
Analyses and Implementations
of Chordality-Preserving Top-Down

Algorithms for Triangular Decomposition

Mingyu Dong and Chenqi Mou(B)

LMIB–School of Mathematical Sciences, Beihang University, Beijing 100191, China
{mingyudong,chenqi.mou}@buaa.edu.cn

Abstract. When the input polynomial set has a chordal associated
graph, top-down algorithms for triangular decomposition are proved to
preserve the chordal structure. Based on these theoretical results, sparse
algorithms for triangular decomposition were proposed and demonstrat-
ed with experiments to be more efficient in case of sparse polynomial
sets. However, existing implementations of top-down triangular decom-
position are not guaranteed to be chordality-preserving due to operations
which potentially destroy the chordality. In this paper, we first analyze
the current implementations of typical top-down algorithms for trian-
gular decomposition in the Epsilon package to identify these chordality-
destroying operations. Then modifications are made accordingly to guar-
antee new implementations of such algorithms are chordality-preserving.
In particular, the technique of dynamic checking is introduced to ensure
that the modifications also keep the computational efficiency. Experimen-
tal results with polynomial sets from biological systems are also reported.

Keywords: Triangular decomposition · Chordal graph · Sparsity ·
Implementation

1 Introduction

Symbolic computation, also called computer algebra, is an interdisciplinary sub-
ject of mathematics and computer science which studies how to solve mathe-
matical problems in terms of symbolic objects by using algorithms and their
implementations [11]. As an indispensable method in symbolic computation, tri-
angular decomposition transforms any multivariate polynomial set into finitely
many triangular sets or systems which are in the triangular shape with respect
to their greatest variables and thus much easier to solve, making operations with
polynomial systems like solving them algorithmically feasible [1,16,32,37].

After the introduction of characteristic set, a special kind of triangular set,
by Ritt [28,29], solid development on the theories, methods, and algorithms of

This work was partially supported by the National Natural Science Foundation of
China (NSFC 11971050) and Beijing Natural Science Foundation (Z180005).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Boulier et al. (Eds.): CASC 2022, LNCS 13366, pp. 124–142, 2022.
https://doi.org/10.1007/978-3-031-14788-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14788-3_8&domain=pdf
https://doi.org/10.1007/978-3-031-14788-3_8

Chordality-Preserving Top-Down Algorithms for Triangular Decomposition 125

triangular decomposition has been witnessed in the last decades [2,3,7–9,12,
13,17–19,30,31,38], accompanied by many successful applications of triangular
decomposition in scientific and engineering areas, e.g., in automated reasoning
of geometric theorems [9,36], stability analysis of biological systems [27,35], and
cryptography [5,13,15] etc. Well-known implementations for triangular decom-
position include the Epsilon package for top-down triangular decomposition for
Maple [33], the RegularChains library for regular decomposition in Maple [20],
the wsolve package for characteristic decomposition [34], and the built-in imple-
mentations of triangular decomposition in Singular [14].

This paper focuses on top-down algorithms for triangular decomposition
which preserve the chordal structure. The connections between chordal graphs
and triangular sets were first established by Cifuentes and Parrilo in their study
on the chordal network of polynomial systems by associating a graph to a poly-
nomial set [10]. They also showed that algorithms due to Wang [30,31] are more
efficient when the input polynomial set has a chordal associated graph. Their
works inspired Mou and his collaborators to study chordal graphs in top-down
algorithms for triangular decomposition: they proved that such algorithms pre-
serve the chordal structure and thus are also sparsity-preserving, explaining the
experimental observations by Cifuentes and Parrilo [22]. Then based on these
theoretical results top-down algorithms for sparse triangular decomposition were
proposed and applied to solve large polynomial systems arising from stability
analysis of biological systems [23–25]. Furthermore, algorithms for incremental
triangular decomposition and for cylindrical algebraic decomposition were also
proved to preserve the chordal structure, leading to more efficient algorithm
variants in the sparse case [6,21].

Though those algorithms for triangular decomposition are proved to be chor-
dality-preserving at the algorithmic level, in real computation with their exist-
ing implementations, instances where chordality is destroyed are reported. This
means that in the implementations of these top-down algorithms for triangu-
lar decomposition, there exist procedures or operations which are against the
overall top-down strategy of the algorithm, introducing unwanted relationships
between the variables in the polynomial sets. In this paper, we first analyze the
current implementations of top-down algorithms for triangular decomposition in
the Epsilon package to identify the operations which destroy the chordal struc-
ture and then modify them accordingly to have real chordality-preserving imple-
mentations for top-down triangular decomposition. Furthermore, we introduce
the technique of dynamic checking to make the best use of simplification which
speeds up the computation of triangular decomposition considerably while keep-
ing the implementations chordality-preserving. The effectiveness and efficiency of
our modified implementations were demonstrated with experiments with bench-
mark polynomial systems in the ODEbase database for biological models1.

To our best knowledge, the implementations we present in this paper are
the first ones for chordality-preserving top-down triangular decomposition in
the community of symbolic computation. It is planned to incorporate these

1 https://odebase.cs.uni-bonn.de/ODEModelApp.

https://odebase.cs.uni-bonn.de/ODEModelApp

126 M. Dong and C. Mou

implementations into the next release of the Epsilon package. We believe that the
four operations we identify in the original implementations in the Epsilon package
to potentially destroy the chordality-preserving property of an implementation of
top-down triangular decomposition are also useful as references to those who plan
to apply chordal graphs in top-down elimination methods like those for cylindrical
algebraic decomposition.

2 Preliminaries

Let K be a computable field. Denote by K[x] the polynomial ring in the variables
x1, . . . , xn over K. We fix a variable ordering x1 < · · · < xn unless otherwise spec-
ified. For a polynomial F ∈ K[x], the greatest variable that effectively appears in
it is called the leading variable of F and denoted by lv(F). Let xk = lv(F). Then
F can also be regarded as a univariate polynomial in xk, with coefficients from
K[x1, . . . , xk−1], and accordingly it can be written as F =

∑dk

i=0 Cix
i
k, where

Ci ∈ K[x1, . . . , xk−1], dk = deg(F, xk), and Cdk
�= 0. The leading coefficient Cdk

here is called the initial of F , denoted by ini(F), and plays an important role in
the theory of triangular decomposition.

2.1 Triangular Set and Triangular Decomposition

Definition 1. Let T = [T1, . . . , Tr] be an ordered polynomial set in K[x]. If
none of T1, . . . , Tr is constant and lv(T1) < · · · < lv(Tr), then T is called a
triangular set in K[x].

Clearly the following polynomial set forms a triangular set in K[x1, . . . , x4]

[x2 + x1, (x2
2 − x2

1 + 2)x3, (x3 + x2)x4 + x3 − 1]. (1)

One can impose additional conditions on the polynomials and their initials
in a triangular set to make it even stronger and have more desirable properties.
Commonly used triangular sets include regular sets (or called regular chains) [8,
17,38], simple sets [3,26,31], irreducible sets [32, Sect. 4.1], and normal sets [32,
Sect. 5.2], etc.

Let P, Q ⊂ K[x] be two polynomial sets. We are interested in the zeros
defined by P as equations and Q as inequations. To be specific, we study the
system of equations P = 0 and inequations Q �= 0 for all P ∈ P and Q ∈ Q
and denote this system by P = 0 and Q �= 0 accordingly. Let K be the algebraic
closure of K. Then we denote by Z(P) the common zeros of the polynomials in P
in K and denote Z(P/Q) := Z(P) \Z(S), where S =

∏
Q∈Q Q. As one may find,

the definition Z(P/Q) is indeed the zero set of P = 0 and Q �= 0.

Definition 2. Let (T ,U) be a pair of polynomial sets in K[x]. Then it is called
a triangular system if T is a triangular set, say T = [T1, . . . , Tr], and for each
i = 2, . . . , r and any xi−1 ∈ Z([T1, . . . , Ti−1]/U), we have ini(Ti)(xi−1) �= 0.

Chordality-Preserving Top-Down Algorithms for Triangular Decomposition 127

Definition 3. Let P and Q be two finite polynomial sets in K[x]. Then the
process to compute finite many triangular systems (T1, T1), . . . , (Ts,Us) such that
Z(P/Q) =

⋃s
i=1 Z(Ti/Ui) is called triangular decomposition of P and Q.

When the triangular set T in a system (T ,U) is regular, simple, irreducible, or
normal, the corresponding triangular system is also called so. Triangular decom-
position to different kinds of triangular systems is also named after the resulting
triangular systems. For example, in this paper, we are interested in top-down
algorithms for regular and simple decomposition which decomposes a polynomial
set into regular sets and simple sets, respectively.

Top-down algorithms for triangular decomposition refer to those handle the
polynomials in a decreasing order with respect to their leading variables so that
when handling the polynomials with a certain leading variable, those with strictly
greater leading variables keep the same and newly generated polynomials in the
process are only of smaller leading variables. The readers are referred to [23] for
a formal definition of top-down triangular decomposition.

2.2 Sparse Triangular Decomposition Based on Chordal Graphs

Consider an undirected graph G = (V,E), where V := {x1, . . . , xn} and E are,
respectively, the sets of its vertices and edges. An edge in E connecting two
vertices xi and xj is denoted by (xi, xj). Since G is an undirected graph, we
have (xi, xj) = (xj , xi). Let S be a non-empty subset of V . Then the subgraph
with its vertices in S and edges consisting of the edges in E whose endpoints
belong to S is called the induced subgraph of G with respect to S and denoted
by G[S]. If an induced subgraph G[S] is complete, meaning that all the vertices
are connected with edges, then we say that S forms a clique in G.

Definition 4. Let G = (V,E) be an undirected graph with V = {x1, . . . , xn}
and xi1 < xi2 < · · · < xin be an ordering of all the vertices. If for each j =
i1, i2, · · · , in, the set {xj} ∪ {xk : xk < xj and (xk, xj) ∈ E} forms a clique in G,
then this vertex ordering is called a perfect elimination ordering of G. If G has
some perfect elimination ordering, then it is said to be chordal.

There exist effective algorithms, e.g., the MCS (maximum cardinality search)
algorithm [4], to test whether a given graph is chordal, returning also a perfect
elimination ordering in the affirmative case. The specifications of the MCS algo-
rithm are formulated in Algorithm 1 for later references.

Algorithm 1: MCS algorithm (B,σ) := MCS(G)
Input: G, a graph
Output: (B,σ): if G is chordal, then B = True and σ is one perfect

elimination ordering of G, otherwise B = False and σ = ∅

For a non-chordal graph G = (V,E), one can make it chordal by adding a set
of new edges E′. The process to find a minimal set E′ of edges for G so that G′ :=
(V,E ∪ E′) is chordal is called chordal completion of G. We denote this process

128 M. Dong and C. Mou

by G′ = ChordalComp(G). Here by minimal we mean that any strict subset E′′

of E′ cannot make G′′ = (V,E ∪ E′′) chordal. The resulting supergraph G′ is
also called a chordal completion of G if no ambiguity may happen.

In Fig. 1 below, the subgraph (a) is not chordal and (b) is a chordal com-
pletion of it with a perfect elimination ordering x1 < x2 < x3 < x4 < x5. Note
that (c) is not a chordal completion of (a) even though it is a chordal graph, for
the set of added edges is not minimal.

Fig. 1. A chordal graph and its chordal completion (Color figure online)

For a polynomial F ∈ K[x], denote by supp(F) the set of the variables F con-
tains; similarly for a polynomial set F ⊂ K[x] we define supp(F) = {supp(F) :
F ∈ F}. In the following way a graph is associated to F .

Definition 5. Let F ⊂ K[x] be a polynomial set. Set V = supp(F) and E =
{(xi, xj) : there exists F ∈ F such that xi, xj ∈ supp(F)}. Then the graph G =
(V,E) is called the associated graph of F , denoted by G(F).

The associated graph of the polynomial set (1) is illustrated as below in
Fig. 2. One can see that the associated graph of a polynomial set F reflects how
the variables in F are interconnected, and, thus, the definition below for variable
sparsity via associated graphs is natural.

Fig. 2. Associated graph of (1)

Chordality-Preserving Top-Down Algorithms for Triangular Decomposition 129

Definition 6. Let F ⊂ K[x] be a polynomial set and G(F) = (V,E) be its
associated graph. Then the variable sparsity of F is defined to be sv := |E|/

(
2

|V |
)
.

It is proved that if the input polynomial set has a chordal associated graph
and a perfect elimination ordering of this graph is used as the variable ordering,
top-down algorithms for triangular decomposition preserve the variable sparsity
of the polynomial sets in the process of decomposition and, thus, the following
algorithmic framework for sparse triangular decomposition is proposed in [23]
and verified to be more efficient for polynomial systems which are sparse with
respect to their variables [24]. In Algorithm 2 below, RegDec() represents a top-
down algorithm for regular decomposition. It is called an algorithmic framework
because by simply replacing RegDec() with any other top-down algorithm for
triangular decomposition, say one for simple decomposition, one will have a
sparse version of that top-down algorithm.

Algorithm 2: Top-down algorithm for sparse regular decomposition
(σ, ψ) = SparseRegDec(F)
Input: F ∈ K[x], a sparse polynomial set with respect to the variables
Output: (σ, Ψ), a perfect elimination ordering σ and triangular

decomposition Ψ of F with respect to σ
1 (B,σ) := MCS(G(F));
2 if B = False then
3 G′ := ChordalComp(G(F));
4 (B,σ) := MCS(G′);

5 Ψ := RegDec(F ,σ);
6 return (σ, Ψ);

3 Chordality in Top-Down Triangular Decomposition

In this paper, we focus on three typical top-down algorithms for triangular
decomposition which have been implemented in the Epsilon package: they are the
algorithms for regular decomposition (denoted by RegSer), for simple decomposi-
tion (by SimSer), and for triangular decomposition (by TriSer). These algorithms,
detailed in [32] and proved to be chordality-preserving [23,25], rely heavily on
subresultants for polynomial elimination in the decomposition and, thus, share
a similar underlying structure.

We applied sparse algorithms for triangular decomposition in the frame-
work of Algorithm 2 with the implementations in the Epsilon package of these
three algorithms to polynomial systems arising from biological models in the
database ODEbase in our experiments. For each studied polynomial system F , a
finite number of triangular systems (T1,U1), . . . , (Ts,Us) will be computed after
the triangular decomposition, and we want to check whether all the associated
graphs G(T1), . . . , G(Ts) are indeed subgraphs of the input chordal graph that
is either G(F) or its chordal completion. In fact, in our experiments, instances
with extra added edges not contained in the input chordal graph were reported.

130 M. Dong and C. Mou

Example 1. Consider the following polynomial system in Model BM483

{100x3−x1−10−5x2
1x4+10−5x1x4+ 0.2x6,−5×10−6x2

2x3+5×10−6x2x3+0.1x5

100x4−x2−10−5x2
2x3+10−5x2x3+0.2x5,−5×10−6x2

1x4+5×10−6x1x4+0.1x6,

5×10−6x2
2x3−5×10−6x2x3−0.1x5, 5×10−6x2

1x4−5×10−6x1x4−0.1x6,

x1−100x3, x2−100x4}.

The associated graph of this polynomial set is shown below in Fig. 3 and it is a
chordal graph with one perfect elimination ordering x1 < x3 < x6 < x4 < x2 <
x5.

Fig. 3. A chordal associated graph

With this perfect elimination ordering as the variable order, the RegSer func-
tion in Epsilon package returns the following two triangular systems

([x1−100x3, x
2
1x4−x1x4−20000x6, x2−100x4, 100x2

4x1−x1x4−20000x5],
{x1, x1−1}), ([x2

1−x1, x1−100x3, x6, x2−100x4, 100x2
4x1−x1x4−20000x5], ∅).

Their associated graphs are shown in (a) and (b) of Fig. 4 respectively.

Fig. 4. Associated graph (Color figure online)

Chordality-Preserving Top-Down Algorithms for Triangular Decomposition 131

As one may find, the red edge in these two graphs does not appear in
Fig. 3. This means that, even though the top-down algorithm RegSer for reg-
ular decomposition is proved theoretically to preserve the chordal structure of
the input polynomial set, there may still exist specific operations in the actual
implementation of this algorithm which can destroy the chordality-preserving
property. In fact, out of 40 polynomial systems we picked from the ODEbase
database, our experiments found 7 to produce extra added edges in some asso-
ciated graphs of the returned triangular systems output by the RegSer function
in the Epsilon package.

4 When is the Chordality Destroyed?

In this section, we report our study and analyses on the source codes of the
implementations of the functions RegSer, SimSer, and TriSer for top-down trian-
gular decomposition in the Epsilon package. In total, we found the following 4
operations which may destroy the chordality in these implementations.

4.1 Simplifying a Polynomial Set with Its Binomials

Let P be a polynomial set appearing in the process of triangular decomposition
which represents the equations P = 0. In case there exists some simple polyno-
mial in P like a binomial, we can simplify P with this simple polynomial. This
operation is formulated as Simplify(P) as follows.

Simplify(P)
1. Consider each polynomial T in the polynomial set P representing P = 0.
2. If T is a binomial, write T = c1t1 + c2t2, with the term t1 greater than t2.
3. For any polynomial P ∈ P\{T}, replace every occurrence t1 in P , if any,

with − c2
c1

t2.

Example 2. Take the polynomial set (1) as input, we have
Input: Simplify(

{
x2 + x1, (x2

2 − x2
1 + 2)x3, (x3 + x2)x4 + x3 − 1

}
)

Output: {x2 + x1, 2x3,−x1x4 − 1}
Clearly after the operation the output polynomial set is simpler. However,

with the associated graph of the output polynomial set shown in Fig. 5, one can
find an added edge in red compared with Fig. 2.

132 M. Dong and C. Mou

Fig. 5. Associated graph with one added edge after simplification (Color figure online)

Example 3. When computing regular decomposition of the polynomial system in
Model BM483 in ODEbase database with the function RegSer in the Epsilon pack-
age with the variable ordering x1 < x3 < x6 < x4 < x2 < x5. A triangular set

T = [x1 − 100x3, x2 − 100x4, 100x3x
2
4 − x3x4 − 200x5,

x2
1x4 − x1x4 + 100000x1 − 10000000x3 − 20000x6]

is simplified with Simplify(). With the binomial x1 − 100x3, the substitution
x3 = x1/100 into other polynomials in T results in a new triangular set

T ′ = [x1 −100x3, x2 −100x4, 100x1x
2
4 −x1x4 −20000x5, x

2
1x4 −x1x4 −20000x6].

One can find that the vertices x1 and x5 appear in 100x1x
2
4 − x1x4 − 20000x5

in T ′ now, introducing a new edge (x1, x5) in G(T ′).

4.2 Simplifying a Polynomial System with Binomials

In the process of top-down triangular decomposition, when the handling down
to the variable xk+1 from xn has finished, there are many stored polynomial
systems (P,Q) such that for i = n, . . . , k + 1, the number of polynomials in P
with leading variable xi is at most 1. This means that triangular decomposition
has been done for P down to xk+1. At this point, the polynomials in both
P and Q may be simplified with a simple polynomial T ∈ P if lv(T) ≤ xk.
This operation, formulated as Filter((T ,U), xk) below, is similar to Simplify() in
Sect. 4.1, except that the substitution here is by the other term of the binomial.

Filter((P,Q), xk)
1. Consider each polynomial T in the polynomial set P representing P = 0.
2. If T is a binomial and lv(T) ≤ xk, write T = c1t1 + c2t2, with the term t1

greater than t2.
3. For any polynomial P in P ∪ Q \ {T}, replace every occurrence t2 in P , if

any, with − c1
c2

t1.

Chordality-Preserving Top-Down Algorithms for Triangular Decomposition 133

Example 4. The following example shows that this operation can potentially
destroy the chordality.
Input: Filter(({x4 + x2, x3 + x1 + x2, x

2
4 − x2

2 + x3}, {x1, x2, x4}), x4)
Output: ({x4 + x2, x3 + x1 − x4, x3}, {x1, x4})

One can find that both the equation and inequation sets become simpler
after this operation. The associated graphs of the input and output polynomial
sets are shown in (a) and (b) of Fig. 6 respectively, with the newly added edges
colored in red.

Fig. 6. Associated graph with one added edge after simplification (Color figure online)

4.3 Reducing Inequation Polynomials with a Polynomial
in the Triangular Set

In top-down triangular decomposition, reduction like the pseudo-division and
subresultant (see, e.g., Sects. 1.2–1.3 of [32] for the definitions of these funda-
mental operations in triangular decomposition) is applied to the polynomials
whose leading variables are the one of interest, say xk. After the reduction, only
one polynomial T whose leading variable equals xk is left, and this polynomial T
is an element in the triangular set. Whenever such a polynomial T is found, one
can perform reduction on all the current polynomials in Q representing inequa-
tions Q �= 0 in the decomposition to simplify Q. This operation is formulated as
Reduce(Q, T) below, in which prem(Q,T) computes the pseudo-remainder of Q
with respect to T in lv(T).

Reduce(Q, T)
1. For each Q ∈ Q, replace Q with prem(Q,T).

Example 5. We report our experimental results with the function TriSer applied
to the polynomial system in Model BM335 in ODEbase database, where the
operation Reduce() introduced an extra edge in the process of decomposition.

Figure 7(a) is the associated graph of the input polynomial system in Model
BM335 and it is not chordal. Then chordal completion is applied to it with

134 M. Dong and C. Mou

MCS(), resulting in a chordal graph as (b), with added edges colored in blue,
and the following perfect elimination ordering

x2<x6<x1< x5<x4<x3<x7<x23<x12<x8<x29<x22<x9<x18<x10<x27

<x11<x25<x13<x26<x28<x14<x21<x24 <x17<x16<x20<x19<x15.

Then performing pseudo division of Q = −943230000000000x1x5 −437100x8

in the inequation polynomial set Q by T = x2(101200000000x1x5+403x6) results
in prem(Q,T, x5) = 41317575x2x6 − 4808100x2x8. One can find that in the
resulting graph shown in (c), an edge in red connecting x2 and x8 is added and
it is not included in the chordal graph (b).

Fig. 7. One added edge with reduction on inequation polynomials (Color figure online)

4.4 Reducing a Triangular System with a Polynomial
in the Triangular Set

In top-down triangular decomposition, whenever a triangular system (T ,U) is
constructed, one can simplify it by performing pseudo-division on all the poly-
nomials in T and U by any polynomial in T . This operation is formulated as
ReduceTS((T ,U)) below.

ReduceTS((T ,U))
1. For each polynomial T ∈ T , replace P with prem(P, T) for each

P ∈ T ∪ U \ {T}.

Example 6.
Input: ReduceTS(([x2

2 + x1, x
5
3 − x1, x

10
3 x4 + x2], {x3}))

Output: ([x2
2 + x1, x

5
3 − x1, x

2
1x4 + x2], {x3})

The associated graphs of the input and output polynomial sets are shown in
(a) and (b) of Fig. 8 respectively, with one added edge colored in red.

Chordality-Preserving Top-Down Algorithms for Triangular Decomposition 135

Fig. 8. Associated graph with one added edge after reduction (Color figure online)

4.5 Analysis on the Four Operations

As one can easily find, the occurrences of added edges in the functions in
Sects. 4.1–4.2 are all due to simplification via substitution. It is worth mentioning
that neither algebraic simplification with binomials in Sects. 4.1–4.2 nor reduc-
ing inequation polynomials with a polynomial in the triangular set in Sect. 4.3
appears in the original descriptions of top-down algorithms for triangular decom-
position. These operations are found in the implementations of such algorithms
only for the efficiency consideration. Similarly, reducing a triangular system is
not included in the original descriptions of top-down algorithms for triangular
decomposition either. This operation in the implementation is to make a trian-
gular system perfect, a stronger notion than our target triangular system. To be
short, this operation is for the quality of the output after triangular decomposi-
tion. To conclude, the existences of all these four identified “bad” operations in
the implementations do not affect the correctness of the implementations.

5 Chordality-Preserving Implementations
and Experiments

As analyzed above, all the four identified operations which potentially destroy
the chordal structure in triangular decomposition do not affect the correctness of
the implementations. Then one straightforward method to construct chordality-
preserving implementations of top-down algorithms for triangular decomposition
is merely removing the related codes.

5.1 Removing Chordality-Destroying Operations

Take our modifications to the function RegSer for regular decomposition in Epsilon
package for example. We simply removed related codes of the four chordality-
destroying operations in the implementations, resulting in a new function which
we name RegSerC. Then we tested this new function with the benchmark polyno-
mial systems fromODEbase database to see whether it indeed preserves chordality
and to compare its efficiency against the original RegSer function.

136 M. Dong and C. Mou

The experimental results are summarized in Table 1, and all the experiments
in this paper were carried out on a Macbook Pro laptop with a 2 GHz quad core
i5 CPU and 16 GB 3733 MHz MHz LPDDR4 memory under the operating sys-
tem MacOS Catalina 10.15.5. In this table, the timings (CPU time in seconds),
number of branches in the computed triangular decomposition, and number of
branches with added edges compared with the input chordal graph are recorded
in the columns “Time”, “#Bran”, and “#Edge”, respectively. In particular, the
number “XXX-i” in the column “No.” means that the corresponding ID in the
ODEbase is BIOMD0000000XXX with the ith perfect elimination ordering (the
specific ordering is not provided due to its length) and a dash “—” in the column
“Time” means that the corresponding computation does not finish within 2 h.

From this table, we have the following observations: (1) There is no added
edge reported with the new function RegSerC for all the finished computation,
meaning that (at least) experimentally this function is chordality-preserving;
(2) There are considerable efficiency decreases with this new function against
the original RegSer one, for all tested systems. Take Model BM332 for example,
in total we tested it with 5 perfect elimination orderings: the RegSer function
finishes the computation around 312 s on average, while for 4 out of 5 variable
orderings, the new RegSerC function cannot finish within 2 h. For the remaining
ordering, the computation time with RegSerC is 6.71 times of that with RegSer.

5.2 Further Optimization with Dynamic Checking

Simply removing related codes of chordality-destroying operations can indeed
guarantee that the chordality is preserved but unfortunately it also diminishes
the efficiency of the implementations. This means that algebraic simplification
and reduction are quite effective to improve the computational efficiency. Or in
other words, we should keep as much algebraic simplification and reduction as
possible in the implementations while still preserving the chordality. Following
this strategy we introduce the technique of dynamic checking to test whether
some extra edge will be added if some specific algebraic simplification or reduc-
tion is performed. This test is in fact quite easy: for example, if algebraic simpli-
fication is applied to a polynomial F with a binomial T to have a new polynomial
F ′, then a simple comparison of G(F ′) to the input chordal graph would tell us
whether some extra edge would be added.

As an example, we formulate the technique of dynamic checking with Simplify
in Sect. 4.1. Other algebraic simplification and reduction with dynamic checking
are the same and we omit their formal descriptions.

Chordality-Preserving Top-Down Algorithms for Triangular Decomposition 137

Algorithm 3: Algebraic simplification with dynamic checking
Input: A polynomial set F ⊂ K[x], the input chordal graph G
Output: A polynomial set F ′ ⊂ K[x] after simplification

1 for T ∈ F do
2 if T is a binomial then
3 Write T = c1t1 + c2t2, with the term t1 greater than t2;
4 for F ∈ F \ {T} do
5 F ′ := polynomial obtained by replacing t1 in F by − c2

c1
t2;

6 if G(F ′) ⊆ G then
7 F := F ′;

8 return F ;

Table 1. Experiments with chordality-preserving top-down implementations for regu-
lar decomposition

No. #Var
RegSer RegSerCO RegSerC

Time #Bran #Edge Time #Bran #Edge Time #Bran #Edge
220-1 58 91.73 1728 288 99.99 1728 0 273.55 1728 0
220-2 58 256.41 5184 1944 307.00 5184 0 450.24 5184 0
332-1 78 328.96 2125 985 376.91 2176 0 — — —
332-2 78 248.33 2082 998 272.08 2083 0 — — —
332-3 78 244.08 3130 1692 284.24 3160 0 — — —
332-4 78 215.94 2719 1030 245.37 2719 0 — — —
332-5 78 522.94 3680 1312 642.25 3708 0 2423.99 3732 0
333-1 54 22.82 314 72 25.37 302 0 503.07 319 0
333-2 54 26.52 251 72 28.38 251 0 80.02 299 0
333-3 54 29.85 393 96 35.24 393 0 — —
333-4 54 11.93 197 87 14.45 197 0 75.35 260 0
333-5 54 22.97 269 44 26.04 269 0 151.04 366 0
334-1 74 321.06 2223 117 353.48 2223 0 — — —
334-2 74 235.91 1640 1081 279.44 1640 0 — — —
334-3 74 502.42 3183 1175 544.60 3183 0 — — —
334-4 74 257.60 2313 590 274.76 2313 0 1719.56 2552 0
335-1 34 8.22 262 90 8.22 262 0 14.91 205 0
335-2 34 7.03 256 81 7.86 256 0 12.32 196 0
362 34 14.68 500 165 14.80 500 0 30.36 450 0

431-1 27 5.21 66 21 5.29 67 0 18.11 78 0
431-2 27 3.05 42 7 3.45 42 0 10.07 58 0
475-1 23 5.50 40 8 4.43 38 0 8.10 38 0
475-2 23 2.02 42 6 2.20 42 0 4.14 48 0
478-1 33 5.82 67 20 5.88 80 0 9.24 80 0
478-2 33 1.30 34 7 1.44 34 0 1.64 34 0
504-1 75 83.15 142 142 94.04 240 0 2055.42 586 0
504-2 75 112.63 295 284 119.07 319 0 1972.26 2778 0
599-1 30 40.54 46 36 39.75 46 0 — — —
599-2 30 — — — — — — — — —
599-3 30 30.60 50 30 31.07 50 0 — — —

138 M. Dong and C. Mou

Denote by RegSerCO the new function integrated with algebraic simplifica-
tion and reduction with dynamic checking. We experimented with RegSerCO
with the same polynomial systems, comparing with RegSer and RegSerC, and
the experimental results are recorded in Table 1 too. It can be seen that this
new function RegSerCO also preserves the chordal structure in the process of tri-
angular decomposition as RegSerC, at the same time, the efficiency loss is under
control compared with RegSer: the computation time with RegSerCO is about
1.15 times on average of that with RegSer.

5.3 Chordality-Preserving Implementations for SimSer and TriSer
Functions

We did similar modifications to the two functions SimSer and TriSer in the Epsilon
package by introducing algebraic simplification and reduction with dynamic

Table 2. Experiments with chordality-preserving top-down implementations for simple
decomposition

SimSer SimSerCO

No. Time #Bran #Edge Time #Bran #Edge

220-1 141.06 2016 228 152.78 2016 0

220-2 329.39 6048 2160 395.78 6048 0

332-1 262.13 2082 998 303.69 2083 0

332-2 321.88 3628 2068 405.18 3590 0

333-1 23.53 314 72 24.04 302 0

333-2 27.52 251 83 27.52 251 0

333-3 42.63 450 118 47.25 450 0

333-4 15.98 218 89 18.36 218 0

333-5 31.86 283 54 36.22 283 0

335-1 7.97 262 90 8.85 262 0

335-2 8.03 256 81 8.05 256 0

362-1 26.56 635 213 26.83 636 0

362-2 23.67 874 442 26.64 861 0

362-3 21.99 602 209 22.97 602 0

431-1 7.30 74 23 7.35 72 0

431-2 3.31 45 9 3.26 45 0

431-3 2.76 28 11 2.89 28 0

475-1 5.25 38 4 5.03 36 0

475-2 4.86 42 6 2.86 42 0

475-3 3.94 72 24 4.62 74 0

475-4 2.36 42 18 2.61 42 0

478-1 7.62 97 22 8.00 110 0

478-2 1.64 43 8 1.72 43 0

478-3 1.60 40 0 1.76 40 0

Chordality-Preserving Top-Down Algorithms for Triangular Decomposition 139

checking to have two new functions SimSerCO and TriSerCO respectively. The
results of our experiments with these two new functions are recorded in Tables 2
and 3, respectively.

It can be seen that both these two new functions SimSerCO and TriSerCO
preserve the chordality of the input polynomial systems and keep the same level
of efficiency compared with the original functions: computation with SimSerCO
is 1.17 times on average of that with SimSer (slightly slower), and computation
with TriSer is 0.94 times on average of that with TriSer (slightly faster).

Table 3. Experiments with chordality-preserving top-down implementations for trian-
gular decomposition

TriSer TriSerCO

No. Time #Bran #Edge Time #Bran #Edge

220-1 1710.22 1728 288 1566.92 1728 0

220-2 — — — — — —

332-1 4193.24 1902 977 3948.40 1883 0

332-2 — — — — — —

333-1 48.01 248 72 48.86 236 0

333-2 46.20 241 74 49.54 178 0

333-3 99.65 343 84 105.40 343 0

333-4 19.61 162 85 24.64 162 0

333-5 37.62 196 44 41.06 196 0

335-1 19.57 245 102 20.00 245 0

335-2 17.89 244 81 19.38 244 0

362-1 52.49 393 158 54.59 394 0

362-2 69.67 483 225 71.99 448 0

362-3 49.82 392 163 58.70 389 0

431-1 8.33 64 26 8.78 55 0

431-2 3.47 41 7 3.85 41 0

431-3 2.81 28 12 2.74 26 0

475-1 4.86 40 8 4.54 38 0

475-2 2.24 42 6 2.42 42 0

475-3 3.84 54 26 4.37 54 0

475-4 1.74 42 18 2.09 42 0

478-1 4.86 40 8 4.54 38 0

478-2 2.24 42 6 2.42 42 0

478-3 2.20 38 0 2.13 38 0

140 M. Dong and C. Mou

6 Concluding Remarks and Future Work

In our experiments with sparse triangular decomposition, instances are found
such that existing implementations of top-down triangular decomposition
destroy the chordal structure of the input polynomial system, which is incon-
sistent with the proved theoretical results of the chordality-preserving property
of such algorithms. The main contribution of this paper is the real chordality-
preserving implementations of top-down triangular decomposition based on the
Epsilon package, and they are, to our best knowledge, the first chordality-
preserving ones for this kind of triangular decomposition. In order to achieve
this, we first analyze the current implementations in the Epsilon package to iden-
tify four chordality-destroying operations. Corresponding modifications to these
four operations with dynamic checking lead to chordality-preserving implemen-
tations. Experimental results with polynomial sets from biological systems show
that these implementations are indeed chordality-preserving and their efficiency
is comparable to original implementations.

In the future, more implementations for top-down triangular decomposition,
like those for irreducible decomposition in which factorization over algebraic
field extensions is essential, are planned to be investigated and further trans-
formed into chordality-preserving ones. Furthermore, since the choice of a spe-
cific perfect elimination ordering also influences the computational efficiency of
sparse triangular decomposition, we also plan to study the underlying reasons
for the influence.

Acknowledgments. The authors would like to thank Prof. Dongming Wang for his
insightful comments on the implementations in Epsilon package and the referees for their
helpful comments resulting in improvements on the previous version of this paper.

References

1. Aubry, P., Lazard, D., Moreno Maza, M.: On the theories of triangular sets. J.
Symb. Comput. 28(1–2), 105–124 (1999)

2. Aubry, P., Moreno Maza, M.: Triangular sets for solving polynomial systems: a
comparative implementation of four methods. J. Symb. Comput. 28(1), 125–154
(1999)

3. Bächler, T., Gerdt, V., Lange-Hegermann, M., Robertz, D.: Algorithmic Thomas
decomposition of algebraic and differential systems. J. Symb. Comput. 47(10),
1233–1266 (2012)

4. Berry, A., Blair, J., Heggernes, P., Peyton, B.: Maximum cardinality search for
computing minimal triangulations of graphs. Algorithmica 39(4), 287–298 (2004)

5. Chai, F., Gao, X.S., Yuan, C.: A characteristic set method for solving Boolean
equations and applications in cryptanalysis of stream ciphers. J. Syst. Sci. Com-
plex. 21(2), 191–208 (2008)

6. Chen, C.: Chordality preserving incremental triangular decomposition and its
implementation. In: Bigatti, A.M., Carette, J., Davenport, J.H., Joswig, M., de
Wolff, T. (eds.) ICMS 2020. LNCS, vol. 12097, pp. 27–36. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-52200-1 3

https://doi.org/10.1007/978-3-030-52200-1_3

Chordality-Preserving Top-Down Algorithms for Triangular Decomposition 141

7. Chen, C., Golubitsky, O., Lemaire, F., Moreno Maza, M., Pan, W.: Comprehensive
triangular decomposition. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.)
CASC 2007. LNCS, vol. 4770, pp. 73–101. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-75187-8 7

8. Chen, C., Moreno Maza, M.: Algorithms for computing triangular decompositions
of polynomial systems. J. Symb. Comput. 47(6), 610–642 (2012)

9. Chou, S.-C., Gao, X.-S.: Ritt-Wu’s decomposition algorithm and geometry theorem
proving. In: Stickel, M.E. (ed.) CADE 1990. LNCS, vol. 449, pp. 207–220. Springer,
Heidelberg (1990). https://doi.org/10.1007/3-540-52885-7 89

10. Cifuentes, D., Parrilo, P.: Chordal networks of polynomial ideals. SIAM J. Appl.
Algebra Geom. 1(1), 73–110 (2017)

11. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction
to Computational Algebraic Geometry and Commutative Algebra. Undergraduate
Texts in Mathematics, Springer, New York (1997). https://doi.org/10.1007/978-
3-319-16721-3

12. Della Dora, J., Dicrescenzo, C., Duval, D.: About a new method for computing in
algebraic number fields. In: Caviness, B.F. (ed.) EUROCAL 1985. LNCS, vol. 204,
pp. 289–290. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-15984-
3 279

13. Gao, X.S., Huang, Z.: Characteristic set algorithms for equation solving in finite
fields. J. Symb. Comput. 47(6), 655–679 (2012)

14. Greuel, G.M., Pfister, G., Bachmann, O., Lossen, C., Schönemann, H.: A Singular
Introduction to Commutative Algebra. Springer, Heidelberg (2002). https://doi.
org/10.1007/978-3-662-04963-1

15. Huang, Z., Lin, D.: Attacking bivium and trivium with the characteristic set
method. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol.
6737, pp. 77–91. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
21969-6 5

16. Hubert, E.: Notes on triangular sets and triangulation-decomposition algorithms
I: polynomial systems. In: Winkler, F., Langer, U. (eds.) SNSC 2001. LNCS, vol.
2630, pp. 1–39. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45084-
X 1

17. Kalkbrener, M.: A generalized Euclidean algorithm for computing triangular rep-
resentations of algebraic varieties. J. Symb. Comput. 15(2), 143–167 (1993)

18. Lazard, D.: A new method for solving algebraic systems of positive dimension.
Discret. Appl. Math. 33(1–3), 147–160 (1991)

19. Lazard, D.: Solving zero-dimensional algebraic systems. J. Symb. Comput. 13(2),
117–131 (1992)

20. Lemaire, F., Moreno Maza, M., Xie, Y.: The RegularChains library in MAPLE.
ACM SIGSAM Bull. 39(3), 96–97 (2005)

21. Li, H., Xia, B., Zhang, H., Zheng, T.: Choosing the variable ordering for cylindrical
algebraic decomposition via exploiting chordal structure. In: Proceedings of ISSAC
2021, pp. 281–288 (2021)

22. Mou, C., Bai, Y.: On the chordality of polynomial sets in triangular decomposition
in top-down style. In: Proceedings ISSAC 2018, pp. 287–294 (2018)

23. Mou, C., Bai, Y., Lai, J.: Chordal graphs in triangular decomposition in top-down
style. J. Symb. Comput. 102, 108–131 (2021)

24. Mou, C., Ju, W.: Sparse triangular decomposition for computing equilibria of bio-
logical dynamic systems based on chordal graphs. In: IEEE/ACM Transactions
Computational Biology and Bioinformatics (2022)

https://doi.org/10.1007/978-3-540-75187-8_7
https://doi.org/10.1007/978-3-540-75187-8_7
https://doi.org/10.1007/3-540-52885-7_89
https://doi.org/10.1007/978-3-319-16721-3
https://doi.org/10.1007/978-3-319-16721-3
https://doi.org/10.1007/3-540-15984-3_279
https://doi.org/10.1007/3-540-15984-3_279
https://doi.org/10.1007/978-3-662-04963-1
https://doi.org/10.1007/978-3-662-04963-1
https://doi.org/10.1007/978-3-642-21969-6_5
https://doi.org/10.1007/978-3-642-21969-6_5
https://doi.org/10.1007/3-540-45084-X_1
https://doi.org/10.1007/3-540-45084-X_1

142 M. Dong and C. Mou

25. Mou, C., Lai, J.: On the chordality of simple decomposition in top-down style. In:
Slamanig, D., Tsigaridas, E., Zafeirakopoulos, Z. (eds.) MACIS 2019. LNCS, vol.
11989, pp. 138–152. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
43120-4 12

26. Mou, C., Wang, D., Li, X.: Decomposing polynomial sets into simple sets over finite
fields: the positive-dimensional case. Theoret. Comput. Sci. 468, 102–113 (2013)

27. Niu, W., Wang, D.: Algebraic approaches to stability analysis of biological systems.
Math. Comput. Sci. 1(3), 507–539 (2008)

28. Ritt, J.: Differential Equations from the Algebraic Standpoint. AMS (1932)
29. Ritt, J.: Differential Algebra. AMS (1950)
30. Wang, D.: An elimination method for polynomial systems. J. Symb. Comput.

16(2), 83–114 (1993)
31. Wang, D.: Decomposing polynomial systems into simple systems. J. Symb. Com-

put. 25(3), 295–314 (1998)
32. Wang, D.: Elimination Methods. Texts and Monographs in Symbolic Computation,

Springer Science & Business Media, New York (2001). https://doi.org/10.1007/
978-3-7091-6202-6

33. Wang, D.: Epsilon: A library of software tools for polynomial elimination. In: Math-
ematical Software, pp. 379–389. World Scientific (2002)

34. Wang, D.: wsolve: A Maple package for solving system of polynomial equations
(2004). http://www.mmrc.iss.ac.cn

35. Wang, D., Xia, B.: Stability analysis of biological systems with real solution clas-
sification. In: Proceedings of ISSAC 2005, pp. 354–361 (2005)

36. Wu, W.T.: Basic principles of mechanical theorem proving in elementary geome-
tries. J. Autom. Reason. 2(3), 221–252 (1986)

37. Wu, W.T.: A zero structure theorem for polynomial-equations-solving and its appli-
cations. In: Davenport, J.H. (ed.) EUROCAL 1987. LNCS, vol. 378, pp. 44–44.
Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51517-8 84

38. Yang, L., Zhang, J.: Searching dependency between algebraic equations: an algo-
rithm applied to automated reasoning. In: Artificial Intelligence in Mathematics,
pp. 147–156 (1994)

https://doi.org/10.1007/978-3-030-43120-4_12
https://doi.org/10.1007/978-3-030-43120-4_12
https://doi.org/10.1007/978-3-7091-6202-6
https://doi.org/10.1007/978-3-7091-6202-6
http://www.mmrc.iss.ac.cn
https://doi.org/10.1007/3-540-51517-8_84

	Analyses and Implementations of Chordality-Preserving Top-Down Algorithms for Triangular Decomposition
	1 Introduction
	2 Preliminaries
	2.1 Triangular Set and Triangular Decomposition
	2.2 Sparse Triangular Decomposition Based on Chordal Graphs

	3 Chordality in Top-Down Triangular Decomposition
	4 When is the Chordality Destroyed?
	4.1 Simplifying a Polynomial Set with Its Binomials
	4.2 Simplifying a Polynomial System with Binomials
	4.3 Reducing Inequation Polynomials with a Polynomial in the Triangular Set
	4.4 Reducing a Triangular System with a Polynomial in the Triangular Set
	4.5 Analysis on the Four Operations

	5 Chordality-Preserving Implementations and Experiments
	5.1 Removing Chordality-Destroying Operations
	5.2 Further Optimization with Dynamic Checking
	5.3 Chordality-Preserving Implementations for SimSer and TriSer Functions

	6 Concluding Remarks and Future Work
	References

