x1, . . . , xc) = x1x2 · · · xc for a constant number of inputs (since to handle
sums of monomials, it’s enough to evaluate each monomial separately and add
the shares).



Scooby: Improved Multi-party Homomorphic Secret Sharing Based on FHE 561

With the methods of [25,27], each input xi is given as a Paillier encryption
of xi, together with encryptions of xi multiplied with each bit of the secret key.
In homomorphic evaluation, the parties perform c−1 sequential multiplications,
where in each of these, the core operation is a step that computes:

z = DDLog(Cd mod N2) + Fk(id) mod N

Here, N = pq is a public modulus, C ∈ Z
∗
N2 is a ciphertext, d is a secret

share that is known only to one party, and F is a pseudorandom function with
key k known to both parties. The distributed discrete log function DDLog(X)
computes �X/N · (X mod N)−1 mod N .

In general, modular exponentiation and inversion are not known to be in
NC1. However, it turns out that DDLog(Cd), when viewed as a function of d for
fixed C, does lie in NC1. The idea is that since C is public, we can consider the
powers C2j mod N2 as hard-coded into the description of the function. Similarly,
we hardcode C−2j mod N , for j = 1, . . . , �, where � is the bit length of d. This
allows computing

Cd =
�∏

j=1

(C2j )dj mod N2, (Cd mod N)−1 =
�∏

j=1

(C−2j )dj mod N

Since iterated product, modular reduction, addition/subtraction and integer
division are all in NC1 [2], DDLog(Cd) can be computed as an NC1 circuit.
Furthermore, evaluation of a PRF based on factoring can be done in NC1 [24].

In the complete multiplication algorithm, the above step is repeated O(λ)
times in parallel, which does not affect the circuit depth. The multiplication
algorithm is run c times sequentially, where the outputs of one multiplication
are used as the private d shares input to the next. If c is a constant, it follows
that the entire evaluation procedure is in NC1.

Plugging in two-party HSS for poly-sized branching programs (which includes
NC1), we obtain the following.

Corollary 6.1. Assume the decisional composite residuosity assumption holds.
Then, there exists a 4-party (non-compact) homomorphic encryption scheme with
decryption to shares for constant-degree polynomials.
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Abstract. Private Set Intersection (PSI) is one of the most useful
and well-studied instances of secure computation, with many variants
and applications. In this work, we present new solutions to PSI and
a weighted variant in which the output is the sum of the weights of
keywords in the intersection. Our protocols apply to the semi-honest,
two-server model and are optimized for the unbalanced case, where one
of the sets is much larger than the other, and for a dynamic streaming
setting, in which sets can evolve over time.

Our protocols make use of Function Secret Sharing (FSS) to aggregate
numerical payloads associated with the intersection while minimizing
interaction and computational overhead. They avoid the use of public-
key cryptography, giving simple and concretely efficient protocols for
unbalanced PSI. In the dynamic setting, we use queuing theory to elimi-
nate leakage with minimal overhead while ensuring low wait times, giving
efficient streaming unbalanced PSI.

1 Introduction

In this work, we describe a new lightweight approach to the Private Set Intersec-
tion (PSI) problem, which is geared towards the streaming and unbalanced PSI
variants. We focus on the two-server model, where the bigger data set is owned by
a pair of non-colluding servers. Unlike the traditional two-party setting, the two-
server model allows for solutions that avoid the use of public-key cryptography.
Such a two-server model is commonly used in the context of practical solutions
for private information retrieval and related problems; see, e.g., [6,15,40,41] and
references therein.
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Our technical approach makes a novel use of a Distributed Point Function
(DPF) [25], an instance of Function Secret Sharing (FSS) [8], to minimize com-
munication and computation costs and to support dynamic data sets. One key
feature of FSS is that it natively supports secure keyword search on raw sets of
keywords without a need for processing the keywords via a data structure for
set membership. Furthermore, the FSS functionality enables adding up numer-
ical payloads associated with multiple matches without additional interaction.
These features make FSS an attractive tool for lightweight PSI solutions for a
variety of applications, including private contact discovery, aggregated ads ana-
lytics, tracking breached passwords, monitoring data feeds for target keywords,
and contact tracing.

The bulk of PSI research focuses on the balanced case, where the parties
hold sets of roughly equal size. Recently there has been new interest paid to
unbalanced PSI, where one set has length n and the other has length N , with
n � N , and we desire total communication of Õ(n).

Additionally, although PSI generally is treated as a one-shot protocol, the
concept of updateable PSI was recently formalized [4] for a PSI that is executed
in a dynamic streaming setting. In many applications it is desirable to run the
PSI repeatedly over a period of time, where only a small number of elements from
each set changes each epoch, and the amortized work per epoch is proportional
to the size of the change. The protocols we present here offer improvements in
asymptotic complexity and concrete efficiency over previous protocols in these
settings, especially in the case of unbalanced streaming PSI. To further enhance
their efficiency without introducing extra information leakage, we also consider
a relaxation of the correctness requirement that enables answers to be slightly
delayed.

1.1 Our Contribution

Focusing on the setting of a single (semi-honest) client and two non-colluding
servers, we present efficient protocols for a generalized variant of PSI referred
to as PSI with weighted cardinality (PSI-WCA). In PSI-WCA, for each keyword
held by the client, there is an associated secret weight. The client learns the
weight sum of the keywords in the intersection. This is targeted towards appli-
cations where the client wants to obtain a weighted score for the quality of the
match between the two sets (e.g., weights can represent the importance of dif-
ferent keywords in a search query).1 Determining the (unweighted) size of the
intersection is a simple special case.

We present 4 protocols for PSI-WCA, two in the one-shot setting and two in
the streaming setting. Our one-shot protocols include a baseline protocol for PSI-
WCA and our queueing PSI-WCA, and our streaming protocols are a baseline

1 Note that while PSI-WCA does not return to the client the actual set of keywords
in the intersection, it can be used to achieve this by letting each weight include a
suitable encoding of the associated keyword (e.g., consecutive powers of this keyword,
cf. [15]).
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streaming PSI-WCA protocol and a streaming PSI-WCA protocol with greedy
scheduling. These solutions have the following features:

– One round. Our solutions use minimal interaction. In the one-shot case,
the client sends one message to each server and receives a message from
each server in return. In a streaming setting, only the servers need to send a
message in each epoch when the client’s input stays the same.

– Minimal cryptographic assumptions. Our solutions rely only on the min-
imal cryptographic assumption of the existence a secure PRG, which can be
instantiated with AES in practice. This gives rise to fast and simple imple-
mentations using standard hardware under conservative security assumptions.
All single server solutions necessarily require public-key cryptography.

– Weighted cardinality. Our protocols natively realize the generalized PSI
with Weighted Cardinality functionality that enables a fine-grained specifica-
tion of a matching score.

– Optimal server response size. The servers only need to respond to a client
query with a single element from the payload group. This is particularly useful
in a streaming setting where the same client query is reused for multiple
responses. In the case where the client only needs to learn the (unweighted)
cardinality of the intersection, each server can send just �log2(n + 1)� bits to
the client, where n is the client set’s size.

– Linear client query size. In our streaming and baseline solution, the client’s
queries depend linearly on the client’s set size n and the security parameter. In
a formal analysis, the security parameter is superlogarithmic in the server set
size N , but the query size otherwise does not depend (even logarithmically)
on N .

– Hashing without leakage via queueing. Hashing can be used to greatly
decreases the amount of server work at the expense of leaking information
about the client’s queries. We use queueing theory to delay certain responses
to prevent this leakage, and show that the improvement in efficiency comes
with only a small increase in expected wait time for queries to be processed.

– Nearly linear client query size with nearly linear server computa-
tion. We use our queueing solution to obtain a one-shot protocol with client
communication O(n log log n) and server computation O(N log log n) (ignor-
ing dependence on the security parameter), where n,N are the size of the set
of the client and server respectively.

We compare the concrete and asymptotic efficiency to existing protocols in
Tables 2 and 3 in Sect. 2.1, along with a more thorough discussion of related
work. But first, we give a brief overview of the distinguishing features of each of
our four protocols.

Baseline One-Shot Protocol. The baseline variant of our solution already offers
several attractive efficiency features. It employs only symmetric cryptography.
It involves a single round of interaction consisting of a query from the client to
each server followed by a response from each server to the client. The size of
the query is comparable to the size of the client’s small set Y ; concretely, in an
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AES-based implementation the client sends roughly 128 bits for each bit of a
keyword in Y . The answers are even shorter, and are comparable to the output
size.

In terms of computation cost, our basic solution is very fast on the client side:
in an AES-based implementation, the client performs roughly 4 AES calls for
each bit of each keyword in Y . On the server side, with server set X, the number
of AES calls scales linearly with |X| · |Y |. While this is acceptable in settings
where Y is small or when the client work is the bottleneck, e.g., when using
massive parallelism on the server side (as in the recent FSS-based encrypted
search system from [16]), this basic solution does not scale well when the size of
Y grows.

Traditional approaches for improving server computation and making it com-
parable to |X| employ batching techniques based on hashing or “batch codes”
[1,27,40]. While these techniques offer a significant improvement in server com-
putation, this comes at the cost of higher communication and setup requirements.
Moreover, some of these techniques, such as those used in the related context of
FSS for multi-point functions [7,11,37], can only efficiently apply to keywords
taken from a polynomial domain size, and hence do not apply to most of our
motivating applications.

Baseline Streaming Protocol. The minimal interaction pattern of our baseline
protocol is particularly useful when the same query is reused for computing
intersection with different sets X. We call this the server streaming setting. Our
baseline streaming solution makes a more fine-grained use of this feature in a
setting where both X and Y incrementally change with time, giving both server
streaming and full streaming solutions.

This streaming solution is noteworthy for its efficiency. The total client com-
munication and server computation cost of evaluating the intersection X ∩ Y
over a series of t′ time steps in which X and Y pick up some fixed number of
new elements N ′ and n′, respectively, in each time step, is almost equal (in fact,
asymptotic) to the cost of performing only the last step of this computation in
the one-shot setting.

This efficiency is possible because, unlike other one-server PSI protocols,
there is no preprocessing or setup required for the server’s set X, and so the server
can use a different set Xt at each time step with no additional preprocessing cost.

Streaming PSI-WCA with Greedy Scheduling. Instead of the traditional tech-
niques for reducing computational cost, we take the following leaner approach.
Our starting point is the standard technique of partitioning the keyword domain
into buckets, so that on average only a small number of keywords in Y fall in
each bucket. This reduces the PSI task to roughly |Y | instances of secure key-
word search, each applying to a single bucket that contains roughly |X|/|Y |
elements from X. Because FSS outputs are additively secret-shared between the
servers, the outputs for different buckets can be non-interactively summed up.
However, a direct use of this approach requires the client either to reveal the
number of keywords in Y that are mapped to each bucket, or alternatively to
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“flatten the histogram” by using dummy queries. The former results in leaking
a small amount of information about Y , whereas the latter has a significant toll
on performance. To maximize performance while avoiding leakage, our solution
flattens the histogram by deferring keywords from over-populated buckets to
be processed with high priority in the next batch of queries, using a technique
we call greedy scheduling. We use ideas from queueing theory to show that this
approach can indeed give superior performance with no leakage, at the price of
a very small expected latency in processing queries.

Queueing One-Shot Protocol. As an additional consequence of our streaming
protocol with greedy scheduling, we obtain a one-shot protocol by having the
client simulate the streaming protocol locally with dummy messages at every
message except the first. The client runs this process until they have no deferred
keywords, at which point they send the entire batch of queries as their message
to the servers.

Using the queueing results of Sect. 5, we show in Sect. 4.4 that the number
of iterations required for this simulated process leaks no information, and that,
under an appropriate choice of parameters, the expected number of iterations
is O(log log n). Therefore the average client communication is O(n log log n) and
the server computation is O(N log log n). This represents an improvement over
the state-of-the-art unbalanced PSI protocols, which previously could achieve at
best O(N log n) server computation with quasi-linear client communication.

1.2 Notation and PSI Models

The notation we use is comparable to that of existing PSI works, see e.g. [12,40].
There are two servers, who each hold a large set of keywords X, and a client
who holds a small set of keywords Y . In the basic version of the problem, the
client learns the cardinality of the intersection of X and Y without revealing to
any single server any information about Y (except an upper bound on its size)
and without learning any additional information about X. (We assume clients to
be semi-honest; lightweight protection against malicious clients can be obtained
using techniques from [6,9], and is out of scope for this work.) Following [40], we
refer to this as PSI cardinality (PSI-CA). We also consider a generalization of
PSI-CA in which the client associates to each keyword in Y an integer weight.
Here the goal is for the client to obtain the sum of the weights of tokens in the
intersection of X and Y . We refer to this extended variant as PSI with weighted
cardinality (PSI-WCA).2

We then consider PSI-WCA in the streaming setting, where the sets change
over time, presenting optimized solutions for this case. To simplify the presenta-
tion, we generally restrict our attention to the case where the client and server
sets at time t are denoted by Xt and Yt, and the parties desire to compute the

2 This is similar to private intersection-sum [26], except that in typical use cases of the
latter it is the server who holds the weights. Here both the weights and the output
are owned by the client.



Streaming and Unbalanced PSI from Function Secret Sharing 569

intersection of X := (∪t
i=1Xi) and Y := (∪t

i=1Yi), or equivalently, the difference
between the set X ∩Y and the set computed in the previous epoch. However, we
also show how a streaming variant appropriate for contact tracing, where tokens
expire after T epochs, can also be efficiently implemented using our approach.

One of our variants of streaming PSI-WCA allows for greedy scheduling of
tokens, where a stash of unmatched tokens is preserved from round to round,
with guarantees that the stash size is bounded, and the distribution of which
tokens are assigned to the stash from round to round reveals nothing about the
tokens’ values.

We also mention the simple decision version of PSI that returns a single bit
representing whether or the intersection is empty. For this variant of PSI, our
protocol requires only log2(M+1) bits of communication from each server, where
M is an upper bound on the intersection size. This is particularly useful in a
setting where the set X changes rapidly while the set Y is unchanged, such as
searching an internet feed for a set of targeted keywords.

Finally, we remark that both standard PSI, returning a bit vector, or PSI with
payload, returning the payloads of items in the intersection, can be recovered
from PSI-WCA by aggregating power sums, as done in [15].

1.3 Outline

In Sect. 2 we give background and related works. In Sect. 3 we provide our base-
line PSI-WCA protocol, and show its extension to the server-streaming case. In
Sect. 4, we give our streaming PSI-WCA with greedy scheduling protocol, and
analyze the expected wait times of the underlying queues in Sect. 5. In Sect. 6 we
discuss the implementation of our baseline protocol and associated benchmarks.

2 Background

2.1 Private Set Intersection

A Private Set Intersection (PSI) protocol [23] enables two parties to learn the
intersection of their secret input sets X and Y , or some partial information
about this intersection, without revealing additional information about the sets.
Many variants of this problem have been considered in the literature. We will be
interested in unbalanced PSI, where |X| � |Y | and the output should be received
by the party holding Y , to whom we refer as the client. We will further restrict
the client to learn the size of the intersection or, more generally, a weighted sum
over the intersection, while revealing no other information to the client.

PSI-Cardinality. The two functional variants of PSI we consider are PSI-
Cardinality and PSI-Sum (or referred to as Weighted Cardinality in this work to
distinguish the recipient). These variants are not trivially obtainable from PSI:
cardinality reveals strictly less than the intersection so a PSI-CA protocol must
hide the actual intersection, and PSI-Sum further requires the ability to handle
a “payload” which is summed on top of hiding the intersection.
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In the early work of De Cristofaro, Gasti, and Tsudik [17], the technique used
to achieve PSI-CA was an extension of the DH-based PSI but with appropriate
shuffling to hide which elements actually matched. The setting was meant for a
balanced PSI in the sense that the communication was proportional to the sizes
of both sets. The follow-up work by Ion et al. [26] was able to achieve PSI-Sum by
using homomorphic encryption on the payload and expending another round to
compute the sum of the matching payloads. Recent work [2,21,40] have focused
on the unbalanced case of PSI-CA where one party has much fewer elements
and therefore the communication should be proportional to the smaller set size
only. Our result is the first to achieve this in 1 round in the 2-server model (with
streaming) under the minimal assumption of one-way functions. We summarize
our main PSI contribution in comparison to related PSI-CA works in Table 1.

Table 1. Comparison to state-of-the-art PSI-CA results. n = client set size, N = server
set size, m = number of parties for multiparty solutions, DH = Diffie-Hellman style
assumptions, OWF = minimal assumption of one-way functions, HE = homomorphic
encryption. Security parameter factors omitted in O notation. ∗ Bloom filter of size B.
† Requires half round input-independent setup which is included. ‡ Delegation requires
additional communication between servers which is omitted.

Result Rounds Comm. Assumption Servers Flavor

[17] 1 O(n + N) DH 1 server PSI-CA

[26] 2 O(n + N) DH+HE 1 server PSI-CA/SUM

[18] 2 O(mN) DH m-party PSI-CA

[2] 1.5 O(n + B)∗ DH 1 server PSI-CA

[21] 1.5† O(n)‡ OPRF delegated PSI-CA

[40] 1 server 2 O(n) DH+HE 1 server PSI-CA

[40] 2 server 2 O(n) DH 2 server PSI-CA

Ours 1 O(n) OWF 2 server PSI-CA/SUM

Unbalanced PSI. Most existing PSI protocols from the literature, including pro-
tocols based on linearly-homomorphic public-key encryption [26,33], oblivious
transfer [30,35], or oblivious linear-function evaluation [24], are unsuitable for
the highly unbalanced case because their communication costs scale linearly
with the size of the bigger set X. This can be circumvented by PSI protocols
that use simple forms of fully homomorphic encryption (FHE) [12,13]. How-
ever, FHE-based solutions incur a high computational cost and their concrete
communication overhead is large when the set Y is relatively small.

For example, when |Y | = 128 and |X| = 224, the FHE approach of [12] would
require 3.1 MB of communication from the client and a response of 5.1 MB, while
our approach requires a 0.26 MB message from the client in the baseline solution,
and only log2(M + 1) bits of a response from each server in the decision version
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of PSI. Even the most efficient lattice based homomorphic encryption schemes
require a query of at least 14 KB of communication and a response of at least
21 KB, see e.g. Table 2 of [34].

Another family of solutions, which includes [5], later extended by [36], and
[29], are optimized for the online-offline model, requiring an expensive one-time
setup message by the server that is linear in N , the size of the server’s message
(although the constant in front of N has been improved by various compres-
sion techniques over the years, including Bloom filters and Cuckoo filters). Once
the setup is complete, queries require a small amount of client communication
and little to no server computation, but a larger amount of client computa-
tion than the other approaches discussed here. This approach is not compatible
with server-side streaming because any changes to the server’s database require
repeating the preprocessing to maintain security.

Recent works on contact tracing by Trieu et al. [40] and on private contact
discovery by Demmler et al. [19], following a more general approach of Chor
et al. [14], employ a Cuckoo hashing data structure to reduce the keyword search
problem (of matching a single client token yi with all N tokens xj) to two
invocations of PIR on a 2N -bit database. This work, like ours, makes use of
two non-colluding servers; its main advantage over our baseline solution is that,
using the efficient DPF EvalAll procedure from [9], these approaches reduce the
number of AES invocations on the server side by a O(λ) factor.

However, compared to our direct approach, this makes the solution much
more complex. In particular, it requires an additional round of interaction
and a bigger answer size and, perhaps most significantly, is not compatible
with our streaming server mode of operation, because each time the server
set changes another round of preprocessing is required. Additionally, these
approaches require O(n log N) client communication, while our solutions require
O(n) or O(n log log n) communication.

Table 2. Concrete efficiency features for unbalanced PSI protocols running on a server
list X of size N = 224 and a client list Y of size n = 128, with client C and server S.
Items marked with an asterisk are estimated from other parameter choices combined
with an analysis of the theoretical dependence of those protocols on the parameter.

One-shot PSI-CA Runtime and memory for n = 128, N = 224

Preprocessing (s) Online (s) Comm C → S Comm S → C

[19] 2.69 0.49 2.4∗ MB 0

[12] 1368 9.1 3.1 MB 5.1 MB

[36] 333.62 0.42∗ 0.065 MB online 3.0 MB offline

Ours (baseline) 0 763.5∗ 0.26 MB 2 bytes

Ours (queueing) 0 4.5∗ 0.63 MB 2 bytes
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Table 3. Asymptotic complexity measures for unbalanced PSI protocols with client C
and server S. The parameters m and α in the second line are parameters associated
with constructing a cuckoo hash table, and mα ≈ n.

One-shot PSI-CA Asymptotic complexity of unbalanced PSI

Preprocessing Online Comm C → S

[19] λ exps O(N log n/λ) AES calls O(λn log(N log n/λn))

[12] O(N2/(mα)) O(nN/(mα)) nλ log N

[36] O(N) exps O(n) exps O(kn) online O(kN) offline

Ours (baseline) 0 O(λknN) AES calls λkn bits

Ours (queueing) 0 O(λkN log log n) AES calls O(λkn log log n)

Streaming PSI. Many of the common applications of PSI such as private contact
discovery, password breach monitoring, and contact tracing are naturally suited
to a streaming mode of operation, where relatively small changes to the database
are made at each time step, and the client only needs to learn the changes in
their intersection set. In spite of this, so far little direct attention has been paid
to designing PSI protocols for the streaming setting.

The online-offline PIR-based protocols [29,36] do have some advantages in the
streaming setting when only the client values are being streamed, since the one-
time setup cost no longer has to be paid in subsequent runs. However the O(N)
setup cost is large enough that it requires a large time window for streaming
before the amortized cost is reasonable, and, critically, if the server set ever
changes, the preprocessing step has to be repeated entirely.

The recently introduced notion of incremental offline/online PIR [32], which
allows updates to the preprocessing for PIR schemes, may also be applicable to
PIR-based PSI schemes, as long as the resulting protocol is still secure and the
concrete metrics are good enough, but this avenue remains to be explored.

This streaming mode of operation has been formalized recently as Updatable
PSI by Badrinarayanan et al., [4] which focuses on the case of balanced PSI,
in contrast to this work. In the terminology of that paper, our streaming PSI
protocol is capable of implementing both the Addition-Only and Weak Deletion
variants. The first variant is where only new elements are added to the sets X,
Y , and is the primary version we discuss, for ease of presentation, but we also
treat the weak deletion variant, where tokens expire after some set time interval
T , which has applications to contact tracing.

2.2 Function Secret Sharing

Our solution heavily builds on the tool of function secret sharing (FSS) [8]. A
(2-party) FSS scheme for a function family F splits a function f ∈ F into two
additive shares, where each share is a function that hides f and is described by
a short key. More concretely, a function f : {0, 1}n → G for some finite Abelian
group G is split into two functions f0, f1, succinctly described by keys k0, k1

respectively, such that: (1) each key kb hides f , and (2) for every x ∈ {0, 1}n we
have f(x) = f0(x) + f1(x).
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We will use FSS for the family F of point functions, where a point func-
tion fα,β evaluates to β on the special input α and to 0 on all other inputs.
An FSS scheme for point functions is referred to as a distributed point function
(DPF) [25]. We will let DPF.Gen(1λ, α, β) denote the DPF key generation algo-
rithm, which given security parameter λ and the description of a point function
fα,β outputs a pair of keys (k0, k1) (where here we assume for simplicity that
the group G is fixed). We use DPF.Eval to denote the evaluation algorithm that
on input (kb, x) returns an output share yb such that y0 + y1 = fα,β(x).

We rely on the best known DPF construction from [9], which has the following
performance features with an AES-based implementation: The length of each key
is roughly 128n bits (some savings are possible when the group G is small). The
cost of DPF.Gen is roughly 4n AES calls, whereas the cost of DPF.Eval is roughly
n AES calls, where both can be implemented using fixed-key AES.

A direct application of DPF for secure keyword search in a 2-server setting
was suggested in [8,25]. Secure keyword search can be viewed as an extreme
instance of unbalanced PSI where |Y | = 1. Here we generalize this in two dimen-
sions: first, we allow a client to have multiple keywords, thus supporting a stan-
dard PSI functionality. We propose different methods for improving the cost
of independently repeating the basic keyword search solution for each keyword
in the client set Y . Second, we exploit the ability to use a general group G for
implementing a weighted variant of PSI where each of the client’s secret keywords
has an associated secret weight. In fact, we use a product group for revealing
multiple weighted sums.

3 Baseline Solution

3.1 The One-Shot Case

The functionality we realize is an extended “weighted” version of PSI Cardinality
that attaches a weight to each client item.

Functionality PSI-WCA:

– Inputs:
• Each of the two servers S0, S1 holds the same tokens set X = {x1, . . . , xN}

of k-bit strings.
• Client holds a set Y of pairs of the form Y = {(y1, w1), . . . , (yn, wn)},

where each yi is a k-bit token and each wi is an element of an Abelian
group G (typically we choose to work over the integers with large enough
modulus to prevent wraparound, but using an arbitrary group allows for
the ability even to support product groups with multiple slots encoding
different pieces of information). If the cardinality of Y is less than n, it is
padded with an additional n − |Y | dummy elements.

– Outputs: Client outputs the sum of the weights of the tokens in the inter-
section; namely, the output is w =

∑
i:yi∈X wi where summation is in the

group G. Servers have no output.
– Leakage: The size parameters leaked to the adversary are k, n,G.
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The Baseline Solution. We follow the approach of Boyle et al. for secure key-
word search via a direct use of distributed point functions (DPFs) [9,25]. This
departs from the approach of Chor et al. [14] and Trieu et al. [40], which uses
a data structure (Cuckoo Hashing in [40]) for reducing keyword search to pri-
vate information retrieval (PIR). The direct DPF-based approach requires one
round of interaction and accommodates the weighted case with almost no extra
overhead.

While we describe the protocol using direct interaction of the client with the
two servers S0, S1, in practice it may be preferable to have the client interact
only with S0 and have (encrypted) communication to and from S1 routed via
S0. In the following we use λ to denote a security parameter, and we consider
security against a passive (aka semi-honest) adversary corrupting either one of
the two servers or the client.

Protocol PSI-WCA:

– Client-to-servers communication:
1. For each client input pair (yi, wi), Client generates a pair of DPF keys

(k0
i , k1

i ) ← DPF.Gen(1λ, yi, wi).
2. Client sends the n keys kb

i to server Sb.
– Servers-to-client communication:

1. Each server Sb computes a′
b :=

∑N
j=1

∑n
i=1 DPF.Eval(kb

i , xj), where sum-
mation is in G. (Each such invocation of DPF.Eval can be implemented
with roughly k invocations of fixed-key AES and does not require any
communication between servers.)

2. Letting r ∈R G be a fresh secret random group element shared by the two
servers, S0 sends to Client a0 := a′

0 + r and S1 sends a1 := a′
1 − r, where

addition and subtraction are in G. This can be generated using a shared
pseudorandom sequence known only to the servers (e.g., a common PRF
seed).

– Client output: Client outputs w = a0 + a1, where summation is in G.

The correctness of the above protocol is easy to verify. Security against a
single server follows directly from the security of the DPF. Security against the
Client follows from the blinding by r, which makes the pair of answers received
by Client random subject to the restriction that they add to the output. We now
discuss the protocol’s efficiency.

Performance. Using an AES-based implementation of the DPF from [9], the
above protocol has the following performance characteristics:

– Rounds: The protocol requires a single round of interaction, where Client
sends a query to each server Sb and gets an answer in return. Client’s query
can be reused when the client’s input Y does not change, even when the server
input X changes.

– Communication: Client sends each server ≈ 128 · kn bits and gets back a
single element of G from each server.
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– Computation: Client performs ≈ 2kn (fixed-key) AES calls to generate the
queries. The cost of reconstructing the answer is negligible. The computation
performed by each server is dominated by ≈ knN AES calls. For modern
processors (see Footnote 12 of [40]), each AES call requires 10 machine cycles,
which enables 360 · 106 AES calls per second on a 3.6 GHz machine. This can
be further sped up via parallelization.

3.2 Baseline Streaming Unbalanced PSI

This baseline solution can be extended directly into an incremental mode that
captures a dynamic “streaming” version of the problem where the sets X and Y
held by the servers and the client change in each time epoch (say, each day) by N ′

and n′ respectively. We typically consider N ′ � N and n′ � n. For simplicity,
we consider the case where at time step t, sets Xt and Yt are appended to X and
Y respectively, so that the set X = ∪t

i=1Xi is the union of all sets input by the
server so far, and similarly Y = ∪t

i=1Yi. Then the client receives the sum of the
weights of the terms in X ∩ Y minus the sum computed in the previous round.

More formally, we define the functionality below:

Functionality: Streaming PSI-WCA:

– Inputs:
• At each time step t, each of the two servers S0, S1 holds the same tokens

Xt = {x1, . . . , xN} of k-bit strings.
• At each time step t, client holds a set Yt of pairs of the form Y =

{(y1, w1), . . . , (yn, wn)}, where each yi is a k-bit token and each wi is
an element of an Abelian group G. If the cardinality of Yt is less than n′,
it is padded with an additional n′ − |Yt| dummy elements.

– Outputs: For each t, define St := (∪t
i=1Xi) ∩ (∪t

i=1Yi). Then at time step t,
the client outputs the sum of the weights wi of the tokens in St \St−1. Servers
have no output.

– Leakage: The size parameters leaked to the adversary are k, n,G.

The protocol to realize this functionality is a straightforward extension of
the baseline functionality. The client in time step t generates and communicates
new queries only for the n′ tokens of Yt introduced in that epoch. Then servers
compute DPF.Eval only to match the new n′ client tokens with all tN ′ server
tokens and the new N ′ server tokens with all tn′ client tokens. Correctness follows
from the fact that St \St−1 = Xt ∩ (∪t

i=1Yi)∪Yt ∩ (∪t
i=1Xi), and security follows

immediately from the security of the PSI-WCA protocol.
This streaming solution reduces the number of AES calls per epoch on the

client side from tkn′ to kn′, and on the server side from knN = t2kn′N ′ to
roughly k · (n′N + nN ′) ≈ 2ktn′N ′. The client communication and server com-
putation per epoch are reduced by a factor of t and t/2, respectively, compared
to the one-shot solution. If the protocol runs for a total of t′ epochs, summing
from t = 1 to t = t′ we see that the total client communication is equal to t′kn′
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and the total server computation is equal to k(t′2+t′)n′N ′, so that the streaming
functionality can be added with no asymptotic increase in cost.

We remark that the requirement that |Xi| = N ′ and |Yi| = n′ be constant
across all time steps is unnecessary to the functionality and protocol definitions
given above, and only the efficiency analysis changes. In particular, we note that
if X1 = N and Xi = ∅ for i > 1, we require zero communication from the client
in subsequent epochs and kn′N work per epoch. This is the server-streaming
PSI solution discussed in Sect. 1.1.

In some applications, such as contact tracing, we instead desire tokens to
expire after T epochs, and the goal is to compute the PSI-WCA functionality
in the sliding window corresponding to each epoch, where the inputs consist of
the N = TN ′ and n = Tn′ tokens collected during the last T epochs by the
servers and client, respectively. The protocol above can be modified to realize
this alternate functionality by having the servers discard their client and server
tokens after T epochs. The rest of the protocol is identical. This reduces the
client communication and server work by a factor of T throughout the course of
the protocol.

4 Unbalanced PSI-WCA with Greedy Scheduling

4.1 Overview

Similarly to the simple use of hash functions and batch codes for amortizing the
server computation of multi-query PIR [1,27], and similar techniques for stan-
dard PSI, one can use a similar approach for amortizing the server computation
in PSI-WCA. The idea is to randomly partition the token domain into a small
number of buckets m via a public hash function H : {0, 1}k → [m] (typically
m ≈ n), and let the client match each token yi only with the tokens in bucket
H(yi). To make this possible, we need the client either to reveal the number of
tokens yi mapped to each bucket (which leaks a small amount of information
about Y to the servers) or to add dummy tokens y∗

j to ensure all buckets have a
fixed size except with small failure probability. Compared to more sophisticated
data structures such as Cuckoo hashing, discussed in Sect. 2.1, this approach does
not require additional interaction and is well-suited to the incremental mode in
which new server tokens are added on the fly.

When buckets are overfilled, we can repeat the process until all tokens are
processed, which gives our O(n log log n) communication O(N log log n) server
work solution which we describe in Sect. 4.4. In our streaming solution with
greedy scheduling, the protocol instead deals flexibly with overfull buckets: after
hashing all tokens, if the client holds any buckets with more than b tokens, the
extra tokens are stashed and added to the next day’s batch.

The hashing solution increases communication to m · b tokens compared to
n for the baseline solution, so we would like to keep m·b

n as small as possible.
The incremental mode is therefore well-suited to the hashing solution. However,
decreasing b increases the number of tokens that need to be stashed each day.
This is the fundamental trade-off explored in Sect. 5.
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To keep the buckets more evenly balanced, the protocol can instead choose
c > 1 public hash functions. The client then inserts their n tokens into the m
buckets one by one, hashing each token c times and using a greedy algorithm to
determine which of the c candidate buckets to place the token into. The servers
then check each of their tokens y against H1(y), . . . , Hc(y). This increases server
work to O(bcN), but shrinks the stash size, and hence the expected wait time.

Another consequential design choice, in both the c = 1 and c > 1 cases, is
whether to fix the hash functions Hi throughout the procedure, or to choose
new hash functions each day. Which choice is optimal depends on the choice of
parameters, as we see in Sect. 5.3.

4.2 The Greedy Scheduling Approach

In this section, we describe our solution using greedy scheduling and explore
optimizations and tradeoffs. The greedy scheduling protocol is a procedure for
improving the efficiency of the hashing-based solution by scheduling some client
tokens each epoch to be processed in a later epoch.

Other hashing-based solutions either leak some information about queries or
use hashing to maintain a permanent data structure on the server side (such as
a Cuckoo hash table), which requires a costly initial setup and is ill-suited for
server-side streaming. Our approach uses hashing on the client side and fixes the
bin size at a small constant (usually b = 3). The scheduling is greedy in that
we schedule only those client tokens which can be most efficiently processed for
the current epoch, and transfer the remaining tokens to a stash where they will
be scheduled later. We show in Sect. 5.3 that this causes very little delay in
processing in exchange for a large improvement in efficiency.

We begin with a formal definition of the streaming functionality for greedy
scheduling. This definition requires a distribution ω on functions from {1, . . . , n+
s} → {0, 1}, where n is the size of the client’s list and s is the stash size. This
distribution should be thought of as a representation of the queueing process;
after sampling a function f ∈ ω, then the set f−1(1) corresponds to elements
which are not processed in that round of the queueing process, and are instead
scheduled for a future round, and transferred to the stash.

To simplify the presentation, we formally define a PSI-WCA functionality
with greedy scheduling that is streaming with respect to the client, with the
server’s set X held constant. The baseline streaming approach described in
Sect. 3.2 can be applied on top of the approach described here, and, as in Sect. 3.2,
this can be done without any increase in asymptotic client communication or
server computation.

Functionality: Streaming PSI-WCA with greedy scheduling:

– Inputs:
• At each time step t, each of the two servers S0, S1 holds the same tokens

X = {x1, . . . , xN} of k-bit strings.
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• At each time step t, client holds a set Yt of pairs of the form Y =
{(y1, w1), . . . , (yn, wn)}, where each yi is a k-bit token and each wi is
an element of an Abelian group G. If the cardinality of Yt is less than n,
it is padded with an additional n − |Yt| dummy elements.

• As additional inputs, a stash size s and a distribution ω on functions from
{1, . . . , n+ s} → {0, 1} are given, with the property that if f has nonzero
probability under ω, then

∑n+s
i=1 f(i) ≤ s.

– Outputs: For each time step t, sample a function ft ∈ ω. Set Y 1 := Y1,
append s “dummy” elements, and assign some arbitrary bijection τ1 from
{1, . . . , n + s} to the elements of Y 1. Then recursively define the set Y t+1 =
Yt+1 ∪ τt(f−1

t (1)) and τt+1 to be some arbitrary bijection from {1, . . . , n + s}
to the elements of Y t+1. Now define St := X ∩ (∪t

i=1Y i), and at time step t,
the client outputs the sum of the weights wi of the tokens in St \St−1. Servers
have no output.

– Leakage: The size parameters leaked to the adversary are k, n,G, along with
the distribution ω and the stash size s.

We do not give the distribution ω explicitly; it is instead inferred from our
description of the protocol.

4.3 Protocol Description

For our streaming protocol with greedy scheduling, we introduce the following
notation. For a client with n tokens and a server with N tokens, with each token k
bits, the client will hash their tokens into m = αn bins of size b, for some constant
α < 1. Thus will be done using c hash functions, choosing the bin with the
smallest size if c > 1. Additionally, we use the bit R to distinguish between two
variants of the protocol, where the hash function used is rerandomized after each
epoch (R = True) and where the hash function is kept constant (R = False).
The protocol then is close to our original PSI-WCA protocol, but with the work
of DPF.Eval only done on bins where the client and server tokens could match.
We give the protocol below.

Protocol Streaming PSI-WCA with greedy scheduling:

– Client-to-servers communication:
1. The client hashes their inputs, along with any elements in the stash, into

m bins of size b, applying c hash functions to obtain c candidate bins and
greedily assigning the element to the bin with the fewest elements. Any
elements that overflow their bins are placed back into the stash. Then,
for each client input pair (yi,j , wi,j), and the dummy elements, the client
generates a pair of DPF keys (k0

i,j , k
1
i,j) ← DPF.Gen(1λ, yi,j , wi,j).

2. Client sends the mb keys kd
i,j to server Sb.

– Servers-to-client communication:
1. Each server Sd, for each element xk, hashes xk by each of the c hash

functions to obtain a list of indices Ik = {i1, . . . , ic}, and computes
ak,d :=

∑
i∈Ik

∑b
j=1 DPF.Eval(kd

i,j , xk), where summation is in G. They
then compute a′

d =
∑

k ak,d.
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2. Letting r ∈R G be a fresh secret random group element shared by the two
servers, S0 sends to Client a0 := a′

0 + r and S1 sends a1 := a′
1 − r, where

addition and subtraction are in G. This can be generated using a shared
pseudorandom sequence known only to the servers (e.g., a common PRF
seed).

– Client output: Client outputs w = a0 + a1, where summation is in G.

This is a realization of the streaming PSI with greedy scheduling functional-
ity described above, where the stash size s and the distribution ω are determined
by the queueing processes described in Sect. 5. In particular, we show in those
sections that s = O(n), and, when Yi = ∅ for i > 1, c = 2, and R (the reran-
domization bit) is equal to False, all tokens will be processed in expected time
O(log log n).

Correctness follows because each client token is guaranteed to be processed
eventually, and will match a server token xk only if the client token lies in
one of the queues Hi(xk), for i ∈ {1, . . . , c}. Security against a single server
and against a client follows from an identical argument to that in Sect. 3.1. We
analyze performance when the client’s set size is n per epoch, and the server’s
set size is a constant N .

Performance. Using an AES-based implementation of the DPF from [9], the
above protocol has the following performance characteristics:

– Rounds: The protocol requires a single round of interaction per epoch, where
Client sends a query to each server Sb and gets an answer in return.

– Communication: Client sends each server ≈ 128 · kαbn = O(kn) bits per
epoch and gets back a single element of G from each server.

– Computation: Client performs ≈ 2kαbn = O(kn) (fixed-key) AES calls to
generate the queries. The cost of reconstructing the answer is negligible. The
computation performed by each server is dominated by ≈ kbcN AES calls.

4.4 Queueing One-Shot PSI Protocol

Our one-shot PSI protocol can be constructed as a corollary of this protocol,
setting Yi = ∅ for i > 1 and |Y1| = n. By the proof of Proposition 4, given in
the full version of this paper, we have some value κ = O(log log n) such that all
elements in Y1 have wait time less than κ except with probability exp(O(−n)).
The client re-samples a key for the hash function until this holds, and then runs
their half of the protocol for κ rounds and sends the resulting κmb keys to the
server.

The server proceeds as if in the streaming with greedy scheduling case, per-
forming κ ·bcN total work, adding the outputs from each round, and sending the
result to the client. We take b = 3 and c = 2. Since κ = O(log log n), the client
communication is O(n log log n) and the server computation is O(N log log n), as
desired.
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5 Analyzing Expected Wait Times Under Greedy
Scheduling

5.1 Streaming and Bucketing

The greedy scheduling streaming protocol can be expressed in purely combi-
natorial terms, so that questions about average wait time and longest wait
time become questions in queueing theory, allowing us to abstract away all the
mechanics of PSI and FSS. We explain this in more detail in the full version of
this paper [20].

The fundamental complication introduced by greedy scheduling is that some
tokens will take longer than one day to be processed. Additionally, as time passes,
the backlog of unprocessed tokens builds up, and the wait time increases. To
understand the tradeoffs involved, we analyze the expected average and worst
case wait times. When we choose parameters appropriately, the backlog in the
stash reaches a steady state of reasonable size, the average wait time is small,
and very large wait times are extraordinarily rare.

The results in Sect. 5.3 are a mixture of calculations using known results
and extensions of existing results. We give the proofs of these results in the full
version of this paper [20], and refer the interested reader to [22,31] for some of the
background in queueing theory and probability, [3] for the crucial O(log log n)
bound for queues using multiple hash functions, [10] for the derivation of the
steady state of the discrete time GI-D-c queue needed for Proposition 2, and
[28] for a survey of prior work and additional analytical tools.

5.2 Setting

In our analysis, we consider two metrics under four scenarios. We measure
expected wait time and expected worst-case wait time, both once a steady state
has been reached. Formally, the random scheduling process induces some proba-
bility distribution Wt,n on the n-length vector of wait times of the tokens inserted
at time t. If Wt,n converges to a limiting distribution Wn as t → ∞, we call Wn

the steady state. We then define by an abuse of notation the expected wait
time E[W ] := limn→∞ E[ 1

n

∑
w∈Wn

w], and the expected worst case wait time
E[max W ] := E[maxw∈Wn

w].
The four scenarios we consider are (i) Fixing c = 1 hash function to distribute

tokens, (ii) Refreshing the c = 1 hash function each day, (iii) fixing c > 1 hash
functions and (iv) refreshing c > 1 hash functions each day.

For each scenario, we consider parameters n, the number of tokens, m the
number of buckets, b the bin size, and the occupancy ratio α := n/(bm). Addi-
tionally we have c, the number of hash functions, and R, a single bit representing
whether or not we re-randomize each day.

We performed Monte Carlo simulations of this procedure to estimate the
expected wait time for fixed values of n. Using integral approximations and a
computer algebra package, we can also compute estimates for the expected wait
time as n → ∞ for various choices of parameters. We give the results of both
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kinds of experiments in Table 4, and in Table 5 we present the results given below
for the expected and expected worst-case wait times.

5.3 Results

Summary of Results. The bounds on expected wait times and expected worst-
case wait times we give here are primarily calculations using existing work.
Proposition 3 is an extension of work by Azar et al. ([3]).

– The expected wait time decreases exponentially with b for c = 1 hash function,
and doubly exponentially with b for c > 1 hash functions.

– The expected worst-case wait time is Θ(log n) for each scenario except c > 1
fixed hash functions, where it is Θ(log log n).

Rerandomization of hash function, c = 1

Proposition 1. When c = 1 and the rerandomization bit R = True, and eα <
1,

E[W ] ≤ (eα)b

and
E[max W ] ≤ − 1 + log n

b log α + b
+ 1.

Fixed hash function, c = 1

Proposition 2. Fix α < 1. When c = 1 and the rerandomization bit R =
False,

E[W ] ≤ C(α, b)√
2πb

Li 1
2

(
αbe(1−α)b

)
,

where Li 1
2

is the polylogarithm of order 1
2 and C(α, b) := 1 + (α − 1) b

b+1 < 1. In
particular, we have:

– (Estimate for α bounded away from 1.) For 0 < α < 1 − δ,

E[W ] ≤ C(α, b)√
2πb

(
αbe(1−α)b

)
+ Oδ,b

(
αbe(1−α)b

)2

for any fixed 0 < δ < 1.
– (Growth rate as α → 1−.) For 1 − (2b)− 1

2 < α < 1,

E[W ] = O

(
1

b(1 − α)

)

.

For any positive constant C < 1,

E[max W ] ≤ − log n

C log α
+ O(1),

where the implied constant depends on C,α, and b.
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Rerandomization of hash function, c > 1

Proposition 3. When c > 1 and the rerandomization bit R = True, and α

and b are chosen such that 0 < αb <
(
ecb

)−1/(cb−1), then

E[W ] ≤ e(αb)cb−1

and
E[max W ] ≤ − 1 + log n

(cb − 1) log(αb) + 1
+ 1.

Fixed hash function, c > 1

Proposition 4. When c > 1 and the rerandomization bit R = False, and α
and b are chosen such that 0 < αb < 1 − 1

b·2c−2 , then

E[W ] ≤ (αb)cb

1 − (αb)cb/2

and
E[max W ] ≤ b log log n

log c
+ O(1).

Remark 1. The upper bounds on α in Proposition 1 and on αb in Propositions 3
and 4 were chosen to emphasize reasonable parameter choices and to increase
the readability of the statements of results and proofs.

The full picture is messier; for example, it is possible to show that, in the
c > 1 and R = False regime, as α → 1, and b and c are fixed, we have
E[W ] ≈ αbc, rather than αcb . Describing the transitions in behavior of E[W ] on
this parameter space is regrettably outside the scope of this paper.

Table 4. Experimental wait times

Wait time for (α, b, n) (0.313, 2, 25000) limn→∞(0.313, 2, n) (0.417, 3, 25000) limn→∞(0.417, 3, n)

c = 1, R = True 0.05319 0.05567 0.04512 0.04604

c = 1, R = False 0.05904 0.06022 0.04961 0.05063

c = 2, R = True 0.00073 0.00075 0.00009 0.00008

c = 2, R = False 0.00076 0.00074 0.00007 0.00008
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Table 5. Upper bounds on asymptotic wait times, as a function of (α, b, c)

Wait time Average Worst-case

c = 1, R = True (αe)−b − 1+log n
b log α

+ 1

c = 1, R = False 1√
2πb

Li 1
2

(
αbe(1−α)b

) − log n
C log α

+ O(1)

c > 1, R = True (αb)cb−1 − 1+log n

(cb−1) log(αb)+1
+ 1

c > 1, R = False (αb)c
b

1−(αb)c
b/2

b log log n
log c

+ O(1)

6 Implementation and Benchmarks

In this section we will present our PSI-WCA implementation for the isolated
back end servers. We are using PostgreSQL as our database engine for storing
the tokens that are transmitted from the infected users and our test instances
are configured as follows:

– CPU: Intel Xeon E5-2680 v3 @ 2.50 GHz with 16 MB L2 cache - 10 logical
cores.

– RAM & Storage: 30 GB RAM, 60 GB SSD hard disk.
– OS: PostgreSQL 12 running on Debian 10.

Each of these test instances are virtual machines that are hosted in an OpenStack
cloud platform provided by the Texas Advanced Computing Center (TACC)
([38,39]). The operations defined by PSI-WCA are built as a custom extension
that is loaded directly by the Postgres database engine. More specifically, the
extension defines a custom aggregate function that accepts a key split k and the
tokens database table T as input and operates directly in T in order to calculate∑

ui∈T DPF.Eval(k, ui) mod G.

Fig. 1. PSI-WCA PostgreSQL extension performance

Each logical core in our test instance is capable of achieving a theoretical
maximum of 333, 150 DPF.Eval operations per second when running a simple
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benchmark that operates on 1000 tokens and 1000 key splits that have been
preloaded in RAM. For evaluating our PostgreSQL extension we generated a
test data set of 100,000,000 infected tokens that has a total size of 8056 MB.
In Fig. 1 it is shown that the first run of DPF.Eval on this test data set results
in 312, 757 operations per second which is 6.12% lower than the theoretical
maximum. However, for any subsequent run our PostgreSQL extension utilizes
memory caching and additional optimizations in the query execution plan which
allows it to reach 332, 283 DPF.Eval operations per second, thus decreasing the
overhead to 0.26%.

Fig. 2. PSI-WCA PostgreSQL extension DPF.Eval operations/sec per core

We have also evaluated how the DPF.Eval operations per second are affected
when utilizing multiple cores in our test instance. For this benchmark we uti-
lized the native functionality provided by PostgreSQL that spawns multiple
worker processes for calculating the query results and is defined using the
max_parallel_workers_per_gather parameter. This introduces some addi-
tional small overhead since PostgreSQL reserves a portion of CPU time in the
main query process for managing the background parallel workers. As seen in
Fig. 2, the DPF.Eval operations per second scale linearly when utilizing more
than one core with a maximum overhead of 12% when utilizing all 10 cores in
the test instance. For simplicity, the numbers in Table 2 are computed based on
using a single core.
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Abstract. Commit-and-prove is a building block that allows a party to
commit to a secret input and then later prove something about it. This is
a pillar of many cryptographic protocols and especially the ones under-
lying anonymous systems. In anonymous systems, often there is a set of
public commitments, and a prover wants to prove a property about one
of the inputs committed in the set, while hiding which one. This latter
property gives the prover anonymity within the set.

Currently, there are numerous commit-and-prove protocols in the
anonymous setting from various computational and setup assumptions.
However, all such approaches are non-black-box in the cryptographic
primitive. In fact, there exists no anonymous black-box construction of
commit-and-prove protocols, under any computational or setup assump-
tion. This is despite the fact that, when anonymity is not required, black-
box commit-and-prove protocols are well known.

Is this inherent in the anonymous setting?
In this paper we provide a partial answer to the above question by

constructing the first (one-time) black-box commit-and-prove protocol
in the anonymous setting. We do so by first introducing a new primitive
that we call Partially Openable Commitment (POC), and instantiating
it in a black-box way from a Random Oracle. Next we show a black-box
commit-and-prove protocol based on POC. From a theoretical stand-
point, our result reduces the gap between known black-box feasibility
results in the non-anonymous setting and the anonymous setting. From
a practical standpoint, we show that our protocol can be very efficient
for certain relations of interest.

1 Introduction

Commit-and-Prove. Commit-and-prove is a fundamental building block
underlying many cryptographic protocols. In this building block, a party first
commits to an input x, and at a later point proves some predicate about x,
without revealing x. Computing a proof about a committed value typically is
done by leveraging the implementation details of the commitment scheme. For
instance, one can commit to x using Pedersen’s Commitment [19] which is based
on group exponentiations (i.e., gxhr) and then use Sigma protocols that lever-
age linear properties over the exponents to prove relations about x. More gener-
ally, one can use a commitment scheme that use any cryptographic function f ,
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and a general-purpose zero-knowledge proof system that operates on the circuit
description of f . Such approaches are said to be non-black-box because the com-
putation of the zero-knowledge proof depends on the specific implementation of
the cryptographic primitive they use. In contrast we say that a construction is
black-box when it uses only the input/output interface of a cryptographic primi-
tive. Besides providing a higher level of abstraction, the advantages of black-box
usage are that the underlying cryptographic primitive can be instantiated in
hardware, or modeled an oracle, and the complexity of the black-box protocol is
independent on the complexity of the cryptographic primitive.

Black-Box Commit-and-Prove. It might seem that in order to prove some-
thing about a committed value, one must necessarily use the description (the
circuit) of the function used to compute the commitment. However, it turns out
that it is not necessary. Indeed, starting from the seminal work by Kilian [13],
who showed how to prove equality relation of two committed values in a black-
box manner, many follow-up works have shown how to prove arbitrary relations
on a committed value, using cryptographic primitives in a black-box manner
(e.g., [10–12,14,17,18]).

Anonymous Commit-and-Prove. With the term anonymous commit-and-
prove we refer to the setting where many independent parties compute their own
commitments, e.g., N users post commitments C1,C2, . . . on some platform,
and then at a later point any of the parties can prove a relation R about one of
the commitment inputs, but without even revealing which one. In other words,
in the anonymous setting, additionally to hiding the value she committed to, the
prover wants to hide which of the N commitments she “knows” something about.
Importantly, the prover should be able to compute the proof by only knowing
information about her own commitment and without knowing anything about
the commitments computed by other users. Anonymous commit-and-prove are
building blocks for various anonymous systems (e.g., anonymous credentials [6],
anonymous bitcoin transactions [16]). Notice that the critical difference between
commit-and-prove and anonymous commit-and-prove is that in the latter the
N commitments are computed by arbitrary parties, and an honest prover, who
knows the opening of a single commitment, must include all the other N − 1
commitments in order to craft her proof (if she wants to preserve anonymity).

The Unknown Commitments. How to compute a valid proof on behalf of N − 1
commitments for which you don’t know the opening of? If one can leverage
the specific structure of the commitment function, then computing a proof over
unknown commitments is not more challenging than computing on known com-
mitments. Indeed, one can still leverage the circuit of the commitment scheme
and then use any general-purpose zero-knowledge protocol (e.g. ZKboo [9],
Ligero [1], SNARKs [4], STARKS [3]) to prove that “one of the commitments”
is computed in a certain way and has certain properties. This approach is used
in Zcash [21] for instance. In fact, one can even still leverage the algebraic struc-
ture of Pedersen’s commitment and craft a special Sigma protocols that works
even if the prover does not know the randomness used to compute the other
commitments. This approach is used in Bulletproofs [5] for example.
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Black-BoxAnonymousCommit-and-Prove. What about black-box commit-
and-prove protocols in the anonymous setting? Currently, no construction is
known, from any cryptographic primitive. Even ignoring any efficiency require-
ments (e.g., succinctness, reusability), computational assumptions or even setup
assumptions, no black-box construction for commit-and-prove is known. In this
work we pose a natural question:

Do commit-and-prove protocols, that treat their underlying cryptographic
primitive as a black-box, exist in the anonymous setting?

1.1 Our Contribution

We provide a positive answer to the above question. We construct the first
anonymous commit-and-prove system from a random oracle, which has one-
time security. In the anonymous setting, the one-time security is well motivated
by practical scenarios where tally is required, such as voting, sealed-bid auc-
tions or payments (as we discussed later). More specifically, we provide several
contributions:

– A new primitive called Partially Openable Commitment (POC)
(Sect. 4.1) This is a commitment scheme with new binding properties that
allows to overcome the problem of opening unknown commitments (we
describe this new primitive in Sect. 2). We also provide a formal definition
of linkable anonymous black-box commit-and-prove.

– A black-box anonymous commit-and-prove protocol (Sect. 5) for arbi-
trary relations based on Partially Openable Commitment and the zero-
knowledge protocol provided by Giacomelli, Madsen and Orlandi [9], known
as ZKBoo. We call our protocol BlackBoo.

– A concrete instantiation (Sect. 6) of our commit-and-prove protocol for the
equality relation that we use to showcase efficiency of our approach (Table 1).
From a practical perspective, our construction requires exclusively symmetric
key operations that can be parallelized. Furthermore, it has a communication
complexity that is practical in settings where the number of participants is
in the thousands, and very competitive if it is in the hundreds.

In the next section we will walk the reader through the main ideas and new
techniques behind our constructions.

2 Our Techniques

State-of-the-Art Approach for Black-Box Commit-and-Prove. In a
commit-and-prove protocol the goal is to prove a property about the opening
of a commitment, but without revealing any information about the opening. To
design a black-box commit-and-prove scheme the key idea used in the literature
(e.g., [11–13,18]) is to open commitments directly instead of proving something
about the opening. The technique can be abstracted as follows: the commitment
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C of a value x is replaced with κ correlated sub-commitments C := (c1, . . . , cκ),
where each ci is a commitment to a share xi of x (according to some secret shar-
ing scheme (Share,Recon)). Due to the security of the secret sharing scheme,
the prover could safely open t of the κ commitments, thereby revealing t shares,
without leaking any information about the committed value x. The prover then
proceeds using the shares (x1, . . ., xκ) as input of a (t, κ)-secure MPC protocol
to securely compute a function that outputs 1 iff the value reconstructed from
those shares, x satisfies R, that is, if R(x) = 1, resulting in κ MPC views. This
approach is well known as the MPC-in-the-head approach, since the prover runs
an MPC protocol imagining κ players. The actual proof that is sent to the veri-
fier consists of: (1) κ commitments of the MPC views; (2) the openings of t such
views, (3) the openings of t out of the κ commitments (c1, . . . , cκ). In order to
verify a proof, the verifier checks that the opening of the t views and the open-
ing of t committed shares are consistent with each other (this check involves
cryptographic material) and with the MPC protocol (this check leverages the
information-theoretic security properties of the MPC protocol).

Technical Challenge: The Unknown Commitments. The MPC-in-the-
head approach relies on the ability of the prover P i to open t-out-of-κ com-
mitments in Ci = (ci

1, . . ., ci
κ). While this is the key idea to ensure a black-box

use of the underlying commitment scheme, this strategy is not applicable to the
setting where the proof must be computed over N arbitrary commitments (C1,
C2, . . ., CN ) that were published by other unknown parties P 1, P 2, . . ., PN ,
since in this set, N −1 commitments are unknown to the prover. The problem is
that since the commitments were not computed by P i, she simply can’t provide
a valid opening for them (this follows from binding). There is no prior work
tackling this problem, since none of the previous work considered black-box con-
structions in the anonymous setting, where the statement to be proven contains
commitments that are not computed by the prover.

Our New Tool: Partially Openable Commitments (POC). We introduce
a new primitive called Partially Openable Commitment (POC). A POC com-
mitment has the format Ci = (ci

1, . . . , c
i
κ) and satisfies the following property: it

can be partially opened by anyone in the world. That is, anyone can successfully
open t out of κ subcommitments. However, it still holds that the commitment
can be correctly fully opened only by its legitimate creator1. The main challenge
for POC is to identify the security properties that it must satisfy in order to be
useful as a building block for a secure proof system, in a completely black-box
way. In order to build intuition on the abstract properties that we want for POC,
we proceed by first describing the ideas behind the construction.

To construct POC we leverage the unstructured nature of hash-based com-
mitments to allow anyone to “explain” a commitment using a random value. At
1 We remark that partially openable commitment are different from trapdoor or UC-

secure [7] commitments. In the latter, the commitments can be opened by anyone
who has a trapdoor, and the equivocation property is used in the security proof,
not the protocol. They are also different from Mercurial Commitments [8] where the
prover has the ability to “tease” only commitments she created.
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high-level our construction works as follows. Assume we commit to a plaintext
value x as follows c := H(k) ⊕ x, where k is a random string and is part of
the cryptographic material, H is a random oracle [2]. This commitment is not
binding: for a given commitment c, anyone can open it as some plaintext x′,
by choosing a key k′ and sending x′ = c ⊕ H(k′) (later on we call these “fake
openings”). Nevertheless, note that when H is a random oracle, one has no con-
trol on the value x′, which will be distributed uniformly at random. With this
idea in mind, recall the approach we have highlighted above, where a commit-
ment for a party i is represented as a vector of correlated sub-commitments:
Ci = (ci

1, . . . , c
i
κ), and notice the following. Anyone who is not actually the

creator of Ci = (ci
1, . . . , c

i
κ) can only open each ci

j to a random value x′
j . Conse-

quently, a full plaintext opening (x′
1, . . . , x

′
κ) obtained by someone who is not the

creator of the commitment very luckily will not satisfy any meaningful relation.
In the construction, the full plaintext (x1, . . . , xκ) is a vector of shares computed
using a secret sharing scheme on input the actual message m that the commit-
ter meant to commit to. That is, POC is parameterized by a sharing scheme
(Share,Recon) and (x1, . . . , xκ) is the result of Share(m). A partial opening, is
a subset of shares xj (plaintext openings) and the respective keys kj (crypto
openings). The protocol is formally described in Fig. 2.

We are now ready to describe the choices we made for the formal definition
of POC. We choose to explicitly define Partially Openable Commitment so that
it supports the decoupling of the plaintext openings (which is the secret sharing
of the message to commit) and the cryptographic openings and emphasize that
parties are only given oracle access to a primitive. This formulation is extremely
useful when POC is used as a building block for protocols that work on the
plaintext openings of a commitment, but want to use the crypto primitives as
oracles. For instance, POC can be used in combination with the MPC-in-the-
head paradigm, having the plaintext being the input of the MPC players. In this
case, the sharing scheme (Share,Recon) could be the glue between POC and the
underlying MPC. For the security properties, privacy of the commitment is cap-
tured by the notion of hiding in presence of partial openings which means that
anyone can open t out of κ sub-commitments of Ci = (c1, . . ., cκ) by providing
t crypto keys kj1 , . . . , kjt

, and these so called fake openings will be distributed
identically to the real openings of the original commitments, where t is a param-
eter related to the secret sharing scheme (See Definition 3). The definition of
binding is more nuanced since by design anyone should be able to compute (and
publish) partial openings for any commitment. Hence, when defining binding we
need to provide a concept of binding w.r.t. a “meaningful” plaintext openings.
One could define as meaningful a plaintext opening for which the reconstruc-
tion algorithm Recon is successful. For example, if Recon is a robust version of
Shamir’s Secret Sharing [20] where reconstruction demands that all points lie on
the same polynomial, then passing Recon would be very hard with an adversary
who cannot control the opening of all commitments. Hence, while the adversary
can give valid openings to random points, put together, these random points will
not interpolate the same polynomial. However, this definition of “meaningful full
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opening” would work only for secret sharing schemes that have such a robust
reconstruction property, but not in general. For example, it would not work with
the simple sharing scheme based on xor where t = κ−1 since every set of shares
would pass the reconstruction algorithm. Hence, since we want to be very gen-
eral and make no assumptions on the properties of the underlying secret sharing
scheme (besides t-privacy and correctness), we provide a definition of binding of
the full opening w.r.t. a relation R, which can be later tied to the proof system
(See Definition 5). Another crucial difference with the usual binding require-
ment is that in POC we need binding to hold w.r.t. a partial opening. Namely,
an adversary should not be able to provide a commitment and partial opening
that can be later explained by two different (and meaningful) full openings. This
property is necessary when POC is combined with a zero-knowledge proof sys-
tem to argue about soundness, since in the proof system the full opening is never
provided in the clear. Hence, we define binding properties that must holds even
when only partial openings are provided (Definition 4). Lastly, another binding
concern which is unique to the partial opening setting that we are introducing, is
that an adversary could craft her commitment adaptively after she has observed
the real partial openings for some honest commitment that was published before.
To capture security against this attack, we define the notion of Unforgeability
of Partial Openings w.r.t. Relation R (Definition 6). This property asks that an
adversary who copies commitments and/or partial openings from other parties
should not be able to successfully open her own commitments in full.

Black-Box Anonymous Commit-and-Prove from POC. With the POC
definition in place, we now have the crypto tool that allows honest parties to
open unknown commitments, and we are able to finally leverage the MPC-in-
the-head paradigm used in literature for black-box commit-and-prove. Given N
POC public commitments (C1, . . . ,CN ), a prover U l, knowing the κ valid full
openings committed in Cl, will generate fake full openings for the remaining N−1
commitments (leveraging partial openability) and use such values as input of an
MPC-in-the-head protocol for a specific functionality FOR

R . This functionality
takes in input N full plaintext openings, and outputs 1 if there exists at least
one set of κ plaintext openings that reconstruct to a secret sl such that R(sl) =
1. Anonymity relies on the indistinguishability between fake openings and real
openings, and the t security of the underlying MPC. To prove soundness we will
leverage the various binding properties guaranteed by the definition of POC.
(Hence, our proof works with any implementation of POC). The commit-and-
prove protocol is depicted in Fig. 3. A graphic representation is also provided in
Fig. 5.

Concrete Instantiation of Anonymous Commit-and-Proof for Tailored
OR Circuit (Blackboo). While the generic POC + MPC-in-the-head app-
roach described above works, it does not allow to leverage the concrete prac-
ticality of some MPC-in-the-head implementation such as ZKBoo [9]. ZKBoo
explicitly defines the MPC-in-the-head computation via a function decomposi-
tion (described in Sect. 4) that yields to very efficient implementations. Our key
idea is to match the secret sharing scheme used for POC with the secret sharing
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function used in the (2,3)-Decomposition of ZKboo – which is the simple 3-out-
3 xor scheme, so that we can inherit the same proof efficiency. Unfortunately,
however, the (2,3)-Decomposition of ZKBoo is tailored for the following type of
relations: R(y, w) = 1 if “ I know w such that y = F (w)”, while, in our proof,
we will need to prove the OR of N statements. If we were to use ZKBoo as-is
we would need to generically compile ROR into a circuit bigger than the one
required for R, which introduces additional complexity. We take another app-
roach, and we provide a decomposition that is ad-hoc for the relation ROR. The
benefit of this approach is that any improvement in the circuit computation of
R can be used directly in our composition (and it would not require to redesign
the circuit for ROR). The final construction will consist in κ parallel repetitions
of (2,3)-POCpaired with κ repetition of the (2,3) Function Decomposition. See
Sect. 6 for more details of this construction.

On the One-Time Setting. Our one-time anonymous commit-and-prove
scheme BlackBoo is suitable for governance applications in decentralized set-
tings, such as blockchains. A common task in blockchain environment is to build
a community controlled and decentralized collaborative decision-making mecha-
nism for blockchain development and maintenance. In [22] for example, the goal
is to provide a mechanism to vote on projects that should be funded with the
blockchain treasury. BlackBoo can be used to build a such a voting mechanism
by having parties publish commitments to their votes on the blockchain (the
commitment can be signed using a permanent valid key, e.g. their wallet) and
then claim one vote by proving the opening of one of the commitments. The tally
is done transparently by looking at the openings. The tally is correct since proofs
are linkable (so one person cannot vote multiple times). Votes are anonymous,
since an opening is not linked to any single commitment – but to the entire
set of published commitments. BlackBoo can also be used to easily implement
a decentralized sealed-bit auction where the winner remains anonymous to the
others. Each party Pi commits to their bid bi and an ephemeral public key epki

(this commitment could be signed with a permanent key). Once all commitments
are published, each party will send the opening (bi, epki) and prove that it is the
opening of one of the commitments (the public key will be used for further com-
munication with the winner). From the openings, everyone can determine the
winner. We note that this sealed-bid auction will not require any facilitator (as
opposed to solutions such as [15]) and can be done in a completely decentralized
manner, by simply posting transactions on the blockchain.

3 Definitions

Notation. We use bold notation c to denote a vector of commitments, i.e., c =
(c1, . . . , cλ). If d = (d1, . . . , dn) is a vector of commitments and I ⊂ {1, . . . , n} is
a set of indexes, we use notation dI as a shorthand for the set {dj}j∈I . Notation
[N ] means the set {1, . . . , N}, negl(n) denotes a negligible function of n. When
C is a vector of vectors, notation C[e, j] means, take the e-th vector of C, let
Ce such vector, take the j-th coordinate Ce[j]. When xi is a bit string we use
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notation xi[j] to denote the j-th bit of x. We will sometimes omit obvious checks
in the attempt to reduce the burden on the reader.

3.1 Partially Openable Commitment Scheme

A Partially Openable Commitment scheme (for short, POC) is a commitment
scheme that in addition to hiding and binding provides a“partial opening” prop-
erty. Partial opening means that anyone can partially open a public commitment
generated by some unknown party. A POC is parameterized by a secret-sharing
scheme (Share,Recon) with parameters (t, n). A commitment is a vector of n
sub commitments C = [c1, . . . , cn], one for each share generated by Share. A
partial opening consists in the opening of only t sub-commitments. We explic-
itly decouple the openings as plaintext openings – the shares of the plaintext
value, that we denote by x1, . . . , xn from the cryptographic (crypto) openings
that consist of the keys used to evaluate the underlying crypto primitive. We
use a field, called tag tag, that is shared by all sub-commitments and uniquely
binds a sub-commitment cj to the full commitment C.

Definition 1. A Partially Openable Commitment (POC) parameterized with
algorithms (Share, Recon), statistical security parameters (t, n) and security
parameter λ, and with oracle access to cryptographic primitive(s) O, is a tuple
of algorithms (PComO, VerifyCryptoO, VerifyPlaintext, FakeOpenO,ValidTag,
IsValid) where:

– ValidTag(1λ): on input the security parameter outputs a tag tag ∈ {0, 1}λ.
– PComO

Share(v, tag): on input a string v ∈ {0, 1}λ and a tag tag, outputs:
– Commitment: C = [c1, . . . , cn]
– Plaintext Vector: X = [x1, . . . , xn]
– Cryptographic Vector: K = [k1, . . . , kn].

– VerifyPlaintextRecon(X): On input a plaintext vector d, it outputs y ∈ {0, 1}λ

or ⊥.
– VerifyCryptoO(C, tag, I, {K}|I): On input a commitment C = [c1, . . . , cn],

a set I ⊂ [N ] with |I| ≤ t, a tag tag and a subset of crypto openings {K}|I =
(kj)J∈I , and having oracle access to O, it outputs: either yj ∈ {0, 1}λ∀j ∈ I
or ⊥.

– FakeOpenO(tag′,C) on input a commitment C and having oracle access to O
returns:
– Fake plaintext vector: FX = [x′

1, . . . , x
′
n] and

– Fake cryptographic vector: FK = [k′
1, . . . , k

′
n].

– IsValid(C): on input a commitments, it outputs 1 if it has a valid format.

A POC has the following properties:
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Completeness. For every v ∈ {0, 1}λ, for all tag ← ValidTag(1λ), (C,X,K, tag)
← PComO(v, tag), for all tag′ ← ValidTag(1λ) it holds that:

Pr[VerifyPlaintext(X) → v] = 1 (1)

∀I ⊂ [n], P r
[
VerifyCryptoO(C, tag, I, {K}|I) → {Yj}j∈I

]
= 1 (2)

∀I ⊂ [n], (FX,FK) ← FakeOpenO(tag′,C), (3)

Pr
[
VerifyCryptoO(C, tag, I, {FK}|I) → {Yj}j∈I)

]
= 1 (4)

Openability. The following property says that any commitment (even if com-
puted maliciously) is partially openable, as long it has the expected “format”
(i.e., it satisfies predicate IsValid.)

Definition 2 (Partial Openability). A POC is partially openable if for all C
s.t. IsValid(C) = 1, for all tag′ and (FK,FX) ← FakeOpenO(tag′,C), for all I
s.t. |I| ≤ t it follows that

Pr
[
VerifyCryptoO(C, tag′, I, {FK}|I) 
= ⊥)

]
≥ 1 − negl(λ)

Hiding in Presence of Partial Openings. This property states the following: any
honest commitment can be partially opened in such a way that the fake partial
openings are indistinguishable form the real partial opening.

Definition 3 (Hiding in presence of Partial Openings). A POC is hiding
in presence of partial openings w.r.t a secret sharing scheme (Share,Recon) if
the following holds. For all v ← {0, 1}λ, for all tag ← ValidTag, (C,X,K, ) ←
PCom(v, tag), I ⊂ {1, . . . , n} s.t. |I| ≤ t, for all tag′ ← ValidTag(1λ),
(FK,FX) ← FakeOpenO(tag′,C) and VerifyCryptoO(C, tag′, I, {FK}|I) 
= ⊥
the following distributions are perfectly (resp., computational) indistinguishable

{C, tag,K[j]}j∈I ≈ {C, tag′, FK[j]}j∈I

Binding of Partial Openings. This definition captures the following property.
Fixed a commitment C = (c1, . . . , cn), it should be infeasible for an adversary
to provide two distinct partial crypto openings that are consistent with the same
full plaintext openings (x1, . . . , xn).

Definition 4 (Binding of Partial Openings). A POC satisfies Binding of
Partial Openings if for all PPT adversaries A, the following holds.

Pr

⎡
⎣

C;X = (xj)j∈I , (tag,K) 
= ( ˜tag, K̃)
∀I,VerifyCrypto(C, tag, I, {kj}j∈I) = (xj)j∈I
∀I,VerifyCrypto(C, ˜tag, I, {k̃j}j∈I) = (xj)j∈I

⎤
⎦ ≤ negl(λ) (5)
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Binding of Plaintexts w.r.t. a Relation R. Note that the partial openability
property allow anyone to partially open a commitment C. This naturally means
that there are many ways C can be opened, and thus many plaintexts. This
property establishes that fixed a commitment C, it is infeasible for an adversary
to provide two partial crypto openings that are consistent with two distinct full
plaintext openings that satisfy a relation R.

Definition 5 (Binding of Plaintexts w.r.t. a Relation R). A POC satis-
fies binding of Plaintexts w.r.t. a Relation R if for all PPT adversaries A the
following holds.

Pr

⎡
⎢⎢⎢⎢⎣

(C,O1,O2) ← A(1λ) O1 = (tag,X,K) 
= O2 = ( ˜tag, X̃, K̃)
X̃ = [x1, . . . , xn] R(Recon(x1, . . . , xn)) = 1
X̃ = [x̃1, . . . , x̃n] R(Recon(x̃1, . . . , x̃n)) = 1

∀I VerifyCrypto(C, tag, I, {kj}j∈I) = (xj)j∈I
∀I VerifyCrypto(C, ˜tag, I, {k̃j}j∈I) = (x̃j)j∈I

⎤
⎥⎥⎥⎥⎦

≤ negl(λ)

(6)

Unforgeability of Partial Openings w.r.t. Relation R. The following definition
captures the fact that valid partial openings should be unforgeable, when the
plaintext must satisfy a certain relation R. Namely, while the adversary can
always copy the partial openings that she observed from other parties, it should
be infeasible to re-use partial openings of others, while still being able to open to
a meaningful plaintext. This property holds with probability 1− 1

exp(n,t) since if
the adversary guesses the set I on which she will need to provide the openings,
she can simply create commitments that do not open to a meaningful plaintext.

Definition 6 (Unforgeability of Partial Openings w.r.t. Relation R). A
POC satisfies unforgeability of partial openings w.r.t. relation R if for all PPT
adversaries A there exist function exp(t, n) and a negligible function negl(λ) such
that:

Pr[ExpForge−Partial
POC,R (A, 1λ) → 1] ≤ 1

exp(t, n)
+ negl(λ)

where ExpForge−Partial
POC,R is the game described below.
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Game 1 [Unforgeability of Partial Opening w.r.t. R ]
ExpForge−Partial

POC,R (A, 1λ)

1. A sends input v, s.t. R(v) = 1 to the challenger .
2. Challenger runs tag ← ValidTag(1λ) and (C,K,X) ← PCom(v, tag) and

sends C and X to the adversary.
3. A sends commitment M (it could be equal to C).
4. Challenger picks set I uniformly at random and send partial crypto openings

tag, K = (kJ )j∈I to A.
5. A sends plaintext openings X̃ = [x̃1, . . . , x̃n] s.t. R(Recon(X̃))= 1.
6. Challenger picks set Ĩ and send it to A.
7. When A responds with K̃ = (k̃j)j∈Ĩ , if (X, tag,K, I) 
= (X̃, ˜tag, K̃, Ĩ) (i.e.,

A is not simply copying) proceed as follows:
– If (M = C) and VerifyCrypto(C, tag, {k̃�}�∈Ĩ))= (x̃�)�∈Ĩ output 1 (honest
commitment is forged)
– Else, if VerifyCrypto(M, tag, {k̃�}�∈Ĩ))= (x̃�)�∈Ĩ output 1 (partial opening
of honest commitment is forged).
–Else, output 0.

3.2 Linkable Anonymous Commit-and-Prove System

An anonymous 1-out-of-N Commit-and-Prove System allows a prover to con-
vince a verifier that the opening of one out of N commitments satisfies a certain
relation R, without revealing which one. The word anonymous is used to empha-
size that the opening N − 1 commitments are unknown to the honest prover.
For simplicity, the definition below assumes that all proofs are performed w.r.t.
the same set of commitments C. The same definition can be generalized to the
case where a proof can be computed to any subset of C.

Definition 7 (Linkable Anonymous Commit-and-Prove). A 1-out-of-N
Linkable Anonymous Commit-and-Prove scheme for a relation R is a tuple
of PPT algorithms (ComWitness, IsValid,Prove,Verify,PLink) that have oracle
access to cryptographic primitive(s) O and implement the following function-
alities:

– (C,d) ← ComWitnessO(xl||wl) is a randomized algorithm run by a party P l.
It takes in input a string xl||wl and outputs a commitment C and opening d.
The commitment C is published and added to a vector of public commitments
C, d is the secret output for P l.

– b := IsValid(C) is a boolean predicate that on input a commitment outputs 1
if it satisfies a valid format.

– π ← ProveO(C1, . . ., CN ,dl) is run by a party P l. It takes in input the list
of public commitments (C1, . . ., CN ) published by parties P1, . . . ,PN , and a
private input dl of P l. The output is a proof π.

– b := VerifyO(C, π) is a deterministic algorithm that on input a set of commit-
ments C = (C1, . . ., CN ) and a proof π, outputs 0/1.
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– b := PLinkO(C, π1, π2) is a deterministic algorithm that on input set C = (C1,
. . ., CN ) of commitments and two proofs π1, π2 outputs a bit denoting whether
π1 and π2 were computed using the same witness w.

Definition 8 (Completeness). For all C = [C1, . . . ,CN ], Ci ← ComWitness

(xi ||wi), ∀ l ∈ [N ], s.t. π ← ProveO(C1, . . ., CN , dl), Pr
[
VerifyO(C, π) → 1

]

= 1.

Definition 9 (Proof of Knowledge). For every PPT prover strategy P�,
there exists an oracle PPT machine Ext called extractor such that for all C∗, π∗

generated by P� it holds that:

Pr
[
Verify(C∗, π∗) = 1 ∧ ExtA

∗
(C, π∗) → (x,w) ∧ R(x,w) = 1

]
= 1 − negl(λ)

Definition 10 (One-time Prover Anonymity.). For all λ ∈ N, for
any PPT adversarial verifier A, there exists a PPT simulator SimProve =
(SimCom,SimProve) and a negligible function negl such that:

Pr[ExpAnonyLinkA,Π,SimProve(1
λ) = 1] =

1
2

+ negl(λ)

where ExpAnonyLink is the following game.

Game 2 (One-time Anonymity Game) ExpAnonyLinkA,Π,SimProve(1λ).

Game Initialization. The challenger picks b
$← {0, 1} and sets L ← ∅.

Commitment Stage. A outputs a set IdxHon of indexes for honest players
and a set of theorems/witnesses {xl, wl}l∈IdxHon.
– For l ∈ IdxHon: if b = 0 the challenger runs (Cl,dl) ← ComWitness(xl||wl),
and sets H = {Cl}l∈IdxHon. if b = 1 it runs (state,H) ← SimCom(IdxHon). The
set H is given to A.
–Malicious Commitments. A outputs commitments M = M1,M2, . . .. – Public
Commitment List: C = H∪M. Proof Stage. A has access to oracle Prove(C, l)
that behaves as follows.
If l ∈ IdxHon∧ l /∈ L: add l into L and
- If b = 0 output πl ← Prove(C,dl) to A.
- If b = 1 output πl ← SimProve(state,C).
Else, output ⊥.
Decision. When A outputs b′, output 1 iff b = b′.

Definition 11 (Proof Linkability). This property captures the fact that any
two proofs computed using the same openings should be linked. Let A be a PPT
algorithm. A commitment and prove scheme is linkable if:

Pr

⎡
⎣
C

∗, π∗
1 , . . . , π

∗
N+1 ← A(1λ) : |C∗| = N

∀i ∈ [N + 1] : Verify(C∗, πi) = 1
∀i, j ∈ [N + 1]i 
= j : PLink(C∗, πi, πj) = 0

⎤
⎦ ≤ negl(λ) (7)
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Definition 12 (Proof Non-Frameability). This property captures the fact
that an adversary should not be able to craft a proof that is linkable to an honest
proof. This is captured via the following experiment. We say that Π satisfies
proof frameability if for all PPT adversaries A, there exists a negligible function
negl such that:

Pr[ExpProofFrame
A,Π (1λ) = 1] ≤ negl(λ)

where ExpProofFrame
A,Π (1λ is the following experiment:

Game 3 (Proof-Framing Game) Experiment ExpProofFrame
A,Π (1λ)

1. The adversary A on input 1λ outputs the pair of (x||w).
2. The challenger runs (C,d) ← ComWitness(x||w) and send C to the A.
3. A outputs commitments M = M1,M2, . . .. Set C = {M ∪ C}.
4. The challenger compute π ← Prove(C,d) and send it to A.
5. A outputs π′.
6. Decision. Output 1 iff: Verify(C, π′) = 1 ∧ PLink(C, π, π′) = 1.

4 Ingredients

4.1 Ingredient 1. Partially Openable Commitment Scheme

The high-level description of the protocol was provided in the Introduction. In
Fig. 1 we provide the formal description of a POC scheme, instantiated with the
secret sharing scheme (ShareD,RecD) described below.

Protocol 1 (Sharing Scheme) (ShareD,RecD)

– ShareD(x, ψ1, ψ2, ψ3): Output x1,x2,x3 such that x = x1 ⊕ x2 ⊕ x3. These
strings are picked using random tapes ψ1, ψ2, ψ3. All strings are in {0, 1}λ.

– RecD(x′
1,x

′
2,x

′
3): Output x′

1 ⊕ x′
2 ⊕ x′

3.

Theorem 1 (Protocol 2 is a Partially Openable Commitment scheme).
If H is a random oracle, (ShareD,RecD) is (2, 3) private (Definition 13), then
Protocol 1 satisfies Definition 1 with parameters (2, 3).

[Informal]. Informally, security follows directly from the properties of H. Hiding
in presence of partial openings follows from the (2,3) privacy of ShareD and the
hiding of the remaining unopened commitment. ce. Binding of partial opening –
which means that no sender should be able to open a commitment C =(c1, c2, c3)
to a fixed plaintext (x1, x2, x3) with two distinct crypto partial openings (tag,
ka, kb), ( ˜tag, k̃a, k̃b) – follows from the second-preimage resistance property H.
Indeed, for any δ, finding distinct keys that decipher the same plaintext xδ for
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Protocol 2 (A Partially Openable Commitment from O = H)
Parameters: t = 2, n = 3.

POCH(ShareD,RecD).

ValidTagH(1λ): Pick a random string r. Output tag ← H(r).
PComH

ShareD(v, tag):

− Plaintext: (x1, x2, x3) ← ShareD(v, r1, r2, r3) with rj
$← {0, 1}λ.

− Crypto Material: ca = H(tag||ka) ⊕ xa with ka
$← {0, 1}λ, ∀a ∈ {1, 2, 3}

− Output. Commitment: C := (c1, c2, c3).
Plaintext Vector X = [x1, x2, x3]; Crypto Vector K = [k1, k2, k3]; tag.

VerifyPlaintext(X): Output v = RecD(x1, x2, x3).
VerifyCryptoH(C, tag, I, {K}|I):

− If IsValid(C) = 0 output ⊥.
− Let C = (c1, c2, c3). Let I = {a, b}.
− Output (xa, xb) where xa = ca ⊕ H(tag||ka) and xb = cb ⊕ H(tag||kb).

FakeOpenH(tag′,C):

− Crypto Part: Pick random fka
$← {0, 1}λ, for a = 1, 2, 3.

− Plaintext Part: fxa ← H(tag′||fka) ⊕ ca.
− Output: Plaintext Vector FX = [fx1, fx2, fx3]; Crypto Vector FK =

[fk1, fk2, fk3]; tag tag′.
IsValid(C): Output 1 iff |C| = 3λ bits.

Fig. 1. Partially Openable Commitment Scheme POC

commitment cδ corresponds to finding two pre-images of y = cδ ⊕xδ. Binding of
Plaintext wrt a Relation R – which means that it should be infeasible to open
the same commitment C =(c1, c2, c3) with two partial crypto openings and two
distinct plaintext openings X= (x1, x2, x3) and X̃ = (x̃1, x̃2, x̃3) that satisfy
a relation R–, holds with probability 2/3. To see why, first notice that once
the adversary A has fixed (c1, c2, c3) and declared openings X= (x1, x2, x3)
and X̃ = (x̃1, x̃2, x̃3), in order to provide two crypto openings (tag, ka, kb),
( ˜tag, k̃a, k̃b) that are both consistent with the declared plaintext openings, A
should either guess the challenge e /∈ I, or should find a pre-image of the value
y = ce⊕xe (resp. y = ce⊕x̃e). Unforgeability of Partial Openings wrt Relation R
is proved for our relation of interest Requal (but the same proof works for any non
trivial relation). This property captures the inability of the adversary to forge
the crypto openings provided by other users on their own commitment. It follows
from similar arguments of binding of plaintext wrt R, since, by copying other
user’s crypto openings, the adversary is not able to open his own commitment
with plaintexts that satisfy R. The formal proof is provided in the full version.

4.2 Ingredient 2. MPC-in-the-Head for or Relation

We will use the 3-party MPC-in-the-head protocol proposed in [9] (see also
[9], Sec. 14) presented as a (2,3)-Function Decomposition. The computation is
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divided in 3 parallel threads such that revealing two threads does not reveal
any information about the inputs to the function. In the following we report the
definition of linear decomposition as provided in [9].

Definition 13 ((2,3) Linear Decomposition [9]). Let Φ : X → Y be a func-
tion that can be divided in 3 computation branches {Φ1, Φ2, Φ3} performed in
steps by gates and let GΦ =

⋃N
c=1{Φ

(c)
1 , Φ

(c)
2 , Φ

(c)
3 } be the set of gates. A Decom-

position (see [9], Sec. 14) for a function Φ is the set of functions

D = {ShareD,Output1,Output2,Output3,RecD} ∪ GΦ

such that ShareD is surjective and satisfies the properties of Correctness (the
output of RecD is the correct evaluation of Φ) and (2,3)-Privacy (i.e., any two
branches do no reveal any information about the input).

Our Ad-hoc Execution of Decomposition of OR Relation ROR. We are
interested in computing relation ROR : ({0, 1}λ)N → {0, 1} that takes in input
N values (X1, . . . , XN ) and outputs 1 if there exists one i such that R(Xi) = 1,
for any relation R. We split this task in two functions: (1) ΦR : {0, 1}λ → {0, 1}
is defined as the boolean function computing R(X) = 1 with gates GR and (2)
ROR : {0, 1}N → {0, 1} is the OR function that computes the OR of N bits, and
we denote by GOR the gates for ROR. We present our ad-hoc decomposition for
ROR in Protocol 3.

Protocol 3 (Ad-hoc Execution of Decomposition for ROR) (this work)

ΠROR

(X1, . . . , XN )

Output: b = ROR(X1||W 1, . . . , XN ||W N ) = R(X1, W 1) ∨ . . . R(XN , W N ).
1. Secret Sharing Step:

xi
1,x

i
2,x

i
3 ← ShareD(W i, ψi

1, ψ
i
2, ψ

i
3); for i ∈ [N ] (Prot. 1)

2. Computation Step: Compute(GROR

,xi
1,x

i
2,x

i
3)i∈[N ]

(i) Secure Computation of R(Xi, W i) for each i:
(wi

1,w
i
2,w

i
3) ← Compute(GR,xi

1,x
i
2,x

i
3, r

i
1, r

i
2, r

i
3); for i ∈ [N ].

Let oi
j ← Outputj(w

i
j) j = 1, 2, 3. (Note that the output is not reconstructed)

(ii) Secure Computation of OR:
Input shares: orxj:= (o1

j , . . . ,o
N
j ), for j ∈ [3]. (orw1,orw2,orw3) ←

Compute(GOR, orx1,orx2,orx3,r1, r2, r3).

3. Outputs.

1. Let orj ← Output(orwj)
2. Output Reconstruction: b = RecD(or1,or2,or3) (Prot. 1)

Fig. 2. Our decomposition ΠΦOR
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Protocol 4 (View consistency ) TestViewConsistencyΦOR

(wa,wb)

1. Computation: Check that wa is a correct execution of ΦOR (Prot. 3) wrt the
inputs contained wa[0].

2. Communication. Check that any incoming/outgoing message from player Pa and
player Pb are consistent with the messages that appear in the respective views
wa,wb.

The security of our decomposition ΠΦOR follows directly from the security of
the (2,3)-decomposition of [9]. This is because ΠΦOR is a sequential composition
of two secure decompositions, where the output of the first decomposition is not
reconstructed but instead is left in secret sharing form and fed as input shares
of the second execution of the decomposition.

5 Black-Box Anonymous Commit-and-Prove

The protocol consists of two stages: the POC Commitment Stage (Proto-
col 5) and the Proof stage (Protocol 6). At high-level the proof stage con-
sists of 4 steps. In the first step the prover must obtain the shares for all
the commitments. A prover P l, who knows the real openings tagl,X l,Kl, will
first compute the “fake openings” for the other N − 1 commitments Ci 
= Cl,
using tag tagl. Namely, P l obtains a fakes shares FXi,j = [fxi,j

1 , fxi,j
2 , fxi,j

3 ]
for the remaining N − 1 inputs. In the second step, the prover must compute
the MPC views, on input the shares obtained in step 1. Namely, each tuple
of share (fxi,j

1 , fxi,j
2 , fxi,j

3 ) is used as input of the j-th execution of protocol
ΠΦOR , thereby obtaining views wj

1,w
j
2,w

j
3. In the third step, the prover com-

mits to the views above and obtains (Cviewj
1,Cviewj

2,Cviewj
3). Finally, the

prover obtains the positions that must be opened by querying the random ora-
cle H and obtains the challenge sets I1, . . . , Iκ. The final proof consists of the
commitments (Cviewj

1,Cviewj
2,Cviewj

3), the openings of the commitments in
position (aj , bj) ∈ Ij and the partial openings for each of CI,j . The verifier
accepts the proofs if the opened MPC-views use inputs that are consistent with
the partial openings of Ci,j and if they are correct according to ΠΦOR . In Fig. 5
we attempted to provide a visual representation of the protocol that we hope
will help to visualize the prover’s steps, how the keys are used and what is the
final view of the verifier. Figure 5 depicts an optimized version of the protocol
where the commitments of the views are compressed using a Merkle Tree (hence
the gray triangle).

Notation. w1 denotes the complete view of MPC player 1, w1[0] denotes the
input in the view of player 1, w1[i, 0] denotes the i-th input in view of player 1.
Index i ∈ [N ] are used for parties/commitments, j ∈ [κ] is used for sub-proofs.
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Protocol 5 (BlackBoo: Commitment Stage)
Let POC = (PComO, VerifyCryptoO, VerifyPlaintext, FakeOpenO,ValidTag, IsValid) as
in Protocol 2.

ComWitness(x||w). On input (x, w) for R, P l computes tagl $← ValidTag(1λ).

Run (Cl,j , Xl,j , Xl,j) ←PCom(x||w, tagl) ∀j ∈ [κ] where:
- Commitment: Cl,j = (cl,j

1 , cl,j
2 , cl,j

3 ).
- Plaintext Vector: Xl,j = (xl,j

1 , xl,j
2 , xl,j

3 ).
- Cryptographic Vector: Xl,j = (kl,j

1 , kl,j
2 , kl,j

3 ).

Publish Cl,j. The witness is (tagl, Xl,j , Kl,j).

6 A Concrete Instantiation for Proof of Equality: ROR
equal

In this section we focus on specific relation, the equality relation Requal, and its
1-out-N extension ROR

equal. Our goal is to show that our black-box approach can
lead to very efficient proofs (more efficient than the non-black-box counterpart).
Relation ROR

equal is defined as follow. ROR
equal(sn, v1, . . . , vn) = 1 iff there exists an i

such that vi = sn. In order to make explicit claims about the concrete complexity
of the proof we explicitly design a circuit CEqOR for relation ROR

equal (and we
prove its correctness), in order to be able to count the gates that need to be
evaluated. Each gate is then securely evaluated using the secure decomposition
of [9] (described in Sect. 4 of [9]). We are then able to identify the precise concrete
complexity.

Boolean Circuit Optimized for ROR
equal. We design a circuit for ROR

equal performs the
following task. On input a public value sn and N strings v1, . . . , vN , outputs 1
if there is an i such that vi = sn. Wlog, we assume that N is even (if not, it can
be enforced via padding). The circuit CEqOR :

({0, 1}�
)N → {0, 1}� is described

in Fig. 4.

Claim (Circuit CEqOR correctly implements ROR
equal). Let N be a positive even

integer. The circuit CEqOR, hardwired with value sn, on inputs sn, v1, . . . , vN

outputs 0 when for all i all vi 
= sn and outputs 1 when for an index i (or an
even number of i), vi = sn.

It can be checked by inspection, but a formal proof is provided in the full version.
Concrete Efficiency of ΠΦOR with circuit CEqOR In this section we discuss the
concrete complexity of ΠΦOR when: (1) ΠPcom is instantiated with Protocol 1; (2)
Compute(GROR

, ·) is instantiated as in [9], (3) (ExtCom,ExtVrfy) is instantiated
as: ExtCom(m): Pick a random r. Output c = H(m||r). ExtVrfy(c,m, r): Output
1 iff c = H(m||r).
Size of Partial Openings. The final proof consists of the partial opening of
all N commitments in C, that is ∀i ∈ [N ], j ∈ [κ], ki,j

aj , ki,j
bj , aj , bj ∈ IJ . This

requires communication of 2λκN strings. We can shave off the parameter N , by
using PRF keys prfkeyj

1, prfkey
j
2, prfkey

j
3 to generate the randomness required to
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Protocol 6 (BlackBoo: Proof Stage ΠCP) Let ΠROR

be the (2,3) decomposi-
tion (Protocol 3). Let (ExtCom,ExtVrfy) be a non-interactive extractable commitment
scheme.

Published Commitments : C = [(C1,j), . . . , (CN,j)]j∈κ (Protocol 5)

Proof Stage ProveH((C = [C1,j , . . . ,CN,j ], (tagl, Kl,j , Xl,j)) ∀j ∈ [κ].

1. First message:
(a) Open N − 1 unknown commitments:

- Run FakeOpen(tagl,Ci,j) (∀i �= l, j ∈ [κ]) and obtain: fake plaintext open-
ings: FXi,j = [fxi,j

1 , fxi,j
2 , fxi,j

3 ] and fake cryptographic openings: FKi,j =
[fki,j

1 , fki,j
2 , fki,j

3 ].
(b) MPC-in-the-head. Pick random tapes: r1, r2, r3.

– Compute MPC Views for the j-th execution: (see Protocol 3, Step
2) : (1) Derive randomness rj

a from ra for a ∈ {1, 2, 3}. (2) Run

Compute(GROR

, (fxi,j
1 , fxi,j

2 , fxi,j
3 , xl,j

1 , xl,j
2 , xl,j

3 , ), rj
1, r

j
2, r

j
3) with i �=

l ∈ [N ], j ∈ [κ] and obtain the view of the j-th execution:
(wj

1||rj
1,w

j
2||rj

2,w
j
3||rj

3).
– Commit MPC Views for the j-th execution:

(Cviewj
a,OpViewj

a) ← ExtCom(wj
a||rj

a, rand), for a = 1, 2, 3.
2. Challenge. (I1, . . . , Iκ)= H(CH,C, [Cviewj

1,Cviewj
2,Cviewj

3]j∈κ).
3. Response. For aj , bj ∈ Ij send:

(a) MPC-views: (OpViewj

aj , OpViewj

bj ).

(b) Crypto Openings: (fki,j

aj , fki,j

bj ), (kl,j

aj , kl,j

bj ) for i ∈ [N ], j ∈ [κ].
4. Proof:

π := [tag,Cviewj
1,Cviewj

2,Cviewj
3, OpViewj

aj , OpViewj

bj ,k
i,j

aj , ki,j

bj ], ∀i ∈
[N ], j ∈ [κ]

Verification: VerifyH(C, π). (0) Compute Ij, for j ∈ [κ] from H.

1. MPC View Consistency (Soundness of the proof). For all j ∈
[κ]. (1) Let wj

δj , rj

δj = ExtVrfy(Cviewj

δj ,OpViewj

δj )) for δj ∈ Ij. Run

TestViewConsistency(wj

aj ,wj

bj ) (Test 4). If any check fails, reject the proof.

2. Input Commitment Consistency. For all i ∈ [N ], δj ∈ Ij: let xI,j

δj ←
VerifyCrypto(tag,Ci,j

δj , ki,j

δj ) check wj

δj [i, 0] = xi,j

δj . If any check fails, output 0.

Protocol 7 (Proof Link) PLinkH(C, π1, π2) :
Let π-coml = [Cviewl,j

1 ,Cviewl,j
2 ,Cviewl,j

3 ] for j ∈ κ.
– If π-com1 �= π-com2 (no copy) and Verify(C, π1) = Verify(C, π2) = 1 proceed.
Parse πδ = (tagδ,Cviewδ,j

1 ,Cviewδ,j
2 ,Cviewδ,j

3 , OpViewδ,j

|Iδ,j , Kδ,i,j

|Iδ,j ) for δ = (1, 2).

If tag1 �= tag2 output 0. Else output 1.

Fig. 3. One-time Anonymous 1-out-of-N Commit-and-ZKBoo
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Fig. 4. Circuit for ROR
equal relation.

open position (j, 1), (j, 2), (j, 3) for all N commitments. Hence, the number of
bits required for the partial opening is 2κλ, which is independent of the number
of commitments (i.e., the size of the ring) N .

Size of Views for CEqOR. As shown in Fig. 5 (right side), the proof consists
of the commitments of the MPC players views and partial openings: [Cviewj

1,
Cviewj

2, Cviewj
3, OpView

j
aj , ki,j

aj ],∀aj ∈ Ij . The first observation is that instead
of committing to the entire view, one can commit to a much shorter prf key
used to derive the randomness used to run the MPC players, and to the com-
munication channels with other parties. Recall that in the decomposition of [9]
communication is required only to compute AND, and only 6 bits are required.
Observe that one evaluation of CEqOR requires log 	 · N AND evaluations. For κ
parallel evaluations of CEqOR the total AND complexity is (log 	 · N · κ). Hence,
the total number of bits that need to be added to viewa is 6(log 	 · N · κ).

Table 1 reports the communication complexity for different choices of N and
κ, with a fixed security parameter λ = 	 = 128.
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Fig. 5. (Left) Prove(·) algorithm. (Right) Public Commitments and Proof.

Table 1. Proof size for equality relation ROR
equal wrt security parameter λ = 128.

N Coms Proof size for κ=80 Proof size for κ=100 Proof size for κ=128

27 54 KB 67 KB 86 KB

28 107 KB 134 KB 172 KB

29 215 KB 268 KB 344 KB

6.1 Security Proof

Theorem 2. If protocol ΠROR

(Protocol 3) is a secure (2,3) decomposition for
ROR instantiated with algorithms {ShareD, Output1, Output2, Output3, RecD}. If
POCO (Fig. 1) is a partially openable commitment scheme (Definition 1), instan-
tiated with (ShareD, RecD) and with parameters (2, 3) (ExtCom, ExtVrfy) is
a black-box straight-line extractable commitment scheme, then (multi-branches)
Protocol 6 is a linkable anonymous proof system (Definition 7), assuming random
oracle H.

Proof Strategy. The proof is conducted as follows. First, we show that Proto-
col 3 with κ = 1 which we call single branch version of the protocol satisfies the
following properties:

1. Lemma 1 Completeness (Definition 8). It naturally extends to the multi-
branch case.

2. Lemma 2 Proof of knowledge with 1/3 error (Definition 7). We then show
that soundness naturally amplifies in the κ-branches version to 1 − (13 )κ.

3. Lemma 5 One-time Anonymity (Definition 10) with all but negligible proba-
bility. It naturally extends to the multi-branch case.

4. Lemma 3. Proof Non-Frameability(Definition 12) with 1/3 error. We then
show that non-frameability naturally amplifies in the κ-branches version to
1 − (13 )κ.
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To prove Proof Linkability (Definition 11) we consider directly the multi-
branch version of the protocol (see Lemma 4).

We prove Theorem 2 for the specific relation Requal, but we stress that the
same proof works for any relation R : {0, 1}λ × {0, 1}λ → {0, 1} that outputs 0
on at least some inputs.

Lemma 1 (Completeness). If POC instantiated with (ShareD,RecD) and
parameters (2,3) satisfies completeness and Partial Openability (Definition 2),
ΠΦOR and (ExtCom,ExtVrfy) are complete, Protocol 3 satisfies completeness.
It can be checked by inspection.

Lemma 2 (Proof of Knowledge). If ΠΦOR is a (2,3) decomposition for ROR,
with algorithms: {ShareD,Output1, Output2, Output3, RecD}, POCO satisfies
Binding of Partial Openings (Definition 4) and (ExtCom,ExtVrfy) is straight-
line extractable, then Protocol 6 satisfies the proof of knowledge property as per
Definition 9.

Proof Intuition. We first prove that Protocol 6 with κ = 1 (one branch) satis-
fies proof of knowledge property with probability

(
1 − 1

3 − negl(λ)
)
. Let P� be

a PPT prover that outputs a set of commitments C
∗ = (C1, . . . ,CN ) and an

accepting proof (C∗, π∗) with non-negligible probability p. We show that there
exists an extractor Ext that on input (C∗, π∗) extracts a witness (xl, wl) for
R with probability 2

3 − negl and runs in expected polynomial in p. The goal
of the extractor is to derive the witness that was used in the proof (C∗, π∗).
Toward this, the Ext first extracts the views of the MPC-the-heads committed
in Cview1,Cview2,Cview3. This is possible since the views are committed
using an extractable commitment. By observing the MPC-views, Ext derives
the shares in input of the MPC-players, xi

1,x
i
2,x

i
3 and attempts to reconstruct

at least one witness xi||wi = RecD(xi
1,x

i
2,x

i
3). If the extractor finds an l such

that R(xl, wl) = 1, before giving it in output, it needs to ascertain that it is
consistent with the plaintext commitment Cl. In order to do so, Ext needs to
observe a full crypto opening. To do so, Ext rewinds P� and uses different chal-
lenges with the purpose of obtaining a full crypto opening that is consistent with
the plaintext (xl

1,x
l
2,x

l
3). The extractor will fail in outputting a valid witness

from the proof (C∗, π∗) in the following events. (1) It is unable to extract all
views from commitments Cview1,Cview2,Cview3 or the extracted views are
inconsistent with the actual openings. This event must happen with negligible
probability due to the extractability property of ComExt. (2) The extracted views
are inconsistent with a correct executions of the (2,3)-function decomposition or
they plaintext used in the views is inconsistent with the partial openings pro-
vided in the proof. This case can happen with probability 1/3 of guessing the
challenge, or to the case where the adversary is able to providing distinct valid
plaintext openings for the same commitment, hence violating partial opening
binding (Definition 4). Putting the above claims together, it follows that Ext
fails with probability 1/3 + negl.

Soundness Amplification. For κ parallel executions it follows that the probability
of an extractor to fail κ times in parallel is

(
1
3

)κ +negl(λ).
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Lemma 3 (Non Frameability). If POC satisfies Binding of Partial Open-
ings(Definition 4) then Protocol 6 satisfies Non-Frameability (Definition 12).

Proof Intuition. First, consider the one-branch version Protocol 6 with κ = 1.
Let Aframe be an adversary participating in Game ExpProofFrame (Game 3) and
winning with non-negligible probability ε. Such successful adversary can be used
to violate Binding of Partial Openings with probability

(
1
3

)
+ p.

Winning Game ExpProofFrame means to provide a malicious proof π′ that is
valid, such the partial openings (tag, k̃i

2, . . .) it contains match the partial open-
ings (tag, . . .) contained in an honestly generated proof π, making the two proofs
linkable. First, observe the following: with probability 1

3 the adversary can always
link the two proofs. This follows from the following two facts: first, given any
honest commitment C, after observing a partial opening tag, ka, kb it is easy
to generate another distinct partial openings that is linkable (e.g., one can use
tag, k1, k2, with latter being random strings). But, the underlying full plaintext
openings would not be matching and would not generate an accepting proof. Sec-
ond, if the adversary can guess the challenge, then consistency of all the MPC
views is not required. Instead the adversary can craft the proof so that only the
MPC views that are opened are correct and consistent with the partial openings
(tag, k1, k2), while the remaining unopened view is wrong. It follows then that
with probability 1/3, the adversary can always win Game ExpProofFrame while not
violating any binding property.

In this proof we are interested in an adversary that is able to win with a
better probability ε(λ)= 1

3+negl(λ) + pframe(λ). Indeed, in such case the adver-
sary is doing something clever in ExpProofFrame besides guessing the challenge.
Specifically, he is able to adjust the partial openings of its proofs π′ so that they
match the tag tag used in π. Since π is honest, the tag tag is associated to the
l-th honest partial opening of Cl. An adversary that is able to successfully gen-
erated π′ using tag, either was able to find other keys of the partial opening of
Cl or was able to open one of its own crafted commitments M∗ with tag while
still having the full plaintext opening to be a sharing of a valid witness. Thus,
Aframe is able to forge a partial opening of an honest commitment Cl, and can
be used to break the Unforgeability of Partial Opening Property (see Game 1)
with probability greater that 1

3 + negl(λ).

Lemma 4 (Proof Linkability). If POCO satisfies Binding of Plaintexts w.r.t.
a Relation R ΠROR

(Protocol 3) is a secure (2,3) decomposition for ROR instanti-
ated with algorithms {ShareD, Output1, Output2, Output3, RecD} and ExtCom is
straight-line extractable, then Protocol 6 satisfies proof linkability (Definition 11).

Proof Intuition. Proof linkability is proved for the κ branches directly. The reason
we work directly with the extension is the following. If the proofs are unlinkable,
each must use a different tag for the partial opening. We would like to argue if
all N + 1 proofs are accepting, and if there are N possible plaintexts that are
valid witnesses, there must be at least one witness that repeats, unless the POC
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commitments are not binding and thus one can provide different openings for
the same commitment. In order to reach the conclusion, we need to start with
the assumption that each if a proof is accepting then the proof of knowledge
property holds with all but negligible probability. Indeed if we started with a
weaker guarantee (i.e., that each proof is sound with probability 2/3), then we
could not claim that a witness must have been used in each proof (since some
proofs would go through without witness with probability ≈ 1/3) and thus we
could not claim that N + 1 proof must have used N + 1 valid witnesses.

Lemma 5 (One-time Anonymity). If POC instantiated with (ShareD,RecD)
satisfies hiding in presence of partial opening (Definition 1), the (2,3) decompo-
sition implemented ΠΦOR satisfies privacy (2, 3) privacy and (ExtCom,ExtVrfy)
is computationally hiding, then protocol in Fig. 3 satisfies Linkable Anonymity
(Definition 10.)

Proof Intuition. A honest verifier zero-knowledge (HVZK) simulator SimProve
can be easily provided by using the simulator associated to the (2,3) Function
Decomposition, to pass all proofs without knowing any witness (here we are
crucially using the fact that the simulator can choose the challenge). The indis-
tinguishability of the simulated proof then follows directly from the hiding of
the commitment ExtCom, used to commit to the MPC views, and the hiding in
presence of partial opening that is enjoyed by POC.
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Abstract. We show a compiler that allows to prove the correct exe-
cution of RAM programs using any zero-knowledge system for circuit
satisfiability. At the core of this work is an arithmetic circuit which ver-
ifies the consistency of a list of memory access tuples in zero-knowledge.

Using such a circuit, we obtain the first constant-round and con-
cretely efficient zero-knowledge proof protocol for RAM programs using
any stateless zero-knowledge proof system for Boolean or arithmetic cir-
cuits. Both the communication complexity and the prover and verifier
run times asymptotically scale linearly in the size of the memory and the
run time of the RAM program; we demonstrate concrete efficiency with
performance results of our C++ implementation.

We concretely instantiate our construction with an efficient MPC-in-
the-Head proof system, Limbo (ACM CCS 2021). The C++ implemen-
tation of our access protocol extends that of Limbo and provides inter-
active proofs with 40 bits of statistical security with an amortized cost
of 0.42 ms of prover time and 2.8 KB of communication per memory
access, independently of the size of the memory; with multi-threading,
this cost is reduced to 0.12 ms and 1.8 KB respectively. This performance
of our public-coin protocol approaches that of private-coin protocol Bub-
bleRAM (ACM CCS 2020, 0.15 ms and 1.5 KB per access).

1 Introduction

A zero-knowledge (ZK) proof is a fundamental cryptographic tool which proves
that a statement is true without revealing any other information. Since their
introduction by Goldwasser, Micali and Rackoff [12], ZK proofs have had a sig-
nificant impact on cryptography and have been the object of intense research
work due to their theoretical importance and varied applicability.

Many types of ZK proof systems exist, each presenting different trade-offs
between several efficiency measures. While in blockchain applications, the main
focus is on succinct proofs of small statements [10,15,25], another line of research
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has focused on prover efficiency [1,4,7,8,21,22], while other works have success-
fully constructed ZK proof systems for very large statements with good concrete
efficiency [2,26–28].

Unfortunately, these works focus mostly on statements represented as cir-
cuits, either Boolean or arithmetic, which can incur a significant overhead to
prove properties of large statements that are more naturally represented as
random-access machine (RAM) programs. Many interesting functions and appli-
cations, such as private database search or verification of program execution,
greatly benefit from RAM-based expression where their running time can be
sublinear in the data size.

Several recent works [6,9,16–19,23] have initiated the study of ZK proof
systems for RAM programs, but they have the disadvantage of being in the
private-coin setting. In particular, this means that there are no systematic tech-
niques to make those proof publicly verifiable. On the contrary, proofs using
public coins can be made non-interactive and therefore publicly verifiable using
the Fiat-Shamir heuristic. This raises the following natural question:

Can we design a RAM-based ZK proof system with concrete efficiency in
the public-coin setting?

1.1 Contribution

In this work, we answer the above question in the affirmative and describe a
generic transformation that enables program verification with any stateless zero-
knowledge proof system for circuits. In this way, we obtain the first public-coin,
constant-round and constant-overhead , in both running time and communication
complexity, ZK proof system for RAM programs over a field of any characteristic.

Our starting point is the recent works by Franzese et al. [9] and Bootle et al.
[6] which propose a different approach to RAM-based ZK protocols compared
to previous works. In particular, they replace the need for a sorting network—
used for example in the TinyRAM framework to avoid the use of oblivious RAM
(ORAM) [3,5]—by a polynomial-based permutation check to ensure consistency
of memory access.

Public-Coin Constant-Overhead Zero-Knowledge in the RAM Model
of Computation over Fields of any Characteristic. Our protocols take
inspiration from the work of Franzese et al. which achieves concretely-efficient
linear communication complexity and running time for both prover and verifier
and that of Bootle et al. which achieves asymptotically superconstant prover
computation and sublinear communication and verifier running time. The core
of Franzese et al.’s construction is a protocol ΠZKArray for private read and write
access that uses a stateful circuit-based ZK functionality which can reactively
re-use inputs for different proofs in the private-coin setting.

First, we modify ΠZKArray to provide stateless ZK proofs. This allows for instan-
tiations with prover-efficient public-coin systems, like those based on the MPC-
in-the-Head framework [20]. Secondly, we generalize the protocol to fields of any



Efficient Proof of RAM Programs 617

characteristic, binary or prime. Note that both of these modifications lead to non-
trivial changes in ΠZKArray to achieve a final protocol with constant overhead.

More precisely, to realize a stateless ZK functionality we present a ‘new circuit
compilation’ approach which, given a list of array accesses, creates a circuit Ccheck

which verifies the list’s consistency. The final Ccheck circuit is composed only of
standard arithmetic gates and can be given as input to a generic circuit-based
ZK functionality FZK. However, since the execution of Ccheck requires new inputs
from the prover to perform the checks on the accesses, we adapt FZK to accept
circuits evaluated on inputs both fresh and previously stored.

When we generalise ΠZKArray to also work with prime fields, the näıve approach
of performing equality and comparison tests leads to a non-constant overhead. To
avoid this issue, we describe a new ZK protocol for equality testing which, for prime
fields, could be of independent interest; we also describe a bound-checking protocol
reminiscent of the range relation proof of [6]. These two protocols take advantage
of both the new inputs given to Ccheck and of a permutation check similar to the one
of Franzese et al. [9]—which dates back to [24]. We also extend this permutation
check to handle permutations of tuples, and not only of elements, by using an inner-
product compression technique, similarly to Bootle et al.’s [6]. This is different to
the packing technique used by Franzese et al. which works efficiently for binary
fields but is too costly for prime fields of large characteristic.

Finally, we show how to extend our FZKArray functionality to accept richer cir-
cuits and implement ZK protocols for RAM-based computation. We stress that
our construction is not only public-coin but also constant-round, unlike that of
Bootle et al. [6], and can be made fully non-interactive using standard techniques.

Instantiation with MPC-in-the-Head Protocols. We give a concrete
instantiation of our general construction using the MPC-in-the-Head-based ZK
protocol, Limbo [7]. We chose this framework since, among other public-coin
systems, it offers concrete overall efficiency, which makes such schemes com-
petitive even for relatively large statements. Moreover, they offer linear prover
and communication complexity, great flexibility in the choice of parameters and
post-quantum security.

We stress that the choice of Limbo was due to its efficient prover running time,
but other protocols such as KKW [22] or Ligero [1] can also realize our required
ZK functionality, with only minor modifications. Instead of favouring running
time, we could improve the communication complexity of our construction by
using Ligero instead which achieves sub-linear proof size, and is tailored towards
very large circuits. Any improvement in the design of the underlying public-coin
zero-knowledge protocol for circuits will reflect in a performance improvement
of our construction.

Implementation and Efficiency Results. Finally, we implement our proto-
cols, and compare our results with related work. Our implementation shows that
we can indeed achieve a RAM-based ZK system with both concrete and asymp-
totic efficiency in the public-coin setting. We observe that each RAM access we
make is equivalent to proving 8 multiplication gates. In practice, when working
over the prime field GF (261 − 1) we achieve an amortized cost of 0.12 ms and
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1.82 KB for each RAM access. As far as we know this is the best result to date
in the public-coin setting, and is comparable to the BubbleRAM protocol [16]
which heavily relies on the private-coin nature of the underlying ZK protocol.
However, more recent ZK proof for RAM programs, also in the private coin
setting, have already superseded BubbleRAM; most notably its direct successor
PrORAM [17] as well as the work by Franzese et al. [9] that greatly outperforms
BubbleRAM in both communication and running time.

In the light of the rapid development of this line of work, we believe that
our construction can be an important step forward in order to bridge the gap
between private and public coin ZK protocols in the RAM model of computation.
The details of our implementation and further comparison with other works can
be found in Sect. 6.

1.2 Additional Related Work

We mainly compare our results with the work of Franzese et al. [9], which instan-
tiate their construction with the VOLE-based ZK protocol QuickSilver [28], with
the advantage of having a very efficient underlying ZK protocol in the private-
coin setting which naturally supports conversion between Boolean and arithmetic
authenticated values with no extra costs, and can rely on stateful zero-knowledge
functionalities.

To the best of our knowledge, all known concretely efficient protocols on
ZK for RAM programs are in the private-coin setting and use different tech-
niques compared to our construction. In particular, the line of work started with
BubbleRAM [16–18] relies on the use of garbled circuit ZK protocols, in the
JKO-framework [21], and achieves a non-constant overhead cost per memory
access either due the use of ORAM or routing network. The work of Bootle
et al. [6] does not appear to have been implemented, and despite its sublinear
asymptotic performance, is not recommended for implementation by its authors
due to large constants in the big-O notation. We therefore do not take it into
account for our performance comparisons.

Concurrently to this work, the Cairo architecture was proposed as a practi-
cally efficient, Turing-complete and STARK-friendly architecture [11]. The high-
level approach taken in that work is similar to ours: the authors propose an
architecture which can provide proofs of execution for any compatible program.
However, their work is directed at proof systems based on sets of polynomial
equation constraints and not at systems based on arithmetic circuits. Therefore
their architecture is best applied with STARK-like proof systems which offer
very different efficiency balances from our objective in this work.

1.3 Technical Overview

Our main contribution is a generic construction, tailored to MPC-in-the-Head
protocols, to check the consistency of a series of T read or write accesses to
an initial array M of size N , using an arithmetic checking circuit Ccheck over a
sufficiently large field F of arbitrary characteristic. By using specially designed
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sub-circuits for equality checks, bound checks and permutation checks, this cir-
cuit removes the need for any bit-decomposition, which is expensive in prime
fields, to perform these operations. These sub-circuits are arranged to verify the
consistency of a list L of access tuples which contains both the initial array,
encoded as N tuples, and the accesses performed as T additional tuples.

We denote by [x] wire values in Ccheck that are sensitive and should not be
revealed when Ccheck is proven in zero-knowledge. The initial array M is encoded
as a list M = (i, i,write, [Mi])i∈[N ]. Each access then is encoded as a tuple of the
form ([l], t, [op], [d]), where l denotes the index of the memory being accessed; t
is a global timestamp unique to this access, initialized at N ; op ∈ {read,write}
denotes the type of access, which we identify read = 0 ∈ F and write = 1 ∈ F;
and d denotes the value being accessed. Given this, the circuit takes as initial
input a list L which contains the N initial array values, encoded as M, followed
by the T access tuples (ordered according to t ∈ [N + 1, N + T ]). The circuit
Ccheck verifies the consistency of the accesses by checking that every read access
returns the last value written to the same address.

To do so, following the same approach by Franzese et al., it requires a second
list L′ that is a permutation of the initial list L with the difference that it is sorted
first according to the address l, and then according to the timestamp t. That
is, within L′, all accesses to the same address are grouped together, and then
sorted chronologically. Given such a list L′, the circuit checks for the following
criteria:

1. L′ is a permutation of L.
2. Every adjacent pair of access tuple concerns either the same address, or two

adjacent ones; i.e. for ([l′i], [t
′
i], ∗, ∗) and ([l′i+1], [t

′
i+1], ∗, ∗) in L′, it holds that

(
(l′i = l′i+1) ∧ (t′i < t′i+1)

) ∨ (l′i + 1 = l′i+1).

3. All accesses are made to addresses within bounds; i.e. l′N+T = N . (Com-
bined with the adjacency requirement from the previous step this implies all
addresses are bounded by N .)

4. All operations are either reads or writes; i.e. opi ∈ {0, 1} for i ∈ [N + T ].
5. All read tuples contain the same value as the last one to be written at that

address; this is checked pair-wise by evaluating

(l′i + 1 = l′i+1) ∨ (d′
i = d′

i+1) ∨ (opi+1 = write).

The differences with the check performed by the protocol of Franzese et al. are
three fold. First, all of our checking circuit is arithmetic whereas only criteria 1,
i.e. the permutation check, is performed with an arithmetic circuit in [9]. Second,
we do not pack our values ahead of the permutation check as this would require
operations over F4 which would be too big for fields of high prime characteristic;
instead we use an inner-product compression technique to reduce this to the one-
dimensional case. Finally, we do not check that the first access at every address
is a write operation since this is enforced by the structure of M within L; and
we also additionally check that opi is a bit which is not necessary in [9] as they
work with fields of characteristic 2.
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In order to evaluate these consistency criteria, we present three arithmetic
sub-circuits, EqCheck, BdCheck and PermCheck, which respectively verify equal-
ity, upper and lower bounds, and permutation of sensitive values while preserv-
ing zero-knowledge. A detailed description of these circuits is given in Sect. 3. As
outlined above, only the equivalent of PermCheck is computed as an arithmetic
circuit by Franzese et al. These three circuits are designed using standard arith-
metic operations (addition, multiplication and equality check against a public
constant) and also contain the following additional commands.

– Input: this command allows the prover to give additional inputs to Ccheck,
such as the permuted version of an array. We include it in the description
of the sub-circuits to highlight that some additional inputs are required at
certain points. As the prover is free to input arbitrary values, those inputs,
which must satisfy certain properties, must then also be checked.

– Rand: this command produces one or more uniformly random elements of F.
It represents randomness needed for statistical verification of properties (such
as polynomial equality). Looking ahead, such randomness must be produced
only after the inputs of the circuits have been committed to so that they can-
not be selected such that verification incorrectly succeeds with non-negligible
probability.

Organization. After preliminaries on zero-knowledge and commitment func-
tionalities, MPC-in-the-Head protocols and RAM-based computation in Sect. 2,
Sect. 3 presents and analyzes our three sub-circuits and the final Ccheck circuit.
Section 4 then presents our ΠZKArray protocol and the functionalities that it uses
and realizes; it also presents how these can be extended to realize ZK proofs of
RAM programs. Section 5 presents a generalization of the Limbo protocol for the
UC framework and shows that is realizes the FZKin functionality required by the
ΠZKArray protocol. Finally, Sect. 6 discusses our C++ implementation and the
results that we obtained.

2 Preliminaries

We use bold letters to denote vectors and matrices, e.g., a, B; the operator ∗
denotes the inner product of two vectors. We denote by [d] the set of integers
{1, . . . , d}, and by [e, d] the set of integers {e, . . . , d} with 1 < e < d. The notation
〈·〉 stands for secret-shared values, and 〈·〉i is used for the share held by party
Pi; the notation [ · ] denotes sensitive data that should not be publicly revealed.

2.1 MPC-in-the-Head

In [20], Ishai, Kushilevitz, Ostrovsky and Sahai introduced the MPC-in-the-
Head framework to build zero-knowledge proofs for NP-relations from secure
multiparty computation. Let P be a prover and V a verifier with common input
the statement x, and P’s private input the witness w; and let f be the function
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which checks if w is a valid witness, i.e. fx(w) = R(x,w). At a high level, an
MPC-in-the-Head protocol will work as follows: the prover emulates “in its head”
an MPC protocol between n parties that computes f , i.e. P generates a sharing
〈w〉 of the witness and distributes the corresponding shares as private inputs to
the parties, and then simulates the evaluation of f(〈w〉) = R(x, 〈w〉) by choosing
uniformly random coins ri for each party Pi, i ∈ [n]. This emulation yields one
transcript of the protocol execution per party. After this “MPC evaluation”,
P and V can interact to reveal a subset of transcripts, which the verifier can
check for consistency. If the consistency check succeeds, and the output of f is
correct, then the verifier will be convinced that the prover knows w. Intuitively,
the privacy of the MPC protocol ensures that this procedure does not leak any
information about the witness if not too many transcripts are revealed.

Limbo. In our work we consider Limbo [7], an efficient instantiation of the
MPC-in-the-Head framework which achieves good concrete prover performance,
including for medium-large circuits.

Recall that Limbo is constructed from a client-server ρ-round MPC protocol
Πf , for a function f as described above, between a sender client PS , computa-
tion servers P1, . . . , Pn, and a receiver client PR. The authors present a zero-
knowledge interactive oracle proof (ZK-IOP) protocol for arithmetic or Boolean
circuit satisfiability based in part on a multiplication-checking MPC protocol,
MultCheck, provided in [7, Section 4.2].

The client-server MPC protocol used by the ZK-IOP protocol can be divided
in the following two phases. First, the sender client PS sends the inputs of the cir-
cuit to the servers, together with the outputs of every multiplication gate; using
these, the servers perform a local computation of the circuit with secret-shared
values. In the second phase, the servers use MultCheck to verify that PS sent
correct multiplication gate outputs. To do so, they first package the multiplica-
tion tuples1 into randomised inner-product tuples using a public random-coin
functionality. These inner-product tuples are then compressed repeatedly, again
using a public random-coin functionality, until a single tuple of low dimension is
left to be verified. This is done by PR who receives every secret share of the tuple
from the servers and can output 0 or 1 based on its correctness. To amplify the
soundness this basic protocol needs to be repeated a certain number of times.
In the paper, the authors show an improvement to this näıve approach.

Theorem 1 ([7]). If δ is the probability that MultCheck fails, i.e., an incorrect
triple remains undetected, the basic version of Limbo, with τ repetitions, is a
(honest-verifier) ZK-IOP with soundness error ε = (1/n + (1 − 1/n) · δ)τ .

2.2 RAM-Based Computation

We follow the RAM-based computation model described by Gordon et al. [13].
We focus on RAM program for computing a function f(x,M), where x is a
1 A multiplication tuple is a tuple (x, y, z) which is correct if x · y = z, or incorrect

otherwise. Here the goal of the servers is to verify that the z values given by PS form
correct tuples.
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Fig. 1. Ideal functionality for RAM-based ZK proofs

small, possibly public, input, and M is a large dataset, which can be viewed
as stored in a memory array M1, . . . ,MN , and accessed through read or write
instructions. More formally, a RAM program is defined by a “next instruction”
circuit Π which, given its current state state and a value d (that will always be
equal to the last-read element), outputs the next instruction and an updated
state state′. Thus, if M is an array of N entries, each ν bits long, we can view an
execution of a RAM program proceeding as follows. First, set state = start and
d = 0ν , and secondly, until termination, compute (op, l, d′, state′) = Π(state, d)
and update state = state′. Then: (1) if op = stop, terminate with output d′; (2)
if op = read, set d = Ml; (3) if op = write, set Ml = d′ and d = d′.

The space complexity of a RAM program on initial inputs x,M is the max-
imum number of entries used by the memory array M during the course of
the execution. The time complexity is the number of instructions issued in the
execution as described above.

In this work we focus on public-coin ZK proofs for RAM programs Π represent-
ing an NP relation R(x,M), where R and x are public and M is a large private
dataset (which acts as a witness for x). In Fig. 1 we describe an ideal functionality
for RAM-based ZK proof, and in Sect. 4.3 we give a protocol realizing it.

3 Arithmetic Circuit for ZK Verification of Array Access

In this section we construct an arithmetic circuit Ccheck (over a binary or prime
field F) which verifies the consistency of a series of T read or write accesses to
an initial array M of size N .

We denote by [x] wire values in Ccheck that are sensitive and should not
be revealed when Ccheck is proven in zero-knowledge. Each entry in the initial
array is of the form (i, i,write, [Mi]) for i ∈ [N ], where M = (M1, . . . ,MN ) is an
arbitrary initial state. Contrary to Franzese et al. [9], here our circuit assumes
that the each of the first N tuples of the list L contains a hard-coded write
operation (with unknown data values); this implies that our circuit does not
need to verify that the first access to an index is always a write operation.

3.1 Constant Overhead Equality Check

Our first sub-circuit verifies the equality of two hidden values without leaking
the result; this allows the equality bit to continue to be used as a hidden value
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Circuit 1. EqCheck([x], [y])

1: Input [r] =

{
([x] − [y])−1 if x �= y

random non-zero if x = y

2: Input [r−1]
3: Check that [r] · [r−1] is equal to 1; if not, set circuit output to 0.
4: [b] ← ([x] − [y]) · [r]
5: Check that (1 − [b]) · [b] is equal to 0; if not, set circuit output to 0.
6: return 1 − [b]

within Ccheck. To obtain the result of the equality test within a hidden value, the
EqCheck sub-circuit shown in Circuit 1 makes use of an auxiliary value r which,
when x �= y, is set to (x − y)−1 such that b = (x − y) · r = 1. When x = y,
b = (x − y) · r = 0 for any r. The circuit then returns 1 − b so that 1 is output
in case of equality.

Since this r requires a precise value, it must be input into the circuit using
the Input command. However, this allows for dishonest behaviour, so the circuit
must also check that: 1. r is non-zero and 2. the final result b is indeed a bit (if
r was non-zero but also not equal to (x − y)−1 when x �= y, then b would not
be a bit). To perform the first check, EqCheck requires r−1 to be input so that
r · r−1 can be verified to equal 1. For the second check, (1 − b) · b is tested to be
equal 0, which implies b ∈ {0, 1}.

Zero-Knowledge. If correct, both r ·r−1 and (1−b) ·b always evaluate to the same
value, independently of r or b, so they can be safely checked against a constant
(1 or 0) without leaking information.

Soundness. Both checks are deterministic, therefore if r and r−1 are incorrectly
input, either of these will fail and Ccheck will output 0 with probability 1.

Cost. This circuit requires a constant number of Input, multiplication and con-
stant checks (resp. 2, 3 and 2) to evaluate the equality bit of two values.

3.2 Permutation Check

Our second sub-circuit probabilistically checks that two arrays of S (tuples of)
field elements are permutations of one another without revealing either the con-
tent of the arrays or the permutation that links them. We first describe the
procedure in the one- and multi-dimensional case before formally presenting the
PermCheck sub-circuit.

Checking a One-Dimensional Permutation. We first present the check-
ing procedure in the one-dimensional case, as described in [6]. Let [A] =[
[a1] · · · [aS ]

]
and [B] =

[
[b1] · · · [bS ]

]
be two arrays in F

S ; to show that there
exists a secret permutation π such that B = π(A), we use the fact that poly-
nomials are identical under permutation of the roots [14,24]. In other words,
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we define two polynomials PA, PB ∈ F[x] such that their zeros are exactly the
elements of the respective arrays:

[PA(x)] =
S∏

i=1

(x − [ai]) and [PB(x)] =
S∏

i=1

(x − [bi]).

If the arrays are indeed permutations of one another, then the polynomials are
defined identically and it holds that PA = PB . We check this probabilistically
using the Schwartz–Zippel Lemma.
1: Receive public random challenge r ∈ F.
2: Compute r − [ai] and r − [bi] for i ∈ [S].
3: Compute the values [PA(r)] =

∏S
i=1(r − [ai]) and [PB(r)] similarly.

4: Check that PA(r) − PB(r) is equal to 0.
Given that PA and PB are both of degree S, the Schwartz–Zippel Lemma

states that, if PA �= PB, then the check in Step 4 will incorrectly pass with
probability at most S/|F|.

Checking a Multi-dimensional Permutation. In our application, as the
two lists L and L′ contain tuples of 4 elements we instead need to consider
matrices. However, the following analysis can be generalized to matrices of higher
dimension. Let [A] =

[
[a1] · · · [aS ]

]
and [B] =

[
[b1] · · · [bS ]

]
be matrices in

F
4×S ; we wish to prove that the columns of B are a permutation of the columns

of A, i.e. there exists a permutation π such that APπ = B, where Pπ is the
matrix permutation associated to π.

To do so, we reduce the question to the one-dimensional case using random-
ized inner products. First, a random challenge s ∈ F

4 is sampled. Then, A is
compressed to a one-dimensional array a by setting (a)i = ai = s∗ai, for i ∈ [S],
where ∗ denotes the inner product of two vectors. Similarly, B is compressed to
b using the same s. (Using the same challenge s for all columns of both matri-
ces is necessary since the permutation must remain secret.) Now, the procedure
for the one-dimensional case presented above can be used to check that b is a
permutation of a.

To show that this procedure correctly checks that the columns of B are a
permutation of the columns of A, we show that any difference is preserved by
the randomized inner product except with some probability.

Lemma 1. Given two matrices A,B as above, if there does not exist a col-
umn permutation matrix Pπ such that APπ = B then the sets {a1, . . . , aS} and
{b1, . . . , bS} are different except with probability at most 1/|F| over the random
choice of s ∈ F

4.

Proof. We can consider the linear map fa−b(s), defined by the matrix D =
(A−B)T ∈ F

M×4. If A and B are correctly generated, D = 0 and the condition
fD(s) = 0 holds ∀s ∈ F

4.
If the adversary cheated, i.e., D �= 0, we can have the following different cases:
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Circuit 2. PermCheck(ν ∈ {1, 4}, [L], [L′])
1: if ν = 4 then
2: s ← Rand(Fν)

3: for i ∈ [S] do
4: if ν = 1 then
5: [ai] ← [L[i]] and [bi] ← [L′[i]]
6: else
7: [ai] ← s ∗ [L[i]] and [bi] ← s ∗ [L′[i]]

8: r ← Rand(F)
9: [PA(r)] ← ∏S

i=1(r − [ai]) and [PB(r)] ← ∏S
i=1(r − [bi])

10: Check that [PA(r)] − [PB(r)] is equal to 0; if not, set circuit output to 0.

– If only one row is incorrect, then rank D = 1 and the rank-nullity theorem
tells us dim(ker fD) = 3. This means that the probability that s ∈ kerfD is
|F3|/|F4| = 1/|F|.

– If two rows are incorrect, then rank D ≤ 2. If it is 1, then we are in the same
situation as before, otherwise dim(ker fD) = 2 and the probability that s ∈
kerfD is |F2|/|F4| = 1/|F2|.

– If three rows are incorrect, then rank D ≤ 3, hence either we are in one of
the situations described above or dim(ker fD) = 1 and the probability that
s ∈ kerfD is |F|/|F4| = 1/|F3|.

– If we have more than 3 incorrect rows and rank D = 4, then fD is injective
and kerfD = {0}. Hence, the probability of passing the test is 1/|F4|.

Given that the number of erroneous rows fixes the rank of D to exactly one of
the four cases above, the overall probability of passing the test is at most 1/|F|.
This concludes the proof.

Constructing the Circuit. We now present the PermCheck sub-circuit in Cir-
cuit 2. This takes ν ∈ N as parameter to indicate the row-dimension of the arrays
L and L′; if ν = 4 then we use the multi-dimensional check described above and
sample a random vector s ∈ F

ν . Then, the circuit performs the Schwartz–Zippel
test by requiring a random r ∈ F, evaluating the polynomials PA and PB on r
and checking that they are equal, i.e. that their difference is 0.

Zero-Knowledge. The only revealed information is that PA(r) − PB(r) is equal
to 0; however, this is always the case when [L′] is a permutation of [L], therefore
no information is leaked.

Soundness. When ν = 1, the one-dimensional case is sufficient to show that
PermCheck incorrectly passes with probability at most S/|F|. When ν = 4,
Lemma 1 gives us that, if L′ is not a permutation of L, {ai} and {bi} will
be different except with probability at most 1/|F|. If the sets are different, the
one-dimensional case then again implies that the last check will incorrectly pass
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Circuit 3. BdCheck({[xi]}T
1 , B1, B2)

1: Arrange initial array [L] = [B1, B1 + 1, . . . , B2, [x1], [x2], . . . , [xT ]] of size S = B2 −
B1 + 1 + T .

2: Input[L′] containing entries of L sorted from lowest to highest.
3: PermCheck([L], [L′]) � Sets the circuit output to 0 if it fails.
4: for i ∈ [S − 1] do
5: [αi] ← [L′[i + 1]] − [L′[i]]
6: Check that [αi] · (1 − [αi]) is equal to 0; if not, set circuit output to 0.

7: Check that [L′[1]] = B1 and that [L′[S]] = B2; if not set circuit output to 0.

with probability at most S/|F|. Therefore, when ν = 4, the probability that
PermCheck incorrectly passes is at most

Pr
s

[{ai} = {bi}] + Pr
s

[{ai} �= {bi}] · Pr
r

[PA(r) = PB(r)]

≤ 1
|F| +

(
1 − 1

|F|
)

S

|F| ≤ S + 1
|F| .

Cost. When ν = 1, this circuit requires one Input command, one Rand command,
2(S − 1) multiplications gates and one constant equality check. When ν = 4,
it requires an additional ν Rand commands as well as 2νS multiplications to
compute the inner products.

3.3 Amortized Constant Overhead Bound Test

Our third sub-circuit BdCheck, shown in Circuit 3, verifies in zero-knowledge
that a set {[xi]} of T values are all contained within specified public bounds B1

and B2.
To do so, it first creates an array L of all values from B1 to B2, both included,

and then appends all T values to be checked, forming an array of size S =
B2 − B1 + 1 + T . Using Input commands, it then requires an array [L′] of same
size S which is expected to be an ordered permutation of L. (Even though the
values B1, . . . , B2 were not hidden in L, all of the values of L′ must now remain
hidden so that no information is leaked about {[xi]}.) By verifying that the first
entry of L′ is equal to B1 and the last entry of L′ is equal to B2, the circuit
verifies that B1 ≤ xi ≤ B2 for all i ∈ [T ].

As in the circuit for equality checking, the Input commands allow for dis-
honest behaviour so several properties of L′ must additionally be checked. First,
BdCheck calls PermCheck to verify that L′ is indeed a permutation of L and
therefore that no value has been modified.

Second, the circuit checks that successive entries in L′ are either equal to
each other or differ by exactly 1. In a correctly input L′, this is always the case
as every value [xi] should be equal to one value between B1 and B2.

It does so by first computing αi = L′[i + 1] − L′[i] and then checks that
αi ∈ {0, 1} by making sure αi is a root of X · (X − 1).
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Finally, BdCheck verifies that L′[1] = B1 and that L′[S] = B2. This, com-
bined with the second check, implies that B1 ≤ xi ≤ B2 for all i ∈ [T ].

Zero-Knowledge. First, PermCheck guarantees zero-knowledge of [L′] during the
first check. Next, if [L′] was input correctly, then [αi] should always be a root
of X · (X − 1) and therefore no information is leaked by checking this. Finally,
given that B1 and B2 are public values and included in [L], checking the first
and last entry of [L′] does not reveal any information on any [xi] if [L′] was input
correctly.

Soundness. The checks on [αi] and the first and last entries of [L′] are all deter-
ministic, so BdCheck makes Ccheck output 0 with probability 1 if any of these
fail. PermCheck is probabilistic in nature, however, so BdCheck has the same
soundness error overall, i.e. S/|F| since L is one-dimensional here.

Cost. This circuit amortizes the cost of checking whether B1 ≤ x ≤ B2 by check-
ing T values at the same time. This requires S calls to Input, one PermCheck
call, S − 1 multiplications and S + 2 constant equality checks.

3.4 Putting Everything Together

We now present the complete Ccheck circuit which verifies the consistency of
accesses, held as tuples ([l], t, [op], [d]) within the list L. Recall that it does so
by requiring a second list L′ to be an ordering of L and by verifying that (1)
L′ is a permutation of L; (2) L′ is correctly ordered, first according to l and
then according to t for entries concerning the same address; (3) all addresses
are within bounds; (4) all operations are either reads or writes; and (5) all read
tuples contain the same value as the last one written to the same address.

Checking (1) and (3). The first is done by calling PermCheck(4, [L], [L′]) and the
second is done by checking that [l′N+T ] = N .

Checking (2). Here we check equalities, which is done using EqCheck, but also
the inequalities t′i < t′i+1, in the case where l′i = l′i+1. Since the ti values are
public within L, and we know that L′ is a permutation of L, it holds that
1 ≤ [t′i] ≤ N + T for all i ∈ [N + T ]. Letting [τi] = [ti+1] − [ti], we see that
0 < [τi] =⇒ [ti] < [ti+1]. Therefore, calling BdCheck([τi], 1, N + T − 1) would
allow to test this (setting 1 as the lower bound ensures the strict inequality;
setting N + T − 1 as the upper bound ensures all values of τi are included).
However, if successive tuples access different addresses, then successive values
of t are not ordered in this way; e.g. with the tuples (1, 2, ∗, ∗) and (2, 1, ∗, ∗).
Therefore calculating τi in this manner does not yield the correct check.

To fix this, we include only the τi values for accesses to the same address, i.e.
those for which the equality l′i = l′i+1 holds. Setting [αi] ← EqCheck([l′i], [l

′
i+1]),

we can instead let [τi] ← [αi]([t′i+1] − [t′i]) + (1 − [αi]). The first summand
includes [t′i+1] − [t′i] when the equality holds, and nullifies it otherwise, and
the second summand ensures τi > 0 when the equality does not hold. Now,
BdCheck({τi}, 1, N + T − 1) will pass exactly when the t values are correctly
ordered within groups of accesses to the same address l.



628 C. Delpech de Saint Guilhem et al.

Circuit 4. Ccheck([L])
1: Assume initial array is of the form

[L] = [(1, 1,write, [M1]), . . . , (N, N,write, [MN ]), . . .

. . . ([�N+1], N + 1, [opN+1], [dN+1]), . . . , ([�N+T ], N + T, [opN+T ], [dN+T ])]

2: Input[L′] containing entries of L sorted first by � then by t.
3: PermCheck(4, [L], [L′])
4: for i ∈ [N + T − 1] do
5: Set [αi] ← EqCheck([�′

i], [�
′
i+1])

6: Set [λi] ← [�′
i+1] − [�′

i]
7: Set [τi] ← [αi] · ([t′

i+1] − [t′
i]) + (1 − [αi])

8: Check that [αi] + [λi] is equal to 1; if not, set circuit output to 0.
9: Check that (1 − [op′

i]) · [op′
i] is equal to 0; if not, set circuit output to 0.

10: [βi] ← EqCheck([d′
i], [d

′
i+1])

11: Set [γi] ← 1 − [αi] · (1 − [βi]) · (1 − [op′
i+1])

12: Check [γi] is equal to 1; if not, set circuit output to 0.

13: BdCheck({[τi]}}N+T−1
i=1 , 1, N + T − 1)

14: Check [�′
N+T ] is equal to N ; if not, set circuit output to 0.

15: If circuit output was not set to 0 at any point, output 1.

To finally check the ordering of the addresses, similarly to the BdCheck cir-
cuit, verifying that [l′i+1] = [l′i]+1 when [l′i+1] �= [l′i]+1 does not require a second
EqCheck. Instead we compute [λi] ← [l′i+1]−[l′i] and check that [αi]+[λi] is equal
to 1. If [l′i+1] �∈ {[l′i], [l

′
i] + 1}, this will not pass.

Checking (4). For every i ∈ [N + T ], as [op′
i] should be a bit, representing either

read or write, we check that (1 − [op′
i])[op

′
i] = 0.

Checking (5). We check that adjacent tuples contain either (a) different
addresses, (b) equal memory values, or (c) a write operation. As [αi] already
contains the equality bit of the two addresses, and (2) checked that addresses
either are equal or differ by one, then 1− [αi] is exactly the truth value required
for (a). For (b) we set [βi] ← EqCheck([d′

i], [d
′
i+1]). Finally for (c), [op′

i+1] is its
own equality bit with respect to the write operation. To evaluate (a) ∨ (b) ∨ (c),
we then compute ¬(¬(a) ∧ ¬(b) ∧ ¬(c)):

[γi] ← 1 − [αi] · (1 − [βi]) · (1 − [op′
i+1]),

and check that [γi] is equal to 1 for every i ∈ [N + T − 1].

The Ccheck Circuit. The final circuit is presented in Circuit 4; it performs checks
(1) through (5) as described above and, if the output was never set to 0 by a
failed constant check, then it outputs 1 to signify that all accesses contained in
L are consistent with the initial memory and one another.

Correctness. We first note that, if all Input gates are given correctly, then the
Ccheck circuit will always output 1, independently of the output of the Rand gates.
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Zero-Knowledge. The zero-knowledge properties of the EqCheck, PermCheck and
BdCheck sub-circuits was argued in previous sections. As for the Ccheck circuit,
the check of step 8 is always equal to 1 if L′ was input correctly, and so is the
check of step 12, therefore no information is leaked by either. Similarly, [op′

i]
should always be a bit, so step 9 also does not leak information. Finally, N is
already publicly contained in L as the address of the last tuple, so step 14 does
not reveal information either if L′ was input correctly.

Soundness. PermCheck is the only non-deterministic check performed in the cir-
cuit, at steps 3 and 13 (within BdCheck). We therefore have the following.

Lemma 2. If [L] is a inconsistent list of array accesses, then Ccheck will output 1
with probability at most 2(N + T − 1)/|F|.
Proof. Given that [L] is inconsistent, Ccheck will output 1 in the following cases:

1. [L′] is consistent, and PermCheck at step 3 fails to detect that it is not a
permutation of [L]; this happens with probability at most (N + T + 1)/|F|.

2. [L′] is a permutation of [L] and the checks at steps 8, 9, 12, 13 and 14 fail to
detect that it is inconsistent. Of these, only step 13 is probabilistic and the
assumption that [L′] is inconsistent implies one of these checks must set the
output to 0.

– If [L′] is “consistent enough” that the deterministic checks of steps 8, 9,
12 and 14 pass, then it must be inconsistent only in the ordering of the t′

values and it will pass the probabilistic check of step 13 with probability
at most 2(N + T − 1)/|F|.

– If [L′] is inconsistent in any other way, the probability of Ccheck outputting
1 is 0.

Thus, the probability of Ccheck outputting 1 when [L′] is a permutation of an
inconsistent [L] is at most 2(N + T − 1)/|F|.

3. [L′] is inconsistent, but is also not a permutation of [L]. In this case, [L′] would
need to pass the checks of both case 1 and case 2 above so the probability of
Ccheck outputting 1 would be at most p1 × p2 where pi is the probability of
case i.

Since these three cases are mutually exclusive, when [L] is inconsistent Ccheck

will output 1 with probability at most 2(N + T − 1)/|F|.

Cost. Since PermCheck and BdCheck are called outside of the for loop, the exe-
cution of Ccheck costs O(N + T ) standard arithmetic operations with O(N + T )
additional inputs.

4 Zero-Knowledge Proof of Array Access

The standard (stateless) zero-knowledge proof functionality for Boolean or arith-
metic circuits is only suitable for deterministic circuits. As described in Sect. 3,
our Ccheck circuit probabilistically verifies the consistency of the access list.
To ensure soundness, this requires that the verification randomness be generated
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Fig. 2. Ideal functionality for circuit-based ZK proof with separate input command.

only after the inputs have been committed to, as otherwise the prover could use
the randomness to commit to incorrect inputs which would nonetheless satisfy
the checks.

In this section, we first introduce an “input” extension of the FZK function-
ality which then accepts circuits to be evaluated both on stored and fresh input
values. Alongside, we also present the version of FZKArray that our initial proto-
col realizes and discuss the differences with the version of Franzese et al. Then
we present ΠZKArray, our zero-knowledge protocol for private read/write array
access, which realizes our FZKArray using the extended zero-knowledge function-
ality, and prove its security in the UC framework. Finally, we discuss how our
FZKArray and ΠZKArray can both be extended to provide stateless proofs for richer
circuits that include both arithmetic operations and array accesses.

4.1 FZKin and FZKArray Functionalities

Figure 2 describes the FZKin functionality for (stateless) zero-knowledge proof of
Boolean or arithmetic circuit with a separate Input command. This function-
ality must be initialized once with sid and type ∈ {Boolean,Arithmetic}. Since
the aim is to allow for inputs to be given ahead of the Prove command, the
initialization also accepts a list L of values, which the functionality stores. After-
wards, the Input command may be called several times to append values v to
the initial list L; the verifier V is informed of each of these calls.

The Prove command may then be called once, during which P specifies the
circuit C and any additional input x. The functionality then evaluates C jointly
on L and x, stores the result, and informs S and V.

Finally, the verifier may call the Verify command, specifying the circuit C;
this ensures that P and V agree on the circuit that should be proven. If C(L, x)
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Fig. 3. Functionality for stateless ZKP for private read/write array access

has not been proven by P, or if S decides to interrupt, then FZKin informs V of
the failure and stops. Otherwise, it sends (sid, C, 1) to V and stops.

Figure 3 presents a stateless version of the FZKArray functionality. As opposed
to the stateful one presented by Franzese et al. [9], this functionality does not
extend FZKin, and therefore does not have a Prove command for arbitrary cir-
cuits, but only provides commands to initialize and access a memory array in
zero-knowledge and also check the consistency of the accesses that were made.
We discuss the extension of our FZKArray functionality with a Prove command
in Sect. 4.3.

4.2 ZKArray Protocol

We provide a protocol for private read/write array access, which first allows the
prover P to commit to an array of values, and then to read or write values from
or to the committed data structure in such a way that the verifier V does not
learn the address being accessed, nor the operation being performed or the value
being written.

Our protocol ΠZKArray, described in Fig. 4, makes use of Ccheck presented in
Sect. 3 to realize FZKArray. At Init, the prover receives the initial memory array
M = [M1, . . . ,MN ]. From it, it creates a list of initial access tuples M[i] =
(i, i,write,Mi) which enforces that every address is written to according to the
entry in the array and that the first N memory accesses are write operations.
After initializing the access counter at t = N , ready to be incremented, and
creating an empty list L to contain the future accesses, P commits to the initial
memory by sending (sid, Init, type,M) to FZKin. Afterwards, for each Access
operation and its corresponding (, op, d) input, P increments t and appends
(, t, op, d) to the list L.
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Fig. 4. Protocol realizing FZKArray in the FZKin-hybrid model.

When T access operations have been completed, the Check procedure begins.
First, P parses Ccheck for Input gates and computes the required value for each,
appending it to AuxIn each time. Note that no such auxiliary input within Ccheck is
dependent on the output of a Rand gate, therefore all values can be computed by
P before receiving the outputs for the Rand gates. After parsing all Input gates,
P commits to these values by sending (sid, Input,L||AuxIn) to FZKin.

The verifier receives confirmation of the commitment from the functionality
and proceeds to sampling a random value ri for each Rand within Ccheck before
sending all of them to P.

Now, both P and V can replace the output of the Rand gates by the values
sampled above to specify the circuit to a deterministic one, which we label C

{ri}
check.

Finally, it is this circuit, without additional input, that P proves with FZKin and
that V asks to verify. In the full version, we prove the following theorem.

Theorem 2. Protocol ΠZKArray securely realizes FZKArray in the FZKin-hybrid
model with statistical error at most 2(N + T − 1)/|F|.

4.3 Realizing FZK-RAM

Here we show how to extend FZKArray to be able to describe a protocol for RAM-
based computation and implement the ideal functionality FZK-RAM given in
Fig. 1.

To accept richer circuits, constructed from both arithmetic or Boolean oper-
ations and array accesses, we modify our functionality and protocol as follows.

Functionality. To extend our FZKArray with a Prove(C) command, we merge
the Access commands into the computation of C. That is, when given (C, x)
from Prove and M from Init, the extended functionality F ex

ZKArray computes
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C(M,x) and, every time an Access is encountered within C, it queries P to
input (l, op, d) as the access operation.

The corresponding Verify command then supersedes Check and performs
the following operations. As Check, it first of all verifies that all the accesses
given by P are consistent with the initial M and with each other. Additionally,
it also verifies that the accesses given by P are consistent with C; i.e. that P
provided the correct l, op and d that C instructed to perform at that moment.
Finally, as for FZKin, it stores the result y = C(M,x) in order to validate, or not,
the successful computation of C.

Protocol. To extend ΠZKArray to handle richer circuits, we expand the circuit
that P submits to FZKin. Namely, P constructs the same list L of access tuples
and, in addition to C

{ri}
check, also proves (1) the arithmetic or Boolean circuits

which output the tuples that C is expecting and (2) C itself, simplified to an
arithmetic or Boolean circuit by using the tuples in L as constant wire values.

Realizing FZK-RAM in the F ex
ZKArray-Hybrid Model. Given the command (sid,

Prove, P,V,Π, type, N,M), P sends (sid, Init, type,M,N, T ) to FZKArray where
T is an upper bound on the time complexity of the program . It then sends
(sid,Prove,P,V, CΠ , ∅) to F ex

ZKArray where CΠ is the circuit built as a succession
of next-instruction circuits Π(state, d) interleaved with Access instructions. We
note that, with this formulation of a RAM program as a sequence of next-
instruction circuits, only op ∈ {read,write} operations are written into FZKArray,
all other operations are translated into arithmetic circuits; in particular op = stop
is a circuit that preserves the last state, such that once stop is reached, all the
remaining evaluations of the next-instruction circuit to reach the upper bound
T will also yield stop.

5 Realizing FZKin with Limbo

In this section, we show how the ZK proof system Limbo [7] can be generalized
to securely realize FZKin in the FCommit-hybrid model. In the full version, we also
present a small optimization that we extensively use in our implementation.

Handling Init and Input Commands. Recall that the MPC protocol used by
Limbo is divided into two phases; a first where PS sends the inputs of the circuit
and the outputs of the multiplication gates to the computation servers, and a
second where servers, using FRand and helped by PS , execute the MultCheck
protocol and send the output to PR.

To realize FZKin, we let the Limbo prover P perform the following before
beginning the first phase. When the Init command is given, P commits to L as
the beginning of the input, and waits. For every Input command given after-
wards, P commits to v and appends it to L and waits further. When the Prove
command is given, P appends x to L and considers this final L as the input to
the circuit C given by Prove.

UC Security in the FCommit-Hybrid Model. In the full version, we present the
LimboUC protocol, the generalized version of Limbo described above which we
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also rephrase for the UC framework. For the detailed description of the protocol
and the relevant definitions, we refer the reader to [7].

Non-Interactive Proof. As our ΠZKArray protocol is entirely stateless and uses
only public randomness, it can be compiled to a non-interactive (NI) proof in
the FZKin-hybrid model according to the Fiat–Shamir transform.

Furthermore, the Limbo protocol for FZKin can itself be compiled to an NI
proof with the same methodology. However, due to its high number of interac-
tion rounds between the prover and the verifier, the soundness analysis of the
resulting protocol is non-trivial [7, Section 6].

Similarly, our generalized LimboUC protocol can be transformed to an NI
proof where each call to FCommit is replaced by calls to a random oracle that
generates randomness in place of V. Combined with an NI version of ΠZKArray,
the random oracle would then generate the randomness for the Rand gates on
behalf of V between the Input and Prove calls to FZKin. We leave the exact
soundness analysis and parameter generation to further work.

6 Implementation Results

We implemented our protocol in C++, using a slightly modified version of Limbo
as described in the full version. We first added support for arbitrary fields on
top of the implementation for binary fields of [7], and then expanded the Bristol
Format of circuits by adding Access gates.

The circuit is represented as a text file which specifies the size of the memory
that will be needed, the number of input wires, output wires and hardcoded
wires. For each hardcoded wire, the value is also specified. Finally, the file also
contains a list of gates in topological order where each gate specifies the operation
it performs and the wires it operates on.

We start by parsing the circuit in order to propagate hardcoded wires. Then,
we transform every Access gate into a set of new input wires which will define the
lists L and L′. Everywhere it can be done, we apply the Equality with constant
check trick described in the full version, effectively achieving a 1.5x speed-up
and halving the size of the proofs. Once the whole circuit has been analysed,
we build Ccheck using the newly defined wires. At this point, we have a circuit
composed only of standard arithmetic gates which Limbo can evaluate.

As an additional improvement with respect to the original code, we also
support Rand gates. These gates are implicitly used in our protocol every time
the Verifier needs to send a challenge to the Prover in the PermCheck circuit.
However, if the need arises for a specific use case, our implementation can handle
such Rand gates within the circuit itself, thus giving more freedom for future
implementation of statistical check in the spirit of PermCheck.

Finally, we also propose a multi-threaded implementation, where each rep-
etition of the proof is run on its own thread. As for the original Limbo, this
trivial parallelization does not allow us to divide the running time by the num-
ber of threads, because there are some places where threads have to join, but it
nonetheless gives a significant improvement.



Efficient Proof of RAM Programs 635

24 25 26 27 28 29 210 211 212 213 214 215 216 217 218 219

10−2

10−1

100

101

102

Initial RAM size

P
ro
ve
r
ti
m
e
(s
)

Prover time

(64, 7, 1)
(4, 21, 1)
(8, 14, 14)

24 25 26 27 28 29 210 211 212 213 214 215 216 217 218 219

10−1

100

101

102

103

Initial RAM size

P
ro
of

si
ze

(M
B
)

Proof size

(64, 7, 1)
(4, 21, 1)
(8, 14, 14)

Fig. 5. Prover time and proof size in the interactive case for initialization of different
sizes of RAM. We specify (#parties, #repetitions, #threads).

Table 1. Comparison of our protocol with previous work in the designated-verifier
setting. For our scheme we specify (#parties, #repetitions, #threads).

Scheme Algebraic Structure Asymptotic Complexity Access Time (ms) Access Size (KB)

BubbleRAM [16]a GF (240 − 87) O(log2(N)) 0.15 1.5

PrORAM [17]a GF (240 − 87) O(log(N)) 0.01 0.4

Franzese et al. [9] Z232 O(1) 0.01 0.031

Ours (64, 7, 1) GF (261 − 1) O(1) 1.11 0.920

Ours (4, 21, 1) GF (261 − 1) O(1) 0.42 2.82

Ours (8, 14, 1) GF (261 − 1) O(1) 0.44 1.82

Ours (8, 14, 14) GF (261 − 1) O(1) 0.12 1.82
a Access Time and Access Size are considered for a RAM of size 218 elements.

6.1 Performance

All benchmarks were done on a desktop computer with an Intel i9-9900 (3.1 GHz)
CPU and 128 GB of RAM. We only provide proving times and proof size; and
do not take into account communication time between parties. In all cases, we
show the running time of our implementation using F = GF (261 − 1) averaged
over 20 runs for varying RAM sizes.

In Fig. 5, we show figures for the initialization phase of the array for three
parameter sets to emphasize potential trade-off between running time and proof
size as well as the benefit of multi-threading; all sets provide statistical security
of 40 bits for interactive proofs. In the case of multi-threading, we selected 8
parties and 14 repetitions because we had 14 threads available on our CPU.

With all optimizations implemented, we observe that the initialization phase
of the array costs an amortized 8 Mult gates and 6 constant checks per memory
slot. Subsequent accesses, with sensitive operations and memory location also
cost an amortized 8 Mult gates and 6 constant checks per access. In terms of
concrete performance, when focusing on better runtime for a single thread, each
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access amounts to roughly 0.4 ms and 1.8 KB. For the multi-threaded case, each
access costs 0.12 ms and 1.8 KB.

In Table 1, we summarize our comparison with other work. We compare our
results to Franzese et al. [9], noting that their performance is measured for proofs
using rings of 32-bit integers, whereas our implementation uses GF (261−1) which
is 30 bits larger. On a single thread, using parameters optimizing for running
time, we are about 40 times slower with proof sizes 60 times bigger; if we instead
trade-off running time for better proof size, we are about 110 times slower with
proof sizes 30 times bigger.

We also compare with BubbleRAM and the more recent PrORAM [16,17],
both are tailored for private-coin protocols in the prime field setting. For a RAM
size of 218 elements in GF (240 − 87), BubbleRAM (resp. PrORAM) achieves
an amortized access time of 0.15 ms (resp. 0.01 ms) and communication size
of 1.5 KB (resp. 0.4 KB). While providing memory elements that are 21 bits
larger (about 1.5x), our protocol is therefore only 3 times slower with 1.2 times
bigger proof size than BubbleRAM and 40 times slower with 5 times bigger proof
size than PrORAM. In light of these comparisons, we emphasize that MPCitH
protocols are designed to be public-coin and therefore inherently produce slower
and bigger proofs than protocols that exploit private coins.

Finally, we remark that multi-threaded implementations can significantly
speed up MPCitH protocols. If hardware allows, each repetition of the proof can
run on a separate thread. We report that with 14 threads we can match the
running time of BubbleRAM with a proof size only 1.2 times bigger.
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Abstract. Functional commitments (Libert et al. [ICALP’16]) allow a
party to commit to a vector v of length n and later open the commitment
at functions of the committed vector succinctly, namely with communi-
cation logarithmic or constant in n. Existing constructions of functional
commitments rely on trusted setups and have either O(1) openings and
O(n) parameters, or they have short parameters generatable using pub-
lic randomness but have O(log n)-size openings. In this work, we ask
whether it is possible to construct functional commitments in which both
parameters and openings can be of constant size. Our main result is the
construction of the first FC schemes matching this complexity. Our con-
structions support the evaluation of inner products over small integers;
they are built using groups of unknown order and rely on succinct proto-
cols over these groups that are secure in the generic group and random
oracle model.

1 Introduction

Commitments are one of the most fundamental cryptographic primitives having
important implications in both theory and practice. In a classical commitment
scheme, the sender commits to some value and hands it over to the receiver.
The security of commitments guarantees that the receiver learns nothing about
the committed value (hiding), while the sender cannot change the committed
value afterward (binding). Commitments are one of the best-studied primitives,
both in terms of underlying assumptions, integration into more complex cryp-
tographic schemes, and several generalizations were proposed. In this work, we
study functional commitments (FC), proposed by Libert, Ramanna, and Yung
[30], that follow the goal of providing advanced functionalities while minimizing
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communication complexity. In FC, the sender commits to a vector v of length
n and can later open the commitment to functions f(v) of the committed vec-
tor. A distinguishing feature of FCs is that commitment and openings should be
short, namely of size logarithmic or constant in n. In terms of security, binding
for FCs means that the sender cannot open the same commitment to two dif-
ferent outputs of the same function, i.e., to prove that both y and y′ �= y are
f(v). Functional commitments generalize other commitments notions in prior
work that are concerned with short commitments and openings, such as vector
commitments (VC) [17,31] and polynomial commitments (PC) [28]. In a vector
commitment, one opens single (or multiple [9,29]) positions of the committed
vector, i.e., a VC is an FC where the class of functions is specified as the pro-
jections fi(v) = vi. In a polynomial commitment, one commits to a polynomial
p(X) and opens to evaluations of p on given points z, i.e., a PC is an FC where
vp is the vector of p(X)’s coefficients and one opens to fz(vp) = p(z).

In terms of realizations, Libert et al. [30] proposed an FC construction for
linear functions. More recently, Lipmaa and Pavlyk [34] showed an FC for a
class of arithmetic circuits1. Both these constructions [30,34] rely on groups
with pairings, and they have public parameters that must be generated in a
trusted manner and whose length is at least linear in the length of the vector.

In this work, we consider the problem of realizing functional commitments
that admit constant-size public parameters generated using a transparent public-
coin setup. It is not hard to see that this question has a positive answer if one
is willing to rely on the random oracle heuristic. In this case, one can build a
functional commitment by using a succinct commitment scheme and a SNARK
with transparent setup [1,4,5,18,35,37–39,42] thanks to which one can generate
an opening through a SNARK proof for the NP statement that y = f(v) and the
commitment C opens to v. However, for an NP statement of size N , all existing
SNARKs with a transparent setup have proofs of length at least O(λ log N),
where λ stands for the security parameter. Therefore, this construction implies
functional commitments with logarithmic-size openings. And logarithmic open-
ing size is the best one can achieve in the literature even if one considers FCs for
a simple functionality like inner products. Indeed, an inner product argument
such as Bulletproofs [13] yields an FC for linear functions in which openings
consist of 2 · log n elements of a group G where the discrete logarithm problem
is hard.

To summarize, to the best of our knowledge, there is no functional com-
mitment (including polynomial commitments) that admits constant-size and
transparent public parameters and constant-size openings in the literature. The
only exceptions are a few vector commitment constructions [9,16] in groups of
unknown order, which, however, are functional commitments for a very specific,
non-algebraic, functionality. Therefore, the main question we ask in this work is:

Can we build functional commitments with constant-size public parameters
consisting of a uniformly random string and with constant-size openings?

1 It is also easy to note that it is possible to construct an FC for polynomials from
one for linear functions, by linearizing the polynomial.
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1.1 Our Contributions

The main result of our paper is the construction of the first functional commit-
ments that answer the above question in the affirmative.

FC for Binary Inner Products with Constant-Size Openings. Our first
result is a functional commitment that supports the evaluation of binary inner
products over the integers. Namely one can commit to a vector v ∈ {0, 1}n

and, for any f ∈ {0, 1}n, open the commitment to 〈v,f〉 computed over Z. The
scheme works over groups of unknown order and, due to the use of succinct
proofs of exponentiation from [9], relies on the random oracle and generic group
models. The scheme’s public parameters are four group elements, while openings
consist of 21 elements of the hidden-order group, and 14λ bits.

While all prior FCs for inner products use techniques that somehow rely on
the homomorphic property of an underlying vector commitment, our construc-
tion departs from this blueprint and shows a new set of techniques for proving
an inner product. In a nutshell, we start from the first vector commitment of
Campanelli et al. [16], which uses an encoding of a vector based on two RSA
accumulators, and then we show how to reduce the problem of proving an inner
product with a public function to that of proving that a certain exponent lies in
a range. To the best of our knowledge, this technique is novel. Also, a core part
of this technique is a way to succinctly prove the cardinality of a set in an RSA
accumulator, which we believe can be of independent interest.

FC for Integer Inner Products. Our second result is a collection of trans-
formations that lift an FC for binary inner products, like the one above, to one
that supports the computation of inner products over the integers and over finite
rings. More in detail, we show two main transformations for the following func-
tionality: one can commit to a vector v ∈ (Z2�)n and, for any f ∈ (Z2m)n, open
the commitment to 〈v,f〉 computed over Z.

Through the first transformation, we obtain an FC whose openings have
size of O(� + m) group elements and additive (� + m) log(�n) bits, and whose
algorithms running time is approximately (�+m) times that of the FC for binary
inner products.

Through the second transformation, we achieve a different tradeoff: the algo-
rithms’ running time grow by a factor 2�+m but openings have a fixed size O(1)
group elements.

We also show analogues of both transformations for the case of inner products
modulo any integer p, i.e., for 〈·, ·〉 : Z

n
p × Z

n
p → Zp, that yield FCs with the

same complexity as the ones above, considering � and m as the bitsize of p.
Among the two, the second transformation is of particular interest because,

in the case of �,m = O(log λ) (resp. p = poly(λ)) it yields functional commitment
schemes with constant-size openings.

Finally, due to the known construction of polynomial commitments from
functional commitments for inner products (see above), our FCs also imply poly-
nomial commitments with transparent setup for polynomials in Zp[X].
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Comparison and Concrete Interpretation of our Results. As mentioned
above, the objective of our work is to eliminate any dependence on the size of
the parameters and proofs on the vector length n. Our constructions have sizes
dependent only on the security parameter λ. When concretely instantiating the
group of unknown order these sizes get O(λ2) for class groups [7,22,27] or O(λ3)
for RSA groups.

On the other hand, elliptic curve group elements typically have size O(λ).
Therefore, if we consider polynomial lengths n = poly(λ) then elliptic curve-
based functional vector commitments as Bulletproofs [13] have proof size
O(λ log n) = O(λ log λ), which are concretely more efficient. For this, our results
firstly serve as feasibility results for the complexity of the sizes of functional vec-
tor commitments. We note, however, that our solutions would still be asymptot-
ically better if different unknown order group instantiations with optimal O(λ)
size were introduced, or in complexity leveraging scenarios where one considers
super-polynomial vector sizes, n > poly(λ).

This asymptotic drawback of constant-sized constructions is typical for many
primitives based on groups of unknown order such as RSA accumulators [3,6,9,
33], vector commitments [9,16,17,29] or SNARKs [29].

Therefore, if we compare to the functional commitment built using the Bul-
letproofs inner product argument [13] (which to the best of our knowledge is cur-
rently the most efficient one that admits constant-sized and transparent param-
eters) the proof sizes of our schemes are concretely larger (for n = poly(λ)). On
the other hand, our FC has two main advantages. The first one is flexibility. Our
FC “natively” supports inner products over Zp for any integer p, whereas Bul-
letproofs only supports inner products over Zq where q is the prime modulus of
a group G where discrete logarithm holds2. The second advantage is that in our
FC the verification algorithm admits preprocessing, that is, after spending O(n)
group exponentiations for a deterministic preprocessing of the function f , the
rest of the verification has a fixed cost O(λ). Notably, inner product arguments
based on the folding techniques of Bootle et al. [10] do not admit this prepro-
cessing, as their verification time is O(n) independently of the time to read the
statement.

1.2 Other Related Work

As mentioned earlier, functional commitments [30] are related to the notion of
vector commitments [17,31] and polynomial commitments [28].

In recent work, Peikert, Pepin and Sharp [36] propose a new lattice-based
vector commitment and also show an extension of their construction to support
opening to functions, expressed as boolean circuits, of the committed vector.
However, their construction works in a weaker model that assumes the availabil-
ity of a trusted authority that uses a secret key to generate functional keys that
allow one to create the opening. We argue that this is a much weaker model than

2 One could use Bulletproofs arithmetic circuit protocol in order to simulate mod p
algebra over Zq, at the price of a prover’s overhead.
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the one from [30] that we use in our work, where anyone can generate openings
given a set of public parameters. Furthermore, the model of [36] seems impossi-
ble to achieve if one aims to use public parameters generated using a public-coin
setup.

Concurrent Work. In a very recent work, Arun et al. [2] also propose a func-
tional commitment construction for inner products with transparent setup and
constant-size openings, and show extensions and applications of their scheme to
building constant-size SNARKs with transparent setup. Although the scheme of
[2] gives a solution to the same problem addressed in this paper, we emphasize
that their work is fully concurrent to ours. In fact, except for sharing the fact
of relying on groups of unknown order, the techniques are very different. They
use extremal combinatorics techniques, whereas we rely on a new technique for
proving the cardinality of a set in an RSA accumulator.

2 Preliminaries

Notation. We denote by λ the security parameter. The set of all polynomial
functions is denoted by poly(λ). We write ε(λ) ∈ negl(λ) for a function ε(λ) if
it vanishes faster than the inverse of any polynomial and we call it negligible.
An algorithm A is said PPT if it is modeled as a probabilistic Turing machine
that runs in time poly(λ).We use bold lowercase letters to denote a vector, e.g.
v = (v1, . . . , vn). With [n] we denote {1, . . . , n} and with [A,B] the set {A,A +
1, . . . , B−1, B} where A,B ∈ Z, A < B. The operator ‖·‖ is used for the bit-size,
i.e. ‖x‖ = �log(x)	, for x ∈ N. Primes(λ) stands for the set of all primes of size
λ, i.e. Primes(λ) = {p : p prime ∧ ‖p‖ = λ}. Oλ(n) will mean O(λn) (and not
O(poly(λ)n)).

2.1 Functional Commitments

Functional commitments (FC), introduced by Libert, Ramanna and Yung [30],
allow a sender to commit to a vector v and then to open the commitment to a
function y = f(v). As in vector commitments [17], what makes this primitive
non-trivial is a succinctness property, which requires commitments and openings
to be “short”, that is constant or logarithmic in the length of v. In our work
we use a slight generalization of the FC notion of [30] considering universal
specializable public parameters. This is a model, akin to the universal CRS of
[26], where Setup creates length-independent public parameters pp, which one
can later specialize to a specific length n by using a deterministic algorithm
Specialize.

Definition 1 (Functional Commitments). A functional commitment sch-
eme for a class of functions F is a tuple of algorithms FC = (Setup,Specialize,
Com,Open,Ver) with the following syntax and that satisfies correctness, succinct-
ness, and function binding.
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Setup(1λ) → pp given the security parameter λ, outputs public parameters pp,
which contain the description of a domain D and a universal class of functions
F = {Fn}n∈N, where Fn is a class of n-input functions {f : Dn → R}.
Specialize(pp,Fn) → ppn given public parameters pp and a description of the
function class Fn, outputs specialized parameters ppn.
Com(ppn,v) → C on input a vector v ∈ Dn outputs a commitment C.
Open(ppn,v, f) → Λ on input a vector v ∈ Dn and an admissible function
f ∈ Fn, outputs an opening Λ.
Ver(ppn, C, f, y, Λ) → b ∈ {0, 1} on input a commitment C, a function f ∈ Fn,
a value y ∈ R, and an opening Λ, accepts (b = 1) or rejects (b = 0).

Correctness. FC is correct if, for any public parameters pp ← Setup(1λ), any
length n ∈ N and specialized ppn ← Specialize(pp, n), any vector v ∈ Dn and
any admissible function f ∈ Fn, it holds

Ver(ppn,Com(ppn,v), f, f(v),Open(ppn,v, f)) = 1

Succinctness. FC is succinct if there exists a fixed polynomial p(·) such that for
any n = poly(λ), commitments and openings generated in the scheme have size
at most p(λ, log n).

Function Binding. For any PPT adversary A and any n = poly(λ), we have

Pr

⎡
⎢⎣
Ver(ppn, C, f, y, Λ) = 1

∧ y �= y′ ∧
Ver(ppn, C, f, y′, Λ′) = 1

:
pp ← Setup(1λ)

(C, f, y, Λ, y′, Λ′) ← A(pp)
ppn ← Specialize(pp,Fn)

⎤
⎥⎦ = negl(λ)

Remark 1. The Specialize algorithm is deterministically computed from pp and
Fn. For this reason, it suffices for Function Binding that the adversary A takes
as input pp (instead of ppn).

Remark 2 (Preprocessing-based verification). Our FC constructions enjoy a pre-
processing model of verification, similar to that of preprocessing SNARKs [26].
This means that one, given ppn and a function f , can generate a verification key
vkf and the latter can be later used to verify any opening for f . In particular,
while the cost of computing vkf can depend on the complexity of the function,
e.g., it is O(n) for a linear function with n coefficients, the subsequent cost of
verifying openings using vkf depends only on the succinctness of the scheme,
e.g., it is a fixed p(λ).

2.2 Groups of Unknown Order

For our constructions we use groups of unknown order G, i.e., groups where
computing the order is hard. Throughout this work we will assume an efficient
group sampling probabilistic algorithm Ggen(1λ) that generates such a group
G. Potential candidates are class groups of imaginary quadratic order [12] and
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RSA groups where the factorization is unknown. The instantiation through class
groups is the one that admits a public-coin (aka transparent) setup.

Hardness Assumptions. Below we recall the 2-Strong RSA assumption [14],
the Adaptive Root assumption [41] and the Low Order assumption [8].

Definition 2 (2-Strong RSA assumption [14]). We say that the 2-strong
RSA assumption holds for Ggen if for any PPT adversary A:

Pr

⎡
⎢⎣

ue = g

∧e �= 2k, k ∈ N
:

G ← Ggen(λ)
g ←$ G

(u, e) ← A(G, g)

⎤
⎥⎦ = negl(λ)

The 2-Strong RSA assumption is a special case of r-Strong RSA assumption,
introduced in [14]. The latter is in turn a generalization of (and trivially reduces
to) the standard Strong RSA assumption [3] (where r = 1). Taking square roots
can be done efficiently in Class Groups of imaginary quadratic order [11], but
for higher order roots it is believed to be hard. Thus 2-Strong RSA assump-
tion is believed to hold. For RSA groups the (plain) Strong RSA is a standard
assumption.

Definition 3 (Adaptive Root assumption [40]). We say that the adaptive
root assumption holds for Ggen if for any PPT adversary (A1,A2):

Pr

⎡
⎢⎢⎢⎣

u� = w

∧w �= 1
:

G ← Ggen(λ)
(w, state) ← A1(G)
�←$Primes(λ)
u ← A2(�, state)

⎤
⎥⎥⎥⎦ = negl(λ)

The Adaptive Root assumption is believed to hold on Class Groups and RSA
groups3. For completeness we also recall the Low Order assumption, which is
implied by the Adaptive Root assumption (see [8] for the reduction).

Definition 4 (Low Order assumption [8]). We say that the low order
assumption holds for Ggen if for any PPT adversary A:

Pr

⎡
⎢⎣

u� = 1
∧u �= 1

∧1 < � < 2poly(λ)
:

G ← Ggen(λ)
(u, �) ← A(G)

⎤
⎥⎦ = negl(λ)

2.3 Arguments of Knowledge

Let R ⊂ X × W be an NP relation for a language L = {x : ∃w s.t. (x,w) ∈ R}.
An argument system for L is a triple of algorithms (Setup,P,V) where: Setup(1λ)

3 In fact over the quotient group G/{1, −1} of an RSA group, since we need to exclude
the element −1 ∈ G whose order is known.
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takes a security parameter λ and outputs a common reference string crs;
P(crs, x, w) takes the crs, a statement x and a witness w; V(crs, x) takes the crs, a
statement x, interacts with the prover, and finally accepts or rejects. We denote
an execution between the prover and verifier with 〈P(crs, x, w),V(crs, x)〉 = b,
with b ∈ {0, 1} being the verifier’s output. When V uses only public randomness,
the protocol is called public coin.

Completeness. For all (x,w) ∈ R we have

Pr
[〈P(crs, x, w),V(crs, x)〉 = 1 : crs ← Setup(1λ)

]
= 1.

Let A = (A0,A1) be an adversary modeled as a pair of algorithms such that
A0(crs) → (x, state) (i.e. outputs an instance x ∈ X after crs ← Setup(λ) is
run) and A1(crs, x, state) interacts with a honest verifier. Then an argument of
knowledge must satisfy the following properties:

Soundness. For all PPT A = (A0,A1) we have

Pr
[ 〈A1(crs, x, state),V(crs, x)〉 = 1

and �w : R(x,w) = 1

∣∣∣∣
crs ← Setup(λ)

(x, state) ← A0(crs)

]
∈ negl(λ).

Knowledge Extractability. For all polynomial time adversaries A1 there
exists a polynomial time extractor Ext such that, for all PPT A0 it holds

Pr

⎡
⎣ 〈A1(crs, x, state),V(crs, x)〉 = 1

and (x,w′) /∈ R

∣∣∣∣∣∣
crs ← Setup(λ)

(x, state) ← A0(crs)
w′ ← Ext(crs, x, state)

⎤
⎦ ∈ negl(λ).

Succinctness. Informally, an argument system is succinct if the communication
and the verifier’s running time in an execution of the protocol are constant or
polylogarithmic in the witness length. Note that in our work, we do not need
zero-knowledge arguments.

2.4 Succinct Proofs of Exponentiation

We make use of the following succinct arguments of knowledge of exponents over
groups of unknown order. Below we describe the protocols’ functionalities and
defer their description to the full version [19].

PoKE. First we recall the proof of knowledge of exponent (PoKE) of [9] for the
language:

LPoKE =
{
(Y, u;x) ∈ G

2 × Z : Y = ux
}

parametrized by a group G ←$Ggen(λ) and a group element g ←$ G. The proto-
col is succinct: it consists of 3 G-element and 1 Z2λ -element and the verification
time is O(λ), both regardless of the size, ‖x‖, of the witness.

PoDDH. We also recall the proof of knowledge of a Diffie-Hellman tuple
(PoDDH) of [16], for the language:

LPoDDH =
{
(Y0, Y1, Y ;x0, x1) ∈ G

3 × Z
2 : gx0

0 = Y0 ∧ gx1
1 = Y1 ∧ gx0x1 = Y

}
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parametrized by a group G ←$Ggen(λ) and three group elements g, g0, g1 ←$ G.
Notice that, unlike the usual DH-tuple, in the above protocol the bases are
different and honestly generated in the setup. However, the same protocol can
work for the same base, g = g0 = g1. Similarly to the PoKE, the protocol is
succinct: 3 G-elements and 2 Z2λ -elements and O(λ).

PoRE. We wil make use of a succinct protocol (PoRE) proving that the exponent
of an element Y = gx lies in a certain range, x ∈ [L,R].

LPoRE =
{
(Y,L,R;x) ∈ G × Z

3 : L < x < R ∧ gx = Y
}

.

parametrized by a group G ←$Ggen(λ) and a group element g ←$ G.
For this we rely on the square-decomposition technique [25,32]. That is, an

integer x is in the range [L,R] if and only if there exist (x1, x2, x3) ∈ Z
3 such that

4(x−L)(R −x)+ 1 =
∑3

i=1 x2
i . The proof consists of the following subprotocols

(run in parallel):

– For each i = 1, 2, 3, the prover computes xi, sends Zi = gx2
i for i ∈ [3]

and involves with the verifier in a succinct argument of knowledge of square
exponent (PoSE) proving the validity of the last:

LPoSE =
{

(Zi;xi) ∈ G × Z : gx2
i = Zi

}
.

PoSE is presented as a stand-alone protocol in the full version of the paper.
– The prover sends Y ′ = g(x−L)(R−x) and involves in a PoDDH protocol with

the verifier for the tuple (gx−L, gR−x, Y ′). Observe that gx−L, gR−x can be
computed homomorphically by the verifier from Y = gx, thus don’t have to
be sent.

– Finally, the verifier merely checks if Y ′4 · g =
∏3

i=1 Zi.

All the above protocols are knowledge-extractable in the generic group model
for groups of unknown order [9,21].

Non-interactive Versions. All protocols can be made non-interactive by the
standard Fiat-Shamir transformation [23]4.

3 Our Functional Commitment for Binary Inner
Products

In this section we present our core construction of Functional Commitments for
binary inner products with constant-size parameters and openings. Precisely, in
the scheme we commit to binary vectors v = (v1, . . . , vn) ∈ {0, 1}n and the
class of functions is F = {Fn} where, for every positive integer n, Fn = {f :
{0, 1}n → Z} such that f is a linear function represented as a vector of binary

4 In these types of proofs though one should set � to be of size 2λ for the non-interactive
case [8].
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coefficients, i.e., f = (f1, . . . , fn) ∈ {0, 1}n, and computes the result as the inner
product

y = 〈f ,v〉 =
n∑

i=1

fi · vi ∈ Z.

Note that, for a fixed n, every possible result y is an integer in {0, . . . , n}. Our
starting point is the vector commitment (VC) of Campanelli et al. [16], which
is based on RSA accumulators [3,6,9,33]. In [16], each position of v is encoded
as a prime, via a collision-resistant hash-to-prime function Hprime(i) → pi for
each i ∈ [n]. Then, in order to commit to v, one creates two RSA accumulators,
C0, C1: the former that accumulates all primes corresponding to zero-values of v
({pi = Hprime(i) : vi = 0}), and the latter for one-values ({pi = Hprime(i) : vi =

1}) respectively. That is merely, C0 = g

∏
vi=0 pi

0 and C1 = g

∏
vi=1 pi

1 . Observe
that these two sets of primes form a partition of all the primes corresponding to
positions {1, . . . , n}. For binding of the commitment, they also add a succinct
proof PoDDH to show that the sets in C0 and C1 are indeed a partition.

Starting from this vector commitment, our contribution is a new technique
that allows us to create inner product opening proofs. To this end, our first key
observation is that:

y = 〈v,f〉 =
∑

i

vifi =
∑
fi=0

vi ·0+
∑
fi=1

vi ·1 =
∑
fi=1

vi = |{i ∈ [n] : fi = 1, vi = 1}|

since both vi and fi are binary. Then the prover commits to the subvector of v
corresponding to positions where fi = 1. This is done by using the same vector

commitment described previously. That is, we compute F0 = g

∏
fi=1,vi=0 pi

0 and

F1 = g

∏
fi=1,vi=1 pi

1 , accompanied with a PoDDH proof π′
PoDDH of Diffie-Hellman

tuple for the tuple (F0, F1, F ), for F = g
∏

fi=1 pi . Notice that F can be computed
by only knowing f , without knowledge of v.

The next step to prove the inner product is to show that (F0, F1) is actually
a commitment to a subvector of v. This is done by showing that F0 accumulates
a subset of the primes of C0, and similarly F1 accumulates a subset of the
primes of C1. Putting it in other words, the ‘exponent’ of Fb is contained in

the accumulator Cb: there is a Wb such that W

∏
fi=1,vi=b pi

b = Cb and Fb =

g

∏
fi=1,vi=b pi

b , for b = 0, 1. The last can be proven in a succinct way via a simple
concatenation of two PoKE proofs, π0, π1.

Observe now that the F1 accumulates exactly the (primes corresponding to)
positions that contribute to the inner product {i ∈ [n] : fi = 1, vi = 1}. The
number of primes that F1 contains in its ‘exponent’ is exactly y. All that is
missing now is a way to convince the verifier about the number of primes in the
exponent of F1. For this, we set the size of each prime pi to be such that the
range of any product

∏
i∈I pi determines uniquely the cardinality of I (i.e., the

number of primes in the product). This way, a range proof for the ‘exponent’ of
F1 can convince the verifier about the cardinality of the accumulated set, which
is the inner product result y. For this, we generate a succinct range proof πPoRE

using our protocol of Sect. 2.4.
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The verifier, holding the commitment (C0, C1, πPoDDH), receives the opening
proof (F0, F1, π

′
PoDDH,W0, π0,W1, π1, πPoRE). It is important to make sure that F1

contains exactly the primes of positions where fi = 1 and vi = 1. The (F1, C1)-
‘subvector’ proof π1 ensures that vi = 1 for all its primes (since C1 contains only
primes for vi = 1). For the fi = 1 part, the verifier herself computes F = g

∏
fi=1 pi

and verifies that (F0, F1, F ) is a DH tuple through π′
PoDDH. This ensures that (1)

all the primes in the exponents of F0, F1 are for fi = 1 and (2) no position i for
fi = 1 was excluded maliciously; all of them were either put in F0 or F1. This
convinces the verifier that exactly the positions i where fi = 1, vi = 1 are in the
‘exponent’ of F1.

3.1 Functional VCs for Binary Linear Functions from Range Proofs

Here we formally describe our construction. We simplify the notation omit-
ting the indicator i ∈ [n] from the sums and the products below. For exam-
ple
∑

i xi would implicitly mean
∑

i∈[n] xi and
∏

vi=1 xi would implicitly mean∏
i∈[n],vi=1 xi. Furthermore, we use abbreviations for some products we will use

that can be found in Fig. 1.

Fig. 1. Summary of symbols for the products used in the construction.

Setup(1λ) → pp : The setup algorithm generates a hidden order group
G ← Ggen(1λ) and samples three generators g, g0, g1 ←$ G. It determines a
collision-resistant function Hprime that maps integers to primes and it returns
pp = (G, g, g0, g1).
Specialize(pp, n) → ppn : The algorithm samples a collision-resistant function
Hprime that maps integers to primes5. Computes prod =

∏
i Hprime(i) and

sets Un = gprod. Returns ppn = (pp,Hprime, Un).
Com(ppn,v) → C : The commitment algorithm takes as input a vector of bits
v = (v1, . . . , vn) ∈ {0, 1}n. It computes the product of all primes that corre-
spond to a zero-value of the vector (i.e., vi = 0) as prod0 =

∏
vi=0 Hprime(i),

and similarly prod1 =
∏

vi=1 Hprime(i) for the one-values. Next, it computes
the accumulators

C0 = g
prod0
0 and C1 = g

prod1
1

and a PoDDH proof π = PoDDH.P ((G, g, g0, g1), (C0, C1, Un), (prod0, prod1)),
which ensures that, given the above (C0, C1, Un), it holds prod = prod0 ·prod1:

L =
{

(C0, C1, Un; prod0, prod1) : g
prod0
0 = C0 ∧ g

prod1
1 = C1 ∧ gprod0·prod1 = Un

}

5 As we discuss next and in more detail in Sect. 3.3, the choice of Hprime depends on
n.
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Returns C = (C0, C1, π).
Open(ppn, C,v,f) → (y, Λ) : f = (f1, . . . , fn) ∈ {0, 1}n is a vector of bits.
The output of the function is

y = 〈v,f〉 =
∑

vifi =
∑
fi=0

vi · 0 +
∑
fi=1

vi · 1 =
∑
fi=1

vi

Let fprod =
∏

fi=1 Hprime(i), fprod0 =
∏

fi=1,vi=0 Hprime(i) and fprod1 =∏
fi=1,vi=1 Hprime(i). Computes F = gfprod and

F0 = g
fprod0
0 and F1 = g

fprod1
1

Then computes the following arguments of knowledge:
– π0: a proof that F0 contains a ‘subvector’ of C0, i.e. a proof for the language:

L0 =
{

(F0,W0; fprod0) : W
fprod0
0 = C0 ∧ g

fprod0
0 = F0

}

– π1: a proof that F1 contains a ‘subvector’ of C1, i.e. a proof for the language:

L1 =
{

(F1,W1; fprod1) : W
fprod1
1 = C1 ∧ g

fprod1
1 = F1

}

– π2: a PoDDH for F0, F1, F :
L2 =

{
(F0, F1, F ; fprod0, fprod1) : g

fprod0
0 = F0 ∧ g

fprod1
1 = F1 ∧ gfprod0·fprod1 = F

}

– π3: a range proof that fprod1 is in a certain range L(y) < fprod1 < R(y),
that is uniquely determined by y. L and R are public functions that depend
on Hprime (see Fig. 2 for their concrete description).

L3 =
{

(F1, y; fprod1) : L(y) < fprod1 < R(y) ∧ g
fprod1
1 = F1

}

Returns Λ = (F0, F1,W0,W1, π0, π1, π2, π3)
Ver(ppn, C, Λ,f , y) → b : It computes F = gfprod = g

∏
fi=1 Hprime(i) that

depends only on f and outputs 1 iff all π, π0, π1, π2, π3 verify. Notice that
computing F is necessary as is an input to the proof π2.

Fig. 2. Definitions of the range functions L, R. The functions depend on the range
Hprime, which in turn depends on n and λ (specified in the setup and specialize phases
respectively).
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Remark 3. For ease of presentation, in the Open algorithm, we describe four
distinct proofs, π0, π1, π2, π3. In order to optimize the proof size, they can be
merged into a single proof avoiding redundancies. We present in details the
(merged) protocol in Sect. 3.3.

Determining the Hash Function and the Range. We need to find a proper
hash-to-prime function and a corresponding range [L(y), R(y)] for fprod1 such
that for any y = 1, . . . , n:

fprod1 :=
∏

vi=1,fi=1

Hprime(i) ∈ [L(y), R(y)] ⇐⇒ ∣∣{i ∈ [n] : vi = 1, fi = 1}∣∣ = y

meaning that a range for the product of the primes should translate to its num-
ber of prime factors. And the correspondence should be unique. E.g. p2p7p11 ∈
[L,R] ⇐⇒ 3 factors ⇐⇒ y = 3. For the degenerate case of y = 0, fprod = 1.

The following lemma shows that such Hprime, L,R exist and specifies their
parameters:

Lemma 1. Assume a collsion-resistant function that maps integers to prime
numbers, Hprime : [n] →

(
2κ(λ), 2κ(λ)+

κ(λ)
n

)
, parametrized by λ and n, and

functions L : {0, . . . , n} → Z, R : {0, . . . , n} → Z such that L(y) = 2κy and
R(y) = 2(κ+

κ
n )y respectively. Then for any I ⊆ [n]:

∏
i∈I

Hprime(i) ∈ [L(y), R(y)] ⇐⇒ |I| = y

Proof. For any number of factors y = 1, . . . , n we have 2κy <
∏

i∈[y] pi <

2(κ+
κ
n )y. Since κy + κy

n < κ(y + 1) for any y ∈ [n] all ranges are distinct. So the
mapping is ‘1-1’.

In Sect. 3.3 we discuss concrete instantiations for the function Hprime and
consequently L and R.

3.2 Security

Correctness. Follows from correctness of the [16] Vector Commitment, correct-
ness of PoKE,PoDDH,PoRE arguments of knowledge and from Lemma 1.

Function Binding. Our proof strategy is the following. Given two openings
Λ and Λ′ of the same commitment C to distinct outputs y, y′, we first use
the ‘subvector’ proofs’ extractors π0, π1, π

′
0, π

′
1 to argue that (the exponents of)

(F0, F1) and (F ′
0, F

′
1) are subvectors of C. Then we use the PoDDH’s extractors

π2, π
′
2 to argue that in fact these subvectors are for the same subset of positions

I1 = {i ∈ [n] : fi = 1}. For the latter we also use the collision-resistance of
Hprime. Then we use the extractors of PoRE π3, π

′
3 for F1 and F ′

1 resp., the
fact that y �= y′ (by definition of the game) and lemma 1 to argue that these
subvectors (for the same positions) are different. Finally, we argue that this fact,
having two different subvectors for the same subset of positions and commitment
C, contradicts the position-binding property of the [16] Vector Commitment.
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Theorem 1. Let Ggen be a hidden order group generator where the [16] VC
is position binding, PoKE,PoDDH,PoRE be succinct knowledge-extractable argu-
ments of knowledge and Hprime be collision-resistant. Then our functional com-
mitment for binary inner products is function binding.

Due to space limitations we postpone the formal security proof for the full ver-
sion.

3.3 Instantiation

Instatiation of Hprime. As stated in Lemma 1, Hprime should be a collision-
resistant function with domain [n] that outputs prime numbers in the range(
2κ(λ), 2κ(λ)+

κ(λ)
n

)
. Here we specify the function κ(·) and show instantiations

for Hprime under these restrictions.
Hashing to primes is a well studied problem [15,20,24]. A standard technique

is rejection sampling: on input x it computes y = FK(x, 0), where FK is a
pseudorandom function with seed K and range [A,B], and checks y for primality.
If y is not prime it continues to y = FK(x, 1) and so on, until it finds a prime
F (x, j) for some j. From the density of primes the expected number of tries is
log(B − A). As an alternative, FK can also be a random oracle.

Assume a collision-resistant hash function H that we model as a random
oracle and its outputs are in the range

(
2κ(λ), 2κ(λ)+

κ(λ)
n

)
6. For H to be collision

resistant we require, due to the birthday bound, its range to contain at least 22λ

prime numbers. From the density of primes we know that in the above range
there are about:

2κ+ κ
n

κ + κ
n

− 2κ

κ
≈ 2κ+ κ

n

κ
− 2κ

κ
=

2κ
(
2

κ
n − 1

)
κ

prime numbers, where for the first approximate equality we assumed that κ � n.
So if we set κ (depending on λ and n) to be the smallest positive integer such

that:
2κ
(
2

κ
n − 1

)
κ

≥ 22λ

then H gives sufficiently many primes to instantiate Hprime (via the rejection
sampling method we described above).

For example for n = 260 and λ = 128: κ = 317. So instantiating Hprime with
the rejection sampling method based on the SHA512 (for FK) fixing its output
range to (2317, 2317+317/260) we get a sufficient Hprime for our functional vector
commitment construction that satisfies lemma 1.

Instantiation of the Arguments of Knowledge. Here we present the merged
argument of knowledge for our Open algorithm of Sect. 3.1. As noted, it was
6 We can securely fix the range of a hash function (as SHA512) by fixing some of its

bits and truncating others.
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presented modularly in order to ease the presentation of the protocol and its
security proof, however we can merge the proofs for the four languages L0 −
−L3 into a single protocol, using standard composition techniques. The unified
language of the Open algorithm is:

L =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(F0, F1, F,W0,W1,R, L; fprod0, fprod1) :

W
fprod0
0 = C0 ∧ g

fprod0
0 = F0∧

∧W
fprod1
1 = C1 ∧ g

fprod1
1 = F1∧

∧gfprod0·fprod1 = F ∧ L < fprod1 < R

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

The description of the protocol can be found in the full version of the paper [19].

Concrete Security Assumptions. After the above instantiations we get that
our overall binary inner product commitment is secure in the GGM and RO
model assuming that H (used for Hprime as described above) is collision-resistant:
the argument of knowledge is knowledge-extractable in the generic group model
and gets non-interactive in the random oracle model and the [16] SVC is position
binding under the 2-strong RSA and Low order assumptions (that are secure in
the GGM).

3.4 Efficiency

Our FC for binary inner products has O(1) public parameters, O(1) commitment
size and O(1) openings proof size. More in detail, |ppn| consists of 4 |G|-elements
and the descriptions of G and Hprime (which are concise). |C| is 5 |G|-elements
and 2 |Z22λ |-elements. Finally the opening proof |Λ| is 21 |G|-elements and 7
|Z22λ |-elements7.

Generating the public parameters, via Setup and Specialize, takes a G-
exponentiation of size κn = Oλ(n). The generation doesn’t require any private
coins and thus is transparent.

The prover’s time (i.e. the running time of Open) is dominated by the
exponentation F ′

1 = g
(fprod1−L)(R−fprod1)
1 , that is a G-exponentation of size

2κn = Oλ(n).
The verifier’s running time (i.e. Ver) is dominated by the computation of

F = g
∏

fi=1 Hprime(i), which takes (in the worst case where f = (1, 1, . . . , 1)) a
G-exponentiation of size κn = Oλ(n). The rest of the computations, i.e. the
verification of the argument of knowledge, take constant time O(2λ) = Oλ(1)
G-exponentiations. However, below we make two observations that can speed up
the verification in two useful ways.

Preprocessing-Based Verification. Our Functional Commitment construc-
tion allows preprocessing the verification (see Remark 2). The verifier can com-
pute a-priori the function-dependent value F so that the online verification gets
7 We do not consider optimizations for the arguments of knowledge with which we

could reduce the size of |C| by 1 and |Λ| by 6 group elements respectively.
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Oλ(n). Notably, this preprocessing is deterministic and proof-independent, and
thus can be reused to verify an unbounded number of openings for the same
function f .

From Group-Based to Integers-Based Linear Work. Even without pre-
processing, the prover can compute and send to the verifier a PoE proof [9,41]
for F = g

∏
fi=1 Hprime(i). Then the verifier verifies PoE instead of computing F

herself. This takes Oλ(n) integer operations and Oλ(1) group exponentiations,
in place of Oλ(n) group operations, which concretely gives a significant saving.

4 Our FC for Inner Products over the Integers

In this section, we present two transformations that turn any functional com-
mitment for binary inner products (like the one we presented in Sect. 3) into
a functional commitment for inner products of vectors of (bounded) integers.
Precisely, we build an FC where one commits to vectors v ∈ (Z2�)n and the
class of admissible functions is

Fn = {f : (Z2�)n → Z}

where each f is represented as a vector f ∈ (Z2m)n.
Consider an FC scheme bitFC for binary inner products, and let tCom(n),

tOpen(n), tVer(n) be the running times of its algorithms Com, Open and Ver
respectively, and let s(n) be the size of its openings.

Our two transformations yield FCs for the integer inner products function-
ality F that achieve different tradeoffs:

1. With our first transformation we obtain an FC where

t′Com(n) = tCom(n�), t′Open(n) = (�+m) · tCom(n�), t′Ver(n) = (�+m) · tVer(n�),

s′(n) = (� + m) · (s(n�) + log(n�))

2. With our second transformation we obtain an FC where

t′Com(n) = tCom(n�2�+m), t′Open(n) = tCom(n�2�+m), t′Ver(n) = tVer(n�2�+m),

s′(n) = s(n�2�+m)

Given the tradeoffs, and considering instantiations of bitFC like ours, in which
s(n) is a fixed value in the security parameters, then the second transformation
is particularly interesting in the case �,m = O(1) are constant or O(log λ) as
it yields an FC with constant, or polynomial, time overhead and constant-size
openings.
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4.1 Our Lifting to FC for Integer Inner Products
with Logarithmic-Size Openings

We start by providing here an intuitive description of our transformation. We
give a formal description of the FC scheme slightly below.

For our transformation, we use a binary representation of the vectors of
integers v ∈ (Z2�)n and f ∈ (Z2m)n, that is:

v = (v1, . . . , vn) ∈ ({0, 1}�)n and f = (f1, . . . , fn) ∈ ({0, 1}m)n

Denote vi =
∑�−1

j=0 v
(j)
i 2j and fi =

∑m−1
k=0 f

(k)
i 2k the bit decomposition of vi, fi

respectively. Then we can rewrite the inner product of v and f as

y = 〈f ,v〉 =
n∑

i=1

vifi =
n∑

i=1

⎛
⎝

�−1∑
j=0

m−1∑
k=0

v
(j)
i f

(k)
i 2j+k

⎞
⎠ . (1)

If we swap the counters we conclude to:

y =
�−1∑
j=0

m−1∑
k=0

(
n∑

i=1

v
(j)
i f

(k)
i

)
2j+k =

�−1∑
j=0

m−1∑
k=0

〈v(j),f (k)〉2j+k

where above v(j) = (v(j)
1 , . . . , v

(j)
n ) ∈ {0, 1}n is a bit-vector of the j-th bits of

all entries vi (and similarly for f (k)). The inner product y of v and f is hereby
broken into the above sum of �m binary inner products. So, a first idea to open
the inner product over the integers would be to let one create � commitments,
one for each v(j) of length n, and then open to the inner product y by revealing
all the �m binary inner products, each with its corresponding opening proof. The
issue with this idea is that it yields an O(�m log n)-size opening.

Next, we show a more efficient way to use an FC for binary inner product
that avoids this quadratic blowup.

To this end, we show that y can also be represented as the sum of � + m
binary inner products between vectors of length n�. We start observing that we
can rewrite (1) as

y =
n∑

i=1

�−1∑
j=0

v
(j)
i ·

(
m−1∑
k=0

f
(k)
i 2j+k

)
=

n∑
i=1

�−1∑
j=0

v
(j)
i · f̂

(j)
i (2)

where, for every i, j, each f̂
(j)
i is the integer

∑m−1
k=0 f

(k)
i ·2j+k ∈ [0, 2�+m−1]. Now

the inner product y over integers is reshaped as an inner product between an
n�-long binary vector

v′ = v(0)‖ . . . ‖v(�−1)

and an n�-long function with coefficients in [0, 2�+m−1]. It is left to appropriately
grind this inner product into binary inner products. We are about to show that
those binary inner products are between v′ and the following binary vectors
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f ′
h = f (h)‖f (h−1)‖ . . . ‖f (h−�+1)

where h ∈ [0, � + m − 2],f (k) = (0, . . . , 0) for all k �∈ [0,m − 1].
Indeed, let y′

h = 〈v′,f ′
h〉. Then by changing the variable k = h − j and

rearranging the summation of j, we can rewrite (1) as

y =
�+m−2∑

h=0

�−1∑
j=0

〈v(j),f (h−j)〉 · 2h =
�+m−2∑

h=0

〈v′,f ′
h〉 · 2h =

�+m−2∑
h=0

y′
h · 2h.

Using as a building block the binary functional vector commitment we get
a functional vector commitment for bounded-integers as follows: only one com-
mitment C is needed for the concatenating vector v′. Then the opening proof
consists of the partial outputs {yh}h∈[0,�+m−2] together with their correspond-
ing functional opening proofs {Λh}h∈[0,�+m−2], one for each binary inner product
〈v′,f ′

h〉. For verification, one is checking that each Λh verifies with respect to C
and f ′

h, to ensure that yh are the correct partial outputs. Then it reconstructs
y =

∑�+m−2
h=0 yh2h according to the above equality.

FC Scheme. Consider bitFC as an arbitrary FC for binary inner products, we
present below a formal description of the transformation.

Setup(1λ) → pp : runs pp = bitFC.Setup(1λ). Returns pp
Specialize(pp,Fn) → ppFn

: given the description of the functions class Fn,
which includes the bounds �,m and the vector length n, the specialization
algorithms sets N = n� and returns ppFn

= bitFC.Specialize(pp, N).
Com(ppn,�,v) → C : Let v = (v1, . . . , vn) ∈ ({0, 1}�)n be a vector of �-bit

entries, and let v(j) = (v(j)
1 , . . . , v

(j)
n ) be the binary vector expressing the j-th

bit of all entries in v, i.e., it holds v =
(∑�−1

j=0 v
(j)
1 2j , . . . ,

∑�−1
j=0 v

(j)
n 2j

)
.

The commitment algorithm computes the commitment

C = bitFC.Com(ppFn
,v′), s.t. v′ = v(0)‖ . . . ‖v(�−1)

and returns C.
Open(ppFn

, C,v,f) → (y, Λ) : f = (f1, . . . , fn) ∈ ({0, 1}m)n is a vector of
m-bit entries.
If f =

(∑m−1
k=0 f

(k)
1 2k, . . . ,

∑m−1
k=0 f

(k)
n 2k

)
then f (k) = (f (k)

1 , . . . , f
(k)
n ) is the

binary vector of the k-th bit of all entries of f .
The opening algorithm proceeds as follows. For each h = 0, . . . , � + m − 2:

set f ′
h = f (h)‖f (h−1)‖ . . . ‖f (h−�+1), where f (i) = (0, . . . , 0)∀i �∈ [0,m − 1],

and compute yh = 〈v′,f ′h〉 and Λh = bitFC.Open(ppFn
, C,v′,f ′

h),

Return Λ = {yh, Λh}h∈[0,�+m−2] .

Ver(ppFn
, C, Λ,f , y) → b : returns 1 iff:

1. bitFC.Ver
(
ppFn

, C, Λh,f ′
h, yh

)
= 1, for each h ∈ [0, � + m − 2].

2. y =
∑�+m−2

h=0 yh2h.
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Theorem 2. If the binary functional vector commitment is functional binding,
then our bounded-integer functional vector commitment is functional binding.

Proof. The proof is straightforward from the fact that two valid openings y, z
over integer imply immediately that there exists at least an index h for which
there are two valid openings for distinct binary inner products yh �= zh.

4.2 Our Lifting to FC for Integer Inner Products with Constant-Size
Openings

Here we provide a different method to lift an FC for binary inner products to an
FC for integer inner products that achieves a different tradeoff. The prover time
and verification time are 2�+m times those of the bitFC scheme, while openings
are exactly the same as those of bitFC (and thus constant-size using our scheme
of Sect. 3).

Intuition. In the transformation of the previous section we showed how how
to express the inner product y = 〈v,f〉 of n-long vectors of integers into the
weighted sum of � + m − 1 binary inner products of vectors of length n�:

y =
�+m−2∑

h=0

〈v′,f ′
h〉 · 2h =

�+m−2∑
h=0

yh · 2h

The drawback of this transformation is that we need to include all the yh in the
opening, and each of this integer is up to log n-bits long.

It turns out that we can iterate the same idea and encode the above weighted
sum into a single inner product 〈ṽ, f̃〉 of binary vectors of length n�H with
H =

∑�+m−2
h=0 2h = 2�+m−1 − 1.

For every h ∈ [0, �+m−2], define the vector f̃h = f ′
h‖·‖f ′

h ∈ {0, 1}n�2h

, that
is the concatenation of 2h copies of f ′

h. Similarly, set ṽh = v′‖ · · · ‖v′ ∈ {0, 1}n�2h

.
Next, if we define

ṽ = ṽh‖ · · · ‖ṽh ∈ {0, 1}n�H and f̃ = f̃0‖ · · · ‖f̃�+m−2 (3)

it can be seen that

〈ṽ, f̃〉 =
�+m−2∑

h=0

〈ṽh, f̃h〉 =
�+m−2∑

h=0

〈v′,f ′
h〉 · 2h = y

FC Scheme. More in detail the FC scheme works as follows.

Setup(1λ) → pp : runs pp = bitFC.Setup(1λ). Returns pp
Specialize(pp,Fn) → ppFn

: given the description of the functions class
Fn, which includes the bounds �,m and the vector length n, the special-
ization algorithms sets N = n�H, with H = 2�+m−1 − 1, and returns
ppFn

= bitFC.Specialize(pp, N).
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Com(ppFn
,v) → C : Given v = (v1, . . . , vn) ∈ ({0, 1}�)n, compute a vector

ṽ ∈ {0, 1}n�H as in Eq. (3), and return the commitment

C = bitFC.Com(ppFn
, ṽ).

Open(ppFn
, C,v,f) → Λ : Given f = (f1, . . . , fn) ∈ ({0, 1}m)n, compute

vectors ṽ, f̃ ∈ {0, 1}n�H as in Eq. (3), and return the opening

Λ = bitFC.Open(ppFn
, ṽ, f̃).

Ver(ppFn
, C, Λ,f , y) → b : returns 1 iff bitFC.Ver(ppFn

, C, Λ, f̃ , y) = 1.

Theorem 3. If bitFC is functional binding, then the FC described above is func-
tional binding.

The proof is straightforward based on the observation that two valid openings
for distinct y �= y′ of our FC are also two valid proofs, for the same commitment
and outputs, for the bitFC scheme.

5 Our FC for Inner Products Mod p

In this section, we show how to extend the transformations of the previous section
in order to build FCs for inner products modulo an integer p, starting from an
FC for binary inner products. Namely we build FCs for

Fp,n = {f : (Zp)
n → Zp}.

Solutions with Logarithmic-Size Openings. For the FC of our first trans-
formation of Sect. 4.1, the adaptation to support the inner product mod p is easy.
The only change is to run that construction by setting � = m = ‖p‖ and by let-
ting the second verification check be: y =

∑�+m−2
h=0 yh ·2h mod p. Notice that the

FC scheme has exactly the same complexity analysis, considering � = m = ‖p‖.
More in general, given any FC for integer inner products it is possible to

construct one for inner products modulo an integer p, at the cost of additionally
including log(np2) bits in the opening: one simply adds to the opening the result
y over the integers, and the verifier additionally checks that yp = y mod p.

Solutions with Constant-Size Openings. To build an FC for Fp,n in which
openings remain of constant size, we discuss two solutions based on our second
transformation of Sect. 4.2.

The first solution is described in the full version of the paper. It shows how to
use an FC for integer inner products to obtain an FC for inner products modulo
p, for p = poly(λ), with no overhead in the size of openings. This construction
can be instantiated using the FCs obtained with our second transformation of
Sect. 4.2. To avoid a quadratic blowup in verification time, this construction
can start from FC for integer inner products that enjoy preprocessing-based
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verification. This way, the verification of the resulting FC remains O(n); as
drawback, however the resulting FC does not have preprocessing anymore.

FC for Z inner products, with
O(1) proofs and preprocessing

=⇒ FC for Zp inner products, with
O(1) proofs (no preprocessing)

More concretely, by applying the first solution to an instantiation of intFC obtain
by applying the transformation of Sect. 4.2 to the FC of Sect. 3 we obtain, for
p = O(1) (p = O(log λ)), an FC for inner products (mod p) in which openings
have fixed size Oλ(1) and verification is Oλ(n) (Oλ(n log λ) resp.).

The second solution consists into using the same transformation of Sect. 4.2
with the following differences: set � = m = ‖p‖ and, as a building block, use
an FC for binary inner products modulo p, i.e., for computing 〈v,f〉 (mod p)
for v,f ∈ {0, 1}n. If such a building block is available and it has constant size
proofs, it is easy to see that this variant of the transformation is correct and
secure. Clearly, due to the complexity of the transformation we can only use it
for small integers p = O(1), O(log λ).

The only missing piece for this construction is showing this building block.
In the full version of the paper we describe a construction of such a scheme,
obtained by tweaking our scheme of Sect. 3. This solution preserves preprocessing
verification.

FC for Z2 inner products mod p,

with O(1) proofs
=⇒ FC for Zp inner products,

with O(1) proofs

The modification we mention before adds up the opening size for binary inner
products an Oλ(log p + λ) complexity. It also takes time Oλ(log p + λ) + tVer(n)
to verify, where tVer(n) is the verification time of intFC.

Considering an instantiation of intFC deriving from applying the transforma-
tion of Sect. 4.2 to the FC of Sect. 3 we then, for p = O(1), obtain an FC for
inner products modulo p in which openings are of size Oλ(1) and verification is
in time Oλ(1) with preprocessing.

For lack of space we refer to the full version for the formal description of the
constructions.
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Abstract. Oblivious Polynomial Evaluation (OPE) schemes are inter-
active protocols between a sender with a private polynomial and a
receiver with a private evaluation point where the receiver learns the eval-
uation of the polynomial in their point and no additional information.
In this work, we introduce MyOPE, a “short-sighted” non-interactive
polynomial evaluation scheme with a poly-logarithmic communication
complexity in the presence of malicious senders. In addition to strong
privacy guarantees, MyOPE enforces honest sender behavior and consis-
tency by adding verifiability to the calculations.

The main building block for this new verifiable OPE is an inner prod-
uct argument (IPA) over rings that guarantees an inner product relation
holds between committed vectors. Our IPA works for vectors with ele-
ments from generic rings of polynomials and has constant-size proofs that
consist in one commitment only while the verification, once the validity
of the vector-commitments has been checked, consists is one quadratic
equation only.

We further demonstrate the applications of our IPA for verifiable OPE
using Fully Homomorphic Encryption (FHE) over rings of polynomials:
we prove the correctness of an inner product between the vector of powers
of the evaluation point and the vector of polynomial coefficients, along
with other inner-products necessary in this application’s proof.

MyOPE builds on generic secure encoding techniques for succinct
commitments, that allow real-world FHE parameters and Residue Num-
ber System (RNS) optimizations, suitable for high-degree polynomials.

1 Introduction

1.1 Oblivious Polynomial Evaluation

Oblivious Polynomial Evaluation (OPE) is a protocol that allows two parties,
the sender and the receiver, to evaluate a polynomial f(X) of fixed public degree
N secretly chosen by the sender in a point m known only by the receiver. The
receiver obtains the value f(m) without learning anything else about the poly-
nomial f and without giving the sender any information about the point m.
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OPE is an important building block for various 2-party computation (2-PC)
schemes that generally require multiple executions of an OPE protocol for the
same polynomial and different evaluation points, such as for Private Set Intersec-
tion (PSI), data mining [31], privacy-preserving keyword search [29], set mem-
bership (related to PSI) or and RSA key generation [24], to mention a few. Our
building blocks for OPE can also be used to attain Symmetric Private Informa-
tion Retrieval (SPIR). However, the standard definition of receiver privacy does
not preclude the sender from cheating by using a polynomial of higher degree
than expected, changing the polynomial between multiple executions, or sending
polynomial evaluation results in a wrong order, thus potentially easily leaking
private information if the protocol includes a step to return the intersection
result to the sender in the PSI application. Therefore, extending the security to
malicious senders is essential in practical contexts.

With generic 2PC techniques in the malicious setting, some efficiency over-
heads incur, with the cut-and-choose technique or an expensive preprocessing
to generate correlated randomness, that needs to be regularly repeated, and for
the techniques using FHE ciphertexts to get better asymptotic communication
and less interaction, this level of security had not yet been guaranteed.

1.2 Inner-Product Arguments over Rings

An inner product argument ensures the correctness for an inner product eval-
uation between two committed vectors. Following the observation that a poly-
nomial evaluation can be written as an inner product between the vector of its
coefficients and the vector of the consecutive powers of the evaluation point, we
can use such protocols to enforce honest behavior in OPE schemes.

Inner-product arguments [7,9–11,16,30,37] are core components of many
other primitives, including zero-knowledge proofs and polynomial/vector com-
mitment schemes. While all of these IPAs follow the same strategy using folding
techniques, they only achieve logarithmic-size proofs without privacy, and they
support only inner product of vectors with elements from a field. While the ver-
ification time is linear in most of the mentioned works, the recent results by
[11,16] achieve logarithmic-time verification using a trusted setup.

We design a new ring Inner-Product Argument (ring-IPA) that allows the
verification of inner product evaluations for vectors with elements from a ring.
Our scheme relies on a trusted setup in order to achieve succinct proofs and veri-
fication. We also offer a new commitment scheme for vectors with elements from
generic rings of polynomials, compatible with FHE ciphertexts, as an improve-
ment to previous such schemes that only work for vectors over fields or groups
of elliptic curve elements.

Our ring-IPA construction improves on proof sizes and verification times
achieving constant-size proofs and constant-time verification, independent of the
size of the vectors. Moreover, the ring-IPA can be used for vectors over rings of
polynomials, compatible with the rings used by various FHE schemes, providing
proofs for the evaluation of inner products over ciphertexts, which can then also
be seen as ciphertexts of inner products, from their homomorphic properties.
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1.3 Related Work

Despite its broad applicability, the study of the OPE functionality includes few
practical and secure protocols, initiated in [33] and further continued in works
like [13,27,38].

While [33] proposed a first construction for OPE, it relies on a newly intro-
duced intractability assumption: the noisy polynomial interpolation. Naor and
Pinkas conjectured that it could be reduced to a more widely studied assump-
tion, the polynomial reconstruction problem. Nevertheless, as shown in [5], this
conjecture seems not to hold in general.

OPE Schemes with Active Security. Among recent OPE schemes, to the best of
our knowledge, some of the best schemes with security against malicious adver-
saries are given by [26,27]. However, [27] has at least 17 rounds of interaction
and the parties send each other O(λN) Paillier encryptions, where λ is the secu-
rity parameter and N the degree of the polynomial, and their claimed efficiency
holds only for sufficiently low degree polynomials. [26] shows an OPE scheme for
polynomial evaluation in the exponent of a DLog group using algebraic Pseudo-
Random Functions (PRF). They focus on improving the computational efficiency
of [27] by reducing the number of modular exponentiations, and removing the
trusted setup requirement, while preserving the same number of rounds of inter-
action and communication complexity as in [27], and apply their scheme to pri-
vate set membership 2PC. [35] gives malicious security for PSI with symmetric
set sizes, but the communication is linear in the set sizes. There are also efficient
schemes like [8], but they don’t have the sublinear communication complexity
and reduced interactivity we get with FHE methods.

Verifiable Computation (VC). Introduced by [20], VC schemes are crypto-
graphic systems that enable checking the integrity of results from delegated com-
putations. More recent works [6,18] have improved the efficiency of VC schemes
to work for computations over encrypted data. These schemes, however, require
proving the entire FHE circuit evaluation which is very expensive. Moreover,
they neither allow using practical parameters for the FHE scheme, nor speedups
through classical optimizations such as Residue Number System (RNS).

Then, [19] also gives constructions for general algebraic circuits over ring
elements, but using a general approach which is not optimized for our inner-
product and OPE application, which we can instantiate with a small cleartext
modulus t = 3 (when theirs are greater to have big enough ideal subsets), and for
which we select parameters compatible with OPE requirements like the compu-
tation privacy, when this other work is focused on non-private algebraic circuit
calculations, and would thus not hide the polynomial.

1.4 Our Contribution

Our first contribution is a generic framework based on any secure encoding that
allows building an inner product argument (IPA) over vectors with elements com-
ing from wider spaces, not only from fields as defined in prior works. Depending
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on the instantiation of the underlying secure encoding scheme, we are able to
obtain IPA schemes for vectors of ciphertexts from Fully Homomorphic Encryp-
tion (FHE) schemes, such as the Fan-Vercauteren scheme [17], that can provide
privacy under the Ring-LWE (RLWE) assumption. Other FHE schemes relying
on the RLWE assumption could also be used.

Equipped with our new constant-size and constant-time inner product argu-
ment, we next apply our techniques to enhance the security of OPE schemes to
malicious senders, by enforcing an honest behavior when evaluating the polyno-
mial. We focus on OPE schemes with minimal communication requirements and
without an offline pre-processing phase, based on Fully Homomorphic Encryp-
tion (FHE) on an encrypted point.

More precisely, we introduce MyOPE, a scheme for verifiable oblivious evalu-
ation of polynomials of high degrees N that achieves O((log(N))2) communica-
tion cost, for a constant security level (when considering the privacy, correctness,
and soundness properties). This sublinear communication improves on the state-
of-the-art, with just a log N factor with respect to schemes without an active
security.

As a straightforward use case, we illustrate our verifiable OPE application
to Private Set Intersection (PSI) in the unbalanced-set setting: basically, the
sender, who owns the larger set X = {x1, . . . , xN}, defines the polynomial f =
∏N

i=1(X − xi), and the receiver asks for evaluations f(yj) for each element in
Y = {y1, . . . , yK} to detect the common roots. Our communication complexity
then becomes O(K · (log(N))2), with just a log N factor compared to the most
efficient PSI algorithm [14] without verifiability, where K is the size of the small
set and N is the size of the large set.

Our scheme guarantees the client’s privacy with post-quantum FHE cipher-
texts, under the Ring-LWE assumption, while the soundness of the proof can
rely on a variety of secure encoding schemes, from pairings (under the Power
Knowledge of Exponent Assumption) to any linear-only encryption scheme such
as the Paillier scheme [34] (under the integer factoring) and the Castagnos-
Laguillaumie scheme [12] (under some class group problems), but also based on
the post-quantum Learning With Errors (LWE) problem [22], thus making the
entire scheme post-quantum secure.

1.5 Technical Overview

Inner Product Argument. Our first tool is of independent interest: it allows to
prove inner-product evaluation of two vectors u and v, with respect to their
commitments U and V̄ respectively. Our vector commitments will be based on
commitments keys that encode powers of a secret point s, using any secure
encoding scheme, [1], [s], . . . , [sn−1], defined and published once for all. We define
U = [

∑
i uis

i] =
∑

i ui[si] while V̄ will be in the reverse order: V̄ =
∑

i vi[sn−i].
The notation [.] is an informal representation of a secure encoding, that leads to a
computationally binding commitment. The hiding property is achieved with an
additional secret component and Schnorr-like proofs. It will additionally have
bilinear properties, which lead to U × V̄ =

∑
i,j(uivj)[sn+i−j ] = 〈u,v〉[sn] +
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∑
i�=j(uivj)[sn+i−j ]. By showing U×V̄ −α[sn] has no term in [sn], one proves that

〈u,v〉 = α. Whereas the analysis will be performed on polynomials evaluated
in a secret point s, the Schwartz-Zippel lemma [36,39] will lift the relations
on the polynomials, as non-zero polynomials are unlikely evaluated to 0. But
this assumes good properties for the algebraic structures, which are not always
satisfied. A favorable situation is considered first, in fields of large characteristic,
then more complex structures are discussed in the full version [28], in rings.
Globally, the soundness of the proofs relies on the secure encodings (which can
require the Power Knowledge of Exponent Assumption when pairings are used,
or the linear-only property of any encryption scheme) and the Schwartz-Zippel
lemma (that requires no computational assumption, but appropriate algebraic
structures)

Verifiable Polynomial Evaluation. Now, from a polynomial f =
∑

fiX
i, which

can be encoded as a vector v = (fi)i, and thus committed as V̄ (in reverse
order), and an element m, which can be encoded as a vector u = (mi)i, and
thus committed as U , f(m) = 〈u,v〉, correctness can be proven as above with
respect to the binding commitments U and V̄ . Again, efficiency will depend on
the actual algebraic structures. For the reader’s convenience, indices for vectors
start at 0, to consider the constant monomial in polynomials.

Receiver Privacy: Fully Homomorphic Encryption. When both f and m are
public, which easily allows getting confidence in U and V̄ , the above approach
is convincing. When receiver privacy is expected, with a private point m, the
receiver could send encryptions Mi of the mi under an additively homomorphic
encryption scheme: if W is a commitment of the vector w = (Mi)i, using the
linear property of the encryption scheme, 〈w,v〉 =

∑
fiMi is the encryption of

f(m) =
∑

fim
i, which can be proven with respect to W and V̄ , as above. Once

convinced, the receiver can decrypt it to get f(m). Their privacy is guaranteed
by the semantic security of the encryption scheme. But sending all the Mi’s
implies a huge communication cost. One can then use a Fully Homomorphic
Encryption (FHE) to let the sender generate the vector: the receiver provides
M as an encryption (under their own key) of m, and FHE allows the sender to
compute Mi. The additive homomorphism allows continuing as above.

But why should the receiver trust the sender to have correctly computed the
Mi’s as the encryptions of the successive powers of m and the commitment W
correctly? Let us assume each Mi, in w committed in W , encrypts the plaintext
mi. One can use another verifiable inner product to check mi = mi: from a
random common public element n, chosen after the publication of W , and the
vector z = (ni)i publicly committed into Z̄ (in reverse order), the receiver can
verifiably compute the inner product 〈w,z〉 with respect to W and Z̄. Since it
is proven correct, it decrypts to

∑
min

i, while one would like it to be
∑

mini.
In case of equality, this means that polynomials

∑
miX

i and
∑

miXi evaluate
the same way on the random point n. By applying the Schwartz-Zippel lemma
in the plaintext-space, this means that mi = mi with overwhelming probability.
This concludes the security analysis.
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To draw the above conclusion, we assumed the Schwartz-Zippel lemma could
be applied in both the plaintext-space (for getting mi = mi) and the ciphertext-
space (for verifying the two inner product evaluations between (Mi)i and (fi)i,
and between (Mi)i and (ni)i). Furthermore, for effective application of FHE,
additional constraints might be added to the ciphertext-space, such as Residue
Number System (RNS) representation. All these questions will be addressed
below, dealing with arbitrary rings.

Sender Privacy: Noise-Flooding and Hiding Commitments. OPE also expects
sender privacy, with no leakage about the polynomial f. However, the commit-
ment U might leak some information, unless it guarantees the additional hiding
property. Furthermore, the homomorphic evaluation f(m) in the ciphertexts may
leak more than just the result, and possibly the evaluation steps, as the final noise
in 〈w,v〉 leaks them. To avoid such a leakage, the sender can add extra super-
polynomial noise to 〈w,v〉. This is the so-called noise-flooding technique [23].
One will of course have to prove this does not impact the decrypted result,
requiring a small enough norm for the added noise. Which results in another
inner-product proof, as the L2-norm is an inner product square root.

Efficiency for two Secure Encoding Instantiations. Any Secure Encoding
scheme can be used in our construction: depending on the instantiation choice
different assumptions will be used, and if the Secure Encoding scheme uses a
modulus which is not a multiple of q, then the size will have a O(log(N)) com-
plexity. We compare two example instantiations in Fig. 1.

Secure Encoding Pairings Paillier Encryption

Assumptions Power Knowledge of Exponent
Hardness of Integer Factoring
+ Linear-Only Encryption

Field/Ring Modulus q prime composite (for RNS)
Size complexity O(1) O(log(N))

Fig. 1. Comparison of pairing and Paillier encryption instantiations of the secure
encoding scheme. The size complexity (of both the individual encodings and the total
proof) is given in N , the size of the inner-product vectors.

Efficiency in Practice. With the Fan-Vercauteren FHE scheme [17], from the
plaintext ring Rt = Zt[X]/r(X), where r(X) = Xn + 1, into the ciphertext ring
Rq = Zq[X]/r(X), the core parameters are the integers n, q, and t, to guarantee
the semantic security under the Ring-LWE assumption. For the PSI application,
one needs to encode elements from X and Y into Rt. Since n > 128, t = 3 will
be big enough. Each ciphertext is 2n log2 q bits long.

With a MyOPE instantiation for polynomials of degree N = 230, we set n =
214 which leads to q over 610 bits to obtain an appropriate FHE semantic security
(according to the LWE estimator [1]) and decryption correctness, including with
noise-flooding. To exploit RNS optimizations [2], as proposed in SEAL1, q can
be the product of 11 primes on less than 60 bits each.
1 https://github.com/microsoft/SEAL.

https://github.com/microsoft/SEAL
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Then, the size of the FHE ciphertext to be sent is of about 3 MBytes.
The result of the sender and proof of their honest behavior consists of about
5 MBytes, for a prime q and soundness of 2−128. If RNS is used, with a com-
posite q, the Schwartz-Zippel guarantees are lower, and our commitments will
have to be repeated several times for the soundness: the result and proof then
consists of some 170MBytes, from our analysis in the full version [28].

2 Preliminaries

2.1 MyOPE: Verifiable OPE

We first formalize the notion of verifiable oblivious polynomial evaluation. A
MyOPE = (OPE.Setup,OPE.KeyGen,OPE.QueryGen,OPE.Compute,OPE.Verify,
OPE.Decode) scheme for polynomial evaluation consists of the following algo-
rithms:

OPE.Setup(1λ) → (PK,SK): Given the security parameter λ, output a pair of
keys independent on polynomials to compute. The public key PK will be
provided as input to all the subsequent algorithms.

OPE.KeyGen(PK, f) → pkf : Given the polynomial f , output a public key pkf .
OPE.QueryGen(PK, pkf , x) → σx: Given the public key pkf and the input x,

encode the evaluation point x into σx, and output it.
OPE.Compute(PK, f, σx) → σy: Given the polynomial f and the encoded input,

output an encoded value σy of the result y.
OPE.Verify(PK, [SK], pkf , σx, σy) → acc: Given the secret key SK, in case of

designated-verifier scheme, the public key pkf for polynomial f , and the
encoding σx of the evaluation point, accept (with acc = 1) or reject (with
acc = 0) an output encoding σy.

OPE.Decode(SK, σy) → y: Given the secret key SK for polynomial f , and an
output encoding σy, output the result y.

For concrete use, between a sender with input polynomial f and a receiver with
evaluation point x:

– The Setup algorithm is first run by the receiver (in case of designated-verifier)
or a trusted party.

– The Sender executes the KeyGen algorithm with their input polynomial f .
– The Receiver runs QueryGen on their input x.
– The Sender runs Compute algorithm to obtain an encoding of the result σy.
– The Receiver can verify and decode the result with algorithms Verify and
Decode.

Note that the QueryGen and Decode correspond to the encryption and decryption
algorithms of a (fully) homomorphic encryption scheme.
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Fig. 2. Security Games

Correctness. The correctness of a MyOPE scheme requires that if one runs
Compute on an honestly generated query encoding of x, after honest Setup and
KeyGen executions for f , then the output must verify and its decoding should
be y = f(x).

Soundness. The verifiability of a MyOPE guarantees the receiver of correct
computation, even in front of a malicious sender, once Setup and KeyGen have
been run honestly. This is done by means of a proof, the encoded value of the
result σy should contain a proof of correctness of y. The soundness (SND) exper-
iment (with other privacy experiments) is described in Fig. 2.

Definition 1 (Soundness (SND)). Let Π be an instance of our VC proto-
col and A = (A1,A2) a two-stage adversary. Protocol Π is SND-secure if the
advantage AdvSNDΠ,A(λ) = Pr[1 ← ExpSNDΠ,A(1λ)] is negligible.

However, one may also expect some privacy properties which are now defined.

Receiver Privacy. This notion ensures that the input x of the receiver remains
hidden during the protocol execution, for an honestly generated pkf .

Definition 2 (Receiver Privacy (R-Privacy)). Let Π be an instance of our
MyOPE protocol and A = (A1,A2) a two-stage adversary, where A2 has adaptive
access to the Compute-oracle on legitimate queries only. Protocol Π is R-Privacy-
secure if the advantage AdvR-PrivacyΠ,A (λ) = Pr[1 ← ExpR-PrivacyΠ,A (1λ)] is negligible.

Sender Privacy. This notion ensures that the polynomial f of the sender
remains hidden during the protocol execution, for adaptive legitimate requests by
the receiver. We indeed exclude Compute-queries that trivially help to distinguish
between two functions.
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Definition 3 (Sender Privacy (S-Privacy)). Let Π be an instance of our
MyOPE protocol and A = (A1,A2) a two-stage adversary, where A2 has adaptive
access to the Compute-oracle on legitimate queries only. Protocol Π is S-Privacy-
secure if the advantage AdvS-PrivacyΠ,A (λ) = Pr[1 ← ExpS-PrivacyΠ,A (1λ)] is negligible.

2.2 Building Blocks

Let us recall the generic definitions of verifiable computation to illustrate our
inner-product argument and verifiable oblivious polynomial evaluation, with
fully homomorphic encryption. First we will need compact binding encodings
with verifiable commitments.

Verifiable Commitments. A first tool is verifiable commitments Com =
(Setup,Commit,Verify,Open) for elements in a space X :

Com.Setup(1λ) → (ck, [vk]): Given the security parameter, output the commit-
ment key ck and possibly a secret verification key vk in case of designated-
verifier proof.

Com.Commit(ck, x) → (cx, w): Given the commitment key and an element x ∈ X ,
output a commitment cx and an opening value w.

Com.Verify(ck, [vk], c) → acc: Given the commitment key, optionally the verifica-
tion key, and a commitment c, accept (with acc = 1) or reject (with acc = 0)
a commitment c.

Com.Open(ck, x, c, w) → acc: Given the commitment key, an element x, a com-
mitment c, and the opening value w, accept (with acc = 1) or reject (with
acc = 0) the commitment c for x.

The correctness property means that the Verify and Open algorithms accept
when commitments have been honestly generated on inputs in the appropriate
space X . On the other hand, the binding property means that no adversary can
make Verify accept on committed elements that open outside the appropriate
space X nor make Open accept on two different values. Additionally, one may
expect the hiding property which means that cx does not reveal any information
about x (at least computationally). We stress that the target space X is verified:
an acceptable commitment necessarily encodes an element in X .

rIPA: Inner Product Argument for Rings. We are first interested in the
verifiable computation of inner products between committed vectors. As already
noted, when there is no privacy issue, the commitment algorithm can simply
be the identity function. But for efficiency reasons, we expect a more compact
binding verifiable commitment to encode inputs. Then, from pkx ← cx with a
commitment cx of x (from Com.Commit(ck, x)) and σy ← (y, cy) with a commit-
ment cy of y, the sender generates σz = (z, π), where π is a proof of z = 〈x,y〉,
when cx and cy are valid commitments of appropriate vectors x and y (in the
correct vector spaces). One may additionally expect receiver and/or sender pri-
vacy, with private y and/or x.
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Verifiable OPE: Oblivious Polynomial Evaluation. This is another case of
VC, with a polynomial f(X) ∈ R[Xn] as function, and m ∈ R as evaluation
point. Only f(m) is learnt by the receiver, and no other information leaks. It also
ensures the computations were executed as pledged in the protocol by providing
verifiability.

FHE: Fully Homomorphic Encryption. We will achieve privacy-preserving
VCs using Fully Homomorphic Encryption (FHE). FHE has been introduced
in [23]. This is particular case of classical public-public encryption, with a KeyGen
algorithm that generates a key-pair (pk, sk) as well as encryption and decryption
algorithms Enc and Dec, but with an additional Eval algorithm to operate on
ciphertexts to build a ciphertext of f((xi)i) from the ciphertexts of the xi’s. Since
the initial construction, major improvements have been made, with now practical
and efficient solutions. In this work we will use the Fan-Vercauteren (FV) FHE
scheme [17] for our analyses, with Rt = Zt[X]/r(X) as the plaintext message
space and Rq × Rq as the ciphertext space, where Rq = Zq[X]/r(X), with
r(X) = Xn + 1 for some well-chosen integer n (usually a power of 2). Semantic
security relies on the Ring-LWE assumption. To enable some optimizations as
the RNS representation used in SEAL, we will allow q with small prime factors
on 60 bits. Detail about this FHE scheme is given in the full version [28]. We
use the notation [a]q = a mod q for a ∈ Z, and, for a ring element a, [a]q will
represent the ring element with [·]q applied to all its coefficients. Essentially,
the public key is then pk = (p, p′) = ([−(a · s + e)]q, a) ∈ R2

q, for random
polynomials a $← Rq, s, e ← χ (for χ a discrete centered Gaussian distribution in
Rq), while the secret key is sk = s. To encrypt a message m ∈ Rt, one computes
(c, c′) = ([p · u + e1 + Δ · m]q, [p′ · u + e2]q) with small noises u, e1, e2 ← χ, where
Δ = �q/t�. One can see that with d = [c+ c′ · s]q = [Δ ·m− e · u+ e2 · s+ e1]q =
Δ · m + v, with ||v||, the resulting noise vector, having a small enough norm
for correct decryption, m′ = [�d/Δ	]t = [m + �v/Δ	]t leads to m, if the error
term v is small enough (with an infinity norm ‖v‖∞ less than Δ/2). We do not
detail Eval, but for our analysis to hold, we will need the following property, in
the particular case where L = 2N (N being the maximal degree of our OPE
polynomial), which can be guaranteed with an appropriate parameter choice,
for d one less than the minimal circuit depth enabling bootstrapping:

Definition 4 ((L, d)-Rt-Linear-Homomorphism). For any ai,mi ∈ Rt, and
some ciphertexts (ci, c

′
i) ∈ R2

q of mi obtained from a circuit of multiplicative
depth at most d,

Dec

(

sk,
L∑

i=1

ai · (ci, c
′
i)

)

=
L∑

i=1

ai · mi ∈ Rt

2.3 Secure Encoding Schemes

Our main ingredient will be secure, or linear-only, encodings introduced by [3,21]
for succinct non-interactive arguments of knowledge (SNARKs). We provide a
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general definition over rings. An encoding scheme over a ring R consists in a
tuple of algorithms:

– (pk, sk, vk) ← Gen(1λ), a key generation algorithm that takes as input a secu-
rity parameter and outputs public information pk, a secret key sk, and a
verification key vk, that can be either public or private;

– E ← Esk(a), a (probabilistic) encoding algorithm mapping a ring element
a ∈ R in the encoding space E , using the secret key sk.

It should then satisfy a few properties:

– L-Linearly homomorphic, with an algorithm Evalpk that homomorphically
combine encodings into the encoding of the same linear combination of the
inputs;

– L-Quadratic root verification, with an algorithm QCheckvk that can check a
quadratic relation between the encoded elements, just from the encodings;

– Image verification, with an algorithm Verifyvk that check the validity of the
encoding. This certifies the membership of the encoded element in the appro-
priate space.

According to the verification key that can be either public or private, the ver-
ification processes will be either public or private. The encoding is linearly-
homomorphic, but for a secure encoding, one expects no one to be able to derive
new valid encodings except from linear combinations, hence the linear-only prop-
erty: any new valid encoding E of some a ∈ R will necessarily satisfy a =

∑
i ciai,

for extractable elements ci ∈ R. Intuitively, when an encoding E passes the verifi-
cation test, one can extract the linear combination of the given initial encodings.

The above properties will be enough for a binding commitment, but addi-
tional blinding factors will be required for hiding commitments, together with
zero-knowledge proofs to keep the above verifications possible, without leaking
more information.

In the full version [28], we provide a more formal definition, with two illustra-
tions. First, encodings over Zq, with q a prime large enough, in a pairing-friendly
setting pk = (G1,G2,GT , q, g, g, e), using the Knowledge of Exponent Assump-
tion [15]. If we denote G = e(g, g) and vk = gα for the secret key α

$← Zq, the
encoding function can be defined as Esk(a) = (ga, gα·a, ga) ∈ G

2
1×G2. Image ver-

ification can be publicly done with e(ga, g) = e(g, ga) and e(ga, vk) = e(gα·a, g).
It is clearly L-linearly-homomorphic for any L. The bilinear map e allows public
quadratic root verification, on the elements ga and ga. To hide the content of
an encoding, one just needs the encoding E′ = (g, gα, g) of 1, multiplied by a
private random factor in M = Zq. Classical Schnorr-proof can then be applied.
Such encodings just consist of three group elements (2 in G1 and 1 in G2).

We then discuss the situation where q is the product of smaller primes. Then,
the hardness of discrete logarithm does not hold anymore, but one can use linear-
only encryption schemes, which limit to linear combinations only. We develop
more the case of the Paillier encryption scheme [34] with large RSA modulus
N . Such secure encodings just consist of two Paillier ciphertexts in ZN 2 each.
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We could also use a secure encoding scheme based on the Learning With Errors
(LWE) problem to make the whole scheme post-quantum secure.

When the receiver has published secure encodings of successive powers Esk(1),
Esk(s), . . . , Esk(sn−1), for a random secret point s, the sender can only generate
valid commitments of polynomials f of degree at most n−1, as Esk(f(s)), thanks
to the linear property of the encoding and the image verification. Quadratic
root verification allows the sender to verify any quadratic relations between
polynomials committed by the sender. Note that the initial secure encodings of
successive powers can either be generated by a trusted third party, when using
the above pairing-based secure encodings that are publicly verifiable, or by the
receiver when using a linear-only encryption scheme.

In the body of the paper, for the sake of clarity, hiding commitments and zero-
knowledge proofs will be ignored, as their computational and communication
impacts are minimal, since they only deal with few scalars.

3 Verifiable Commitments

A major contribution of this paper is the construction of commitments of mul-
tivariate polynomials over rings so that succinct proofs can later be described.
This is in the same vein as in [18], but the latter is only defined for secure
encodings based in pairings, whereas we describe here the construction from any
secure encodings. With a linear-only encryption scheme, they will not be pub-
licly verifiable anymore, but this will be useful to build compact commitments
of polynomials over Zq in 2PC protocols, whatever the integer q (large prime or
composite).

We provide here the intuition of our approach for polynomials in R1 =
Zq[Xn−1] (polynomials of degree at most n − 1), while more polynomial spaces
will be used in the global protocol. We stress again that commitments are specific
to a space X and when valid they ensure the committed element actually lies in
X . The verifier first generates secure encodings Ei ← Esk(si), for i ∈ [[0;n − 1]]
and a random secret element s

$← Z
∗
q . Thanks to the linear-only extractability,

when a player generates a valid encoding E, being only given (E0, . . . , En−1),
one can extract (ci) such that E is an encoding of c0 + c1s + . . . cn−1s

n−1 in
Zq, and thus of the polynomial c =

∑
i ciX

i in R1. The encoding E is thus a
commitment of c ∈ R1: the list of initial encodings Ei specifies a basis of the
exact space X we target. Here, R1 is spanned by (1,X, . . . ,Xn−1) in Zq.

In addition, thanks to the quadratic verification on the encodings, if we have
four polynomials u, v, m and r such that m = u · v mod r, which means that
m = u · v + r · q for some polynomial q, where all the polynomials are of degree
at most n − 1, we can check such a product: from valid commitments U and V
of u and v, R and Q of r and q, respectively, and M of the polynomial m, all of
degree at most n−1, as they are all simple encodings, QCheckvk(X1X2+X3X4−
X5, U, V,R,Q,M) = true implies that m(s) = u(s) · v(s) + r(s) · q(s).

Under the Schwartz-Zippel lemma, if q is a large prime, the probability to
have this equality in a random point s ∈ Zq whereas m �= u · v + r · q in Zq[X] is
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bounded by 2n/q, as the total degree of the relation is at most 2n. Hence, the
probability over s to have a false positive is bounded by 2n/q. This is negligible in
the large prime case but if we want to use RNS optimizations when computing
modulo q, we need to take q a product of primes, and will hence need more
repetitions with probability bounds stated by the Schwartz-Zippel lemma. Detail
about this case is given in the full version [28], along with a complete description
of binding and hiding polynomial commitments, for univariate and bivariate
polynomials, with multiple evaluation points when necessary.

4 Inner Product Arguments

4.1 Description of Our Ring-IPA

Our main tool is verifiable computation of inner products, from commitments
on vectors, in various structures. To this aim, we convert vectors in polynomials
to commit them as explained above. We stress that for the moment, we do not
consider privacy, nor FHE ciphertexts, but just vectors in clear.

To start off, let us consider vectors in a field Zq (with a prime q). We will
extend our method to the case where q is a product of primes, and Zq a ring, in
the full version [28], adding necessary repetitions. To commit such vectors, we will
consider them as coefficients of a polynomial, and then commit the corresponding
polynomials, as above. Let us consider A = (a0, . . . , aN ) and B = (b0, . . . , bN )
in Z

N+1
q (equivalent to R3 = Zq[Y N ], as defined in the full version [28]), two

vectors whose inner-product is equal to c = 〈A,B〉 in Zq. As explained in Sect. 1.4,
the commitments Ā of A and B of B with secure encodings are Ā = ā(s) and
B = b(s) for the polynomials ā(Y ) =

∑N
j=0 ajY

N−j and b(Y ) =
∑N

j=0 bjY
j in

R3. Note that coefficients of A are set into ā in a reversed order:

ā(Y ) · b(Y ) =
N∑

i,j=0

aibj · Y N+j−i =
N∑

j=0

ajbjY
N +

∑

0≤i�=j≤N

aibjY
N+j−i.

Let us define the polynomial d(Y ) = ā(Y ) · b(Y ) − cY N of degree at most 2N .
If c is correct, d is in the subspace R4 = Zq[Y 2N\N ] (the polynomials of degree
at most 2N , without monomial of degree N). By publishing a commitment D
of d, that is verifiably in R4, one can verify the above quadratic relation, using
Ā, B, c, and D, and get convinced of the inner product value c. The proof of
correct computation of c = 〈A,B〉 with respect to the given commitments Ā and
B just consists of π = {D} (1 commitment only), and the verification consists
in checking the validity of the commitments and one quadratic relation.

Inner-Product Arguments Algorithms. More generally, one can define rIPA
scheme on vectors A,B ∈ X N+1 and the result c = 〈A,B〉 in a space X for which
X N+1 has either vectorial space (when X is a field) or module (when X is a
ring) structure:
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rIPA.Setup(1λ) generates the verifiable commitment keys for the acceptable bases
for R3 and R4 in PK to allow verifying commitments in these spaces. Accord-
ing to the encoding, verification will need SK or not;

rIPA.KeyGen(PK,A), from a vector A, outputs Ā, a commitment of A (in the
reverse order) using the commitment scheme Com;

rIPA.QueryGen(PK,B), from a vector B, outputs (B, B), where B is a commitment
of B;

rIPA.Compute(PK,A, (B, B)), from the two vectors A and B, outputs c = 〈A,B〉
and π = {D} (where D is a commitment of d, as defined above);

rIPA.Verify(PK, [SK], Ā, B, (c, π)), with π = {D}, checks the relation d(Y ) =
a(Y ) · b(Y ) − c · Y N from Ā, B, D and c.

Since there is no privacy in this protocol, rIPA.Compute directly outputs the
result c = 〈A,B〉: there is no need of private rIPA.Decode.

Polynomial Evaluation. It can be turned into a polynomial evaluation y =
P (x), with one vector A containing the coefficients of P and the other vector B
built from the powers of x, and the expected inner product being y.

Infinity Norm Evaluation. It also provides a setting to compute the L2-norm
‖e‖2, of e ∈ Zq[Xn−1], as ‖e‖22 = 〈E,E〉, for the vector E of the polynomial’s
coefficients. This leads to an approximation of the infinity norm with ‖e‖∞ ≤
‖e‖2 ≤ √

n · ‖e‖∞ ≤ √
n · ‖e‖2. One just needs E = e(s) and Ē = ē(s), where

e(X) =
n−1∑

0

eiX
i ē(X) =

n−1∑

0

eiX
n−1−i = Xn−1 · e(1/X)

which can be verified with the existence, for a random challenge β
$← Z

∗
q , of

polynomials e′ and ē′ that satisfy, with e = e(1/β),

e(X) − e = e(X) − e(1/β) = (X − 1/β) · e′(X)

ē(X) − βn−1 · e = ē(X) − βn−1 · e(1/β) = ē(X) − ē(β) = (X − β) · e′′(X).

Indeed, as e and ē have been committed in E and Ē before the random choice
of β, the first equation guarantees that e = e(1/β) while the second equation
guarantees ē(β) = βn−1e = βn−1e(1/β). The Schwartz-Zippel lemma ensures
that the polynomials e and ē, of degree n − 1, satisfy with high probability
ē(X) = Xn−1e(1/X): ē is indeed e with order of coefficients reversed. From the
commitment E of e and the result ‖e‖2 to be proven (or a commitment of it),
the proof consists of the commitments E′ = e′(s) and E′′ = e′′(s) (to verify the
two above equations), plus the inner-product proof (with the commitment D
as above) with the additional commitment Ē and the scalar e. The validity of
the proof requires the verification of the validity of the commitments and three
quadratic relations (the two above, and the one for the inner product). For strong
privacy, one can first commit the scalar ‖e‖22, prove the correct computation of
this hidden value with the above approach, and then perform a zero-knowledge
range proof for the committed value, to show it is of appropriate size.



MyOPE: Malicious SecuritY for OPE 677

4.2 Inner Product Arguments with Privacy

If we now consider vectors A = (a0, . . . , aN ) and B = (b0, . . . , bN ) in RN+1
t ,

where Rt = Zt[X]/r(X), they can be committed with bivariate polynomials in
Zt[X,Y ], using secure encodings with monomials sis′j : Ā = ā(s, s′) and B =
b(s, s′), where ā(X,Y ) =

∑n−1
i=0

∑N
j=0 aj,iX

iY N−j and b(X,Y ) =
∑n−1

i=0

∑N
j=0

bj,iX
iY j . One can get p = 〈A,B〉 ∈ Rt. If one wants to keep vector B private, the

latter can be encrypted with the FV FHE scheme, in (ci, c
′
i) ∈ Rq × Rq, for i =

0, . . . , N . Thanks to the linear-homomorphism of the FHE, Dec(〈A,C〉, 〈A,C′〉) =
〈A,B〉, where C = (c0, . . . , cN ) and C′ = (c′

0, . . . , c
′
N ) are in RN+1

q (equivalent
to R2 = Zq[Xn−1, Y N ], as denoted in the full version [28]). One now needs the
verifiability of 〈A,C〉 and 〈A,C′〉 in Rq: we consider A = (a0, . . . , aN ) ∈ RN+1

t

and C = (c0, . . . , cN ) ∈ RN+1
q , and we want to compute d = 〈A,C〉 ∈ Rq and

prove it. One can similarly operate to compute and prove d′ = 〈A,C′〉.
We set both polynomials in R2 = Zq[Xn−1, Y N ],

ā(X,Y ) =
n−1∑

i=0

N∑

j=0

aj,iX
iY N−j c(X,Y ) =

n−1∑

i=0

N∑

j=0

cj,iX
iY j .

They are committed as Ā = ā(s, s′) and C = c(s, s′). The result of the
inner product d ∈ Rq is committed into D. However, in Zq[X], the result of the
inner product is equal to d + q · r, where r is the public quotient polynomial in
rings Rt and Rq, and q is the quotient, committed into Q. We want to prove
〈A,C〉 = d + q · r in Zq[X].

Then, for a random scalar σ ∈ Zq, one has the following relations, with
ā′(Y ) = ā(σ, Y ) and c′(Y ) = c(σ, Y ), committed into Ā′, C ′,

ā(X,Y ) − ā′(Y ) = (X − σ) · ā′′(X,Y ) c(X,Y ) − c′(Y ) = (X − σ) · c′′(X,Y )

for some polynomials ā′′ and c′′ that can be computed from ā, ā′, c, c′ and com-
mitted into Ā′′, C ′′, as well as the polynomial X − σ, so the receiver can check
the above quadratic relations. Then, we also have

ā′(Y ) · c′(Y ) =
N∑

j=0

a′
j · c′

j · Y N +
∑

0≤i�=j≤N

a′
i · c′

j · Y N+j−i

and
N∑

j=0

a′
j · c′

j =
N∑

j=0

aj(σ) · cj(σ) = d(σ) + q(σ) · r(σ)

Setting δ = d(σ), φ = q(σ) and ρ = r(σ), the values can be sent and checked
with respect to d, Q, and r, as q(X) − φ = (X − σ) · q′(X). If we additionally
set e(Y ) = ā′(Y ) · c′(Y ) − (δ + φ · ρ) · Y N , committed in E, by proving it relies
in R4 = Zq[Y 2N\N ], this proves the result d of the inner product in Rq.

The proof of correct computation of d = 〈A,C〉 in Rq, with respect to the
given commitments Ā and C just consists of π = {Q,Q′, Ā′, Ā′′, C ′, C ′′, E, φ} (7
commitments and a scalar), for publicly generated or computed σ, δ and ρ, and
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the verification consists in checking the validity of the commitments and four
quadratic relations. The same is needed for d′ = 〈A,C′〉. By then decrypting
(d, d′) one should get p = 〈A,B〉 ∈ Rt.

Inner-Product Arguments with Privacy. More formally, we can define a
inner products argument with privacy for one of the vectors rIPAwP. Given
vectors A, B in the ring RN+1

t we prove the correctness of their inner product
result p ∈ Rt, while keeping B private:

rIPAwP.Setup(1λ) generates the parameters for the FV FHE with plaintext space
Rt and cyphertext space Rq. The secure encodings on the acceptable bases for
R1, R2 and R4 with the FHE encryption key are put in PK to allow encryp-
tion and evaluations on ciphertexts, as well as the generation of commitments
in these spaces. The verification key of the secure encodings (if needed) and
the FHE decryption key are put in SK;

rIPAwP.KeyGen(PK,A), from a vector A, outputs Ā, a commitment of A (in the
reverse order);

rIPAwP.QueryGen(PK,B), from a vector B, outputs ((C,C′), (C,C ′)), where in
C = (ci)i, C′ = (c′

i)i with (ci, c
′
i) the ciphertext of bi, for i = 0, . . . , N , and

then C,C ′ the commitment of C and C′ respectively;
rIPAwP.Compute(PK,A, (C,C′, C, C ′)), from the two pairs of vectors (A,C) and

(A,C′), outputs d = 〈A,C〉 and d′ = 〈A,C′〉 and π, for proving the correct
inner-product evaluations;

rIPAwP.Verify(PK, [SK], Ā, (C,C ′), (d, d′, π)), checks the proof π from the initial
commitments Ā, (C,C ′) and the additional ones in π;

rIPAwP.Decode(SK, (d, d′, π)), from the FHE decryption key, decrypts the pair
(d, d′) to get p = 〈A,B〉.

In this case, rIPAwP.Compute outputs an encryption of the expected result,
hence the need of the private rIPAwP.Decode. We used again the Schwartz-
Zippel lemma to translate equalities between evaluated polynomials into equal-
ities between polynomials, based on the unpredictability of σ. But according to
q (large prime or product of smaller primes), one may reduce the bad cases by
using multiple σκ’s.

4.3 Verifiability of the Committed Ciphertext

As already explained in the overall description of our protocol in Sect. 1.4, before
verifying the correct inner products d = 〈A,C〉 and d′ = 〈A,C′〉 and decrypt the
pair (d, d′) to get 〈A,B〉, one may want to be sure that each (ci, c

′
i), ciphertext

that would decrypt to mi, is actually a correct encryption of mi in Rt. This means
that B should be the vector (m0, . . . ,mN ) in RN+1

t . Indeed, the sender receives
an encryption of m (and possibly some additional information) and generates
the vectors C and C′ thanks to the linearity of the FHE scheme. Why would
they be honest?

To verify that, we use the above inner-product proof between each vector
of ciphertexts C = (c0, . . . , cN ) or C′ = (c′

0, . . . , c
′
N ) and a vector of powers
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N = (n0, n1, . . . , nN ) derived from a public random n ∈ Rt drawn by the verifier
(or generated from a hash). Neither of these vectors need to be kept private as
they are generated from information both parties have.

Let u = 〈N,C〉 and u′ = 〈N,C′〉 be the results of the inner products in
Rq, proven as above (with 12 commitments and 2 scalars, and 8 quadratic
relations to check). From the linear-homomorphism of the FHE, with appro-
priate parameters, Dec(u, u′) =

∑N
j=0 n

j ·mj . The verifier checks this decryption
is

∑N
j=0 n

j · mj , with appropriate error (bounded as expected). This leads to
∑N

j=0 n
j · mj =

∑N
j=0 n

j · mj in Rt. Note that Rt is unfortunately not a field,

but possibly a ring that is the product of large fields only: r = X2k + 1 is not
irreducible in any Zt[X] for a prime t, but for well-chosen prime, all the factors of
Xn +1 may have large degrees in Zt[X]: according to [4], with t+1 = 2α(2τ +1),
for any integer τ , α ≥ 2, and n = 2k, then all the factors of X2k + 1 have degree
2k+1−α. If one chooses t = 3 mod 8, α = 2, and in particular t = 3 (with τ = 0),
there are just two irreducible factors of degree 2k−1 = n/2 in Zt[X]: the above
polynomial thus has all zero coefficients by the Schwartz-Zippel lemma, excepted
with probability 2N/tn/2, as the polynomial is of degree N and n is randomly
chosen among tn/2 possible values in each of the two fields. Hence, mi = mi in
Rt, excepted with probability bounded by 2N/tn/2, which is clearly negligible.
Note that one cannot use t = 2 as r(X) = Xn +1 is divisible by X +1 in Z2[X].

By checking the noise in (u, u′), as expected with reasonable margin, as one
knows the expected plaintext, one gets an upper-bound on individual errors.
Even if this might be larger than initially expected, one can guarantee appro-
priate noise in the (ci, c

′
i)’s to satisfy the linear-homomorphism, as we will take

additional margin to take care of the noise-flooding. If the sender tries to cheat
with larger noise in the (ci, c

′
i)’s, they may reduce the privacy impact of the

noise-flooding. But soundness remains guaranteed.

5 Verifiable OPE with Privacy

We now have the tools to allow the receiver/verifier with their private input
message m to learn in a verifiable way the inner product of the vector M = (mj)j

with a private vector F = (fj)j , for indices j in [[0;N ]], both committed by the
sender/prover.

5.1 Complete Protocol

More details and more applications are provided in the full version [28], but
we sketch here a full verifiable OPE protocol, where we assume all the global
parameters set, and the sender’s polynomial F = (fj)j committed in a hiding
way in F̄ . Once the receiver has encrypted the input m ∈ Rt under their own
FHE key and sent Enc(m) = (c, c′) ∈ R2

q to the sender, the latter

– computes the (uj , u
′
j) = Enc(mj), for j ∈ [[0;N ]], from (c, c′) thanks to the

homomorphic properties of the encryption scheme; generates the vectors U =
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(uj) and U′ = (u′
j) as well as their commitments U and U ′; and provides a

proof of valid computation of the inner products b = 〈N,U〉 and b′ = 〈N,U′〉,
for a common vector N = (nj)j for a random n

$← Rt (chosen with a random
hash function on the previous information), with respect to the commitments
U,U ′: ignoring scalars, the proof consists of 12 commitments (to be sent and
checked), the ciphertext (b, b′), and 6 quadratic relations to be verified;

– generates a zero-ciphertext (z, z′) with a proof of small norm of the error, and
provides a proof of valid computation of the noisy inner products d + z and
d′ + z′, where d = 〈F,U〉 and d′ = 〈F,U′〉, with respect to the commitments
F̄ , U, U ′: the proof consists of 9 new commitments (and also the original
commitment of the polynomial) (to be sent and checked) and 5 quadratic
relations to be verified, along with the result (d, d′), once the noise-flooding
has been proven. The latter consists of 15 commitments (to be sent and
checked) and 9 quadratic relations to be verified;

By first verifying Dec(b, b′) =
∑

(nm)j and the appropriate noise, the receiver
gets convinced (U,U ′) commits to correct encryptions of the powers mj . Then,
with the verification of the inner products and the small noise, one gets the guar-
antee that Dec(d + z, d′ + z′) = 〈F,M〉 = F(m). As there are common commit-
ments in the successive phases and one actually considers the noise components
of (z∗, z′∗) instead of these directly in practical applications, the global proof
consists of 33 commitments and the verification checks them plus 20 quadratic
relations (ignoring scalars and zero-knowledge proofs on scalars), as shown in the
full version [28]. This is thus independent of the degree of the polynomials.

5.2 Security Remarks

The soundness of this protocol is guaranteed by the proofs of valid computations
of inner products, first to ensure the content of the commitments U and U ′

(with 2 inner products), and then to convince of the correct computation of the
ciphertext (d+z, d′+z′) (with 2 inner products). The small additional noise (z, z′)
is also proven by inner products to bound the infinity norms of the 3 polynomials
u, e1, e2 involved in (z, z′) = (p · u + e1 mod q, p′ · u + e2 mod q), and proven with
linear relations:

Theorem 5. Our MyOPE scheme is SND-secure against malicious adversaries
(see Definition 1), under the security of the secure encoding (and namely the
quadratic root verification and the image verification properties).

The complete proof is provided in the full version [28], together with the analysis
of the privacy properties, as stated in Definitions 2 and 3. First, the receiver’s
privacy is ensured by the semantic security of the FHE encryption of m that pro-
tects its input. This is a computational security, under the Ring-LWE assump-
tion. Second, the sender’s privacy is guaranteed by the hiding commitment F̄ and
the noise (z, z′) that hides the evaluated circuit. They both provide statistical
privacy to the sender.

For a non-interactive proof, the random elements chosen by the receiver can
be generated by a hash function, using the Fiat-Shamir paradigm. Then, the
security holds in the random oracle model.
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5.3 FHE Security Analysis

Semantic Security. [17] gives us a condition in the relationship between
parameters q, σ, n that will grant us the security relying on the difficulty of
the RLWE problem. For a fixed root-Hermite factor δ, which we take such that
log2(δ) = 1.8/(λ + 110), where λ is the security parameter, that we will take
equal to λ = 128 in our applications, and if ε is the advantage of the distinguish-
ing attack in [32], which we take equal to ε = 2−64 for a corresponding λ = 128
in applications, and α =

√
ln(1/ε)/π (ε = 2−64 leads to α ≈ 3.758), we then

have the condition:

α · q

σ
< 22

√
n log2(q) log2(δ). (1)

So that a parameter n can be derived from a (q, σ) pair and reciprocally. In
particular, taking σ = αq =

√
n meets the above condition, thus granting the

asymptotic security. For the practical security, in order to grant privacy with
specific parameter sets, we will use [1]’s estimator, with results shown in Fig. 3.

Correctness. We now study the parameters needed for the correctness of the
computations on FV ciphertexts.

Correctness for Basic FV. From [17], assuming χ is B-bounded, we find that the
decryption of ciphertexts obtained from a d-depth circuit of somewhat homo-
morphic operations will be correct if d verifies: 4β(ε)δd

R ·(δR+1.25)d+1 ·td−1 < q
σ ,

where β(ε) is drawn from the security parameter for [32]’s distinguishing attack ε,
taken equal to ε = 2−64 when λ = 128 which yields β(ε) ≈ 9.2. For a cyclotomic
polynomial r in R, the above becomes:

4β(ε)nd · (n + 1.25)d+1 · td−1 <
q

σ
(2)

Which gives an upper bound on d. Then, if we want full FHE capabilities from
bootstrapping, [17], we will need the minimum allowed circuit depth dmin to ver-
ify the above equation, where dmin = dbs +1 (where dbs is the depth of the boot-
strapping operation) is given in [17]’s third theorem to have full FHE bootstrap-
ping capacities with the condition: dmin ≥ BitSize(�ν · t	)+HammingWeight(t)+
2, with ν = γ · (H(r) ·h+1) with 2 < γ < 3, H(r) = 1 for r a cyclotomic polyno-
mial, and h the hamming weight of the FV scheme’s secret key s, for which we
can take h = 63 according to [17]. Taking some margin on h, that we can con-
sider as high as h = 169 for better security, with t = 3 in our scheme, and using
a cyclotomic polynomial ring, we can thus take dmin = 12. Replacing relation (1)
in Eq. (2), with a security parameter λ = 128, β(ε) ≈ 9.2, α ≈ 3.8, t = 3, we
find the relation: 4α · β(ε) · δdmin

R (δR + 1.25)dmin+1tdmin−1 < 22
√

n log2(q) log2(δ) is
verified with: 25+25 log2(n) < 0.1743 ·√n log2(q). So if we choose n = 214, then
FHE capabilities will be granted with q on 283 bits or more.

Correctness with 2N-Linearity. Then, as we also want to be able to perform
L = 2N additions (N being the public degree of the sender’s polynomial) on
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FV ciphertexts without additional bootstrapping in our protocol, we need to
check that the error growth they give on bootstrapped ciphertexts still allows
decryption. In a nutshell, we will need the (L, dmin−1)-Rt linear homomorphism
property: Dec

(∑L
i=1 ai · (ci, c

′
i)

)
=

∑L
i=1 ai ·mi for any ai ∈ Rt and ciphertexts

(ci, c
′
i) ∈ R2

q generated with a circuit of multiplicative depth dmin − 1 (applying
the bootstrapping operation), encrypting mi ∈ Rt.

In order to decrypt the linear combination, we compute:
[ ∑L

i=1 ai · ci + s ·
∑L

i=1 ai ·c′
i

]

q
=

[ ∑L
i=1 ai

(

ci +s ·c′
i

)]

q
=

[ ∑L
i=1 ai(Δ ·mi +vi)

]

q
=

[
Δ ·∑L

i=1 ai ·

mi +
∑L

i=1 ai · vi

]

q
, where each vi is the noise contained on the bootstrapped

ciphertext (ci, c
′
i), of infinite norm bounded by 2β(ε)σ · δdmin−1

R · (δR +1.25)dmin ·
tdmin−3.

The decryption will be correct if:

‖
L∑

i=1

ai · vi‖∞ ≤
L∑

i=1

n‖ai‖∞ · ‖vi‖∞ ≤ nt
L∑

i=1

‖vi‖∞ ≤ ntL‖v‖∞ ≤ Δ/2,

for a noise bounded by ‖v‖∞ ≤ 2β(ε)σ · δdmin−1
R · (δR + 1.25)dmin · tdmin−3.

So the decryption works if: 4nLβ(ε)σ · δdmin−1
R · (δR + 1.25)dmin · tdmin−1 ≤ q.

With a cyclotomic polynomial ring R, and approximating β(ε) with 9.2 this
becomes:

36.8 × Lσ · ndmin · (n + 1.25)dmin · tdmin−1 ≤ q (3)

With σ ≤ √
n, n ≥ 29, t = 3 and dmin from the above calculations, we get the

previous inequality with the following condition, with L = 2N : 23.8+ log2(N)+
24.5 log2(n) ≤ log2(q). As an example, if N = 240 and n = 214, then taking q on
407 bits or more will grant this condition.

Correctness with Noise-Flooding. A linear combination of ciphertexts can leak
the coefficients, from the evolution of the final noise, which can be recovered
by the owner of the decryption key. To avoid this leakage, one can add super-
polynomial noise to the result, this is the so-called noise-flooding technique: the
sender will generate encryption of 0, i.e. polynomials (z∗, z′∗) of the form

(z∗, z′∗) = (p · u + e1 mod q, p′ · u + e2 mod q) ,

with coefficients of u, e1, e2 follow the appropriate distribution for their own
privacy: according to a Gaussian distribution on Z with standard deviation 2λ

larger than the error in the result, that we bounded by B′ = 2Lnβ(ε)δdbs
R · (δR +

1.25)dbs+1 · tdbs−1 · σ. Using the verifiable inner-product for provable L2-norm,
one can prove that ‖u‖2, ‖e1‖2, ‖e2‖2 are lower than 2λB′, which guarantees the
infinity norms are also lower than that.
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Asymptotic Parameters. One now needs q ≥ 2λ × 2tB′: With the above B′,
this means that

4Ln2λβ(ε)δdbs
R · (δR + 1.25)dbs+1 · tdbs · σ ≤ q (4)

guarantees the (L, dbs)-Rt linear homomorphism property and noise-flooding,
and combined with the required hardness of the RLWE problem in Eq. 1, we
now require: 4αLn2λβ(ε)δdbs

R · (δR + 1.25)dbs+1 · tdbs < 22
√

n log2(q) log2(δ), with
L = 2N (N being the public degree of the sender’s polynomial), a cyclotomic
polynomial ring, λ = 128, t = 3, n ≥ 29, dbs = 11 (from the above dmin = 12
calculation in Sect. 5.3), α ≈ 3.8, β(ε) ≈ 9.2, the above equation is verified if:

151.7 + 28 log2(n) + log2(N) < 0.1743 ·
√

n log2(q)

So for instance for n = 214 and N = 240, we are sure that q on 685 bits or more
will grant full FHE functionalities, and we also get the following FHE ciphertext
size complexity: n log2(q) = O(log(N)2).

5.4 Succinctness

As explained above, the proof is succinct, with a constant number of elements,
and independent of the degree of the polynomial, but the size of the commitments
may depend on q for some choices of Secure Encodings. In Sect. 5.3, we studied
asymptotic bounds for q and n, to get correctness, and get log q = O(log N),
and n = O(log N). Then the size of a ciphertext is in O(n log q) = O((log N)2)
bits and this gives the receiver’s communication complexity. Then, the sender
essentially sends back the result (1 ciphertext = O((log N)2)) and the proof
which consists in a constant number of commitments in O(log q) = O(log N).
So, globally, the communication complexity is in O((log N)2).

We estimated practical sizes using security bounds on the privacy of FHE
given by the LWE estimator [1]. For N between 220 and 240, a prime q should
be on 600 to 620 bits, which would lead to 3MBytes for the FHE ciphertext to
be sent, and about 5MBytes for the result and its proof.

In the full version [28], we give more details with a composite q, which allows
RNS optimizations for FHE. Then, the size of the proof increases because of
the repetitions of the commitments, as the Schwartz-Zippel lemma provides a
smaller soundness, but it remains in a 90 to 520MBytes range for N less than
240, from our analysis using our correctness formula, the [1] estimator, and the
Schwartz-Zippel lemma for the proof soundness. In Fig. 3, we give parameters
and resulting sizes for our OPE construction. We achieve the correctness from
inequality (4)’s exact requirements (without the following approximations), and
the privacy provided by the FHE security is calculated using [1]’s estimator.
Soundness requirements given by the Schwartz-Zippel lemma then provide the
number of required repetitions on which the number of commitments νc and the
number of checked equations νe depend.
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|N | |n| |q| Receiver Communications Sender Communications
FHE Security Total Size νc νe Total Size

20 14 600 115 3 MB 33 20 5 MB
30 14 610 113 3 MB 33 20 5 MB
40 14 620 110 3 MB 33 20 5 MB

Fig. 3. Parameters and security bounds for the FHE ciphertexts and the proof, with
a prime ciphertext modulus q and the plaintext modulus t = 3. The proof size column
encompasses all the elements communicated by the sender, including the result. This
is for a 2−128-soundness. |x| is the bit-length of x. As q is a large prime, one can use an
encoding scheme based on pairings: G2 elements are encoded on 880 bits for a 128-bit
security, as in [25]’s recommendations.
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Abstract. We give an efficient construction of a computational non-
interactive witness indistinguishable (NIWI) proof in the plain model,
and investigate notions of extraction for NIZKs for algebraic lan-
guages. Our starting point is the recent work of Couteau and Hartmann
(CRYPTO 2020) who developed a new framework (CH framework) for
constructing non-interactive zero-knowledge proofs and arguments under
falsifiable assumptions for a large class of languages called algebraic lan-
guages. In this paper, we construct an efficient NIWI proof in the plain
model for algebraic languages based on the CH framework. In the plain
model, our NIWI construction is more efficient for algebraic languages
than state-of-the-art Groth-Ostrovsky-Sahai (GOS) NIWI (JACM 2012).
Next, we explore knowledge soundness of NIZK systems in the CH frame-
work. We define a notion of strong f -extractability, and show that the
CH proof system satisfies this notion.

We then put forth a new definition of knowledge soundness called
semantic extraction. We explore the relationship of semantic extraction
with existing knowledge soundness definitions and show that it is a gen-
eral definition that recovers black-box and non-black-box definitions as
special cases. Finally, we show that NIZKs for algebraic languages in the
CH framework cannot satisfy semantic extraction. We extend this impos-
sibility to a class of NIZK arguments over algebraic languages, namely
quasi-adaptive NIZK arguments that are constructed from smooth pro-
jective hash functions.

1 Introduction

Zero-knowledge proofs, introduced by Goldwasser, Micali and Rackoff [28], are
cryptographic primitives that allow a prover to convince a verifier that a state-
ment is true without revealing any other information. Zero-knowledge proof sys-
tems have a rich history in cryptography [8,21,26] finding numerous applica-
tions in cryptographic constructions such as identification schemes [20], public-
key encryption [37], signature schemes [14], anonymous credentials [13], secure
multi-party computation [27], and a wide variety of emerging applications.
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The notion of zero-knowledge proof was later extended to non-interactive
zero-knowledge (NIZK) proofs by Blum, Feldman and Micali [10] where there
is a single message sent from the prover to the verifier. NIZKs are particularly
useful in low-interaction settings, and feasibility is known for all of NP in the
common reference string (CRS) model.

Pairing-Based NIZKs. Starting from the work of Groth and Sahai [31], many
pairing-based NIZK proof systems have been constructed. These proof systems
avoid the need for expensive reductions to NP-complete languages and can
directly handle a large class of languages over abelian groups.

Another line of work for constructing pairing-based NIZKs is via a smooth
projective hash function (SPHF) [17]. For a language over some abelian group
G1, a secret hashing key is embedded in group G2, and this NIZK proof can be
verified via a pairing operation between G1 and G2. The SPHF-based approach
leads to very efficient proofs for linear languages. However, they only provide a
quasi-adaptive type of soundness, where the CRS can depend on the language.

NIWIs. One can relax the security of a NIZK argument to a Non-Interactive
Witness Indistinguishable (NIWI) argument by replacing the zero-knowledge
property with a weaker witness indistinguishability (WI) property. Unlike NIZKs
for which we know impossibility in the plain model [10], and can therefore only
exist in the CRS model, NIWIs are possible in the plain model. Informally,
witness indistinguishability means that the verifier at the end of protocol, cannot
guess which of the possible witnesses the prover used to compute the proof.

The general idea to construct a NIWI in the plain model, is to start from
zero-knowledge proofs that are perfectly sound for some choice of the verifier
randomness (or some choice of the CRS). Namely, we let the prover sample the
randomness by itself and include additional checks to force the prover to compute
at least one proof for such choice of randomness. The first NIWI construction in
the plain model was proposed by Barak et al. [6] obtained by derandomizing any
two-round zero-knowledge proof (ZAP) [18]. The idea behind the construction
is to let the prover send a “high enough” number of proofs, each for a different
choice of randomness, such that it is hard to cheat for all of them. There are
however drawbacks that make such NIWI schemes unsuitable in practical appli-
cations. In the NIWI of [6], the prover has to compute logarithmically many
proofs, which leads to inefficient schemes, both in terms of computation and
communication, even starting from efficient, say, linear ZAPs. Also, security is
based on a complexity theoretic assumption (namely E = DTIME(2O(n)) has
a function of circuit complexity 2Ω(n)) that implies BPP = P.

Groth, Ostrovsky and Sahai [30] proposed a different framework for NIWI
proofs, which leads to more efficient proofs for concrete languages (instead of
circuit satisfiability). The key idea in [30] is to force the prover to produce two
CRSs, such that at least one of them guarantees perfect soundness. Moreover,
the structure of the CRS is such that multiplication of one element can always
transform a computationally sound CRS into a perfectly sound CRS. The NIWI
proof system can now take advantage of the structure in the CRS as follows: the
prover generates a CRS on its own and provides proofs under both the chosen
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CRS and its transformation. Perfect soundness holds by the fact that at least
one of the two CRSs guarantees this property. Some of the issues in the con-
struction of [6] mentioned above are overcome by the NIWI proof system of [30],
thanks also to further optimizations [39]. Namely, it is based on well-established
assumptions, and the number of proof elements is constant instead of logarith-
mic in the security parameter. However, for some applications, communication
complexity that is twice the size of a Groth-Sahai (GS) proof is still not prac-
tical, particularly considering that GS NIZK, and consequently the NIWI often
comes with a drastic efficiency reduction due to the need for reducing the original
language to an intermediate language supported by the GS proof system.

In this work, we construct more efficient computational NIWI proofs in the
plain model for a larger class of languages.

CH Framework. Recently, Couteau and Hartmann [16] developed a new frame-
work (henceforth referred to as the CH framework) for constructing non-
interactive zero-knowledge proofs and arguments for a broad class of languages
under a falsifiable assumption. They provide several constructions whose effi-
ciency is satisfactory for many applications and enjoy a number of interesting
features such as having proofs that are as short as proofs resulting from the
Fiat-Shamir transformation applied to Σ-protocols. Their approach, at a very
high level, consists of compiling a Σ-protocol over an abelian group G1 into a
non-interactive zero-knowledge argument over Type III pairings by embedding
the challenge e into a group G2 and adding the embedded challenge to the CRS.

The work of [16] also obtains a simple and efficient ZAP argument in the
plain model where the WI property holds statistically as opposed to all previ-
ous pairing-based constructions that satisfy computational WI. While this ZAP
argument can be compiled directly into a non-interactive ZAP using the com-
piler of [6], the prover, as mentioned above, needs to send logarithmically many
proofs, hence decreasing the efficiency of the original scheme.

CH Framework with Knowledge Soundness. All aforementioned proof systems
based on CH framework only guarantee soundness meaning that accepting
proofs cannot be computed for false statements. Typically, applications require a
stronger notion of soundness called knowledge soundness which guarantees that
the prover knows a witness for a statement if it can make the verifier accept.
This notion of knowledge soundness is formalized by the existence of an effi-
cient extractor that can extract a valid witness from the prover whenever the
prover provides a valid proof. Given that the NIZK systems in [16] only guaran-
tee soundness, we investigate the possibility of knowledge soundness of the CH
protocol, and pairing-based arguments in general.

Can we construct NIZK proofs in the CH framework with knowledge sound-
ness?

A näıve solution to provide extractability in the CRS model is to use well-
known techniques to augment the statement with a trapdoor for extraction. In
particular, given a CRS that contains a public key pk, the most efficient currently



690 C. Ganesh et al.

known approach is to ask the prover to encrypt the witness under pk and then
prove that the ciphertext is computed correctly. The extractor can then use the
secret key of pk to recover a valid witness from the proof. This however makes
the proof size much larger. On a high level, this is because existing algebraic
encryption schemes are not friendly enough with the CH framework, unless we
perform the encryption bit-by-bit as in [9], which makes the construction unde-
sirable. More importantly, the underlying NP relation is now changed into an
augmented relation that should also manage the correctness of ciphertext com-
putations. Our goal is however to study the (im)possibility of extractability for
the standard CH framework without changing the underlying relation.

Another solution is to show extractability under knowledge assumptions, or
in idealized models such as generic group model (GGM) [42] or algebraic group
model (AGM) [22]. Indeed, it is not hard to show that CH NIZKs are knowledge
sound in the AGM1. Gentry and Wichs [25] show impossibility of a black-box
reduction to a falsifiable assumption to prove soundness for succinct arguments,
where the proof size is logarithmic in the size of the witness and the statement.
However, the use of idealized models or knowledge assumptions to prove knowl-
edge soundness of non-succinct proof systems seems to be less justifiable.

At first look, it might seem like knowledge assumptions for extraction are
justified since soundness of some CH NIZK is already based on a non-falsifiable
version of the extKerMDH assumption. As per Naor’s classification [36], knowl-
edge assumptions are a class of non-falsifiable assumptions. However, since
knowledge assumptions stipulate “feasibility” of efficient extraction, they do not
fit within a taxonomy of intractability assumptions [38]. On the other hand, an
assumption such as extKerMDH, while non-falsifiable, is still an intractability
assumption that can be phrased as a game between an adversary and a chal-
lenger, albeit with an inefficient challenger.

1.1 Our Contributions

We study NIZK and NIWI constructions in the pairing-based setting and make
the following contributions.

NIWI in the Plain Model. Different from the aforementioned idea of con-
structing NIWI in the plain model based on the CH framework [16] using the
compiler of [6], we investigate a more efficient strategy inspired by the approach
of [30] which allows the verifier to verify if, given a (small) set of CRSs, at least
one of them is perfectly binding, without breaking soundness.

Our construction is based on the existence of an efficient algorithm that,
given one CRS of the NIZK proof of [16], allows the verifier to check if it is a
perfectly binding one without compromising the soundness property. The key
idea in constructing such an algorithm is, at a high level, to add two additional
group elements to the CRS, chosen such that assuming the existence of Type
III pairings, it allows the verifier to (efficiently) check the distribution of the
1 We show knowledge soundness of the CH argument in the AGM in the full ver-

sion [24].



NIWI and New Notions of Extraction for Algebraic Languages 691

CRS (with a technique similar to what was done in [1]) while not compromising
the WI property. Now, with the verifier equipped with such an algorithm, we
construct a non-interactive ZAP by letting the prover compute this CRS and
output it together with the proof.

We need additional ideas to prove security of the resulting construction. First,
as noted in [16], the soundness of the resulting NIZK proof is based on the special
soundness property of the underlying Σ-protocol. Soundness of our NIWI proof
follows from the same reasoning and from the correctness of the algorithm that
checks the distribution of the CRS. Indeed, if the verifier accepts, then the prover
correctly sampled a perfectly binding CRS and thus soundness holds. To show
WI, we rely on a new decisional assumption, which we validate in the AGM. The
ability of the verifier to check the distribution of the CRS relies on DDH being
easy, and therefore it is not possible to rely on DDH for WI.

CH Framework with Knowledge Soundness. The proof and argument sys-
tems presented in [16] and our NIWI construction ensure only soundness. As
our second contribution, we investigate knowledge soundness of NIZK systems
in the CH framework.

f-extractability. We define a notion of strong f-extractability that extends related
notions of partial extraction used in literature. Informally, an argument system
satisfies f -extractability if there exists an efficient extractor that outputs w̃ when-
ever the verifier accepts the proof for statement x, where w̃ = f(w) and w is a
valid witness for x. We extend the notion to strong f -extractability where we
ask that the partial witness w̃ allows for efficiently deciding membership of the
statement. We show that the CH proof system satisfies this notion where the
extracted value is the encoding of a witness to G2.

Semantic Extraction. We then investigate the possibility of knowledge soundness
of the CH NIZKs, and pairing-based arguments in general. We show that the
CH argument is knowledge sound in the Algebraic Group Model (AGM), and
then ask the following question: can we show knowledge soundness in the stan-
dard model without relying on knowledge assumptions or show impossibility of
extraction? Towards this end, we put forth a notion of extraction called seman-
tic extraction, and prove that this notion of extraction is impossible for the CH
argument. The intuition behind the definition of semantic extraction is to con-
sider the random coins of the adversary as an input from a certain distribution.
This makes it possible to associate a function to each adversary: the function
that it computes on certain inputs including its random coins. We then require
that adversaries that implement the same function, have the same extractor.
We allow the flexibility to split the random coins in two distinct portions, and
then allow the extractor to see only one of the two portions. This gives a gen-
eral definition that, depending on how much randomness we allow the extractor
to see, gradually makes the extractor more powerful. We then investigate the
relationship between semantic extraction and classic notions of extraction. We
show that semantic extraction is a general definition, that captures both white-
box(n-BB) and black-box(BB) extraction. In particular, BB extraction trivially
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implies semantic extraction. Also a slightly weaker version of the other direction
is true, when we give no randomness to the semantic extractor. Moreover, seman-
tic extraction is equivalent to n-BB extraction, where we give to the extractor
all the random coins of the adversary. Finally, we show impossibility of semantic
extraction for CH argument: that no extractor that sees only a portion of the
adversary’s randomness can succeed. We then generalize this impossibility to a
class of NIZK arguments over algebraic languages, namely quasi-adaptive NIZK
arguments based on SPHFs. As a concrete case, we show that the most efficient
Quasi-Adaptive NIZK construction of Kiltz and Wee [34] cannot be semantically
extractable. While black-box extraction is impossible since the arguments are
shorter than the witnesses, the impossibility of semantic extraction is a stronger
result. We present this in the full version [24].

1.2 Technical Overview

In this section we provide a technical overview of our results. We start with
an overview of our NIWI construction in the plain model. Then we discuss our
definition of semantic extraction and sketch our impossibility result for semantic
extractability of CH NIZKs.

NIWI in the Plain Model. The starting point of our construction is the NIZK
proof for algebraic languages in [16] which is based on a compiler that converts
a Σ-protocol with linear answers over a group G1 into a NIZK argument by
embedding the verifier’s challenge into a group G2 in the CRS.
Σ-Protocols for Linear Languages. A linear language with language parameter
[M]1 ∈ G

n×k
1 is defined as LM =

{

[x]1 ∈ G
n
1 |∃w ∈ Z

k
p : [x]1 = [M]1 · w}

. A
Σ-protocol for a linear language LM with corresponding relation RM is a three-
move honest-verifier zero-knowledge (HVZK) proof system between a prover P
and a verifier V with the following syntax. First, P with an input pair ([x]1,w)
selects r ← Z

k
p and sends a first message [a]1 := [M]1 ·r ∈ G

n
1 to V. Next, V sends

a random string e ∈ Zp to P. Finally, P sends a reply d := we+r ∈ Z
k
p to V, who

accepts the proof if [M]1 ·d = [x]1e+[a]1. The special soundness property states
that for any [x]1 and any pair of accepting conversations ([a]1, e,d), ([a]1, e′,d′)
on [x]1 where e �= e′, one can efficiently compute a valid witness w for [x]1.

CH Compiler. Couteau and Hartmann [16] proposed the following approach to
compile a Σ-protocol into a NIZK in the CRS model: the setup algorithm picks
a random e ∈ Zp and sets [e]2 as the CRS. The prover computes [a]1 as in the
Σ-protocol, and an embedding of d in G2 by computing [d]2 := w · [e]2 + r ·
[1]2. The proof can (publicly) be verified by checking if the pairing equation
[M]1[d]2 = [x]1[e]2+[a]1[1]2 holds. While this leads to an argument system with
computational soundness, [16] further shows how to turn the argument into a
proof by providing two challenges with two different generators in the CRS and
having the prover answer both with the same randomness. The (unconditional)
special soundness property of the underlying Σ-protocol now guarantees that a
witness exists, resulting in perfect soundness.
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The idea behind our NIWI construction is as follows: consider the CRS of the
CH NIZK proof [s1, s2, e1s1, e2s2]2 ∈ G

4
2, where e1, e2, s1, s2 ∈ Zp, and [e1, e2]2

play the role of the two challenges (embedded in G2) in the underlying Σ-
protocol. Now, we have the prover pick the CRS and the verifier checks that this
CRS computed by a potentially malicious prover is such that e1 �= e2, so we can
rely on the special soundness of the underlying Σ-protocol. We then prove that
the proof is witness-indistinguishable by relying on a new decisional assumption
that we show secure in the AGM. This observation leads us to a NIWI proof
in the plain model, where we let the prover to choose the “crs” parameters by
itself, such that it is verifiable that e1 �= e2.

Extractability in the CH Framework. We now give an overview of the
extractability notions we explore, the new notion of semantic extraction we pro-
pose, and the impossibility of semantic extraction for CH NIZKs.

The standard definition of knowledge extraction asks for the existence of an
efficient algorithm called extractor that takes as input a proof π of a statement x
and returns a value w′ such that w′ is a witness for the truth of x, i.e., (x, w′) ∈ R.
While such full extractability captures the fact that the prover must have known
the witness, there are instances where the existence of such a powerful extractor
is unlikely; however, it is still possible to extract some partial information about
the witness. One concrete example is the Groth-Sahai non-interactive proof of
knowledge [31] from which one can only extract a one-way function of the witness
f(w) where f : F → G is the encoding of the witness in the underlying group.
The barrier to full extractability is the fact that there does not seem to be a
trapdoor that can be used to compute, in an efficient way, a witness w from f(w)
(i.e., discrete logarithm problem). To capture this notion of partial extractability,
Belenkiy et al. [7] formalized the notion of f -extractability by the existence of
an efficient algorithm that outputs w̃ such that there exists some w with (x, w) ∈
R and w̃ = f(w)2. In their context of constructing anonymous credentials, f -
extractability is used by relaxing the notion of unforgeability to f -unforgeable
signatures where the adversary produces (f(m), σ) pair (as opposed to (m,σ))
without previously obtaining a signature on m. Since then, f -extractability has
been used as a standard property in many privacy-preserving authentication
mechanisms [3,12,19,29,33,40].

We begin with this observation that the CH NIZK proof is not only f -
extractable for f := [·]2, but the extracted value also allows to decide the mem-
bership of the statement via pairing checks. To see this, let ([x]1,w) be a pair
of statement-witness in the linear relation RM that returns 1 if [x]1 = [M]1 · w.
One can observe that extracting [w]2 suffices to decide the membership of [x]1
by checking if [M]1[w]2 = [x]1[1]2. The primary distinction between partial and
full extractability is in the ability to decide membership of the statement being
proven via the extracted value. We fill the gap between the two notions by defin-
ing a stronger form of partial extractability called strong f-extractability which
guarantees the existence of an efficient procedure D that for any given statement
2 Note that this a generalization of the standard notion as the identity function f(·)

implies full extractability.
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x and f -extracted value w̃ := f(w), D(x, w̃) can decide the membership of x. Note
that w̃ still falls short of being a full witness for the relation; assuming that f is
one-way, w̃ cannot be used to produce a valid proof for x. This is what separates
strong f -extractability from full extractability.

Impossibility of Semantic Extraction. We show impossibility of semantic extrac-
tion for the CH NIZK argument for algebraic languages. Note that this is a
stronger result than ruling out BB extraction. Our impossibility holds only for
semantic extraction where there exists a portion of the adversary’s randomness
that the extractor cannot see.

We now articulate the implications of ruling out semantic extraction for
pairing-based arguments. In these systems, a proof consists only of group ele-
ments, while witnesses are elements of the underlying field3. Soundness relies
on the hardness of discrete logarithm in order to argue that the exponents of
elements in the CRS remain hidden from the prover. As a concrete example,
let us consider the CH NIZK argument that essentially compiles a Σ-protocol
with three-round messages ([a], e,d) into a NIZK argument in the CRS model
in such a way that the CRS includes [e]2 and the proof consists of two (vector
of) group elements ([a]1, [d]2). Informally, the security relies on the fact that the
prover cannot compute e (or [e]1) and the second component [d]2 should have
been computed as [d]2 = d0[1]2 + d1[e]2. But now, one can observe that from
a semantic point of view, there is no distinction between the case that [d]2 is
computed honestly as above and the case where the CRS trapdoor e is used for
generating [d]2 as d0[1]2 + e[d1]2. In fact, if an extractor Ext that is limited to
being semantic is able to extract the witness d1, then one can invoke Ext to
break the discrete logarithm in G2 by sampling e in the reduction. The above
reduction does not go through if Ext is a semantic extractor that has access
to all the adversary random coins (we show that such Ext is equivalent to a
classic white-box extractor). But as soon as some randomness is hidden from
the extractor, we can define an adversary that embeds a DL challenge in this
hidden part of the execution, for which no extractor can exist. This means that
a valid proof in such argument systems does not prove “knowledge” of w, but
only knowledge of [w]1, [w]2, and in order to extract w, one must rely on the
hypothesis of asymmetric pairings to conclude that the prover actually knew w
as a field element, which is essentially a knowledge-of-exponent type assumption.

Our results suggest that for most algebraic languages, extracting a witness
given the statement [x]1 is as hard as extracting a witness given [x]1, a valid
proof π together with used randomness r and trapdoor of the CRS e. Thus, if an
extractor that is not based on knowledge assumption exists, it completely ignores
the proof and just recomputes sampling a true statement together with its rel-
ative witness. This can also be seen in the following way: consider a language
whose hardness relies on the hardness of discrete logarithm. Now, computing
the witness from the statement is as hard as discrete logarithm; computing the

3 In structure preserving systems, the witness can be group elements as well, but in
this work, we are only interested in proof systems where witnesses are field elements.
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witness given the statement, a proof, randomness used to compute the proof,
and trapdoor is (in the case of CH20) as hard as symmetric discrete logarithm
(SDL). This implies that either there is a gap between DL and SDL; or com-
puting w from [x]1 is as hard as computing w from ([x]1, r, π, e). In the case of
SPHF, both hardness of the language and our result rely on hardness of discrete
logarithm, implying that computing w from [x]1 is as hard as computing w from
([x]1, π, r, td). This gives an explanation for why in the pairing-based setting, we
have perfect soundness and f -extractability, like we show the CH proof is, while
no fully extractable scheme exists under falsifiable assumptions.

2 Preliminaries

Notation. For any positive integer n, [n] denotes the set {1, . . ., n}. Let k ∈ N

be the security parameter. Let negl(k) be an arbitrary negligible function. We
write a ≈k b if |a − b| ≤ negl(k). Moreover a is a negligible function if a ≈k 0.
When a function can be expressed in the form 1 − negl(k), we say that it is
overwhelming in k. We use DPT (resp. PPT) to mean a deterministic (resp.
probabilistic) polynomial time algorithm. We write Y ← F(X) to denote an

algorithm with input X and output Y . Further, we write a
$←− S to denote

that a is sampled according to distribution S, or uniformly randomly if S is a
set. For two interactive machines P and V, we denote by 〈P(α),V(β)〉(γ) the
output of V after running on private input β with P using private input α, both
having common input γ. All adversaries will be stateful. To represent matrices
and vectors, we use bold upper-case and bold lower-case letters, respectively.

2.1 Bilinear Groups

We use additive notation for groups. Throughout the paper we let G be
a bilinear group generator that on input security parameter k returns
(p,G1,G2,GT , ê, [1]1, [1]2) ← G(1k), where G1,G2,GT are groups of prime
order p, [1]1 and [1]2 are respectively the generators for G1 and G2, and
ê : G1 × G2 → GT is a non-degenerate efficiently computable bilinear map
such that ∀[u]1 ∈ G1,∀[v]2 ∈ G2,∀a, b ∈ Zp : ê(a[U ]1, b[V ]2) = (ab)ê([U ]1, [V ]2).

We denote ê([U ]1, [V ]2) as [U ]1[V ]2. We consider only type III pairings, where
there does not exist an efficient isomorphism between G1 and G2.

2.2 Algebraic Languages

We refer to algebraic languages as the set of languages associated to a relation
that can be described by algebraic equations over an abelian group. More pre-
cisely, let gpar = (p,G1,G2,GT , ê, [1]1, [1]2) ← G(1k). For the rest of the paper,
we suppose that these global parameters gpar are implicitly given as input to
each algorithm. Let lpar = (M,θ) be a set of language parameters generated
by a polynomial-time algorithm setup.lpar which takes gpar as input. Here,
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M : G� �→ G
n×k and θ : G� �→ G

n are linear maps such that their different coef-
ficients are not necessarily in the same algebraic structures. Namely, in the most
common case, given a bilinear group gpar = (p,G1,G2,GT , ê, [1]1, [1]2), they can
belong to either Zp, G1, G2, or GT as long as the equation θ(x) = M(x) · w is
“well-consistent”. However, in this paper we only use algebraic languages where
the statement is defined as elements in G1. Formally, we define the algebraic
language Llpar ⊂ Xlpar as

Llpar =
{

[x]1 ∈ G
�
1|∃w ∈ Z

k
p : [θ(x)]1 = [M(x)]1 · w}

. (1)

An algebraic language where M is independent of x and θ is the identity is called
a linear language. We sometimes require algebraic languages to satisfy a property
we call 1DL-friendly. Roughly, this is to enable the embedding of a symmetric
simple discrete logarithm challenge, which is given as a pair of group elements,
into an algebraic statement in the reduction. We give the formal definition of
this property in the full version [24]. We note that algebraic languages are as
expressive as NP, since every Boolean circuit can be represented by sets of linear
equations.

2.3 Non-interactive Zero-knowledge Arguments

A NIZK (non-interactive zero-knowledge) argument Π, for a family of languages
Llpar consists of four PPT algorithms.

– CRSGen on input a security parameter 1k generates a pair (crs, td).
– P on input a crs, a statement x and a witness w, computes a proof π.
– V on input a crs, a statement x and a proof π outputs 1 (accept) or 0 (reject).
– Sim on input td, a true statement x computes a simulated proof π.

Here we are implicitly supposing that lpar is always given as input. We assume
that each td corresponds to only one crs and also that given td it is possible to
efficiently and deterministically compute the corresponding crs. This is w.l.o.g.,
since it is always possible to define the trapdoor in a way that the previous
property is satisfied. The following properties are required for a NIZK argument:

– Perfect completeness: for any pair of true statement x with a relative witness
w, for any crs computed by CRSGen

Pr [V(crs, x, π) = 1|π ← P(crs, x, w)] = 1.

– Computational soundness: for any PPT adversary A

Pr
[V(crs, x, π) = 1 (crs, td) ← CRSGen(1k);

x /∈ Llpar (x, π) ← A(crs)

]

≤ negl(k)

– (Perfect) zero-knowledge: for any true statement, witness pair (x, w), for any
(crs, td) ← CRSGen(1k) the following distributions are identical

P(crs, x, w) ≡ Sim(crs, td, x).
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If the zero-knowledge property requires the two distributions to only be com-
putationally insitinguishable, then we get a computational NIZK. If soundness
holds even against unbounded adversaries, we say that the protocol is a NIZK
proof system, with perfect soundness. We say that Π is black-box knowledge
sound if there exists an efficient extractor that computes a witness, given a
statement, an accepting proof and the crs trapdoor.

Definition 1 (BBKnowledge soundness). Let Π = (CRSGen,P,V,Sim) be
a NIZK argument for the relation Rlpar, defined by some language parameter
lpar. We say that Π is black-box knowledge sound, if there exists an extractor
Extbb such that, for any PPT adversary A:

Pr
[V(crs, x, π) = 1 (crs, td) ← CRSGen(1k);

∧(x, w) /∈ Rlpar (x, π) ← A(crs, lpar; r); w ← Extbb(td, x, π)

]

≤ negl(k)

where r is the random coins of the adversary.

If the extractor is allowed to depend on the adversary and we also give it
as additional input, the random coins used by the adversary, we say that Π is
white-box knowledge sound.

Definition 2 (n-BBKnowledge soundness). Let Π = (CRSGen,P,V,Sim)
be a NIZK argument for the relation Rlpar, defined by some language parameter
lpar. We say that Π is white-box knowledge sound, if for any PPT adversary
A, there exists an efficient extractor Extwb,A such that:

Pr

[V(crs, x, π) = 1 (crs, td) ← CRSGen(1k);
∧(x, w) /∈ Rlpar (x, π) ← A(crs, lpar; r); w ← Extwb,A(td, x, π, r)

]
≤ negl(k)

where r is the random coins of A.

We also consider the concrete security variants of the above definitions. The
formal definitions are given in the full version [24]. Roughly, Π is (t, ε)-BB knowl-
edge sound if the extraction property holds with respect to all t(k)-time bounded
provers (as opposed to all PPT provers), and that the extractor succeeds except
with probability ε (as opposed to being negligible).

Lastly, we state the witness indistinguishability definition for non-interactive
protocols. Recall that we are interested in non-interactive witness indistinguish-
able proof systems in the plain model without a trusted setup.

Definition 3 (Witness Indistinguishability (WI)). A non-interactive proof
system Π = (P,V) for language Llpar is WI if for every PPT verifier (V∗

1 ,V∗
2 ),

for all (x, w1, w2) such that (x, w1) ∈ Rlpar, (x, w2) ∈ Rlpar, we have

Pr
[
b ← V∗

2 (st, π) (x, w1, w2, st) ← V∗
1 (lpar); b

$←− {0, 1}; π ← P(lpar, x, wb)

]
≈k

1

2
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Fig. 1. Σ-protocol for algebraic language Llpar with lpar = (M, θ)

Fig. 2. NIZK argument for algebraic language Llpar with lpar = (M, θ) [16]

2.4 From Σ-protocols to NIZKs

Recently, Couteau and Hartmann [16] propose a new approach for building
pairing-based non-interactive zero-knowledge arguments for algebraic languages.
At a high level, their approach is based on compiling a Σ-protocol (see full ver-
sion [24]) into a non-interactive zero-knowledge argument by embedding the chal-
lenge in G2 and publishing it once in the crs. The NIZK argument is depicted
in Fig. 2, where we denote as SΣ the simulator for special honest verifier zero-
knowledge property of the Σ-protocol. A variant of their compiler yields NIZK
proofs, depicted in Fig. 3, based on standard assumptions. We refer to the full
version [24] for more details.

2.5 Cryptographic Assumptions

The DL (discrete logarithm) assumption in group Gι of order p states that it is
hard to compute the discrete logarithm of a random element in Gι.
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Fig. 3. NIZK proof for algebraic language Llpar with lpar = (M, θ) [16]

Assumption 1 (Discrete logarithm assumption). For any PPT adversary
A, it holds that:

Pr
[

w[1]ι = [x]ι w ← A([1, x]ι)
] ≤ negl(k)

where x is sampled from the uniform distribution over Zp.

Assumption 2 (Symmetric discrete logarithm assumption). For any
PPT adversary A, it holds that:

Pr
[

w[1]ι = [x]ι ; ι = 1, 2 w ← A([1, x]1, [1, x]2)
] ≤ negl(k)

where x is sampled from the uniform distribution over Zp.

The co-CDH assumption was first proposed in [11]. Later a modified version
of the assumption was proposed in [32] which we adapt as follows.

Assumption 3 (Computational co-Diffie-Hellman (co-CDH) assump-
tion). For any PPT adversary A, it holds that:

Pr
[

[xy]2 ← A([1, x]1, [1, x, y]2)
] ≤ negl(k)

where x, y are sampled from the uniform distribution over Zp.

3 NIWI Proof in the Plain Model

Our NIWI proof system in the plain model is given in Fig. 4. We show that our
construction is perfectly sound and computationally WI. To show WI, we rely
on a new assumption that we validate in the algebraic group model (AGM) in
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Fig. 4. NIWI proof for algebraic language Llpar with lpar = (M, θ)

Fig. 5. Algebraic decisional hidden range games GADHR,i.

the full version [24]. While it might seem like we can show WI by relying on
DDH in the second group and then invoking the WI of the underlying sigma
protocol, the presence of [s2]1 in the proof makes this impossible. In fact, we
rely on DDH being easy for perfect soundness by enabling the verifier to check
that the two challenges are indeed distinct. We show that the new assumption
holds in the AGM introduced by Fuchsbauer, Kiltz and Loss [22]. The model is
a relaxation of the generic group model [42] that captures adversaries exploiting
the representation of the underlying group, and has been shown to be useful
in reasoning about security properties of various constructions [15,23,35]. The
work of [41] extends this model to handle decisional assumptions by introducing
the notion of algebraic distinguishers. We use this model to show the algebraic
equivalence between our assumption and symmetric power discrete logarithm
(SPDL) assumption. While the assumption we make is a tautological assump-
tion, we hope it will be analysed further and will find other applications, just
like the tautological Kiltz-Wee assumption for QA-NIZK [2,34]. We believe it
is an interesting open problem to prove the security of our construction under
standard decisional assumptions.

Assumption 4 (Algebraic decisional hidden range). Let lpar = (M,θ)
be any pair of language parameter that defines the algebraic language Llpar. Let
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GADHR,i, for i ∈ {0, 1} be the games depicted in Fig. 5. The (M,θ)-ADHR
assumption states that for any PPT adversary A,

Adv
GADHR,0,1
A,lpar = |Pr [GADHR,0(A, lpar) = 1] − Pr [GADHR,1(A, lpar) = 1]| ≤ negl(k).

Theorem 1. For any algebraic language Llpar, with lpar = (M,θ), the pro-
tocol in Fig. 4 is a non-interactive witness indistinguishable proof under the
(M,θ)-ADHR assumption.

Proof. (Perfect completeness). We show that an honest prover convinces
an honest verifier with probability 1. For an honestly generated proof
π = ([a, c1, c2]1, [s1, s2, E1, E2,d1,d2]2), by construction, we have that ci = s−1

i ,
Ei = siei and di = si(eiw + r). It is easy to see that all the verifier checks pass.

1. [ci]1[si]2 = [s−1
i ]1[si]2 = [1]T .

2. [c1]1[E1]2 = [s−1
1 ]1[s1e1]2 = [e1]T , and [c2]1[E2]2 = [s−1

2 ]1[s2e2]2 = [e2]T , and
since e1 �= e2, we have [c1]1[E1]2 �= [c2]1[E2]2.

3. M(x)di = sieiM(x)w + siM(x)r = Eiθ(x) + asi.

(Perfect soundness). Let A be any (possibly unbounded) adversary that
breaks the soundness property by outputting a proof π̃ = ([ã, c̃1, c̃2]1, [s̃1, s̃2,
Ẽ1, Ẽ2, d̃1, d̃2]2) relative to an (adaptively) chosen statement x = [x]1 /∈ Llpar,
such that the NIWI verifier accepts π̃. We show that such an accepting proof
contradicts with the assumption that x /∈ Llpar. In what follows, the index i will
always be used as for each i ∈ {1, 2}.

From the verifier’s check (1), it must be that c̃i = s̃i. Moreover, from check (3)
we have that M(x)d̃i = θ(x)Ẽi+ãs̃i, which means that M(x)d̃i/c̃i = θ(x)Ẽi/c̃i+
ã. Now, since the NIWI verifier accepts the proof, from check (2), we have that
c̃2Ẽ1 �= c̃1Ẽ2. Therefore, there exists a pair of valid transcripts ([ã]1, Ẽi/c̃i, d̃i/c̃i)
for x, with the same first message [ã]1 and different challenges. From special
soundness of the underlying Σ-protocol, there exists an extractor that outputs
a witness for x given two such transcripts. This contradicts the assumption that
x /∈ Llpar.

(Witness indistinguishability). Let Llpar be an algebraic language with
lpar = (M,θ). Let A be a PPT adversary that wins the WI game with non-
negligible probability ε. We build an efficient adversary B against (M,θ)-ADHR
assumption as follows: B first calls A and obtains st = ([x]1,w0,w1). It then
outputs st and receives π from the challenger. Lastly, B calls A on π and returns
A’s decision bit. Since the challenger of GADHR,i computes π exactly as the
honest prover of the NIWI in Fig. 4, B breaks the assumption with the same
non-negligible probability ε. ��

We discuss the efficiency of our construction and applications of NIWI in the
plain model in the full version [24].
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4 Partial Extractability for the CH Framework

In this section, we first recall the definition of f -extractability and show the NIZK
proof system in Fig. 3 is [·]2-extractable. Next, we strengthen this property by
introducing a new notion called strong f-extractability where the partial witness
w̃ can be used by an efficient algorithm to decide membership of the statement.
In more detail, here we also require the existence of an efficiently computable
decision procedure D such that for w̃ = f(w) output by the extractor, D(x, w̃)
decides membership of x (i.e., (x, w) ∈ R iff D(x, w̃) = 1). However, w̃ falls short
of being a witness for the relation; assuming that f is one-way, w̃ cannot be used
to produce a valid proof for x.

Definition 4 (f-extractability [7]). Let Π = (CRSGen,P,V,Sim) be a NIZK
argument for the relation R, defined by some language parameter lpar. Let f be
an efficiently computable function. We say that Π is (black-box) f-extractable if
there exists a PPT extractor Ext such that for any PPT adversary that returns
an accepting proof π for a statement x, Ext outputs a value w̃ for which there
exists some w such that (x, w) ∈ R and w̃ = f(w) with overwhelming probability.
More formally, for any PPT adversary A, we have

Pr
[ V(crs, x, π) = 1 (crs, td) ← CRSGen(1k);

∧(x, f−1(w̃)) /∈ R (x, π) ← A(crs, lpar; r); w̃ ← Ext(td, x, π)

]

≤ negl(k)

where r is the random coins of the adversary.

We show that the CH proof system satisfies f -extractability where f(x) is
the encoding of x to G2. We state the lemma below and give the proof in the
full version [24].

Lemma 1. The NIZK proof system of [16] depicted in Fig. 3 is [·]2-extractable.

4.1 Strong f-extractability

We now define strong f -extractability as an strengthening of f -extractability
where the extracted value further allows to decide membership of the statement
(although it cannot be used to produce a valid proof for it).

Definition 5 (Strong f-extractability). Let Π = (CRSGen,P,V,Sim) be a
NIZK argument for the relation R, defined by some language parameter lpar.
Let f be an efficiently computable function. We say that Π is strong f-extractable
if the following properties hold:

Extractability. Π is f-extractable (see Definition 4).
Decidability. There exists a DPT algorithm D, such that for any statement x

and string w̃, it holds that D(x, w̃) = 1 iff (x, w) ∈ R, where w̃ = f(w).
One-wayness. For any (x, w̃) sampled uniformly at random s.t D(x, w̃) = 1, if

there exists a PPT adversary A and a polynomial p(·), such that

Pr
[V(crs, x, π′) = 1 π′ ← A(crs, x, w̃)

] ≥ 1
p(k)

,
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there exists a PPT algorithm I, and polynomial q(·) such that

Pr
[

f(w̄) = w̃ w̄ ← I(w̃)
] ≥ 1

q(k)
.

Remark 1. Similar to Definition 4, strong f -extractability is defined without any
restriction on f and hence it can recover full extractability for the case when f
is the identity function. However, we only focus on strong f -extractability for
non-trivial f in this work. Having no restriction on f in Definition 4 and 5 makes
strong f -extractability a middle ground between full and f -extractability.

We show in the full version [24] that the proof system in Fig. 3 is strong
[·]2-extractable under a standard hardness assumption.

5 Full Extractability for the CH Framework

The CH argument system from Fig. 2 is knowledge sound in the AGM (see the
full version [24]). Now, we turn to showing limitations of proving knowledge
soundness.4 We begin this section by defining a notion of knowledge soundness
called semantic extraction. We study the relationship between semantic knowl-
edge soundness and standard notions of black-box (BB) and white-box (n-BB)
knowledge soundness. Then, we show impossibility of the existence of seman-
tic extractors for the CH argument system in Fig. 2. The generalization of this
impossibility to quasi-adaptive NIZK arguments constructed from SPHFs is in
the full version [24].

Notation. We introduce some additional notation for this section. We denote by
CRS the set of all possible crs’s. We denote by χ the set of the statements x
and by Ψ the set of all possible proofs π We also split the randomness of PPT-s
into two strings s and t. We denote by Γt the set of all possible strings t and by
Γs the set of all possible strings s. Looking ahead, for adversarial provers, this
split, at a high level, is to distinguish between the portion of randomness that
is provided to the semantic extractor (t), and the portion that is not (s). Note
that, while CRS, χ, Ψ are defined by the NIZK construction, the randomness
spaces are not fixed by the NIZK. We only assume that s, t have polynomial
size.

5.1 Semantic Extractor

We now define our new notion of extraction. Informally, this extractor inverts
the “semantic” function implemented by an adversarial prover regardless of how
4 Recently, [4] instantiated AGM under falsifiable assumptions. However, their con-

struction relies on indistinguishability obfuscation. It is inherently inefficient and
not a practical group for applications. Here, we focus on feasibility of knowledge
soundness of the CH framework as is in the standard model, without compromising
on the efficiency.
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the computation was done. The key difference from n-BB notion is that we will
not ask for a different extractor for every PPT A, instead, we ask for an extrac-
tor associated with a function f ; this extractor is universal for all TMs (even
unbounded ones) that implement f . We begin by modeling the function imple-
mented by a knowledge soundness adversary. To capture any possible adversarial
strategy, we consider functions f and a distribution D from which random coins
are sampled for a machine that implements f .

Definition 6 (Knowledge soundness strategy (KSS)). Consider NIZK
Π = (CRSGen,P,V,Sim). Let f : CRS×Γs ×Γt → χ×Ψ be a function, and D
be the uniform distribution over Γs × Γt. f is said to be a knowledge soundness
strategy for Π if

Pr

⎡

⎣

(crs, td) ← CRSGen(1k); (s||t) ← D
V(crs, x, π) = 1

f(crs; (s, t)) = (x, π)

⎤

⎦ = η(k)

where η(k) is non-negligible. We say that a TM A implements the knowledge
soundness strategy f , if for any crs ∈ CRS and (s, t) ← D, we have z ←
A(crs; s, t), where z = f(crs, s, t). If there exists a PPT A that implements a
knowledge soundness strategy f , we say that f is efficiently implementable.

We now define semantic knowledge soundness for a KSS.

Definition 7 (Semantic knowledge soundness). Consider a NIZK argu-
ment Π = (CRSGen,P,V,Sim). Let D be the uniform distribution over Γs ×Γt.
We call Π semantic knowledge sound if for every efficiently implementable KSS
f , there exists a PPT extractor Ext = Extf , such that, for each (even unbounded)
TM A∗ that implements f , we have

Pr

[V(crs, x, π) = 1 (crs, td) ← CRSGen(1k); (s||t) ← D

∧(x, w) /∈ R (x, π) ← A∗(crs; (s, t)); w ← Ext(td, x, π, t)

]

≤ negl(k)

Remark 2. We note that asking for extraction only against provers that imple-
ment a KSS is not a weakening of the extraction definition, since we only care
about extracting from provers that make the verifier accept with non-negligible
probability.

Remark 3. Note that this definition is a generalization of the usual knowledge
soundness definitions. In particular, if we hide all the randomness from the
extractor (that is Γt is the set that contains only the empty string), then we
recover the usual black-box knowledge soundness. On the other hand, if we give
the extractor all the randomness used by the adversary (that is Γs is the set that
contains only the empty string), then we recover the canonical white-box knowl-
edge soundness. We discuss these connections formally in the full version [24].
We define semBB and semn-BB exactly as in Definition 7 with the boxed part
replaced with w ← Ext(td, x, π), and w ← Ext(td, x, π, s||t) respectively.
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Remark 4 (Canonical knowledge soundness adversary). The usual definition of
knowledge soundness naturally handles the existence of an extractor for the
honest prover. Our definition handles the case of the honest prover too; we show
the honest efficiently implementable KSS for a NIZK Π below:

1. Sample uniformly random strings (s, t) ← Γs × Γt.
2. Sample a true statement x together with w, from the uniform distribution over

pair of (x, w) ∈ R, using random seed s. Note that this can be done efficiently.
That is, there exists a PPT A that computes (x, w) on random coins s. Let
us define the function g : Γs → χ × {0, 1}∗ as g(s) = (x, w).

3. Run the honest prover algorithm on input (crs, x, w) and random coins t, to
compute a proof π. Define the function g′ : CRS × χ × {0, 1}∗ × Γt → Ψ as
g′(crs, x, w, t) = P(crs, x, w; t).

4. Define f : CRS×Γs×Γt → χ×Ψ as f(crs, (s, t)) = (x, π) where (x, w) = g(s)
and π = g′(crs, x, w, t).

We call this f the canonical knowledge soundness strategy, and a PPT algorithm
that implements it the canonical adversary of knowledge soundness.

We illustrate the meaningfulness of the new notion by showing relationships
of semantic extraction with BB and n-BB extraction definitions in the full ver-
sion [24]. Here we point out that the notion of semantic extraction has been
implicitly used in other works. For instance, standard Σ-protocols satisfy the
semantic extraction notion. By special soundness, given a certain number of
accepting transcripts for the same statement, and the same prover’s first mes-
sage, an extractor exists that outputs a valid witness. The extractor, therefore,
does not depend on the prover’s computation, instead, on a “semantic” function:
one that outputs two different accepting transcripts relative to the same state-
ment, and the same first message. One advantage in thinking of an extractor
as a semantic one is the possibility to use it in a reduction, without its rela-
tive “native” adversary. This is indeed what is done in the proof of soundness
for the NIZK proof of [16] described in Fig. 3, which is based on the existence
of an (unbounded) TM that computes a valid input for the special soundness
extractor, and then relying on the implicit semantic property of the latter.

The non-black-box nature of the semantic definition is limited to making non-
black-box use of the malicious prover’s randomness, but otherwise the prover’s
TM is treated as a black-box. There are instances in literature where a n-BB
technique in fact corresponds to a semantic technique. Consider the case of sim-
ulation – Barak’s non-black-box zero-knowledge protocol [5]. Though simulation
is defined to make non-black-box use of the verifier’s TM, it can be modified
to only make non-black-box use of the auxiliary input and running time of the
verifier, and not its TM. The property needed to define the simulator is the exis-
tence of an efficient (with bounded-length description) adversary. Then in the
security proof, the next-message function implemented by the adversary is used,
together with the ability to choose its random coins. This means that the secu-
rity proof works for any adversary (even an unbounded one) that computes the
same next-message function. Moreover, the zero-knowledge simulator for each of
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these adversaries would be exactly the same simulator as the one defined for the
efficient adversary. For concreteness, we may think that, given the code of one
efficient adversary, we define a simulator that works for each TM that computes
the same function, in the sense that we use the code in a black-box way; by just
fixing the random coins and taking partial outputs.

5.2 Impossibility of Semantic Knowledge Soundness for CH-NIZK

In this section we focus on semantic knowledge soundness of NIZK argument
in Fig. 2 for a large and useful class of algebraic languages. We show in the full
version [24] that when the adversary is algebraic, knowledge soundness holds in
the AGM for this NIZK argument. We ask for knowledge soundness in the stan-
dard model, and show that CH NIZK argument cannot be semantic knowledge
sound. The impossibility can be interpreted as an adversary explicitly violating
AGM rules by hiding some exponent about the statement, and thus making the
extractor fail. We refer to Remark 5, for more remarks on the interpretation of
this result, while we focus on technical details for the rest of this section.

We now show the impossibility proof of semantic knowledge soundness of CH
arguments for linear languages Llpar, where lpar = [M]1 is a constant matrix.
The proof of Theorem2 for general case of 1DL-friendly languages is provided
in the full version [24].

Lemma 2. Let Llpar be a linear language defined by constant matrix lpar :=
[M]1. The NIZK argument in Fig. 2 cannot be semantic knowledge sound for
Llpar under the SDL assumption.

Proof. We denote as wi components of the vector w. The description of the
canonical prover adversary on input (crs = [e]2) and random coins (s, t),
where t = (r, r′) is given in Fig. 6a. Let Extf be the semantic extractor for
the function f([e]2; (s, t)) = ([x]1, π), with π = ([a]1, [d]2) that is implemented
by the canonical prover adversary. By completeness of the NIZK argument,
Extf (e, [x,a]1, [d]2, t) outputs a valid witness w for [x]1 with overwhelming prob-
ability. Let us consider the (not polynomial-time) TM P∗ as in Fig. 6b that imple-
ments f . P∗ implements the same f of the canonical adversary and therefore its
output can be used to feed the same extractor Extf .

We now exploit Extf to define an adversary A against SDL assumption. On
input an SDL challenge ([w1]1, [w1]2), A is defined as in Fig. 6c. Since A computes
inputs of Extf exactly as P∗ does, they are correctly distributed, and hence A
breaks SDL with the same probability that Extf succeeds.

Theorem 2. Let Llpar be a 1DL-friendly algebraic language defined by language
parameters lpar := (M,θ). The NIZK argument in Fig. 2 cannot be semantic
knowledge sound for Llpar under the SDL assumption.

Remark 5. Since our reduction exploits the knowledge of the trapdoor to com-
pute a proof, (as a typical ZK simulator would do), it might seem like we are
arguing about extracting from the simulator. However this is not the case, at
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Fig. 6. Procedures for Fig. 2

least in general. We note that the procedure defined by the SDL adversary is
very different from the zero-knowledge simulator. First, the adversary knows
something that the simulator does not, which is [x]2. Moreover, the adversary
is able to compute [a]1 before computing [d]2 as the honest prover; while the
simulator, in order to compute a proof must compute d before. This can be also
seen as the fact that the honest prover and simulator do not implement the same
function. In fact, given the language parameter M ∈ Z

n×m
p the prover computes

a proof π as a function of x,w, r where r ∈ Z
n×1
p , while the simulator computes

a proof which is a function of random coins rSim ∈ Z
m×1
p . In order to invoke the

semantic extractor associated to the honest prover, we must have a function that
defines a relation between the two randomness. This, for instance, can be done
(inefficiently) only in some particular cases, like when M is a square invertible
matrix. Finally, the existence of such cases is evidence towards the impossibility
of extraction. In fact, given the latter case, since we have perfect zero-knowledge
for a relation that defines only true statement, given a proof from the NIZK
argument, it is impossible to distinguish the case when the prover was honest,
from the case when a powerful adversary just computes the discrete logarithm of
the CRS and runs the simulator. Furthermore, it is impossible to distinguish the
case that adversary had [w]2 and the trapdoor e, instead of w without relying
on knowledge-type assumptions.
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Abstract. Attribute-based signatures allow fine-grained attribute-
based authentication and at the same time keep a signer’s privacy as
much as possible. While there are constructions of attribute-based signa-
tures allowing arbitrary circuits or Turing machines as an authentication
policy, none of them is practically very efficient. Some schemes have long
signatures or long user secret keys which grow as the sizes of a policy
or attributes grow. Some scheme relies on a vast Karp reduction which
transforms public-key and secret-key operations into an arithmetic cir-
cuit. We propose an attribute-based signature scheme for bounded-size
arbitrary arithmetic circuits with constant-size signatures and user secret
keys without relying on such a Karp reduction. The scheme is based on
bilinear groups and is proven secure in the generic bilinear group model.
To achieve this we develop a new extension of SNARKs (succinct non-
interactive arguments of knowledge). We formalize this extension as con-
strained SNARKs, which can be seen as a simplification of commit-and-
prove SNARKs both in syntax and technique. In a constrained SNARK,
one can force a prover to use a witness satisfying some constraint by
announcing a succinct constraint string which encodes a constraint on
a witness. If a proof is valid under some constraint string, it is ensured
that the witness behind the proof satisfies the constraint that is behind
the constraint string. By succinct, we mean that a constraint string has a
constant length independent of the length of the plain description of the
constraint, and notably a verifier need not know the (potentially long)
plain description of the constraint for verifying a proof. We construct a
constrained SNARK in the generic bilinear group model.

1 Introduction

Attribute-based signatures are a powerful cryptographic primitive for privacy-
preserving authentication. They allow a signer in possession of a set of attributes
to sign on a message while revealing only the fact that his attributes satisfy a
public policy. More concretely, in the set-up phase, an authority generates a mas-
ter secret key together with some public parameters, and publicizes the public
parameter. Each signer having some attributes is issued a user secret key associ-
ated with his attributes. Using this user secret key he can generate a signature on
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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a message with a policy. Such a signature is publicly verifiable using the message
and the policy, and the fact that the verification passes discloses that the signer
of the signature has some attributes that satisfy the public policy. More impor-
tantly, any information on the attributes beyond this fact is completely hidden
from the verifier. This primitive has multiple applications, such as anonymous
credentials [19], attribute-based messaging [15], and secret leaking [15].

One of the active lines of research in attribute-based signatures is to extend
the class of the policies that a scheme supports. Research along this line includes
a scheme for non-monotone span programs [16], for bounded-depth circuits [20],
for unbounded circuits [17], for bounded-depth circuits from lattices [21], for
unbounded circuits from lattices (in the random oracle model) [8], for Turing
machines [18], and for unbounded arithmetic branching programs [7]. In this line
of research, two extremes of the classes of policies, that is, unbounded circuits
and Turing machines, are both achieved.

However, such schemes are not necessarily very efficient. For example, the
scheme for unbounded circuits [17] has a long signature size linear in the num-
ber of the NAND gates, while the scheme for Turing machines [18] has a signa-
ture size quadratic to the running time of the Turing machine. The two lattice-
based schemes for bounded-depth circuits [21] have constant-size signatures and
constant-size user secret keys, respectively, but these schemes do not achieve
constant-size user secret keys and signatures simultaneously. Namely, even in
these two schemes either keys or signatures grow depending on the sizes of a
policy or attributes. Besides, these two schemes only achieve relatively weaker
security notions.

Succinct functional signatures [4] use SNARKs (succinct non-interactive
arguments of knowledge) to have very short (succinct in their terminology) sig-
natures. A drawback of this scheme is to require a vast Karp reduction for
generating a signature, and thus it is not very efficient in running time.

One may think that this use of a Karp reduction is not a weakness of their
scheme, since a Karp reduction from a circuit to, say, a quadratic arithmetic
program is trivial. However, in their scheme, a SNARK needs to prove not only
the satisfiability of a policy by attributes but also the validity of a (secret) digital
signature on a (secret) encoding of the signer’s attributes. For the satisfiability of
a policy, the Karp reduction (from a circuit to a quadratic arithmetic program) is
straightforward. In contrast, for the validity of a signature, the Karp reduction is
not so easy to carry on, since we need to express many of public-key and secret-key
operations (modular arithmetic, elliptic curve operations, bilinear maps, hashing,
and so on) in a quadratic arithmetic program. Expressing public-key and secret-
key operations in a quadratic arithmetic program is very costly, and this hinders
practical applications of their functional signature scheme.

We summarize these schemes in Table 1.
This current situation is not satisfactory, since in applications of attribute-

based signatures policies and attributes can be both very large, and thus the
lack of constant-size keys and signatures restricts potential applications of
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Table 1. Comparison among expressive attribute-based signature schemes.

Policy Sig. sizea Key sizea Param. sizea Karp reduc. Assump Securityb

OT11 [16] Non-mono. SP O(�) O(d) O(d) DLIN

TLL14 [20] Bound.-depth cir O(1) O(|C|) O(|x|) MLM Selec. unforge

SAH16 [17] Unbound. cir O(|C|) O(1) O(|x|) SXDH

T17 (1) [21] Bound.-depth cir O(1) O(poly(|C|)) O(poly(|C|max)) SIS Weak. ano

T17 (2) [21] Bound.-depth cir O(poly(|x|)) O(1) O(|x|) SIS Selec. unforge

EK18 [8] Unbound. cir O(|C|) O(1) O(|x|) SIS and LWE in ROM

SKAH18 [18] Unbound. TM O(T 2) O(|Γ |) O(1) SXDH

DOT19 [7] Unbound. ABP O(m) O(n) O(1) SXDLIN

BGI14 [4] Unbound. cir O(1) O(1) O(1) Required zk-SNARKs

Ours Bound. cir O(1) O(1) O(|C|max log|C|max) GGM

a [1] The dependencies on the security parameter is ignored.
b [2] The blanks mean the “full” security, i.e., the same level of security as in the definition in this paper.

Non-mono. SP : Non-monotone span programs.
Bound.-depth cir .: Bounded-depth circuits (the bound is fixed at the set-up phase).
Unbound. cir .: Circuits with no size bounds.
Unbound. TM .: Turing machines with no bounds on the descriptions and time/space complexity.
Unbound. ABP : Unbounded arithmetic branching programs.
Bound. cir .: Bounded-size circuits (the bound is fixed at the set-up phase).
�: The number of the rows of the non-monotone span program.
d: The number of the variables of non-monotone span programs.
|C|: The size of the circuit.
|x|: The number of the input wires of circuits.
|C|max: The upper bound for the sizes of circuits.
T : The running time of the Turing machine.
|Γ |: The cardinality of the tape alphabet.
m: The number of the vectors representing the arithmetic span programs.
n: The length of the input to arithmetic span programs.
DLIN : The decision linear assumption over pairing groups.
MLM : Multilinear maps.
SXDH : The symmetric external Diffie-Hellman assumption.
SIS : The short integer solution assumption.
LWE : The learning with errors assumption.
ROM : The random oracle model.
SXDLIN : The symmetric external decision linear assumption.
zk-SNARKs: Zero-knowledge SNARKs.
GGM : The generic bilinear group model.
Selec. unforge.: Selective unforgeability.
Weak ano.: Weak anonymity.

attribute-based signatures. The only known scheme that avoids long signature
and user secret key, i.e., the scheme by Boyle et al. [4], suffers from a Karp
reduction in the above sense.

1.1 Our Contribution

In this paper, we construct the first succinct attribute-based signature scheme
for bounded-size arithmetic circuits without Karp reductions. Here, by bounded-
size circuits, we mean that the family of arbitrary circuits with polynomially
upper-bounded sizes where the polynomial is specified at the set-up phase of
attribute-based signatures. The sizes of user signing keys and signatures are
independent of the size of the circuits and the bound of the circuit size. A
drawback of our construction is that the public parameters grow linearly in the
upper bound of circuit sizes. The security of the scheme is proven in the generic
bilinear group model.

When instantiated in asymmetric bilinear groups, our scheme has a signa-
ture size of 18 G1 elements and 14 G2 elements. A signing key includes three G1

elements and one G2 elements. (For details on the instantiation, see Sect. 4.3.)
Compared with the attribute-based signature schemes supporting arbitrary cir-
cuits except for Boyle et al.’s (i.e., Sakai et al.’s [17] and El Kaafarani and
Katsumata’s [8]), our scheme drastically reduces the size of signatures.

Compared with Boyle et al.’s scheme [4] (instantiated with Groth’s
SNARK [11] and a standard RSA signature scheme), the number of exponen-
tiations in our signing algorithm is roughly 300 times fewer than that of Boyle
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et al.’s. Our signing algorithm includes roughly 100 exponentiations plus addi-
tional ones whose number is dependent on the size of the circuit. In contrast,
the signing algorithm of Boyle et al.’s includes roughly 330,000 exponentiations
plus almost the same additional exponentiations as ours. This estimation comes
from (i) xJsnark’s optimization [13, Table III], in which verifying a standard
signature, e.g., an RSA exponentiation and hashing, requires about 110,000 con-
straints of a quadratic arithmetic program, and (ii) the estimation that Groth’s
SNARK requires roughly three exponentiations for one constraint.1

Table 1 compares our scheme with the above-mentioned existing schemes.
Compared with others, our scheme achieves another trade-off between expres-
siveness of policies and efficiency. For example, while our scheme can only accept
bounded-size circuits as a policy, it can avoid Karp reductions. In contrast, the
functional signature scheme accepts unbounded-size circuits as a policy at the
cost of a Karp reduction. In particular, our scheme is the first scheme that
achieves constant-size signatures and user secret key while simultaneously avoid-
ing Karp reductions for public-key and secret-key operations.

In order to make a signature succinct and to avoid a Karp reduction, we com-
bine SNARKs and structure-preserving cryptography [1]. Our first observation
is that some SNARKs have verification equations expressed as pairing-product
equations [12], which leads us to the possibility of proving the knowledge of a
SNARK in a structure-preserving manner. Remember that one of the general
approaches to construct an expressive attribute-based signature scheme is to sign
on attributes and prove the knowledge of the signature together with proving
the satisfiability of a policy by the same attributes [15,17,18]. We separately
construct these two proofs by Groth-Sahai proofs [12] and SNARKs.

To combine these two proofs, we need to extend the syntax of SNARKs.
We name it as constrained (preprocessing)2 SNARKs.3 We formalize the syntax
and security notion of constrained SNARKs as an independent cryptographic
primitive for a modular construction of succinct attribute-based signatures. Con-
strained SNARKs allow a third party to force a prover to use a witness of some
type by publicizing a constraint string which is generated from a constraint on
a witness. A proof is verified under the CRS and a constraint string. If a proof
is valid under a constraint string, the witness behind the proof is ensured to

1 This instantiation is optimized for the signature length. Boyle et al.’s construction
requires the SNARK to be “trapdoor extractable” [10], but we ignore this require-
ment and assume that Groth’s SNARK has this property (Instead, to avoid this
extra assumption, one may attach an encryption of the part of the witness that
needs to be extracted to a signature). Furthermore, Groth’s SNARK is not neces-
sarily optimized for RSA exponentiation, as it only supports arithmetic circuits of
a prime modulus. Still, we adopt this SNARK for optimization for the signature
length.

2 A (constrained) SNARK is preprocessing if the sizes of the statements that can be
proved are bounded at the time of generating a common reference string (CRS).

3 Constrained SNARKs can be seen as a simplification of commit-and-prove
SNARKs [5]. For a comparison between these two types of formalization, see
Sect. 1.3.
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satisfy the constraint behind the constraint string. The point is that the con-
straint string is succinct, namely, the size of a constraint string is independent
of the size of the constraint from which the constraint string is generated (up to
a factor polylogarithmic to the maximal size of constraints). This succinctness
enables us to have a succinct attribute-based signature scheme when we com-
bine constrained SNARKs with standard non-interactive zero-knowledge proofs.
In our implementation of constrained SNARKs, the class of constraints is rel-
atively restricted, namely, the class of prefix constraints (a witness satisfies a
constraint if and only if it has a specific prefix). We remark that while this is
less expressive, this class of constraints is sufficient for our purpose.

Formally, we provide a generic construction of attribute-based signatures
from constrained SNARKs, non-interactive witness-indistinguishable extractable
proofs, and digital signatures. These ingredients are all instantiated using asym-
metric bilinear groups, and their security is proven in the generic bilinear group
model. Furthermore, since the constrained SNARK has succinct proofs and suc-
cinct constraint strings, the resulting attribute-based signature scheme is also
succinct (in terms of the user secret key and signature sizes).

1.2 Difficulty and Our Technique

In this subsection, we explain the main obstacle in our construction, that is, how
to avoid Karp reductions.

Let us remind the readers of one of the general approaches to construct
an attribute-based signature scheme [15,17,18]. In this approach, an authority
sets up a standard signature scheme and a non-interactive zero-knowledge proof
system. The verification key and the CRS constitute the public parameter, and
the signing key is the master secret key. To issue a user signing key for some
attributes, the authority generates a signature on the attributes, and issues this
signature as a user signing key. To issue an attribute-based signature, a user
proves the knowledge of a signature that is valid on some attributes and proves
that the same attributes satisfy the policy.

Dividing a Proof. The first step toward succinct attribute-based signatures
without Karp reductions is observing the fact that the first statement, the valid-
ity of a signature, can be efficiently proven by Groth-Sahai proofs, while the
other statement, the satisfiability of the policy, can be efficiently proven by some
SNARKs. Implementing this idea is not straightforward, because it is non-trivial
to prove the consistency between two proofs. By consistency between the two
proofs, we intend that the witnesses behind the proofs, the one behind the Groth-
Sahai proof and the one behind the SNARK, are the same. If this consistency is
not ensured by any means, it results in an insecure scheme.

A naive way to ensure consistency is to add a third non-interactive proof.
Namely, this third proof proves that the Groth-Sahai proof and the SNARK are
computed correctly by proving the knowledge of the witnesses behind them. In
addition, the third proof simultaneously proves that the two sets of attributes
(one is included in the witness of the Groth-Sahai proof, and the other is included
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in the witness of the SNARK) are identical. However, this approach does not
work well. For example, let us consider instantiating the third proof by SNARKs.
In that case, while it can achieve succinctness, it again introduces a Karp reduc-
tion. This is because the well-formedness Groth-Sahai proofs and SNARKs can
be expressed as pairing product equations, but no known SNARKs can deal
with such equations directly. Therefore, we need to express such equations in a
Boolean circuit. Another choice for instantiating the third proof is to use Groth-
Sahai proofs. While this may eliminate the need for a Karp reduction, it happens
not to be succinct, since the size of the witness of the SNARK grows as the sizes
of the policy and the attributes grow.

Constraining a SNARK. To overcome this difficulty, we introduce a mecha-
nism to constrain the witness of a SNARK to follow a prescribed constraint, in
which a prover is unable to generate a proof without following the prescribed
constraint. We name SNARKs with this mechanism as constrained SNARKs.
We remark that this formalism can be seen as a simplification of the syntax
and technique of commit-and-prove SNARKs [5,6,9] but for efficiency we devi-
ate from their formalization. More precisely, using constrained SNARKs, anyone
can generate a constraint string which encodes a prescribed constraint on a wit-
ness. A proof is verified under the CRS and such a constraint string. If a proof
is valid under the CRS and a constraint string, it ensures that the prover knows
a witness which is valid for the statement and simultaneously satisfies the pre-
scribed constraint. An important property of constrained SNARKs is that the
prescribed constraint can be fixed before fixing the statement to be proven.
More importantly, a constraint string should be succinct for the reasons men-
tioned later (If a constraint string is not succinct, the construction is trivial).
Moreover, the verifier does not need to know the constraint in the plain form,
but only needs to know its succinct encoding, namely, the constraint string.

More formally, constrained SNARKs are used in the following scenario. In
the set-up phase, a third party generates a CRS. After seeing the CRS, given a
constraint on a witness, any party can generate a constraint string. Given the
CRS, the constraint string, a statement, and a witness satisfying the constraint,
a prover can generate a proof. The proof is verified using the CRS, the constraint
string, and the statement. If a proof is verified as valid, this fact ensures that
the prover knows a witness that is for the statement and satisfies the constraint
that is behind the constraint string.

Replacing the above use of a SNARK with a constrained SNARK, we can
establish consistency between a Groth-Sahai proof and a (constrained) SNARK.
For this purpose, we use the equality constraints (which is a subclass of the prefix
constraints) as the class of constraints for the constrained SNARK. Namely, a
constraint is described by attributes, and some given witness (attributes) satisfies
a constraint, if and only if they are identical. With these constraints, we can
implement attribute-based signatures as follows. We let an authority generate
a CRS of Groth-Sahai proofs, a CRS for the constrained SNARKs, and a key
pair of a signature scheme. To issue a user signing key, the authority computes a
constraint string for the constraint described by the user’s attributes. Then the
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authority signs on that constraint string, and issues the user with the constraint
string and the signature as the user signing key. Given the constraint string and
the signature on it, the user generates an attribute-based signature as follows.
The user firstly generates a SNARK which proves that his attributes satisfy the
policy. Note that this SNARK is valid under the constraint string given as a
part of the user signing key. Then the user generates a Groth-Sahai proof which
proves that (i) the knowledge of a SNARK that is valid under a constraint string
and (ii) the knowledge of a signature on that constraint string. The user issues
this Groth-Sahai proof as an attribute-based signature.

The important point for the security is that the Groth-Sahai proof ensures
that the constraint strings used in the above two statements (i) and (ii) are
identical. By this, if a malicious user tries to use different attributes than his
own attributes for a witness of a SNARK, the malicious user needs to “disobey”
the constraint string that was signed on by the authority (or needs to forge a
signature on a maliciously chosen constraint string).

We remark that the succinctness of constraint strings is also important. This
is because an attribute-based signature includes a Groth-Sahai proof with wit-
ness a constraint string. Therefore, an attribute-based signature grows linearly to
the size of a constraint string. Thus, to have a succinct attribute-based signature,
we need to have a succinct constraint string.

We also remark that in many SNARKs which can prove circuit satisfiability
a witness is divided into two parts: The assignment to input wires and that of
internal wires. If we implement a constraint mechanism into such a SNARK and
apply it to attribute-based signatures, it is convenient to be able to constrain only
the input-wire part. This is because even a single user may use different circuits
for different signatures, and then the user may use different witnesses for different
signatures. Such a partial constraint is expressed as a prefix constraint. Namely,
a constraint is described by assignment to input wires. A witness (assignment to
input wires and that of internal wires) satisfies a constraint if these two sets of
assignment to input wires are equal. Such a constraint can be seen as a “prefix”
constraint.

1.3 Related Work

On Expressive Attribute-Based Signatures. The research of attribute-
based signatures was initiated by Maji, Prabhakaran, and Rosulek [15]. They
proposed three constructions (all on bilinear groups), which have different advan-
tages and disadvantages. The first two schemes rely on the approach of proving
the knowledge of signature on attributes.

Among the schemes on bilinear groups, this approach has been the most effec-
tive way to construct a very expressive attribute-based signature scheme, despite
its relative inefficiency. For example, Sakai, Attrapadung, and Hanaoka [17] and
Sakai et al. [18] both use this approach to construct schemes for unbounded cir-
cuits and Turing machines, respectively. These two schemes obtain their expres-
siveness at the cost of very long signatures (and user signing keys for the latter),
as mentioned in Table 1.
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A different and complemental approach is to base an attribute-based sig-
nature scheme on (the techniques of) attribute-based encryption scheme, and,
more concretely, those of dual system encryption. The Okamoto-Takashima
scheme [16] and the Datta-Okamoto-Takashima scheme [7] fall into this cat-
egory. In both schemes, both the signature and user secret key sizes are not
fully dependent on the complexity parameters of policies. For example, in the
Okamoto-Takashima scheme (see Table 1), the complexity of a policy is mea-
sured by the parameters � and d but the signature and user secret key sizes are
dependent on only � and d, respectively. In addition, these two schemes allow us
to use large-universe policies.

The currently known lattice-based schemes also have the above contrast.
El Kaafarani and Katsumata used a technique similar to that of Sakai, Attra-
padung, and Hanaoka [17] (for an attribute-based signature scheme for circuits),
that is, to commit to wire assignment and prove the relations imposed on wires
by each gate. In contrast, Tsabary’s scheme [21] is very specific to lattice assump-
tions but obtains performance and assumption advantages.

If we are willing to employ multilinear maps, we can adopt the scheme by
Tang, Li, and Liang [20].

Boyle, Goldwasser, and Ivan [4] introduced a related primitive called func-
tional signatures. Notably, one of their instantiations of functional signatures
achieves succinctness, however, this instantiation relies on a Karp reduction,
which we want to avoid.

On SNARKs Related to Constrained SNARKs. Commit-and-prove
SNARKs (Geppetto [6], LegoSNARK [5], implicitly Fiore et al. [9], also implic-
itly Agrawal et al. [3], etc.) allow a prover to commit to (a part of) a witness
and later to prove that the witness that was committed to satisfies a statement
(together with the rest of a witness). This type of abstraction can replace con-
strained SNARKs in our construction, however, the abstraction of the commit-
and-prove SNARKs is rather too rich for our purpose. More concretely, while
commit-and-prove SNARKs provide the zero-knowledge property in general, our
construction does not require that constrained SNARKs (and commit-and-prove
SNARKs) be zero-knowledge. Instead, privacy is obtained by wrapping a con-
strained SNARK by a Groth-Sahai proof.4 In fact, constrained SNARKs can be
seen as a simplification of commit-and-prove SNARKs. This simplification is not
only of the syntax but our construction can be seen as an adoption of Geppetto’s
idea to Groth’s SNARK. For a detailed discussion, see the last paragraphs of
Sect. 3.3.

LegoSNARK [5] uses a commit-and-prove technique to combine different
proof systems for different models of computations (arithmetic/Boolean circuits,
state machines, random access machines, etc.). Since this goal of LegoSNARK

4 The point that we need to “wrap” a constrained SNARK is to avoid the following
linkability issue: In our construction, a signer reuses his constraint string that encodes
his attributes and was signed on by the authority every time he wants to issue
an attribute-based signature; thus, making this constraint string public allows an
adversary to track all the attribute-based signatures issued by him.
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is exactly what our construction wants to achieve, i.e., combining proof sys-
tems for arithmetic circuits and pairing-product equations, then one may think
that LegoSNARK can be used to construct an attribute-based signature scheme
without Karp reductions. However, this is not straightforward. This is because
LegoSNARK does not support pairing-based statements, which are vital for let-
ting signers prove the knowledge of a signature on attributes.

Agrawal et al. [3] also presented a method for proving a “composite” state-
ment that consists of both arithmetic equations and group-based equations.
Again, one may think that this can be used for our purpose. However, this
is also not straightforward. The reason is that their method uses elliptic-curve
groups of a large order (for dealing with an addition formula of an elliptic curve
in the exponent and in particular dealing with modular reductions involved in
computing the formula). Thus the resulting attribute-based signature scheme is
not very efficient.

Fiore et al. [9] introduced the abstraction of online-offline verification of
SNARKs. This abstraction is quite similar to our abstraction of constrained
SNARKs. In our terminology, their formulation additionally allows a malicious
prover to generate a constraint string maliciously and further requires that the
corresponding extractor be able to extract a consistent constraint in the plain
form. In our application, we do not need this stronger knowledge soundness, and
hence we adopt our weaker version of knowledge soundness.

2 Preliminary

We give the necessary definitions used in this paper. We omit the standard
definitions of bilinear groups, the generic bilinear groups, signatures, and a hash
function family for the space limitation.

Witness-Indistinguishable and Extractable Proof Systems. A non-
interactive proof system consists of the following algorithms.

WI.Setup(1λ) → crs. The setup algorithm takes as input a security parameter 1λ

and outputs a CRS crs.
WI.Prove(crs, x, w) → π. The proving algorithm takes as input a CRS crs, a

statement x, and a witness w and outputs a proof π.
WI.Verify(crs, x, π) → 0 or 1. The verification algorithm takes as input a CRS

crs, a statement x, and a proof π and outputs a bit 0 or 1.
WI.ExtSetup(1λ) → (crs, xk). The extractable setup algorithm takes as input a

security parameter 1λ and outputs a CRS crs and an extraction trapdoor xk.
WI.Extract(crs, xk, x, π) → w. The extraction algorithm takes as input a CRS

crs, an extraction trapdoor xk, a statement x, and a proof π and outputs a
witness w.

We say that (WI.Setup,WI.Prove,WI.Verify,WI.ExtSetup,WI.Extract) is a non-
interactive proof system for relation R, if for all λ ∈ N, all crs ← WI.Setup(1λ), all
(x,w) ∈ R, and all π ← WI.Prove(crs, x, w), it holds that WI.Verify(crs, x, π) = 1.

We define two security requirements for non-interactive proofs, witness indis-
tinguishability and extractability.
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Definition 1. A non-interactive proof system is witness indistinguishable, if for
all probabilistic polynomial-time adversaries A it holds that

2 ·
∣
∣
∣
∣
Pr[b ← {0, 1}; crs ← WI.Setup(1λ); b′ ← AOb(crs) : b = b′] − 1

2

∣
∣
∣
∣

is negligible in λ where Ob is an oracle that given (x,w0, w1) returns π ←
WI.Prove(crs, x, wb) if (x,w0), (x,w1) ∈ R and returns ⊥ if (x,w0) �∈ R or
(x,w1) �∈ R.

Definition 2. A non-interactive proof system is extractable, if for all probabilis-
tic polynomial-time adversaries A it holds that

|Pr[crs ← WI.Setup(1λ); b′ ← A(crs) : b′ = 1]
−Pr[(crs, xk) ← WI.ExtSetup(1λ); b′ ← A(crs) : b′ = 1]|

is negligible in λ, and for all probabilistic polynomial-time adversaries A it holds
that

Pr

⎡

⎢
⎢
⎣

(crs, xk) ← WI.ExtSetup(1λ);

(x∗, π∗) ← A(crs);w∗ ← WI.Extract(crs, xk, x∗, π∗)

: WI.Verify(crs, x∗, π∗) = 1 ∧ (x∗, w∗) �∈ R

⎤

⎥
⎥
⎦

is negligible in λ.

Attribute-Based Signatures. An attribute-based signature scheme consists
of the following algorithms.

ABS.Setup(1λ) → (pp,mk). The setup algorithm takes as input a security param-
eter 1λ and outputs a public parameter pp and a master secret key mk.

ABS.Kg(pp,mk, u) → uk. The key generation algorithm takes as input a public
parameter pp, a master secret key mk, and attributes u and outputs a user
secret key uk.

ABS.Sign(pp, u, uk, C,m) → Σ. The signing algorithm takes as input a public
parameter pp, attributes u, a user secret key uk, a policy C, and a message
m and outputs an attribute-based signature Σ.

ABS.Verify(pp, C,m,Σ) → 0 or 1. The verification algorithm takes as input
a public parameter pp, a policy C, a message m, and an attribute-based
signature Σ and outputs a bit 0 or 1.

We say that (ABS.Setup,ABS.Kg,ABS.Sign,ABS.Verify) is an attribute-based
signature scheme, if for all λ ∈ N, all (pp,mk) ← ABS.Setup(1λ), all sets
of attributes u, all uk ← ABS.Kg(pp,mk, u), all policies C satisfying C(u) =
1, all messages m, and all Σ ← ABS.Sign(pp, u, uk, C,m), it holds that
ABS.Verify(pp, C,m,Σ) = 1.

We define two security requirements for attribute-based signatures,
anonymity and unforgeability.
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Definition 3. An attribute-based signature scheme is anonymous, if for all
probabilistic polynomial-time stateful adversaries A it holds that

2 ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎢
⎢
⎣

b ← {0, 1}; (pp,mk) ← ABS.Setup(1λ);

(u0, u1, C,m) ← A(pp,mk); uk ← ABS.Kg(pp,mk, ub);

Σ∗ ← ABS.Sign(pp, ub, uk, C,m); b′ ← A(Σ∗)

: b = b′

⎤

⎥
⎥
⎥
⎥
⎦

− 1
2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

is negligible in λ where A is required to output u0, u1, and C satisfying that
C(u0) = C(u1) = 1.

Definition 4. An attribute-based signature scheme is unforgeable, if for all prob-
abilistic polynomial-time adversaries A it holds that

Pr

[

(pp,mk) ← ABS.Setup(1λ); (C∗,m∗, Σ∗) ← AO(pp)

: ABS.Verify(pp, C∗,m∗, Σ∗) = 1 ∧ ∧

u∈K(C∗(u) �= 1) ∧ (C∗,m∗) �∈ Q

]

is negligible in λ. The oracle O records pairs (u, uk) of attributes u and a corre-
sponding user signing key uk in which the record is initially empty and accepts
the following two types of queries:

1. When a key generation query u is issued by A, the oracle searches for a
recorded tuple (u, uk) for some uk and returns uk if the tuple is found; if not
found, the oracle computes uk ← ABS.Kg(pp,mk, u), records the tuple (u, uk),
and returns uk;

2. when a signing query (u,C,m) is issued by A, the oracle searches for a
recorded tuple (u, uk) for some uk; it computes uk ← ABS.Kg(pp,mk, u) and
records (u, uk) if not found; it computes Σ ← ABS.Sign(pp, u, uk, C,m), and
returns Σ.

The set K is the set of attributes u that is issued as a key generation query, and
the set Q is the set of the tuples (C,m) that is issued as a signing query (u,C,m)
with some u.

Universal Arithmetic Circuits. A universal arithmetic circuit is an arith-
metic circuit over a field F that takes as input a description C of an arithmetic
circuit over the same field F and an input u for C and outputs C(u). A uni-
versal arithmetic circuit can be constructed by generalizing a Boolean univer-
sal circuit [22,23]. Such a generalization was briefly mentioned by Lipmaa et
al. [14]. In this paper, sometimes we need to mention the wire assignment v for
a universal arithmetic circuit U . To explicitly mention this, we use the notation
U(C, u; v) = y, which denotes that the universal arithmetic circuit U outputs
y when evaluated on C and u, and v is the wire assignment of the universal
arithmetic circuit U for that evaluation.
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3 Constrained SNARKs

In this section, we firstly describe a technical overview of our construction of
constrained SNARKs. Then we describe the syntax and requirements of con-
strained (preprocessing) SNARKs as well as our construction of it. While our
syntax and technique can be seen as a simplification of those of commit-and-
prove SNARKs [5,6,9], we do not follow their formalization for efficiency rea-
sons.

3.1 Technical Overview

In this subsection, we explain a technical overview of our construction of con-
strained SNARKs. We base our constrained SNARK on Groth’s SNARK [11].
Recall that Groth’s SNARK can prove satisfiability of the following equation:

( m∑

i=0

aiui(X)
)

·
( m∑

i=0

aivi(X)
)

≡
m∑

i=0

aiwi(X) mod t(X) (1)

where X is an indeterminate, ui(X), vi(X), and wi(X) ∈ Zp[X] are public
polynomials of degree n − 1 and t(X) ∈ Zp[X] is a public polynomial of degree
n. The coefficients a0, . . . , a�′ (�′ < m) are a statement, and a�′+1, . . . , am are
a witness.

We reinterpret this assignment of coefficients to a statement and a witness
as below. We regard a0, . . . , a� (� < �′) as a statement and a�+1, . . . , a�′ ,
a�′+1, . . . , am as a witness, and regard a�+1, . . . , a�′ as the prefix part. This
way, the prefix part will be treated as a public statement by Groth’s SNARK .
This can be slightly confusing at first glance but simplifies the construction. This
reinterpretation leaks the prefix of the witness to the verifier. This does not cause
a problem, because of two reasons. Firstly, the existence of a prefix constraint
itself leaks the information of the prefix of the witness on its own. Secondly, we do
not intend to achieve the zero-knowledge property in the constrained SNARK,
because, in our construction of attribute-based signatures, we wrap a SNARK
by a Groth-Sahai proof. This use of a Groth-Sahai proof ensures the anonymity
of the attribute-based signature scheme.

Now we provide a quick and necessary review of Groth’s SNARK . In Groth’s
SNARK, the verifier checks the following equation for verifying a proof π =
(A,B,C):

e(A,B)

= e([α]1, [β]2) · e

([ �′
∑

i=0

ai
βui(x) + αvi(x) + wi(x)

γ

]

1

, [γ]2

)

· e(C, [δ]2)

where e : G1 ×G2 → GT is a bilinear map, [a]1 = ga for some generator g ∈ G1,
[b]2 = hb for some generator h ∈ G2, and [α]1, [β]2, [γ]2, [δ]2, and [(βui(x) +
αvi(x) + wi(x))/γ] for i = 1, . . . , �′ are included in the CRS .
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We divide the summation in the above verification equation into the product
of the following two group elements:

[ �∑

i=0

ai
βui(x) + αvi(x) + wi(x)

γ

]

1

·
[ �′

∑

i=�+1

ai
βui(x) + αvi(x) + wi(x)

γ

]

1

.

Noticing that the first group element can be computed from the statement (of
our constrained SNARK) and that the second group element can be computed
from the constraint, we let the constraint string be

ρ =
[ �′

∑

i=�+1

ai
βui(x) + αvi(x) + wi(x)

γ

]

1

.

We first remark that this obviously achieves succinctness. A constraint
(a�+1, . . . , a�′) is compressed into a constraint string of just a single group ele-
ment. The size of a constraint string does not grow depending on the size of
statements, witnesses, and constraints.

We then give intuition on why this compression is secure. The following intu-
ition does not directly correspond to the actual proof. However, since our formal
proof seems to hide intuition on why our compression is secure, we elaborate a
more intuitive explanation below (by deviating from the formal proof).

The very basic intuition is seeing the above compression as a commitment to
(a�+1, . . . , a�′), albeit it is not hiding. Note that we know a “genuine” opening
(a�+1, . . . , a�′) of the above commitment. Then if an adversary produces a proof
whose corresponding witness does not satisfy the genuine constraint, it can be
plausible for the adversary to have made use of another opening (a∗

�+1, . . . , a
∗
�′) of

the very same commitment. Furthermore, in the generic bilinear group model,
if the adversary has made use of a different opening, we can hope that the
adversary’s opening can be extracted.

Therefore, if the above commitment is binding, we can hope for the security
of the constrained SNARK . A subtlety is that this commitment is not always
binding. Alternatively, we claim as follows: If the adversary produces two open-
ings (a�+1, . . . , a�′) and (a∗

�+1, . . . , a
∗
�′), such a pair of openings is benign in the

sense that (a0, . . . , a�, a�+1, . . . , a�′ , a�′+1, . . . , am) satisfies Eq. (1) if and only if
so does (a0, . . . , a�, a

∗
�+1, . . . , a

∗
�′ , a�′+1, . . . , am). To see this, assuming that there

are two openings (a�+1, . . . , a�′) and (a∗
�+1, . . . , a

∗
�′) satisfying that

[ �′
∑

i=�+1

ai
βui(x) + αvi(x) + wi(x)

γ

]

1

=
[ �′

∑

i=�+1

a∗
i

βui(x) + αvi(x) + wi(x)
γ

]

1

,
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let us consider the following two cases.

– The polynomial

�′
∑

i=�+1

(ai − a∗
i )

βui(x) + αvi(x) + wi(x)
γ

(2)

is identically zero, when we see α, β, γ, and x as indeterminates.
– The same polynomial is not identically zero, when we see α, β, γ, and x as

indeterminates.

Let us consider the first case. Due to the existence of α and β factors, this case
can be rephrased as follows: The polynomials

�′
∑

i=�+1

(ai − a∗
i )ui(x),

�′
∑

i=�+1

(ai − a∗
i )vi(x),

�′
∑

i=�+1

(ai − a∗
i )wi(x)

are all identically zero, when we see x as an indeterminate. In this case, even
though (a�+1, . . . , a�′) �= (a∗

�+1, . . . , a
∗
�′), these two openings are benign in the

above sense. This is because, in Eq. (1), we can substitute the appearance of

�′
∑

i=�+1

aiui(X),
�′

∑

i=�+1

aivi(X),
�′

∑

i=�+1

aiwi(X)

with
�′

∑

i=�+1

a∗
i ui(X),

�′
∑

i=�+1

a∗
i vi(X),

�′
∑

i=�+1

a∗
i wi(X)

without changing the (un)satisfiability of Eq. (1). Then in the first case any
two different openings are benign. The second case, in fact, occurs only with
negligible probability. This is because of the fact that Eq. (2) is not identically
zero as a polynomial of α, β, γ and x, but is equal to zero for random assignment
to α, β, γ, and x. This fact implies that such random assignment is a root of the
polynomial Eq. (2). Since the degree of this polynomial is small, the probability
that random assignment becomes a root of such a polynomial is negligible, due
to the Schwartz-Zippel lemma.5

More General Cases. Finally, we remark that it can be the case that adversary
may use a malicious opening (a∗

0, . . . , a
∗
� , a

∗
�+1, . . . , a

∗
�′) of a commitment

ρ =
[ �′

∑

i=�+1

ai
βui(x) + αvi(x) + wi(x)

γ

]

1

5 One may think that the adversary knows the assignment to the polynomial before
fixing a polynomial, and thus we cannot apply the Schwartz-Zippel lemma. This is
not the case in the formal security proof. In the formal proof, which is carried on
in the generic bilinear group model, the group operation oracles are simulated with
polynomials and indeterminates, and the assignment is chosen after the adversary
fixes a polynomial in question.
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satisfying

ρ =
[ �∑

i=0

a∗
i

βui(x) + αvi(x) + wi(x)
γ

]

1

·
[ �′

∑

i=�+1

a∗
i

βui(x) + αvi(x) + wi(x)
γ

]

1

to “cancel out” the statement term in the verification equation. However, even
to that case the following argument applies with an appropriate modification.
Remember that the verification equation may have a form of

e(A,B) = e([α]1, [β]2) · e

([ �∑

i=0

ai
βui(x) + αvi(x) + wi(x)

γ

]

1

, [γ]2

)

·(ρ, [γ]2) · e(C, [δ]2).

Here, (the unconstrained part of) the witness w = (a∗
�′+1, . . . , a

∗
m) that

is extracted from the adversary’s proof is consistent with (a0 + a∗
0, . . . , a� +

a∗
� , a

∗
�+1, . . . , a

∗
�′). We claim that even in that case w is a witness for

(a0, . . . , a�, a
∗
�+1, . . . , a

∗
�′) if and only if w is one for (a0 + a∗

0, . . . , a� +
a∗

� , a
∗
�+1, . . . , a

∗
�′). This is because in that case the equalities

�∑

i=0

(ai − (ai + a∗
i ))ui(x) +

�′
∑

i=�+1

(ai − a∗)ui(x) = 0,

�∑

i=0

(ai − (ai + a∗
i ))vi(x) +

�′
∑

i=�+1

(ai − a∗)vi(x) = 0,

�∑

i=0

(ai − (ai + a∗
i ))wi(x) +

�′
∑

i=�+1

(ai − a∗)wi(x) = 0,

hold for an indeterminate x. Thus we can substitute
∑�

i=0 aiui(x) +
∑�′

i=�+1 aiui(x) with
∑�

i=0(ai + a∗
i )ui(x) +

∑�′

i=�+1 a∗
i ui(x) and the same holds

for vi(x) and wi(x).

3.2 Syntax and Security Definitions of Constrained SNARKs

The syntax and security definitions of constrained SNARKs are as follows.
Let R be the algorithm that takes as input a security parameter 1λ and

outputs a tuple (R,P, z) where R is an NP relation, P is a predicate on the
tuples (r, w) of a constraint r and a witness w, and z is an auxiliary input. A
constrained SNARK consists of the following algorithms.

cSNARK.Setup(R,P ) → σ. The setup algorithm takes as input an NP relation
R and a constraint predicate P and outputs a CRS σ.

cSNARK.Constrain(σ, r) → ρ. The deterministic constraining algorithm takes as
input a CRS σ, and a constraint r and outputs a constraint string ρ.
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cSNARK.Prove(σ, r, x, w) → π. The proving algorithm takes as input a CRS σ,
a constraint r, a statement x, and a witness w and outputs an argument π.

cSNARK.Verify(σ, ρ, x, π) → 0 or 1. The verification algorithm takes as input a
CRS σ, a constraint string ρ, a statement x, and an argument π and outputs
a bit 0 or 1.

We say that (cSNARK.Setup, cSNARK.Constrain, cSNARK.Prove, cSNARK.
Verify) is a constrained SNARK for R, if for all (R,P, z) ← R(1λ), all σ ←
cSNARK.Setup(R,P ), all constraints r, all (x,w) ∈ R satisfying (r, w) ∈ P ,
ρ ← cSNARK.Constrain(σ, r), and all π ← cSNARK.Prove(σ, r, x, w), it holds
that cSNARK.Verify(σ, ρ, x, π) = 1.

We require a constrained SNARK to be constrained knowledge sound and
succinct, which we define below.

Definition 5. We say that a constrained SNARK (cSNARK.Setup, cSNARK.
Constrain, cSNARK.Prove, cSNARK.Verify) is constrained knowledge sound if for
all non-uniform polynomial-time adversaries A there exists a non-uniform
polynomial-time extractor XA satisfying that

Pr

⎡

⎢
⎢
⎣

(R,P, z) ← R(1λ);σ ← cSNARK.Setup(R,P );

((x, r, π);w) ← (A‖XA)(R,P, z, σ); ρ ← cSNARK.Constrain(σ, r)

: cSNARK.Verify(σ, ρ, x, π) = 1 ∧ ¬((x,w) ∈ R ∧ (r, w) ∈ P )

⎤

⎥
⎥
⎦

is negligible.

This definition requires that whenever an adversary outputs a valid SNARK, its
corresponding extractor can output a witness. The important point is that the
extracted witness should satisfy both the relation R and the extra constraint
imposed by r.

Definition 6. We say that a constrained SNARK (cSNARK.Setup, cSNARK.
Constrain, cSNARK.Prove, cSNARK.Verify) is succinct if there is a polynomial
poly(λ) satisfying that for all λ ∈ N, all (R,P, z) ← R(1λ), all σ ←
cSNARK.Setup(R,P ), all constraints r, all (x,w) ∈ R satisfying (r, w) ∈ P ,
all ρ ← cSNARK.Constrain(σ, r) and π ← cSNARK.Prove(σ, r, x, w) it holds that
|ρ| ≤ poly(λ + log �x + log �r) and |π| ≤ poly(λ + log �x + log �r) where �x and �r

are the maximum sizes of the descriptions of the statements x and the constraints
r that R and P can take as input, respectively.

We remark that as mentioned in the introduction, we do not require a con-
strained SNARK to be zero-knowledge. This is because we hide the knowledge on
a witness and a constraint by wrapping a SNARK with another non-interactive
proof which is witness indistinguishable.
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3.3 Constrained SNARKs for QAPs and Prefix Constraints

In this subsection, we describe our construction of a constrained SNARK .
The relation R and the predicate P that the construction supports are

defined as follows. The relation R has a form of R = (gk, �, �′, (ui(X), vi(X),
wi(X))m

i=0, t(X)), and a statement x = (a1, . . . , a�) ∈ (Zp)� is in the language
if and only if there is a witness w = (a�+1, . . . , a�′ , a�′+1, . . . , am) ∈ (Zp)m−�

satisfying

( m∑

i=0

aiui(X)
)

·
( m∑

i=0

aivi(X)
)

=
m∑

i=0

aiwi(X) + h(X)t(X)

with a0 = 1 and some h(X) ∈ Zp[X]. This relation is called quadratic arithmetic
programs (QAPs). We assume that the gk component of R is generated by a
bilinear group generator G. A constraint r = (a′

�+1, . . . , a
′
�′) ∈ (Zp)�′−� and a

witness w = (a�+1, . . . , a�′ , a�′+1, . . . , am) ∈ (Zp)m−� satisfy (r, w) ∈ P if and
only if (a�+1, . . . , a�′) = (a′

�+1, . . . , a
′
�′).

The construction is as follows.

cSNARK.Setup(R,P ). Choose α, β, γ, δ, x ← Zp \ {0} and compute σ as

(

[α]1, [β]1, ([xi]1)n−1
i=0 ,

([
βui(x) + αvi(x) + wi(x)

γ

]

1

)�′

i=0

,

([
βui(x) + αvi(x) + wi(x)

δ

]

1

)m

i=�′+1

,

([
xit(x)

δ

]

1

)n−2

i=0

,

[β]2, [γ]2, [δ]2, ([xi]2)n−1
i=0

)

.

Then output σ.
cSNARK.Constrain(σ, r). Parse r as (a�+1, . . . , a�′). Compute

ρ ←
[ �′

∑

i=�+1

ai
βui(x) + αvi(x) + wi(x)

γ

]

1

and output ρ.
cSNARK.Prove(σ, r, x, w). Parse x as (a0, . . . , a�) and w as (a�+1, . . . , a�′ , a�′+1,

. . . , am). Compute

A ←
[

α +
m∑

i=0

aiui(x)
]

1
, B ←

[

β +
m∑

i=0

aivi(x)
]

2
,

and

C ←
[ m∑

i=�′+1

ai
βui(x) + αvi(x) + wi(x)

δ
+

h(x)t(x)
δ

]

1
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where h(X) is the polynomial that satisfies

m∑

i=0

aiui(X) ·
m∑

i=0

aivi(X) =
m∑

i=0

aiwi(X) + h(X)t(X).

Then output (A,B,C).
cSNARK.Verify(σ, ρ, x, π). Parse x as (a0, . . . , a�) and π as (A,B,C). Verify that

e(A,B) = e([α]1, [β]2) · e

([ �∑

i=0

ai
βui(x) + αvi(x) + wi(x)

γ

]

1

, [γ]2

)

·e(ρ, [γ]2) · e(C, [δ]2).

If it holds, output 1, and output 0 otherwise.

Comparison with Geppetto [6]. In our construction, we “separated” a set
of polynomials βui(x) + αvi + wi(x) where i = � + 1, . . . , �′ from another set
of polynomials βui(x) + αvi(x) + wi(x) where i = �′ + 1, . . . , m by multiplying
them with different reciprocals 1/γ and 1/δ. This is important for forbidding an
adversary from including in a proof some value that cancels out the constraint
string and thereby proving a false statement or proving a statement without the
knowledge of a witness. In fact, if we set γ = δ, then the summation in C could
run over {� + 1, . . . , �′} and this way C would cancel out the constraint string.

This idea already appeared in Geppetto [6]. In Geppetto, a set of QAP coeffi-
cients (a0, . . . , am) is split into sub-sequence and for each sub-sequence, a prover
can generate a commitment to that sub-sequence. In order to be secure against
the attacks of the above type, in the Geppetto construction, polynomials ui(x),
vi(x), and wi(x) are multiplied by some integers which are different for each
sub-sequence. Our idea can be seen as a simplification of this and adaptation to
Groth’s SNARK.

3.4 Security

We describe the security of this construction. The correctness of this construction
can be obtained from calculation. The constrained knowledge soundness is shown
in the following theorem. The proof is postponed to the full version.

Theorem 7. The construction is constrained knowledge sound against all
generic adversaries with a polynomial number of group operation queries.

4 Succinct Attribute-Based Signatures for Bounded-Size
Circuits

In this section, we apply our constrained SNARK to a construction of a practical
attribute-based signature scheme for bounded-size arithmetic circuits.



Succinct Attribute-Based Signatures for Bounded-Size Circuits 729

4.1 Construction

For constructing such an attribute-based signature scheme we employ a con-
strained SNARK (cSNARK.Setup, cSNARK.Constrain, cSNARK.Prove, cSNARK.
Verify), a non-interactive proof system (WI.Setup,WI.Prove,WI.Verify,WI.
ExtSetup,WI.Extract), a signature scheme (Sig.Kg,Sig.Sign,Sig.Verify), a hash
function family (H,Hash), and a universal arithmetic circuit U for the field Zp

where p is the order of the bilinear groups. The constrained SNARK needs to
support the relation R of

(〈C, h〉, 〈t, u, v〉) ∈ R ⇐⇒ (t = ⊥ ∧ U(C, u; v) = 1) ∨ (t = h) (3)

where C is the circuit that describes the policy to be proven, h is some hash
value, t is a hash value or a special symbol ⊥, u is input to the circuit C, and
v is wire assignment of the evaluation of U(C, u). In addition, the constrained
SNARK needs to support the predicate P of

(〈t′, u′〉, 〈t, u, v〉) ∈ P ⇐⇒ (t = t′) ∧ (u = u′)

where t′ is a hash value or a special symbol ⊥, and u′ is input to the circuit C.
The non-interactive proof system needs to support the relation

cSNARK.Verify(σ, ρ, 〈C, h〉, π) = 1 ∧ Sig.Verify(vk, ρ, θ) = 1 (4)

where 〈σ, vk, C, h〉 is the statement and 〈ρ, θ, π〉 is the witness.
An overview of the construction is as follows.
In the set-up phase, an authority sets up a constrained SNARK and a non-

interactive proof system, together with a digital signature scheme. The signing
key of the digital signature scheme serves as a master secret key. To generate a
user secret key uk, the authority generates a constraint string ρ that constrains
the prefix of the witness to be the user’s attributes. Then the authority signs on
that constraint string ρ and issues the user with the constraint string and the
signature as the user secret key. As discussed in the introduction, a constraint
string can be seen as a commitment to a constraint, thus this procedure is
essentially the same as signing on the attributes of the user.

To sign anonymously, a user generates a constrained SNARK proving that
his attributes satisfy the policy, and also generates a non-interactive proof of
knowledge of the signature, the constraint string, and the constrained SNARK
proving the satisfiability of the policy by his attributes. This non-interactive
proof is used as an attribute-based signature.

This attribute-based signature ensures that there are attributes that sat-
isfy the policy and that such attributes are certified by the authority, which in
turn ensures the unforgeability. The former is ensured simply by the knowledge
of the SNARK. The latter is ensured by the combination of the knowledge of
the authority’s signature and the constrained knowledge soundness of the con-
strained SNARK. These two facts in combination ensure that the attributes that
satisfy the policy are certified by the authority.
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To bind a message into a signature, we use the pseudo-attribute tech-
nique [15]. In this technique, the user proves the knowledge of a signature by
the authority which is on his attributes or on the message itself. This way, if an
adversary sees an attribute-based signature on a message m and tries to forge
another attribute-based signature on m′, the adversary needs to forge a standard
signature on the attributes or one on a message m′. This is infeasible due to the
unforgeability of the standard signature scheme. This technique is implemented
by the existence of the witness t in Eq. (3) and Eq. (4).

Finally, the anonymity of an attribute-based signature is ensured by the
witness indistinguishability of the non-interactive proof system. The relation
of Eq. (4) is designed so that the public statement is identical whenever the
policy and the message used to generate a signature are identical regardless of
what attributes are used to generate a signature. This fact directly ensures the
anonymity of an attribute-based signature, since an attribute-based signature is
exactly the witness-indistinguishable non-interactive proof.

The construction is as follows.

ABS.Setup(1λ). Compute CRSs σ ← cSNARK.Setup(R,P ) and crs ←
WI.Setup(1λ) of the constrained SNARK and the non-interactive proof sys-
tem. Generate a verification key and a signing key (vk, sk) ← Sig.Kg(1λ) of a
signature scheme and a hashing key hk ← H(1λ) of a collision-resistant hash
function family. Set pp ← (σ, crs, vk, hk) and mk ← sk and output (pp,mk).

ABS.Kg(pp,mk, u). Compute a constraint string

ρ ← cSNARK.Constrain(σ, 〈⊥, u〉)

of 〈⊥, u〉 and generate a signature

θ ← Sig.Sign(vk, sk, ρ)

on ρ. Set uk ← (ρ, θ) and output uk.
ABS.Sign(pp, u, uk, C,m). Compute the wire assignment v of the evaluation of

U(C, u) and a hash value h ← Hash(hk, 〈C,m〉). Generate a constrained
SNARK

π ← cSNARK.Prove(σ, 〈⊥, u〉, 〈C, h〉, 〈⊥, u, v〉)
and a non-interactive proof

π′ ← WI.Prove(crs, 〈σ, vk, C, h〉, 〈ρ, θ, π〉). (5)

Set Σ ← π′ and output Σ.
ABS.Verify(pp, C,m,Σ). Compute a hash value h ← Hash(hk, 〈C,m〉) and ver-

ify the proof π′ by running WI.Verify(crs, 〈σ, vk, C, h〉, π′). If the verification
passes, output 1. Otherwise output 0.

On Benign Openings. As we remarked in Sect. 3.1, a constraint string in our
constrained SNARKs may have a pair of different but benign openings. Here,
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for a sanity check, we remark that such a benign pair of openings do not make
a security issue to our construction.

To explain this, let us consider the following adversarial strategy: An
adversary corrupts a signer with attribute u and obtains a signing key θ =
Sig.Sign(vk, sk, cSNARK.Constrain(σ, 〈⊥, u〉)); then the adversary somehow finds
a different opening 〈t∗, u∗〉 of cSNARK.Constrain(σ, 〈⊥, u〉), that is, 〈t∗, u∗〉 sat-
isfying cSNARK.Constrain(σ, 〈⊥, u〉) = cSNARK.Constrain(σ, 〈t∗, u∗〉); using this
opening 〈t∗, u∗〉, the adversary generates an attribute-based signature on a cir-
cuit C.

This strategy does not produce a successful forgery. To see this, let us consider
the two cases: (i) t∗ = ⊥ and (ii) t∗ �= ⊥. Remember that the different openings
〈⊥, u〉 and 〈t∗, u∗〉 should be benign, namely, for all C, h, and v, it holds that
(〈C, h〉, 〈⊥, u, v〉) ∈ R ⇐⇒ (〈C, h〉, 〈t∗, u∗, v〉) ∈ R. Then, in the case (i), the
benign property tells us that C(u) = C(u∗) for all circuits C. Thus, the adversary
can generate a signature for a circuit C if and only if C(u) = 1. Since the
adversary already knows a signing key θ of attributes u, such an attribute-based
signature is not counted as a forgery. For the case (ii), the opening 〈t∗, u∗〉 is
simply not benign, and thus is infeasible to compute. This is because for C, h and
v such that U(C, u; v) = 1 and h �∈ {⊥, t∗}, it holds that (〈C, h〉, 〈⊥, u, v〉) ∈ R
and (〈C, h〉, 〈t∗, u∗, v〉) �∈ R.

4.2 Security

We then prove the security of this construction. The proofs are postponed to the
full version.

Theorem 8. Assuming the non-interactive proof system is witness indistin-
guishable, the attribute-based signature scheme is anonymous.

Theorem 9. Assuming the constrained SNARK is constrained knowledge
sound, the non-interactive proof system is witness indistinguishable and
extractable, the signature scheme is unforgeable, and the hash function family
is collision resistant, the attribute-based signature scheme is unforgeable.

4.3 Instantiation

Now we discuss an instantiation of this generic construction.

Universal Arithmetic Circuit. A universal arithmetic circuit U can be
constructed by extending Valiant’s construction of a (Boolean) universal cir-
cuits [22,23]. Such an extension was briefly mentioned by Lipmaa et al. [14]. We
quickly review their argument. To extend Valiant’s construction to a universal
arithmetic circuit, we need to implement a universal gate

U0(c, x0, x1) =

{

x0 + x1 (c = 0),
x0x1 (c = 1),
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the X switching gate

X(c, x0, x1) =

{

(x0, x1) (c = 0),
(x1, x0) (c = 1),

and the Y switching gate

Y (c, x0, x1) =

{

x0 (c = 0),
x1 (c = 1).

They can be implemented by the following arithmetic computation:

U0(c, x0, x1) = (1 − c)(x0 + x1) + cx0x1,

X(c, x0, x1) = ((1 − c)x0 + cx1, (1 − c)x1 + cx0),
Y (c, x0, x1) = (1 − c)x0 + cx1.

Using these implementations, we can implement a universal arithmetic circuit.

Constrained SNARKs. For the constrained SNARK, we can use our construc-
tion in Sect. 3. To use this construction, we need to express the relation Eq. (3)
in a quadratic arithmetic program. Clearly, the relation U(C, u; v) = 1 can be
expressed as a set of quadratic equations, in which each variable corresponds
to an outgoing wire of an addition or multiplication gate. Thus to express the
entire relation of Eq. (3), we need to express the conjunction and disjunction
in Eq. (3). While a generic conversion (through NAND gates, for example) suf-
fices, we mention a more dedicated conversion. Since the relation in Eq. (3) is
equivalent to

((t = ⊥) ∨ (t = h)) ∧ ((U(C, u; v) = 1) ∨ (t = h)),

we can translate this to the following quadratic arithmetic program:
{

(t − 0) · (t − h) = 0,
(vout − 1) · (t − h) = 0,

where vout is the variable that corresponds to the output wire of the universal
arithmetic circuit U . Here, we abuse 0 for the special symbol ⊥ and assume that
the range of the hash function is Zp \ {0}. This can be ensured by prepending 1
to the output of hash function, for example. This way, the size of the quadratic
arithmetic programs that the constrained SNARK needs to support is just the
size of the universal arithmetic circuit U plus two extra equations.

Non-interactive Proofs and Signatures. While we can use any non-
interactive proof system and signature scheme, for efficient and practical instan-
tiation, we choose to use the Groth-Sahai proof system [12] and structure-
preserving signatures [1]. The relation of Eq. (4) falls into the category of the
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pairing product equations, thus we can apply structure-preserving cryptogra-
phy. The choice for the structure-preserving signature scheme is arbitrary, how-
ever, we choose Abe et al.’s scheme [2] to instantiate the signature scheme, for
concreteness and efficiency. A signature includes two G1 elements and one G2

element, and the verification equations include one linear pairing product equa-
tion and one quadratic pairing product equation. The security is proven in the
generic bilinear group model.

Signature Size. When instantiated as above, a signature of our attribute-based
signature scheme includes five commitments to G1 elements, two commitments to
G2 elements, and proofs for one linear pairing product equation with G1 variables
and two (quadratic) pairing product equations. Thus a signature includes 18 G1

elements and 14 G2 elements in total.
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Abstract. We show that three popular universal zero-knowledge
SNARKs (Plonk, Sonic, and Marlin) are updatable SRS simulation
extractable NIZKs and signatures of knowledge (SoK) out-of-the-box
avoiding any compilation overhead.

Towards this we generalize results for the Fiat–Shamir (FS) transfor-
mation, which turns interactive protocols into signature schemes, non-
interactive proof systems, or SoK in the random oracle model (ROM).
The security of the transformation relies on rewinding to extract the
secret key or the witness, even in the presence of signing queries for sig-
natures and simulation queries for proof systems and SoK, respectively.
We build on this line of work and analyze multi-round FS for arguments
with a structured reference string (SRS). The combination of ROM and
SRS, while redundant in theory, is the model of choice for the most effi-
cient practical systems to date. We also consider the case where the SRS
is updatable and define a strong simulation extractability notion that
allows for simulated proofs with respect to an SRS to which the adver-
sary can contribute updates.

We define three properties (trapdoor-less zero-knowledge, rewinding-
based knowledge soundness, and a unique response property) that are
sufficient for argument systems based on multi-round FS to be also sim-
ulation extractable in this strong sense. We show that Plonk, Sonic, and
Marlin satisfy these properties, and conjecture that many other argu-
ment systems such as Lunar, Basilisk, and transparent variants of Plonk
fall within the reach of our main theorem.

1 Introduction

Zero-knowledge proof systems, which allow a prover to convince a verifier of
an NP statement R(x,w) without revealing anything else about the witness w
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have broad application in cryptography and theory of computation [7,26,33].
When restricted to computationally sound proof systems, also called argument
systems1, proof size can be shorter than the size of the witness [16]. Zero-
knowledge Succinct Non-interactive ARguments of Knowledge (zkSNARKs) are
zero-knowledge argument systems that additionally have two succinctness prop-
erties: small proof sizes and fast verification. Since their introduction in [47],
zk-SNARKs have been a versatile design tool for secure cryptographic proto-
cols. They became particularly relevant for blockchain applications that demand
short proofs and fast verification for on-chain storage and processing. Starting
with their deployment by Zcash [9], they have seen broad adoption, e.g., for
privacy-preserving cryptocurrencies and scalable and private smart contracts in
Ethereum.

While research on zkSNARKs has seen rapid progress [10,12,13,31,36,37,42,
43,49] with many works proposing significant improvements in proof size, verifier
and prover efficiency, and complexity of the public setup, less attention has been
paid to non-malleable zkSNARKs and succinct signatures of knowledge [18,20]
(sometimes abbreviated SoK or referred to as SNARKY signatures [4,39]).

Relevance of Simulation Extractability. Most zkSNARKs are shown only to sat-
isfy a standard knowledge soundness property. Intuitively, this guarantees that
a prover that creates a valid proof in isolation knows a valid witness. However,
deployments of zkSNARKs in real-world applications, unless they are carefully
designed to have application-specific malleability protection, e.g. [9], require a
stronger property – simulation-extractability (SE) – that corresponds much more
closely to existential unforgeability of signatures.

This correspondence is made precise by SoK, which uses an NP-language
instance as the public verification key. Instead of signing with the secret key,
SoK signing requires knowledge of the NP-witness. Intuitively, an SoK is thus a
proof of knowledge (PoK) of a witness that is tied to a message. In fact, many
signatures schemes, e.g., Schnorr, can be read as SoK for a specific hard relation,
e.g., DL [23]. To model strong existential unforgeability of SoK signatures, even
when given an oracle for obtaining signatures on different instances, an attacker
must not be able to produce new signatures. Chase and Lysyanskaya [20] model
this via the notion of simulation extractability which guarantees extraction of a
witness even in the presence of simulated signatures.

In practice, an adversary against a zkSNARK system also has access to proofs
computed by honest parties that should be modeled as simulated proofs. The
definition of knowledge soundness (KS) ignores the ability of an adversary to
see other valid proofs that may occur in real-world applications. For instance, in
applications of zkSNARKs in privacy-preserving blockchains, proofs are posted
on-chain for all blockchain participants to see. We thus argue that SE is a much
more suitable notion for robust protocol design. We also claim that SE has
primarily an intellectual cost, as it is harder to prove SE than KS—another
analogy here is IND-CCA vs IND-CPA security for encryption. However, we will
show that the proof systems we consider are SE out-of-the-box.
1 We use both terms interchangeably.
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Fiat–Shamir-Based zkSNARKs. Most modern zkSNARK constructions follow
a modular blueprint that involves the design of an information-theoretic inter-
active protocol, e.g. an Interactive Oracle Proof (IOP) [11], that is then com-
piled via cryptographic tools to obtain an interactive argument system. This is
then turned into a zkSNARK using the Fiat-Shamir transform. By additionally
hashing the message, the Fiat-Shamir transform is also a popular technique for
constructing signatures. While well-understood for 3-message sigma protocols
and justifiable in the ROM [6], Fiat–Shamir should be used with care because
there are both counterexamples in theory [34] and real-world attacks in practice
when implemented incorrectly [48].

In particular, several schemes such as Sonic [46], Plonk [28], Marlin [21]
follow this approach where the information-theoretic object is a multi-message
algebraic variant of IOP, and the cryptographic primitive in the compiler is a
polynomial commitment scheme (PC) that requires a trusted setup. To date, this
blueprint lacks an analysis in the ROM in terms of simulation extractability.

Updatable SRS zkSNARKs. One of the downsides of many efficient zkSNARKs
[22,31,36,37,42,43,49] is that they rely on a trusted setup, where there is a
structured reference string (SRS) that is assumed to be generated by a trusted
party. In practice, however, this assumption is not well-founded; if the party that
generates the SRS is not honest, they can produce proofs for false statements. If
the trusted setup assumption does not hold, knowledge soundness breaks down.
Groth et al. [38] propose a setting to tackle this challenge which allows parties –
provers and verifiers – to update the SRS.2 The update protocol takes an existing
SRS and contributes to its randomness in a verifiable way to obtain a new SRS.
The guarantee in this updatable setting is that knowledge soundness holds as
long as one of the parties updating the SRS is honest. The SRS is also universal,
in that it does not depend on the relation to be proved but only on an upper
bound on the size of the statement’s circuit. Although inefficient, as the SRS
size is quadratic in the size of the circuit, [38] set a new paradigm for designing
zkSNARKs.

The first universal zkSNARK with updatable and linear size SRS was Sonic
proposed by Maller et al. in [46]. Subsequently, Gabizon, Williamson, and Ciobo-
taru designed Plonk [28] which currently is the most efficient updatable universal
zkSNARK. Independently, Chiesa et al. [21] proposed Marlin with comparable
efficiency to Plonk.

The Challenge of SE in the Updatable Setting. The notion of simulation-
extractability for zkSNARKs which is well motivated in practice, has not been
studied in the updatable setting. Consider the following scenario: We assume
a “rushing” adversary that starts off with a sequence of updates by malicious
parties resulting in a subverted reference string srs. By combining their trap-
door contributions and employing the simulation algorithm, these parties can
easily compute a proof to obtain a triple (srs, x, π) that convinces the verifier of

2 This can be seen as an efficient player-replaceable [32] multi-party computation.
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a statement x without knowing a witness. Now, assume that at a later stage,
a party produces a triple (srs′, x, π′) for the same statement with respect to an
updated srs′ that has an honest update contribution. We want the guarantee
that this party must know a witness corresponding to x. The ability to “maul”
the proof π from the old SRS to a proof π′ for the new SRS without know-
ing a witness would clearly violate security. The natural idea is to require that
honestly updated reference strings are indistinguishable from honestly generated
reference strings even for parties that previously contributed updates. However,
this is not sufficient as the adversary can also rush toward the end of the SRS
generation ceremony to perform the last update.

A definition of SE in the updatable setting should take these additional
powers of the adversary, which are not captured by existing definitions of SE,
into consideration. While generic compilers [1,41] can be applied to updatable
SRS SNARKs to obtain SE, not only do they inevitably incur overheads and
lead to efficiency loss, we contend that the standard definition of SE does not
suffice in the updatable setting.

1.1 Our Contributions

We investigate the non-malleability properties of zkSNARK protocols obtained
by FS-compiling multi-message protocols in the updatable SRS setting and give
a modular approach to analyze their simulation-extractability. We make the
following contributions:

– Updatable simulation extractability (USE). We propose a definition of simu-
lation extractability in the updatable SRS setting called USE, that captures
the additional power the adversary gets by being able to update the SRS.

– Theorem for USE of FS-compiled proof systems. We define three notions in
the updatable SRS and ROM, trapdoor-less zero-knowledge, a unique response
property, and rewinding-based knowledge soundness. Our main theorem shows
that multi-message FS-compiled proof systems that satisfy these notions are
USE out-of-the box.

– USE for concrete zkSNARKs. We prove that the most efficient updatable SRS
SNARKS – Plonk/Sonic/Marlin – satisfy the premises of our theorem. We
thus show that these zkSNARKs are updatable simulation extractable.

– SNARKY signatures in the updatable setting. Our results validate the folklore
that the Fiat–Shamir transform is a natural means for constructing signatures
of knowledge. This gives rise to the first SoK in the updatable setting and
confirms that a much larger class of zkSNARKs, besides [39], can be lifted to
SoK.

– Broad applicability. The updatable SRS plus ROM includes both the trusted
SRS and the ROM model as special cases. This implies the relevance of our
theorem for transparent zkSNARKs such as Halo2 and Plonky2 that replace
the polynomial commitments of Kate et al. [40] with commitments from Bul-
letproof [17] and STARKs [8], respectively.
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1.2 Technical Overview

At a high level, the proof of our main theorem for updatable simulation
extractability is along the lines of the simulation extractability proof for FS-
compiled sigma protocols from [24]. However, our theorem introduces new
notions that are more general to allow us to consider proof systems that are
richer than sigma protocols and support an updatable setup. We discuss some
of the technical challenges below.

Plonk, Sonic, and Marlin were originally presented as interactive proofs of
knowledge that are made non-interactive via the Fiat–Shamir transform. In the
following, we denote the underlying interactive protocols by P (for Plonk), S
(for Sonic), and M (for Marlin) and the resulting non-interactive proof systems
by PFS, SFS, MFS respectively.

Rewinding-Based Knowledge Soundness (RBKS). Following [24], one
would have to show that for the protocols we consider, a witness can be extracted
from sufficiently many valid transcripts with a common prefix. The standard
definition of special soundness for sigma protocols requires the extraction of a
witness from any two transcripts with the same first message. However, most
zkSNARK protocols do not satisfy this notion. We put forth a notion analo-
gous to special soundness that is more general and applicable to a wider class
of protocols. Namely, protocols compiled using multi-round FS that rely on an
(updatable) SRS. P, S, and M have more than three messages, and the number
of transcripts required for extraction is more than two. Concretely, (3n+ 6) for
Plonk, (n+ 1) for Sonic, and (2n+ 3) for Marlin, where n is the number of con-
straints in the proven circuit. Hence, we do not have a pair of transcripts but a
tree of transcripts.

Furthermore, the protocols we consider are arguments and rely on a SRS that
comes with a trapdoor. An adversary in possession of the trapdoor can produce
multiple valid proof transcripts potentially for false statements without knowing
any witness. This is true even in the updatable setting, where a trapdoor still
exists for any updated SRS. Recall that the standard special soundness defini-
tion requires witness extraction from any suitably structured tree of accepting
transcripts. This means that there are no such trees for false statements.

Instead, we give a rewinding-based knowledge soundness definition with an
extractor that proceeds in two steps. It first uses a tree building algorithm T to
obtain a tree of transcripts. In the second step, it uses a tree extraction algorithm
Extks to compute a witness from this tree. Tree-based knowledge soundness guar-
antees that it is possible to extract a witness from all (but negligibly many) trees
of accepting transcripts produced by probabilistic polynomial time (PPT) adver-
saries. That is, if extraction from such a tree fails, then we break an underlying
computational assumption. Moreover, this should hold even against adversaries
that contribute to the SRS generation.

Unique Response Protocols (UR). Another property required to show sim-
ulation extractability is the unique response property which says that for 3-
message sigma protocols, the response of the prover (3-rd message) is determined
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by the first message and the challenge [25] (intuitively, the prover can only
employ fresh randomness in the first message of the protocol). We cannot use this
definition since the protocols we consider have multiple rounds of randomized
prover messages. In Plonk, both the first and the third messages are random-
ized. Although the Sonic prover is deterministic after it picks its first message,
the protocol has more than 3 messages. The same holds for Marlin. We propose
a generalization of the unique response property called k-UR. It requires that
the behavior of the prover be determined by the first k of its messages. For our
proof, it is sufficient that Plonk is 3-UR, and Sonic and Marlin are 2-UR.

Trapdoor-Less Zero-Knowledge (TLZK). The premises of our main the-
orem include two computational properties that do not mention a simulator,
RBKS and UR. The theorem states that together with a suitable property for
the simulator of the zero-knowledge property, they imply USE. Our key tech-
nique is to simulate simulation queries when reducing to RBKS and UR. For
this it is convenient that the zero-knowledge simulator be trapdoor-less, that is
can produce proofs without relying on the knowledge of the trapdoor. Simula-
tion is based purely on the simulators early control over the challenge. In the
ROM this corresponds to a simulator that programs the random oracle and can
be understood as a generalization of honest-verifier zero-knowledge for multi-
message Fiat–Shamir transformed proof systems with an SRS. We say that such
a proof system is k-TLZK, if the simulator only programs the k-th challenge and
we construct such simulators for PFS, SFS, and MFS.

Technically we will make use of the k-UR property together with the k-TLZK
property to bound the probability that the tree produced by the tree builder T
of RBKS contains any programmed random oracle queries.

1.3 Related Work

There are many results on simulation extractability for non-interactive zero-
knowledge proofs (NIZKs). First, Groth [35] noticed that a (black-box) SE NIZK
is universally-composable (UC) [19]. Then Dodis et al. [23] introduced a notion
of (black-box) true simulation extractability (i.e., SE with simulation of true
statements only) and showed that no NIZK can be UC-secure if it does not have
this property.

In the context of zkSNARKs, the first SE zkSNARK was proposed by Groth
and Maller [39] and a SE zkSNARK for QAP was designed by Lipmaa [44].
Kosba et al. [41] give a general transformation from a NIZK to a black-box SE
NIZK. Although their transformation works for zkSNARKs as well, the suc-
cinctness of the proof system is not preserved by this transformation. Abdol-
maleki et al. [1] showed another transformation that obtains non-black-box sim-
ulation extractability but also preserves the succinctness of the argument. The
zkSNARK of [37] has been shown to be SE by introducing minor modifications
to the construction and making stronger assumptions [2,15]. Recently, [4] showed
that the Groth’s original proof system from [37] is weakly SE and randomizable.
None of these results are for zkSNARKs in the updatable SRS setting or for
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zkSNARKs obtained via the Fiat–Shamir transformation. The recent work of [30]
shows that Fiat–Shamir transformed Bulletproofs are simulation extractable.
While they show a general theorem for multi-round protocols, they do not con-
sider a setting with an SRS, and are therefore inapplicable to zkSNARKs in the
updatable SRS setting.

2 Definitions and Lemmas for Multi-message SRS-Based
Protocols

Simulation-Extractability for Multi-message Protocols. Most recent SNARK
schemes follow the same blueprint of constructing an interactive information-
theoretic proof system that is then compiled into a public coin computation-
ally sound scheme using cryptographic tools such as polynomial commitments,
and finally made non-interactive via the Fiat–Shamir transformation. Existing
results on simulation extractability (for proof systems and signatures of knowl-
edge) for Fiat–Shamir transformed systems work for 3-message protocols without
reference string that require two transcripts for standard model extraction, e.g.,
[24,45,50].

In this section, we define properties that are necessary for our analysis of
multi-message protocols with a universal updatable SRS. In order to prove
simulation-extractability for such protocols, we require more than just two tran-
scripts for extraction. Moreover, in the updatable setting we consider protocols
that rely on an SRS where the adversary gets to contribute to the SRS. We first
recall the updatable SRS setting and the Fiat-Shamir transform for (2μ + 1)-
message protocols. Next, we define trapdoor-less zero-knowledge and simulation-
extractability which we base on [24] adapted to the updatable SRS setting. Then,
to support multi-message SRS-based protocols compiled using the Fiat–Shamir
transform, we generalize the unique response property, and define a notion of
computational special soundness called rewinding-based knowledge soundness.

Let P and V be PPT algorithms, the former called the prover and the latter
the verifier of a proof system. Both algorithms take a pre-agreed structured
reference string srs as input. The structured reference strings we consider are
(potentially) updatable, a notion we recall shortly. We focus on proof systems
made non-interactive via the multi-message Fiat–Shamir transform presented
below where prover and verifier are provided with a random oracle H. We denote
by π a proof created by P on input (srs, x,w). We say that proof is accepting if
V(srs, x, π) accepts it.

Let R(A) denote the set of random tapes of correct length for adversary A
(assuming the given value of security parameter λ), and let r ←$R(A) denote
the random choice of tape r from R(A).
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Fig. 1. The oracle defines the notion of updatable SRS setup.

2.1 Updatable SRS Setup Ceremonies

The definition of updatable SRS ceremonies of [38] requires the following algo-
rithms.

– (srs, ρ) ← GenSRS(R) is a PPT algorithm that takes a relation R and outputs
a reference string srs, and correctness proof ρ.

– (srs′, ρ′) ← UpdSRS(srs, {ρj}n
j=1) is a PPT algorithm that takes a srs, a list

of update proofs and outputs an updated srs′ together with a proof of correct
update ρ′.

– b ← VerifySRS(srs, {ρj}n
j=1) takes a reference string srs, a list of update proofs,

and outputs a bit indicating acceptance or not.3

In the next section, we define security notions in the updatable setting by
giving the adversary access to an SRS update oracle UpdO, defined in Fig. 1.
The oracle allows the adversary to control the SRS generation. A trusted setup
can be expressed by the updatable setup definition simply by restricting the
adversary to only call the oracle on intent = setup and intent = final. Note
that a soundness adversary now has access to both the random oracle H and
UpdO: (x, π) ← AUpdO,H(1λ; r).

Remark on Universality of the SRS. The proof systems we consider in this work
are universal. This means that both the relation R and the reference string
srs allows to prove arithmetic constraints defined over a particular field up to
some size bound. The public instance x must determine the constraints. If R
comes with any auxiliary input, the latter is benign. We elide public prepro-
cessing of constraint specific proving and verification keys. While important for
performance, this modeling is not critical for security.

2.2 Multi-message Fiat-Shamir Compiled Provers and Verifiers

Given interactive prover and (public coin) verifier P′,V′ that exchange messages
resulting in transcript π̃ = (a1, c1, . . . , aμ, cμ, aμ+1), where ai comes from P′

and ci comes from V′, the (2μ + 1)-message Fiat-Shamir heuristic defines non-
interactive provers and verifiers P,V as follows:
3 For instance Plonk and Marlin will use the GenSRS, UpdSRS and VerifySRS algo-

rithms in Fig. 2.
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Fig. 2. Updatable SRS scheme SRS for PCP

– P behaves as P′ except after sending message ai, i ∈ [1 .. μ], the prover does
not wait for the message from the verifier but computes it locally setting
ci = H(π̃[0..i]), where π̃[0..j] = (x, a1, c1, . . . , aj−1, cj−1, aj).4
P outputs the non-interactive proof π = (a1, . . . , aμ, aμ+1), that omits chal-
lenges as they can be recomputed using H.

– V takes x and π as input and behaves as V′ would but does not provide
challenges to the prover. Instead it computes the challenges locally as P would,
starting from π̃[0..1] = (x, a1) which can be obtained from x and π. Then it
verifies the resulting transcript π̃ as the verifier V′ would.

We note that since the verifier can compute the challenges by querying the
random oracle, they do not need to be sent by the prover. Thus the π - π̃
notational distinction.

Notation for (2μ + 1)-message Fiat–Shamir transformed proof systems. Let
SRS = (GenSRS,UpdSRS,VerifySRS) be the algorithm of an updatable SRS cer-
emony. All our definitions and theorems are about non-interactive proof systems
Ψ = (SRS,P,V,Sim) compiled via the (2μ + 1)-message FS transform. That is
π = (a1, . . . , aμ, aμ+1) and π̃ = (a1, c1, . . . , aμ, cμ, aμ+1), with ci = H(π̃[0..i]).
We use π̃[0] for instance x and π̃[i], π̃[i].ch to denote prover message ai and
challenge ci respectively.

4 For Fiat–Shamir based SoK the message signed m is added to x before hashing.



744 C. Ganesh et al.

Fig. 3. Simulation oracles: srs is the finalized SRS, only SimO.P′ allows for simulation
of false statements

2.3 Trapdoor-Less Zero-Knowledge (TLZK)

We call a protocol trapdoor-less zero-knowledge (TLZK) if there exists a simula-
tor that does not require the trapdoor, and works by programming the random
oracle. Moreover, the simulator may only be allowed to program the random
oracle on point π̃[0, k], that is the simulator can only program the challenges
that come after the k-th prover message. We call protocols which allow for such
a simulation k-programmable trapdoor-less zero-knowledge.

Our definition of zero-knowledge for non-interactive arguments is in the pro-
grammable ROM. We model this using the oracles from Fig. 3 that provide
a stateful wrapper around Sim. SimO.H(x) simulates H using lazy sampling,
SimO.Prog(x, h) allows for programming the simulated H and is available only
to Sim. SimO.P(x,w) and SimO.P′(x) call the simulator. The former is used in
the zero-knowledge definition and requires the statement and witness to be in
the relation, the latter is used in the simulation extraction definition and does
not require a witness input.

Definition 1 (Updatable k-Programmable Trapdoor-Less Zero-Know-
ledge). Let ΨFS = (SRS,P,V,Sim) be a (2μ+1)-message FS-transformed NIZK
proof system with an updatable SRS setup. We call ΨFS trapdoor-less zero-
knowledge with security εzk if for any adversary A, |ε0(λ) − ε1(λ)| ≤ εzk(λ),
where

ε0(λ) = Pr
[
AUpdO,H,P(1λ)

]
, ε1(λ) = Pr

[
AUpdO,SimO.H,SimO.P(1λ)

]
.

If εzk(λ) is negligible, we say ΨFS is trapdoor-less zero-knowledge. Addition-
ally, we say that ΨFS is k-programmable, if Sim before returning a proof π only
calls SimO.Prog on (π̃[0..k], h). That is, it only programs the k-th message.

Remark 1 (TLZK vs HVZK). We note that TLZK notion is closely related to
honest-verifier zero-knowledge in the standard model. That is, if we consider
an interactive proof system Ψ that is HVZK in the standard model then ΨFS

is TLZK. This comes as the simulator Sim in Ψ produces a valid simulated
proof by picking verifier’s challenges according to a predefined distribution and
ΨFS’s simulator SimFS produces its proofs similarly by picking the challenges and
additionally programming the random oracle to return the picked challenges.
Importantly, in both Ψ and ΨFS success of the simulator does not depend on
access to an SRS trapdoor.
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We note that Plonk is 3-programmable TLZK, and Sonic and Marlin are
2-programmable TLZK. This follows directly from the proofs of their standard
model zero-knowledge property in Lemma 5 and lemmas 11 and 14 in the full
version [29].

2.4 Updatable Simulation Extractability (USE)

We note that the zero-knowledge property is only guaranteed for statements in
the language. For simulation extractability where the simulator should be able
to provide simulated proofs for false statements as well, we thus use the oracle
SimO.P′5.

Definition 2 (Updatable Simulation Extractability). Let ΨNI = (SRS,P,
V,Sim) be a NIZK proof system with an updatable SRS setup. We say that ΨNI is
updatable simulation-extractable with security loss εse(λ, acc, q) if for any PPT
adversary A that is given oracle access to setup oracle UpdO and simulation
oracle SimO and that produces an accepting proof for ΨNI with probability acc,
where

acc = Pr
[
V(srs, x, π) = 1

∧(x, π) �∈ Q

∣
∣
∣
∣

r ←$R(A)
(x, π) ← AUpdO,SimO.H,SimO.P′

(1λ; r)

]

there exists an expected PPT extractor Extse such that

Pr

⎡
⎣
V(srs, x, π) = 1,

(x, π) �∈ Q,
R(x,w) = 0

∣∣∣∣∣
r ←$R(A), (x, π) ← AUpdO,SimO.H,SimO.P′

(1λ; r)

w ← Extse(srs, A, r, Qsrs, QH, Q)

⎤
⎦ ≤ εse(λ, acc, q)

Here, srs is the finalized SRS. List Qsrs contains all (srs, ρ) of update SRSs and
their proofs, list QH contains all A’s queries to SimO.H and the (simulated)
random oracle’s answers, |QH| ≤ q, and list Q contains all (x, π) pairs where
x is an instance queried to SimO.P′ by the adversary and π is the simulator’s
answer.

2.5 Unique Response (UR) Protocols

A technical hurdle identified by Faust et al. [24] for proving simulation extraction
via the Fiat–Shamir transformation is that the transformed proof system satisfies
a unique response property. The original formulation by Fischlin, although suit-
able for applications presented in [24,25], does not suffice in our case. First, the
property assumes that the protocol has three messages, with the second being
the challenge from the verifier. That is not the case we consider here. Second, it
is not entirely clear how to generalize the property. Should one require that after
the first challenge from the verifier, the prover’s responses are fixed? That does

5 Note, that simulation extractability property where the simulator is required to give
simulated proofs for true statements only is called true simulation extractability.
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not work since the prover needs to answer differently on different verifier’s chal-
lenges, as otherwise the protocol could have fewer messages. Another problem is
that the protocol could have a message, beyond the first prover’s message, which
is randomized. Unique response cannot hold in this case. Finally, the protocols
we consider here are not in the standard model, but use an SRS.

We work around these obstacles by providing a generalized notion of the
unique response property. More precisely, we say that a (2μ + 1)-message pro-
tocol has unique responses from k, and call it a k-UR-protocol, if it follows the
definition below:

Definition 3 (Updatable k-Unique Response Protocol). Let ΨFS =
(SRS,P,V,Sim) be a (2μ + 1)-message FS-transformed NIZK proof system with
an updatable SRS setup. Let H be the random oracle. We say that ΨFS has unique
responses for k with security εur(λ) if for any PPT adversary Aur:

Pr

[
π �= π′, π̃[0..k] = π̃′[0..k],
V′(srs, x, π, c) = V′(srs, x, π′, c) = 1

∣
∣
∣
∣
∣
(x, π, π′, c) ← AUpdO,H

ur (1λ)

]

≤ εur(λ)

where srs is the finalized SRS and V′(srs, x, π = (a1, . . . , aμ, aμ+1)) behaves as
V(srs, x, π) except for using c as the k-th challenge instead of calling H(π̃[0..k]).
Thus, A can program the k-th challenge. We say ΨFS is k-UR, if εur(λ) is negli-
gible.

Intuitively, a protocol is k-UR if it is infeasible for a PPT adversary to produce
a pair of accepting proofs π �= π′ that are the same on the first k messages of
the prover.

The definition can be easily generalized to allow for programming the oracle
on more than just a single point. We opted for this simplified presentation, since
all the protocols analyzed in this paper require only single-point programming,

2.6 Rewinding-Based Knowledge Soundness (RBKS)

Before giving the definition of rewinding-based knowledge soundness for NIZK
proof systems compiled via the (2μ + 1)-message FS transformation, we first
recall the notion of a tree of transcripts.

Definition 4 (Tree of accepting transcripts, cf. [14]). A (n1, . . . , nμ)-tree
of accepting transcripts is a tree where each node on depth i, for i ∈ [1 .. μ + 1],
is an i-th prover’s message in an accepting transcript; edges between the nodes
are labeled with challenges, such that no two edges on the same depth have the
same label; and each node on depth i has ni − 1 siblings and ni+1 children.
The tree consists of N =

∏μ
i=1 ni branches, where N is the number of accepting

transcripts. We require N = poly(λ). We refer to a (1, . . . , nk = n, 1, . . . , 1)-tree
as a (k, n)-tree.

The existence of simulation trapdoor for P, S and M means that they are
not special sound in the standard sense. We therefore put forth the notion of
rewinding-based knowledge soundness that is a computational notion. Note that
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in the definition below, it is implicit that each transcript in the tree is accepting
with respect to a “local programming” of the random oracle. However, the verifi-
cation of the proof output by the adversary is with respect to a non-programmed
random oracle.

Definition 5 (Updatable Rewinding-Based Knowledge Soundness).
Let n1, . . . , nμ ∈ N. Let ΨFS = (SRS,P,V,Sim) be a (2μ + 1)-message FS-
transformed NIZK proof system with an updatable SRS setup for relation R. Let
H be the random oracle. We require existence of an expected PPT tree builder T
that eventually outputs a T which is either a (n1, . . . , nμ)-tree of accepting tran-
script or ⊥ and a PPT extractor Extks. Let adversary Aks be a PPT algorithm,
that outputs a valid proof with probability at least acc, where

acc = Pr
[
V(srs, x, π) = 1

∧(x, π) �∈ Q

∣
∣
∣
∣

r ←$R(Aks)
(x, π) ← AUpdO,H

ks (1λ; r)

]
.

We say that ΨFS is (n1, . . . , nμ)-rewinding-based knowledge sound with security
loss εks(λ, acc, q) if

Pr

⎡
⎢⎣V(srs, x, π) = 1,

R(x,w) = 0

∣∣∣∣∣∣∣

r ←$R(Aks),

(srs, x, ·) ← AUpdO,H
ks (1λ; r)

T ← T (srs, Aks, r, Qsrs, QH),w ← Extks(T)

⎤
⎥⎦ ≤ εks(λ, acc, q).

Here, srs is the finalized SRS. List Qsrs contains all (srs, ρ) of updated SRSs and
their proofs, and list QH contains all of the adversaries queries to H and the
random oracle’s answers, |QH| ≤ q.

3 Simulation Extractability—The General Result

Equipped with the definitional framework of Sect. 2, we now present the main
result of this paper: a proof of simulation extractability for multi-message Fiat–
Shamir-transformed NIZK proof systems.

Without loss of generality, we assume that whenever the accepting proof
contains a response to a challenge from a random oracle, then the adversary
queried the oracle to get it. It is straightforward to transform any adversary that
violates this condition into an adversary that makes these additional queries to
the random oracle and wins with the same probability.

The core conceptual insight of the proof is that the k-unique response and
k-programmable trapdoor-less zero-knowledge properties together ensures that
the k-th move challenges in the trees of rewinding-based knowledge soundness
are fresh and do not come from the simulator. This allows us to eliminate the
simulation oracle in our rewinding argument and enables us to use the existing
results of [3] in later sections.

Theorem 1 (Simulation-extractable multi-message protocols). Let
ΨFS = (SRS,P,V,Sim) be a (2μ+1)-message FS-transformed NIZK proof system
with an updatable SRS setup. If ΨFS is an updatable k-unique response protocol
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with security loss εur, updatable k-programmable trapdoor-less zero-knowledge,
and updatable rewinding-based knowledge sound with security loss εks; Then ΨFS

is updatable simulation-extractable with security loss

εse(λ, acc, q) ≤ εks(λ, acc − εur(λ), q)

against any PPT adversary A that makes up to q random oracle queries and
returns an accepting proof with probability at least acc.

Proof. Let (x, π) ← AUpdO,SimO.H,SimO.P′
(rA) be the USE adversary. We show

how to build an extractor Extse(srs,A, rA, Q,QH, Qsrs) that outputs a witness w,
such that R(x,w) holds with high probability. To that end we define an algo-
rithm AUpdO,H

ks (r) against rewinding-based knowledge soundness of ΨFS that runs
internally AUpdO,SimO.H,SimO.P′

(rA). Here r = (rSim, rA) with rSim the randomness
that will be used to simulate SimO.P′.

The code of AUpdO,H
ks (r) hardcodes Q such that it does not use any ran-

domness for proofs in Q as long as statements are queried in order. In this
case it simply returns a proof πSim from Q but nevertheless queries SimO.Prog
on (π̃Sim[0..k], π̃Sim[k].ch), i.e. it programs the k-th challenge. While it is hard
to construct such an adversary without knowing Q, it clearly exists and Extse
has the necessary inputs to construct Aks. This hardcoding guarantees that Aks

returns the same (x, π) as A in the experiment. Eventually, Extse uses the tree
builder T and extractor Extks for Aks to extract the witness for x. Both guar-
anteed to exist (and be successful with high probability) by rewinding-based
knowledge soundness. This high-level argument shows that Extse exists as well.

We now give the details of the simulation that guarantees that Aks is suc-
cessful whenever A is—except with a small security loss that we will bound
later: Since Aks runs A internally, it needs to take care of A’s oracle queries.
Aks passes on queries of A to the update oracle UpdO to its own UpdO oracle
and returns the result to A. Aks internally simulates (non-hardcoded) queries
to the simulator SimO.P′ by running the Sim algorithm on randomness rSim of
its tape. Sim requires access to oracles SimO.H to compute a challenge honestly
and SimO.Prog to program a challenge. Again Aks simulates both of these oracles
internally, cf. Fig. 4, this time using the H oracle of Aks. Note that queries of A
to SimO.H are not programmed, but passed on to H.

Importantly, all challenges in simulated proofs, up to round k are also com-
puted honestly, i.e. π̃[i].ch = H(π̃[0..i]), for i < k.

Fig. 4. Simulating random oracle calls.
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Eventually, A outputs an instance and proof (x, π). Aks returns the same
values as long as π̃[0..i] /∈ Qprog, i ∈ [1, μ]. This models that the proof output
by Aks must not contain any programmed queries as such a proof would not be
consistent to H in the RBKS experiment. If A outputs a proof that does contain
programmed challenges, then Aks aborts. We denote this event by E.

Lemma 1. Probability that E happens is upper-bounded by εur(λ).

Proof. We build an adversary AUpdO,H
ur (λ; r) that has access to the random oracle

H and update oracle UpdO. Aur uses Aks to break the k-UR property of ΨFS.
When Aks outputs a proof π for x such that E holds, Aur looks through

lists Q and QH until it finds π̃Sim[0..k] such that π̃[0..k] = π̃Sim[0..k] and a pro-
grammed random oracle query π̃Sim[k].ch on π̃Sim[0..k]. Aur returns two proofs π
and πSim for x, and the challenge π̃Sim[k].ch = π̃[k].ch. Importantly, both proofs
are w.r.t the unique response verifier. The first, since it is a correctly com-
puted simulated proof for which the unique response property definition allows
any challenges at k. The latter, since it is an accepting proof produced by the
adversary. We have that π �= πSim as otherwise A does not win the simulation
extractability game as π ∈ Q. On the other hand, if the proofs are different, then
Aur breaks k-UR-ness of ΨFS. This happens only with probability εur(λ). �	

We denote by ãcc the probability that Aks outputs an accepting proof. We
note that by up-to-bad reasoning ãcc is at most εur(λ) far from the probability
that A outputs an accepting proof. Thus, the probability that Aks outputs an
accepting proof is at least ãcc ≥ acc−εur(λ). Since ΨFS is εks(λ, ãcc, q) rewinding-
based knowledge sound, there is a tree builder T and extractor Extks that rewinds
Aks to obtain a tree of accepting transcripts T and fails to extract the witness
with probability at most εks(λ, ãcc, q). The extractor Extse outputs the witness
with the same probability.

Thus εse(λ, acc, q) = εks(λ, ãcc, q) ≤ εks(λ, acc − εur, q). �	

Remark 2. Observe that our theorem does not depend on εzk(λ). There is no
real prover algorithm P in the experiment. Only the k-programmability of TLZK
matters.

Remark 3. Observe that the theorem does not prescribe a tree shape for the
tree builder T . Interestingly, in our concrete results T outputs a (k, ∗)-tree of
accepting transcripts.

4 Concrete SNARKs Preliminaries

Bilinear groups. A bilinear group generator Pgen(1λ) returns public parameters
p = (p,G1,G2,GT , ê, [1]1 , [1]2), where G1, G2, and GT are additive cyclic groups
of prime order p = 2Ω(λ), [1]1 , [1]2 are generators of G1, G2, resp., and ê :
G1×G2 → GT is a non-degenerate PPT-computable bilinear pairing. We assume
the bilinear pairing to be Type-3, i.e., that there is no efficient isomorphism
from G1 to G2 or from G2 to G1. We use the by now standard bracket notation,
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i.e., we write [a]ι to denote a [1]ι. We denote ê([a]1 , [b]2) as [a]1 • [b]2. Thus,
[a]1 • [b]2 = [ab]T . Since every algorithm A takes as input the public parameters
we skip them when describing A’s input. Similarly, we do not explicitly state
that each protocol starts by running Pgen.

4.1 Algebraic Group Model

The algebraic group model (AGM) of Fuchsbauer, Kiltz, and Loss [27] lies some-
what between the standard and generic bilinear group model. In the AGM it is
assumed that an adversary A can output a group element [y] ∈ G if [y] has been
computed by applying group operations to group elements given to A as input.
It is further assumed, that A knows how to “build” [y] from those elements. More
precisely, the AGM requires that whenever A([x]) outputs a group element [y]
then it also outputs c such that [y] = c� · [x]. Plonk, Sonic and Marlin have been
shown secure using the AGM. An adversary that works in the AGM is called
algebraic.

Ideal Verifier and Verification Equations. Let (SRS,P,V,Sim) be a proof
system. Observe that the SRS algorithms provide an SRS which can be inter-
preted as a set of group representation of polynomials evaluated at trapdoor
elements. That is, for a trapdoor χ the SRS contains [p1(χ), . . . , pk(χ)]1, for
some polynomials p1(X), . . . , pk(X) ∈ Fp[X]. The verifier V accepts a proof π for
instance x if (a set of) verification equation vex,π (which can also be interpreted
as a polynomial in Fp[X] whose coefficients depend on messages sent by the
prover) zeroes at χ. Following [28] we call verifiers who check that vex,π(χ) = 0
real verifiers as opposed to ideal verifiers who accept only when vex,π(X) = 0.
That is, while a real verifier accepts when a polynomial evaluates to zero, an
ideal verifier accepts only when the polynomial is zero.

Although ideal verifiers are impractical, they are very useful in our proofs.
More precisely, we show that the idealized verifier accepts an incorrect proof
(what “incorrect” means depends on the situation) with at most negligible prob-
ability (and in many cases—never); when the real verifier accepts, but not the
idealized one, then a malicious prover can be used to break the underlying secu-
rity assumption (in our case—a variant of dlog.)

Analogously, idealized verifier can be defined for polynomial commitment
schemes.

4.2 Dlog Assumptions in Standard and Updatable Setting

Definition 6 ((q1, q2)-dlog assumption). Let A be a PPT adversary that gets
as input [1, χ, . . . , χq1 ]1 , [1, χ, . . . , χq2 ]2, for some randomly picked χ ∈ Fp, the
assumption requires that A cannot compute χ. That is

Pr[χ = A([1, χ, . . . , χq1 ]1 , [1, χ, . . . , χq2 ]2) |χ←$Fp ] ≤ negl(λ).

Since all our protocols and security notions are in the updatable setting, it
is natural to define the dlog assumptions also in the updatable setting. That is,
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instead of being given a dlog challenge the adversary A is given access to an
update oracle as defined in Fig. 1. The honestly generated SRS is set to be a
dlog challenge and the update algorithm UpdSRS re-randomizing the challenge.
We define this assumptions and show a reduction between the assumptions in
the updatable and standard setting.

Note that for clarity we here refer to the SRS by Ch. Further, to avoid clut-
tering notation, we do not make the update proofs explicit. They are generated
in the same manner as the proofs in Fig. 2.

Definition 7 ((q1, q2)-udlog assumption). Let A be a PPT adversary that gets
oracle access to UpdO with internal algorithms (GenSRS,UpdSRS,VerifySRS),
where GenSRS and UpdSRS are defined as follows:

– GenSRS(λ) samples χ←$Fp and defines Ch := ([1, χ, . . . , χq1 ]1 , [1, χ, . . . ,
χq2 ]2).

– UpdSRS(Ch, {ρj}n
j=1) parses Ch as

(
[{Ai}q1

i=0]1 , [{Bi}q2
i=0]2

)
, samples χ̃←$Fp,

and defines C̃h :=
([

{χ̃iAi}q1
i=0

]
1
,
[
{χ̃iBi}q2

i=0

]
2

)
.

Then Pr
[
χ̄ ← AUpdO(λ)

]
≤ negl(λ), where

([
{χ̄i}q1

i=0

]
1
,
[
{χ̄i}q2

i=0

]
2

)
is the final

Ch.

Remark 4 (Single adversarial updates after an honest setup.). As an alternative
to the updatable setting defined in Fig. 1, one can consider a slightly different
model of setup, where the adversary is given an initial honestly-generated SRS
and is then allowed to perform a malicious update in one-shot fashion. Groth et
al. show in [38] that the two definitions are equivalent for polynomial commit-
ment based SNARKs. We use this simpler definition in our reductions.

In the full version [29], we show a reduction from (q1, q2)-dlog assumption to
its variant in the updatable setting (with single adversarial update).

Generalized Forking Lemma. Although dubbed “general”, the forking lemma
of [5] is not general enough for our purpose as it is useful only for protocols where
a witness can be extracted from just two transcripts. To be able to extract a
witness from, say, an execution of P we need at least (3n+6) valid proofs (where
n is the number of constrains), (n + 1) for S, and 2n + 3 for M. Here we use a
result by Attema et al. [3]6 which lower-bounds the probability of generating a
tree of accepting transcripts T. We restate their Proposition 2 in our notation:

Lemma 2 (Run Time and Success Probability). Let N = n1 · · · · · nμ and
p = 2Ω(λ). Let εerr(λ) = 1−

∏μ
i=1

(
1 − ni−1

p

)
. Assume adversary A that makes up

to q random oracle queries and outputs an accepting proof with probability at least
acc. There exists a tree building algorithm T for (n1, . . . , nμ)-trees that succeeds

6 An earlier versions had its own forking lemma generalization. Attema et al. has a
better bound.
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in building a tree of accepting transcripts in expected running time N + q(N −1)
with probability at least

acc − (q + 1)εerr(λ)
1 − εerr(λ)

.

Opening Uniqueness of Batched Polynomial Commitment Openings.
To show the unique response property required by our main theorem we show
that the polynomial commitment schemes employed by concrete proof systems
have unique openings, which, intuitively, assures that there is only one valid
opening for a given committed polynomial and evaluation point:

Definition 8 (Unique opening property). Let m ∈ N be the number of
committed polynomials, l ∈ N number of evaluation points, c ∈ G

m be the com-
mitments, z ∈ F

l
p be the arguments the polynomials are evaluated at, Kj set of

indices of polynomials which are evaluated at zj, si vector of evaluations of fi,
and oj ,o

′
j ∈ F

Kj
p be the commitment openings. Then for every PPT adversary A

Pr

⎡

⎣
Verify(srs, c,z, s,o) = 1,
Verify(srs, c,z, s,o′) = 1,

o �= o′

∣
∣
∣
∣
∣
(c,z, s,o,o′) ← AUpdO(max)

⎤

⎦ ≤ negl(λ) .

We show that the polynomial commitment schemes of Plonk, Sonic, and
Marlin satisfy this requirement in the full version [29].

Remark 5. In the full version [29], we presents efficient variants of KZG [40]
polynomial commitment schemes used in Plonk, Sonic and Marlin that sup-
port batched verification. Algorithms Com, Op, Verify take vectors as input and
receive an additional arbitrary auxiliary string. This adversarially chosen string
only provides additional context for the computation of challenges and allows
reconstruction of proof transcripts π̃[0..i] for batch challenge computations. We
treat auxiliary input implicitly in the definition above.

5 Non-malleability of Plonk

In this section, we show that PFS is simulation-extractable. To this end, we
first use the unique opening property to show that PFS has the 3-UR property,
cf. Lemma 3. Next, we show that PFS is rewinding-based knowledge sound. That
is, given a number of accepting transcripts whose first 3 messages match, we can
either extract a witness for the proven statement or use one of the transcripts
to break the udlog assumption. This result is shown in the AGM, cf. Lemma
4. We then show that PFS is 3-programmable trapdoor-less ZK in the AGM,
cf. Lemma 5.

Given rewinding-based knowledge soundness, 3-UR and trapdoor-less zero-
knowledge of PFS, we invoke Theorem 1 and conclude that PFS is simulation-
extractable.
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5.1 Plonk Protocol Description

The Constraint System. Assume C is a fan-in two arithmetic circuit, whose
fan-out is unlimited and has n gates and m wires (n ≤ m ≤ 2n). The constraint
system of Plonk is defined as follows:

– Let V = (a, b, c), where a, b, c ∈ [1 ..m]n. Entries ai, bi, ci represent indices
of left, right and output wires of the circuit’s i-th gate.

– Vectors Q = (qL , qR , qO , qM , qC ) ∈ (Fn)5 are called selector vectors: (a) If
the i-th gate is a multiplication gate then qL i = qR i = 0, qM i = 1, and
qO i = −1. (b) If the i-th gate is an addition gate then qL i = qR i = 1,
qM i = 0, and qO i = −1. (c) qC i = 0 for multiplication and addition gates.7

We say that vector x ∈ F
m satisfies constraint system if for all i ∈ [1 .. n]

qL i · xai
+ qR i · xbi

+ qO · xci
+ qM i · (xai

xbi
) + qC i = 0.

Public inputs (xj)
�
j=1 are enforced by adding the constrains

ai = j, qL i = 1, qM i = qR i = qO i = 0, qC i = −xj ,

for some i ∈ [1 .. n].

Algorithms Rolled Out. Plonk argument system is universal. That is, it allows
to verify computation of any arithmetic circuit which has up to n gates using
a single SRS. However, to make computation efficient, for each circuit there is
a preprocessing phase which extends the SRS with circuit-related polynomial
evaluations.

For the sake of simplicity of the security reductions presented in this paper,
we include in the SRS only these elements that cannot be computed without
knowing the secret trapdoor χ. The rest of the preprocessed input can be com-
puted using these SRS elements. We thus let them to be computed by the prover,
verifier, and simulator separately.

Plonk SRS generating algorithm GenSRS(R): The SRS generating algorithm
picks at random χ←$Fp, computes and outputs srs =

([
{χi}n+5

i=0

]
1
, [χ]2

)
.

Preprocessing: Let H = {ωi}ni=1 be a (multiplicative) n-element subgroup of a
field F compound of n-th roots of unity in F. Let Li(X) be the i-th element of an
n-elements Lagrange basis. During the preprocessing phase polynomials Sidj,Sσj,
for j ∈ [1 .. 3], are computed:

Sid1(X) = X,

Sid2(X) = k1 · X,

Sid3(X) = k2 · X,

Sσ1(X) =
∑n

i=1 σ(i)Li(X),
Sσ2(X) =

∑n
i=1 σ(n+ i)Li(X),

Sσ3(X) =
∑n

i=1 σ(2n+ i)Li(X).

7 The qC i selector vector is meant to encode (input independent) constants.
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Coefficients k1, k2 are such that H, k1 · H, k2 · H are different cosets of F∗, thus
they define 3 · n different elements. Gabizon et al. [28] notes that it is enough to
set k1 to a quadratic residue and k2 to a quadratic non-residue.

Furthermore, we define polynomials qL, qR, qO, qM, qC such that

qL(X) =
∑n

i=1qL iLi(X),
qR(X) =

∑n
i=1 qR iLi(X),

qM(X) =
∑n

i=1 qM iLi(X),

qO(X) =
∑n

i=1 qO iLi(X),
qC(X) =

∑n
i=1 qC iLi(X).

Proving Statements in PFS. We show how prover’s algorithm P(srs, x =
(w′

i)
�
i=1 ,w = (wi)

3·n
i=1) operates for the Fiat–Shamir transformed version of Plonk.

Note that for notational convenience w also contains the public input wires
w′

i = wi, i ∈ [1 .. 	].
Message 1. Sample b1, . . . , b9 ←$Fp; compute a(X), b(X), c(X) as

a(X) = (b1X + b2)ZH(X) +
∑n

i=1 wiLi(X)
b(X) = (b3X + b4)ZH(X) +

∑n
i=1 wn+iLi(X)

c(X) = (b5X + b6)ZH(X) +
∑n

i=1 w2·n+iLi(X)

Output polynomial commitments [a(χ), b(χ), c(χ)]1.
Message 2. Compute challenges β, γ ∈ Fp by querying random oracle on partial

proof, that is, β = H(π̃[0..1], 0) , γ = H(π̃[0..1], 1) .
Compute permutation polynomial z(X)

z(X) = (b7X2 + b8X + b9)ZH(X) + L1(X)+

+
n−1∑

i=1

⎛

⎝Li+1(X)
i∏

j=1

(wj + βωj−1 + γ)(wn+j + βk1ωj−1 + γ)(w2n+j + βk2ωj−1 + γ)
(wj + σ(j)β + γ)(wn+j + σ(n+ j)β + γ)(w2n+j + σ(2n+ j)β + γ)

⎞

⎠

Output polynomial commitment [z(χ)]1
Message 3. Compute the challenge α = H(π̃[0..2]), compute the quotient poly-

nomial

t(X) =

(a(X)b(X)qM(X) + a(X)qL(X) + b(X)qR(X) + c(X)qO(X) + PI(X) + qC(X))/ZH(X)+

+ ((a(X) + βX + γ)(b(X) + βk1X + γ)(c(X) + βk2X + γ)z(X))α/ZH(X)

− (a(X) + βSσ1(X) + γ)(b(X) + βSσ2(X) + γ)(c(X) + βSσ3(X) + γ)z(Xω))α/ZH(X)

+ (z(X)− 1)L1(X)α2/ZH(X)

Split t(X) into degree less then n polynomials tlo(X), tmid(X), thi(X), such
that t(X) = tlo(X)+Xntmid(X)+X2nthi(X) . Output [tlo(χ), tmid(χ), thi(χ)]1.

Message 4. Get the challenge z ∈ Fp, z = H(π̃[0..3]). Compute opening evalua-
tions a(z), b(z), c(z),Sσ1(z),Sσ2(z), t(z), z(zω), Compute the linearization poly-
nomial

r(X) =

a(z)b(z)qM(X) + a(z)qL(X) + b(z)qR(X) + c(z)qO(X) + qC(X)
+ α · ((a(z) + βz+ γ)(b(z) + βk1z+ γ)(c(z) + βk2z+ γ) · z(X))
− α · ((a(z) + βSσ1(z) + γ)(b(z) + βSσ2(z) + γ)βz(zω) · Sσ3(X))

+ α2 · L1(z) · z(X)
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Output a(z), b(z), c(z),Sσ1(z),Sσ2(z), t(z), z(zω), r(z).
Message 5. Compute the opening challenge v ∈ Fp, v = H(π̃[0..4]). Compute

the openings for the polynomial commitment scheme

Wz(X) =
1

X − z

⎛
⎜⎜⎝

tlo(X) + z
ntmid(X) + z

2nthi(X) − t(z) + v(r(X) − r(z)) + v
2
(a(X) − a(z))

+ v
3
(b(X) − b(z)) + v

4
(c(X) − c(z)) + v

5
(Sσ1(X) − Sσ1(z))

+ v
6
(Sσ2(X) − Sσ2(z))

⎞
⎟⎟⎠

Wzω(X) = (z(X) − z(zω))/(X − zω)

Output [Wz(χ),Wzω(χ)]1.

Plonk verifier V(srs, x, π): The Plonk verifier works as follows

1. Validate all obtained group elements.
2. Validate all obtained field elements.
3. Parse the instance as {wi}�

i=1 ← x.
4. Compute challenges β, γ, α, z, v, u from the transcript.
5. Compute zero polynomial evaluation ZH(z) = zn − 1.
6. Compute Lagrange polynomial evaluation L1(z) = zn−1

n(z−1) .
7. Compute public input polynomial evaluation PI(z) =

∑
i∈[1 .. �] wiLi(z).

8. Compute quotient polynomials evaluations

t(z) =
(
r(z)+PI(z)−(a(z)+βSσ1(z)+γ)(b(z)+βSσ2(z)+γ)(c(z)+γ)z(zω)α−L1(z)α

2
)

/ZH(z) .

9. Compute batched polynomial commitment [D]1 = v [r]1 + u [z]1 that is

[D]1 = v

⎛
⎜⎝

a(z)b(z) · [qM]1 + a(z) [qL]1 + b [qR]1 + c [qO]1 +

+ ((a(z) + βz+ γ)(b(z) + βk1z+ γ)(c+ βk2z+ γ)α + L1(z)α
2)+

− (a(z) + βSσ1(z) + γ)(b(z) + βSσ2(z) + γ)αβz(zω) [Sσ3(χ)]1)

⎞
⎟⎠+

+ u [z(χ)]1 .

10. Computes full batched polynomial commitment [F ]1:

[F ]1 =
(
[tlo(χ)]1 + zn [tmid(χ)]1 + z2n [thi(χ)]1

)
+ u [z(χ)]1 +

+ v

⎛
⎜⎝

a(z)b(z) · [qM]1 + a(z) [qL]1 + b(z) [qR]1 + c(z) [qO]1 +

+ ((a(z) + βz+ γ)(b(z) + βk1z+ γ)(c(z) + βk2z+ γ)α + L1(z)α
2)+

− (a(z) + βSσ1(z) + γ)(b(z) + βSσ2(z) + γ)αβz(zω) [Sσ3(χ)]1)

⎞
⎟⎠

+ v2 [a(χ)]1 + v3 [b(χ)]1 + v4 [c(χ)]1 + v5 [Sσ1(χ)]1 + v6 [Sσ2(χ)]1 .

11. Compute group-encoded batch evaluation [E]1

[E]1 =
1

ZH(z)

[
r(z) + PI(z) + α2L1(z)+

− α ((a(z) + βSσ1(z) + γ)(b(z) + βSσ2(z) + γ)(c(z) + γ)z(zω))

]

1

+
[
vr(z) + v2a(z) + v3b(z) + v4c(z) + v5Sσ1(z) + v6Sσ2(z) + uz(zω)

]
1

.
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12. Check whether the verification equation holds
(
[Wz(χ)]1 + u · [Wzω(χ)]1

)
• [χ]2 −

(
z · [Wz(χ)]1 + uzω · [Wzω(χ)]1 + [F ]1 − [E]1

)
• [1]2 = 0 . (1)

The verification equation is a batched version of the verification equation
from [40] which allows the verifier to check openings of multiple polynomials
in two points (instead of checking an opening of a single polynomial at one
point).

Plonk simulator Simχ(srs, td = χ, x): We describe the simulator in Lemma 5.

5.2 Simulation Extractability of Plonk

Due to lack of space, we provide here only theorem statements and intuition for
why they hold. Full proofs are given in the full version [29].

Unique Response Property

Lemma 3. Let PCP be a polynomial commitment that is εbind(λ)-binding and
has unique opening property with loss εop(λ). Then PFS is 3-UR against alge-
braic adversaries, who makes up to q random oracle queries, with security loss
εbind(λ) + εop(λ).

Proof (Intuition). We show that an adversary who can break the 3-unique
response property of PFS can be either used to break the commitment scheme’s
evaluation binding or unique opening property. The former happens with the
probability upper-bounded by εbind(λ), the latter with the probability upper
bounded by εop(λ).

Rewinding-Based Knowledge Soundness

Lemma 4. PFS is (3, 3n+6)-rewinding-based knowledge sound against algebraic
adversaries who make up to q random oracle queries with security loss

εks(λ, acc, q) ≤

⎛

⎝1 −
acc − (q + 1)

(
3n+5

p

)

1 − 3n+5
p

⎞

⎠ + (3n+ 6) · εudlog(λ) ,

Here acc is a probability that the adversary outputs an accepting proof, and
εudlog(λ) is security of (n+ 5, 1)-udlog assumption.

Proof (Intuition). We use Attema et al. [3, Proposition 2] to bound the proba-
bility that an algorithm T does not obtain a tree of accepting transcripts in an
expected number of runs. This happens with probability at most

1 −
acc − (q + 1)

(
3n+5

p

)

1 − 3n+5
p
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Then we analyze the case that one of the proofs in the tree T outputted by T
is not accepting by the ideal verifier. This discrepancy can be used to break an
instance of an updatable dlog assumption which happens with probability at
most (3n+ 6) · εudlog(λ).

Trapdoor-Less Zero-Knowledge of Plonk

Lemma 5. PFS is 3-programmable trapdoor-less zero-knowledge.

Proof (Intuition). The simulator, that does not know the SRS trapdoor can make
a simulated proof by programming the random oracle. It proceeds as follows. It
picks a random witness and behaves as an honest prover up to the point when a
commitment to the polynomial t(X) is sent. Since the simulator picked a random
witness and t(X) is a polynomial only (modulo some negligible function) when
the witness is correct, it cannot compute commitment to t(X) as it is a rational
function. However, the simulator can pick a random challenge z and a polynomial
t̃(X) such that t(z) = t̃(z). Then the simulator continues behaving as an honest
prover. We argue that such a simulated proof is indistinguishable from a real
one.

Simulation Extractability of PFS

Since Lemmas 3 to 5 hold, P is 3-UR, rewinding-based knowledge sound and
trapdoor-less zero-knowledge. We now make use of Theorem 1 and show that
PFS is simulation-extractable as defined in Definition 2.

Corollary 1 (Simulation extractability of PFS). PFS is updatable
simulation-extractable against any PPT adversary A who makes up to q ran-
dom oracle queries and returns an accepting proof with probability at least acc
with extraction failure probability

εse(λ, acc, q) ≤
(
1 − acc − εur(λ) − (q + 1)εerr(λ)

1 − εerr(λ)

)
+ (3n+ 6) · εudlog(λ),

where εerr(λ) = 3n+5
p , εur(λ) ≤ εbind(λ) + εop(λ), p is the size of the field, and n

is the number of constrains in the circuit.
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Abstract. Commitments to key-value maps (or, authenticated dictio-
naries) are an important building block in cryptographic applications,
including cryptocurrencies and distributed file systems.

In this work we study short commitments to key-value maps with
two additional properties: double-hiding (both keys and values should
be hidden) and homomorphism (we should be able to combine two com-
mitments to obtain one that is the “sum” of their key-value openings).
Furthermore, we require these commitments to be short and to support
efficient transparent zero-knowledge arguments (i.e., without a trusted
setup).

As our main contribution, we show how to construct commitments
with the properties above as well as efficient zero-knowledge arguments
over them. We additionally discuss a range of practical optimizations
that can be carried out depending on the application domain. Finally,
we formally describe a specific application of commitments to key-value
maps to scalable anonymous ledgers. We show how to extend QuisQuis
(Fauzi et al. ASIACRYPT 2019). This results in an efficient, confidential
multi-type system with a state whose size is independent of the number
of transactions.

Keywords: Zero-knowledge · Key-Value map · Commitments

1 Introduction

In this work we propose constructions for efficient commitments to key-value
maps (with specific features) and for efficient zero-knowledge arguments that
can prove properties on committed key-value maps.

Key-Value Maps. We can loosely consider a key-value map as the equivalent
of a dictionary in some programming languages (e.g., Python): a way to map
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arbitrary keys—e.g., strings—to values—e.g., scalars. For example, the balance
of a user in a wallet application could be represented by a key-value map as
kv = {(USD, 100), (BTC, 10)}, where each of the different asset types (the keys)
are associated to an amount (the values). In this paper we will generally assume
that values are in an algebraic group endowed with an addition operation +.

Our Focus: Short, Homomorphic, Doubly-Hiding Commitments. A
commitment to a key-value map is roughly similar to an ordinary commitment:
it cannot be opened to two different key-value maps (binding) and it should
not leak anything about neither the keys nor the values in it. In the case of
key-value maps, however, we are interested in some additional functional and
efficiency-related requirements:

– Large key universe: our commitments should support a large universe of keys,
potentially superpolynomial in the security parameter1. This implies that the
algorithms of the commitment scheme should have a runtime independent of
(or logarithmic in) the size of the key universe.

– Short commitments: our commitments should have size independent not only
of the size of the key universe, but also of the density of the key-value map.
The density is the number of elements whose value is not zero (e.g., the
density of kv in the example above was 2).

– Homomorphic commitments: we require our commitments to support an
homomorphic operation ◦. For example assume each commitment encodes
a wallet and that we have two wallets c, c′ with c = Com({(USD, 100),
(BTC, 10)}) and c′ = Com({(USD, 20), (ETH, 1)}). Then we can compute the
commitment c∗ ← c ◦ c′ = Com({(USD, 120), (BTC, 10), (ETH, 1)}) without
knowing the opening of any of the commitments. Requiring homomorphism
rules out Merkle Trees as a solution. Homomorphic properties of commitments
to “structured objects” have wide applications in cryptography (see, e.g., [27]
for homomorphic polynomial commitments). The homomorphic property is a
natural one and allows many useful applications: as an example we describe
applications to privacy-preserving cryptocurrencies in Sect. 7 and an addi-
tional class of application scenarios in Sect. 1.1.

– Efficient and transparent2 zero-knowledge proofs: we should be able to prove
(and verify) efficiently arbitrary properties over commitments of key-value
maps. We are interested in zero-knowledge proofs—which allow to prove prop-
erties over a secret value without leaking it—and where both keys and values
are part of the secret. For example, one can prove that two committed key-
value maps hold the same value for some (hidden) key k̃. More formally,
given as public input commitments c, c′ and a public function f , one can
prove knowledge of a key k̃ such that c, c′ are commitments to key-value
maps kv, kv′ respectively and kv[k̃] = f(kv′[k̃]).

1 This is a way to describe our setting asymptotically. We stress, however, that is not
necessary: an interesting setting for our constructions is just one where the universe
of keys is concretely large.

2 In a transparent argument system the setup does not need to be produced by a
trusted party. This property is interesting in the case of non-interactive argument
systems, which are the focus of this work.
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While different subsets of these properties have been studied in literature, our
contribution is to investigate constructions that require them all. Our goal is to
provide concretely efficient tools useful in different application domains.

Key-Hiding Properties. Here we clarify what we mean by key-hiding proper-
ties and discuss how existing solutions fail to solve our problem. We have three
key sets of interest: the set of all the keys in the universe (which we will assume
to be {0, 1}∗ or a field F from now on), the set Kactive of active keys, defined as
all the keys that are being used in the system, and the set Kcom of committed
keys, defined as the non-zero keys in any given commitment. As our commitment
scheme always supports an exponentially large key space, the notion of active
and committed keys is only relevant for commitments which require a NIZK
about their opening. For example, in a wallet setting, Kactive consists of all the
keys (asset types) encoded in some wallet, while Kcom would consist of those
encoded in a specific given wallet. Depending on whether we want to hide the
active or the committed keys or both we get four different settings, which we
discuss below (see also Fig. 1).

Public Active Keys. In the case where both the active keys and the committed
keys are public, Pedersen commitments are already a solution to our problem.
The system parameters will contain group elements h, g1, . . . , gn where there
is a known association between ki and gi for all active keys ki. E.g. A public
coin setup process generates gi = H(ki) with a hash function H. Thereby the
association is known by all participants. We commit by computing c = hr

∏
i gvi

i ,
and proving properties of values is trivial to do using existing sigma protocols
since the verifier is allowed to learn the keys. In the case in which the active
keys are public but the committed keys are private, Pedersen commitment can
still be used but the (proving) complexity of the ZK proof would be linear in the
number of active keys3. One of our contributions is to show how to bring this
down to the size of the committed set.

Private Active keys. It does not make sense to consider the case where the
set of active keys are private but the committed keys are public. The most inter-
esting case is the one in which both of these sets are private. In this setting,
it would be possible to commit using a non-homomorphic version of Pedersen
commitment. We thus have 2n + 1 generators (h, g1, f1, . . . , gn, fn) and we com-
mit computing c = hrΠgvi

i fki
i . Now it is possible to efficiently prove statements

but the commitment is not homomorphic (and therefore not applicable in our
settings of interest). Our main contribution is to provide a better solution for
this case.

1.1 Applications of Our Work

Application: Multi-Type QuisQuis. The privacy-preserving transaction sys-
tem QuisQuis [23] crucially relies commitments endowed with an homomorphic
3 This is true for the aforementioned approach with sigma-protocols as well as for

other straightforward applications of NIZKs.
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property. It builds upon accounts to which tokens are deposited in a transaction
without interaction of the receiver. A crucial performance consideration is the
storage needed for a client to participate in the system. This corresponds to the
local state necessary to validate arising updates (i.e. transactions). Compared
to other privacy-preserving transaction systems like Zcash [11] or Monero [31],
the design of QuisQuis achieves a state size linear in the number of participants
instead of monotonically growing over time (i.e. requiring clients to store the full
history). We extend this system through a notion of currency types such that
different currencies share a common anonymity set. This allows for a dynamic
creation of confidential tokens by any participant without setting up a full sep-
arate system. For this application, we also present a secret key based key-value
map commitment4. In combination with efficient NIZKs, to show that transac-
tions conserve all value, we achieve small transaction sizes. We formally describe
this application in Sect. 7.

Application: Publicly Verifiable Evolving Database. Consider a
database (representable as key-value store) which receives numerous updates
and where we want the content of the database to remain private but we also
are interested in the database publicly “evolving through time”.

As an example of the above, consider a register of tax-related information
where users are identified by their SSN. The set of valid identities grows dynam-
ically, which results in a high overhead if the public parameter changes every
time. Users provide their SSN to their employer who uses it to report the salary.
At the end of the month, each employer creates a hiding key-value map com-
mitment with one key per employee and their earned amount as value, e.g.
δCCorp X,May = Com({SSNAlice : 3142,SSNBob : 2718}). The company may
either prove that for the employee’s identity the correct amount was committed
(without revealing the identities of co-workers), or reveal the full opening to their
employees. Every company publishes these commitments to a persistent log. At
the end of the year, the tax authority homomorphically adds all published com-
mitments and can then generate proofs on a single commitment instead of all
commitments from all companies. The required value opening is provided by
the tax payers and the randomness by the companies. Employees with multiple
sources of income get the amounts homomorphically added. Different categories
of income may be separated by namespaces in the key.

1.2 Technical Overview

Our Construction of Key-Value Map Commitments. In order to commit
to a key-value map

{
vk

}
k∈K

we assume a group G where the discrete logarithm
is hard and a hash function H modeled as a random oracle mapping keys to group
elements. We then compute a commitment as c =

∏
k∈K H(k)vkhr where h is a

random generator of the group and r is a random scalar. This can be seen as
a (vector) Pedersen commitment with random key-dependent generators and it
4 I.e., a commitment which can be opened using a secret key in place of the random-

ness.



Zero-Knowledge for Homomorphic Key-Value Commitments 765

has short homomorphic commitments. In the next paragraphs, we show how we
can construct efficient zero-knowledge proofs for circuits over such commitments.

Modular Transparent Zero-Knowledge Arguments for Committed
Key-Value Maps. Fix a (large) field F and consider a circuit C over key-value
maps (we assume that F is also both the key and the value space of the key-
value map). We assume the syntax of C to be of the type C(kv1, . . . , kv�, ω), the
kvi-s as private key-value maps and ω as an additional private witness (ω is a
vector of field elements). Given such a circuit we are interested in proving an
augmented circuit that takes as public input commitments to the � key-value
maps and proves their opening in addition to the relation from circuit C. More
specifically, we propose an argument system for:

C∗(c1, . . . , c�; (kv1, ρ1), . . . , (kv�, ρ�), ω)

:= C(kv1, . . . , kv�, ω) ∧
∧

i∈[�]

ci = Com(kvi, ρi) (1)

where the part after the semicolon is considered the private witness. A more
concrete intuition on the circuit above is: given committed key–value pairs we
can prove properties of their values, their keys and any relation between these
and other private values (contained in ω).

Our Template for Zero-Knowledge Arguments on Committed Key-
Value Maps. We now describe how to prove properties on committed key-
value maps. The following refers to the setting with private-active-keys/private-
committed-keys (see lower-right quadrant in Fig. 1). We denote the construction
for the doubly-private case by (first part alternatively spelled “ZKeyWee”,
as a pun on “ZK for KV”, and pronounced “zee-kee-wee”; “dp” stands for doubly-
private).

Public Kactive Private Kactive

Public Kcom
c = hr ∏

i g
vi
i &

Σ-protocols
(Uninteresting case)

Private Kcom
c as in Fig. 2 &

Z -set (Sec. 1.2)

c as in Fig. 2 &

Z -dp (Sec. 4)

Fig. 1. How to construct commitments to key-value maps & NIZKs over them within
our settings and with our requirements of interests. (Kactive: “active” keys set, i.e.,
all the keys committed somewhere; Kcom committed keys set, i.e. those that open the
commitments we are using in a proof right now). The related constructions are specified
in the second lines with our two contributions and .

Our construction follows a basic blueprint, which we now exemplify through a
concrete case. Consider a committed key-value map

{
vk

}
k∈K

and the problem of
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proving in zero-knowledge that all its values vk are in some range {0, . . . 2μ −1}.
We proceed in two steps: we first let the prover send the verifier what we call
key-tags, these are masked versions of the non-zero keys in the committed key-
value map. The prover will also show that they are valid maskings of some set
of keys. By providing key-tags, we can then break the rest of the relation in two
parts: a) showing knowledge of values (and randomness) that combined with the
key-tags produce the commitment c (part of the public input); b) showing that
these values are in range. We now elaborate on each of these steps.

Given a key-value map
{
vk

}
k∈K

with density n (the number of non-zero
keys5) we provide n key-tags by sending bk = H(k)hrk for a random rk. The
prover should also prove that each of them is of the prescribed form. We stress
that, in order to do this, we use the heuristic technique of proving a random oracle
in zero-knowledge by assuming there exists a circuit for it (a non-standard but
common technique; see, e.g., [36]). Next, the prover would show knowledge of
values v1, . . . , vn and an appropriate r′ such that c = bv1

k1
· · · bvn

kn
hr′

and vi ∈
{0, . . . 2μ − 1} for all i ∈ [n]. The latter relation—comprising reconstructing
the commitment from the key-tags and the range proof—can for example be
performed through a system like the generalized Bulletproofs in LMR [28] or
compressed Σ-protocols [10]. These provide interfaces to prove bilinear circuits,
of which we only use the non-bilinear gates, with logarithmic proof sizes. We
stress that our focus is on transparent solutions, i.e., without a trusted setup; all
our constructions can be instantiated in a fully transparent manner. We discuss
an experimental evaluation in Sect. 6. We estimate our system can open n = 100
values and prove they are in range in approximately one minute. A very loose
estimate for the size of the corresponding proof is < 6KB using [28] in the
Ristretto curve (see also Table 1 and Sect. 4.3).

We remark on two properties of the template of our construction above.
First, we can easily reduce its amortized cost by splitting it into an offline stage
(independent of the commitments on which we are carrying out proofs) and an
online stage. We further discuss these improvements in Sect. 5. Second, we adapt
and optimize our construction to the scenario with public active keys and private
committed keys (lower-left quadrant in Fig. 1). We describe this next.

A 2nd Construction with Registration of Active Keys. In some set-
tings, although the whole universe of keys can be extremely large, the set of
active keys Kactive at any given time can have a manageable size and be publicly
known. Consider for example applications (e.g. multi-asset transaction system)
where there is an exponentially large set of potential asset types (keys), but only
a manageable subset of them are present in the system (active) at any given
time. Moreover, before becoming active in the system they plausibly need to be
registered (for example, through a first “genesis” transaction for that specific
asset type). In such settings we can leverage the partial knowledge on existing

5 Here we consider the case where leaking the density of the key-value map is not a
problem. We will also adapt our construction where this leakage does not occur if
an upper bound on this density is known.
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keys to improve efficiency. We do this by introducing an operation that prepro-
cesses the parameters of the system (or CRS) specializing them for a specific set
of active keys. Our proposed construction for this setting—denoted by
(for “registered set” of keys) and discussed in more detail in the full version
[17]—assumes the specialized CRS for the set Kactive to contain an accumula-
tor6 to the set of (unmasked) key-tags corresponding to Kactive, i.e., to the set
Bactive = {H(k) : k ∈ Kactive}. Thus, in the online stage, we can produce a
proof on a commitment c = Com(

{
vk

}
k∈K

) by: 1) producing masked key-tags
B′ = {H(k)hrk : k ∈ K} produced with some fresh randomness rk; 2) showing
that each b′

k ∈ B′ is of the form b ·hrk for some b in the accumulator; 3) showing
knowledge of vk-s such that c = hr

∏
k b′vk

k .
The main advantage of the construction above, , is that it does not

require the hashing H(k) for the key-tags to be proven in zero-knowledge (by
exploiting the fact that the keys are public and “pre-registered”). This can result
in savings in verification time of one order of magnitude compared to
(we elaborate in the full version [17]); such savings also apply to the multi-
type transaction systems Multi-type QuisQuis (Sect. 7) and can be extended to
other transaction systems (our techniques in are compatible with other
frameworks besides QuisQuis and they could be straightforwardly applied, e.g.,
to obtain a multi-type version of Veksel [19]).

Multi-Type QuisQuis. In contrast to the original QuisQuis where an account
stored a scalar value representing an amount, we generalize accounts to store
tokens of different types in a key-value map. Each key corresponds to a type,
also known as currency, and the value specifies how many tokens of the specific
type are held by the account. An account acct holds a balance kv, represented as
a key-value map. To transfer tokens from one account to another, a transaction
includes both accounts as active inputs, denoted by the set P. The transaction
subtracts tokens from one account with a secret index s and adds them to the
other one. The output of the transaction are two updated accounts belonging
to the same users as the inputs; the input accounts are discarded. To achieve
anonymity, the input consists of P together with a potentially large anonymity
set of accounts A which keep their balance unchanged but provide set anonymity
for the active accounts. The sender uses with a circuit to prove that they
have enough funds (knowledge of secret key and positive balance) and that the
updates are consistent.

1.3 Related Work

Authenticated Data Structures. Besides the aforementioned straw-man
schemes based on Pedersen, a common approach to succinct key-value com-
mitments uses Merkle trees. They are not homomorphic and opening them in

6 An accumulator is a cryptographic data structure that allows to commit to a set in
a binding manner and to prove membership of an element efficiently. NB: we can
compute accumulators deterministically from a set, i.e., without a trusted authority.
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zero-knowledge requires proving a number of hashes logarithmic in the number
of committed elements, which can be expensive.

A related primitive is that of vector commitments [20]. A limitation of using
vector commitments as key-value map commitments in general is that values
need to be stored at positions that have already been agreed upon. That is,
since we need to know for each key k what is the index ik it refers to in the
vector. This type of common agreement may be achieved in the setting in the
bottom left quadrant in Fig. 1 (public active keys) but not in the bottom right
one (private active keys). Also, while some constructions of vector commitments
are homomorphic (e.g., [20]) they lose this property when hiding is added to
them (which is usually achieved by storing hiding commitments to the values of
interest). Other constructions do not have this limitation [14,30] but, like vector
commitments in general, only support public active keys. We finally remark that,
vector commitments focus on a different notion of succinctness than the one that
is the focus in this paper. Our focus is on a proof size that is sublinear in the
size of the circuit we apply on the opening, but not necessarily sublinear in the
number of committed elements.

There is a large body of work on succinct commitments to key-value maps,
e.g.7, [5,13,18,35]. Differently from our work, constructions in literature are not
homomorphic and do not directly support hiding of keys/values. We observe,
however, that if one could do without homomorphism the latter problem could be
mitigated for some of these constructions by applying masking of keys/values and
zero-knowledge. This is true for example for some of the works based on groups
of unknown-order [13,18] where we can use techniques to compose algebraic
accumulators proofs and succinct zero-knowledge proof systems described in [12].

The work in [4] formalizes encryption on distributed key-value maps with
consistency properties; it is not concerned with homomorphism or efficient zero-
knowledge. Other works on efficient Zero-Knowledge and key-value maps include
Spice [33]. The authors use data-structures that hide the key but that are not
homomorphic. Their constructions use a trusted setup.

Confidential Transaction Systems and Multiple Token Types. Here we
describe works related to our application, a multi-type version of QuisQuis.

Works on confidential transaction systems include Zcash [11], Monero [31],
Omniring [29], and Veksel [19]. We now compare these works against the
QuisQuis framework, which we extend in this work. The most critical aspect is
sender anonymity. Zcash obtains the largest anonymity set among these works
(as large as the UTXO set), but it does not have plausible deniability8 and
requires a trusted setup. Monero does not have these limitations; it is unclear
how the anonymity in Monero fares against that in QuisQuis (see Discussion
in [23]). Omniring improves the transaction size from being linear in the size
of the anonymity set (Monero) to a logarithmic size. Both Zcash and Monero
style systems, however, have transaction outputs that can (essentially) never be
7 We refer the reader to [35] for a survey of this rapidly growing field.
8 Plausible deniability: no one can tell if a user meant to be involved in a transaction.
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removed from the UTXO set. The payment system in Veksel, like QuisQuis,
does not have this drawback. Differently from QuisQuis, Veksel achieves O(1)
transaction sizes, but at the price of weaker anonymity guarantees. In all these
systems amounts are confidential, yet they lack a notion of type/currency.

The work in [32] introduces confidential types by using homomorphic com-
mitments whose construction is the “single key” version of ours. Their design has
also been used in SwapCT [21] and integrated in MimbleWimble [37]. Another
construction of confidential types is that of Cloaked Assets developed by Stellar,
which separates types and values in two different data structures, similar to our
non-homomorphic example. Therefore a transactor requires the openings of all
inputs to create a conservation proof, providing no sender anonymity.

2 Notation and Preliminaries

Preliminaries on (Sparse) Key-Value Maps. We assume a universe of keys
K and a universe of values V such that in a key-value map, keys are a subset
of K and values are any element in V; they may be of size superpolynomial in
a security parameter λ. We assume V to be an additive group endowed with
some operation +. A key-value map is defined as a function kv : K → V. We call
its density the number of elements that are mapped to a non-zero value in V.
Our focus is on sparse key-value maps whose density grows asymptotically with
poly(λ) (and in practice may be concretely small). We can represent a sparse
key-value map as a set of pairs

{
(k, vk)

}
k∈K

where K ⊆ K: this maps each
element k ∈ K to vk and any other element to 0 ∈ V. We often use the more
succinct notation

{
vk

}
k∈K

for a key-value map
{
(k, vk)

}
k∈K

over the set K (we
assume that the set K is implicitly part of the description of

{
vk

}
k∈K

). Hence
the empty set ∅ represents the key-value map with all elements in the universe
initialized to zero; we denote the latter empty key-value map ∅kv to be explicit.
We denote by −kv the key-value map associating the value −kv(k) to each key
k; we define a sum of key-value maps as follows:

{
vk

}
k∈K

+
{
v′

k′
}

k′∈K′ :=
(k, vk + v′

k′)k∈K∪K′ . A partition of a key-value map
{
vk

}
k∈K

is a pair of key-
value maps (

{
v′

k′
}

k′∈K′ ,
{
v′′

k′′
}

k′′∈K′′) such that (K ′,K ′′) is a partition of K.

Cryptographic Assumptions. For convenience we use a different, but equiva-
lent, formulation of the discrete logarithm assumption. Below G denotes a group
generator.

Assumption 1 (Generalized DLOG [16]). ∀ PPT A,m ≥ 2 :

Pr

⎡

⎢
⎣

G ← G(1λ); (g1, . . . , gm) ←$G

(a1, . . . , am) ← A(G, g1, . . . , gm)
:

∃j∗ ∈ [m] aj∗ �= 0 ∧
∏

j∈[m]

g
aj

j = 1G

⎤

⎥
⎦ ≤ negl(λ)
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NIZKs. Here we describe the basic notion of non-interactive zero-knowledge.
In Sect. 4 we provide explicit syntax for the specific setting of NIZKs over com-
mitted key-value maps.

Definition 1. A NIZK for a relation family R = {Rλ}λ∈N is a tuple of algo-
rithms NIZK = (Setup,Prove,VerProof) with the following syntax:

– NIZK.Setup(1λ) → crs outputs a common-reference string crs; if the argument
system is transparent this can consist of uniform random elements.

– NIZK.Prove(crs,x,w) → π takes as input a string crs, an input description x
(in which we embed the whole public input), a witness w such that Rλ(x,w);
it returns a proof π.

– NIZK.VerProof(crs,x, π) → b ∈ {0, 1} takes as input a string crs, a public
input x, a proof π; it accepts or rejects the proof.

Whenever the relation family is obviously defined, we talk about a “NIZK for a
relation R”. We require a NIZK to be complete, that is, for any λ ∈ N and
(x,w) ∈ Rλ it holds with overwhelming probability that VerProof(crs,x, π)
where crs ← Setup(1λ) and π ← Prove(crs,x,w). Other properties we require
are: knowledge-soundness and zero-knowledge. Informally, the former states we
can efficiently “extract” a valid witness from a proof that passes verification;
the latter states that the proof leaks nothing about the witness (this is mod-
eled through a simulator that can output a valid proof for an input in the lan-
guage without knowing the witness). Notationally, we separate public and private
inputs in relations and proving algorithm through a semicolon.

Knowledge-Soundness. For all λ ∈ N and for all (non-uniform) efficient adver-
saries A, auxiliary input z ∈ {0, 1}poly(λ), there exists a (non-uniform) efficient
extractor E such that

Pr

[
crs ← Setup(1λ); (x, π) ← A(z, crs)
w ← E(z, crs)

:
Rλ(x,w) �= 1 ∧

Vfy(crs,x, π) = 1

]

≤ negl(λ)

Zero-Knowledge. There exists a PPT simulator S such that for any λ ∈ N,
PPT A, auxiliary input z ∈ {0, 1}poly(λ), and it holds p0 = p1 where

pb := Pr

[
crs ← Setup(1λ); (x,w) ← A(z, crs)

π ← Xb(crs,x,w) if Rλ(x,w) o.w. ⊥ : A(z, crs, π) = 1

]

X0(crs,x,w) := S(z, crs,x) and X1(crs,x,w) := Prove(crs,x,w).

On Efficiency of NIZKs. The efficiency (proving/verification runtimes and
proof size) of a NIZK often depends on the size of the description of a relation
in constraints (these roughly correspond to the multiplication gates of its circuit
representation). We will refer to this notion later in the text. See also [16].
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3 Key-Value Commitments

Here we define homomorphic commitments to key-value maps where both keys
and values are hidden. To the best of our knowledge this definition is new, but
it straightforwardly extends homomorphic commitments with key-value maps as
message space. In the full version [17], we also present an extended construction,
which we use to build Multi-Type Quis-Quis.

Definition 2 (Commitment to Key-Value Maps (kvC)). The following is
a syntax for our key-value maps

Setup(1λ) → pp generates public parameters.
Com(pp,

{
vk

}
k∈K

; r) → c commits to the key-value map with randomness r.
We keep the randomness implicit whenever it does not affect clarity and we
assume it to be sampled from an additive group.9

Definition 3 (Hiding). A key-value map commitment is hiding if for all key-
value maps

{
v′

k′
}

k′∈K′ ,
{
v′′

k′′
}

k′′∈K′′ (even of different size), for pp ← Setup(1λ)
the following two distributions are computationally indistinguishable:

{Com(pp,
{
v′

k′
}

k′∈K′)} ≈ {Com(pp,
{
v′′

k′′
}

k′′∈K′′)}

Definition 4 (Binding). A key-value map commitment is (computationally)
binding if for any PPT adversary A, it holds that

Pr

⎡

⎢
⎢
⎣

pp ← Setup(1λ)

(c,
{
v′

k′
}

k′∈K′ , r
′,

{
v′′

k′′
}

k′′∈K′′ , r
′′) ← A(pp)

:

c = Com(pp,
{
v′

k′
}

k′∈K′ , r
′) ∧

c = Com(pp,
{
v′′

k′′
}

k′′∈K′′ , r
′′) ∧

{
v′

k′
}

k′∈K′ �= {
v′′

k′′
}

k′′∈K′′

⎤

⎥
⎥
⎦≤ negl(λ)

Definition 5 (Homomorphism). We say a commitment to a key-value map
is homomorphic if there exists an operation ◦ such that Setup always produces
pp such that for all maps

{
vk

}
k∈K

,
{
v′

k′
}

k′∈K′ and randomness r, r′ it holds that

Com(
{
vk

}
k∈K

; r) ◦ Com(
{
v′

k′
}

k′∈K′ ; r
′) = Com(

{
v∗

k∗
}

k∗∈K∗ ; r + r′)

where K∗ = K ∪ K ′ and (k∗, v∗
k∗) =

⎧
⎪⎨

⎪⎩

(k∗, vk∗) if k∗ ∈ K \ K ′

(k∗, v′
k∗) if k∗ ∈ K ′ \ K

(k∗, vk∗ + v′
k∗) if k∗ ∈ K ∩ K ′

3.1 Construction

We recap some of the properties we are interested in obtaining in our
construction: (i) support large key universe; (ii) small commitments and

9 We will use this when defining the homomorphic property of commitments.
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Fig. 2. Our construction for kvC.

small parameters; (iii) homomorphic (Definition 5); (iv) support efficient non-
interactive zero-knowledge proof of knowledge of opening (in particular they
should run in time linear in the density of the key-value map).

In Fig. 2 we propose a construction based on random-oracle with the prop-
erties above. Our commitment construction is an extension to key-value maps
of the one in [32]. Given a prime p we consider the universe of values V = Zp, a
group G isomorphic to it and for which the GDLOG assumption holds, a hash
function H modeled as a random oracle and an arbitrary key universe K such
that H : K → G. We prove Theorem 1 in the full version [17].

Theorem 1. If H is a random oracle and under the GDLOG assumption the
construction in Fig. 2 is a kvC with value universe Zp.

4 Arguments on Key-Value Commitments
(Doubly-Private Setting)

Here we formalize and construct zero-knowledge arguments over key-value map
commitments for the setting in which there is no information on the keys avail-
able in the system and those we are using in our proof.

Circuits over Key-Value Maps. To support arbitrary computation on com-
mitted key-value maps, we provide an interface which supports any arithmetic
circuit of the following form. The keys and values kv as well as an additional
witness ω are field elements in F. The circuit consists of multiplication gates of
the form F × F → F. They have an unbounded outbound degree and any linear
relations are directly expressed between outputs and inputs.

We write any circuit using multiplication gates in the domain KV� × F
nω as

CF(kv1, . . . , kv�, ω). This circuit depends on the desired property the openings
should have. Here ω is an additional private witness that may not depend on
the opening to the key-value maps.

4.1 Arguments for Circuits over Committed Key-Value Maps

Here we present the overview of our argument system which works over com-
mitted key-value maps and takes an arbitrary inner circuit operating on the
openings of the commitments. To be clear, we spell out its formalization explic-
itly but it is a special case of Definition 1. Given an inner circuit CF as described
above, our high level interface for proofs has the following form:
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kvNIZK.Setup(1λ) → crs takes a security parameter λ and outputs a crs.
kvNIZK.Prove(crs, CF, c1, . . . , c�, (kv1, ρ1), . . . , (kv�, ρ�), ω) → π takes the crs and

a circuit CF as well as � commitments ci and their openings (kvi, ρi) and an
auxiliary witness ω. It outputs a proof π

kvNIZK.VerProof(crs, CF, c1, . . . , c�, π) → b ∈ {0, 1} takes the crs, a circuit CF,
and � commitments ci. The output bit b returns the validity of the proof π.

The relation we want to prove is defined by the circuit C∗ in Eq. (1). To clarify
our notation we re-define correctness for arguments for committed key-value
maps.

Definition 6 (kvNIZK Correctness). A kvNIZK is correct if, for any λ ∈ N

with crs ∈ kvNIZK.Setup(1λ), circuit CF, key-value maps 
kv ∈ KV� and ran-
domness 
ρ ∈ F

� with ∀i ∈ [�] : ci = Com(kvi, ρi) and any ω ∈ F
nω for which

C∗(c1, . . . , c�; (kv1, ρ1), . . . , (kv�, ρ�), ω) = 1 it holds that

kvNIZK.VerProof(crs, CF, c1, . . . , c�, π) = 1 where

π ← kvNIZK.Prove(crs, CF, c1, . . . , c�, (kv1, ρ1), . . . , (kv�, ρ�), ω).

As for NIZKs, we require knowledge-soundness and zero-knowledge.

4.2 Construction with Intermediate Key-Tags

Our construction has two stages. First the prover creates some key-tags bk and
proves that they are well formed (i.e., they are obtained by hashing a key and
masking with a random group element, both known to the prover). These key-
tags are then used in a subsequent proof for the opening of the commitment
and the actual relation. Intuitively, since the prover knows how the key-tags
have been produced, the prover is able to compute openings of the input com-
mitments under the new “base” (h, b1, . . . , bn)—as opposed to the original base
(g,H(k1), . . . ,H(kn))—by appropriately computing the randomizers as a func-
tion of the values in the commitment and the randomness used for producing
the key-tags. This allows to avoid proving properties of the hash function in
the second part of the proof. The full construction is presented in Fig. 3.
For sake of presentation and w.l.o.g., in the construction we assume that all our
key-value maps include the same keys k1, . . . , kn.

Theorem 2. Under the GDLOG assumption, if NIZKtags and NIZKC are secure
(correct, zero-knowledge, knowledge-sound) NIZKs for their required relation
families, then the construction is a secure kvNIZK for arbitrary circuits
over the key-value map commitment in Fig. 2.

Proof. Correctness: Correctness follows by inspection. In particular, note that
when proving RC the prover “opens” the commitments ci under the base defined
by the key-tags bk’s. Since the bk’s are generated with the same h as the original
commitment and the prover knows the openings of the bk’s, the prover can find
the right value to be used as exponent for h.
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Fig. 3. , our construction for kvNIZK
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Knowledge-Soundness: To prove knowledge-soundness, assume the existence of
extractors Etags, EC for the two sub-relations. We build an extractor E∗ that on
input a statement (CF, c1, . . . , c�) and accepting proof (b1, . . . , bn, c∗, πtags, πC),
outputs ((kv1, ρ1), . . . , (kv�, ρ�), ω). Our E∗ works as follows. It first extracts
through (k′

1, . . . , k
′
n, 
r r′, s′) ← Etags(b1, . . . , bn, c∗, πtags) and then the rest

through ((kv1, ρ
′
1), . . . , (kv�, ρ

′
�), 
r, s, ω) ← EC(CF, c1, . . . , c�, b1, . . . , bn, c∗, πC)

such that the two relations hold for the extracted witnesses. We first argue
it holds that (k′

1, . . . , k
′
�, s

′) = (k1, . . . , k�, s), since otherwise we can con-
struct an adversary that breaks the binding property of the Pedersen com-
mitment c∗. Then, we show how to extract valid openings for the input com-
mitments ci. Remember that thanks to the knowledge-soundness of the second
proof system (for relation RC) we know that for all commitments ci it holds
c = hρ′−

∑n
j=1 rjvkj

∏n
j=1 b

vkj

kj
(we remove the index i here to improve readabil-

ity) .
Thanks to the knowledge soundness of the first proof system (for relation

Rtags) we know that bkj
= H(kj)hr′

j , thus we can rewrite c as

c = hρ′−
∑n

j=1 rjvkj

n∏

j=1

H(kj)
vkj hr′

j ·vkj = hρ′−
∑n

j=1(rj−r′
j)vkj

n∏

j=1

H(kj)
vkj

Thus our extractor can output ((kv1, ρ1), . . . , (kv�, ρ�), ω) with ρi = ρ′
i −∑n

j=1(rj − r′
j)vki,j

as the witness for the overall relation. Note that the proof
does not guarantee that 
r = 
r′ r′. However this is not a problem since we are
still guaranteed that the extracted witness for the overall relation is a valid one.
Zero-Knowledge: follows from the ZK property of the underlying arguments and
the hiding property of the commitments. Details can be found in the full version
[17].

4.3 How to Instantiate the Subprotocols in Z -dp

To instantiate the well formedness of the tags, i.e. the relation Rtags, we pro-
pose to use a cryptographic hash function such as MiMC [7], Poseidon [25],
GMiMC [6], or Marvellous [8] which are optimized for zero-knowledge proofs.
They provide hashing to a field element (HF : {0, 1}∗ → F) which can be
leveraged to obtain random group elements through some of the techniques
in [15,22,34]. A subsequent circuit then proves this hashing and the rerandom-
ization of the group element as key-tags, i.e., [bki

] = [H(ki)] + ri · [h], where
brackets enclose group elements. The combined constraints can then proven by
e.g. Bulletproofs [16] or [9].

The circuit for the relation RC can be implemented through a generalization
of Bulletproofs [28]10. They provide an interface supporting bilinear circuits with
five gates to enable arbitrary computation of which we use a subset of gates

10 If malleability is a concern, Bulletproofs are proven to be non-malleable in the
AGM [24].
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for non-bilinear circuits only. Given a circuit C constructed from the available
gates, they then provide an efficient protocol with communication complexity
6�log2(|C|)� + 28 group elements.

5 Improvements in Practice: Offline/Online Stages

The proving algorithms of our constructions (both and ) follow a
two-step template. In step (a) the prover provides key-tags bk-s and proves they
are valid. This can be done independently of the commitment. In a following
step (b) we compute a proof about properties of the commitment opening (and
that actually depends on the commitments). Crucially, in the latter step, the
prover uses the key-tags as (rerandomized) “anchors” to the keys. We observe
that we can exploit the fact that (a) does not depend on the commitments to
the key-value maps (but only on the keys that they will contain) to preprocess
this step.

Consider, for instance, the running example from the introduction where
the commitments contain multi-currency wallets. Assume that the prover knows
that in the future they will want to prove some properties about some of their
wallets (which are expected to keep changing between now and the proving time).
Moreover, while a large set Kactive of asset types might be circulating in the
system, the prover knows that they will only hold a very specific and relatively
small subset Kpre of these keys (e.g., maybe only ETH, USD and EUR). If
that is the case they can preemptively perform an “offline proving stage” that
would be valid for all of the online proofs they will have to carry out later.
Specifically, in the prover performs step (a) above offline as follows. On
input set Kpre, the prover provides a set of |Kpre| key-tags B = {bk : k ∈ Kpre},
defined as usual as bk = H(k)hrk together with a proof πtags that they were
constructed honestly. The output of this step is therefore πoffl = (B, πtags). At
a later time, when input commitments c1, . . . , c� are available, the prover uses
the pre-computed set of key-tags B to produce a step (a) (the production of
key-tags) for each of the commitments ci. In order to preserve zero-knowledge,
step (b) is modified to rerandomize the related bk-s first. The rerandomization
hides the mapping between online proofs, however the verifier learns that all
commitments of the online phase contain the same set of keys. We can similarly
adapt by performing a proof of membership and masking before hand.

The advantage of this approach is to use a single offline stage for many proofs.
The efficiency savings of this stage (both for proving and verification time) can
be significant since it involves proving/verifying hashing in zero-knowledge. For
example, we conservatively estimate approximately 5k constraints using Posei-
don hashing on a Ristretto curve [25]. Each of these hashes can be proved in the
order of hundreds of milliseconds (see, e.g., Table 5 in [25]). For n ≈ 100 this
involves for example saving half a million constraints11 amounting to around
half a minute of proving time. Savings for verification time are comparable.
11 For some applications this can be huge—for comparison, the ZCash circuit [26] has

approximately 100k constraints.
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Naturally the offline stage preprocesses an upper bound U on the total number
of active keys, since each commitment may have openings to key-value maps of
different density. This may incur a high overhead cost if U is far from the actual
densities (because we still need to process U key-tags as input to the circuit).
The gains from an offline stage can differ accordingly and should be weighed
depending on the application.

Efficiency Summary of our Constructions. We summarize the (asymp-
totic) efficiency of our constructions in Table 1. We present it for the case with
offline processing, but summing the offline and online columns corresponds to
the setting without an offline stage.

Table 1. Efficiency of our constructions and comparison with non-homomorphic solu-
tions (when they are applicable). Above we describe proof sizes, proving time and
verification times during offline and online stage. We also describe the additional costs
for proving the homomorphism in zero-knowledge with a non-homomorphic solution
(kvadd(n)). All values are implicitly in big O notation and denote operations in a prime-
order group unless underlined. Rows marked with � refer to this work. The construction
of is in Fig. 3. “ (Acc)” refers to the instantiation of with NIZKs
over accumulators in unknown-order groups we describe in the full version [17]. “Peder-
sen (Non-Hom.)” refers to the non-homomorphic solution based on Pedersen described
in the introduction. Typical values for our parameters could be M ≈ 1000 and n ≈ 100.

Kactive Kcom Construction |πoffl| |πonl| |π(kvadd(n))|
priv priv Z -dp � log(n(|H|+ |Gadd|)) log(|C|) —
priv priv Pedersen (Non-Hom.) — log(|C|) log(n)
publ priv Z -set (Acc) � n + log(n|Gadd|) log(|C|) —

Kactive Kcom Construction Voffl Vonl V(kvadd(n))
priv priv Z -dp � n(|H|+ |Gadd|) |C| —
priv priv Pedersen (Non-Hom.) — |C| n
publ priv Z -set (Acc) � n|G?|+ n|Gadd| |C| —

Kactive Kcom Construction Poffl Ponl P(kvadd(n))
priv priv Z -dp � n(|H|+ |Gadd|) |C| —
priv priv Pedersen (Non-Hom.) — |C| n

publ priv Z -set (Acc) �
(M − n + n logn)|G?|
+n|Gadd| |C| —

N esrevinuyekfoeziS: K
M : Number of active / registered keys (Kactive)
n : Number of keys in the opening of a key-value map commitment

N >> M ≥ n
|H| : Number of constraints for hashing to a group element

|Gadd| : Number of constraints for summing two group elements
|G?| : Cost of exponentiation in unknown-order group

kvadd(n) : Sum operation among key-value maps of size n
C : Circuit computed on key-value map.
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6 Experimental Evaluation

Here we show the practical feasibility of our construction. Our focus is on ;
we compare its efficiency to that of in the full version [17].

Recall that our construction-template uses two separate steps (see also begin-
ning of Sect. 5 and Fig. 3): (a) validity of key-tags and (b) actual property on
opening of commitment. We evaluate our construction on a representative appli-
cation setting for cryptocurrencies, that is a 64-bit range proof as a circuit proven
in step (b).

Let n be the size of the opening of the commitment (also equal to the number
of elements we are showing are in range). We estimate the following runtimes.
For step (a): ≈ n · 700 ms for proving and n · 100 ms for verification; for step
(b) ≈ n · 235 ms for proving and n · 89 ms verification. We stress that proving
times for step (a) are fully parallelizable (as we generate n independent proofs
for key-tags).

These timings refer to those for a common laptop (i7-6820HQ CPU at
2.70 GHz) and aim at estimating an efficient instantiation through the zero-
knowledge scheme LMR [28] as NIZKtags and NIZKC using Ristretto Curve as an
underlying group.

How we Derive Timings. A similar derivation for Bulletproof timings was
previously used in [29]. For each timing we use the formula T (n) ≈ n ·
num of constraints circuitLMR · cost per constraint.
Deriving Step (a): for proving, cost per constraint is measured to be ≈ 8.97/64
ms/constraint (our experimental finding) for the implementation in [2]. For verifi-
cation 1.22/64 ms/constraint. We estimate num of constraints circuitLMR(tag) ≈
5k: for a circuit for Poseidon hash [25] and fixed base exponentiation (for
rerandomization) of curve points1213 requires L = 2806 multiplicative con-
straints. To use this in LMR [28] we need to encode this as a witness vector (a
very conservative upper bound is 2L, which we approximate to 5k). Deriv-
ing step (b): for proving, cost per constraint is measured to be ≈ 232/64
ms/constraint. For verification 88/64 ms/constraint. We derive these estima-
tions from BL12-38114; we know this to be a fair estimate for Ristretto [2].
num of constraints circuitLMR(range64) ≈ 65 constraints.

7 Application: Multi-type QuisQuis

QuisQuis [23] is a privacy-preserving transaction system which allows for prun-
ing old transactions, keeping the state of each participant linear in the number of
12 This is a lower bound but we expect it be a reasonable estimate (up to approximately

a factor 2) of hashing-to-group techniques close to those in Sect. 1.1 in [15].
13 Since there is no public circuit implementation for Ristretto operations for this, we

use arkworks [1] BL12-381 implementation for this estimate. We expect this to be an
upper bound on Ristretto points given their smaller field size— 255

381
x smaller, more

precisely. We measure this number using the implementation in [1].
14 We use a different implementation [3] on BL12-381 points as the implementation

in [2] is not compatible with BL12-381.
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users. This is a major advantage over other privacy-preserving transaction sys-
tems, which require a state size linear in the number of transactions. A QuisQuis
transaction is a redistribution of tokens among a set of accounts. An account
belongs to an owner and stores their tokens. Instead of consuming accounts and
creating new ones, QuisQuis updates the accounts. These update operations
need to change the balance of a peer without knowing their total balance. This
is achieved with homomorphic commitments.

In contrast to the original QuisQuis where an account stored a scalar value
representing an amount, we generalize accounts to store tokens of different types
in a key-value map. Each key corresponds to a type, also known as currency,
and the value specifies how many tokens of the specific type are held by the
account. An account acct then belongs to a secret key sk and holds a balance kv,
represented as a key-value map. To transfer tokens from one account to another,
a transaction includes both accounts as active inputs, denoted by the set P. The
transaction subtracts tokens from one account with a secret index s and adds
them to the other one. The output of the transaction are two updated accounts
belonging to the same users as the inputs; the input accounts are discarded.
To achieve anonymity, the input consists of P together with a potentially large
anonymity set of accounts A which keep their balance unchanged but provide
set anonymity for the active accounts.

As the central building block of our multi-type QuisQuis system, we present
an updatable account based on our key-value commitments.

7.1 Multi-type QuisQuis: Syntax

The original QuisQuis transaction protocol consists of the three algorithms
(Setup,Trans,Verify). Their multi-type equivalent is as follows:

Setup(1λ, 
kv) → state: takes the security parameter λ and a vector of key-value
balances 
kv and outputs an initial state state. One part of the state is a set
of unspent accounts where each key-value balance has an account.

Trans(sk,P,A, 
δkv) → tx: takes a secret key sk which corresponds to one account
in the set of active accounts P and an anonymity set A with a vector of key-
value maps 
δkv to update tokens. Trans outputs a transaction tx.

Verify(state, tx) → ⊥/state′: takes a state and a transaction tx and outputs a new
state′ or fails with ⊥.

To support dynamic registration of new types, we require an additional algorithm
Register, which is defined as:

Register(acct, k, vk) → tx takes an account acct and a new type k with amount
vk and outputs a transaction tx.

A registration transaction is accepted by Verify if the type k has not been reg-
istered before. We define the correctness of a transaction system more formally.
Let for all λ ∈ N and 
kv with Rkv

rng(kvi) = 1 be state ← Setup(1λ, 
kv). For all
accounts in P,A with index sets P∗ := {i ∈ [|Sort(P ∪ A)|] : accti ∈ P} and A∗
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accordingly in a canonically ordered form with Sort. All accounts in P ∪ A are
part of the UTXO set in state, all 
δkv with Rkv

rng(−kvs) = 1 and Rkv
rng(kvi) = 1 for

i ∈ P∗{s} and kvi = ∅kv for i ∈ A∗ and sk corresponding to an account accts ∈ P
with enough tokens such that after the transaction there is no negative type
Rkv

rng(kvs + δkvs) = 1, it holds that Verify(state,Trans(sk,P,A, 
δkv)) = state′

where state′ �= ⊥ and contains an updated UTXO set with all inputs P ∪ A
removed and the transaction outputs added.

Multi-type QuisQuis: Security. The security of a QuisQuis-like transaction
system consists of two main properties. The first property we need to achieve
is anonymity. A transaction system is anonymous if an adversary cannot suc-
cessfully distinguish two transactions. The transactions are created according to
malicious instructions after the adversary has interacted with an oracle signing
transactions on behalf of uncompromised participants.

The second property is theft prevention. This entails that (i) the adversary
cannot steal tokens from uncompromised accounts; (ii) the adversary cannot
create tokens out of thin air. Slightly more formally, we model these properties
as follows. While interacting with the aforementioned signing oracle the bal-
ance of honest accounts (not controlled by the adversary) must not decrease.
Additionally, the total amount of tokens must not increase from transaction to
transaction. Notice, however, the number of tokens may increase as the result of
mining or a token registration—the latter counts as a “genesis” transaction.

Our variant of QuisQuis with multiple token types shares many of the same
properties as the non-type aware system. We refer the reader to the original
QuisQuis paper [23] for details.

7.2 Construction

We construct the multi token QuisQuis scheme following the original QuisQuis
but with two main adaptations: each account holds tokens in multiple types and
making sure a transaction guarantees that the amounts of tokens are balanced
for each of the token types.

The details of updatable accounts for key-value maps are presented in the
full version [17]. In a nutshell they have the same algorithms as the original
QuisQuis construction but allow for multiple kinds of tokens.

Setup. The setup algorithm generates a list of updatable accounts, one for each
initial balance key-value map.

Trans. Our transaction structure follows that in QuisQuis where a “transaction”
denotes a redistribution of wealth among all accounts involved (P ∪ A). The
transaction takes a vector of key-value maps, one for each account. The account
is then updated according to the key-value map. Key-value maps that contain
only valid positive values (Rkv

rng(δkvi) = 1) are used to deposit tokens to receiving
accounts. In order to ensure that the total number of tokens is preserved, we
require that one key-value map holds negative values. This is to satisfy that the
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sum of all key-value maps is zero, or
∑| �δkv|

i=1 δkvi = ∅kv. For the account with the
negative key-value map (indexed by s in the canonically ordered set P ∪A), the
transaction signature ensures that the owner of the account accts authorizes the
spending by proving knowledge of the matching secret key sk. The algorithm
Trans((s, sks, kvs),P,A, 
kv) performs the following steps:

1. Parse all input accounts P ∪ A = {acct1, . . . , acctn} and check the spending
account is valid by VerifyAcct(accts, (sks, kvs)) = 1. The transaction needs

to be balanced:
∑| �δkv|

i=1 δkvi = ∅kv and all key-value maps other than the
spending account must be non-negative ∀i �= s : Rkv

rng(δkvi) = 1. To support
large anonymity sets A, we choose to disclose the upper bound on active
accounts by showing that δkvi = ∅kv for i ∈ A∗ instead or a range proof.
The spending account must be negative Rkv

rng(−δkvs) = 1 and the resulting
account must be valid Rkv

rng(kvs + δkvs) = 1, to prevent overspending.
2. Let outputs = (acctT1 , . . . , acctTn ) be a canonical order of the accounts gener-

ated by UpdateAcct(P ∪ A, 
δkv; r).
3. Let ψ : [n] → [n] be the permutation that maps the canonically ordered

inputs to the canonically ordered outputs, i.e. input i has the same secret key
as output ψ(i).

4. Create a zero knowledge proof π showing that the transaction is well formed,
i.e. that it satisfies the following relation:

Rtx-wf :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x = (inputs, outputs),w = (sk, kvs, �δkv, r = (r1, r2), ψ) s.t.

VerifyUpdateAcct(acctSi , acctTψ(i), δkvi) = 1∀i ∈ P∗

∧Rkv
rng(δkvi) = 1∀i ∈ P∗/{s} ∧ Rkv

rng(−δkvs) = 1

∧δkvi = ∅kv∀i ∈ A∗ ∧ ∑n
i=1 δkvi = ∅kv

∧VerifyAcct(acctTψ(s), sk, kvs + δkvs) = 1.

The relation ensures that the permuted output account is correctly updated by
the transferred balance δkvi for all active accounts. It then ensures that the
updated key-value maps are valid, i.e. there is one spending account at index s
and no value is taken from other accounts. The balances of the accounts in the
anonymity set must not change. To ensure that the spender has enough tokens,
the proof checks that the updated spender account has no negative balance. The
transaction consists of the inputs, outputs and the proof π.

Verify. A transaction is valid in respect to a state if all accounts in inputs have
not been used in another transaction and the proof π is valid.

Security Analysis. Our key-value commitments provide the same hiding and
binding properties as the commitments to single scalars used in QuisQuis. The
construction is a parallel version of the single type case and thereby the theft
security holds also for all keys in parallel. Regarding anonymity, we achieve the
same properties as QuisQuis, if we define an upper bound of the number of
types involved in a transaction. For transactions with few different types, we
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achieve this through padding. With a constant size transaction proof, our new
transactions are as indistinguishable as the original QuisQuis transactions.
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