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Abstract. Subresultant chains over rings of multivariate polynomials
are calculated using a speculative approach based on the Bézout matrix.
Our experimental results yield significant speedup factors for the pro-
posed approach against comparable methods. The determinant compu-
tations are based on fraction-free Gaussian elimination using various piv-
oting strategies.
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1 Introduction

Subresultants are one of the most fundamental tools in computer algebra. They
are at the core of numerous algorithms including, but not limited to, polynomial
GCD computations, polynomial system solving, and symbolic integration. When
the subresultant chain of two polynomials is required in a procedure, not all
polynomials of the chain, or not all coefficients of a given subresultant, may be
needed. Based on that observation, the authors of [5] studied different practical
schemes, and their implementation, for efficiently computing subresultants.

The main objective of [5] is, given two univariate polynomials a, b ∈ A[y]
over some commutative ring A, to compute the subresultant chain of a, b ∈ A[y]
speculatively. To be precise, the objective is to compute the subresultants of
index 0 and 1, delaying the computation of subresultants of higher index until it
is proven necessary. The practical importance of this objective, as well as related
works, are discussed extensively in [5].

Taking advantage of the Half-GCD algorithm and evaluation-interpolation
methods, the authors of [5] consider the cases in which the coefficient ring A
is a polynomial ring with one or two variables, and with coefficients in a field,
Q or Z/pZ, for a prime number p. The reported experimentation demonstrates
the benefits of computing subresultant chains speculatively in the context of
polynomial system solving.

That strategy, however, based on the Half-GCD algorithm, cannot scale to
situations in which the coefficient ring A is a polynomial ring in many variables,
say 5 or more. The reason is that, for the Half-GCD algorithm to bring benefits,
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the degree in y of the polynomials a, b must be in the 100’s, implying that the
resultant of a, b is likely to have very large degrees in the variables of A, thus
making computations not feasible in practice when A has many variables.

Therefore, for this latter situation, one should consider an alternative app-
roach in order to compute subresultant chains speculatively, which is the objec-
tive of the present paper. To this end, we consider subresultant chain computa-
tions using Bézout matrices. Most notably, [1] introduced an algorithm to com-
pute the nominal coefficients of subresultants by calculating the determinants of
sub-matrices of a modified version of the Bézout matrix. Later, [15] generalized
this approach to compute all subresultants instead of only the nominal coeffi-
cients. Although the approach is theoretically slower than Ducos’ subresultant
chain algorithm [10], early experimental results in Maple, collected during the
development of the SubresultantChain method in the RegularChains library
[16], indicate that approaches based on the Bézout matrix are particularly well-
suited for sparse polynomials with many variables.

In this paper, we report on further work following this approach. In Sect. 2,
we discuss how to compute the necessary determinants of the sub-matrices of
the Bézout matrix. We modify and optimize the fraction-free LU decomposition
(FFLU) of a matrix over a polynomial ring presented in [14]. We demonstrate
the efficacy of the proposed methods using implementations in Maple and the
Basic Polynomial Algebra Subprograms (BPAS) library [3]. Our optimization
techniques include smart-pivoting and using the BPAS multithreaded interface
to parallelize the row elimination step. All of our code, is open source and part
of the BPAS library available at www.bpaslib.org.

In Sect. 3, we focus on the computation of subresultants using the Bézout
matrix. In Sect. 3.1, we review the definitions of the Bézout matrix and a modified
version of it, known as the Hybrid Bézout matrix. Then, we introduce a speculative
approach for computing subresultants by modifying the fraction-free LU factoriza-
tion and utilizing the Hybrid Bézout matrices in Sect. 3.2. We have implemented
these computational schemes for subresultant chains and our experimental results,
presented in Sect. 3.3, illustrate the benefits of the proposed methods.

2 Fraction-Free LU Decomposition

A standard way to compute the determinant of a matrix A is to reduce it to a
triangular form and then take the product of the resulting diagonal elements [18].
One such triangular form is given by an LU matrix decomposition. When the
input matrix A has elements in a polynomial ring, standard LU decomposition
algorithms lead to matrices with rational functions as elements. In order to keep
the elements in the ring of polynomials, while controlling expression swell, one
can use a fraction-free LU decomposition (FFLU), taking advantage of Bareiss’
algorithm [6], which was originally developed for integer matrices. Although
in an FFLU decomposition the matrices contain only elements from the ring of
polynomials, the intermediate computations do require exact divisions. Reducing
the cost of these divisions is a practical challenge, one which we discuss in this

www.bpaslib.org
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section. The main algorithm on which we rely has been described in [12, Ch. 9]
and [14]. The main theorem is the following.

Theorem 1. A rectangular matrix A with elements from an integral domain B,
having dimensions m × n and rank r, may be factored into matrices containing
only elements from B in the form,

A = PrLD−1UPc = Pr

( L
M

)
D−1

(U V)
Pc,

where the permutation matrix Pr is m × m; the permutation matrix Pc is n × n;
L is r × r, lower triangular and has full rank:

L =

⎛
⎜⎜⎜⎜⎝

p1 0 . . . 0

l21 p2
. . .

...
...

...
. . . 0

lr1 lr2 . . . pr

⎞
⎟⎟⎟⎟⎠ ,

where the pi �= 0 are the pivots in a Gaussian elimination; M is (m− r)× r and
is null when m = n holds; D is r × r and diagonal:

D = diag(p1, p1p2, p2p3, · · · , pr−2pr−1, pr−1pr),

U is r × r and upper triangular, while V is r × (n − r) and is null when m = n
holds:

U =

⎛
⎜⎜⎜⎝

p1 u12 . . . u1r

0 p2 . . . u2r

...
. . . . . .

...
0 . . . 0 pr

⎞
⎟⎟⎟⎠ .

Proof [14, Theorem 2]. Note that the elements of the matrix D belong to B,
but the matrix D−1, if explicitly calculated, lies in the quotient field.

Algorithm 3 implements Theorem 1 while Algorithm 2 utilizes Theorem 1 for
computing the determinant of A, when A is square. Both Algorithm 3 and Algo-
rithm 2 rely on Algorithm 1, which is a helper-function. This latter algorithm
updates the input matrix A in-place, to record the upper triangular matrix U ; it
also computes the “denominator” d, the rank r of the matrix A and the column
permutation of the input matrix. This is sufficient information to calculate the
determinant of a square matrix.

In Algorithm 2, the routine check-parity calculates the parity of the given
permutation modulo 2. Note that in both Algorithms 1 and 3, we only consider
row-operations to find the pivot and store the row permutation patterns in the
list Pr of size m. Column-permutations, and the corresponding list Pc, are used
in Sect. 2.1.

To optimize the FFLU algorithm, we use a smart-pivoting strategy, discussed
in Sect. 2.1. The idea is to find a “best” pivot by searching through the matrix
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to pick a non-zero coefficient (actually a polynomial) with the minimum number
of terms in each iteration. The goal of this technique is to reduce the cost of the
exact divisions in Bareiss’ algorithm; see Sect. 2.1 for the details.

In addition, we discuss the parallel opportunities of this algorithm in Sect. 2.2,
taking advantage of the BPAS multithreaded interface. Finally, Sect. 2.3 high-
lights the performance of these algorithms in the BPAS library, utilizing sparse
multivariate polynomial arithmetic.

Algorithm 1. fflu-helper(A)
Input: an m × n matrix A = (ai,j)0≤i<m, 0≤j<n over B (ai,j ∈ B).
Output: r, d, Pr where r is the rank of A, d is the “denominator”, so that, d = s det(S)

where S is an appropriate sub-matrix of A (S = A if A is square and non-singular).
s ∈ (−1, 1) is decided by the parity of row permutations (encoded by Pr).

1: k := 0; d := 1; k := 0; c := 0; Pr := [0, 1, . . . , m − 1]
2: while k < m and c < n do
3: if ak,c = 0 then
4: i := k + 1
5: while i < m do
6: if ai,c �= 0 then
7: swap i-th and k-th rows of A
8: Pr[i], Pr[k] := Pr[k], Pr[i]
9: break

10: i := i + 1

11: if m ≤ i then
12: c := c + 1
13: continue
14: r := r + 1
15: for i = k + 1, . . . , m − 1 do
16: for j = c + 1, . . . , n − 1 do
17: ai,j := ai,c ak,j − ai,j ak,c

18: if k = 0 then ai,j := −ai,j

19: else ai,j := ExactQuotient(ai,j , d)

20: d := −ak,c; k := k + 1; c := c + 1

21: return r, −d, Pr

Algorithm 2. det(A)
Input: a n × n matrix A over B

Output: det(A), the determinant of A
1: r, d, Pr := fflu-helper(A)
2: if r < n then return 0

3: p := check-parity(Pr)
4: if p �= 0 then d := −d

5: return d
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Algorithm 3. fflu(A)
Input: an m × n matrix A = (ai,j)0≤i<m, 0≤j<n over B (ai,j ∈ B).
Output: r, d, P, L, U where r is the rank of A, d is the “denominator”, so that, d =

s det(S) where S is an appropriate sub-matrix of A (S = A if A is square and
non-singular) and s ∈ (−1, 1) is decided by the parity of the row permutations
(encoded by the matrix P ) performed on A, L is the lower triangular matrix, and
U is the upper triangular matrix s.t. PA = LDU .

1: U := A; i = 0; j = 0; k = 0
2: r, d, Pr := fflu-helper(U)
3: Initialize P to the null square matrix of order m
4: Let P [i, j] := 1 iff Pr[i] = j for all 0 ≤ i, j, ≤ m − 1
5: while i < m and j < n do
6: if U [i, j] �= 0 then
7: for l = 0, . . . , i − 1 do Ll,k := 0

8: Li,k := Ui,j

9: for l = 0, . . . , m − 1 do Ll,k := Ul,j ; Ul,j := 0

10: i := i + 1; k := k + 1

11: j := j + 1

12: while k < m do
13: for l = 0, . . . , k − 1 do Ll,k := 0

14: Lk,k := 1
15: for l = k + 1, . . . , m do Ll,k := 0

16: k := k + 1

17: return r, d, Pr, L, U

Example 1. Consider matrix A ∈ B4×4 where B = Z[x]. A =
⎛
⎜⎜⎝

11x2 − 11x + 3 −3(x − 1)(2x − 3) 0 0
0 11x2 − 11x + 3 −3(x − 1)(2x − 3) 0
0 0 11x2 − 11x + 3 −3(x − 1)(2x − 3)

−2x + 3 0 0 −x

⎞
⎟⎟⎠ .

To compute the determinant of this matrix, Algorithm 1 starts with d = 1, k = 0,
c = 0, Pr = [0, 1, 2, 3], A0,0 = 11x2 − 11x + 3 �= 0, and r = 1. After the first
iteration, the nested for-loops update the (bottom-right) sub-matrix from the
second row and column; we have A(1) =

⎛
⎜⎜⎜⎝

A0,0 −3(x − 1)(2x − 3) 0 0
0 (A0,0)

2 −3(x − 1)(2x − 3)A0,0 0
0 0 (A0,0)

2 −3(x − 1)(2x − 3)A0,0

−2x + 3 −3(x − 1)(2x − 3)2 0 −xA0,0

⎞
⎟⎟⎟⎠ ,



34 M. Asadi et al.

where A
(1)
1,2 = A

(1)
2,3 = −3(x − 1)(2x − 3)(11x2 − 11x + 3). In the second iteration

of the while-loop, we have d = −11x2 + 11x − 3, k = 1, c = 1, A
(1)
1,1 = (11x2 −

11x + 3)2 �= 0, and r = 2. Then, A(2) =
⎛
⎜⎜⎜⎝

A0,0 A0,1 0 0
0 (A0,0)

2 −3(x − 1)(2x − 3)A0,0 0
0 0 (A0,0)

3 −3(x − 1)(2x − 3)(A0,0)
2

−2x + 3 (2x − 3)A0,1 −9(x − 1)2(2x − 3)3 −x(A0,0)
2

⎞
⎟⎟⎟⎠ .

In the third iteration of the while-loop, we have d = −(11x2 − 11x + 3)2,
k = 2, c = 2, A

(2)
2,2 = −(11x2 − 11x + 3)3 �= 0, and r = 3. And so, A(3) =

⎛
⎜⎜⎜⎝

A0,0 A0,1 0 0
0 (A0,0)

2 −3(x − 1)(2x − 3)A0,0 0
0 0 (A0,0)

3 −3(x − 1)(2x − 3)(A0,0)
2

−2x + 3 (2x − 3)A0,1 −9(x − 1)2(2x − 3)3 A
(3)
3,3

⎞
⎟⎟⎟⎠ ,

where A
(3)
3,3 = −1763x7 + 7881x6 − 19986x5 + 35045x4 − 41157x3 + 30186x2 −

12420x+2187. In fact, one can check that A
(3)
3,3 is the determinant of the full-rank

(r = 4) matrix A ∈ Z[x]4×4.

In [6], Bareiss introduced an alternative version of this algorithm, known as
multi-step Bareiss’ algorithm to compute fraction-free LU decomposition. This
method reduces the computation of row eliminations by adding three cheaper
divisions to compute each row in the while-loop and removing one multiplica-
tion in each iteration of the nested for-loops; see the results in Table 1 and [12,
Chapter 9] for more details.

In the next sections, we investigate optimizations of Algorithm 1 to compute
the determinant of matrices over multivariate polynomials. These optimizations
are achieved by reducing the cost of exact divisions by finding better pivots and
utilizing the BPAS multithreaded interface to parallelize this algorithm.

2.1 Smart-Pivoting in FFLU Algorithm

Returning to Example 1, we performed exact divisions for the following divisors
in the second and third iterations,

d(1) = −11x2 + 11x − 3,

d(2) = −121x4 + 242x3 − 187x2 + 66x − 9.

However, we could pick a polynomial with fewer terms as our pivot in every
iteration to reduce the cost of these exact divisions. Such a method, which finds
a polynomial with the minimum number of terms in each column as the pivot
of each iteration, is referred to as column-wise smart-pivoting. For matrix A of
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Example 1, one can pick A3,0 = −2x+3 as the first pivot. Applying this method
yields, after the first iteration, A(1) =

⎛
⎜⎜⎜⎝

−2x + 3 0 0 −x

0 −(2x − 3)A0,0 3(x − 1)(2x − 3)2 0
0 0 −(2x − 3)A0,0 3(x − 1)(2x − 3)2

A0,0 3(x − 1)(2x − 3)2 0 xA0,0

⎞
⎟⎟⎟⎠ ,

where d = 2x−3. Continuing this method from Algorithm 1, we get the following
matrix for r = 4, A(4) =

⎛
⎜⎜⎜⎝

−2x + 3 0 0 −x

0 −(2x − 3)A0,0 3(x − 1)(2x − 3)2 0
0 0 −(2x − 3)A2

0,0 3(x − 1)(2x − 3)2A0,0

A0,0 3(x − 1)(2x − 3)2 9(x − 1)2(2x − 3)3 A
(4)
3,3

⎞
⎟⎟⎟⎠ ,

where A
(4)
3,3 = 1763x7 − 7881x6 + 19986x5 − 35045x4 + 41157x3 − 30186x2 +

12420x− 2187, Pr = [3, 1, 2, 0], and we have det(A) = −A
(4)
3,3 from Algorithm 2.

In column-wise smart-pivoting, we limited our search for the best pivot to
the corresponding column of the current row. To extend this method, one can
try searching for the best pivot in the sub-matrix starting from the next current
row and column. To perform this method, referred to as (fully) smart pivoting,
we need to use column-operations and a column-wise permutation matrix Pc.
The column operations along with row operations are not cache-friendly. This is
certainly an issue for matrices with (large) multivariate polynomial entries while
this may not be an issue with (relatively small) matrices with numerical entries.
Therefore, we avoid column swapping within the decomposition, and instead
we keep track of column permutations in the list of column-wise permutation
patterns Pc to calculate the parity check later in Algorithm 2.

Algorithm 4 presents the pseudo-code of the smart pivoting fraction-free
LU decomposition utilizing both row-wise and column-wise permutation pat-
terns Pr, Pc. This algorithm updates A in-place, to become the upper triangular
matrix U , and returns the rank and denominator of the given matrix A ∈ Bm×n.

2.2 Parallel FFLU Algorithm

For further practical performance, we now investigate opportunities for paral-
lelism alongside our schemes for cache-efficiency. In particular, notice that during
the row reduction step (the for loops on lines 24–28 of Algorithm 4) the update
of each element is independent. Implementing this step as a parallel for loop
is easily achieved with the multithreading support provided in the BPAS library;
see further details in [4].
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Algorithm 4. spfflu-helper(A)
Input: an m × n matrix A = (ai,j)0≤i<m, 0≤j<n over B (ai,j ∈ B).
Output: r, d, Pr, Pc where r is the rank, d is the denominator, so that, d = s det(S)

where S is an appropriate sub-matrix of A (S = A if A is square and non-singular)
s ∈ (−1, 1) is decided by the parity of row and column permutations, Pr, Pc.

1: k := 0; d := 1; � := 0
2: Pr := [0, 1, . . . , m − 1]; Pc := [0, 1, . . . , n − 1]
3: while k < m and � < n do
4: if ak,� = 0 then
5: i := k + 1
6: while i < m do
7: if ai,� �= 0 then
8: (i, j) := FindBestPivot(A, i, �)
9: swap i-th and k-th rows of A

10: Pr[i], Pr[k] := Pr[k], Pr[i]
11: Pc[j], Pc[�] := Pc[�], Pc[j]
12: break
13: i := i + 1

14: if m ≤ i then
15: � := � + 1
16: continue
17: else
18: (i, j) := FindBestPivot(A, k, �)
19: swap i-th and k-th rows of A
20: Pr[i], Pr[k] := Pr[k], Pr[i]
21: Pc[j], Pc[�] := Pc[�], Pc[j]

22: r := r + 1
23: for i = k + 1, . . . , m − 1 do
24: for j = � + 1, . . . , n − 1 do
25: ai,Pc[j] := ai,Pc[�] ak,Pc[j] − ai,Pc[j] ak,Pc[�]

26: if k = 0 then ai,Pc[j] := −ai,Pc[j]

27: else ai,Pc[j] := ExactQuotient(ai,Pc[j], d)

28: d := −ak,Pc[�]; k := k + 1; � := � + 1

29: return r, −d, Pr, Pc

Algorithm 5. parallel-spfflu-helper(A)

// -snip-

1: parallel for i = k + 1, . . . , m − 1
2: parallel for j = � + 1, . . . , n − 1
3: ai,Pc[j] := ai,Pc[�] ak,Pc[j] − ai,Pc[j] ak,Pc[�]

4: if k = 0 then ai,Pc[j] := −ai,Pc[j]

5: else ai,Pc[j] := ExactQuotient(ai,Pc[j], d)

6: end for
7: end for

// -snip-
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Algorithm 5 shows a näıve implementation of this parallel algorithm. Note
that in a parallel for loop, each iteration is (potentially) executed in par-
allel. In Algorithm 5, this means lines 3–5 are executed independently and in
parallel for each possible value of (i, j). If that number of such possible values
exceeds a pre-determined limit (e.g. the number of hardware threads supported),
then the number of iterations will be divided as evenly as possible among the
available threads.

A difficulty to this parallelization scheme is that the size of the sub-matrices
decreases with each iteration. Therefore, the amount of work executed by each
thread also decreases. In practice, to address this load-balancing and to maximize
parallelism, we only parallelize the outer loop (line 1 of Algorithm 5).

2.3 Experimentation

In this section, we compare the fraction-free LU decomposition algorithms for
Bézout matrix (Definition 2) of randomly generated, non-zero and sparse poly-
nomials in Z[x1, . . . , xv] for v ≥ 5 in the BPAS library. We recall that meth-
ods based on the Bézout matrix have been observed (during development of
the RegularChains library [16], and later in Sect. 3.3) to be well-suited for
sparse polynomials with many variables. Throughout this paper, our bench-
marks were collected on a machine running Ubuntu 18.04.4 and GMP 6.1.2,
with an Intel Xeon X5650 processor running at 2.67 GHz, with 12× 4 GB DDR3
memory at 1.33 GHz.

Table 1 shows the comparison between the standard implementation of the
fraction-free LU decomposition (Algorithm 1; denoted plain), the column-wise
smart pivoting (denoted col-wise SP), the fully smart-pivoting method (Algo-
rithm 4; denoted fully SP), and Bareiss’ multi-step technique added to Algo-
rithm 4 (denoted multi-step). Here, v = 5 and the generated polynomials have
a sparsity ratio (the fraction of zero terms to the total possible number of terms
in a fully dense polynomial of the same partial degrees) of 0.98.

This table indicates that using smart-pivoting yields up to a factor of 3 speed-
up. Comparing col-wise SP and fully SP shows that calculating Pc (column-
wise permutation patterns) along with Pr (row-wise permutation patterns) does
not cause any slow-down in the calculation of d.

Moreover, using both multi-step technique and smart-pivoting does not bring
any additional speed-up. The smart-pivoting technique is already minimized the
cost of exact divisions in each iteration. Table 2 shows plain/fully SP, plain/multi-step,
and fully SP/multi-step ratios from Table 1.

To analyze the performance of parallel FFLU algorithm, we compare Algo-
rithm 5 and Algorithm 4 for n × n matrices of randomly generated non-zero
univariate polynomials with integer coefficients and degree 1. Table 3 summa-
rizes these results. For n = 75, 2.14× parallel speed-up is achived, and speed-up
continues to increase with increasing n.
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Table 1. Compare the execution time (in seconds) of fraction-free LU decomposition
algorithms for Bézout matrix of randomly generated, non-zero and sparse polynomials
a, b ∈ Z[x1, x2, . . . , x5] with x5 < · · · < x2 < x1, deg(a, x1) = deg(b, x1) + 1 = d,
deg(a, x2) = deg(b, x2)+1 = 5, deg(a, x3) = deg(b, x3) = 1, deg(a, x4) = deg(b, x4) = 1,
deg(a, x5) = deg(b, x5) = 1

d plain col-wise SP fully SP multi-step

6 0.048346 0.018623 0.021154 0.021257

7 2.379480 0.941655 0.954981 0.953532

8 3.997310 0.444759 0.426654 0.475043

9 73.860600 32.531600 31.764200 30.882500

10 2726.690000 1431.430000 1408.140000 1398.370000

11 9059.290000 5113.530000 4768.950000 5348.520000

12 5953.150000 3937.250000 3521.140000 3711.790000

13 81411.900000 42858.500000 42043.600000 41850.800000

Table 2. Ratios of FFLU algorithms for polynomials in Table 1

d plain/fully SP plain/multi-step fully SP/multi-step

6 2.285431 2.274357 0.995155

7 2.491652 2.495438 1.001520

8 9.368973 8.414628 0.898138

9 2.325278 2.391665 1.028550

10 1.936377 1.949906 1.006987

11 1.899640 1.693794 0.891639

12 1.690688 1.603849 0.948637

13 1.936368 1.945289 1.004607

Table 3. Comparing the execution time (in seconds) of Algorithm 4 and Algorithm 5
for n × n matrices of random non-zero degree 1 univariate integer polynomials

n serial FFLU parallel FFLU serial/parallel

10 00.11976 0.012765 0.938109

15 0.118972 0.076118 1.562994

20 0.628613 0.339738 1.850288

25 2.299270 1.126620 2.040857

30 6.241600 3.109840 2.007049

35 15.305100 7.552200 2.026575

40 33.831800 16.387200 2.064526

45 67.702600 32.307100 2.095595

50 127.438000 60.420000 2.109202

55 224.681000 106.043000 2.118773

60 392.795000 177.456000 2.213478

65 607.089000 284.659000 2.132689

70 947.805000 444.181000 2.133826

75 1432.180000 668.991000 2.140806
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3 Bézout Subresultant Algorithms

In this section, we continue exploring the subresultant algorithms for multi-
variate polynomials based on calculating the determinant of (Hybrid) Bézout
matrices.

3.1 Bézout Matrix and Subresultants

A traditional way to define subresultants is via computing determinants of sub-
matrices of the Sylvester matrix (see, e.g. [5] or [11, Ch. 6]). Li [17] presented
an elegant way to calculate subresultants directly from the following matrices.
This method follows the same idea as subresultants based on Sylvester matrix.

Theorem 1. The k-th subresultant Sk(a, b) of a =
∑m

i=0 aiy
i, b =

∑n
i=0 biy

i ∈
B[y] is calculated by the determinant of the following (m + n − k) × (m + n − k)
matrix:

Ek :=

am am−1 · · · a2 a1 a0

. . . . . .
am am−1 · · · a2 a1 a0

1 −y

. . . . . .
1 −y

bn bn−1 · · · b2 b1 b0
. . . . . .

bn bn−1 · · · b2 b1 b0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

n − k

k

m − k

, (1)

so that,
Sk(a, b) = (−1)k(m−k+1)det (Ek) .

Proof. [17, Section 2]
Another practical division-free approach is through utilizing the Bézout

matrix to compute the subresultant chain of multivariate polynomials by cal-
culating the determinant of the Bézout matrix of the input polynomials [13].
From [7], we define the symmetric Bézout matrix as follows.

Definition 1. The Bézout matrix associated with a, b ∈ B[y], where m := deg(a)
≥ n := deg(b) is the symmetric matrix:

Bez(a, b) :=

⎛
⎜⎝

c0,0 · · · c0,m−1

...
. . .

...
cm−1,0 · · · cm−1,m−1

⎞
⎟⎠ ,
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where the coefficients ci,j, for 0 ≤ i, j < m, are defined by the so-called Cayley
expression as follows,

a(x)b(y) − a(y)b(x)
x − y

=
m−1∑
i,j=0

ci,jy
ixj .

The relations between the Sylvester and Bézout matrices have been studied
for decades yielding an efficient algorithm to construct the Bézout matrix [2]
using a so-called Hybrid Bézout matrix.

Definition 2. The Hybrid Bézout matrix of a =
∑m

i=0 aiy
i and b =

∑n
i=0 biy

i

is defined as the m × m matrix

HBez(a, b) :=

⎛
⎜⎝

h0,0 · · · h0,m−1

...
. . .

...
hm−1,0 · · · hm−1,m−1

⎞
⎟⎠ ,

where the coefficients hi,j, for 0 ≤ i, j < m, are defined as:

hi,j = coeff(Hm−i+1,m − j) for 1 ≤ i ≤ n,

hi,j = coeff(xm−ib,m − j) for m + 1 ≤ i ≤ n,

with,

Hi = (amyi−1 + · · · + am−i+1)(bn−iy
m−i + · · · + b0y

m−n)

− (am−iy
m−i + · · · + a0)(bnyi−1 + · · · + bn−i+1).

Example 2. Consider the polynomials a = 5y5+y3+2y+1 and b = 3y3+y+3
in Z[y]. The Sylvester matrix of a, b is:

Sylv(a, b) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 0 1 0 2 1 0 0
0 5 0 1 0 2 1 0
0 0 5 0 1 0 2 1
3 0 1 3 0 0 0 0
0 3 0 1 3 0 0 0
0 0 3 0 1 3 0 0
0 0 0 3 0 1 3 0
0 0 0 0 3 0 1 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and the Bézout matrix of a, b is:

Bez(a, b) =

⎛
⎜⎜⎜⎜⎝

0 −15 0 −5 −15
−15 0 −5 −15 0

0 −5 −15 5 0
−5 −15 5 0 0

−15 0 0 0 −5

⎞
⎟⎟⎟⎟⎠ ,



Subresultant Chains Using Bézout Matrices 41

while the Hybrid Bézout matrix of a, b is:

HBez(a, b) =

⎛
⎜⎜⎜⎜⎝

15 −6 0 −2 −1
2 15 −6 −3 0
0 2 15 −6 −3
3 0 1 3 0
0 3 0 1 3

⎞
⎟⎟⎟⎟⎠ .

Diaz-Toca and Gonzalez-Vega examined the relations between Bézout matri-
ces and subresultants in [9]. Hou and Wang studied to apply the Hybrid Bézout
matrix for the calculation of subresultants in [13].

Notation 1. Let Jm denote the backward identity matrix of order m and let B
and H be defined as follows:

B := Jm Bez(a, b) Jm =

⎛
⎜⎝

cm−1,m−1 · · · cm−1,0

...
. . .

...
c0,m−1 · · · c0,0

⎞
⎟⎠ ,

H := Jm HBez(a, b) =

⎛
⎜⎝

hm−1,0 · · · hm−1,m−1

...
. . .

...
h0,0 · · · h0,m−1

⎞
⎟⎠ .

Now, we can state how to compute the subresultants from Bézout matrices
as follows.

Theorem 2. For polynomials a =
∑m

i=0 aiy
i and b =

∑n
i=0 biy

i in B[y], the
k-th subresultant of a, b, i.e., Sk(a, b), can be obtained from:

(−1)(m−1)(m−k−1)/2am−n
m Sk(a, b) =

k∑
i=0

Bm−k,k−i yi,

where Bm−k,i for 0 ≤ i ≤ k denotes the (m − k) × (m − k) minor extracted
from the first m − k rows, the first m − k − 1 columns and the (m − k + i)-th
column of B.

Proof. [2, Theorem 2.3]

Theorem 3. For those polynomials a, b ∈ B[y], the k-th subresultant of a, b,
i.e., Sk(a, b), can be obtained from:

(−1)(m−1)(m−k−1)/2Sk(a, b) =
k∑

i=0

Hm−k,k−i yi,

where Hm−k,i for 0 ≤ i ≤ k denotes the (m − k) × (m − k) minor extracted
from the first m − k rows, the first m − k − 1 columns and the (m − k + i)-th
column of H.
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Proof. [2, Theorem 2.3]
Abdeljaoued et al. in [2] study further this relation between subresultants and
Bézout matrices. Theorem 4 is the main result of this paper.

Theorem 4. For those polynomials a, b ∈ B[y], the k-th subresultant of a, b can
be obtained from the following m×m matrices, where τ = (m−1)(m−k −1)/2:

(−1)τam−n
m Sk(a, b) = (−1)k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

cm−1,m−1 cm−1,m−2 · · · · · · · · · cm−1,0

...
... · · · · · · · · · ...

ck,m−1 ck,m−2 · · · · · · · · · ck,0

1 −y
. . . . . .

1 −y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

(−1)τSk(a, b) = (−1)k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

hm−1,0 hm−1,1 · · · · · · · · · hm−1,m−1

...
... · · · · · · · · · ...

hk,0 hk,1 · · · · · · · · · hk,m−1

1 −y
. . . . . .

1 −y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Proof. [2, Theorem 2.4]
The advantage of this aforementioned method is that one can compute the entire
subresultant chain in a bottom-up fashion. This process starts from computing
the determinant of matrix H (or B) in Definition 1 to calculate S0(a, b), the
resultant of a, b, and update the last k rows of H (or B) to calculate Sk(a, b) for
1 ≤ k ≤ n.

Example 3. Consider polynomials a = −5y4x + 3yx − y − 3x + 3 and b =
−2y3x + 3y3 − x in Z[x, y] where x < y. From Definition 2, the Hybrid Bézout
matrix of a, b is the matrix A from Example 1 on page 34. Recall from Example 1
that the determinant of this matrix can be calculated using the fraction-free LU
decomposition schemes. Theorem 4, for k = 0, yields that,

S0(a, b) = −1763x7 + 7881x6 − 19986x5 + 35045x4 − 41157x3

+ 30186x2 − 12420x + 2187.

For k = 1, one can calculate S1(a, b) from the determinant of:

H(1) =

⎛
⎜⎜⎝

−2x + 3 0 0 −x
0 0 11x2 − 11x + 3 −3(x − 1)(2x − 3)
0 11x2 − 11x + 3 −3(x − 1)(2x − 3) 0
0 0 1 −y

⎞
⎟⎟⎠ ,

that is,

S1(a, b) = −242x5y + 132x5 + 847x4y − 660x4 − 1100x3y + 1257x3

+ 693x2y − 1134x2 − 216xy + 486x + 27y − 81.
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We can continue calculating subresultants of higher indices with updating matrix
H(1). For instance, the 2nd and 3rd subresultants are, respectively, from the
determinant of:

H(2) =

⎛
⎜⎜⎝

−2x + 3 0 0 −x
0 0 11x2 − 11x + 3 −3(x − 1)(2x − 3)
0 1 −y 0
0 0 1 −y

⎞
⎟⎟⎠ ,

and,

H(3) =

⎛
⎜⎜⎝

−2x + 3 0 0 −x
1 −y 0 0
0 1 −y 0
0 0 1 −y

⎞
⎟⎟⎠ ,

which are,

S2(a, b) = 22yx3 − 12x3 − 55yx2 + 48x2 + 39yx − 63x − 9y + 27,

S3(a, b) = −2y3x + 3y3 − x.

We further studied the performance of computing subresultants from Theo-
rem 4 in comparison to the Hybrid Bézout matrix in Definition 2 for multivariate
polynomials with integer coefficients. In our implementation, we took advantage
of the FFLU schemes reviewed in Sect. 2 to compute the determinant of these
matrices using smart-pivoting technique in parallel; see Sect. 3.3 for implemen-
tation details and results.

3.2 Speculative Bézout Subresultant Algorithms

In Example 3, the Hybrid Bézout matrix was used to compute subresultants of
two polynomials in Z[x, y]. We constructed the square matrix H from Definition 1
and updated the last k ≥ 0 rows following Theorem 4. Thus, the kth subresultant
could be directly computed from the determinant of this matrix.

Consider solving systems of polynomial equations by triangular decomposi-
tion, and particularly, regular chains. This method uses a Regular GCD subrou-
tine (see [8]) which requires the computation of subresultants in a bottom-up
fashion: for multivariate polynomials a, b (viewed as univariate in their main vari-
able) compute S0(a, b), then possibly S1(a, b), then possibly S2(a, b), etc., to try
and find a regular GCD. This bottom-up approach for computing subresultant
chains is discussed in [5].

In the approach explained in the previous section, we would call the deter-
minant algorithm twice for H(0) := H and H(1) to compute S0, S1 respectively.
Here, we study a speculative approach to compute both S0 and S1 at the cost
of computing only one of them. This approach can also be extended to compute
any two successive subresultants Sk, Sk+1 for 2 ≤ k < deg(b, xn).
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To compute S0, S1 of polynomials a = −5y4x + 3yx − y − 3x + 3 and b =
−2y3x + 3y3 − x in Z[x, y] from Example 3, consider the (m + 1) × m matrix,
with m = 4, derived from the Hybrid Bézout matrix of a, b, H(0,1) =
⎛
⎜⎜⎜⎜⎝

−2x + 3 0 0 −x
0 0 11x2 − 11x + 3 −3(x − 1)(2x − 3)
0 11x2 − 11x + 3 −3(x − 1)(2x − 3) 0

11x2 − 11x + 3 −3(x − 1)(2x − 3) 0 0
0 0 1 −y

⎞
⎟⎟⎟⎟⎠.

In this matrix, the first three rows are identical to the first three rows of H(0)

and H(1), while the 4th (bold) row is the 4th row of H(0) and the 5th (italicized)
row is the 4th row of H(1). A deeper look into the determinant algorithm reveals
that the Gaussian (row) elimination for the first three rows in each iteration
of the fraction-free LU decomposition is similar in both H(0) and H(1) and the
only difference is within the 4th row.

Hence, managing these row eliminations in the fraction-free LU decomposi-
tion, we can compute determinants of H(0) and H(1) by using H(0,1) only calling
the FFLU algorithm once. Indeed, when this algorithm tries to eliminate the last
rows of H(0) and H(1), we should use the last two rows of H(0,1) separately and
return two denominators corresponding to S0, S1.

We can further extend this speculative approach to compute S2 and S3 by
updating the matrix H(0,1) to get the (m + 3) × m matrix H(2,3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2x + 3 0 0 −x
0 0 11x2 − 11x + 3 −3(x − 1)(2x − 3)
0 11x2 − 11x + 3 −3(x − 1)(2x − 3) 0

11x2 − 11x + 3 −3(x − 1)(2x − 3) 0 0
1 −y 0 0
0 1 −y 0
0 0 1 −y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Therefore, to calculate subresultants of index 2 and 3, we should respectively
consider the 2nd (bold) and 5th (italicized) rows of H(2,3) in the fraction-free
LU decomposition while ignoring the 3rd and 4th (strikethrough) rows. An adap-
tation of the FFLU algorithm can then modify H(2,3) as follows to return d(2),
ignoring the 5th and strikethrough rows.

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2x + 3 0 0 −x
0 −2x + 3 −y(−2x + 3) 0
0 11x2 − 11x + 3 −3(x − 1)(2x − 3) 0

11x2 − 11x + 3 −3(x − 1)(2x − 3) 0 0

1 −y 0 0
0 0 −22x3 + 55x2 − 39x + 9 3(x − 1)(2x − 3)2

0 0 −2x + 3 d(2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,
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where d(2) = −22x3y+12x3+55x2y−48x2−39xy+63x+9y−27 and S2 = −d(2).
Note that the 2nd and 6th rows are swapped to find a proper pivot.

The adapted FFLU algorithm can also modify H(2,3) to rather return d(3),
ignoring the 2nd (bold) and strikethrough rows,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2x + 3 0 0 −x
0 0 11x2 − 11x + 3 −3(x − 1)(2x − 3)
0 11x2 − 11x + 3 −3(x − 1)(2x − 3) 0

11x2 − 11x + 3 −3(x − 1)(2x − 3) 0 0

1 −y(−2x + 3 ) 0 x
0 −2x + 3 −y2(−2x + 3) x
0 0 y(−2x + 3) d(3)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where d(3) = −2xy3 + 3y3 − x and S3 = d(3).
Generally, to compute subresultants of index k and k + 1, one can construct

the matrix H(k,k+1) from the previously constructed H(k−2,k−1) for k > 1. This
recycling of previous information makes computing the next subresultants of
index k and k + 1 much more efficient, and is discussed below. We proceed with
an adapted FFLU algorithm over:

– the first m − k − 1 rows,
– the bold row for computing Sk, or the italicized row for computing Sk+1, and
– the last k rows

of matrix H(k,k+1) ∈ B(m+k)×k with B = Z[x1, . . . , xv],

H(k,k+1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

hm−1,0hm−1,1· · · · · · · · ·hm−1,m−1

...
... · · · · · · · · · ...

hk,0 hk,1 · · · · · · · · · hk,m−1

hk−1,0 hk−1,1 · · · · · · · · ·hk−1,m−1

...
... · · · · · · · · · ...

h0,0 h0,1 · · · · · · · · · h0,m−1

1 −y
. . . . . .

1 −y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

As seen in the last example, the FFLU algorithm, depending on the input
polynomials, may create two completely different submatrices to calculate d(2)
and d(3). Thus, the cost of computing Sk, Sk+1 from H(k,k+1) speculatively may
not necessarily be less than computing them successively from H(k),H(k+1) for
some k > 1.

We improve the performance of computing Sk, Sk+1 speculatively via caching,
and then reusing, intermediate data calculated to compute Sk−2, Sk−1 from
H(k−2,k−1). In this approach, the adapted FFLU algorithm returns d(k−2), d(k−1)

along with H(k−2,k−1), the reduced matrix H(k−2,k−1) to compute d(k−1), the
list of permutation patterns and pivots.
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Therefore, we can utilize H(k−2,k−1) to construct H(k,k+1). In addition, if the
first δ := m − k − 1 pivots are picked from the first δ rows of H(k−2,k−1), then
one can use the first δ rows of the reduced matrix H(k−2,k−1) along with the
list of permutation patterns and pivots to perform the first δ row eliminations
of H(k,k+1) via recycling the first δ rows of the reduced matrix cached a priori.

3.3 Experimentation

In this section, we compare the subresultant algorithms based on (Hybrid)
Bézout matrix against the Ducos’ subresultant chain algorithm in BPAS and
Maple 2020. In BPAS, our optimized Ducos’ algorithm (denoted OptDucos),
is detailed in [5].

Table 4 and Table 5 show the running time of plain and speculative algorithms
for randomly generated, non-zero, sparse polynomials a, b ∈ Z[x1, x2, . . . , x6]
with x6 < · · · < x2 < x1, deg(a, x1) = deg(b, x1) + 1 = d, and deg(a, xi) =
deg(b, xi) = 1 for 2 ≤ i ≤ 6. Table 6 and Table 7 show the running time of
plain, speculative and caching subresultant schemes for randomly generated,
non-zero, and sparse polynomials a, b ∈ Z[x1, x2, . . . , x7] with x7 < · · · < x2 <
x1, deg(a, x1) = deg(b, x1)+1 = d, and deg(a, xi) = deg(b, xi) = 1 for 2 ≤ i ≤ 7.

Note that the Bézout algorithm in Maple computes the resultant of a, b
(S0(a, b)) meanwhile both Maple’s and BPAS’s Ducos’ algorithm computes the
entire subresultant chain. In BPAS, we have the following:

1. Bézout (ρ = 0) calculates the resultant (S0(a, b)) via the determinant of
Hybrid Bézout matrix of a, b;

2. Bézout (ρ = 1) calculates S1(a, b) following Theorem 4 from the Hybrid
Bézout matrix of a, b;

3. SpecBézout (ρ = 0) calculates S0(a, b), S1(a, b) speculatively using H(0,1);
4. SpecBézout (ρ = 2) calculates S2(a, b), S3(a, b) speculatively using H(2,3);
5. SpecBézoutcached (ρ = 2) calculates S2(a, b), S3(a, b) speculatively via H(2,3)

and the cached information calculated in SpecBézout (ρ = 0)
6. SpecBézoutcached (ρ = all) calculates the entire subresultant chain using the

speculative algorithm and caching.

To compute subresultants from Bézout matrices in Maple, we use the
command SubresultantChain( ... , ‘representation’=‘BezoutMatrix’)
from the RegularChains library. Our Bézout algorithm is up to 3× faster than
the Maple implementation to calculate only S0. Moreover, our results show that
Bézout algorithms outperform the Ducos’ algorithm in both BPAS and Maple
for sparse polynomials with many variables.

Tables 4 and 6 show that the cost of computing subresultants S0, S1 specula-
tively is comparable to the running time of computing only one of them. Tables 5
and 7 indicate the importance of recycling cached data to compute higher sub-
resultants speculatively. Our Bézout algorithms can calculate all subresultants
speculatively in a comparable running time to the Ducos’ algorithm.
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Table 4. Comparing the execution time (in seconds) of subresultant algorithms based
on Bézout matrix for randomly generated, non-zero, sparse polynomials a, b ∈ Z[x6 <
. . . < x1], deg(a, x1) = deg(b, x1) + 1 = d, and deg(a, xi) = deg(b, xi) = 1 for 2 ≤ i ≤ 6

Maple BPAS

d Bézout (ρ = 0) Ducos Bézout (ρ = 0) Bézout (ρ = 1) SpecBézout (ρ = 0) OptDucos

10 0.05128 0.03000 0.024299 0.026762 0.032166 0.045270

11 0.06001 0.04574 0.057312 0.068722 0.058843 0.049532

12 0.02515 0.05100 0.007223 0.019530 0.012792 0.061419

13 0.81209 16.81200 0.421278 0.739842 0.594225 9.527660

14 3.14360 112.280 2.414530 3.829530 3.250710 69.957100

15 518.380 7163.30 151.656 779.9240 512.260 3655.820

Table 5. Comparing the execution time (in seconds) of speculative subresultant algo-
rithms for polynomials in Table 4

BPAS

d SpecBézout(ρ = 0) SpecBézout(ρ = 2) SpecBézoutcached(ρ = 2) SpecBézoutcached(ρ = all)

10 0.032166 0.022125 0.016432 0.076283

11 0.058843 0.079425 0.043512 0.193512

12 0.012792 0.010566 0.004148 0.071435

13 0.594225 2.106280 1.535510 7.891180

14 3.250710 8.735510 4.133760 73.59940

15 512.260 953.1170 579.8580 4877.130

Table 6. Comparing the execution time (in seconds) of subresultant algorithms based
on Bézout matrix for randomly generated, non-zero, sparse polynomials a, b ∈ Z[x7 <
. . . < x1], deg(a, x1) = deg(b, x1) + 1 = d, and deg(a, xi) = deg(b, xi) = 1 for 2 ≤ i ≤ 7

Maple BPAS

d Bézout(ρ = 0) Ducos Bézout(ρ = 0) Bézout(ρ = 1) SpecBézout(ρ = 0) OptDucos

6 0.00098 0.00372 0.001303 0.001427 0.001553 0.002444

7 0.01148 0.43145 0.080210 0.174460 0.095569 0.279023

8 15.1850 34.8540 7.057270 10.834100 8.380050 22.440500

9 74.1390 327.570 36.8450 66.8430 44.7160 194.4860

10 9941.20 inf 4130.980 6278.240 5686.060 14145.30
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Table 7. Comparing the execution time (in seconds) of speculative and caching sub-
resultant algorithms for polynomials in Table 6

BPAS

d SpecBézout(ρ = 0) SpecBézout(ρ = 2) SpecBézoutcached(ρ = 2) SpecBézoutcached(ρ = all)

6 0.001553 0.001812 0.001350 0.003519

7 0.095569 0.103801 0.053730 0.213630

8 8.380050 13.10210 5.7240 25.83050

9 44.7160 67.86560 31.12090 136.8930

10 5686.060 8853.10 3856.550 17569.20

As described in Sect. 3.1, polynomial system solving benefits from computing
regular GCDs in a bottom-up approach. From a test suite of over 3000 polyno-
mial systems, coming from the literature and collected from Maple user-data
(see [4, Section 6]) we compare the benefits of (Speculative) Bézout methods for
computing subresultants vs BPAS’s optimized Ducos algorithm. Table 8 shows
this data for some systems of the test suite with at least 5 variables. Table 9
shows systems which are very challenging to solve, requiring at least 50 s. For
these hard systems, speculative methods achived a speed-up of up to 1.6× com-
pared to Ducos’ method. Note that, in some cases, the regular GCD has high
degree and is thus equal to a subresultant of high index. Thus, Ducos’ method
to compute the entire subresultant chain may be more efficient than repeated
calls to the speculative method.

Table 8. Comparing time (in seconds) to solve polynomial systems with nvar ≥ 5;
system names come from a test suite detailed [4]

OptDucos/ Bézout/

SysName OptDucos Bézout SpecBézout SpecBézoutcached SpecBézout SpecBézout

Sys2922 7.91041 7.93589 7.95695 7.95698 0.994151 0.997353

Sys2880 5.55801 5.70138 5.46921 5.41538 1.016236 1.042450

Sys2433 8.75830 8.77473 8.75625 8.76812 1.000234 1.002110

Sys2161 1.08153 0.89279 0.56666 0.63128 1.908605 1.575530

Sys2642 8.06066 6.97177 4.89233 3.21021 1.647612 1.425041

Sys2695 3.18267 3.05706 2.98045 2.12872 1.067849 1.025704

Sys2238 8.75708 8.75923 8.75251 8.75813 1.000522 1.000768

Sys2943 6.70348 6.12246 4.54511 4.69512 1.474877 1.347043

Sys1935 4.14390 5.01831 3.01449 1.98466 1.374660 1.664729

Sys2882 2.42182 2.37203 2.38065 2.35716 1.017294 0.996379

Sys2588 4.49268 4.51135 4.49201 4.49792 1.000149 1.004305

Sys2449 1.23251 1.28321 1.24507 1.26588 0.989912 1.030633

Sys2874 6.99887 7.22326 6.99438 7.11027 1.000642 1.032723

Sys2932 6.27556 6.25798 6.31953 6.29113 0.993042 0.990260

Sys2269 1.03128 1.03253 1.03961 1.04012 0.991987 0.993190
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Table 9. Comparing time (in seconds) to solve “hard” polynomial systems with
nvar ≥ 5; system names come from a test suite detailed [4]

OptDucos/ Bézout/

SysName OptDucos Bézout SpecBézout SpecBézoutcached SpecBézout SpecBézout

Sys2797 466.4250 425.8670 386.3810 325.1170 1.207163 1.102194

Sys2539 55.8694 55.8531 55.5113 55.4933 1.006451 1.006157

Sys2681 458.6800 458.5810 458.5360 458.5780 1.000314 1.000098

Sys2745 599.8020 599.3290 599.0610 599.2150 1.001237 1.000447

Sys3335 6406.7400 5843.7300 4799.9700 4801.1200 1.334746 1.217451

Sys2703 322.2940 487.0120 485.8170 491.1520 0.663406 1.002460

Sys2000 55.7026 56.1724 56.3106 57.0079 0.989203 0.997546

Sys2877 2127.4900 1914.5200 1253.8200 1247.4400 1.696807 1.526950
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2. Abdeljaoued, J., Diaz-Toca, G.M., González-Vega, L.: Bézout matrices, subresul-
tant polynomials and parameters. Appl. Math. Comput. 214(2), 588–594 (2009)

3. Asadi, M., et al.: Basic Polynomial Algebra Subprograms (BPAS) (2021). http://
www.bpaslib.org

4. Asadi, M., Brandt, A., Moir, R.H.C., Moreno Maza, M., Xie, Y.: Parallelization
of triangular decompositions: techniques and implementation. J. Symb. Comput.
(2021, to appear)

5. Asadi, M., Brandt, A., Moreno Maza, M.: Computational schemes for subresultant
chains. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC
2021. LNCS, vol. 12865, pp. 21–41. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-85165-1 3

6. Bareiss, E.H.: Sylvester’s identity and multistep integer-preserving Gaussian elim-
ination. Math. Comput. 22(103), 565–578 (1968)

7. Bini, D., Pan, V.Y.: Polynomial and Matrix Computations: Fundamental Algo-
rithms. Springer, New York (2012). https://doi.org/10.1007/978-1-4612-0265-3

8. Chen, C., Moreno Maza, M.: Algorithms for computing triangular decomposition
of polynomial systems. J. Symb. Comput. 47(6), 610–642 (2012)

9. Diaz-Toca, G.M., Gonzalez-Vega, L.: Various new expressions for subresultants
and their applications. Appl. Algebra Eng. Commun. Comput. 15(3–4), 233–266
(2004). https://doi.org/10.1007/s00200-004-0158-4

10. Ducos, L.: Optimizations of the subresultant algorithm. J. Pure Appl. Algebra
145(2), 149–163 (2000)

11. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 3rd edn. Cambridge
University Press, Cambridge (2013)

12. Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra.
Springer, New York (1992). https://doi.org/10.1007/b102438

13. Hou, X., Wang, D.: Subresultants with the Bézout matrix. In: Computer Mathe-
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