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Abstract. We developed a symbolic–numeric algorithm involving a set
of effective symbolic and numerical procedures for calculations of low
lying energy spectra and eigenfunctions of atomic nuclei. The eigenfunc-
tions are expanded over the orthonormal noncanonical U(5)⊃O(5)⊃O(3)
basis in Geometric Collective Model. We give implementation of the algo-
rithm and procedures in Wolfram Mathematica. We present benchmark
calculations of energy spectrum, quadrupole moment and the reduced
upwards transition probability B(E2) for the nucleus 186Os.
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1 Introduction

The Bohr–Mottelson (B-M) collective model [2,3] has gained widespread accep-
tance in calculations of vibrational-rotational quadrupole spectra and electro-
magnetic transitions in atomic nuclei [4,8,17]. Among others it was applied for
such nuclei as: uranium [14], Pt, Os and W isotopes [15]. Some results were also
obtained for the super-heavy deformed nuclei [12] where a fit of microscopically
derived potential energy surfaces proposed in [9,21–23] has been performed with
the help of numerical (FORTRAN) application of the geometric collective model
(GCM) [13,20].

Key problems in such numerical large-scale calculations of spectral charac-
teristics of the GCM with the octahedral Oh point symmetry as well as the
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general Bohr Hamiltonian [18,19] are round-off errors appearing in calculation
of high-power polynomials. These polynomials with alternating coefficients and
strong numerical cancellations are observed in the Gram–Schmidt orthonormal-
ization of the nonorthogonal set of basis eigenfunctions that we investigated
in [7] using both integer and floating point arithmetics implemented in Wolfram
Mathematica [25].

In the present paper, we propose some development of effective symbolic pro-
cedures for calculations of the spectral characteristic of atomic nuclei in GCM.
We give the implementation of the developed procedures in Wolfram Mathe-
matica and performance of benchmark calculations. We analyze round-off errors
in calculation of high-power polynomials with alternating coefficients. We show
that strong cancellation in Gram–Schmidt orthonormalization usually pose seri-
ous problems in numerical calculations [7,14,15,20,26,27].

The structure of the paper is following. In Sect. 2, we describe the statement
of the problem separated into subsections corresponding to procedures (subrou-
tines) involving the GCM code. We give the benchmark examples of their execu-
tion summing up them in the Tables that show computer memory and execution
time with respect to ranges of the quantum numbers involved in the runs: con-
struction of GCM Hamiltonian, construction of orthonormal U(5)⊃O(5)⊃O(3)
basis, calculation of β- and γ-dependent matrix elements, and composition of
Hamiltonian matrices of algebraic eigenvalue problem. In Sect. 3, benchmark
calculations of energy spectrum, quadrupole moment and the reduced upwards
transition probability B(E2) for 186Os are presented. Finally, in Sect. 4, the sum-
mary of main results and conclusions are given. In Appendices A and B, the sets
of input parameters for atomic nuclei and boundary value problem for GCM
model are presented.

The CPU times of the benchmark calculations give required estimates for
choosing appropriate versions of the presented symbolic-numeric algorithms and
programs. The computations were performed with Wolfram Mathematica 10.1
on PC Intel i7-36030QM, CPU 2.40 GHz, RAM 8 GB, 64-bit Windows 8.

2 The Statement of the Problem and Subroutines

Hamiltonian. The classical nuclear collective Hamiltonian constructed in the so
called laboratory frame has the general form [20]

Ĥ = T̂ (π, α) + V̂ (α). (1)

Quantum description of the collective motions in GCM is performed by using
the quadrupole deformation coordinates, α̂[2] = α2m,m = −2,−1, 0, 1, 2, and the
corresponding conjugate momenta, π̂[2] = π2m,m = −2,−1, 0, 1, 2, subjected to
commutation relations [π̂[2]

m , α̂
[2]
m′ ] = −ı�δmm′ . The kinetic energy is constructed

to contain the two lowest-order terms proportional to the square of the momenta
determined in a nonstandard form accepted in [20]:

T̂ =
1

B2
[π̂ × π̂][0] +

P3

3

{[
[π̂ × α̂][2] × π̂

][0]}
, (2)
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where {. . .} means the sum over all permutations, and B2 and P3 are kinetic-
energy parameters. For such nonstandard definition of the parameter B2 with
respect to standard one (see Eq. (2)), it will be multiplied by factor 2/

√
5. So,

in the practice of GCM calculations, the rescaled parameter B̄2 = 2B2/
√

5 is
really used. The tensor product of spherical tensors A[l1] and B[l2] is defined as

[A[l1] ⊗ B[l2]][l] =
∑

m1,m2

(l1m1l2m2|lm)A[l1]
m1

B[l2]
m2

,

where (l1m1l2m2|lm) are SO(3) Clebsch–Gordan coefficients [24]. All terms in
the Hamiltonian are coupled to angular momentum 0, i.e., to rotational scalars.

Potential Energy. For the potential energy we use a polynomial expansion up
to the sixth order in the deformation variables β and γ specified by the intrinsic
deformation coordinates â[2] = a2m′ . The intrinsic frame is defined as coinciding
to principal axes of the nucleus. It is determined by a set of three Euler angles
Ω ∈ S3(Ω) and new deformation variable α2m =

∑
m′ D2∗

mm′(Ω)a2m′ , where
D2∗

mm′(Ω) denotes the Wigner functions of irreducible representations of SO(3)
group [24] (marker ∗ denotes the complex conjugate operation). The choice of
principal axes requires the following constraints: a2−2 = a22, a2−1 = a21 = 0.
The β and γ variables are defined as: a20 = β cos γ, a22 = (1/

√
2)β sin γ. The

potential energy is assumed in the following form:

V̂ (β, γ) =
6∑

ρ=2

2∑
m=0

βρ cosm(3γ)V̂ρ,m, (3)

where potential parameters V̂ρ,m read as:

V̂2,0 = C2
1√
5
; V̂3,1 = −C3

√
2
35 ; V̂4,0 = C4

1
5 ;

V̂5,1 = −C5

√
2

175 ; V̂6,2 = C6
2
35 ; V̂6,0 = D6

1
5
√
5
.

(4)

Introducing these parameters the potential V̂ (β, γ) takes the form

V̂ (β, γ) = C2
1√
5
β2 − C3

√
2
35β3 cos(3γ) + C4

1
5β4

−C5

√
2

175β5 cos(3γ) + C6
2
35β6 cos2(3γ) + D6

1
5
√
5
β6.

(5)

For practical reason, we rescale V̂ρ,m to Vρ,m in oscillator units of length with
respect to the β variable using basis parameters of mass B′

2 and stiffness C ′
2:

V (β, γ) =
6∑

ρ=2

2∑
m=0

βρ cosm(3γ)Vρ,m, Vρ,m = V̂ρ,m ×
(

�√
B′

2C
′
2

)ρ/2

. (6)

Basis States and a Range of the Set of Quantum Numbers. We choose as basic
functions the eigenfunctions of the five-dimensional harmonic oscillator

Ĥ5 =
√

5
2B′

2

[π̂ × π̂][0] +
√

5C ′
2

2
[α̂ × α̂][0]. (7)
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Table 1. The degeneracy dλL = μmax − μmin + 1 for a number of L and λ. The first
row of the table is formed by the values of λ and the first column of the table is
formed by the values of the angular momentum L. The next columns in non empty
square contains the degeneracy dλL depending on accessible values of momentum L
and seniority λ.

L, λ 5 10 15 20 25 30 35 40 45 50

0 1 1 1

2 1 1 1 1 1 1 1

5 1 1 1 1 1 1 1

10 1 2 2 2 2 2 2 2 2 2

15 1 3 2 2 3 2 2 3 2

20 1 2 4 4 3 4 4 3 4

25 1 3 4 4 4 4 4 4

30 1 2 4 6 5 5 6 5

35 1 3 4 6 6 5 6

Table 2. The example of calculations of the total number of states defined by quantum
numbers νλ for a number of L up to the specified value of the νmax. The first row of
the table is formed by the values of νmax and the first column of the table is formed by
the value of the angular momentum L. The next columns contains the total number of
states for corresponding values of L and νmax.

L, νmax 5 10 15 20 25 30 35 40 45 50

0 5 14 27 44 65 91 120 154 192 234

2 7 22 45 77 117 165 222 287 360 442

5 2 12 30 57 92 135 187 247 315 392

10 1 12 36 72 121 182 256 342 441 552

15 0 2 16 42 81 132 196 272 361 462

20 0 1 12 36 72 121 182 256 342 441

25 0 0 2 16 42 81 132 196 272 361

30 0 0 1 12 36 72 121 182 256 342

35 0 0 0 2 16 42 81 132 196 272

The basis states can be characterized by irreducible representations of the
U(5) ⊃O(5) ⊃O(3)⊃O(2) chain of groups [7]:

– ν is the number of phonons,
– λ is the number of phonons that are not coupled pairwise to zero (seniority),
– L and M are the numbers of the angular momentum and its projection,
– μ is the additional quantum number, denoting the maximal number of phonon

triplets coupled to the angular momentum L = 0 and counting degenerated
states for L ≥ 6:

ν = 0, 1, 2, . . . , νmax, λ = ν, ν−2, . . . , 1 or 0, μ = μmin, μmin+1, . . . , μmax.
(8)
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Here νmax is some chosen as the maximum number of phonons. The range of μ
(i.e., μmin and μmax) for given λ and L is determined by inequalities:

L/2 ≤ λ − 3μ ≤ L, L = even, (L + 3)/2 ≤ λ − 3μ ≤ L, L = odd. (9)

The solution of inequalities Eqs. (9) gives a range of accessible values of μ at
given accessible λ and L:

μmin = max
(
0, Ceiling

(
λ−L
3

))
, μmax = Floor

(
λ−(L+3(L mod 2))/2

3

)
, (10)

where Ceiling(μ) is the lowest integer but not lower than μ and Floor(μ) is
the largest integer not greater than μ.

2.1 The Representation of the Wave Functions in Coordinate Space

The five-dimensional equation of the B-M collective model (7) in the intrinsic
frame β ∈ R1

+ and γ,Ω ∈ S4 with respect to Ψ int
νλμLM ∈ L2(R1

+

⊗
S4) with the

measure dτ = β4 sin(3γ)dβdγdΩ reads as

{H(BM)−EBM
ν }Ψ int

νλμLM = 0, H(BM) =
�
2

2B′
2

(

− 1

β4

∂

∂β
β4 ∂

∂β
+

Λ̂2

β2

)

+
C′

2

2
β2. (11)

Here EBM
ν ≡ EL

ν = �ω′
2(ν + 5

2 ) are the eigenvalues of the five-dimensional har-
monic oscillator, ω′

2 =
√

C ′
2/B′

2 is the oscillation frequency, � is Planck constant,
Λ̂2 is the quadratic Casimir operator of O(5) in L2(S4(γ,Ω)) at nonnegative
integers ν = 2nβ + λ, i.e., at even and nonnegative integers ν − λ determined as

(Λ̂2−λ(λ+3))Ψ int
νλμLM = 0, Λ̂2 = − 1

sin(3γ)

∂

∂γ
sin(3γ)

∂

∂γ
+

3∑

k=1

( ˆ̄Lk)2

4 sin2(γ− 2
3
kπ)

, (12)

where the nonnegative integer λ is the seniority (8) and ( ˆ̄Lk)2 are the angular
momentum operators of O(3) along the principal axes in intrinsic frame, i.e.,
with commutator [ ˆ̄Li,

ˆ̄Lj ] = −ıεijk
ˆ̄Lk [7].

Eigenfunctions |νλμLM〉 of the five-dimensional oscillator (7) in the intrinsic
frame (11) have the form

Ψ int
νλμLM (β, γ,Ω) = 〈βγΩ|νλμLM〉 =

∑
K(even)

Φint
νλμLK(β, γ)D(L)∗

MK (Ω), (13)

where D(L)∗
MK (Ω) are the orthonormal Wigner functions with measure dΩ,

D(L)∗
MK (Ω) =

√
2L + 1

8π2

D
(L)∗
MK (Ω)+(−1)LD

(L)∗
M,−K(Ω)

1+δK0
; (14)
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summation over K runs even values K in range:

K = 0, 2, . . . , L for even integer L : 0 ≤ L ≤ Lmax, (15)
K = 2, . . . , L − 1 for odd integer L : 3 ≤ L ≤ Lmax.

Φint
νλμLK(β, γ) are the nonorthogonal components with overlap 〈φ̂λμ′L(γ)|φ̂λμL(γ)〉

Φint
νλμLK(β, γ) = Cλμ

L Fνλ(β)φ̂λμL
K (γ), (16)

determined by (17), (18) and normalization factor Cλμ
L = (〈φ̂λμL(γ)|

φ̂λμL(γ)〉)−1/2.

2.2 γ-Dependent Part of the Basis States

The components φ̂λμL
K (γ) = (−1)Lφ̂λμL

−K (γ) for even K and φ̂λμL
K (γ) = 0 for

odd L and K = 0 as well as for odd K are determined below according to
papers [5,6,17,26]. It should be noted that for these components, L �= 1, |K| ≤ L
for L = even and |K| ≤ L − 1 for L = odd:

φ̂
λμL
K (γ) =

nmax∑

n=0

F
στμ
nλL(γ)

[
G

nL
|K|(γ)δL,even + Ḡ

nL
|K|(γ)δL,odd

]
; (17)

K = Kmin, Kmin+2, . . . , Kmax; Kmin =

{
0, L = even,
2, L = odd;

Kmax =

{
L, L = even,
L−1, L = odd;

nmax =

{
L/2, L = even,
(L−3)/2, L = odd;

δL,even =

{
1, L = even,
0, L = odd;

δL,odd =

{
0, L = even,
1, L = odd;

where L/2 ≤ λ−3μ ≤ L for L = even, and (L+3)/2 ≤ λ−3μ ≤ L for L = odd;

2.3 Wave Function for γ Degree of Freedom φ̂λμL
K (γ)

Components ḠnL
K (γ), GnL

K (γ) and F στμ
nλL(γ) in Eq. (17) are calculated by

Ḡ
nL
K (γ) =

L−3∑

k=3−L,2

〈L − 3, 3, k, K − k|LK〉GnL−3
|k| (γ) sin 3γ(δK−k,2 − δK−k,−2);

G
nL
K (γ) = (−

√
2)

n
L−2n∑

k=2n−L,2

〈L − 2n, 2n, k, K − k|LK〉S(L−2n)/2
|k| (γ)S

n
|K−k|(−2γ);

S
r
K(γ) =

[
(2r+K)!(2r−K)!

(4r)!

]1/2

(
√
6)

r
r!

[r/2+K/4]∑

q=K/2

(
1

2
√
3

)2q−K/2

× 1

(r − 2q + K/2)!(q − K/2)!q!
(cos γ)

r+K/2−2q
(sin γ)

2q−K/2
;

F
στμ
nλL(γ) = (−1)

μ+τ−n
2

−n/2
[(μ+τ−n)/2]∑

r=0

C
στμ
rnλL2

−r
(cos 3γ)

μ+τ−n−2r
;

C
στμ
rnλL =

3nσ!λ!(−1)r2r(2μ + 2τ − 2r + δL,odd)!(3r)!

2μ+nn!(2λ + 1)!r!(μ + τ − r)!(μ + τ − n − 2r)!

×
min(σ,λ,3r−τ+n)∑

s=max(n−τ,0)

(−1)s4s(τ + s)!(2λ + 1 − 2s)!

s!(σ − s)!(τ − n + s)!(3r − τ + n − s)!(λ − s)!
,

where Sr
K(γ) is taken to be equal 0, if sin γ = 0 or cos γ = 0, F στμ

nλL(γ) is taken
to be equal 0, if cos 3γ = 0, Cστμ

rnλL is taken to be equal 0, if μ + τ − n − 2r < 0.
It has been implemented in Ref. [7].
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2.4 Gram–Schmidt Orthogonalization of the Functions φ̂λμL
K (γ)

Using implementation [7] of orthogonalization of the functions φ̂λμL
K (γ) with the

Gram–Schmidt method the reduced overlap (a scalar product with integration
over γ) is required

〈φ̂λμ′L(γ)|φ̂λμL(γ)〉 =
∫ π

0

dγ sin(3γ)
Kmax∑

K=Kmin,2

2φ̂λμ′L
K (γ)φ̂λμL

K (γ)
1 + δK,0

. (18)

It should be noted that the definition of the reduced overlap integral (18) will be
the same for original φ̂λμL(γ) as well as for orthogonalized functions φλμL

K (γ).
The degeneracy labelled by μ for the nuclear calculations is small in relevant

cases as presented in Table 1, therefore, the original Gram–Schmidt method may
be adopted to orthogonalize the functions φ̂λμL

K (γ). For large μ, the modified
Gram–Schmidt methods will be applied [7].

Application of the Gram–Schmidt method gives the orthogonalized functions

φλμL
K (γ) = φ̂λμL

K (γ) −
μ−1∑

μ′=μmin

φλμ′L
K (γ)

〈φλμ′L(γ)|φ̂λμL(γ)〉
〈φλμ′L(γ)|φλμ′L(γ)〉 . (19)

This procedure should be applied for all available indexes μ in boundaries
given in Eq. (10) and indexes K in boundaries given in Eq. (17).

As produced by the procedure outlined in Eq. (19), the wave functions
φλμL

K (γ) are trigonometric polynomials of sin(γ) and cos(γ). For the algebraic
integration over the variable γ, it is then sufficient to expand the sin(3γ) and
the additional cos(3γ) and to implement the following three definite integrals:

∫ π

0

sin2m(γ)dγ =
(2m−1)!!

2mm!
π,

∫ π

0

sin2m+1(γ)dγ =
2m+1m!

(2m+1)!!
,

∫ π

0

sinm(γ) cos(γ)dγ = 0,

for any integer m. For example, the normalization integral for L = 0, λ = 27
and μ = 9 is equal to 2

57 and shows less than 0.001 sec. computation time on
Mathematica. At the same time, direct symbolic integration of this normalization
integral takes 436.781 s.

2.5 The Normalized Components F λ
nβ

(β)

The normalized components Fλ
nβ

(β) with the number of nodes nβ = (ν − λ)/2,
adapted for calculations of rescaled matrix elements V (β, γ) from (6), read as

Fλ
nβ

(β) =

√
2nβ !

Γ
(
nβ + λ + 5

2

)βλ exp
(
−1

2
β2

)
L

λ+ 3
2

nβ (β2), (20)

where L
λ+ 3

2
nβ (β2) is the associated Laguerre polynomial [1].



110 A. Deveikis et al.

Table 3. The example of calculations of the matrix elements (27) for a number of L
and fixed νmax = 30. The columns of the table are formed by the value of the angular
momentum L, the total number of states {νλμ} defined by quantum numbers νλμ,
the total number of states {λμ} defined by quantum numbers λμ, the total number
#MeT of matrix elements (27) in upper triangles of their matrices with m = 1, 2, the
number #MeN of nonzero matrix elements among #MeT that are given by Eq. (28),
the cumulative number #MeZ of angular matrix elements that are calculated equal to
0 among #MeN matrix elements, the maximum memory in MB used to store interme-
diate data for the current Mathematica session in computation of the overlap integrals,
and the CPU time.

L {νλμ} {λμ} #MeT #MeN #MeZ memory CPU time

0 91 11 132 30 0 0 MB 0.17 s

6 271 37 1406 266 15 3.48 MB 4.09 s

10 326 49 2450 495 80 4.18 MB 28.33 s

15 259 47 2256 534 109 4.45 MB 45.47 s

20 305 62 3906 1010 322 6.26 MB 2.60 min

25 193 50 2550 788 227 6.06 MB 3.08 min

30 174 51 2652 853 138 7.75 MB 5.07 min

In Table 2, we present an example of calculations of the number of func-
tions (20) for a number of L up to the specified value of the νmax under con-
dition (9). The presented results show the general tendency: with larger ν, the
number of states increases and the calculations involve larger L. If we require
larger L the number ν has to be sufficiently large.

2.6 Hamiltonian Matrix Elements and Algebraic Eigenvalue
Problem

For the calculation of the matrix elements of the kinetic energy T the gradient
formula [11] is applied taking into account the rescaled parameter B̄2 = 2B2/

√
5:

TL
ν′λ′μ′,νλμ = (−1)

|ν′−ν|
2

1
2

�

√
B′

2C
′
2

1
B̄2

〈ν′λ′|β2|νλ〉δλ′,λδμ′,μ (21)

−
√

2
35

�
3
2 (B′

2C
′
2)

1
4
P3

3
〈ν′λ′|β3|νλ〉〈λ′μ′L| cos(3γ)|λμL〉 (

δ|ν′−ν|,1 − 3δ|ν′−ν|,3
)
.

The potential energy matrix elements V read as

V L
ν′λ′μ′,νλμ =

6∑
ρ=2

2∑
m=0

Vρ,m〈ν′λ′|βρ|νλ〉〈λ′μ′L| cosm(3γ)|λμL〉. (22)

Matrix elements of the quantum Hamiltonian (1) read as

HL
ν′λ′μ′,νλμ = TL

ν′λ′μ′,νλμ + V L
ν′λ′μ′,νλμ. (23)
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The eigenvalues EL
n and the eigenfunctions ΨL

n of the quantum Hamiltonian
H = T + V (1) are calculated by solving the Schrödinger equation

(H − EL
n )ΨL

n = 0. (24)

We seek eigenfunctions ΨL
n of Hamiltonian (1) in the form of expansion over the

basis functions Ψ int
νλμ(β, γ,Ω) (13)

ΨL
n (β, γ,Ω) =

∑
νλμ

Ψ int
νλμ(β, γ,Ω)Dνλμ,n(L). (25)

Eigenenergies EL
n are calculated as an algebraic eigenvalue problem

∑
νλμ

(HL
ν′λ′μ′,νλμ − δν′νδλ′λδμ′μEL

n )Dνλμ,n(L) = 0. (26)

Here Dνλμ,n(L) is the eigenvector of Hamiltonian (23) for the n′th state with the
angular momentum L. In Eq. (26), indices ν, λ and μ enumerate the total basis.
The total number of different collections of (ν, λ and μ) for given L, and up
to given νmax is the total dimension of the basis. These values are presented in
Tables 3, 4, and 7. In Table 7, Dim is this total number of different (ν, λ and μ) for
listed L and up to given νmax = 30, i.e., the dimension of the Hamiltonian matrix.

2.7 Matrix Elements 〈λ′μ′L| cosm (3γ)|λμL〉
For computation of potential energy matrix elements the matrix elements of
powers m = 0, 1, 2 of cos(3γ) should be evaluated, that are defined as

〈λ′μ′L| cosm(3γ)|λμL〉 =
1√

〈φλ′μ′L(γ)|φλ′μ′L(γ)〉〈φλμL(γ)|φλμL(γ)〉

×
∫ π

0

dγ sin(3γ) cosm(3γ)
Kmax∑

K=Kmin,2

2φλ′μ′L
K (γ)φλμL

K (γ)
1 + δK,0

. (27)

Here summation boundaries are the same as in Eq. (18). Obviously this
integral is equal to δλμ,λ′μ′ when m = 0. It should be pointed out that only
small part of these integrals are not equal to 0. There are useful simple conditions
that allow identify the large part of these integrals that are equal to zero. The
appropriate selection rules are

λ + λ′ + (m mod 2) = odd,
|λ − λ′| ≤ 3n and 3n ≤ λ + λ′, where n = m,m − 2, . . . , 1 or 0. (28)

Using conditions (28) saves a lot of computation resources and makes it possi-
ble to avoid calculation of most of integrals (27) that actually are equal to 0.
Nevertheless, these conditions are not precise and some of matrix elements that
pass their test may appear to be equal to 0 after their computation. An example
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Table 4. The example of calculations of the matrix elements (27) for a number of νmax

and fixed L = 18. The first column of the table is formed by value of the νmax, other
columns are denoted as in Table 3.

νmax {νλμ} {λμ} #MeT #MeN #MeZ memory CPU time

10 2 2 6 3 0 0 MB 0.17 s

15 23 12 156 73 2 3.51 MB 5.80 s

20 81 28 812 312 52 3.93 MB 29.14 s

25 181 45 2070 632 170 4.92 MB 1.12 min

30 323 62 3906 953 294 5.97 MB 1.94 min

35 506 78 6162 1253 405 7.08 MB 2.86 min

40 731 95 9120 1577 530 8.50 MB 4.08 min

45 998 112 12656 1898 654 10.02 MB 5.68 min

50 1306 128 16512 2198 765 11.62 MB 7.65 min

of calculations of the matrix elements (27) is presented in Tables 3 and 4. Each
evaluation is performed after quitting the Mathematica kernel. {νλμ} is the total
number of states defined for given νmax by quantum numbers in Eq. (8) under
conditions in Eqs. (9) and (10); {λμ} is the total number of states defined only
by indices λ and μ, and this number is equal to the total number of different
pairs of λ and μ among the states {νλμ}; #MeT – the cumulative number of
angular matrix elements in the upper triangles of matrices for cosm(3γ) with
m = 1, 2 on states {λμ}, here the number of matrix elements with m = 0 are
not included, since they all are equal to 1 by definition; #MeN is the number of
nonzero matrix elements among #MeT that are given by Eq. (28); #MeZ is the
cumulative number of angular matrix elements that are evaluated by equal to 0
by direct computation.

2.8 Matrix Elements 〈ν′λ′|βρ |νλ〉
For the first case |λ − λ′| ≤ ρ, matrix elements 〈ν′λ′|βρ|νλ〉 read as:

∫ ∞

0
F

λ′
n′

β
(β)β

ρ
F

λ
nβ

(β)β
4
dβ =

[
n′

β !nβ !

Γ
(
n′

β + λ′ + 5
2

)
Γ

(
nβ + λ + 5

2

)
] 1

2
(29)

×(−1)
n′

β+nβ Γ
(1

2
(ρ + λ

′ − λ + 2)
)

Γ
(1

2
(ρ + λ − λ

′
+ 2)

)

×
∑

σ

Γ
( 1
2 (ρ + λ′ + λ + 5) + σ

)

σ!(n′
β − σ)!(nβ − σ)!Γ

(
σ + 1

2 (ρ + λ′ − λ) − nβ + 1
)

1

Γ
(

σ + 1
2 (ρ + λ − λ′) − n′

β + 1
)

the summation bounds for ρ + λ′ − λ even are:

max
(
n′

β − (ρ + λ − λ′)/2, nβ − (ρ + λ′ − λ)/2, 0
) ≤ σ ≤ min(n′

β , nβ),

the summation bounds for ρ + λ′ − λ odd are:

0 ≤ σ ≤ min(n′
β , nβ).
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Table 5. An example of calculations of the matrix elements over β given by Eqs. (29)
and (30) for a number of νmax when ρ = 1, . . . , 6. The columns of the table are formed
by the value of νmax, the total number of states {νλ} is defined by the quantum
numbers νλ up to the specified value of νmax, the total number #Me(β) of different
matrix elements over β, the maximum memory in MB used to store intermediate data
for the current Mathematica session in computation of the matrix elements, and the
CPU time.

νmax {νλ} #Me(β) memory CPU time

10 36 495 0 MB 0.30 s

20 121 2690 3.27 MB 1.78 s

40 441 12630 5.70 MB 9.06 s

60 961 29970 5.54 MB 24.26 s

80 1681 54710 5.69 MB 49.47 s

100 2601 86850 5.74 MB 1.44 min

For the second case |λ − λ′| > ρ and the pair of quantities n′
β , λ′ and nβ , λ

are interchanged when λ > λ′:

∫ ∞

0
F

λ′
n′

β
(β)β

ρ
F

λ
nβ

(β)β
4
dβ =

[
n′

β !nβ !

Γ
(
n′

β + λ′ + 5
2

)
Γ

(
nβ + λ + 5

2

)
] 1

2
(30)

×(−1)
nβ

Γ
( 1
2 (ρ + λ′ − λ + 2)

)

Γ
( 1
2 (−ρ + λ′ − λ)

)
∑

σ

(−1)
σ

Γ
( 1
2 (ρ + λ′ + λ + 5) + σ

)
Γ

(
1
2 (λ

′ − λ − ρ) + n′
β − σ

)

σ!(n′
β − σ)!(nβ − σ)!Γ

(
σ + 1

2 (ρ + λ′ − λ) − nβ + 1
)

the summation bounds for ρ+λ′−λ even are: max
(
nβ −(ρ+λ′−λ)/2, 0

) ≤ σ ≤
min(n′

β , nβ), the summation bounds for ρ+λ′ −λ odd are: 0 ≤ σ ≤ min(n′
β , nβ).

There are selection rules for the matrix elements over the variable β. The
matrix elements are equal to zero when

|ν′ − ν| > ρ, ρ and |ν′ − ν| have unequal parities,
|λ′ − λ| > ρ, |ν′ − ν| and |λ′ − λ| have unequal parities, (31)
ρ = 4 and |λ′ − λ| �= 0, ρ = 5 and |λ′ − λ| = 5.

The formulas of the matrix elements over β Eqs. (29) and (30) are very effective
comparing with direct symbolic integration approach. For example, symbolic
integration of the matrix element with n′

β = 126, λ′ = 121, nβ = 125, λ = 120,
and ρ = 120 takes 23.80 s, when Mathematica timing for a computation with
Eqs. (29) and (30) returns zero.

In Table 5, we present an example of memory consumption and CPU time of
calculations of the matrix elements over β for a number of ν and fixed range of
ρ. This interval ρ = 1, . . . , 6 represents all powers of ρ in the expression of the
potential energy for the approach adopted in this paper. It should be stressed
that the presented procedure is very effective and could be applied for large scale
calculations since the quantum numbers managed significantly outperform the
ones considered for very large values, e.g., λ∼100 and μ∼10.

In Table 6, we present the illustration how the accuracy of calculations depends
on the number of significant digits used in computations. The presented results
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Table 6. An example of calculations of relative accuracy of the matrix elements over β
given by Eq. (30) for a number of ρ when ν = 100, λ = 70, ν′ = 60, λ′ = 5. The first
row specifies the number of significant digits used in the corresponding computation.
The n.a. indicates that the calculations could not be performed with specified number
of significant digits.

ρ, precision 25 26 27 28 32 36 40

1 2.4 · 10−1 1.8 · 10−2 3.0 · 10−3 3.4 · 10−5 3.7 · 10−8 1.5 · 10−12 2.1 · 10−16

3 n.a. 4.8 · 10−2 2.4 · 10−5 2.4 · 10−5 1.3 · 10−7 1.9 · 10−11 1.7 · 10−15

5 n.a. 2.1 · 10−3 2.1 · 10−3 1.2 · 10−3 1.1 · 10−7 1.3 · 11−10 1.2 · 10−16

7 n.a. n.a. 1.3 · 10−1 1.2 · 10−3 1.9 · 10−7 1.4 · 10−10 4.8 · 10−15

8 n.a. n.a. n.a. 4.5 · 10−2 2.4 · 10−6 1.4 · 10−10 2.2 · 10−14

gives the background for assertion that large scale calculations of this kind may be
performed only symbolically.

3 Benchmark Calculations of GCM for 186Os Nucleus

3.1 The Example of Calculations of Eigenenergies ELπ

n (in MeV )

The eigenstates Lπ
n are characterized by the angular momentum L, parity π = ± =

(±1) [4] and sequence number n for fixed angular momentum starting at the lowest
state. The calculated eigenvalues ELπ

n of rotational bands of 186Os nucleus are the
same as may be produced by the FORTRAN program [20]. In these calculations,
the following values of parameters were used: C2 = −564.76, C3 = 733.01, C4 =
13546., C5 = −8535.1, C6 = −41635.,D6 = 0., and C ′

2 = C2S = 100. (in
MeV), B2 = 112.48 and B′

2 = B2S = 90. (in 10−42MeV s2), P3 = −0.0531 (in
10+42MeV/s2), � = 6.58211828 (in 10−22MeV s), νmax = NPH = 30 in expan-
sion of (25). In Table 7, we show a comparison of calculated eigenenergies from
algebraic eigenvalue problem (26) and experimental eigenenergies from [15,20].
They are in a good agreement that confirm consistent choice of the parameters of
GCM model and our version of the GCM code.

3.2 The Quadrupole Moment Q and Transitions B(E2)

The quadrupole operator Q
(2)
m is defined as

Q(2)
m = ρ0R

5
0

(
α[2]

m − 10√
70π

[α[2] × α[2]][2]m

)
, (32)

where ρ0 = 3Ze/(4πR3
0), R0 = r0A

1/3, r0 = 1.1fm.
The quadrupole moment of nth level with specified L reads as

Qn(L) = ρ0R
5
0

√
16π

5

(
L 2 L

−L 0 L

)
10−2

×
(

α[2]
n,n(L, L) − 10√

70π
[α[2] × α[2]][2]n,n(L, L)

)
, (33)
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Table 7. First column shows the labels Lπ
n of eigenstates of a given rotational band,

where L is the angular momentum, and π = ± is the parity. Dim is a number of
components of the eigenvector Dνλμ,n in Eq. (26), i.e., Dim is the total number of
different (ν, λ and μ) for listed L and up to given νmax, as well as the dimension of
Hamiltonian matrix. Energy calc. are the eigenenergies of algebraic eigenvalue problem,
Δ Energy calc.=Energy calc.(Lπ

n) - Energy calc.(0+
1 ) are the eigenenergies counted of

eigenenergy of ground state 0+
1 , Δ Energy exp. are the experimental eigenenergies of

rotational bands of 186Os nucleus, all eigenenergies are in MeV.

Level Code Dim Energy calc. CPU time Δ Energy calc. Δ Energy exp.

0+gs 0+1 91 −5.683 5.33 s 0.000 0.000

2+gs 2+1 165 −5.546 23.78 s 0.138 0.137

4+gs 4+1 225 −5.260 58.70 s 0.424 0.433

6+gs 6+1 271 −4.854 1.58min 0.829 0.867

2+γ 2+2 −4.937 0.746 0.767

3+γ 3+1 75 −4.750 4.19 s 0.934 0.910

4+γ 4+2 −4.596 1.087 1.070

5+γ 5+1 135 −4.343 17.22 s 1.340 1.275

4+γ 4+3 −4.174 1.509 1.352

6+γ 6+2 −4.164 1.520 1.492

where
(

L 2 L
−L 0 L

)
is 3-j symbol [24]. The reduced upwards transition probability

B(E2) is calculated by the expression

Bn2,n1(E2, L2 → L1) =
10−4

2L2 + 1

×
[
ρ0R

5
0

(
α[2]

n2,n1(L2, L1) − 10√
70π

[α[2] × α[2]][2]n2,n1(L2, L1)

)]2

. (34)

3.3 Matrix Elements α[2]
n2,n1

(L2, L1) and [α[2] × α[2]][2]n2,n1
(L2, L1)

Matrix elements α
[2]
n2,n1(L2, L1) and [α[2] × α[2]][2]n2,n1(L2, L1) are given by the

following expressions

α[2]
n2,n1(L2, L1) =

√
(2L1 + 1)(2L2 + 1)

√
�

√
B′

2C
′
2

×
∑

ν1λ1μ1

∑

ν2λ2μ2

〈ν2λ2L2|β|ν1λ1L1〉〈λ2μ2L2|α[2]|λ1μ1L1〉 (35)

×Dν1λ1μ1,n1(L1)Dν2λ2μ2,n2(L2),

[α[2] × α[2]][2]n2,n1(L2, L1) =

√
1

7

√
(2L1 + 1)(2L2 + 1)

�
√

B′
2C

′
2

×
∑

ν1λ1μ1

∑

ν2λ2μ2

〈ν2λ2L2|β2|ν1λ1L1〉Dν1λ1μ1,n1(L1) (36)

×〈λ2μ2L2|[α[2] × α[2]][2]|λ1μ1L1〉Dν2λ2μ2,n2(L2).
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Here Dνiλiμi,ni
(Li) is the eigenvector of the Hamiltonian (23) for the nith state

with angular momentum Li from the algebraic eigenvalue problem (26).

3.4 Matrix Elements 〈λ1μ1L1|α[2]|λ2μ2L2〉
Matrix elements of α[2] are calculated by means of the reduced Wigner coeffi-
cients in the chain O(5)⊃O(3) [7]

〈λ1μ1L1|α[2]|λ2μ2L2〉 = (−1)L2−L1 1√
2L1 + 1

1

N

×
Ks∑

K=−Ks(2)

K1s∑

K1=−K1s(2)

K2s∑

K2=−K2s(2)

〈2, K, L2, K2|L1, −K1〉 (37)

×
∫ π

0

φλ1μ1L1
K1

(γ)φλ=1μ=0 L=2
K (γ)φλ2μ2L2

K2
(γ) sin(3γ)dγ,

where 〈2,K, L2,K2|L1,−K1〉 is Clebsch–Gordan coefficient [24], φλ=1μ=0L=2
K (γ)

are the orthogonalized functions calculated from Eq. (19) at λ = 1, μ = 0, L =
2. For all K, the summation bounds and normalization factors N are defined as
follows:

Ks =

{
L, L = even,

L − 1, L = odd;
N =

{ 〈λ1μ1L1|λ1μ1L1〉, (λ1μ1L1) = (λ2μ2L2),√
〈λ1μ1L1|λ1μ1L1〉〈λ2μ2L2|λ2μ2L2〉, otherwise.

The angular brackets 〈λμL|λμL〉 here represent the overlap integrals Eq. (18)
〈φλμL(γ)|φλμL(γ)〉 of the corresponding functions φλμL(γ).

3.5 Matrix Elements 〈λ1μ1L1|[α[2] × α[2]][2]|λ2μ2L2〉
Matrix elements of [α[2] × α[2]][2] are calculated also by means of the reduced
Wigner coefficients

〈λ1μ1L1|[α[2] × α[2]][2]|λ2μ2L2〉 =

√
2

9(2L2 + 1)

1

N

×
Ks∑

K=−Ks(2)

K1s∑

K1=−K1s(2)

K2s∑

K2=−K2s(2)

〈L1, K1, 2, K|L2, −K2〉 (38)

×
∫ π

0

φλ1μ1L1
K1

(γ)φλ=2μ=0 L=2
K (γ)φλ2μ2L2

K2
(γ) sin(3γ)dγ,

where φλ=2μ=0L=2
K (γ) are the orthogonalized functions calculated from Eq. (19)

at λ = 2, μ = 0, L = 2.
The selection rules for the matrix elements α[2] and [α[2] × α[2]][2] are:

λ+λ1+λ2 even , λ>|λ1−λ2|, λ<λ1+λ2, L>|L1−L2|, L<L1+L2. (39)

The columns of Table 8 are formed by the values of the angular momen-
tum L2, #MeT is the total number of matrix elements for given L2 and
L1 = L2 − 2, L2 − 1, L2, except for the first row where the L1L2 = 02, 22, 23,
#MeZ is the number of zero matrix elements that are calculated equal to 0
among the #MeT matrix elements, and the CPU time.
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Table 8. The CPU time of calculation of the matrix elements 〈λ1μ1L1|α[2]|λ2μ2L2〉
and 〈λ1μ1L1|[α[2] × α[2]][2]|λ2μ2L2〉 for a number of L2 and fixed νmax = 30.

〈λ1μ1L1|α[2]|λ2μ2L2〉 〈λ1μ1L1|[α[2] × α[2]][2]|λ2μ2L2〉
L2 #MeT #MeZ CPU time L2 #MeT #MeZ CPU time

3 59 0 1.80 s 3 77 0 2.56 s

4 113 0 7.86 s 4 167 0 12.06 s

5 72 0 5.80 s 5 105 0 8.16 s

6 213 8 24.42 s 6 317 0 35.66 s

7 152 9 20.33 s 7 225 0 28.64 s

8 333 40 56.45 s 8 490 8 1.34 min

9 253 30 48.70 s 9 377 7 1.14 min

10 466 100 1.91 min 10 690 36 2.74 min

Table 9. Values of the quadrupole moments Qn(L)(in eb) of 186Os for a number of L
and fixed νmax = 30.

n, L 2 4 5 6

1 −1.51 −1.85 0.953 −1.95

2 1.46 −0.517 −0.912 −1.02

3 −0.929 2.13 0.421 0.915

3.6 An Example of Calculations of The Qn(L)(in eb) of 186Os

The required states are characterized by their angular momentum L and
sequence number n for fixed angular momentum starting at the lowest state. The
calculated values of the quadrupole moment Qn(L)(in eb) of 186Os from (33)
shown in Table 9 are the same as may be produced by the FORTRAN pro-
gram [20].

3.7 An Example of Calculations of the B(E2) (in e2b2) of 186Os

The states are characterized by their angular momentum L and sequence number
n for fixed angular momentum starting at the lowest state. The transitions are
indicated as ni → nj . The calculated values B(E2) = Bn2,n1(E2, L2 → L1)
(in e2b2) of 186Os come from Eq. (34) for a number of (L1L2) transitions and
fixed νmax = 30 shown in Table 10 are the same as may be produced by the
FORTRAN program [20]. CPU time for calculation of all Q and B(E2) for up
to L = 6 and with the number of states n = 3 is 64 s. (with previously prepared
data files for angular matrix elements and eigenvectors of Hamiltonian).

3.8 Finding the Optimal Basis Parameters [20]

As a basis in this code we use the eigenfunctions (13)–(20) of the five-dimensional
harmonic oscillator (11), which are respectively parameterized in terms of the
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Table 10. Values of the B(E2) = Bn2,n1(E2, L2 → L1) (in e2b2) of 186Os for a number
of (L1L2) transitions and fixed νmax = 30.

transitions (0,2) (2,2) (2,3)

1 → 1 2.99 0.801 0.0207

2 → 1 0.0228 0.0779 1.32

3 → 1 0.00835 0.00182 0.151

1 → 2 0.0389 0.0778 0.00000291

2 → 2 0.249 0.746 0.00131

3 → 2 0.000121 0.0000199 0.0000855

1 → 3 0.00526 0.00182 0.000429

2 → 3 0.248 0.0000199 0.0261

3 → 3 0.0573 0.300 0.00386

Table 11. The values of the phenomenological potential parameters C2, C3, C4,
C5, C6, D6, B2, P3, Eqs. (4), (5) for N = 184 isotones are determined by fitting [9].

298114 300116 302118 304120 306122 308124

C2 7579.22 7661.89 7744.29 7826.40 7908.23 7989.76

C3 3.25 ·10−4 −1.62 ·10−3 −1.61 ·10−3 −4.83 ·10−4 2.20 ·10−3 3.51 ·10−4

C4 −2.93 ·10−1 1.98 ·10−1 1.84 ·10−1 −1.16 ·10−1 −8.39 ·10−1 −3.13 ·10−1

C5 −4.11 ·10−3 2.05 ·10−2 2.04 ·10−2 6.10 ·10−3 −2.80 ·10−2 −4.44 ·10−3

C6 1.65 ·10−4 −7.81 ·10−4 −7.72 ·10−4 −2.22 ·10−4 1.09 ·10−3 1.70 ·10−4

D6 1.79 −2.08 −1.98 4.46 ·10−1 6.15 1.96

B2 226.573 226.573 226.573 226.573 226.573 226.573

P3 0 0 0 0 0 0

basis parameters C ′
2 and B′

2. For a finite set of basic vectors, the parameters
have to be chosen to get satisfactory convergence of the calculated energies and
B(E2)-values. To find the best set of basis parameters one has to diagonalize
a given Hamiltonian (23) and minimize the sum of (lowest) energy eigenval-
ues EL

n by varying the basis parameters(see e.g. [16]). Since this procedure is
quite time-consuming, we use another scheme that takes much less time and
turned out to be also effective: we minimize only the sum of the first NUM
diagonal matrix elements of the Hamiltonian for spin I = 0 and take B′

2 fixed at
B2. The integer variable NUM should be equal to the number of the lowest L = 0
basis wave functions which contribute most to the first excited states. (Default:
NUM = 10). The minimum is found by increasing a do–loop variable S, defined
as S = (C ′

2B
′
2/�

2)1/4, successively by 0.5. In the case of failure to find reasonable
basis parameters, the program is stopped and should be reruned with changed
boundaries for S. In particular, for 186Os: S = 12.005370, where � = 0.6582183
(in 10−22MeV s) , B′

2 = 90(in 10−42MeV s2), C ′
2 = 100 (in MeV).
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Table 12. The values of the phenomenological potential parameters, C2, C3, C4,
C5, C6, D6, B2, P3, Eqs. (4), (5) for 152Sm, 154Sm,186Os, 188Os, 190Os, 194Pt and 196Pt
are determined by fitting [9].

152Sm 154Sm 186Os 188Os 190Os 194Pt 196Pt

C2 −422.74 −464.74 −564.76 −398.83 −363.64 −161.58 −169.88

C3 493.92 311.25 733.01 −380.74 −372.59 368.36 748.09

C4 7983.60 6454.70 13546. 18295.43 19391.83 2610.08 5704.92

C5 370.53 88.25 −8535.1 −17660.53 −19246.82 −130535.32 −315802.62

C6 8279.78 3842.18 −41635. 74725.61 80003.64 583687.93 975896.18

D6 −28041.74 −17430.86 0 −54507.20 −70794.69 997672.28 1841446.68

B2 62.714 63.823 112.48 165.514 173.035 203.613 223.380

P3 0 0 −0.0531 0 0 0 0

Table 13. The values of the phenomenological potential parameters, C2, C3, C4,
C5, C6, D6, B2, P3, Eqs. (4), (5) for Nobelium isotopes 248No, 250No, 252No, 254No,
256No, and 258No are determined by fitting [9].

248No 250No 252No 254No 256No 258No

C2 −742.30 −740.31 −742.30 −820.82 −785.78 −755.83

C3 308.99 308.17 183.87 307.77 220.57 172.21

C4 19029.74 18978.78 17371.12 19240.37 18948.17 19152.27

C5 6261.17 6244.40 8478.34 3008.90 4202.27 3693.95

C6 6020.57 6004.45 15304.34 7515.07 4820.42 −20225.25

D6 −39632.38 −39525.07 −11301.10 −58453.68 −42470.76 −20383.43

B2 226.573 83.289 240.795 226.573 226.573 226.573

P3 0 0 0 0 0 0

Table 14. The values of the phenomenological potential parameters for Seaborgium
isotopes 258Sg, 260Sg, 262Sg, 264Sg, 266Sg, 268Sg, 270Sg, 272Sg are determined by
fitting [9].

258Sg 260Sg 262Sg 264Sg 266Sg 268Sg 270Sg 272Sg

C2 −889.78 −862.28 −858.57 −707.00 −881.27 −953.97 −948.53 −816.63

C3 302.98 273.96 156.35 −244.07 −191.92 −135.38 −236.13 −249.84

C4 21572.37 21479.99 23326.53 15852.44 22306.53 24457.98 27362.39 29458.02

C5 −181.54 −958.25 603.74 4107.14 1057.65 554.98 −106.83 1252.04

C6 5756.03 4802.92 −15191.44 5714.98 2767.59 2200.10 7677.81 2858.93

D6 −91050.30 −85406.47 −92394.99 −42886.06 −87378.21 −101284.80 −124100.10 −136456.34

B2 226.573 226.573 226.573 226.573 226.573 226.573 226.573 226.573

P3 0 0 0 0 0 0 0 0
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Table 15. The values of the phenomenological potential parameters for Hassium iso-
topes 264Hs, 266Hs, 268Hs , 270Hs, 272Hs, 274Hs, 276Hs are determined by fitting [9].

264Hs 266Hs 268Hs 270Hs 272Hs 274Hs 276Hs

C2 −910.55 −960.16 −957.77 −974.18 −967.13 −892.06 −528.93

C3 −237.56 −306.53 −305.77 −401.01 −293.31 −366.77 401.95

C4 23771.37 25603.20 25539.27 25146.02 27982.38 28476.76 31704.06

C5 870.21 530.39 529.12 465.71 −2668.59 1589.99 26.09

C6 −8701.36 8602.71 8581.15 20760.67 39469.35 9918.38 27748.59

D6 −90319.19 −114091.97 −113806.31 −105793.07 −140708.47 −134891.91 −156859.49

B2 226.573 226.573 226.573 226.573 226.573 226.573 226.573

P3 0 0 0 0 0 0 0

4 Conclusions

We have developed a symbolic method implemented as a code GCM in the Wol-
fram Mathematica to compute energy spectrum, quadrupole momentum, and
electromagnetic transitions in Geometric Collective Model. The symbolic nature
of the developed methods allows one to avoid the numerical round-off errors
in the calculation of spectral characteristics (especially close to resonances) of
quantum systems under consideration and to study their analytic properties
for understanding the dominant symmetries. Efficiency of the elaborated proce-
dures and the code is shown by benchmark calculations of 186Os nucleus and
demonstrate quick performance even on a laptop.

The GCM code can be applied to study the properties of super-heavy nuclei
using an approach proposed in the papers [9,12]. Sets of the input parameters
for some atomic nuclei and super–heavy nuclei are given in Appendix A.

To point out further investigations of the considered GCM model for atomic
nuclei in the framework of the Computer Algebra System (CAS) of the bound-
ary value problem (BVP) corresponding to quantum Hamiltonian Eq. (11) is pre-
sented in Appendix B. Solution of this problem by the finite element method
(FEM) implemented in a suitable CAS code, for example, GCMFEM code [10]
gives a possibility to compare GCM results with GCMFEM ones using the alter-
native FEM reduction of the BVP to algebraic problems and input parameters
from Appendix A.
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A Appendix. Sets of Input Parameters for Atomic Nuclei

To denote approximately a range of applicability of the GCM code and to make
it more friendly for users, we will accompany it by the sets of input files with
the values of sets of parameters for atomic nuclei given in the papers [9,12,20].

For example, we present some of them in Tables 11, 12, 13, 14, 15, and 16.
In Table 11 the macroscopic potential parameters are given. The value of C2

is increased as we approach to double closed shell. Even the potential depends
more on the quadratic term over β, it is not completely quadratic even if one
approaches very close the double closed shell. Because of the great similarity,
the authors only depict the PES of the 298114 and 304120 in Figs. 29 and 30
in Ref. [9]. The PES is perfectly spherical, thus, the spectrum will be that of
a five-dimensional oscillator: The energy scales as �

√
C2/B2. The first excited

state is a 2+ state at the energy �
√

C2/B2 and at twice this energy, there are
three degenerate states with spin and parity 0+, 2+ and 4+. The first 3+ state
is three times the energy of the first 2+ state. For completeness, in Fig. 31 in
Ref. [9], the authors depict the spectrum of the 298114 nucleus as predicted by
the GCM [9].

Table 16. The values of the phenomenological potential parameters for 184W are
determined by fitting [12].

C2 C3 C4 C5 C6 D6 B2 P3

−521.77 −337.80 14306.01 −502.64 1902.26 −60439.94 112.697 0

The only parameter, which cannot be deduced is the collective mass B2 of the
geometrical model [8]. This parameter has to be adjusted to, e.g., a particular
state in the ground state band. Also assuming for neighboring nuclei the same
value of B2 is in general far more accurate than using the Cranking Model. For
the case of nuclei in the island of stability, one will use a generic value, i.e.,
results will scale with B2 (as it is pointed out in page 128 in Ref. [9]).

B Appendix. Boundary Value Problem for GCM Model

The equation of geometric collective model (GCM) with respect to components
ΦL

nK = ΦL
nK(β, γ) and eigenvalue EL

n (in MeV), B̄2 = 2B2/
√

5 in (10−42MeV s2)
and C2 in (MeV) are mass and stiffness parameters, variable β in (fm), reads as
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(T (β, γ)+T L
K(β, γ)+V̂ (β, γ)−EL

n )ΦL
nK(β, γ) =

∑

K′=K±2even

V L
KK′(β, γ)ΦL

vK′(β, γ), (40)

T (β, γ) =
�
2

2B̄2

(
− 1

β4

∂

∂β
β4 ∂

∂β
− 1

β2 sin(3γ)

∂

∂γ
sin(3γ)

∂

∂γ

)
+K(β, γ),

T L
K(β, γ) = +

�
2

2B̄2

[
(L(L + 1) − K2)

(
2B̄2

4J1
+

2B̄2

4J2

)
+

K22B̄2

2J3

]
,

V L
KK′(β̄, γ) = − �

2

2B̄2

[
2B̄2

8J1
−2B̄2

8J2

]
CL

KK′ , CL
KK′ = δK′K−2C

L
KK−2+δK′K+2C

L
KK+2,

CL
KK−2 = (1 + δK2)

1/2[(L + K)(L − K + 1)(L + K − 1)(L − K + 2)]1/2,

CL
KK+2 = (1 + δK0)

1/2[(L − K)(L + K + 1)(L − K − 1)(L + K + 2)]1/2,

and the moments of the inertia denoted as Jk = 4B̄(k)β
2 sin2(γ− 2

3kπ), where
k = 1, 2, 3 and B̄(k) = B̄2 is a mass parameter, with potential function V̂ (β, γ)
from (3), (4) and (5), and input set of parameters from Tables 11, 12, 13, 14,
15 and 16 in Appendix A, and additional kinetic function K(β, γ) determined
in [11,14,17,20,23]. The bounded components φL

vK are subjected to homoge-
neous Neumann or Dirichlet boundary conditions at the boundary points of
interval γ = 0 and γ = π/3 for zero or odd values of L (for details of boundary
conditions on interval of the β variable see [18,19,23]), and orthonormalization
conditions (see Eq. (15))

∫ βmax

β=0

∫ π/3

0

∑

Keven

ΦL
n′K(β, γ)ΦL

nK(β, γ) sin(3γ)dγβ4dβ = δn′n. (41)

The BVP (40)–(41) will be solved by the FEM implemented in the CAS code.
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