
Computer Science for Continuous Data

Survey, Vision, Theory, and Practice of a Computer
Algebra Analysis System

Franz Brauße1, Pieter Collins2, and Martin Ziegler3(B)

1 University of Manchester, Manchester, UK
2 Maastricht University, Maastricht, The Netherlands

3 KAIST, Daejeon, Republic of Korea
ziegler@kaist.ac.kr

Abstract. Building on George Boole’s work, Logic provides a rigor-
ous foundation for the powerful tools in Computer Science that under-
lie nowadays ubiquitous processing of discrete data, such as strings or
graphs. Concerning continuous data, already Alan Turing had applied
“his” machines to formalize and study the processing of real numbers:
an aspect of his oeuvre that we transform from theory to practice.

The present essay surveys the state of the art and envisions the future
of Computer Science for continuous data: natively, beyond brute-force
discretization, based on and guided by and extending classical discrete
Computer Science, as bridge between Pure and Applied Mathematics.

1 Introduction and Motivation

Since its early days, Computer Science has enjoyed the support and guidance of
Logic, from Theory via Engineering to Practice: recall Alan Turing’s 1936 pub-
lication preceding nowadays ubiquitous digital computers, or Alonzo Church’s
Lambda Calculus having led to functional programming languages, or axiomatic
structures in Model Theory corresponding to specification of Abstract Data
Types, or Hoare Logic for formal program verification—concerning the process-
ing of discrete data, such as graphs or integers or strings.

Continuous data on the other hand commonly arises in Engineering and
Science (natura non facit saltus) in the form of temperatures and fields; it
mathematically includes real numbers, smooth functions, bounded operators,
or compact subsets of an abstract metric space. Processing such continuous data
has arguably been lacking the foundation and support from Logic in Computer
Science that the discrete case is enjoying [11]:

35 years after introduction and hardware standardization of IEEE 754 floating
point numbers,mainstreamnumerics is still governedby this forcible discretization

This work was supported by the National Research Foundation of Korea (grant
2017R1E1A1A03071032) and by the International Research & Development Program
of the Korean Ministry of Science and ICT (grant 2016K1A3A7A03950702) and by the

European Union’s Horizon 2020 MSCA IRSES project #731143.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Boulier et al. (Eds.): CASC 2022, LNCS 13366, pp. 62–82, 2022.
https://doi.org/10.1007/978-3-031-14788-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14788-3_5&domain=pdf
https://doi.org/10.1007/978-3-031-14788-3_5

Survey: Computer Science for Continuous Data 63

of continuous data—in spite of violating associative and distributive laws, break-
ing symmetries, introducing and propagating rounding errors in addition to
an involved (and incomplete) axiomatization including NaNs and denormalized
numbers.

Deviations between mathematical structures and their hardware counterparts
are common also in the discrete realm, such as the wraparound 255 + 1 = 0
occurring in bytes that led to the “Nuclear Gandhi” programming bug. Therefore
nowadays high-level programming languages (like Java or Python) provide user
data types (like BigInt) that fully agree with mathematical integers, simulated
in software using a variable number of hardware bytes; and advanced discrete
data types (such as weighted or labelled graphs) can and do build on that,
reliably and efficiently.

The present essay expands on a similar perspective for continuous data
types: including real numbers, converging sequences, smooth/integrable func-
tions, bounded operators, compact subsets etc.—exactly, that is, devoid of
rounding errors, see Sect. 2. Section 3 discusses imperative programming over
such data: with computable semantics including limits, that is, beyond the
algebraic realm. Encoding such data over sequences of bits is described in
Sect. 4. And Sect. 5 connects discrete complexity theory, with famous classes
like P/NP/#P/PSPACE, to operations on continuous data such as integration.
Final steps for putting this theory into practice and its applications are col-
lected in Sect. 6.

2 Computable Continuous Data Types

Data types are at the core of Object-Oriented Programming, see Subsect. 2.1.
They constitute Computer Science’s counterpart to structures in Model Theory.
This section explains how, unlike in the discrete case, for continuous data types
already their specification often poses a challenge—and may require Kleene Logic
(Subsect. 2.2), enrichment (Subsect. 2.3) and/or multivaluedness (Subsect. 2.4)
in order to assert mere computability—before proceeding to complexity ques-
tions (Sect. 5). Subsects. 2.5 and 2.6 illustrate these with examples.

2.1 Formal Numerical Software Engineering

Formal software engineering of a data type/object proceeds from (i) problem
specification via (ii) algorithm design and (iii) analysis to (iv) proof of optimality
and finally (v) implementation and (vi) verification/testing in some high-level
object-oriented programming language. Depending on the particular endeavour,
some of these stages can of course be kept informal of skipped entirely. Item (iv)
here refers to Computational Complexity Theory [49], and implies a (meta)
“loop”: If the algorithm designed (ii) and analyzed (iii) is not optimal (iv), then
start over designing a more efficient one (ii).

Note how (ii) implicitly supposes that the problem specified in (i) actually
does admit an algorithmic solution—which in the discrete realm is usually the
case. In the real setting, however, any computable function must necessarily be

64 F. Brauße et al.

i) problem specification
ii) algorithm design and
iii) algorithm analysis
iv) proof of optimality — or repeat from (ii)
v) implementation and
vi) verification/testing.

Fig. 1. Six stages of full-fledged Formal Software Engineering. In practice some may
be omitted depending on the particular endeavour under consideration.

continuous1 [63, §2.2+§3.2+§4.3]; hence a näıve problem specification (such as
of finding the kernel of a given real matrix) easily results in algorithmic unsolv-
ability. Thus the need arises for another (meta) “loop” in Numerical Software
Engineering: if (ii) fails, start over from (i).

2.2 Kleene Logic Data Type, Generalized Sierpiński Topology

The sign function is discontinuous and thus uncomputable. More precisely, a real
test like “x > 0?” may take more runtime when x is close to zero—and in case
x = 0 fail to terminate at all:

Fact 1. Real inequality is “complete” for the Halting Problem H ⊆ N in the
following sense [63, Exercise 4.2.9]:

a) For every computable real sequence x̄ = (xj), the set {j ∈ N : xj > 0} is
computably reducible to H.

b) There exists a computable sequence x̄ of non-negative real numbers such that
said set coincides with H.

Note that fixing a computable real sequence makes the problem independent of
encoding issues, as the input consists only of an integer index. The thus non-
uniform Item a) follows from the following uniform claim with respect to any of
the many equivalent ways of encoding real numbers [63, §4.1]:
c) The partial sign function sign : R \ {0} → {−1,+1} is computable; same

for comparison � : R
2 \ {(x, x) : x ∈ N} → {ff, tt}, where ff and tt denote

computational counterparts to Booleans TRUE and FALSE.

A mathematically undefined expression (like 1/0) is sometimes denoted to “have”
value ⊥; comparison “x > 0” on the other hand is defined mathematically also
in case x = 0, but not computationally so. The latter is captured by Kleene
Logic K including, in addition to classical Booleans tt and ff, as third value uk
for (mathematically defined but computationally) “unknown”. Equip K with the
generalized Sierpiński’s topology

{∅, {tt}, {ff}, {ff, tt}, {uk, tt,ff}}

1 Arguably this also applies to the discrete case, where every function is trivially
continuous.

Survey: Computer Science for Continuous Data 65

and note that this non-Hausdorff topology fails to separate uk from the other
elements. Accordingly, a logical expression with mathematical value uk fails to
evaluate computationally.

K thus serves as “lazy” data type that can store unevaluated, computation-
ally partial predicates: such as “x > 0” for every x ∈ R, as well as any other
promise problem. Recall [19] that a (discrete) promise problem P is a disjoint
pair P+, P− ⊆ N, such that a query “m ∈ P?” answers tt in case m ∈ P+ and
answers ff in case m ∈ P− and gives no answer uk in case m �∈ P+ ∪ P−.

2.3 Enrichment/Promises

Promises generalize from decision to function problems, motivated as follows:
Topology requires that any non-constant function f : X → Z from a connected
domain X to the discrete set of integers must be discontinuous. This easily pre-
vents näıve problems from being computable, such as the matrix rank function,
or the multiplicities of degenerate eigenvalues. On the other hand providing—in
addition to the original continuous data—a suitable integer as input often does
render such a problem computable [71]. For example, by Fact 1c), the real sign
function is computable on X0 := R \ {0}, and on X1 := {0} trivially so. See
Subsect. 2.5 below for more examples.

In Constructive Mathematics such an effect is well-known as enrichment [36,
p. 238/239]; elsewhere also as advice [1,8]. It amounts to proceeding from total
but discontinuous f : X → Y to a partial function

f̃ : ⊆ X × Z 	 (x, k)
→ f(x) ∈ Y (1)

for some suitable—and now non-connected—domain X̃ := dom(f̃) ⊆ X × Z

whose projection Xk := {x : ∃k : (x, k) ∈ X̃} covers X. Put differently, the
accompanying argument k entails the promise that the “main” input x belongs
to the subset X̃k := {x : (x, k) ∈ X̃}.

2.4 Multivaluedness/Non-extensionality

Although any computable function must necessarily be continuous, this con-
straint can be avoided by considering relations, that is, by dropping extension-
ality. Relations mathematically capture search problems, where a query x ∈ X
has not necessarily one unique answer y = f(x), but a range of possible answers
y ∈ F (x) ⊆ Y .

In case the domain X is discrete/countable, namely when arguments x ∈ X
are finitely encoded and read in finite time, then any (deterministic) computation
of such a relation F actually computes a selection, that is, a function f ⊆ F . How-
ever in the continuous setting, multivaluedness is well-known unavoidable [42].

Mathematically one may identify the relation F with the single-valued total
function F : X 	 x
→ {y ∈ Y | (x, y) ∈ F} from X to the powerset 2Y ;
but the preferable notation of a multi function f :⊆ X ⇒ Y emphasizes that
not every y ∈ F (x) needs to occur as output. Another important reason to

66 F. Brauße et al.

consider multifunctions f : X ⇒ Y distinct from relations f ⊆ X × Y is related
to compactness: Generalizing continuity for single-valued functions, call such
a multifunction f compact-valued if f [Z] ⊆ Y is compact for every compact
Z ⊆ X.

A function problem f : X → Y becomes “easier” when restricting arguments
to x ∈ X ′ for some X ′ ⊂ X, that is, when proceeding to f ′ = f |X′ . A search
problem F : X ⇒ Y additionally becomes “easier” when increasing the range
of possible answers, that is, when proceeding to some F ′ ⊆ X ⇒ Y satisfying
F ′(x) ⊇ F (x) for every x ∈ dom(F ′). Such F ′ is also called a restriction of F .
Note that, unlike in the single-valued case, F ′ need not be a subset of F when
considered as graphs.

2.5 Examples

Example 2. The Archimedian Property of real numbers states that, to every
x ∈ R, there exists some k ∈ Z with k ≥ x.

Skolemization yields a function k : R → Z with ∀x : k(x) ≥ x. The least such
function is known as rounding up x
→ �x� and discontinuous. In fact any such
function must be discontinuous and hence uncomputable.

On the other hand the original property formulation suggests formalization
as a search (rather than function) problem Arch : R ⇒ Z. And indeed this
relaxation becomes computable as follows:

Obtain some rational input approximation to the argument x ∈ R up to
error 2−0 and round it up, exploiting that integer fractions can be operated on
exactly. Note that a different rational approximation to the same argument x
up to error 2−0 can yield a different output, i.e., violate extensionality.

Similarly, no integer rounding function is computable; whereas the following
multi function is:

Round : R 	 x
→ {k ∈ Z | x − 1 < k < x + 1} ⊆ Z (2)

Example 3. The Fundamental Theorem of Algebra states that, to every monic
univariate complex degree-d polynomial c0 + c1 · Z + · · · + cd−1 · Zd−1 + Zd

decomposes into linear factors (Z − z1) · · · (Z − zd).
This suggests formalization as a mapping

F : C
d 	 (c0, . . . , cd−1)
→ (z1, . . . , zd) ∈ C

d.

However note that no order on the roots z1, . . . , zd can be imposed mathemati-
cally; hence F should naturally be considered as multifunction.

Moreover it turns out that, similarly to Example 2, multivalued F is com-
putable while no single-valued selection of F is [59].

Example 4. Consider the problem of computing a basis of the kernel of a real
matrix A given by its entries. Note that this problem is already multivalued
problem to begin with, since such a basis is usually far from unique.

Survey: Computer Science for Continuous Data 67

Gaussian elimination involves pivot search and thus tests for real inequality—
which are uncomputable: recall Fact 1. Indeed already the (unique) cardinality
of a (non-unique) basis depends discontinuously on the matrix entries.

However enriching input A with said cardinality = rank(A) ∈ N does render
such a basis computable [71].

Example 5. Consider the problem of computing the spectral decomposition,
formalized as computing an (!) eigenvector basis, to a given symmetric real
matrix A ∈ R

d×d.
According to Example 3, a tuple of eigenvalues, repeated according to their

multiplicities, can be computed via the characteristic polynomial. However the
integer-valued multiplicities themselves are discontinuous and uncomputable in
their dependence on the matrix entries. Moreover computing an eigenvector
basis, although non-unique/multivalued, is impossible; whereas enriching input
A with the number k ∈ {1, . . . , d} of distinct eigenvalues renders the problem
computable [71, Theorem 11]. Moreover such d-fold advice turns out as opti-
mal [70, Theorem 46].

We remark that computing eigenspaces is possible, when equipping the latter
with the right topology.

Example 6. Alternative to the partial sign function from Fact 1, the following
total but multivalued so-called soft test [67, §6] is computable as well [7, p. 491]:

“x <n 0′′ = tt in case x < −2−n,

ff in case x > 2−n, and

either tt or ff in case − 2−n ≤ x ≤ 2−n.

(3)

Example 7. Fix promise problems P0, P1, . . . , Pd−1 ⊆ N with the aforementioned
computational semantics “(m ∈ Pj) ∈ K”. Consider the partial multi-valued
mapping choose : K

d ⇒ {0, 1, . . . , d−1} assigning to
(
(m ∈ P0), . . . , (m ∈ Pd−1)

)

to some j such that (m ∈ Pj) = tt. This is computable!

2.6 More Continuous Data Types

Real numbers are arguably the most basic continuous structure in Calculus;
vector, sequence, and function spaces for instance build on top of them. Similarly,
having turned real numbers into a computable data type (“level 0”) enables
now turning more advanced spaces from Mathematics into computable ones—
using the aforementioned techniques to deal with discontinuities: enrichment
(Subsect. 2.3) and multivaluedness (Subsect. 2.4). Specifically polynomials and
matrix operations have been discussed in Subsect. 2.5 above. Note that each
such object can be described with finitely many real numbers: “level 1”.

2) Sequence spaces �p are the next level, each element consisting of countably
infinitely many real numbers. A plethora of investigations [9,34,43,45] pro-
vide guidance on suitable enrichment (such as integer bounds on the norm)
to turn them into computable data types.

68 F. Brauße et al.

3) Power series can be identified with their germs/coefficient sequences in appro-
priately enriched sequence spaces [28, §3.1]; and analytic functions are local
power series—of which finitely many suffice to “cover” any fixed compact
subset of their domain [28, §3.2].

4) The hyperspace of non-empty compact subsets of Euclidean space is compu-
tably closed under union and under image of continuous functions [63, §6.2],
but not under (even promised non-empty) intersection [63, Exercise 5.1.15].
The hyperspace of convex compact subsets does satisfy this, and additional,
computational closure properties [39].

5) Space of probability measures [24,44,57] and subspace of Haar measures on
compact groups [51].

6) Spaces of continuous [63, §6.1], of smooth [28], and of integrable functions [29,
60]; equipped with operations like (anti or weak) derivative, or trace.

7) Differential geometry, that is, the hyperspace of closed (smooth) manifolds
equipped with (smooth) tensor fields on them.

3 New Numerical Programming

Since the early days of automated digital processing in assembly code, program-
ming has made tremendous progress. Nowadays high-level languages provide
both convenience/intuition and soundness/reliability—regarding discrete data,
such as integers or strings.

Numerical programming differs from this classical realm in that the under-
lying data type intrinsically incurs errors, namely from rounding. Tracing and
bounding the propagation of such deviations is up to the user programmer, and
the involved IEEE 754 standard makes reliable coding inconvenient. Practition-
ers therefore often imagine operating on real (instead of floating point) numbers.
This implicit approach thus trades convenience for reliability.

Algebraic numbers can be processed exactly, and the formal verification of
algebraic programs [48] may build on Tarski’s decidability of the First-Order
Theory of this algebraically closed field (although the latter excludes the expo-
nential as well as many other important analytic functions in Science and Engi-
neering and Calculus [6]).

Computable Analysis [63] on the other hand does provide a realistic char-
acterization of un/computable real functions beyond the algebraic realm. It is
however based on the (type-2) Turing machine model: theoretically important
but practically inconvenient for programming, not to mention formal verification.

Subsection 3.1 recalls an equivalent but convenient imperative model of com-
putation called ERC that comes as close to, and thus provides a sound for-
malization of, common implicit conceptions underlying numerical programming.
Previous and future ways for implementing it on actual digital computers are
discussed in Subsect. 3.2. ERC modifies the semantics of real comparison, and
Subsection 3.3 illustrates its use with some basic example algorithms. Subsec-
tion 3.4 provides a road map of continuous data types to next implement in ERC.

Survey: Computer Science for Continuous Data 69

3.1 Analytic Programming

The preprint [10] formalizes a (proof-of-concept) imperative programming lan-
guage called ERC supporting a data type REAL that agrees with the mathemati-
cal structure R, exactly. Its semantics is carefully designed to capture common
conceptions (sometimes implicitly) underlying numerical coding, while achiev-
ing “Turing-completeness” over the reals: Any function realizable in ERC is
computable in the sense of Computable Analysis—and vice versa. ERC thus
combines the structural benefits of Computable Analysis (such as closure under
composition and including transcendental functions) with the intuitive conve-
nience and practical pervasion of object-oriented imperative programming to
replace the hassles of Turing machines.

Paradigm 8. A mathematical partial function f :⊆ R → R is realized in ERC
as a (multi-)function of type Z × R ⇒ R: It receives its real argument x exactly,
as well as a separate integer2 parameter p → −∞, and must eventually return
some approximation to y = f(x) up to absolute error 2p → 0. To this end
during intermediate calculations, it may use arithmetic operations free of round-
ing errors. The “result” of a possibly partial comparison “x � y” according to
Fact 1(c) can be stored in a logic variable of type KLEENEAN (Subsect. 2.2), and
can be evaluated safely using the multivalued operation from Example 7 to yield
a total program.

The discrepancy between exact argument and approximate return value
might suspect to void closure under composition [68, p. 325]; however in combi-
nation with the modified partial semantics of comparison (Fact 1c), Computable
Analysis does assert closure under composition [64]. In particular an ERC pro-
gram expressing real function f as above may, in addition to using arithmetic
operations, call another ERC representing some other real function g with exact
argument z to receive and continue processing real return value w = g(z) exactly,
i.e., without having to worry about error propagation.

Remark 9. The error bound 2p (Z 	 p → −∞) is preferable over, say, 1/|p|:
1. It reflects that π has been approximated up to 2−billions [26].
2. It renders the underlying logic decidable; see Subsect. 3.5.
3. It yields numerical characterizations of popular discrete complexity classes;

see Subsect. 5.1.

A similar but more practically fleshed-out programming language for continuous
data has been devised in [3].

3.2 Implementations

Superficially, operating on real (including transcendental) numbers exactly as
postulated by ERC might seem technically infeasible: within finite time, only
2 One could replace it with some real error bound ε > 0.

70 F. Brauße et al.

finite information can be processed. This reproach is valid in operational seman-
tics, where (the order of) user commands correspond to finite blocks of machine
instructions executed in the same order. However functional programming regu-
larly removes this implicit condition, and adapting that relaxation to the imper-
ative setting does enable the above semantics in user space [38,46,69].

Technically speaking, operations can be realized “exactly” by actually pro-
cessing approximations of variable but finite precision; precision chosen auto-
matically, for any given n, such that (a) the output accuracy attained after
initial and propagated errors is ≤ 1/2n, and (b) the program flow remains
indistinguishable from hypothetical exact calculations.

Both conditions can be implemented by object-oriented overloading the oper-
ations involving continuous data. One approach executes the user program sym-
bolically, recording expressions of all variables’ contents in dependence on the
initial arguments—expressions which thus can be evaluated in any finite ini-
tial precision and with error propagation whenever needed for (a) output or
(b) to decide/branch on a comparison between two distinct reals. Another app-
roach trades runtime for memory namely, instead of recording and silently re-
evaluating symbolic expressions, silently re-executes the user program repeat-
edly in increasing but finite initial precision until sufficient to (b) decide all
comparisons/branches and (a) attain the desired output accuracy. Note that
either approach requires the user program to be devoid of side effects, as com-
mon in functional programming and “desirable” (but now mandatory) in the
imperative setting.

3.3 Example ERC Programs

Paradigm 8 was designed to yield a rigorous and real Turing-complete semantics
of analytic programming closest to numerical intuition. Thus it requires only
little adaptation to replace classical but uncomputable tests with their replace-
ments, as exemplified in this subsection:

Example 10. The Soft Test x <n 0 from Example 6 can be expressed in ERC:

choose
(

x > 2−n+1 , x < 2−n
)

ieq 1

Example 11. The multivalued rounding “function” from Eq. 2 after Example 2
can be represented in ERC as follows:

INTEGER Round(x:REAL);
LET k:INTEGER=0;
WHILE choose(x<1 , x>1/2) = 1

DO k:=k+1; x:=x-1; ENDWHILE;
WHILE choose(x>-1 , x<-1/2) = 1

DO k:=k-1; x:=x+1; ENDWHILE;
RETURN k;

Note that the loop bodies are executed roughly |x| times, that is, exponential
in the binary length of the output. See [10, §2.5] for a more efficient version
sufficing with a linear number of loop iterations.

Survey: Computer Science for Continuous Data 71

Classically, bisection is employed for finding the root of a function f : [a; b] → R.
Rigorously speaking however, this may fail in case the chosen mid-point c =
(a + b)/2 already happens to coincide with the root of the function: In this case
f(c) = 0, the test of sign f(c) to decide which of the two sub-intervals to proceed
with, fails to terminate; recall Fact 1. Instead, trisection with overlapping sign
conditions has been suggested [20, p. 336] and can be represented in ERC as
follows:

Example 12. Program Trisection(p : INTEGER, f : REAL → REAL)
let a : REAL = 0; let b : REAL = 1;
while choose

(
ı(p) � b − a, b − a � ı(p − 1)

)
= 1

let a′ : REAL = b/3 + 2 × a/3; let b′ : REAL = 2 × b/3 + a/3;
if choose

(
0 � f(a′) × f(b) , 0 � f(a) × f(b′)

)
= 1

then b := b′ elsea := a′ end if ;
end while; return a

Gaussian Elimination, as reported in Example 4, requires and suffices with
receiving the rank of the given matrix as additional input in order to become
computable. A rigorous implementation using full pivoting can be found at
http://github.com/realcomputation/iRRAMx.

Example 13. Common implementations drawing the Mandelbrot Set lack relia-
bility for two reasons: First the defining iteration is conducted in floating-point
arithmetic with rounding and truncation errors that propagate and make the
computed sequence differ from the mathematical one. Secondly, said sequence is
calculated for a fixed number N of iterations after which it is considered to not
diverge—without actual mathematical justification.

The first rigorous algorithm for computing the Mandelbrot Set (subject to the
Hyperbolicity Conjecture) is due to Peter Hertling [21] with first implementation
due to Jihoon Hyun:
http://github.com/realcomputation/MANDELBROT.

3.4 Advanced and Upcoming ERC Programs

Some of the computable continuous data types from Subsects. 2.5 and 2.6 already
have been implemented in ERC: such as polynomial root-finding (in the sense of
Example 3) with QR-algorithm and Wilkinson Shift, or matrix Gaussian Elimi-
nation (in the sense of Example 4) with full pivoting [50], or analytic functions
[58] or compact metric groups [51] or solution operators to selected PDEs [35].

Future efforts are directed towards similarly implementing:

– the hyperspace of compact subsets of Euclidean space [25];
– spaces of integrable functions defined on a compact Euclidean domain;
– closed manifolds from differential geometry;
– Random sampling of continuous objects (Subsect. 5.2).

See also Subsect. 6.1 below.

http://github.com/realcomputation/iRRAMx
http://github.com/realcomputation/MANDELBROT

72 F. Brauße et al.

3.5 Verification/Testing

According to Murphy’s Law of Computing, “Every non-trivial program has at
least one bug”. Verification and Testing are two major approaches to prevent or
at least reduce the number of errors. Beyond heuristical success stories [55], both
methods arguably lack logical justification: A program may well work correctly
throughout years and on billions of practical test instances yet still contain fun-
damental flaws, such as zero-day exploits. And Gödel Incompleteness/Hilbert’s
Tenth Problem translates to arithmetic programs which are correct, but whose
correctness provably cannot be proven [13].

Relative to such constraints on integer processing, formally verifying the
correctness of floating point calculations is possible [4]—but involved and messy:
Designed by the Institute of Electrical and Electronics Engineers, the IEEE 754
standard revolves around 1980ies hardware capabilities to support for example
NaNs and de/normalized numbers while violating mathematical associate and
distributive laws as well as logical completeness.

Real closed fields of characteristic zero on the other hand do admit an
intuitive and elegant axiomatization3, which is furthermore logically complete
according to Tarski. More generally, consider the many-sorted structure involving
real numbers and Presburger integers connected via the “precision” embedding
ı : Z 	 z
→ 2z ∈ R: It can express many (local) properties of ERC programs
and, building on work by van den Dries [2,14], is decidable: justifying auto-
matic formal verification. (Whereas other embeddings, such as ı̃ : N \ {0} 	
n
→ 1/n ∈ R, lead to Gödel undecidability.) Recall Remark 9 and see §4.1 in
arXiv:1608.05787 for details.

4 Coding Theory

Digital computers and Turing machines naturally operate on sequences of bits;
processing any other data, such as integers or graphs, needs first fixing encod-
ings for input and output. In the discrete case, this is usually straightforward
and/or complexity-theoretically inessential (up to polynomial time, say). How-
ever concerning continuous data, already real numbers suggest various encodings
with surprisingly different algorithmic properties: ranging from the computably
“unreasonable” binary expansion via qualitatively to polynomially and even lin-
early complexity-theoretically “reasonable” signed-digit expansion. But how to
distinguish between un/suitable encodings of other spaces common in Calculus
and Numerics, such as Sobolev?

This (meta) question has long been answered regarding qualitative com-
putability: admissibility [37,56] is a crucial condition for an encoding of a space X
to be “reasonable”. Following this conception, encodings are partial surjective
mappings (historically called representations) from Cantor space onto X; and
said mapping is required to be (a) sequentially continuous and (b) maximal with
respect to sequentially continuous reduction [63, §3.2]. Admissible encodings are

3 Without the second-order property of being topologically complete.

http://arXiv.org/abs/1608.05787

Survey: Computer Science for Continuous Data 73

guaranteed to exist for a large class of topological spaces, and to be Cartesian
closed. And for (precisely) these does the sometimes so-called Main Theorem
hold: which characterizes continuity of functions by the continuity of mappings
translating codes, so-called realizers.

Subsection 4.1 summarizes the preprint [41] on quantitatively/complexity-
theoretically refining said qualitative/computable admissibility from topological
to metric spaces. Further tailoring such efficient encoding to spaces with addi-
tional structure is discussed in Subsect. 4.2.

4.1 Quantitative Coding Theory of Compact Metric Spaces

[41] develops a generic approach to refine qualitative computability over topo-
logical spaces to quantitative complexity over metric spaces. It strengthens the
notion of unqualified admissibility to polynomial and to linear admissibility.
Informally speaking, the latter two require a representation to be (a) almost
“optimally” continuous (namely linearly/polynomially relative to the space’s
entropy) and (b) maximal with respect to relatively linearly/polynomially con-
tinuous reductions.

A large class of spaces is shown to admit a quantitatively admissible represen-
tation, including a generalization of the signed-digit encoding; and quantitatively
admissible representations exhibit a quantitative strengthening of the qualitative
Main Theorem, namely now characterizing quantitative continuity of functions
by quantitative continuity of realizers. Quantitative admissibility thus provides
the desired criterion for complexity-theoretically “reasonable” encodings.

The contribution then rephrases quantitative admissibility as quantitative
continuity of both the representation and of its set-valued inverse. For the latter
purpose, it adapts from [52] a new notion of sequential continuity for multi-
functions. By establishing a quantitative continuous selection theorem for multi-
functions between compact ultrametric spaces, it extends the above quantitative
Main Theorem from functions to multifunctions aka search problems. Higher-
type complexity is captured by generalizing Cantor’s (and Baire’s) ground space
for encodings to other (compact) ultrametric spaces.

4.2 Encoding Advanced Spaces in Analysis

Structures expanding on compact metric spaces support operations beyond the
metric. Making also these computable (subject to admissible encodings) is dis-
cussed in Subsect. 2.6 above. Minimizing their computational cost in turn relies
on further refining the encodings from Subsect. 4.1: Work in progress devel-
ops and compares tailored representations for spaces of (say, square) integrable
functions, and for Sobolev spaces of weakly differentiable functions. Such spaces
underlie the mathematical theory of partial differential equations [62], and are
thus required for the following complexity considerations:

74 F. Brauße et al.

5 Complexity Theory of Continuous Data

Over the past decades, Numerics has devised a myriad of methods: for effi-
ciently computing algebraic and transcendental constants and functions, for solv-
ing ordinary and differential and partial differential equations, for optimization
under constraints etc.

The efficiency of such a method can often be shown optimal by compari-
son to the quantitative stability of the problem it solves. When small pertur-
bations of the input lead to large changes in output, algorithms must neces-
sarily process and operate on high-precision data, incurring a large number of
bit manipulations.

Function maximization and Riemann integration are stable; yet information-
theoretically their approximation up to guaranteed absolute error 1/2n depends
on exponentially many sample points already in the smooth case; recall
Remark 9. This demonstrates information theory as another method for rig-
orous lower complexity bounds in Numerics.

But what if the function is fixed, so that only the precision parameter n ∈ N

remains as input? Subsect. 5.1 reports on surprising connections of numerical
problems in this setting to unary classical (i.e., discrete) complexity classes. Sub-
section 5.2 addresses the question of adapting randomization from the discrete
to the continuous setting.

5.1 Computational Complexity of Continuous Data

For any fixed polynomial-time computable real function f : [0; 1] → R, Har-
vey Friedman and Ker-I Ko had observed that its maximum max(f) can be
computed relative to an NP1 oracle and its definite integral

∫
f relative to a

#P1 oracle [17,31,33]. Recall that the latter denote restrictions of the famous
complexity classes NP and #P to inputs n ∈ N encoded in unary; and maxi-
mizing and integrating/counting a given, discrete (e.g., Boolean) function are
well-known complete for these respective classes.

Parametric maximization is the problem of maximizing f : [0; 1] → R not on
the entire interval, but on the subinterval [0;x] for a given real number x ≤ 1.
Similarly, computing the indefinite integral

∫ x

0
f(y) dy involves two arguments:

real x and integer precision parameter n. These turn out to be computable
in polynomial time relative to NP oracles and #P oracles, respectively. And,
perhaps surprisingly, this is optimal: there exist (even smooth) polynomial-time
computable real functions such that polynomial-time algorithms for parametric
maximization and indefinite integration yields polynomial-time solutions to NP
and #P, respectively [32].

Thus, perhaps contrary to intuition, proceeding from discrete to smooth
instances does not help (enough) in the rigorous sense of computational com-
plexity theory to proceed from NP/#P to polynomial time.

#P1-“completeness” of definite integration generalizes from the real unit
interval with respect to the Lebesgue measure to a large class of compact

Survey: Computer Science for Continuous Data 75

metric groups with respect the Haar measure [51]. Akitoshi Kawamura’s 2010
breakthrough result [27] similarly characterizes PSPACE via solving 1D smooth
ordinary differential equations. And recent contributions relate #P to solving
two linear prototype PDEs, namely (elliptic) Poisson [30] and (parabolic) Heat
Equation [35].

Next up on the to-do list is a complexity-theoretic classification of the (hyper-
bolic) linear Wave Equation, and of the non-linear Navier-Stokes Equation.
Subject the Millennium Prize Problem, Navier-Stokes maintains regularity and
its solutions remain in classical spaces of continuously differentiable functions
with their established coding and computability and complexity theory [61].
But regarding the Wave Equation, its regularity theory is well-established to
require Sobolev spaces for computability investigations [53,66]; and Subsect. 4.2
develops the quantitative coding theory necessary for complexity considerations.

5.2 Algorithmic Random Sampling of Continuous Data

Monte Carlo algorithms date back to the Manhattan Project, and randomization
has since evolved into an important technique in Computer Science: building up
from random bits to random integers, random real numbers etc. Like every subset
of natural numbers giving rise to a decision problem, every probability measure
gives rise to three conceptually distinct computational problems: (a) evaluating,
(b) integrating, and (c) random sampling.

Under mild assumptions, evaluation (a) and integration (b) are known com-
putably equivalent [65]; see also the many works of Hoyrup. The general relation
of (a) and (b) to (c) random sampling however seems open so far regarding
computability. This includes generalizing the real case with Lebesgue measure
to other Haar measures on compact groups, cmp. Subsect. 2.6. More generally
consider the problem of computably sampling elements from a separable but not
necessarily (sigma-)compact space, such as the Wiener space [40].

Following computability, the natural next question is concerned with compu-
tational complexity. Recall Subsect. 5.1 that, over the reals, (iii) sampling takes
polynomial time while (ii) integrating characterizes #P. Both generalize from the
real unit interval to convex bodies in Euclidean space [12,15]. Beyond the con-
tinuous Lebesgue measure, integration remains #P-hard for singular measures
[16] but becomes algorithmically easy for discrete (e.g., Dirac) measures.

Question 14. Is there a probability measure space where sampling is significantly
harder than integration?

6 From Theory to Applications via Practice

Sections 2 to 5 have expanded on four central concepts from classical computer
science and how to extend them to the continuous setting. Key examples illus-
trate how this has been achieved or is currently in progress or what to approach
next: to provide proofs-of-concept and opportunities to gather experience and

76 F. Brauße et al.

guidance, to pave the path. The present section explores and details ways to
finally flesh out between and beyond said case studies, to turn the theory into
practice, and to pursue applications.

The present section explores and details ways for finally fleshing out between
and beyond said case studies, to turn the theory into practice, and to pursue
applications: Subsect. 6.1 envisions thus growing a rich software library of con-
tinuous data types. The question of inputting and outputting smooth vector
fields is addressed in Subsect. 6.3. Combining such human-computer interface
with the software library for analytical computing complements common Com-
puter Algebra Systems, see Subsect. 6.4. Subsection 6.5 promotes its benefits to
Experimental Mathematics.

6.1 Software Library

The rigorous paradigm of Analytic Programming (Sect. 3) finally allows to
extend the six stages (i)–(vi) of Formal Software Engineering (Subsect. 2.1)
from discrete to continuous problems. It thus enables creating a collection of
abstract data types that build up from basic real numbers to the structures
of Advanced Calculus, reliably. Above we have illustrated selected stages of this
process (Fig. 1) with independent examples, such as: specification (Subsect. 2.6),
efficient coding (Sect. 4), complexity (Subsect. 5.1), imperative implementation
(Subsect. 3.4), and verification/testing (Subsecti. 3.5).

After completing these proofs-of-concepts comes extending, for each of the
above case-study data type levels (0) and (1) from Subsect. 2.6, the example stage
from the demonstration to range full-stack from (i) to (vi); and then similarly
applying formal Numerical Software Engineering from specification (i) to verifi-
cation/testing (vi) for the advanced structures in Calculus on levels (2) to (7).
This yields a gradually growing collection of reliable data types with algorith-
mically optimal methods in agreement with constructive proofs. Specifically the
following four examples, formulated abstractly and generically in Mathematics,
translate equally universally to algorithms using overloading:

Example 15. Equations are often solved by means of iterations:

a) The multiplicative inverse y = x−1 can be computed as solution to 1/y−x = 0
by Newton’s method yn+1 = yn · (2 − x · yn): generically in many rings, such
as for example of matrices or operators.

b) Similarly, the square root y =
√

x as solution of the equation x2 = y is
also often computed by means of Newton iterations aka Babylonian method
yn+1 =

(
yn + x · y−1

n

)
/2: again generically in many rings.

c) Picard’s method for solving ODEs amounts to iterations according to
Banach’s Fixedpoint Theorem in a suitable space of smooth functions.

d) Solutions to Navier-Stokes’ nonlinear PDE are also mathematically shown to
exist [18, §2] and being computable [61] by means of iterations in some space
of integrable functions.

Survey: Computer Science for Continuous Data 77

6.2 Hardware Acceleration

Being Turing-complete over the reals, Analytic Programming (Sect. 3) hides but
must and can build on processing ordinary variable precision approximations.
IEEE 754 floating point numbers have fixed precision, but enjoy a constant-
factor acceleration from hardware support—compared to software solutions.
Similarly accelerating ERC will thus combine the best of both worlds: reliability
and efficiency.

Previous work has already managed to beat the highly optimized software
library MPFRin quadruple precision by instead operating on pairs of hardware
doubles [23,25]. Alternative approaches may explore SIMD parallel processing
of many single precision floating point numbers on a GPU; or may develop
dedicated FPGAs/ASICs for multiprecision processing. In both cases, the com-
munication bottleneck to the main CPU/memory requires outsourcing complex
operations and sequences on once transferred data.

This endeavour naturally proceeds with the support of and collaboration
with Electrical Engineering.

6.3 User Interface

Processing is the middle part of the IPO model, whose extension from discrete to
continuous data have been discussed above. The first and last part of IPO refer to
input and output. Historical human-computer-interfaces like keyboard/printer
can input/output symbolic data, and are thus suitable for Computer Algebra
Systems manipulating expressions: one way of representing functions, but lacking
intuition. Intuitively and interactively “grabbing” and “pulling” is supported by
common graphical user interfaces, based on mouse devices for input and monitors
for output—but these are limited to 2D.

VR glasses can visualize 3D, but doing so for opaque non-scalar fields is
challenging to put it mildly; and motion sensing game controllers (like Kinect
or Nintendo Switch Pro) allow for “grabbing” and “pulling” in 3D, but they do
not support “twisting”, i.e., they cannot edit vortices.

Thus arises the need to develop a user interface for input and output of
real functions “living” in higher dimensions, such as scalar (e.g., temperature)
fields in 2D and 3D, or vector (e.g., force) fields. Its core challenge is for a
haptic data glove that, conversely to detecting user motions in space (as men-
tioned already supported by existing models), can also exercise free forces, i.e.,
to pull/drag the user’s hand in any direction and magnitude: allowing to “feel”
(as opposed/complement to “view” in VR) vector fields. Moreover, in order to
both feel and modify vortices of vector fields, the glove will be able to both sense
and exercise twisting motions according to any rotation vector.

This endeavour naturally proceeds with the support of and collaboration
with Mechanical Engineering.

78 F. Brauße et al.

6.4 Computer Analysis System

Combining the software library from Subsect. 6.1 with an interactive user inter-
face (cmp. Subsect. 6.3) yields a Computer Analysis System: complementing
contemporary Computer Algebra Systems, either standalone or—preferably—as
seamless extension to a suitable open system like OSCAR. Here each abstract data
type naturally turns into a package (interface). The plan is for further integration
with some theorem proof assistant, such as Coq/HOL.

6.5 Experimental Transcendental Mathematics

The rise of Computer Algebra Systems has truly boosted experimental
approaches to discrete branches of Mathematics; see for instance the works
of Shalosh B. Ekhad. Computer-assisted proofs of statements in continuous
Mathematics are a rising field, with breakthroughs concerning for example the
Kepler Conjecture or Smale’s 14th Problem. But these contributions remain iso-
lated, with each approach computationally tailored (e.g., whether using hardware
floats, or MPFR, and at which precision) to the particular problem: challenging
for good reasons [5,47], and far from the convenience and turnkey approaches
available in the discrete realm.

The software library from Subsect. 6.1 will remedy this deficiency, support-
ing reliable off-the-shelf computations for example in transcendental number
theory: by putting a variety of theoretical algorithms into practice [22,54] and
by spurring the development of new ones.

References

1. Ambos-Spies, K., Brandt, U., Ziegler, M.: Real benefit of promises and advice. In:
Bonizzoni, P., Brattka, V., Löwe, B. (eds.) CiE 2013. LNCS, vol. 7921, pp. 1–11.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39053-1 1

2. Avigad, J., Yin, Y.: Quantifier elimination for the reals with a predicate for the
powers of two. Theor. Comput. Sci. 370(1–3), 48–59 (2007). https://doi.org/10.
1016/j.tcs.2006.10.005

3. Bauer, A.: Clerical. https://github.com/andrejbauer/clerical (2017)
4. Boldo, S., Jourdan, J.H., Leroy, X., Melquiond, G.: Verified compilation of floating-

point computations. J. Autom. Reason. 54(2), 135–163 (2015)
5. Bornemann, F., Laurie, D., Wagon, S., Waldvogel, J.: The SIAM 100-Digit Chal-

lenge. SIAM (2004). http://www.siam.org/books/100digitchallenge/
6. Brattka, V.: The emperor’s new recursiveness: the epigraph of the exponential

function in two models of computability. In: Ito, M., Imaoka, T. (eds.) Words,
Languages & Combinatorics III, pp. 63–72. World Scientific Publishing, Singapore
(2003), iCWLC 2000, Kyoto, Japan, March 14–18 (2000)

7. Brattka, V., Hertling, P.: Feasible real random access machines. J. Complex. 14(4),
490–526 (1998)

8. Brattka, V., Pauly, A.: Computation with advice. In: Zheng, X., Zhong, N. (eds.)
CCA 2010, Proceedings of the Seventh International Conference on Computabil-
ity and Complexity in Analysis. Electronic Proceedings in Theoretical Computer
Science, vol. 24, pp. 41–55 (2010)

https://doi.org/10.1007/978-3-642-39053-1_1
https://doi.org/10.1016/j.tcs.2006.10.005
https://doi.org/10.1016/j.tcs.2006.10.005
https://github.com/andrejbauer/clerical
http://www.siam.org/books/100digitchallenge/

Survey: Computer Science for Continuous Data 79

9. Brattka, V., Schröder, M.: Computing with sequences, weak topologies and the
axiom of choice. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 462–476.
Springer, Heidelberg (2005). https://doi.org/10.1007/11538363 32

10. Brauße, F., et al.: Semantics, logic, and verification of “exact real computation”.
Tech. rep., arXiv (2021)

11. Braverman, M., Cook, S.A.: Computing over the reals: foundations for scientific
computing. Notice AMS 53(3), 318–329 (2006)

12. Cho, J., Park, S., Ziegler, M.: Computing periods In: Proceedings of the WAL-
COM: Algorithms and Computation - 12th International Conference, WALCOM
2018, Dhaka, Bangladesh, 3–5 March 2018, pp. 132–143 (2018). https://doi.org/
10.1007/978-3-319-75172-6 12

13. Cook, S.A.: Soundness and completeness of an axiom system for program verifica-
tion. SIAM J. Comput. 7(1), 70–90 (1978). https://doi.org/10.1137/0207005

14. Dries, L.v.d.: The field of reals with a predicate for the powers of two. Manus.
Math.54, 187–196 (1986), http://eudml.org/doc/155108

15. Dyer, M.E., Frieze, A.M., Kannan, R.: A random polynomial time algorithm for
approximating the volume of convex bodies. J. ACM 38(1), 1–17 (1991). https://
doi.org/10.1145/102782.102783

16. Férée, H., Ziegler, M.: On the computational complexity of positive linear func-
tionals on C[0; 1]. In: Kotsireas, I.S., Rump, S.M., Yap, C.K. (eds.) MACIS 2015.
LNCS, vol. 9582, pp. 489–504. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-32859-1 42

17. Friedman, H.: The computational complexity of maximization and integration.
Adv. Math. 53, 80–98 (1984). https://doi.org/10.1016/0001-8708(84)90019-7

18. Giga, Y., Miyakawa, T.: Solutions in lr of the Navier-stokes initial value problem.
Arch. Ration. Mech. Anal. 89(3), 267–281 (1985)

19. Goldreich, O.: On promise problems: a survey. In: Goldreich, O., Rosenberg, A.L.,
Selman, A.L. (eds.) Theoretical Computer Science. LNCS, vol. 3895, pp. 254–290.
Springer, Heidelberg (2006). https://doi.org/10.1007/11685654 12

20. Hertling, P.: Topological complexity with continuous operations. J. Complex. 12,
315–338 (1996). https://doi.org/10.1006/jcom.1996.0021

21. Hertling, P.: Is the Mandelbrot set computable? Math. Log. Q. 51(1), 5–18 (2005)
22. Hertling, P., Spandl, C.: Computing a solution of Feigenbaum’s functional equation

in polynomial time. Log. Methods Comput. Sci. 10(4), 4:7, 9 (2014). https://doi.
org/10.2168/LMCS-10(4:7)2014

23. Hida, Y., Li, X.S., Bailey, D.H.: Library for double-double and quad-double arith-
metic. Tech. rep, Lawrence Berkeley National Laboratory (2007)

24. Hoyrup, M., Rute, J.: Computable measure theory and algorithmic randomness.
In: Handbook of Computability and Complexity in Analysis. TAC, pp. 227–270.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-59234-9 7

25. Jiman, H.: Real computation: from computability via efficiency to practice. M.sc.
thesis, School of Computing (2021)

26. Kanada, Y.J.: . Math. Cult. 1(1), 72–83 (2003). Cal-
culation of circumferential ratio by computer

27. Kawamura, A.: Lipschitz continuous ordinary differential equations are polynomial-
space complete. Comput. Complex. 19(2), 305–332 (2010). https://doi.org/10.
1007/s00037-010-0286-0

28. Kawamura, A., Müller, N., Rösnick, C., Ziegler, M.: Computational benefit of
smoothness: parameterized bit-complexity of numerical operators on analytic func-
tions and Gevrey’s hierarchy. J. Complex. 31(5), 689–714 (2015). https://doi.org/
10.1016/j.jco.2015.05.001

https://doi.org/10.1007/11538363_32
https://doi.org/10.1007/978-3-319-75172-6_12
https://doi.org/10.1007/978-3-319-75172-6_12
https://doi.org/10.1137/0207005
http://eudml.org/doc/155108
https://doi.org/10.1145/102782.102783
https://doi.org/10.1145/102782.102783
https://doi.org/10.1007/978-3-319-32859-1_42
https://doi.org/10.1007/978-3-319-32859-1_42
https://doi.org/10.1016/0001-8708(84)90019-7
https://doi.org/10.1007/11685654_12
https://doi.org/10.1006/jcom.1996.0021
https://doi.org/10.2168/LMCS-10(4:7)2014
https://doi.org/10.2168/LMCS-10(4:7)2014
https://doi.org/10.1007/978-3-030-59234-9_7
https://doi.org/10.1007/s00037-010-0286-0
https://doi.org/10.1007/s00037-010-0286-0
https://doi.org/10.1016/j.jco.2015.05.001
https://doi.org/10.1016/j.jco.2015.05.001

80 F. Brauße et al.

29. Kawamura, A., Steinberg, F., Ziegler, M.: Towards computational complexity the-
ory on advanced function spaces in analysis. In: Beckmann, A., Bienvenu, L.,
Jonoska, N. (eds.) CiE 2016. LNCS, vol. 9709, pp. 142–152. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-40189-8 15

30. Kawamura, A., Steinberg, F., Ziegler, M.: On the computational complexity of
the Dirichlet problem for Poisson’s equation. Math. Struct. Comput. Sci. 27(8),
1437–1465 (2017). https://doi.org/10.1017/S096012951600013X

31. Ko, K.I.: The maximum value problem and NP real numbers. J. Comput. Syst.
Sci. 24, 15–35 (1982)

32. Ko, K.I.: Complex. Theory Real Funct. Progress in Theoretical Computer Science,
Birkhäuser, Boston (1991)

33. Ko, K.I., Friedman, H.: Computational complexity of real functions. Theoret. Com-
put. Sci. 20, 323–352 (1982)

34. Køber, P.K.: Uniform domain representations of �p-spaces. Math. Log. Q. 180(2),
180–205 (2007)

35. Koswara, I., Pogudin, G., Selivanova, S., Ziegler, M.: Bit-complexity of solving
systems of linear evolutionary partial differential equations. In: Santhanam, R.,
Musatov, D. (eds.) CSR 2021. LNCS, vol. 12730, pp. 223–241. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-79416-3 13

36. Kreisel, G., Macintyre, A.: Constructive logic versus algebraization, I. In: Troelstra,
A., van Dalen, D. (eds.) The L. E. J. Brouwer Centenary Sympos. Studies in
Logic and the Foundations of Mathematics, vol. 110, pp. 217–260. North-Holland,
Amsterdam (1982), (Noordwijkerhout, June 8–13 1981)

37. Kreitz, C., Weihrauch, K.: Theory of representations. Theoret. Comput. Sci. 38,
35–53 (1985)

38. Lambov, B.: RealLib: an efficient implementation of exact real arithmetic. Math.
Struct. Comput. Sci. 17, 81–98 (2007)

39. Le Roux, S., Ziegler, M.: Singular coverings and non-uniform notions of closed set
computability. In: Dillhage, R., Grubba, T., Sorbi, A., Weihrauch, K., Zhong, N.
(eds.) Proceedings of the Fourth International Conference on Computability and
Complexity in Analysis (CCA 2007). Electronic Notes in Theoretical Computer
Science, vol. 202, pp. 73–88. Elsevier (2008), CCA 2007, Siena, Italy, 6–18 June
2007

40. Lee, H.: Random sampling of continuous objects. Ph.D. thesis, School of Comput-
ing (2020)

41. Lim, D., Ziegler, M.: Quantitative coding and complexity theory of continuous
data. Tech. rep., arXiv (2021)

42. Luckhardt, H.: A fundamental effect in computations on real numbers. Theoret.
Comput. Sci. 5(3), 321–324 (1977)

43. McNicholl, T.H.: A note on the computable categoricity of �p spaces. In: Beck-
mann, A., Mitrana, V., Soskova, M. (eds.) CiE 2015. LNCS, vol. 9136, pp. 268–275.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20028-6 27

44. Mori, T., Tsujii, Y., Yasugi, M.: Computability of probability distributions and
characteristic functions. Log. Methods Comput. Sci. 9, 3:9, 11 (2013). https://doi.
org/10.2168/LMCS-9(3:9)2013

45. Mostowski, A.: On computable sequences. Fundam. Math. 44, 37–51 (1957)
46. Müller, N.T.: The iRRAM: exact arithmetic in C++. In: Blanck, J., Brattka, V.,

Hertling, P. (eds.) CCA 2000. LNCS, vol. 2064, pp. 222–252. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45335-0 14

https://doi.org/10.1007/978-3-319-40189-8_15
https://doi.org/10.1017/S096012951600013X
https://doi.org/10.1007/978-3-030-79416-3_13
https://doi.org/10.1007/978-3-319-20028-6_27
https://doi.org/10.2168/LMCS-9(3:9)2013
https://doi.org/10.2168/LMCS-9(3:9)2013
https://doi.org/10.1007/3-540-45335-0_14

Survey: Computer Science for Continuous Data 81

47. Nakao, M.T., Plum, M., Watanabe, Y.: Numerical Verification Methods and
Computer-Assisted Proofs for Partial Differential Equations. Springer Series in
Computational Mathematics, Springer (2019). https://doi.org/10.1007/978-981-
13-7669-6

48. Neumann, E., Ouaknine, J., Worrell, J.: On ranking function synthesis and ter-
mination for polynomial programs. In: Konnov, I., Kovács, L. (eds.) 31st Inter-
national Conference on Concurrency Theory, CONCUR 2020, September 1–4,
2020, Vienna, Austria (Virtual Conference). LIPIcs, vol. 171, pp. 15:1–15:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.
4230/LIPIcs.CONCUR.2020.15

49. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)
50. Park, S., Ziegler, M.: Reliable degenerate matrix diagonalization. Tech. Rep. CS-

TR-2018-415, KAIST (2018)
51. Pauly, A., Seon, D., Ziegler, M.: Computing Haar measures. In: Fernández, M.,

Muscholl, A. (eds.) 28th EACSL Annual Conference on Computer Science Logic,
CSL 2020, January 13–16, 2020, Barcelona, Spain. LIPIcs, vol. 152, pp. 34:1–
34:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/
10.4230/LIPIcs.CSL.2020.34

52. Pauly, A., Ziegler, M.: Relative computability and uniform continuity of relations.
J. Log. Anal. 5(7), 1–39 (2013)

53. Pour-El, M.B., Richards, J.I.: The wave equation with computable initial data such
that its unique solution is not computable. Advances in Math. 39, 215–239 (1981)

54. Rettinger, R.: Bloch’s constant is computable. J. Univ. Comput. Sci. 14(6), 896–
907 (2008)

55. Ryu, S., Park, J., Park, J.: Toward analysis and bug finding in javascript web
applications in the wild. IEEE Softw. 36(3), 74–82 (2019). https://doi.org/10.
1109/MS.2018.110113408

56. Schröder, M.: Admissible representations in computable analysis. In: Beckmann,
A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 471–
480. Springer, Heidelberg (2006). https://doi.org/10.1007/11780342 48

57. Schröder, M.: Admissibly Represented Spaces and Qcb-Spaces. In: Handbook of
Computability and Complexity in Analysis. TAC, pp. 305–346. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-59234-9 9

58. Selivanova, S., Steinberg, F., Thies, H., Ziegler, M.: Exact real computation of
solution operators for linear analytic systems of partial differential equations. In:
Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2021.
LNCS, vol. 12865, pp. 370–390. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-85165-1 21

59. Specker, E.: The fundamental theorem of algebra in recursive analysis. In: Dejon,
B., Henrici, P. (eds.) Constructive Aspects of the Fundamental Theorem of Alge-
bra, pp. 321–329. Wiley-Interscience, London (1969)

60. Steinberg, F.: Complexity theory for spaces of integrable functions. Logical Meth-
ods in Computer Science 13(3), Paper No. 21, 39 (2017). https://doi.org/10.23638/
LMCS-13(3:21)2017

61. Sun, S.-M., Zhong, N., Ziegler, M.: Computability of the solutions to Navier-Stokes
equations via effective approximation. In: Du, D.-Z., Wang, J. (eds.) Complex-
ity and Approximation. LNCS, vol. 12000, pp. 80–112. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-41672-0 7

62. Triebel, H.: Theory of Function Spaces I, II, III. Birkhäuser (1983, 1992, 2006).
https://doi.org/10.1007/978-3-0346-0416-1

https://doi.org/10.1007/978-981-13-7669-6
https://doi.org/10.1007/978-981-13-7669-6
https://doi.org/10.4230/LIPIcs.CONCUR.2020.15
https://doi.org/10.4230/LIPIcs.CONCUR.2020.15
https://doi.org/10.4230/LIPIcs.CSL.2020.34
https://doi.org/10.4230/LIPIcs.CSL.2020.34
https://doi.org/10.1109/MS.2018.110113408
https://doi.org/10.1109/MS.2018.110113408
https://doi.org/10.1007/11780342_48
https://doi.org/10.1007/978-3-030-59234-9_9
https://doi.org/10.1007/978-3-030-85165-1_21
https://doi.org/10.1007/978-3-030-85165-1_21
https://doi.org/10.23638/LMCS-13(3:21)2017
https://doi.org/10.23638/LMCS-13(3:21)2017
https://doi.org/10.1007/978-3-030-41672-0_7
https://doi.org/10.1007/978-3-0346-0416-1

82 F. Brauße et al.

63. Weihrauch, K.: Computable Analysis. Springer, Berlin (2000). https://doi.org/10.
1007/978-3-642-56999-9

64. Weihrauch, K.: The computable multi-functions on multi-represented sets are
closed under programming. J. Univ. Comput. Sci. 14(6), 801–844 (2008)

65. Weihrauch, K., Tavana-Roshandel, N.: Representations of measurable sets in com-
putable measure theory. Logical Methods Comput. Sci. 10, 3:7,21 (2014). https://
doi.org/10.2168/LMCS-10(3:7)2014

66. Weihrauch, K., Zhong, N.: Is wave propagation computable or can wave computers
beat the Turing machine? Proc. Lond. Math. Soc. 85(2), 312–332 (2002)

67. Yap, C., Sagraloff, M., Sharma, V.: Analytic root clustering: a complete algorithm
using soft zero tests. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds.) CiE 2013.
LNCS, vol. 7921, pp. 434–444. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-39053-1 51

68. Yap, C.K.: On guaranteed accuracy computation. In: Geometric Computation, pp.
322–373. World Scientific Publishing, Singapore (2004)

69. Yu, J., Yap, C., Du, Z., Pion, S., Brönnimann, H.: The design of Core 2: a library
for exact numeric computation in geometry and algebra. In: Fukuda, K., Hoeven,
J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 121–141.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15582-6 24

70. Ziegler, M.: Real computation with least discrete advice: a complexity theory of
nonuniform computability with applications to effective linear algebra. Ann. Pure
Appl. Logic 163(8), 1108–1139 (2012). https://doi.org/10.1016/j.apal.2011.12.030

71. Ziegler, M., Brattka, V.: Computability in linear algebra. Theoret. Comput. Sci.
326(1–3), 187–211 (2004)

https://doi.org/10.1007/978-3-642-56999-9
https://doi.org/10.1007/978-3-642-56999-9
https://doi.org/10.2168/LMCS-10(3:7)2014
https://doi.org/10.2168/LMCS-10(3:7)2014
https://doi.org/10.1007/978-3-642-39053-1_51
https://doi.org/10.1007/978-3-642-39053-1_51
https://doi.org/10.1007/978-3-642-15582-6_24
https://doi.org/10.1016/j.apal.2011.12.030

	Computer Science for Continuous Data
	1 Introduction and Motivation
	2 Computable Continuous Data Types
	2.1 Formal Numerical Software Engineering
	2.2 Kleene Logic Data Type, Generalized Sierpiński Topology
	2.3 Enrichment/Promises
	2.4 Multivaluedness/Non-extensionality
	2.5 Examples
	2.6 More Continuous Data Types

	3 New Numerical Programming
	3.1 Analytic Programming
	3.2 Implementations
	3.3 Example ERC Programs
	3.4 Advanced and Upcoming ERC Programs
	3.5 Verification/Testing

	4 Coding Theory
	4.1 Quantitative Coding Theory of Compact Metric Spaces
	4.2 Encoding Advanced Spaces in Analysis

	5 Complexity Theory of Continuous Data
	5.1 Computational Complexity of Continuous Data
	5.2 Algorithmic Random Sampling of Continuous Data

	6 From Theory to Applications via Practice
	6.1 Software Library
	6.2 Hardware Acceleration
	6.3 User Interface
	6.4 Computer Analysis System
	6.5 Experimental Transcendental Mathematics

	References

