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Abstract. In this paper, we present a symbolic computation method
for constructing a small neighborhood U around a known local optimal
maximal or minimal point x0 of a given smooth function f : R

n →
R that contains radical or rational expressions of several variables, so
that x0 is also the global optimal point of f(x) restricted to the small
neighborhood U . The constructed small neighborhood can be used to
prove that f(x0) is the global optimum of f in a rather large region M
with U ⊂ M via exact numeric computation like interval evaluation and
branch-and-bound technology.

Keywords: Locally optimal points · Isolating algorithm · Radical
function · Symbolic computation

1 Introduction

In some geometric optimization problems, we want to calculate the maximal
value of a multivariate function f : Rn → R over some domain M ⊂ R

n which
contains radical (or rational, trigonometrical) expressions. Usually, the objective
function f is smooth, i.e., it has continuous derivatives up to any desired order
over M . Therefore, applying numerical experiments the de facto optimal point
of f can be observed with very big confidence, and it is also relatively easy to
verify that the optimal point x0 obtained from numerical searching is actually
a local optimal point, namely, the partial derivatives of f with respect to each
variable is zero at x0, and the Hessian matrix of f at x0 is positive-(semi-)
definite or negative-(semi-)definite. In many cases, the numerical computation
also shows that x0 is the unique local optimal point of the objective function,
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but a strict mathematical proof is hard due to intermediate expression swell in
symbolic computation.

For example, let Pi = (xi, yi, zi) (i = 1, 2, . . . , 6) be six points on the unit
sphere S2 and suppose we want to find the maximum of the sum of their pairwise
Euclidean distances, d =

∑
1≤i<j≤6 ||Pi − Pj ||2, where

||Pi − Pj ||2 =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2.

To avoid the manifold solution of this optimal problem generated by the rigid
movements on S2, we may assume that one point has been fixed at the North
Pole, and another point has been fixed on the prime meridian. Then, both of
Monte Carlo search and the grid search (see, e.g., [1,9,10]) show that the maxi-
mum of d is 22.9705 . . . ≈ 6+12

√
2, and the local optimal points are the following

unique ones:

(0, 0, 1), (0, 0,−1), (1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0).

To the best of our knowledge, no mathematical proof has been given to this
conjecture yet.

Generally, if x0 ∈ M is the unique local maximal point of a continuous
function f(x) formed by finitely many steps of the four basic arithmetic opera-
tions, the radical, the exponential, and the trigonometrical functions of n vari-
ables x1, x2, . . . , xn on a compact domain M ⊂ R

n, then, by interval evaluation
of f(x), we can construct a neighborhood

U(x) = [x1 − ε, x1 + ε] × [x2 − ε, x2 + ε] × · · · × [xn − ε, xn + ε] ⊂ M,

for any point x = (x1, x2, . . . , xn) ∈ M \ {x0}, where ε = ε(x) > 0 is dependent
on x, so that the upper bound of f(x) on U(x) is less than f(x0). If we can
also find a neighborhood U0 = U(x0) of x0 so that restricted on U(x0), f(x) ≤
f(x0), then we will get a family of neighborhood {U(x)|x ∈ M} that covers
the set M . According to the compactness of M , we would find a finite subset
{U1, U2, . . . , UN} of the family that satisfies

M ⊂ U(x0) ∪ U1 ∪ U2 ∪ · · · ∪ UN ,

and on each Ui, f(x) ≤ f(x0). Clearly, if we could generate all neighborhoods
U(x) for every point x ∈ M \{x0} in advance, then we would be able to produce
a proof to the original optimization problem. To utilize this idea on computer for
a machine proof, we may implement this through the following two procedures:

Procedure 1: isolate the local optimal point. Construct a function
g(x) which has x0 as the unique maximal point with g(x0) = f(x0), and a
neighborhood U0 of x0 that satisfies f(x) ≤ g(x) for x ∈ U0, and, therefore,
f(x) ≤ f(x0) on U0.

Procedure 2: ‘‘divide-and-conquer’’ outside the isolated regions.
Partition M \U0 into a sequence of cubes D1,D2, . . . , Dm in R

n where Di,Dj

have no common interior for 1 ≤ i < j ≤ m, and apply the interval evaluation
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(or grid interpolation) to estimate the upper bound u(Di) of f on each cube
Di(1 ≤ i ≤ m). If u(Di) ≥ f(x0) for some i(1 ≤ i ≤ m), then divide Di into 2n

smaller cubes Di,j (j = 1, 2, . . . , 2n) in R
n whose edge length is one half of that

of Di, and estimate the upper bounds u(Di,j) of f(x) on the newly obtained
cubes Di,j . Recursively do this until the upper bound of every cube DI pro-
duced in this process satisfies u(DI) < f(x0). This process will be terminated
after finitely many steps of subdivision provided supx∈M\U0

f(x) < f(x0), since
according to Taylor’s theorem, we have

f(x) = f(xc
DI

) + (x − xc
DI

)∇f(txc
DI

+ (1 − t)x)

≤ f(xc
DI

) +
√

n

2
edge(DI) · B0, (1)

for all x ∈ DI . Here xc
DI

is the barycenter of DI , t = t(x) ∈ [0, 1], edge(DI) is
the edge length of DI , and B0 is the following constant:

B0 = sup
x∈M\U0

√(
∂f

∂x1

)2

+
(

∂f

∂x2

)2

+ · · · +
(

∂f

∂xn

)2

< +∞,

and we may assume that the estimated upper bound u(DI) of f(x) on every
cube DI satisfies the following inequality

u(DI) ≤ f(xc
DI

) +
√

n

2
edge(DI) · B0. (2)

Therefore, if the subdivision cannot be completed in finite steps, we would get
a sequence Di,Di,j1 ,Di,j1,j2 , . . . , Di,j1,j2,...,jk (1 ≤ i ≤ m, 1 ≤ jk ≤ 2n, k =
1, 2, . . . ) that satisfies u(DIk) ≥ f(x0) for DIk = Di,j1,j2,··· ,jk (k = 1, 2, · · · ),
which leads to

lim
k→∞

f(xc
Dk

) ≥ f(x0),

and contradicts the assumption sup
x∈M\U0

f(x) < f(x0).

To our knowledge, this approach to automated proof of inequalities was
suggested by Jingzhong Zhang in the late 1980s for proving an inequality of
Zirakzadeh (see [14] and [2]). A detailed description of Zhang’s method can be
found in [13] in Chinese. Later the method was used in [5] and [12] for prov-
ing two other geometric inequalities related to optimal distribution of points on
sphere and hemisphere. However, the technique of Procedure 1 is not described
in a general term in these case studies, so it is still difficult to apply the new
method to process other unsolved or complicated problems directly.

This paper is aiming to give a general symbolic algorithm of Procedure 1
for a class of smooth functions formed by a sum of several radical expressions.
Namely, assume that f : Rn → R has the following form:

f = c1
√

g1(x1, x2, . . . , xn) + · · · + ck

√
gk(x1, x2, . . . , xn),
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where c1, . . . , ck are real numbers and gj(x1, x2, . . . , xn) (j = 1, . . . , k) are poly-
nomials or rational functions of polynomials, and the point x0 ∈ R

n satisfies
the conditions

∂f

∂xi
(x0) = 0, i = 1, 2, . . . , n;

and

H0 :=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
· · · ∂2f

∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂xn∂xn

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(x0)

is negative-semi-definite. We explain how to construct a quadratic form q(x) =
q(x1, x2, . . . , xn) and a neighborhood U0 ⊂ R

n of x0 so that

(1) q(x0) = f(x0), x0 is the unique maximal point of q(x), and
(2) f(x) ≤ q(x) for x ∈ U0.

Note that the methods of local analysis in [5,12,13] are implemented for triangu-
lar functions and some special radical functions. We shall present our algorithm
in a more general form. Actually, our algorithm gives a constructive approach
to a special case (for k = 0 or n) of the Morse Lemma (see, e.g., [3,7]), which
asserts that if f : R

n → R is a function of class C∞ for which x0 = 0 is a
non-degenerate critical point, namely ∇f(0) = 0 and the Hessian at x0 has triv-
ial kernel, then in some neighbourhood U of x0 there is a local C∞ coordinate
system, namely a C∞ diffeomorphism ϕ : U → V ⊂ R

n with ϕ(0) = 0 and such
that f̃ = f ◦ ϕ−1 takes the form

f̃(x) = f(0) − x2
1 − · · · − x2

k + x2
k+1 + · · · + x2

n.

Several quantitative forms of the Morse Lemma can be found in [4,6,8,11], yet
a symbolic computation method cannot be directly derived from the literature.

The paper is organized as follows. In Sect. 2, we show how to find quadratic
bounds of an algebraic surface in the neighborhoods of a critical point; in Sect. 3,
we extend the method to rational and certain radical functions. In Sect. 4, we shall
apply the method to do local critical analysis for the spherical six-point problem.
The Maple computation in this paper is implemented on Maple version 18.00.

2 Quadratic Local Upper Bound of Polynomials

The following analytic definition of local optimal (extremum, maximal or mini-
mal) of a real-valued function can be found in any calculus text book.

Definition 1. A real-valued function f defined on a real-line is said to have a
local (or relative) maximum point at the point x0, if there exists some ε > 0
such that f(x) ≤ f(x0) when |x−x0| < ε. The value of the function at this point
is called maximum of the function. Similarly, a function has a local minimum
point at x0, if f(x) ≥ f(x0) when |x − x0| < ε. The value of the function at this
point is called minimum of the function.
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For functions of several variables, a neighborhood U(x0, ε) of the point x0 is used
to substitute the interval |x − x0| < ε. It is well known that the local extrema
can be found by Fermat’s theorem, which states that they must occur at critical
points (also called stationary points).

Theorem 1 (Fermat’s theorem). Let f : (a, b) → R be a function and
suppose that x0 ∈ (a, b) is a local maximum of f . If f is differentiable, then
f ′(x0) = 0. And exactly the same statement is true in higher dimensions.

One can distinguish whether a critical point is a local maximum or local
minimum by using the second derivative test. In calculus, the second derivative
test is a criterion for determining whether a given critical point of a function is
a local maximum or a local minimum using the value of the second derivative at
the point. The test states: if the function f is twice differentiable at a stationary
point x0, then

– If f ′′(x0) < 0 then f has a local maximum at x0.
– If f ′′(x0) > 0 then f has a local minimum at x0.
– If f ′′(x0) = 0, the second derivative test says nothing about the point x0.

For a function of more than one variable, the second derivative test generalizes to
a test based on the eigenvalues of the function’s Hessian matrix at the stationary
point. In particular, assuming that all second order partial derivatives of f are
continuous in a neighbourhood of a stationary point x0, and the eigenvalues of
the Hessian at x0 are all positive, then x0 is a local minimum. If the eigenvalues
are all negative, then x0 is a local maximum, and if some are positive and others
are negative, then the point x0 is a saddle point. If the Hessian matrix is singular,
then the second derivative test is inconclusive. Note that the second derivative
test concludes only the existence of a neighbourhood U0 of x0, where the function
f satisfies f(x) ≥ f(x0), or f(x) ≤ f(x0), for all points x ∈ U0.

It is easy to see that for a quadratic polynomial p(x) with n-variables, if
x0 = (0, 0, . . . , 0) ∈ R

n is a local maximum point, then

p(x) = p0 +
1
2
(x1, x2, . . . , xn)H0(x1, x2, . . . , xn)T ,

where p0 = p(0, 0, . . . , 0) and H0 is a negative-semi-definite symmetric matrix,
so under certain orthogonal transform of Cartesian coordinates

(x1, x2, . . . , xn) = (y1, y2, . . . , yn) · P.

We may express the polynomial p using the new coordinates as

p(y1, y2, . . . , yn) = p0 +
1
2
(λ1y

2
1 + λ2y

2
2 + · · · + λny2

n), (3)

where P is an orthogonal matrix and λi ≤ 0 (i = 1, 2, . . . , n) are the eigenvalues
of H0, which also shows that x = 0 is the global optimal of p(x). In geometry,
this shows that in R

n+1, the algebraic surface

F := {(x1, x2, . . . , xn, z)|z − p(x1, x2, . . . , xn)} = 0
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lies at one side of the tangent space T0F : z = 0 of F at 0.
For polynomial p(x) of degree d ≥ 3, if x = 0 is a local maximum of p, then

there is a neighborhood U0 of 0 ∈ R
n so that in the local region U0 ×R ⊂ R

n+1,
the surface F : z − p(x) = 0 and the tangent space T0F can be separated by
a quadratic surface F1 : z − q(x) = 0, where q(x) is a quadratic polynomial
which has x = 0 as its maximal point, and therefore, the algebraic surface
z − p(x) = 0 lies under its tangent space at 0. We will show that the quadratic
polynomial can be constructed using symbolic computation. Namely, we have
the following result.

Theorem 2. Assume that p(x) = p(x1, x2, . . . , xn) is a polynomial of degree
d ≥ 3 and x = (0, 0, . . . , 0) is a local maximum of p(x) satisfying the condition
that the eigenvalues λ1, λ2, . . . , λn of the Hessian matrix of p(x) at x = 0 are
all negative. Then we can construct a neighborhood U0 of x = 0 and a quadratic
polynomial q(x1, x2, . . . , xn) satisfies

(i) q(0) = p(0),
(ii) ∂q

∂xi
= 0 for i = 1, 2, . . . , n,

(iii) the Hessian matrix H0(q) is negative-definite, and
(iv) p(x) ≤ q(x) for all x ∈ U0.

We may call q(x) in Theorem 2 a quadratic local upper-bound of polyno-
mial p(x). In order to prove this theorem, we need to consider the degree-j
homogeneous part of polynomial p(x) for each degree j ≥ 3. We have the fol-
lowing lemma.

Lemma 1. For any integer j ≥ 3 and homogeneous polynomial

hj(x1, x2, . . . , xn) =
∑

d1,d2,...,dn≥0
d1+d2+···+dn=j

cd1,d2,...,dn
xd1
1 xd2

2 · · · xdn
n ,

with real coefficients, then there exists constant numbers k1, k2, . . . , kn ≥ 0,
such that for any positive number N and for real numbers x1, x2, . . . , xn ∈
(−1/N, 1/N), the inequality

|hj(x1, x2, . . . , xn)| ≤ 1
jN j−2

(k1x2
1 + k2x

2
2 + · · · + knx2

n)

holds.

Proof. For any j, real numbers z1, z2, . . . , zj ∈ (−1/N, 1/N) and any combina-
tion (k, l) of 1, 2, . . . , j, we have

z1z2 · · · zj ≤ 1
2N j−2

(z2k + z2l ). (4)

Construct this inequality for all
(

j
2

)
= j(j − 1)/2 two-member combinations of

1, 2, . . . , j, and sum up them to obtain
(

j

2

)

z1z2 · · · zj ≤ 1
2N j−2

(j − 1)(z21 + z22 + · · · + z2j ).
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Therefore
z1z2 · · · zj ≤ 1

jN j−2
(z21 + z22 + · · · + z2j ),

and

xd1
1 xd2

2 · · · xdn
n =

d1
︷ ︸︸ ︷
x1 · · · x1 ×

d2
︷ ︸︸ ︷
x2 · · · x2 × · · · ×

dn
︷ ︸︸ ︷
xn · · · xn

≤ 1
jN j−2

(d1x2
1 + d2x

2
2 + · · · + dnx2

n), (5)

for any monomial xd1
1 xd2

2 · · · xdn
n of degree j. Applying inequality (5) to each

monomial of the homogeneous polynomial hj(x1, x2, . . . , xn), we have

|hj | ≤
∑

d1+d2+···+dn=j

|cd1,d2,...,dn
xd1
1 xd2

2 · · · xdn
n |

≤
∑ 1

jN j−2
|cd1,d2,...,dn

|(d1x2
1 + d2x

2
2 + · · · + dnx2

n)

=
1

jN j−2

(
k1x

2
1 + k2x

2
2 + · · · + knx2

n

)
. (6)

Here k1, k2, . . . , kn are positive real numbers defined by

ki =
∑

d1+···+dn=j

di|cd1,d2,...,dj
|, i = 1, 2, · · · , n.

This completes the proof of Lemma 1. �

Remark 1. Taking Cj = max{k1, k2, . . . , kn}, then inequality (6) can be writ-
ten in the following simple form:

|hj(x1, x2, . . . , xn)| ≤ Cj

jN j−2
(x2

1 + x2
2 + · · · + x2

n). (7)

Now we give a proof of Theorem 2.

Proof. Let p0 = p(0), H0 be the Hessian matrix of p(x) at x = 0, and λ1, λ2,
. . . , λn the eigenvalues of H0. Then λi < 0 (i = 1, 2, . . . , n) according to the
assumption. We can express p as follows:

p(x) = p0 +
1
2
(x1, x2, . . . , xn)H0(x1, x2, . . . , xn)T

+ H3(x1, x2, . . . , xn) + · · · + Hd(x1, x2, . . . , xn), (8)

where Hj (j = 3, . . . , d) are homogeneous polynomials of degree j, respectively.
Applying Lemma 1, for each j (j = 3, . . . , d) we compute a sequence of

constants k
(j)
1 , k

(j)
2 , . . . , k

(j)
n that satisfy the following inequality

|Hj(x1, x2, . . . , xn)| ≤ 1
jN j−2

(k(j)
1 x2

1 + k
(j)
2 x2

2 + · · · + k(j)
n x2

n).
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For each N > 0, define a quadratic polynomial qN (x) as follows:

qN (x1,x2,. . . ,xn) = p0 +
1
2
(x1,x2,. . . ,xn)H0(x1,x2,. . . ,xn)T

+
d∑

j=3

1
jN j−2

(
k
(j)
1 x2

1 + k
(j)
2 x2

2 + · · · + k(j)
n x2

n

)
. (9)

It is clear that the requirements (i) and (ii) of Theorem 2 are satisfied, and the
requirement (iv), i.e., the inequality

p(x) ≤ p0 +
1
2
x · H0 · xT +

d∑

j=3

|Hj(x)| ≤ qN (x)

is also true for any x1, x2, . . . , xn ∈ (−1/N, 1/N) according to Lemma 1. To
see that the requirement (iii) is satisfied for sufficient large N , observe that the
Hessian matrix HqN (0) of qN (x) at x = 0 can be written as H0 + 2GN , where
GN is the diagonal matrix

⎛

⎜
⎜
⎜
⎝

g1(1/N)
g2(1/N)

. . .
gn(1/N)

⎞

⎟
⎟
⎟
⎠

,

where

gi(y) =
d∑

j=3

k
(j)
i

j
· yj−2, i = 1, 2, · · · , n.

Notice that λi < 0, k
(j)
i > 0 for all i, j (i = 1, 2, . . . , n; j = 3, · · · , d), so for each

i, the equation

1
2
λi + gi(y) =

1
2
λi +

k
(3)
i

3
· y + · · · +

k
(d)
i

d
· yd−2 = 0

has a unique positive real root y∗
i . Thus, if the number N satisfies

1
N

< min{y∗
1 , y

∗
2 , . . . , y

∗
n},

then the eigenvalues of H0 + 2GN , i.e., λi + 2gi(1/N) (i = 1, 2, . . . , n) are all
negative, and, therefore, the Hessian matrix of quadratic polynomials qN (x) is
negative-definite, as claimed in (iii).

Theorem 2 is proved. �
Remark 2. Let λ0 = max{λ1, λ2, . . . , λn} < 0 be the largest eigenvalue of H0,
Cj = max{k

(j)
1 , k

(j)
2 , . . . , k

(j)
n } for j = 3, · · · , d, and 1/N the smallest positive

real root of the following equation:

1
2
λ0 +

C3

3
·
(

1
N

)

+ · · · +
Cd

d
·
(

1
N

)d−2

= 0.
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Then, for any x2, x2, . . . , xn ∈ (−1/N, 1/N), we have

p(x) ≤ qN (x) ≤ p(0).

3 Local Critical Analysis of Rational and Radical
Functions

In this section, we explain how to extend the local critical analysis method to
rational functions and certain radical functions of several variables.

3.1 Rational Functions

The method we have described in Theorem 2 can be easily generalized to func-
tions f(x) = p(x)/q(x) where p(x) and q(x) are polynomials of x ∈ R

n. Let x0

be a local maximal (or minimal) point such that the Hessian matrix of f at the
point x0 is negative-definite (or positive-definite, respectively). Without loss of
generality, we may assume that x0 is a local minimal point of f(x) and q(x0) > 0.
Clearly, if q(x) is positive-definite, then the task of finding a neighborhood
U0 ⊂ R

n of x0 where
p(x)
q(x)

≥ f(x0),

for all x ∈ U0 can be simply transformed to finding the neighborhood U0 where

p(x) − f(x0) · q(x) ≥ 0,

for x ∈ U0, which is same as we have done in the previous section. If q(x) is
neither positive-definite nor negative-definite in certain known region, we need
first to construct such a neighborhood V0 of x0 so that q(x0) · q(x) > 0 for all
points x ∈ V0. To implement this work, we have the following theorem.

Theorem 3. Let q(x) be a polynomial in n variables of degree s, x0 a point in
R

n with x0 = (x∗
1, x

∗
2, . . . , x

∗
n), and q(x0) > 0,

K1 = max{| ∂q

∂xi
(x0)|, i = 1, 2, . . . , n} > 0,

K2 = max{| ∂2q

∂xi∂xj
(x0)|, 1 ≤ i, j ≤ n} > 0,

and

Kj = max{| ∂jq

∂xi1 . . . ∂xij

(x0)|, 1 ≤ i1, . . . , ij ≤ n} > 0,

for j = 3, . . . , s. Let δ0 be the unique solution of the equation

q(x0) = K1u +
1
2!

K2u
2 +

1
3!

K3u
3 + · · · +

1
s!

Ksu
s. (10)

Then, the inequality q(x) >0 is valid for any x = (x1,x2,. . ., xn) with

||x − x0||1 = |x1 − x∗
1| + |x2 − x∗

2| + · · · + |xn − x∗
n| < δ0.
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Proof. Let
u1 = x1 − x∗

1, u2 = x2 − x∗
2, . . . , un = xn − x∗

n,

and hj (j = 3, . . . , s) the homogeneous polynomials defined by

hj(u1,. . ., un) =
1
j!

[
n∑

i=1

ui
∂

∂x′
i

]j

q(x′
1,. . ., x

′
n)|x′

1=x∗
1 ,...,x′

n=x∗
n

=
1
j!

∑

d1+···+dn=j

(
j

d1, d2, . . . , dn

) n∏

i=1

(

ui
∂

∂x′
i

)di

q(x′)|x′=x0 .

Then, we may expand q(x) in a Taylor series at the point x0 as follows:

q(x1, x2, . . . , xn) = q(x∗
1, x

∗
2, . . . , x

∗
n)

+
[

u1
∂q

∂x1
+ u2

∂q

∂x2
+ · · · + un

∂q

∂xn

]

x1=x∗
1 ,...,xn=x∗

n

+
1
2!

[

u2
1

∂2q

∂x2
1

+ 2u1u2
∂2q

∂x1∂x2
+ · · · + u2

n

∂2q

∂x2
n

]

x1=x∗
1 ,...,xn=x∗

n

+ h3(u1, u2, . . . , un) + · · · + hs(u1, u2, . . . , un).

It is obvious that

abs

(

u1
∂q

∂x1
+ u2

∂q

∂x2
+ · · · + un

∂q

∂xn

)

x1=x∗
1 ,...,xn=x∗

n

≤ K1(|u1| + |u2| + · · · + |un|),
(11)

abs

[

u2
1

∂2q

∂x2
1

+ 2u1u2
∂2q

∂x1∂x2
+ · · · + u2

n

∂2q

∂x2
n

]

x1=x∗
1 ,...,xn=x∗

n

≤ K2(|u1|2 + 2|u1||u2| + · · · + |un|2)
= K2(|u1| + |u2| + · · · + |un|)2. (12)

For hj(u1, u2, . . . , un) (j = 3, . . . , s), we have

abs (h1(u1, u2, . . . , un))

≤ 1
j!

∑

d1+···+dn=j

(
j

d1, d2, . . . , dn

)(

Kj ·
n∏

i=1

(|ui|)di

)

=
1
j!

· Kj · [|u1| + |u2| + · · · + |un|]j . (13)

Therefore,

q(x) ≥ q(x0) − K1||x − x0||1 − 1
2
K2||x − x0||1

− 1
3!

K3||x − x0||21 · · · − 1
s!

Ks||x − x0||s. (14)
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which immediately implies that q(x) > 0 if ||x−x0||1 < δ0 and δ0 is the (unique)
real root of the equation (10).

Theorem 3 is proved. �

3.2 Sum of Radicals

Now we consider the radical functions of the following form:

f(x) = c1

√

1 +
p1(x)
q1(x)

+ c2

√

1 +
p2(x)
q2(x)

+ · · · + ck

√

1 +
pk(x)
qk(x)

, (15)

where pj(x) and qj(x) are the polynomials in n variables. We can prove the
following result.

Theorem 4. Assume that f(x) is function defined in (15), x0 = 0, and

pj(x0) = 0, qj(x0) > 0

for j = 1, 2, . . . , k. Then using symbolic computation we can construct a neigh-
borhood U0 of x0 and rational functions

h(x) =
k∑

j=1

cj +
P1(x)
Q1(x)

, g(x) =
k∑

j=1

cj +
P (x)
Q(x)

, (16)

where P1(x), Q1(x), P (x), Q(x) are polynomials such that

P1(0) = 0, P (0) = 0,

and
Q1(x) > 0, Q(x) > 0, h(x) ≤ f(x) ≤ g(x), (17)

for all x ∈ U0.

To prove this theorem, we need the following Lemma 2 and Lemma 3.

Lemma 2. For any real number x with −0.3777 < x < 0.7145, the following
inequality is true:

1 +
1
2
x − 5

32
x2 ≤ √

1 + x ≤ 1 +
1
2
x − 3

32
x2. (18)

�
Lemma 3. Assume that p(x) and q(x) are the polynomials in n variables x1, x2,
. . . , xn, x0 = (0, 0, . . . , 0) ∈ R

n, and

p(x0) = 0, q(x0) > 0.

Then for any ε > 0, we can find a constant δ = δ(ε) > 0 such that
√

x2
1 + x2

2 + · · · + x2
n < δ =⇒ −ε <

p(x1, x2, . . . , xn)
q(x1, x2, . . . , xn)

< ε

by symbolic computation.
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Proof. Indeed, the existence of the δ(ε) for each ε > 0 is guaranteed by the
continuity of p(x)/q(x) at the point x0 = 0. Here we show that δ(ε) can be
obtained by symbolic computation. For this purpose, we may assume that in
Theorem 3 we have a neighborhood

U0 := {(x1, x2, . . . , xn), |x1| + |x2| + · · · + |xn| < δ0}

that satisfies q(x) > q(0)/2 > 0 for all x ∈ U0. Assume deg(p) = r and

p(x) = x · ∇x=0p(x) +
1
2
x · H0x

T + h3(x) + · · · + hr(x),

here hj are homogeneous polynomials in x1, x2, . . . , xn for j = 3, . . . , r. Then
applying the method described in Lemma 1 and Remark 1 given in the previous
section, we can obtain constants Cj > 0 (j = 3, . . . , s) so that

|h3(x) + · · · + hr(x)| ≤
r∑

j=3

Cj

jN j−2
(x1

2 + x2
2 + · · · + xn

2) (19)

for all x ∈ R
n with x1, x2, . . . , xn ∈ (−1/N, 1/N) for any N > 0. Thus, for

(x1, x2, . . . , xn) ∈ U0, we have x1, x2, . . . , xn ∈ (−δ0, δ0), and inequality (19)
implies that

|h3(x) + · · · + hr(x)| ≤ C · (x1
2 + x2

2 + · · · + xn
2). (20)

Here

C =
r∑

j=3

Cj

j
δj−2
0 .

Let λ1, λ2, . . . , λn be the eigenvalues of H0, P the orthogonal matrix, (i.e.,
PT P = I) satisfying

H0 = PT · Λ · P = PT

⎛

⎜
⎜
⎜
⎝

λ1

λ2

. . .
λn

⎞

⎟
⎟
⎟
⎠

P,

and
(x′

1, x
′
2, . . . , x

′
n) = (x1, x2, . . . , xn)PT .

Then we have

|x · H0 · xT | = |xPT · Λ · PxT | = |x′Λ(x′)T |
= |λ1|x′2

1 + |λ2|x′2
2 + · · · + |λn|x′2

n

≤
√

λ2
1 + λ2

2 + · · · + λ2
n

(
x′
1
2 + x′

2
2 + · · · + x′

n
2
)

,
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Note that

λ2
1 + λ2

1 + · · · + λ2
n = tr(H0H

T
0 ) =

n∑

i=1

⎛

⎝
n∑

j=1

∂2p

∂xi∂xj

∂2p

∂xj∂xi

⎞

⎠

=
n∑

i,j=1

(
∂2p

∂xi∂xj

)2

= ||H0||2F ,

and

x′
1
2 + x′

2
2 + · · · + x′

n
2 = x′ x′T = xPT PxT = x2

1 + x2
2 + · · · + x2

n,

hence, we get

1
2
|x · H0 · xT | ≤ 1

2
||H0||F · (x2

1 + x2
2 + · · · + x2

n

)
. (21)

In view of the Cauchy–Schwarz inequality, we have

|x · ∇x=0p(x)| = |x1
∂p

∂x1
(0) + x2

∂p

∂x2
(0) + · · · + xn

∂p

∂xn
(0)|

≤ ||∇0p||2
√

x2
1 + x2

2 + · · · + x2
n. (22)

Here

||∇0p||2 =

√
√
√
√

n∑

i=1

(
∂p

∂xi
(0)
)2

.

Combining (20), (21), and (22), we obtain the following inequality

|p(x)| ≤||∇0p||2
√

x2
1 + x2

2 + · · · + x2
n

+
(

1
2
||H0||F + C

)
(
x2
1 + x2

2 + · · · + x2
n

)
. (23)

Therefore, if we take δ(ε) < min{δ0/
√

n, δ1}, where δ1 is the unique real root of

1
2
q(0)ε = ||∇0p||2 u +

(
1
2
||H0||F + C

)

u2,

then, from √
x2
1 + x2

2 + · · · + x2
n < δ(ε),

we have
|p(x)| <

1
2
q(0)ε

and |x1|+ |x2|+ · · ·+ |xn| <
√

nδ(ε) ≤ δ0, which implies that q(x) > q(0)/2 > 0,
and, therefore,

|p(x)
q(x)

| <
|p(x)|
1
2q(0)

< ε,

as claimed by Lemma 3. �
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Proof (Proof of Theorem 4). Without loss of generality, we may assume that
cj > 0 for j = 1, . . . , l and cj < 0 for j = l + 1, . . . , k. Then, applying Lemma 3
we can construct a neighborhood Uj so that

|pj(x)
qj(x)

| < 0.3777, qj(x) > 0

for each j (1 ≤ j ≤ k). Therefore, for point x ∈ U0 := U1 ∩U2 ∩ · · ·∩Uk, we have

f(x) ≤
∑

1≤j≤l

cj

(

1 +
pj(x)
2qj(x)

− 3pj(x)2

8qj(x)2

)

+
∑

l+1≤j≤k

cj

(

1 +
pj(x)
2qj(x)

− 5pj(x)2

8qj(x)2

)

=: g(x).

Let

P (x) := (g(x) − c1 − c2 − · · · − ck) · Q(x),

Q(x) := (lcm(q1(x)q2(x) · · · qk(x)))2 .

Then Q(x) > 0 for x ∈ U0 obviously, f(x) ≤ g(x) for x ∈ U0 as defined, and

g(0) =
∑

1≤j≤l

cj

(

1 +
pj(0)
2qj(0)

− 3pj(0)2

8qj(0)2

)

+
∑

l+1≤j≤k

cj

(

1 +
pj(0)
2qj(0)

− 5pj(0)2

8qj(0)2

)

= c1 + c2 + · · · + ck,

therefore, P (0) = 0.
The rational function h(x) and the polynomials P1(x) and Q1(x) can be

constructed by a similar computation. Theorem 4 is proved. �

Our goal is to process the situation when x0 = 0 is a local maximal or minimal
point of f . Namely, we wish that the upper-bound rational function g(x) (and
the lower-bound rational function h(x), resp.) constructed by Theorem 4 has
also taken the point x0 as the local maximal (minimal, resp.) point if it is a
local maximal (minimal, resp.) point of the original radical function f(x), which
means, g(x) satisfies the following properties:

– g′(0) = 0, and, at best,
– the Hessian matrix Hg(0) is negative-definite,

if x0 is, for example, a maximal point of f(x). To see this, we have

g′(0) =
k∑

j=1

(
1
2
cj − c′

j

8
· 2pj(0)

qj(0)

)(
qj(0)p′

j(0) − q′
j(0)pj(0)

qj(0)2

)

=
k∑

j=1

cj · p′
j(0)

2qj(0)
,
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here c′
j = 3cj for 1 ≤ j ≤ l and c′

j = 5cj for l + 1 ≤ j ≤ k. Meanwhile, we have

f ′(0) =
k∑

j=1

cj

[
qj(0)p′

j(0) − q′
j(0)pj(0)

]
/
[
qj(0)2

]

2 [1 + (p(0)/q(0))2]
=

k∑

j=1

cj · p′
j(0)

2qj(0)
,

which means that if x0 = 0 is a local optimal point of the radical function
defined by (15), then it is also a critical point of the upper-bound (or lower
bound) rational function g(x) (or h(x), resp.) obtained by Theorem 4.

Remark 3. Notice that x0 = 0 might not be a local maximal point of the
upper-bound rational function g(x) even if it is a local maximal point of f(x).
To ensure that

H0(f) is negative-definite =⇒ H0(g) is negative-definite,

we may need to refine inequalities (18) of Lemma 2. For example, we may use
the following inequality

√
1 + x ≤ 1 +

1
2
x − 1

8
x2 +

1
16

x3 (−1 < x < +∞), (24)

for cj (1 ≤ j ≤ l), and the inequality

√
1 + x ≥ 1 +

1
2
x − 1

8
x2 +

1
16

x3 − 1
16

x4 (−0.5161 < x < 3), (25)

for cj (l+1 ≤ j ≤ k). The upper-bound rational function g(x) generated by (24)
and (25) satisfies H0(g) = H0(f) since

∂2f

∂xi∂xj
=

∂2g

∂xi∂xj
(1 ≤ i, j ≤ n).

We omit its proof here.

4 Local Critical Analysis of the Spherical Six-Point
Problem

In this section, we discuss the optimization spherical point problem we have men-
tioned in Sect. 1. Recall that the numerical result says that best arrangement is

Γ6 := {(0, 0, 1), (0,−1, 0), (1, 0, 0), (0, 1, 0), (−1, 0, 0), (0, 0,−1)} , (26)

up to certain rotation of the sphere. We will prove the following theorem.

Theorem 5. Assume that the six points P1, P2, . . . , P6 are placed on the unit
sphere S2 as follows:

P1 = (0, 0, 1), P2 = (0,−
√

1 − z22 , z2),

P3 = (
√

1 − y2
3 − z23 , y3, z3), P4 = (x4,

√
1 − x2

4 − z24 , z4),

P5 = (−
√

1 − y2
5 − z25 , y5, z5), P6 = (x6, y6,−

√
1 − x2

6 − y2
6),
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so that
− 1

22.9
≤ z2, y3, z3, x4, z4, y5, z5, x6, y6 ≤ 1

22.9
, z2 ≥ 0, (27)

then ∑

1≤i<j≤6

d(Pi, Pj) ≤ 6 + 12
√

2,

and the equality holds if and only if P1, P2, . . . , P6 are congruent to Γ6.

Proof. Without loss of generality, we may assume that

z2 =
2p

1 + p2
, y3 =

2q

1 + q2 + r2
, z3 =

2r

1 + q2 + r2
,

x4 =
2u

1 + u2 + v2
, z4 =

2v

1 + u2 + v2
,

y5 =
2s

1 + s2 + t2
, z5 =

2t

1 + s2 + t2
,

x6 =
2x

1 + x2 + y2
, y6 =

2y

1 + x2 + y2
,

where
−1/45.7 ≤ p, q, r, s, t, u, v, x, y ≤ 1/45.7, p ≥ 0.

Then, we have

d(Pi, Pj) =
{

2 ·√1 + wij , (i, j) ∈ {(1, 6), (2, 4), (3, 5)},√
2·√1 + wij , otherwise,

here wij are rational functions of p, q, r, s, t, u, v, x, y, for example,

w23 =
−2(p2q + 2 pr − q)

(p2 + 1) (q2 + r2 + 1)
, w24 =

−(p2 + 2 pv + u2 + v2)
(p2 + 1) (u2 + v2 + 1)

.

Applying inequality (24) we have
∑

1≤i<j≤6

d(Pi, Pj) ≤ 6 + 12
√

2 + G(p, q, r, s, t, u, v, x, y),

here
G =

∑

1≤i<j≤6

cij(
1
2
wij − 1

8
w2

ij +
1
16

w3
ij)

is a rational function and

cij =
{

2, for (i, j) ∈ {(1, 6), (2, 4), (3, 5)},√
2, otherwise.

Using Maple we obtain G = P/Q, where

Q = 8
(
p2 + 1

)3 (
q2 + r2 + 1

)3 (
u2 + v2 + 1

)3 · (s2 + t2 + 1
)3 (

x2 + y2 + 1
)3

,
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and the P = numer(G) is polynomial of degree 30 with 543, 609 monomials, of
which the least degree is 2. Therefore, we can write P as a sum of 29 homogeneous
polynomials as follows:

P = H2 + H3 + · · · + H30,

where H30 can be factorized into

H30 = −11 p6
(
x2 + y2

)3 (
u2 + v2

)3 (
s2 + t2

)3 (
q2 + r2

)3 ≤ 0.

The number of monomial in Hj(2 ≤ j ≤ 29) are:

34, 37, 217, 279, 947, 1221, 3165, 3885, 8142, 9559, 17033,

18977, 29766, 30993, 43117, 41763, 51880, 46416, 52178,

42108, 42910, 30102, 27244, 16388, 13536, 6080, 4544, 832.

Using Maple we can check that the quadratic form H2 is negative-definite. For
simplicity, we show this later.

Assume that p, q, r, . . . , x, y ∈ (−1/N, 1/N). Then, applying Lemma 1, we
can obtain the following inequalities:

|H3| ≤ J3 = 4
√

2(26 p2 + 35 q2 + 31 r2 + 35 s2 + 31 t2

+ 38u2 + 43 v2 + 38x2 + 44 y2)/3N,

|H4| ≤ J4 =
466

√
2 + 170
N2

· S9,

|H5| ≤ J5 =
2177
N3

· S9, . . . , |H29| ≤ J29 =
44743
N29

· S9,

here
S9 := p2 + q2 + r2 + s2 + t2 + u2 + v2 + x2 + y2,

so J3, J4, . . . , J29 can be considered as quadratic forms with a parameter N . We
will show more information of Jk at the end of this section. Let J30 = 0. Then
H30 ≤ J30, and we can check that if N > 45.6866, H2 + (J3 + J4 + · · · + J30) is
also a negative-definite quadratic form. Therefore,

P =
30∑

k=2

Hk ≤ H2 +
30∑

k=3

Jk ≤ 0,

and ∑

1≤i<j≤6

d(Pi, Pj) ≤ 6 + 12
√

2,

for p, q, . . . , x, y ∈ (−1/45.7, 1/45.7), also for P1, P2, . . . , P6 that satisfy (27).
This proves Theorem 5. �
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Now we show that H2 is negative-definite. We can write H2 as follows.

H2 = 4(1 +
√

2)(p, q, r, s, t, u, v, x, y)A(p, q, r, s, t, u, v, x, y)T ,

where

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 0 a 0 a 0 b 0 c
0 −1 0 b 0 c 0 0 a
a 0 −1 0 b 0 a −c 0
0 b 0 −1 0 −c 0 0 a
a 0 b 0 −1 0 a c 0
0 c 0 −c 0 −1 0 a 0
b 0 a 0 a 0 −1 0 −c
0 0 −c 0 c a 0 −1 0
c a 0 a 0 0 −c 0 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and
a =

√
2 − 2, b = 1 −

√
2, c =

√
2/2 − 1.

The characteristic polynomial of A is

f(λ) =
(
λ3 + 12λ

√
2 + 3λ2 + 27

√
2 − 15λ − 38

)

×
(
−λ2 + 2

√
2 λ − 5λ + 3

√
2 − 5

)
×
(
λ2 + λ + 5

√
2 − 7

)

×
(
λ − 4 + 3

√
2
)

×
(
−λ − 4 +

√
2
)

= 0.

Using Maple it is easy to see that f(λ) = 0 has 9 zeros and all of them are are
negative numbers. The largest one is

−1/2 + 1/2
√

29 − 20
√

2 ≈ −0.07699 · · · < 0.

Therefore, H2 is a negative-definite quadratic form.
To conclude the paper we show more details about Hk and Jk for k ≥ 3. As

for 4 ≤ k ≤ 29, the degree-k homogeneous polynomial Hk has more than 200
monomials, here we only show the cubic homogeneous polynomial H3 and the
construction of J3 and J4.

The cubic homogeneous polynomial H3 has 37 monomials, and all coefficients
have a common factor 4

√
2.

H3 = −4
√

2(4 px2 + py2 + 4 p2q + 4 p2s + p2y − 4u2y)

−q2u − 4 q2x − qu2 − 4 qv2 + 4 vx2 + vy2 + 4 ty2 − v2y − 4 r2u − r2x

+rx2 + 4 ry2 + s2u + tx2 + 4 s2x − su2 − 4 sv2 + 4 t2u + t2x

−4uvx + 4uxy + 4 qrv − 4 qry + 4 qxy − 4 sxy
����������������������������������������

−4 tuv − 4 pqr − 4 pst + 4 ruv + 4 stv − 4 sty
��������������������������������������

.
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We observe that there are two types of monomials in H4: those monomials
of the form c·w2

1w2 in the first three lines, and those monomials of the form
c·w1w2w3 in the last two lines (printed with underwave), where w1, w2, w3 ∈
{p, q, r, s, t, u, v, x, y} and wi �= wj for i �= j. Notice also that

−4
√

2(4px2 +
√

2py2) ≤ 0,

for p > 0. Applying the above inequality to the first two monomials (underlined)
of H3 and the following inequalities

cw2
1w2 ≤ |c|

3N
(2w2

1 + w2
2), cw1w2w3 ≤ |c|

3N
(w2

1 + w2
2 + w2

3)

to the remaining 35 monomials of H2 of corresponding types, we obtain the
upper bound quadratic form of H3.

J3 =
4
√

2
3N

(31p2 + 35q2 + 31r2 + · · · + 46x2 + 46y2).

For H4, the monomials can be classified into five types and for each type we
have its corresponding upper bound form as follows:

(1) monomials in the form c · w4
i , which upper bounds are c′w2

i /N2, with c′ =
max{0, c};

(2) monomials in the form c ·w2
i w2

j , which upper bounds are c′(w2
i +wj)/(2N2),

with c′ = max{0, c};
(3) monomials in the form c·w3

i wj , the corresponding upper bounds are |c|(3w2
i +

w2
j )/(4N2);

(4) monomials in the form c · w2
i wjwk, their upper bounds are |c|(2w2

i + w2
j +

w2
k)/(4N2);

(5) monomials in the form c · wiwjwkwl,their upper bounds are |c|(w2
i + w2

j +
w2

k + w2
l )/(4N2).

where c ∈ R and wi, wj , wk, wl ∈ {p, q, r, . . . , x, y}. For obtaining tighter upper
bound, we have taken

c′ =
{

0, if c < 0,
c, otherwise,

in the first two cases. Therefore, we obtain the following result:

J4 =
452

√
2 + 170
N2

p2 +
374

√
2 + 168
N2

q2 + · · · +
490

√
2 + 72

N2
y2.

The largest coefficient of J4 is (466
√

2 + 170)/N2, thus we have

J4 ≤ 466
√

2 + 170
N2

(p2 + q2 + r2 + s2 + t2 + u2 + v2 + x2 + y2).

Similarly, we have

Jk ≤ ck

Nk−2
(p2 + q2 + r2 + s2 + t2 + u2 + v2 + x2 + y2)
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for k = 5, 6, . . . , 29, where we can take integer ck as follows:

2177, 9031, 21156, 61636, 121551, 284559, 476083, 938831, 1425542, 2280819,

3167178, 4135346, 5315958, 5594346, 6708463, 5568363, 6210033, 3953535,

4035347, 1890122, 1715600, 543585, 421574, 70800, 44743.

Clearly,

P = H2 + H3 + H4 + · · · + H29 + H30

≤ H2 + (J3 + J4 + · · · + J29) =: P ′(N, p, q, r, . . . , x, y).

It is easy now to use Maple to verify that P ′(N, ·) is negative-definite.
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