®

Check for
updates

Accelerated Subdivision for Clustering
Roots of Polynomials Given
by Evaluation Oracles

Rémi Imbach! and Victor Y. Pan2(®)

L Université de Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France
remi.imbach@laposte.net
2 Lehman College and Graduate Center of City University of New York,
New York, USA
victor.pan@lehman.cuny.edu

Abstract. In our quest for the design, the analysis and the implemen-
tation of a subdivision algorithm for finding the complex roots of uni-
variate polynomials given by oracles for their evaluation, we present sub-
algorithms allowing substantial acceleration of subdivision for complex
roots clustering for such polynomials. We rely on approximation of the
power sums of the roots in a fixed complex disc by Cauchy sums, each
computed in a small number of evaluations of an input polynomial and its
derivative, that is, in a polylogarithmic number in the degree. We describe
root exclusion, root counting, root radius approximation and a procedure
for contracting a disc towards the cluster of root it contains, called e-
compression. To demonstrate the efficiency of our algorithms, we combine
them in a prototype root clustering algorithm. For computing clusters of
roots of polynomials that can be evaluated fast, our implementation com-
petes advantageously with user’s choice for root finding, MPsolve.

Keywords: Polynomial root finding - Subdivision algorithms - Oracle
polynomials

1 Introduction

We consider the

e-Complex Root Clustering Problem (e-CRC)

Given: a polynomial p € C[z] of degree d, £ > 0

Output: ¢ < d couples (A',m!),..., (A% m’) satisfying:
- the AJ’s are pairwise disjoint discs of radii < e,
-forany 1 < j </, A7 and 347 contain m? > 0 roots of p,
- each complex root of p is in a AJ for some j.

Victor’s research has been supported by NSF Grant CCF 1563942 and PSC CUNY
Award 63677 00 51.
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022

F. Boulier et al. (Eds.): CASC 2022, LNCS 13366, pp. 143-164, 2022.
https://doi.org/10.1007/978-3-031-14788-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14788-3_9&domain=pdf
https://doi.org/10.1007/978-3-031-14788-3_9

144 R. Imbach and V. Y. Pan

Here and hereafter root(s) stands for root(s) of p and are counted with mul-
tiplicities, 3A7 for the factor 3 concentric dilation of A7, and p is a Black box
polynomial: its coeflicients are not known, but we are given evaluation oracles,
that is, procedures for the evaluation of p, its derivative p’ and hence the ratio
p’'/p at a point ¢ € C with a fixed precision. Such a black box polynomial can
come from an experimental process or can be defined by a procedure, for example
Mandelbrot’s polynomials, defined inductively as

Man;(z) = z, Mang(z) = zMany_;(2)* + 1.

Many(z) has degree d = 2* — 1 and d non-zero coefficients but can be evaluated
fast, i.e., in O(k) arithmetic operations. Any polynomial given by its coefficients
can be handled as a black box polynomial, and the evaluation subroutines for p, p’
and p'/p are fast if p is sparse or Mandelbrot-like. One can solve root-finding
problems and in particular the e-CRC problem for black box polynomials by
first retrieving the coefficients by means of evaluation-interpolation, e.g., with
FFT and inverse FFT, and then by applying the algorithms of [2,4,11,13,19].
Evaluation-interpolation, however, decompresses the representation of a polyno-
mial, which can blow up its input length, in particular, can destroy sparsity. We
do not require knowledge of the coefficients of an input polynomial, but instead
use evaluation oracles.

Functional root-finding iterations such as Newton’s, Weierstrass’s (also
known as Durand-Kerner’s) and Ehrlich’s iterations — implemented in
MPsolve [4] — can be applied to approximate the roots of black box polynomi-
als. Applying such iterations, however, requires initial points, which the known
algorithms and in particular MPsolve obtain by computing root radii, and for
that it needs the coefficients of the input polynomial.

Subdivision Algorithms. Let i stand for /=1, c € C, c=a+iband r,w € R,
r and w positive. We call box a square complex interval of the form B(c,w) :=
l[a—%,a+F]+i[b—F,b+ F] and disc D(c,r) the set {x € C | |z —c| <r}. The
containing disc D(B(c,w)) of a box B(c,w) is D(c, (3/4)w). For a § > 0 and a
box or a disc S, 4S5 denotes factor § concentric dilation of S.

We consider algorithms based on iterative subdivision of an initial box By
(see [2,3,12]) and adopt the framework of [2,3] which relies on two basic subrou-
tines: an Ezclusion Test (ET) — deciding that a small inflation of a disc contains
no root — and a Root Counter (RC) — counting the number of roots in a small
inflation of a disc. A box B of the subdivision tree is tested for root exclusion
or inclusion by applying the ET and RC to D(B), which can fail and return —1
when D(B) has some roots near its boundary circle. In [2], ET and RC are
based on the Pellet’s theorem, requiring the knowlege of the coefficients of p
and shifting the center of considered disc into the origin (Taylor’s shifts); then
Dandelin-Lobachevsky-Griéffe iterations, aka root-squaring iterations, enable the
following properties for boxes B and discs A:

(pl) if 2B contains no root, ET applied to D(B) returns 0,

(p2) if A and 4A contain m roots, RC applied to 2A returns m.

Accelerated Subdivision Algorithms for Oracle Polynomials 145

(pl) and (p2) bound the depth of the subdivision tree. To achieve quadratic con-
vergence to clusters of roots, [2] uses a complex version of the Quadratic Interval
Refinement iterations of J. Abbott [1], aka QIR Abbott iterations, described in
details in Algorithm 7 of [3] and, like [12], based on extension of Newton’s iter-
ations to multiple roots due to Schroder. [8] presents an implementation of [2]
in the C library Ccluster?!, which slightly outperforms MPsolve for initial boxes
containing only few roots.

In [6] we applied an ET based on Cauchy sums approximation. It satisfies (p1)
and instead of coefficients of p involves O(log® d) evaluations of p’/p with pre-
cision O(d) for a disc with radius in O(1); although the output of this ET is
only certified if no roots lie on or near the boundary of the input discs, in our
extensive experiments it was correct when we dropped this condition.

1.1 Owur Contributions

The ultimate goal of our work is to design an algorithm for solving the e-CRC
problem for black box polynomials which would run faster in practice than the
known solvers, have low and possibly near optimal Boolean complexity (aka bit
complexity). We do not achieve this yet in this paper but rather account for the
advances along this path by presenting several sub-routines for root clustering.
We implemented and assembled them in an experimental e-CRC algorithm which
outperforms the user’s choice software for complex root finding, MPsolve, for
input polynomials that can be evaluated fast.

Cauchy ET and RC. We describe and analyze a new RC based on Cauchy
sum computations and satisfying property (p2) which only require the knowledge
of evaluation oracles. For input disc of radius in O(1), it requires evaluation of
p'/p at O(log2 d) points with precision O(d) and is based on our ET presented
in [6]; the support for its correctness is only heuristic.

Disc Compression. For a set S, let us write Z (S, p) for the set of roots in S
and # (S, p) for the cardinality of Z (S, p); two discs A and A’ are said equivalent
if Z(A,p) =7 (A", p). We introduce a new sub-problem of e-CRC:

e-Compression into Rigid Disc (e-CRD)
Given: a polynomial p € C[z] of degree d, ¢ > 0,0 <y < 1,
a disc A s.t. Z (A, p) # 0 and 4A is equivalent to A.
Output: a disc A’ C A of radius 7’ s.t. A’ is equivalent to A and:
- either 1’ < ¢,
-or #(A,p) > 2 and A’ is at least y-rigid, that is
la — o

max —_ > .
a,a’ €Z(A,p) 2r!

! https://github.com /rimbach/Ccluster.

https://github.com/rimbach/Ccluster

146 R. Imbach and V. Y. Pan

The e-CRD problem can be solved with subdivision and QIR Abbott iteration,
but this may require, for an initial disk of radius r, up to O(log(r/ max(¢’,¢)))
calls to the ET in the subdivision if the radius of convergence of the cluster in A
for Schroder’s iteration is in O(e’).

Table 1. Runs of CauchyQIR, CauchyComp and MPsolve on Mignotte and Mandelbrot
polynomials

CauchyQIR CauchyComp MPsolve
d|logyo(c™") ton oty tl nl tc t
Mignotte polynomials, a = 16
1024 5| 1.68| 30850 | 0.44 | 0.96 | 16106 | 0.27 1.04
1024 10| 2.08|30850|0.58 || 1.07 | 16106 | 0.37 1.30
1024 50|/ 2.17 30850 | 0.71 || 2.70| 16105 1.96 4.84
2048 51 3.84]62220|0.90 | 2.13 | 32148 | 0.51 4.08
2048 10 || 4.02|62220 1.03 || 2.36 | 32148 | 0.70 5.09
2048 50|/ 4.51 62220 | 1.25 | 5.62 32147 3.78 17.1
Mandelbrot polynomials
1023 5 10.4|30877|0.86 | 6.23 | 18701 | 0.41 27.2
1023 10| 10.1|30920|0.91 || 6.45 | 18750 | 0.59 30.0
1023 50 || 10.3 /30920 | 1.06 || 8.64 | 18713 | 2.71 45.7
2047 5] 24.3]62511|1.95| 15.2|39296 | 1.39 229.
2047 10| 26.4 62952 2.31| 15.5|39358 | 1.71 246.
2047 50| 26.1 62952 |2.64 || 20.4 | 39255 | 6.22 380.

We present and analyze an algorithm solving the e-CRD problem for v = 1/8
based on Cauchy sums approximation and on an algorithm solving the following
root radius problem: for a given ¢ € C, a given non-negative integer m < d and
a v > 1, find r such that r,,(c,p) <r <wvrp(c,p) where (¢, p) is the smallest
radius of a disc centered in ¢ and containing exactly m roots of p. Our compres-
sion algorithm requires only O(loglog(r/c)) calls to our RC, but a number of
evaluations and arithmetic operations increasing linearly with log(1/e).

Experimental Results. We implemented our algorithms? within Ccluster
and assembled them in two algorithms named CauchyQIR and CauchyComp for
solving the e-CRC problem for black box polynomials. Both implement the sub-
division process of [2] with our heuristically correct ET and RC. CauchyQIR
uses QIR Abbott iterations of [3] (with Pellet’s test replaced by our RC), while
CauchyComp uses our compression algorithm instead of QIR Abbott iterations.

2 they are not publicly realeased yet.

Accelerated Subdivision Algorithms for Oracle Polynomials 147

We compare runs of CauchyQIR and CauchyComp to emphasize the practical
improvements allowed by using compression in subdivision algorithms for root
finding. We also compare running times of CauchyComp and MPsolve to demon-
strate that subdivision root finding can outperform solvers based on functional
iterations for polynomials that can be evaluated fast. MPsolve does not cluster
roots of a polynomial, but approximate each root up to a given error . Below
we used the latest version® of MPsolve and call it with: mpsolve -as -Ga -j1
-oN where N stands for max(1, [log;o(1/€)]).

All the timings given below have to be understood as sequential running
times on a Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz machine with Linux.
We highlight with boldface the best running time for each example. We present
in Table 1 results obtained for Mandelbrot and Mignotte polynomials of increas-
ing degree d for decreasing error . The Mignotte polynomial of degree d and
parameter a is defined as

Mig, ,(2) = 24225712 —1)2

In Table 1, we account for the running time t for the three above-mentionned
solvers. For CauchyQIR (resp. CauchyComp), we also give the number n of exclu-
sion tests in the subdivision process, and the time ¢ty (resp. t¢) spent in QIR
Abbott iterations (resp. compression). Mignotte polynomials have two roots with
mutual distance close to the theoretical separation bound; with the € used in
Table 1, those roots are not separated.

1.2 Related Work

The subdivision root-finders of Weyl 1924, Henrici 1974, Renegar 1987, [3,12],
rely on ET, RC and root radii sub-algorithms and heavily use the coefficients
of p. Design and analysis of subdivision root-finders for a black box p have been
continuing since 2018 in [16] (now over 150 pages), relying on the novel idea and
techniques of compression of a disc and on novel ET, RC and root radii sub-
algorithms, and partly presented in [5,6,10,14,15], and this paper. A basic tool
of Cauchy sum computation was used in [20] for polynomial deflation, but in a
large body of our results only Thm. 5 is from [20]; we deduced it in [5,16] from
a new more general theorem of independent interest. Alternative derivation and
analysis of subdivision in [16] (yielding a little stronger results but presently not
included) relies on Schroder’s iterations, extended from [12]. The algorithms are
analyzed in [10,14-16], under the model for black box polynomial root-finding
of [9]. [5,6] complement this study with some estimates for computational pre-
cision and Boolean complexity. We plan to complete them using much more
space (cf. 46 pages in each of [20] and [3]).* Meanwhile we borrowed from [3]

3 3.2.1 available here: https://numpi.dm.unipi.it/software/mpsolve.

4In [20, Sect. 2], called “The result”, we read: “The method is involved and many
details still need to be worked out. In this report also many proofs will be omitted.
A full account of the new results shall be given in a monograph” which has actually
never appeared. [3] deduced a posteriori estimates, depending on root separation
and Mabhler’s measure, that is, on the roots themselves, not known a priori.

https://numpi.dm.unipi.it/software/mpsolve

148 R. Imbach and V. Y. Pan

Pellet’s RC (involving coefficients), Abbott’s QIR and the general subdivision
algorithm with connected components of boxes extended from [12,18]. With our
novel sub-algorithms, however, we significantly outperform MPsolve for polyno-
mials that can be evaluated fast; all previous subdivision root-finders have never
come close to such level. MPsolve relies on Ehrlich’s (aka Aberth’s) iterations,
whose Boolean complexity is proved to be unbounded because iterations diverge
for worst case inputs [17], but divergence never occurs in decades of extensive
application of these iterations.

1.3 Structure of the Paper

In Sect. 2, we describe power sums and their approximation with Cauchy sums.
In Sect. 3, we present and analyze our Cauchy ET and RC. Section 4 is devoted
to root radii algorithms and Sect. 5 to the presentation of our algorithm solv-
ing the e-CRD problem. We describe the experimental solvers CauchyQIR and
CauchyComp in Sect. 6, numeric results in Sect. 7 and conclude in Sect. 8. We
introduce additional definitions and properties in the rest of this section.

1.4 Definitions and Two Evaluations Bounds

Troughout this paper, log is the binary logarithm and for a positive real num-
ber a, let I6ga = max(1,loga).

Annuli, Intervals. For ¢ € C and positives r < v’ € R, the annulus A (¢, r,r’)
istheset {zeC|r <|z—¢ <r'}.

Let OR be the set {[a — §,a + §] | a,w € R,w > 0} of real inter-
vals. For Ua = [a — §,a + §] € OR the center ¢ (Ja), the width w (Ja) and the
radius r (Oa) of Oa are respectively a, w and w/2.

Let OC be the set {Oa + ib|0a, 0b € OR} of complex intervals. If Oc € OC,
then w (Oc¢) (resp. r(0c)) is max(w (Oa),w (0b)) (resp w(Oc)/2). The cen-
ter ¢ (Oe) of Oc is ¢ (Oa) + ic (Ob).

Isolation and Rigidity of a Disc are defined as follows [12,16].

Definition 1. (Isolation) Let 6 > 1. The disc A = D(c,r) has isolation ¢
for a polynomial p or equivalently is at least 8-isolated if Z (%AJ?) =7Z(0A4,p),
that is, Z (A (c,r/0,70),p) = 0.

Definition 2. (Rigidity) For a disc A= D(c,r), define

o = o

A) =
’Y() a,agl%z(A,p) 2r

and remark that v(A)
least y-rigid if yv(A) >

< 1. We say that A has rigidity v or equivalently is at
y.

Accelerated Subdivision Algorithms for Oracle Polynomials 149

Oracle Numbers and Oracle Polynomials. Our algorithms deal with num-
bers that can be approximated arbitrarily closely by a Turing machine. We call
such approximation automata oracle numbers and formalize them through inter-
val arithmetic.

For a € C we call oracle for a a function O, : N — [OC such that
a € Ou(L) and (0, (L)) < 2% for any L € N. In particular, one has
lc(O4 (L)) —a] < 27F. Let O¢ be the set of oracle numbers which can be
computed with a Turing machine. For a polynomial p € C[z], we call evaluation
oracle for p a function Z,, : (O¢,N) — OC, such that if O, is an oracle for a and
L € N, then p(a) € Z, (O, L) and 1 (Z, (O,, L)) < 27L. In particular, one has
¢ (Z, (O, L)) — pla)| < 2.

Consider evaluation oracles Z,, and 7, for p and p’. If p is given by d’ < d+1
oracles for its coefficients, one can easily construct Z, and 7, by using, for
instance, Horner’s rule. However for procedural polynomials (e.g. Mandelbrot),
fast evaluation oracles Z,, and Z,, are built from procedural definitions.

To simplify notations, we let Z,(a,L) stand for Z,(O,,L). In the rest
of the paper, P (resp. P’) is an evaluation oracle for p (resp. p'); P (a, L)
(resp. P’ (a, L)) will stand for Z,, (O, L) (resp. Iy (O,, L)).

Two Evaluation Bounds. The lemma below provides estimates for values
of |p| and |p’/p| on the boundary of isolated discs. See [7, Appendix A.1] for a
proof.

Lemma 3. Let D(c,r) be at least O-isolated, z € C, |z| =1 and g be a positive

integer. Let 1cf (p) be the leading coefficient of p. Then

rd(ﬁ — 1)d
gd

p(c+rz9)

dé
<
p(c+rz9)

“r@-1)

Ip(c+r27)] > [lef (p) | and

2 Power Sums and Cauchy Sums

Definition 4. (Power sums of the roots in a disc) The h-th power sum of
(the roots of) p in the disc D(c,r) is the complex number

Sh (pa) T) = Z i (avp) ah’ (1)

a€Z(A,p)
where # (o, p) stands for the multiplicity of o as a root of p.

The power sums s (p,c,r) are equal to Cauchy’s integrals over the boundary
circle dD(e,r); by following [20] they can be approximated by Cauchy sums
obtained by means of the discretization of the integrals: let ¢ > 1 be an integer
and ¢ be a primitive ¢g-th root of unity. When p(c+7¢9) #0for g =0,...,¢—1,
and in particular when D(c,r) is at least #-isolated with § > 1, define the Cauchy
sum $,7 (p,c,r) as

q—1 /
Sl (presr) = = Z coh+D P (c+r¢?) (2)

= ple+1¢9)”

150 R. Imbach and V. Y. Pan

For conciseness of notations, we write s, for s, (p,0,1) and s,? for
s (p,0,1). The following theorem, proved in [6,20], allows us to approximate
power sums by Cauchy sums in D(0, 1).

Theorem 5. For 6 > 1 and integers h,q s.t. 0 < h < q let the unit disc D(0,1)
be at least O-isolated and contain m roots of p. Then

mo~" + (d —m)o"

|8nt — sn| <

d
Fize> 0. If ¢ > [logg(=)] + h+1 then |57 — sp| <e. (4)
e
Remark that sg (p, ¢,) is the number of roots of p in D(e¢,) and s1 (p, ¢, r) /m
is their center of gravity when m = # (D(c,r),p).

Next we extend Theorm 5 to the approximation of 0-th and 1-st power sums
by Cauchy sums in any disc, and define and analyze our basic algorithm for the
computation of these power sums.

2.1 Approximation of the Power Sums

Let A = D(c,r) and define pa(z) as p(c+7z) so that av is a root of p in D(0,1)
if and only if ¢ + ra is a root of p in A. Following Newton’s identities, one has:
S0 (pa C, T) = S0 (pAa 0) 1) 5 (5)
s1(p,e,r) =¢so (pa,0,1) +rs1 (pa,0,1). (6)

Next since p/4 (2) = rp’(c + rz), one has

Z Cg(h-i—l)pA(C)

pA(C) = Sh (pA7071)

sn? (p,c,r)

and can easily prove:

Corollary 6. (of theorm 5) Let A = D(c,r) be at least 0-isolated. Let g > 1,
sy =501 (p,e,r) and st = 8§17 (p,c,r). Let e > 0. One has

d
* <)
55 50 (presr) | < o)
d .
If ¢ > [logy(1 + gﬂ then |s§ — so (p,c,r)| <e. (8)
Let A contain m roots.
. rdf
|me 4+ rsy —s1(p,c,r)| < 91 (9)

0d
If ¢ > [logy(1 + %)] then |mc+rsi — s1(p,c,7) | <e. (10)

Accelerated Subdivision Algorithms for Oracle Polynomials 151

2.2 Computation of Cauchy Sums

Next we suppose that D(c,r) and ¢ are such that p(c 4+ r(9) # 0 V0 < g < g,
so that $,7 (p,c,r) is well defined. We approximate Cauchy sums with evalua-
tion oracles P, P’ by choosing a sufficiently large L and computing the com-
plex interval:

P’ (c+r¢9, L)

Plc+r¢9, L)’ (11)

qg—1
~ T
Dshq (p7 cT, L) = 5 E ch(thl)(L)
g=0

0sp? (p,e,r, L) is well defined for L > maxo<g<, (— logs(p(c+ 7¢?))) and con-
tains $,7 (p,c,r). The following result specifies L for which we obtain that
r (08,7 (p,c,r, L)) < e for an e > 0. See [7, Appendix A.2] for a proof.

Lemma 7. For strictly positive integer d, reals r and e and 6 > 1, let

0
L(d,r,e,0):= max ((d +1)log - + log(26rd), 1)

1 0
d|log— +1 .
€O< <Og7“e+0g9—1)>

IfL>L(d,re0) then r (Osp? (p,c,r, L)) <e.

In the sequel let L (d,r) stand for L (d,r,1/4,2).

2.3 Approximating the Power Sums sg, S1,...,5h

Our Algorithm 1 computes, for a given integer h, approximations to power sums
80,581,558k (of pa in D(0,1)) up to an error e, based on Eqs. (2) and (4).

Algorithm 1 satisfies the following proposition. See [7, Appendix A.3] for a
proof.

Proposition 8. Algorithm 1 terminates for an L < L (d,r,e/4,0).
Let ApproxShs(P,P’, A,0,h,e) return (success,[so,...,Osy]). Let A =
D(c,r) and pa(z) =p(c+rz). If 0 > 1, one has:

(a) If A(c,r/0,10) contains no root of p, then success = true and for all i €
{0,...,h}, w(Os;) < e and Os; contains s; (pa,0,1).

(b) If e <1 and D(c,78) contains no root of p then success = true and for all
i €{0,...,h}, Os; contains the unique integer 0.

(c) If e < 1 and A(c,r/0,70) contains no root of p, Osg contains the unique
integer so (p,c,r) = # (A, p).

(d) If success = false, then A(c,7/0,r0) and D(c,m8) contain (at least) a
root of p.

(e) If success = true and Ji € {0,...,h}, s.t. Os; does not contain 0 then
A(e,r/0,r0) and D(c,r0) contains (at least) a root of p.

152 R. Imbach and V. Y. Pan

Algorithm 1. ApproxShs(P, P’ A,0,h,e)
Require: P, P’ evaluation oracles for p and p’, s.t. p is monic of degree d. A = D(c,r),
0 eR,O>1,heN, h>0,ecR, e>0.
Ensure: a flag success € {true, false}, a vector [Uso, ..., Osp].
1: € < e/4, g — [logg(4d/e)] +h+1
rdog_1)d

2 b (Zd 2l méifn

3: L1

4: [Uso,...,Uss] < [C,...,C]

5: while 3 € {0,...,h} s.t. w(lUs;) > e do

6: L —2L
T for g=0,...,9—1do
8: Compute intervals P (¢ +r¢9, L) and P’ (¢ +r¢?, L)
. "(c4r¢d
9: if3ge{0,....q—1} st [P(c+rC? L)| <L or ‘%‘ > ¢ then
10: return false, [Uso,...,Uss]
. "(c4rcd
11: if 3g€{0,...,q—1}st. £ €[P(c+r¢? L)|or 20 €)%’ then
12: continue
13: for 1 =0,...,h do
14: Os; « 0s:7 (p,c, 7, L) //as in Eq. (11)
15: Os; < Os; + [—€',e'] +i[—€', €]
16: return true, [Uso, ..., Uss]

3 Exclusion Test and Root Counters

In this section we define and analyse our base tools for disc exclusion and root
counting. We recall in Subsect. 3.1 and Subsect. 3.2 the RC and the ET presented
in [6]. In Subsect. 3.3, we propose a heuristic certification of root counting in
which the assumed isolation for a disc A is heuristically verified by applying
sufficiently many ETs on the contour of A.

For d > 1,7 > 0 and 6 > 1, define

C(d,r e 0):=log(L(d,r e, 0))logg(d/e) (12)
and C (d,r) =C (d,r,1/4,2).

3.1 Root Counting with Known Isolation

For a disc A which is at least #-isolated for 6 > 1, Algorithm 2 computes the num-
ber m of roots in A as the unique integer in the interval of width < 1 obtained by
approximating 0-th cauchy sum of p 4 in the unit disc within error < 1/2.

Proposition 9. Let A = D(c,r). CauchyRC1(P,P’, A,0) requires evaluation
of P and P' at O(C (d,r,1,0)) points and O(C (d,r,1,0)) arithmetic operations,
all with precision less than L (d,r,1/4,6). Let m be the output of the latter call.

(a) If A(c,r/0,10) contains no roots of p then m = # (A, p).
(b) If m # 0 then p has a root in the disc OA.

Accelerated Subdivision Algorithms for Oracle Polynomials 153

Algorithm 2. CauchyRC1(P,P’, A, 0)
Require: P, P’ evaluation oracles for p and p’, s.t. p is monic of degree d. A = D(c,r),
0eR,0>1.

Ensure: An integer m € {—1,0,...,d}.

1: (success, [Oso]) < ApproxShs(P,P’, A 60,0,1)

2: if success = false or Usp contains no integer then

3: return —1

4: return the unique integer in [Iso

Proposition 9 is a direct consequence of Proposition 8: in each execution
of the while loop in ApproxShs(P,P’, A,0,0,1), P and P’ are evaluated at
O(logy d/e) points and the while loop executes an O(log(L (d,r,1,6))) number
of times.

3.2 Cauchy Exclusion Test

We follow [6] and increase the chances for obtaining a correct result for the
exclusion of a disc with unknown isolation by approximating the first three
power sums of pa in D(0,1) in Algorithm 3. One has:

Proposition 10. Let A = D(e¢,r). CauchyET(P,P’, A) requires evaluation of
P and P' at O(C (d,r)) points and O(C (d,r)) arithmetic operations, all with
precision less than L (d,r). Let m be the output of the latter call.

(a) If D(c,4r/3) contains no roots of p then m = 0. Let B be a box so that 2B
contains no root and suppose A = D(B); then m = 0.
(b) If m # 0 then p has a root in the disc (4/3)A.

Algorithm 3. CauchyET (P, P’ A)

Require: P, P’ evaluation oracles for p and p’, s.t. p is monic of degree d. A = D(c,).
Ensure: An integer m € {—1,0}.

1: (success, [Oso, Us1, Os2]) < ApproxShs(P, P, A, 4/3,2,1)

2: if success = false or 0 ¢ Usp or 0 ¢ s; or 0 ¢ sz then

3: return —1

4: return 0

3.3 Cauchy Root Counter

We begin with a lemma illustrated in Fig. 1. See [7, Appendix A.4] for a proof.

Lemma 11. Letc€ C cmdp,?pJr € R. Define p= L£5P= p=Lr2l= = g,
v = [2rw] and ¢; = ¢+ el for j = 0,...,0v— 1. Then the re-union of the
discs D(cj,(5/4)p) covers the annulus A (c, p—, p+).

154 R. Imbach and V. Y. Pan

Fig. 1. Illustration for Lemma 11. In bold line, the inner and outer circles of the annulus
covered by the v discs D(c;j, (5/4)p).

For a disc D(c,r) and a given a > 1, we follow Lemma 11 and cover the

annulus A (¢, r/a, ra) with v discs of radius r% centered at v equally spaced

points of the boundary circle of D(c, Ta+271/a) Define

5 1)

f(a,6) = Sl = 20)+ (14 6)) (13)
and 1 5, 1. 5
fi(a,0) = §(G(1+19)+a(1* 1) (14)

then the annulus A (¢, rf_(a,0),rf1(a,8)) covers the f-inflation of those v discs.
Algorithm 4 counts the number of roots of p in a disc and satisfies:

Proposition 12. The call CauchyRC2(P,P’, A, a) amounts to [QWZzi
to CauchyET and one call to CauchyRC1.

Let A = D(c,r) and A be the annulus A (c,rf—(a,3),7f+(a,3)). Let m be
the output of the latter call.

1 calls

(a) If A contains no root then m > 0 and A contains m roots.
(b) If m # 0, then A contains a root.

We state the following corollary.

Accelerated Subdivision Algorithms for Oracle Polynomials 155

Algorithm 4. CauchyRC2(P,P’, A, a)

Require: P, P’ evaluation oracles for p and p’, s.t. p is monic of degree d. A = D(c,r).
a€Ra>1.

Ensure: An integer m € {—1,0,...,d}.

// Verify that A is at least a-isolated with CauchyET

D p—— I pr=ar.

Do B e B w — By [21w], ¢ exp(2R)

:for i=0,...,v—1 do

¢ — ¢+ uc’

if CauchyET(P,P’, D(c;, 2p)) returns —1 then
return —1 /) A (c, rf_(a, %), rf+(a, %)) contains a root

// A is at least a-isolated according to CauchyET
7: return CauchyRC1(P,P’ A, a)

Corollary 13. (of Proposition 12) Let 6 =4/3 and a = 11/10. Remark that

_ B s _ o4
f-(a,0) = 110 > 2 and fy(a,8) = E5

The call CauchyRC2(P, P’ A, a) amounts to [27 Z;fﬂ = 67 calls to Cauchy-

ET for discs of radius %T € O(r) and one call to CauchyRC1 for A. This
requires evaluation of P and P' at O(C (d,r)) points, and O(C (d,r)) arithmetic

operations, all with precision less than L (d,r).

4 Root Radii Algorithms

4.1 Approximation of the Largest Root Radius

For a monic p of degree d and bit-size 7 = log ||p||1, we describe a naive approach
to the approximation of the largest modulus r4 of a root of p. Recall Cauchy’s
bound for such a polynomial: 74 < 1 + 27. The procedure below finds an r so
that 4 < r and either r = 1 or /2 < rq when p is given by the evaluation
oracles P, P’.

LLr—1me—-1

2: while m < d do

3: m < CauchyRC2(P,P’, D(0,7),4/3)

4: if m < d then

5 7 2r
As a consequence of Proposition 12 each execution of the while loop terminates
and the procedure terminates after no more than O(7) execution of the while
loop. It requires evaluation of P and P’ at O(7C (d,r)) points and O(7C (d,r))
arithmetic operations all with precision less than L (d,r). Its correctness is
implied by correctness of the results of CauchyRC2 which is in turn implied
by correctness of the results of CauchyET.

156 R. Imbach and V. Y. Pan

4.2 Approximation of the (d + 1 — m)-th Root Radius

For a ¢ € C and an integer m > 1, we call (d + 1 — m)-th root radius from c
and write it r,,(c,p) the smallest radius of a disc centered in ¢ and containing
exactly m roots of p.

Algorithm 5 approximates r,,(c, p) within the relative error v. It is based on
the RC CauchyRC2 and reduces the width of an initial interval [/, u] containing
rm(c,p) with a double exponential sieve.

Algorithm 5. RootRadius(P,P’, A, m,v,¢)

Require: P, P’ evaluation oracles for p and p’, s.t. p is monic of degree d. A disc
A = D(e,r), an integer m > 1, v € R, v > 1, and € € R such that 0 < & < r/2
Ensure: ' >0)
1: choose as.t. v~ 1 < f_(a,3) < fr(a,3) <2 // when v =2 take a = 11/10
l—0,u«r
// Find a lower bound to Ta+1-m(c,p)
m’ « CauchyRC2(P,P’, D(c,€),a)
if m’ = m then
return €
else
e (@)e
// Apply double exponential sieve to get | < rgi1—m <u < vl
8: while [<u/v do
9: t— (lu)%
10: m’ +— CauchyRC2(P,P’, D(c,t),a)

»

11: if m' =m then
12: u<—t

13: else

14: l— f(a,3)t

15: return u

The correctness of Algorithm 5 for given input parameters is implied by
correctness of the results of CauchyRC2 which is in turn implied by correctness
of the results of CauchyET. Algorithm 5 satisfies the proposition below. See [7,
Appendix A.5] for a proof.

Proposition 14. The call RootRadius(P,P’, D(c,r), m,v,) terminates after
O(loglog(r/e)) iterations of the while loop. Let A = D(e,r) and r' be the output
of the latter call.

(a) If A contains at least a root of p then so does D(c,2r").

(b) If A contains m roots of p and CauchyRC2 returns a correct result each
time it is called in Algorithm 5, then either ' = ¢ and rn,(c,p) < e, or
rm(c,p) <7 <wvrp(c,p).

Accelerated Subdivision Algorithms for Oracle Polynomials 157

5 A Compression Algorithm

We begin with a geometric lemma illustrated in Fig. 2.

Lemma 15. Let ¢ € C and r,e,0 € R satisfying 0 < € < r/2 and 0 > 2. Let
d € D(c, ™) and u = max (|c — | + 5,r). Then

r , 7
D(et) D weD <c, 4r) c D(e, 6).

rf |

Fig. 2. Tllustration for Lemma 15 with § = 2 and € = r/4. ¢’ is on the boundary circle
of D(c, (r +¢€)/2), and u := |c — /| + /0.

The following lemma is a direct consequence of Lemma 15 because
s1 (p,c,r) /m is the center of gravity of the roots of p in D(e, 7).

Lemma 16. Let D(c,r) be at least 0 > 2-isolated and contain m roots. Let s}
approm*imate s1(p,c,r) such that |s7 — si(p,c,r)| < %5 and ¢ < 5. Then for
d =2 and v =max (|c — |+ %,7), the disc D(c',u) contains the same roots
of p as D(c,r).

Algorithm 6 solves the e-CRD problem for v = 1/8. It satisfies the proposition
below. See [7, Appendix A.6] for a proof.

Proposition 17. The call Compression(P, P’ Ae) where A = D(c,r)
requires evaluation of P and P’ at O (C’ (d,e) ngl@%) points and the same
number of arithmetic operations, all with precision less than L (d,e/4). Let
m, D(c/,r") be the output of the latter call.

(a) If A is at least 2-isolated and Z (A,p) # 0, and if the call to RootRadius
returns a correct result, then D(c',r") is equivalent to A, contains m roots
of p and satisfies: either ' < e, or D(c/,1") is at least 1/8-rigid.

(b) If m' > 0 then D(c,2r") contains at least a root of p.

158 R. Imbach and V. Y. Pan

Algorithm 6. Compression(P, P’ A ¢)

Require: P, P’ evaluation oracles for p and p’, s.t. p is monic of degree d. A disc
A = D(e,r), and a strictly positive ¢ € R.

Ensure: An integer m and a disc D(c/,r").

0—2,¢& «—¢e/20

(success, [so, Os1]) — ApproxShs(P,P’, A, 0,1, min(¢’, 1))

if not success or sy does not contain an integer > 0 then
return —1, ()

m «— the unique integer in [Osg
if /2 < € then
return m, D(c,r/2)
cd —c(ls1) /m // I —s1(p,c,m)/m| < /46
if m =1 then
m «— CauchyRC1(P,P’, D(,2¢),2)
return m, D(c,2¢’)

— =
=N

—
[\

tue—max (le— |+ 5,7)
: v’ <« RootRadius(P,P’, D(c,u), 5,m,0,£/2)
: return m, D(c',r")

— =
NIV

6 Two Cauchy Root Finders

In order to demonstrate the efficiency of the algorithms presented in this paper,
we describe here two experimental subdivision algorithms, named CauchyQIR
and CauchyComp, solving the e-CRC problem for oracle polynomials based on
our Cauchy ET and RCs. Both algorithms can fail —in the case where CauchyET
excludes a box of the subdivision tree containing a root — but account for such a
failure. Both algorithm adapt the subdivision process described in [2]. CauchyQIR
uses QIR Abbott iterations to ensure fast convergence towards clusters of roots.
CauchyComp uses e-compression presented in Sect. 5. In both solvers, the main
subdivision loop is followed by a post-processing step to check that the output
is a solution of the e-CRC problem. The main subdivision loop does not involve
coefficients of input polynomials but use evaluation oracles instead. However, we
use coefficients obtained by evaluation-interpolation in the post-processing step
in the case where some output discs contain more than one root. We observe no
failure of our algorithms in all our experiments covered in Sect. 7.

6.1 Subdivision Loop

Let By be a box containing all the roots of p. Such a box can be obtained by
applying the process described in Subsect. 4.1.

Sub-Boxes, Component and Quadrisection. For a box B(a + ib, w), let
Children (B) be the set of the four boxes {B((a+w/4) +i(b+w/4),w/2)}, and

Children, (B) := U Children, (B').
B’e€Children,_1(B)

Accelerated Subdivision Algorithms for Oracle Polynomials 159

A box B is a sub-box of By if B = By or if there exist an n > 1 s.t. B €
Children, (By). A component C'is a set of connected sub-boxes of By of equal
widths. The component box B(C) of a component C' is the smallest (square) box
subject to C' C B(C) C By minimizing both Re(c (B(C))) and Zm/(c (B(C))).
We write D(C) for D(B(C)). If S is a set of components (resp. discs) and 6 > 0,
write d.5 for the set {§D(A) (resp. A) | A € S}.

Definition 18. Let Q) be a set of components or discs. We say that a component
C (resp. a disk A) is y-separated (or y-sep.) from Q when vD(C) (resp. vA)
has empty intersection with all elements in Q.

Remark 19. Let Q be a set of components and C ¢ Q a component. If Z (C,p) =
Z ({CYUQ,p) and C is 4-separated from Q then 2D(C) is at least 2-isolated.

Subdivision Process. We describe in Algorithm 7 a subdivision algorithm
solving the e-CRC problem. The components in the working queue @ are sorted
by decreasing radii of their containing discs. It is parameterized by the flag
compression indicating whether compression or QIR Abbott iterations have to
be used. In QIR Abbott iterations of Algorithm 7 in [3], we replace the Graeffe
Pellet test for counting roots in a disc A by CauchyRC2(P,P’, A,4/3). If a
QIR Abbott iteration in step 12 fails for input A, m, it returns A. Steps 20-21
prevent C' to artificially inflate when a compression or a QIR Abbott iteration
step does not decrease D(C). For a component C, Quadrisect(C) is the set of
components obtained by grouping the set of boxes

| {B’ € Children,(B) | CauchyET(P,P’, D(B')) = —1}
BeC

into components.

The while loop in steps 4-22 terminates because all our algorithms terminate,
and as a consequence of (a) in Proposition 9: any component will eventually be
decreased until the radius of its containing disc reaches £/2.

6.2 Output Verification

After the subdivision process described in steps 1-22 of Algorithm. 7, R is a set
of pairs of the form {(A',m!),..., (A% m")} satisfying, for any 1 < j < ¢:

- AJi is a disc of radii < e, m7 is an integer > 1,
— AJ contains at least a root of p, y
—forany 1 <j </{st.j #7,3ANA =0

The second property follows from (b) of Proposition 10 and (b) of Proposition 17
when compression is used. Otherwise, remark that a disk A in the output of QIR
Abbott iteration in step 12 of Algorithm 7 verifies CauchyRC2(P, P’, A,4/3) >
0 and apply (b) of Proposition 12. The third property follows from the if state-
ment in step 15 of Algorithm 7. Decompose R as the disjoint union R; U R~1
where R; is the subset of pairs (A%, m?) of R where m’ = 1 and R~ is the subset
of pairs (A, m?) of R where m® > 1, and make the following remark:

160 R. Imbach and V. Y. Pan

Algorithm 7. CauchyRootFinder (P, P’, e, compression)

Require: P and P’ evaluation oracles for p and p’, s.t. p is monic of degree d. A
(strictly) positive € € R, a flag compression € {true, false}.
Ensure: A flag success and a list R = {(A',m'),..., (4% m")}

1: By < box s.t. # (B, p) = d as described in Subsect 4.1
2: Q — {Bo} // Q is a queue of components
3: R —{} // R is the empty list of results
4: while @ is not empty do
5: C < pop(Q)
6: if C is 4-separated from @) then
7 if compression then
8: m, D(c,r) «— Compression(P,P’,2D(C),/2)
9: else
10: m « CauchyRC1(P,P’,2D(C),2)
11: if m > 0 then
12: D(c,r) — QIR Abbott iteration for D(C), m
13: if m <0 then
14: return fail, ()
15: if r <e/2 and D(c,2r) is 3-sep. from 2@ and is 1-sep. from 6Q then
16: push(R, (D(c,2r), m))
17: continue
18: else
19: C' «— component containing D(c,)
20: if ¢’ C C then
21: C—C

22: push(Q, Quadrisect(C'))

23: success « verify R as described in Subsect. 6.2
24: return success, R

Remark 20. If m' + ... +m’ = d and for any (A", m’) € Rs,, A® contains
exzactly m' roots of p, then R is a correct oulput for the e-CRC problem with
input p of degree d and e.

According to Remark 20, checking that R is a correct output for the e-CRC
problem for fixed input p of degree d and ¢ amount to check that the m®’s add
up to d and that for any A’ € R-1, A? contains exactly m’ roots of p. For this
last task, we use evaluation-interpolation to approximate the coefficients of p
and then apply the Graeffe-Pellet test of [2].

7 Experiments

We implemented Algorithm 7 in the C library Ccluster. Call CauchyComp (resp.
CauchyQIR) the implementation of Algorithm 7 with compression = true (resp.
false). In the experiments we conducted so far, CauchyComp and CauchyQIR
never failed.

Accelerated Subdivision Algorithms for Oracle Polynomials 161

Test Suite. We experimented CauchyComp, CauchyQIR and MPsolve on Man-
delbrot and Mignotte polynomials as defined in Sect. 1 as well as Runnel and
random sparse polynomials. Let r = 2. The Runnel polynomial is defined induc-
tively as

Rung(z) =1, Runi(z) =z, Rungi1(z) =Rung(z)" + zRunk,l(z)’"2

It has real coefficients, a multiple root (zero), and can be evaluated fast. We
generate random sparse polynomials of degree d, bitsize 7 and ¢ > 2 non-
zero terms as follows, where p; stands for the coefficient of the monomial of
degree i in p: pg and py are randomly chosen in [—-2771 2771] then £ — 2 inte-
gers iy, ...,ig—1 are randomly chosen in [1,d—1] and p;,, ..., p;,_, are randomly
chosen in [—2771,2771]. The other coefficients are set to 0.

Results. We report in Table 1 results of those experiments for Mandelbrot
and Mignotte polynomials with increasing degrees and increasing values of
log;,(e71). We account for the running time ¢ for the three above-mentionned
solvers. For CauchyQIR (resp. CauchyComp), we also give the number n of exclu-
sion tests in the subdivision process, and the time ¢ty (resp. t¢) spent in QIR
Abbott iterations (resp. compression).

Our compression algorithm allows smaller running times for low values of
log;,(e71) because it compresses a component C on the cluster it contains as of
2D(C) is 2-isolated, whereas QIR Abbott iterations require the radius A to be
near the radius of convergence of the cluster for Schréder’s iterations.

We report in Table 2 the results of runs of CauchyComp and MPsolve for
polynomials of our test suite of increasing degree, for log;,(¢~!) = 16. For ran-
dom sparse polynomials, we report averages over 10 examples. The column ty
accounts for the time spent in the verification of the output of CauchyComp
(see Subsect. 6.2); it is 0 when all the pairs (A7, m7) in the output verify m? = 1.
It is > 0 when there is at least a pair with m’ > 1.

The maximum precision L required in all our tests was 106, which makes us
believe that our analysis in Proposition 8 is very pessimistic. Our experimental
solver CauchyComp is faster than MPsolve for polynomials that can be evaluated
fast.

162

Table 2. Runs of CauchyComp and MPsolve on polynomials of our test suite for

logo(e™") = 16

R. Imbach and V. Y. Pan

CauchyComp MPsolve
d t| n| to| ty t
Mandelbrot polynomials
255 1.31 5007 | 0.21 | 0.00 0.58
511 |/ 3.25| 10679 | 0.64 | 0.00 4.13
1023 |1 6.47 | 18774 |0.84 | 0.00 31.7
2047 |1 16.2| 39358 | 2.35 | 0.00 267.
Runnels polynomials
341 || 2.55 4967 | 0.38 | 0.00 0.45
682 || 5.66 9392 | 0.87 | 0.02 3.32
1365 || 12.6 | 18030 | 2.00 | 0.05 26.2
2730 || 29.7| 35612 |4.26 | 0.12 236.
Mignotte polynomials, a = 16
256 || 0.29 4131/ 0.15 | 0.00 0.21
512 |/ 0.58 8042 | 0.27 | 0.00 0.70
1024 || 1.24 | 16105 | 0.55 | 0.02 2.99
2048 || 2.69| 32147 |1.05|0.04 11.6
10 randomSparse polynomials with 3 terms and bitsize 256
767 || .902| 10791.|.415| 0.0 .602
1024 |1 1.35 | 15526.|.560 | 0.0 1.36
1535 || 2.04 | 21244.|.861| 0.0 2.35
2048 || 2.98 | 30642.|1.16| 0.0 4.10
10 randomSparse polynomials with 5 terms and bitsize 256
2048 || 4.77| 29583.|1.60| 0.0 4.09
3071 || 6.92| 43003.|2.45| 0.0 10.0
4096 || 9.82 | 56659. |3.38| 0.0 24.0
6143 || 17.7 | 86857.|5.40| 0.0 44.5
10 randomSparse polynomials with 10 terms and bitsize 256
3071 || 11.9| 44714.|4.09| 0.0 10.3
4096 || 17.5| 58138.|5.82| 0.0 17.6
6143 || 29.1| 85451.|8.93| 0.0 51.9
8192 || 40.6 | 116289. | 12.4 | 0.0 66.5

8 Conclusion

We presented, analyzed and verified practical efficiency of two basic subroutines
for solving the complex root clustering problem for black box polynomials. One
is a root counter, the other one is a compression algorithm. Both algorithms are
well-known tools used in subdivision procedures for root finding.

We propose our compression algorithm not as a replacement of QIR Abbott
iterations, but rather as a complementary tool: in future work, we plan to use

Accelerated Subdivision Algorithms for Oracle Polynomials 163

compression to obtain a disc where Schroder’s/QIR Abbott iterations would
converge fast. The subroutines presented in this paper laid down the path toward
a Cauchy Root Finder, that is, an algorithm solving the e-CRC problem for black
box polynomials.

References

10.

11.

12.

13.

14.

Abbott, J.: Quadratic interval refinement for real roots. ACM Commun. Comput.
Algebra 48(1/2), 3—-12 (2014)

Becker, R., Sagraloff, M., Sharma, V., Xu, J., Yap, C.: Complexity analysis of root
clustering for a complex polynomial. In: Proceedings of the ACM on International
Symposium on Symbolic and Algebraic Computation, pp. 71-78. ACM (2016)
Becker, R., Sagraloff, M., Sharma, V., Yap, C.: A near-optimal subdivision algo-
rithm for complex root isolation based on the Pellet test and Newton iteration. J.
Symbol. Comput. 86, 51-96 (2018)

Bini, D.A., Robol, L.: Solving secular and polynomial equations: a multiprecision
algorithm. J. Comput. Appl. Math. 272, 276-292 (2014)

Imbach, R., Pan, V.Y.: New practical advances in polynomial root clustering. In:
Slamanig, D., Tsigaridas, E., Zafeirakopoulos, Z. (eds.) MACIS 2019. LNCS, vol.
11989, pp. 122-137. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
43120-4-11

Imbach, R., Pan, V.Y.: New progress in univariate polynomial root finding. In:
Proceedings of the 45th International Symposium on Symbolic and Algebraic Com-
putation, pp. 249-256 (2020)

Imbach, R., Pan, V.Y.: Accelerated subdivision for clustering roots of polynomials
given by evaluation oracles. arXiv preprint 2206.08622 (2022)

Imbach, R., Pan, V.Y., Yap, C.: Implementation of a near-optimal complex root
clustering algorithm. In: Davenport, J.H., Kauers, M., Labahn, G., Urban, J. (eds.)
ICMS 2018. LNCS, vol. 10931, pp. 235-244. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-96418-8_28

Louis, A., Vempala, S.S.: Accelerated Newton iteration: roots of black box polyno-
mials and matrix eigenvalues. In: IEEE 57th Annual Symposium on Foundations
of Computer Science, pp. 732-740 (2016)

Luan, Q., Pan, V.Y., Kim, W., Zaderman, V.: Faster numerical univariate poly-
nomial root-finding by means of subdivision iterations. In: Boulier, F., England,
M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2020. LNCS, vol. 12291, pp.
431-446. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60026-6_25
Moroz, G.: Fast real and complex root-finding methods for well-conditioned poly-
nomials. arXiv preprint 2102.04180 (2021)

Pan, V.Y.: Approximating complex polynomial zeros: modified Weyl’s quadtree
construction and improved Newton’s iteration. J. Complex. 16, 213-264 (2000)
Pan, V.Y.: Univariate polynomials: nearly optimal algorithms for numerical fac-
torization and root-finding. J. Symbol. Comput. 33, 701-733 (2002)

Pan, V.Y.: Old and new nearly optimal polynomial root-finders. In: England, M.,
Koepf, W., Sadykov, T.M., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2019.
LNCS, vol. 11661, pp. 393-411. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-26831-2_26

https://doi.org/10.1007/978-3-030-43120-4_11
https://doi.org/10.1007/978-3-030-43120-4_11
https://doi.org/10.1007/978-3-319-96418-8_28
https://doi.org/10.1007/978-3-319-96418-8_28
https://doi.org/10.1007/978-3-030-60026-6_25
https://doi.org/10.1007/978-3-030-26831-2_26
https://doi.org/10.1007/978-3-030-26831-2_26

164

15.

16.

17.

18.

19.

20.

R. Imbach and V. Y. Pan

Pan, V.Y.: Acceleration of subdivision root-finding for sparse polynomials. In:
Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2020.
LNCS, vol. 12291, pp. 461-477. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-60026-6_27

Pan, V.Y.: New progress in polynomial root-finding. arXiv preprint 1805.12042
(2022)

Reinke, B.: Diverging orbits for the Ehrlich-Aberth and the Weierstrass root find-
ers. arXiv preprint 2011.01660 (2020)

Renegar, J.: On the worst-case arithmetic complexity of approximating zeros of
polynomials. J. Complex. 3(2), 90-113 (1987)

Sagraloff, M., Mehlhorn, K.: Computing real roots of real polynomials. J. Symbol.
Comput. 73, 46-86 (2016)

Schonhage, A.: The fundamental theorem of algebra in terms of computational
complexity. Manuscript. University of Tiibingen, Germany (1982)

https://doi.org/10.1007/978-3-030-60026-6_27
https://doi.org/10.1007/978-3-030-60026-6_27

	Accelerated Subdivision for Clustering Roots of Polynomials Given by Evaluation Oracles
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Structure of the Paper
	1.4 Definitions and Two Evaluations Bounds

	2 Power Sums and Cauchy Sums
	2.1 Approximation of the Power Sums
	2.2 Computation of Cauchy Sums
	2.3 Approximating the Power Sums s0,s1, …, sh

	3 Exclusion Test and Root Counters
	3.1 Root Counting with Known Isolation
	3.2 Cauchy Exclusion Test
	3.3 Cauchy Root Counter

	4 Root Radii Algorithms
	4.1 Approximation of the Largest Root Radius
	4.2 Approximation of the (d+1-m)-th Root Radius

	5 A Compression Algorithm
	6 Two Cauchy Root Finders
	6.1 Subdivision Loop
	6.2 Output Verification

	7 Experiments
	8 Conclusion
	References

