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Abstract. The explicit symplectic difference schemes are considered for
the numerical solution of molecular dynamics problems described by sys-
tems with separable Hamiltonians. A general method for finding symplec-
tic schemes of high order of accuracy using parametric Gröbner bases,
resultants, and permutations of variables is proposed. The implementa-
tion of the method is described by the example of four-stage partitioned
Runge–Kutta (PRK) schemes of the Forest–Ruth family. All required
symbolic calculations are performed using the computer algebra system
Mathematica. 96 new PRK schemes of Forest–Ruth family have been
obtained.
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1 Introduction

The equations of molecular dynamics (MD) are ordinary Hamilton differential
equations describing the interaction of material particles. MD equations have an
exact analytical solution in a very limited number of cases [8]. Therefore, in the
general case, these equations are solved numerically using difference schemes in
which the differential operator is replaced by a difference operator.

When solving the Hamilton equations, it is natural to use difference schemes
that preserve the symplectic properties of these equations. Violation of this con-
dition leads to non-conservation of Poincaré invariants and the appearance of
non-physical instability in numerical calculations. It follows that the difference
operator of the numerical scheme must have the properties of a canonical trans-
formation. The corresponding difference schemes are called symplectic.

This work is a continuation of the works of the authors [15,16], which pro-
vide a detailed overview of the methods for constructing symplectic schemes.
In [15,16], symplectic schemes were considered in relation to the MD method,
in which the Hamiltonian of interacting particles splits into the sum of kinetic
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and potential energy. It was shown that the problem of constructing symplectic
schemes of a given order of accuracy with a fixed number of stages is reduced to
the problem of finding the roots of a polynomial system of equations that arise
when the coefficients in the expression for the error of the scheme are turned to
zero. It turned out that the use of the Gröbner basis technique [1] implemented
in the Mathematica computer algebra system makes it possible to find the roots
of a system of polynomial equations in the case when its Vandermonde determi-
nant is zero. With the help of this technique, 21 new four-stage schemes of the
4th order of accuracy were obtained [16].

This paper presents a generalization of the method proposed in [15,16] to the
more general case when the Vandermonde determinant of a system of polynomial
equations is nonzero. The effectiveness of the proposed method is demonstrated
by the example of a four-stage scheme of the 4th order of accuracy. 96 new
symplectic four-stage schemes of the 4th order of accuracy of the Forest–Ruth
type were obtained. The error functional for several of the best new schemes is
two orders of magnitude smaller than for the Forest–Ruth scheme [6].

Verification of schemes is carried out by comparing the numerical solutions
with the exact solution of the test problem. It is shown that the new Forest–Ruth
four-stage schemes with the smallest norm of the leading error term provide a
more accurate preservation of a balance in total energy of the particle system
than the schemes of the same formal approximation order with a larger approx-
imation error.

2 Governing Equations

For simplicity, consider the Hamilton’s equations for a single particle in the
one-dimensional case:

dx/dt = p/m, dp/dt = f(x), f(x) = −∂H(x)/∂x, H =
p2

2m
+ V (x), (1)

where t is the time, x is the coordinate, p is the momentum, m is the particle
mass, f is the force acting on the particle, V (x) is the potential energy, p2/(2m)
is the kinetic energy, H is the Hamiltonian.

Hamilton’s equations (1) generate a one-parameter group of diffeomorphisms
x0 → x(t, x0) [5]. The smooth functions z(x, p) form the algebra of the Lie group
with respect to the Poisson bracket [5]

dz

dt
= {z,H}, {z,H} =

(
∂H

∂p

∂z

∂x
− ∂H

∂x

∂z

∂p

)
. (2)

Let us rewrite these equations in the operator form

dz

dt
= L̂z, L̂ =

(
∂H

∂p

∂

∂x
− ∂H

∂x

∂

∂p

)
, (3)

where L̂ is the Liouville operator. Write the solution of Eq. (3) in the form

z(t) = Ûz(0), Û = exp(L̂t), L̂ = L̂1 + L̂2, L̂1 =
∂H

∂p

∂

∂x
, L̂2 = −∂H

∂x

∂

∂p
. (4)
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Propagators Û form a one-parameter Lie group and satisfy the group relations

Û(t1)Û(t2) = Û(t1 + t2), Û−1 = exp(−L̂t), Û(0) = I, Û Û−1 = I. (5)

Equations (4) underlie the propagator method of constructing symplectic
schemes [3,7,9,18].

3 Symplectic Partitioned Runge–Kutta Schemes

PRK schemes are based on the propagator method, which is determined by rela-
tions (4). In the case of a separable Hamiltonian, they have the following form:

z(t) = Ûz(0), Û = exp[(L̂1 + L̂2)t],

L̂1 =
p

m

∂

∂x
, L̂2 = f(x)

∂

∂p
, f(x) = −∂V

∂x
.

(6)

If the values zn = (xn, pn) are known at the nth time layer tn, then we obtain
at the (n + 1)th time layer tn+1 = tn + h

zn+1 = exp((L̂1 + L̂2)h)zn. (7)

Let us subdivide the passage from tn to tn+1 into K stages. Let us approximate
the propagator (7) by a product of propagators with the accuracy O(hλ+1):

exp[(L̂1+ L̂2)h] =
K∏

s=1

exp(dshL̂1) exp(cshL̂2)+O(hλ+1),
K∑

s=1

cs = 1,

K∑
s=1

ds = 1.

(8)
Thus, the solution at the (n + 1)th time layer is given with the accuracy of

O(hλ) by the equation

zn+1 =
K∏

s=1

exp(dshL̂1) exp(cshL̂2)zn,

zK = zn+1 = (xn+1, pn+1), z(0) = zn = (xn, pn).

(9)

We obtain from Eqs. (7) and (9) that at the passage from the (i − 1)th stage to
the ith stage, the following relations are valid [6]:

p(i) = p(i−1) + cihf(x(i−1)), x(i) = x(i−1) + di
h

m
p(i), i = 1, . . . ,K, (10)

which satisfy the condition J = ∂(pi,xi)
∂(pi−1,xi−1) = 1. Note that one can use instead

of (9) the expansion (in the notation of the work [18]) of the form

zn+1 =
K∏

s=1

exp(dshL̂2) exp(cshL̂1)zn, (11)
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which leads to the relations [18]

x(i) = x(i−1) + ci
h

m
p(i−1), p(i) = p(i−1) + dihf(x(i)), i = 1, . . . ,K, (12)

which also satisfy the condition J = 1. Equations (10) and (12) define the class of
explicit symplectic schemes the accuracy of which is determined by the number
of stages K and coefficients ci, di.

Below we show how new sets of parameters of a four-stage multiparameter
family of Forest–Ruth symplectic schemes (10) can be obtained analytically using
Gröbner bases. Some of these schemes have a much smaller norm of the leading
error term than the two four-stage schemes obtained in [6].

4 Forest–Ruth Scheme

Consider scheme (10) with K = 4. Using symbolic calculations, it is not difficult
to obtain an expression for the error δpn in the form [16]

δpn = hP1f(x) + (h2/2)P2u(t)f ′(x) + h3[P31f(x)f ′(x)/m + P32u
2f ′′(x)]/6

+ (h4u)/(24m){P41 · [f ′(x)]2 + 3P42f(x)f ′′(x) + P43mu2f (3)(x)}
− [h5/(120m2)](3P51f

2(x)f ′′(x) + f(x)(P52 · [f ′(x)]2 − 6P53mu2f (3)(x)
− mu2(5P54f

′(x)f ′′(x) + P55mu2f (4)(x))), (13)

where u(t) is the particle velocity. The expressions for P1, P2, P31, P32, P41, P42,
P43, P51, P52, P53, P54, and P55 are available in [16], and we give here only the
expression for P1 for the sake of brevity: P1 = 1 − c1 − c2 − c3 − c4.

Let us calculate the weighted root-mean-square value of five polynomials P5j ,
j = 1, . . . , 5:

P
(l)
5,rms =

[
(1/5)

5∑
j=1

(σjP5j)2
] 1

2 . (14)

Here σ1, . . . , σ5 are problem-independent factors affecting the polynomials P5j

in (13), σ1 = −3, σ2 = −1, σ3 = 6, σ4 = 5, σ5 = 1. The error δxn obtained when
calculating the coordinate xn+1 according to the scheme under consideration is
given by the formula

δxn = hp
m R1 + h2

2mR2f(x) + h3

6mR3u(t)f ′(x) + h4

24m2 [R41f(x)f ′(x)

+R42mu2f ′′(x)] h5u(t)
120m2 {R51[f ′(x)]2+ 3R52f(x)f ′′(x) + R53mu2f (3)(x)}.

(15)

The expressions for R1, R2, R3, R41, R42, R51, R52, and R53 are available in [16],
and we give here only the expression for R1 for the sake of brevity: R1 = 1 −
d1 − d2 − d3 − d4.

The system of equations P1 = 0, P2 = 0, P32 = 0, P43 = 0 is linear in ci,
i = 1, . . . , 4. It is easy to rewrite it in the form Pc = b, where c = (c1, c2, c3, c4)T ,
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Table 1. The values of the parameters of the Forest–Ruth schemes FRl (l = 1, . . . , 6)
obtained in the case of the zero determinant (17)

FRl ci di

FR1 d2 = −d1 1.681562217889354644 1.689032314592042095

0.014940193405374902 −1.689032314592042095

−1.471849481432093948 0.612326464931317799

FR2 d2 = −d1 0.462663328009943900 0.754092747422918106

0.582858838825948413 −0.754092747422918106

−1.983103761290466971 0.031209202772712671

FR3 d3 = −d2 0 ϕ+
1

ϕ−
2 −z/3

1/2 z/3

FR4 d3 = −d2 0 ϕ−
1

ϕ+
2 z/3

1/2 −z/3

FR5 d4 = 1 −0.298786423182561709 0.092128124809906823

0.781829095984937063 0.671234501323664155

0.560639906662391246 −0.763362626133570977

FR6 d4 = 1 0.447302683845444312 0.747066325751166375

0.599527283811444124 −0.771392086019630084

−2.142311455850704292 0.024325760268463710

Table 2. The values of the parameters of the Forest–Ruth schemes FRl, l = 7, . . . , 10
in the particular cases of c1 = 0 and d4 = 0

FRl c1 c2 c3 c4 d1 d2 d3 d4

FR7 c1 = 0 0 ϕ+
2

1
2

ϕ−
2 ϕ−

1
z
3

− z
3

ϕ+
1

FR8 c1 = 0 0 ϕ−
2

1
2

ϕ+
2 ϕ+

1 − z
3

z
3

ϕ−
1

FR9∗ c1 = 0 0 2ϕ3 ϕ4 2ϕ3 ϕ3
1
2

− ϕ3
1
2

− ϕ3 ϕ3

FR10∗ d4 = 0 ϕ3
1
2

− ϕ3
1
2

− ϕ3 ϕ3 2ϕ3 ϕ4 2ϕ3 0

b = (1, 1
2 , 1

3 , 1
4 )T , and

P =

⎛
⎜⎜⎝

1 1 1 1
0 d1 d1 + d2 d1 + d2 + d3
0 d21 (d1 + d2)2 (d1 + d2 + d3)2

0 d31 (d1 + d2)3 (d1 + d2 + d3)3

⎞
⎟⎟⎠ . (16)

The determinant of this matrix is as follows:

detP = d1d2d3(d1 + d2)(d2 + d3)(1 − d4). (17)
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The values ci obtained from the system P1 = 0, P2 = 0, P32 = 0, P43 = 0 have
the form of fractional rational functions whose numerators are polynomials in
d1, . . . , d4, and denominator is the determinant (17). If detP = 0, then it will
be problematic to find expressions for ci. In this connection, all six particular
cases of the vanishing determinant (17) were considered in detail in [16]. The
following polynomial system was handled therein:

R1 = 0, P1 = 0, P2 = 0, P31 = 0, P32 = 0, P41 = 0, P42 = 0, P43 = 0. (18)

The number of equations in (18) is equal to the number of unknowns c1, c2, c3, c4,
d1, d2, d3, d4. We found with the aid of Gröbner bases six new analytical solutions
of the above system, which are summarized in Table 1. The values z, ζ, ϕ1, ϕ

±
2 , ϕ3

were calculated as follows:

z =
√

3, ζ = 21/3, ϕ±
1 = 1

6 (3 ± z), ϕ±
2 = 1

12 (3 ± 2z),
ϕ3 = 1

12 (4 + 2ζ + ζ2), ϕ4 = − 1
3 (1 + ζ)2.

(19)

In Table 1 and in further similar tables, we give for brevity only the first three
values of the parameters ci, di, i = 1, 2, 3. The numerical values of the parameters
c4 and d4 can be calculated using the formulas: c4 = 1 − c1 − c2 − c3, d4 =
1 − d1 − d2 − d3.

Earlier in the work [6], cases were considered when either c1 = 0 or d4 = 0;
at the same time, additional symmetry conditions of the scheme were imposed:
d2 = d3, d1 = d4 (at c1 = 0) and c2 = c3, c1 = c4 (at d4 = 0). We also considered
in [16] special cases when either c1 = 0 or d4 = 0, but did not impose symmetry
conditions. At c1 = 0, two solutions coincide with those obtained for d3 = −d2,
and the third solution coincides with the one given in [6]. For d4 = 0, a unique
real solution was obtained that coincides with the solution (4.9) from [6]. A
more detailed description of these solutions is given in [16], see also Table 2,
where symmetric schemes are marked with an asterisk.

Along with (14), we also introduce the functional X
(l)
5,rms, which represents

the weighted root-mean square value of three polynomials R5j , j = 1, 2, 3:

X
(l)
5,rms =

{[
R2

51 + (3R52)2 + R2
53

]
/3

}1/2
. (20)

This formula accounts for multiplier “3” before R52 in (15). In the following, we
will not give the magnitudes of the functionals P

(l)
5,rms and X

(l)
5,rms separately for

each scheme, but we will give them in a summary Table 19.
One can see from Table 19 that in the cases of symmetric schemes FR9 and

FR10, the value P
(l)
5,rms obtained from the leading term of the scheme error is

greater than in the cases of nonsymmetric schemes. Thus, although symmetric
schemes allow calculations in the direction of decreasing time (h < 0), they
are less accurate than nonsymmetric schemes (according to the latter schemes,
problems can be solved only at h > 0, i.e., moving in the direction of increasing
time).
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4.1 The General Case

In general, when the determinant (17) is nonzero, expressions for polynomi-
als (18) become more complicated. The Mathematica command

GroebnerBasis[{P1, R1, P2, P31, P32, P41, P42, P43},

{c1, c2, c3, c4, d1, d2, d3, d4}]
(21)

has enabled the obtaining of the Gröbner basis {G1, . . . , G19}, which consists
of 19 polynomials. The polynomial system is termed zero-dimensional if it has
a finite number of complex solutions. A zero-dimensional system with as many
equations as variables is sometimes said to be well-behaved [10]. The Bézout
theorem asserts that a well-behaved system of n equations, which have degrees
d1, . . . , dn, has at most d1 · · · dn solutions. In our case, the polynomials P1, R1, P2,
P31, P32, P41, P42, and P43 have according to [16] the degrees 1, 1, 2, 3, 3, 4, 4, 4,
respectively. Thus, system (18) has at most 1152 complex and real roots counted
with their multiplicities.

Unfortunately, in the Gröbner basis obtained from (21), there is no univariate
polynomial. The shortest polynomials in the resulting basis are the polynomials
G1 and G2, moreover, G1 = G1(d3, d4), G2 = G2(d2, d3, d4). In order for the
system G1 = 0, G2 = 0 to have a common root, it is necessary that its resultant,
based on the Sylvester matrix, be zero [2,4]. The polynomials G1 and G2 depend
collectively on three variables d2, d3, and d4. It follows that one needs to consider
three options for excluding variables: excluding the variable d2, excluding the
variable d3, and excluding the variable d4. Therefore, we have considered three
resultants: Res(G1, G2, d4), Res(G1, G2, d3), Res(G1, G2, d2).

In the CAS Mathematica, the symbolic computation of the resultant is imple-
mented in the function Resultant[...]. The command Resultant[G1,G2,d4]
eliminates the variable d4. As a result, it has been found that

Res(G1, G2, d4) = A54d3F4(d3)F8(d3)F13(d2, d3)[F14(d3)]2F56(d3). (22)

Here A54 is a constant consisting of 54 decimal digits, F4(d3) = −1−16d3−96d23−
36d33 + 324d43. The value d3 = 0 is one of the solutions of the Eq. (22). However,
it was mentioned above that with this value of the parameter d3, the system (18)
is incompatible. The solution of the equation F4(d3) = 0 is in radicals, but its
substitution into system (18) leads to giant symbolic expressions.

On the other hand, the roots of this equation can be found numerically with
very high accuracy. But all the same, the real roots found are approximate. Sub-
stituting the root d3, given as a floating-point machine number, into the orig-
inal polynomial system (18) turns this system into a polynomial system with
approximate coefficients. In the review paper [11], problems related to obtaining
approximate Gröbner bases from polynomial systems with approximate coeffi-
cients were discussed. Here we note the following two problems.

• In principle, approximate solutions of the original polynomial system can
be obtained from the approximate Gröbner basis. But substituting the found
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solution into the original system leads to the residuals that are several decimal
orders of magnitude greater than machine rounding errors; this was shown in
a number of examples in [11].

• There exists the problem of ill-conditioned polynomials [12,17]. The presence
of errors in the coefficients of a poorly conditioned polynomial can even lead
to a change in the number of real roots of the polynomial equation [17].

In cases where it is not possible to find solutions to a polynomial system in
an analytical form, it is more reliable to search for these solutions by numerically
solving an optimization problem formulated directly for the polynomials included
in the original system. This methodology was described in [15,16].

Table 3. The values of the parameters of the Forest–Ruth schemes FRl (l = 11, . . . , 14)
obtained in the case of the zero resultant (23)

FRl ci di

FR11 d4 = 1/3 −3.793578045247588829 −2.015338965874309019

−0.002556494312384837 2.010225977249539346

4.023008448811463529 0.671779655291436340

FR12 d4 = 1/3 0.215291546204744457 1.145093955234638990

0.524182325872439832 −0.096729303489759326

−0.717640932851958484 −0.381697985078212997

FR13 d4 = 1/4 −0.456387075637887056 0.559356790721160223

−0.065655505000061227 −0.478888139152354456

0.903328999195627837 0.669531348431194233

FR14 d4 = 1/4 0.313736873232085596 0.817539342386075480

−0.440874365834237127 −1.966375102129151814

−0.007941192169999430 1.898835759743076334

For the resultant Res(G1, G2, d3), the following expression is obtained:

Res(G1, G2, d3) = 103129560704(3d4 − 1)9(4d4 − 1)5(1 − 9d4 + 24d24)
9

×F12(d2, d4)[F14(d4)]6.
(23)

Expressions for polynomials F12(d2, d4) and F14(d4) are not given here because
of their bulky appearance.

It follows from (23) that the value d4 = 1/3 is one of the roots of the equation
Res(G1, G2, d3) = 0. Substituting this value into the polynomial system (18)
significantly simplifies the appearance of the polynomials included in the system.
This makes it easy to find the corresponding Gröbner basis consisting of seven
polynomials G1, . . . , G7. The Gröbner polynomial G1 yields the following quartic
equation for c1: G(1) = −25 + 340c1 − 1920c21 + 3840c31 + 1152c41 = 0. Its roots
are expressed in radicals, we omit them for brevity. Two of these roots are real.
Since the Gröbner basis is triangular, the parameters d3, d2, d1, c4, c3, c2 are
easily found. The corresponding schemes in Table 3 are the schemes FR11 and
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FR12. The case of d4 = 1/4 was handled similarly to the foregoing case. The
corresponding schemes in Table 3 are the schemes FR13 and FR14. The roots of
the equation 1 − 9d4 + 24d24 = 0 are complex.

And finally, Res(G1, G2, d2) = 1. It is a polynomial of degree zero, that is,
it does not contain any of the variables d2, d3, d4. Therefore, this resultant is
useless when searching for solutions for these three variables.

Below we will show that with the help of parametric Gröbner bases, it is
possible to obtain several dozen of further exact solutions of polynomial systems
arising from the study of PRK schemes. At the same time, we can declare any of
the eight variables cj , dj , j = 1, . . . , 4 as a parameter. Following [10], we will call
the quantities that are not included in the set of parameters, the indeterminates.

Our goal is to search for schemes in the Forest and Ruth family for which the
functionals P5,rms and X5,rms are smaller than in the cases of symplectic schemes
described in [15,16]. Taking into account the previous considerations for working
with parametric Gröbner bases, we have developed and implemented a procedure
consisting of seven steps in the CAS Mathematica language.

Step 1. For certainty, consider the case when the variable c4 is declared as a
parameter. Then the Gröbner basis of system (18) is computed using the call

GroebnerBasis[{P1, R1, P2, P31, P32, P41, P42, P43},

{c1, c2, c3, d1, d2, d3, d4}]
(24)

By default, in all subsequent calls to the function GroebnerBasis[...], lexico-
graphic ordering of monomials is used. We will show in the following that the
Gröbner basis of the same polynomial system also depends on the order of the
indeterminates in the call to the Mathematica function GroebnerBasis[...].

Step 2. The Gröbner basis {G1, G2, . . . , GN} (N > 2) obtained with the
aid of the call (24) has no univariate polynomial. The first two polynomials
G1 and G2 have the smallest length. We introduce for further convenience the
notation: αj = cj , αj+4 = dj , j = 1, . . . , 4. As a rule, G1 = F1(αi1 , αi2), G2 =
F2(αi1 , αi2 , αi3), where 1 ≤ i1, i2, i3 ≤ 8, i1 �= i2, i2 �= i3, i1 �= i3. Then we
calculate the following three resultants:

Res(G1, G2, αik), k = 1, 2, 3. (25)

The elimination of the variable αik from the basis polynomials G1 and G2 is
carried out with the aid of the call Res[G1, G2, αik ].

Step 3. All three resultants (25) are considered. First, using the Mathemat-
ica function Factor[...] we find out whether a particular resultant from the
set (25) is factorizable. Some of the resultants (25) are irreducible over the field Q

of rational numbers. Below we will briefly write “irreducible polynomials”.
Step 4. All integer and rational roots of the equations Res(G1, G2, αik) = 0,

k = 1, 2, 3 are found.
Step 5. Each of the found roots αj ∈ Q is substituted into system (18) and

then the corresponding Gröbner basis is found. As a rule, this basis turns out
to be triangular. In this case, the polynomial G1 is univariate. If its degree is 2,
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3 or 4, then the roots of the equation G1 = 0 are in radicals. In order to avoid
the appearance of giant symbolic expressions when substituting these closed-
form roots into the remaining basic polynomials, the roots are translated into
machine numbers with a mantissa length of 50 decimal digits 0, 1, . . . , 9. To do
this, we use the Mathematica function SetAccuracy[root,50].

If the degree of G1 is higher than 4, then the solution of the equation
G1 = 0 is found with high accuracy using the command NSolve[G[[1]]==0,c4,
WorkingPrecision-> 50]. Due to the fact that the Gröbner basis is triangular,
all the required unknowns αj , j = 1, . . . , 8 are then easily found.

Step 6. Among the roots of each of the three resultants (25), there may be
extraneous roots [13]. Therefore, verification of all found roots of system (18) is
carried out by substituting them into this system.

Step 7. The functionals P
(l)
5,rms and X

(l)
5,rms are calculated according to (14)

and (20) as criteria for evaluating the accuracy of the obtained real symplec-
tic schemes.

The c1 Parameter. In this case, (21) is replaced with the call

GroebnerBasis[{P1, R1, P2, P31, P32, P41, P42, P43},

{c2, c3, c4, d1, d2, d3, d4}]
(26)

The Gröbner basis {G1, G2, . . .} is obtained as 18 polynomials, with G1 =
F1(c1, d4) and G2 = F2(c1, d3, d4). Therefore, we have considered three resul-
tants: Res(G1, G2, d4), Res(G1, G2, c1), and Res(G1, G2, d3). The first of them is

Res(G1, G2, d4) =

A(c1− 1)10(3c1− 1)17(4c1 − 1)6(24c21− 9c1+ 1)18[F12(c1)]7F16(c1, d3).
(27)

Here A = 8077716527296737705984. The system of equations G1 = 0, G2 = 0
has a common root if and only if the resultant Res(G1, G2, d4) = 0. It follows
from (27) that this equality holds, in particular, in the following cases: c1 = 1,
c1 = 1/3, and c1 = 1/4. Below we will look at all these cases.

Substituting the value c1 = 1 into the polynomial system (18) makes it
easy to find the corresponding Gröbner basis {G1, . . . , G7}, which proves to be
triangular. It is then easy to find numerical values of all parameters from it.
The equation G1 = 0 has three real roots and two complex conjugate roots. The
schemes FR15, FR16, and FR17 in Table 4 correspond to three real roots.

In the case when c1 = 1/3, a triangular Gröbner basis is also obtained. The
Gröbner polynomial G1 is univariate and it yields the following quartic equation
for d4: 960d44−3552d34+1778d24−340d4+25 = 0. Its roots are expressed in radicals,
we omit them for brevity. Two of these roots are real. The corresponding schemes
in Table 4 are the schemes FR18 and FR19 (see also [16]). The case of c1 = 1/4 is
handled similarly to the case of c1 = 1/3, the corresponding schemes in Table 4
are the schemes FR20 and FR21 (see also [16]).

The equation 24c21−9c1+1 = 0 has no real roots. The equation F12(c1) = 0 has
two real roots and five pairs of complex conjugate roots. At the same time, there
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Table 4. The values of the parameters of the Forest–Ruth schemes FRl (l = 15, . . . , 23)
obtained in the case of the zero resultants (27) and (30)

FRl ci di

FR15 c1 = 1 1.000000000000000000 −0.289496692562112655

0.480967226556355638 0.095557008516098051

−1.051024192239418045 0.957728476679205942

FR16 c1 = 1 1.000000000000000000 1.166062538245970983

0.094779042188058442 −1.130360771387392979

−0.969092132852183332 0.449341881021738872

FR17 c1 = 1 1.000000000000000000 −0.418994738647895922

−0.517065975450449051 1.310130928129584835

0.421590609795226645 −1.858323611577820880

FR18 c1 = 1/3 1/3 0.854618769602128809

−0.340323030871210685 −1.755412024452683413

−0.013979395075754704 1.663063053955831823

FR19 c1 = 1/3 1/3 0.717790337479662637

0.676663198257488871 −2.867617920531312327

2.019993063181644409 0.003543429387338222

FR20 c1 = 1/4 1/4 1.053722261159673065

−0.120984256091361380 −0.341956531133635430

0.867350020601588225 2.076656572336811881

FR21 c1 = 1/4 1/4 1.627745859492881698

0.381426792344745990 −0.082614832312547523

−0.458605339881521336 −0.834595847450495149

FR22 c1 = 1/6 1/6 0.842603502826414075

0.947753813816637058 −0.103841775357201984

−1.284460514173413455 −0.182943493689021194

FR23 c1 = 1/6 1/6 0.460642622151786919

0.660127726674692834 0.491578202509501365

0.215313914255060158 −0.735889167477648790

is no rational root among the real roots. Obtaining an approximate Gröbner
basis leads to the difficulties discussed above at the beginning of this subsection.

In an effort to get several further roots of the equation Res(G1, G2, d4) = 0,
we substitute the value of c1 = 1 into the polynomial F16(c1, d3). As a result, we
obtain the equation F16(1, d3) = −36(4418 − 34584d3 + 93477d23 − 87708d33 −
11520d43 + 36864d53) = 0. This equation has three real roots and two com-
plex conjugate roots. The real roots are as follows: -1.858323611577820880,
0.4493418810217388717, and 0.9577284766792059415. It is easy to see that these
values of the parameter d3 coincide with those given in Table 4 for schemes FR17,
FR16, and FR15. The substitution of the value c1 = 1/3 in F16(c1, d3) has
enabled us to obtain an equation F16(1/3, d3) = 0 whose roots give the schemes
FR18 and FR19. Finally, the equation F16(1/4, d3) = 0 gives as the output the
familiar schemes FR20 and FR21. Thus, the equation in question did not add
new roots.
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The resultant Res(G1, G2, c1) = 0 is as follows:

Res(G1, G2, c1) = A50(d4 − 1)2(3d4 − 1)(4d4 − 1)(24d24 − 9d4 + 1)3

×F3(d4)F4(d4)F6(d4)[F8(d4)]2F10(d3, d4)[F12(d4)]2F60(d4),
(28)

where A50 is a large integer number containing 50 decimal digits. The polyno-
mials F3(d4), F4(d4), F6(d4), F8(d4), F10(d3, d4), F12(d4), and F60(d4) are not
presented here for the sake of brevity. The case when d4 = 1 was already consid-
ered above, see the schemes FR5 and FR6 in Table 1. The cases when d4 = 1/3
and d4 = 1/4 were already considered above, see Table 3.

The third resultant Res(G1, G2, d3) is the 13th degree irreducible polynomial
in two variables c1 and d4. It adds no new solutions to system (18).

We have used above in the call (26) to the Mathematica function
GroebnerBasis[..] the sequence of the indeterminates in the form c2,c3,c4,
d1,d2,d3, d4. Below we show that permutation of elements in this sequence can
lead to new solutions of the original polynomial system. To do this, consider
instead of (26) the following call to the function GroebnerBasis[...]:

GroebnerBasis[{P1, R1, P2, P31, P32, P41, P42, P43},

{d1, d2, d3, d4, c2, c3, c4}]
(29)

In this case, a Gröbner basis is obtained in which G1 = G1(c1, c4), G2 =
G2(c1, c3, c4). Therefore, we have considered three resultants: Res(G1, G2, c4),
Res(G1, G2, c3), and Res(G1, G2, c1). The first of them is as follows:

Res(G1, G2, c4) = A20(4c1 − 1)6(6c1 − 1)12(24c21 − 9c1 + 1)7

×(27c21 − 10c1 + 1)5(96c31 − 60c21 + 12c1 − 1)5[F25(c1)]7. (30)

Table 5. Successful permutations

Permutation No. Permutation New solutions

8 {d1, d2, d3, c2, d4, c4, c3} c3 = 0, c3 = 1/2

32 {d1, d2, d4, c2, d3, c4, c3} c3 = 0, c3 = 1/2

40 {d1, d2, d4, c3, c2, c4, d3} d3 = 0, d3 = 3/4

48 {d1, d2, d4, c4, c3, c2, d3} d3 = 0

56 {d1, d2, c2, d4, d3, c4, c3} c3 = 1/2, c1 = 1/6, c3 = 0

64 {d1, d2, c2, c3, d4, c4, d3} d3 = 0, d3 = 3/4

80 {d1, d2, c3, d4, d3, c4, c2} c2 = 0

88 {d1, d2, c3, c2, d4, c4, d3} d3 = 0, d3 = 3/4

104 {d1, d2, c4, d4, d3, c3, c2} c2 = 0

1000 {d2, d4, d3, c3, c2, c4, d1} d1 = 0

3000 {c2, d1, c4, c3, d4, d3, d2} d2 = 0

4000 {c3, d4, d2, c2, d3, c4, d1} d1 = 0

5000 {c4, c3, d4, d2, d1, c2, d3} c1 = 1/6
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Here A20 is an integer consisting of 20 decimal digits. The equation Res(G1, G2,
c4) = 0 has two rational roots c1 = 1/4 and c1 = 1/6. Root c1 = 1/6 is a new
root that is missing in (27) and (28). Its consideration leads to two new schemes
FR22 and FR23, see Table 4.

The resultant Res(G1, G2, c3) is an irreducible polynomial of the 13th
degree in two variables c1 and c4. The third resultant has the following form:
Res(G1, G2, c1) = A72c

2
4(8c24 − 7c4 + 2)2(64c34 − 40c24 + 8c4 + 1)[F6(c4)]2F8(c4)×

F12(c3, c4)F125(c4). The root c4 = 0 of the equation Res(G1, G2, c1) = 0 has
proved to be an extraneous root of the polynomial system (18).

The above two examples of using different sequences of seven indeterminates
point to the following: if we want to find as many solutions of the original
polynomial system as possible, then we must consider all permutations of the
indeterminates. In the case of seven indeterminates, the number of permutations
is equal to 7! = 5040. For each particular permutation, one needs to get three
resultants based on the first two polynomials included in the Gröbner basis.

To do this, one first needs to get expressions for G1 and G2 and see which
specific indeterminates and parameters they depend on. As a rule, G1 and G2

depend on two indeterminates and one variable selected as a parameter. Thus,
we need to consider 5040 · 3 = 15120 resultants. The whole procedure could be
implemented in the language of the Mathematica system. However, this requires
considerable programming effort. Instead of such a complete analysis of all 5040
permutations, we considered the permutations Pj with the following numbers j:
j = 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 1000, 2000, 3000, 4000, 5000. In
Table 5, not all of these permutations are given, but only those that led to new
solutions for the eight unknowns cj , dj , j = 1, . . . , 4. To obtain all permutations
of seven elements, the Mathematica function Permutations[perm0] was used.
Here perm0 is the initial permutation, we took perm0 = {d1, d2, d3, d4, c2, c3, c4}.

Table 5 contains a number of new solutions for the unknowns cj and dj . We
have at first considered six cases when cj = 0, j = 2, 3, 4 or dj = 0, j = 1, 2, 3.
In all these cases, the polynomial system (18) proved to be incompatible.

At c3 = 1/2, a triangular Gröbner basis {G1, . . . , G7} is obtained, where
G1 = (1−3c4+6c24)(−1−24c4+48c24)(1−32c4+364c24−4000c34+10288c44−8064c54−
29696c64 + 73728c74). The roots of the equation 1 − 3c4 + 6c24 = 0 are complex.
The roots of the equation 48c24 − 24c4 − 1 = 0 are real: (c4)1,2 = 1

12 (3 ± 2
√

3).
This case was handled above, see the schemes FR3 and FR4. The equation
1 − 32c4 + 364c24 − 4000c34 + 10288c44 − 8064c54 − 29696c64 + 73728c74 = 0 has three
real roots and two pairs of complex conjugate roots. Real roots lead to three
new schemes FR24, FR25, and FR26.

At d3 = 3/4, a triangular Gröbner basis {G1, . . . , G7} is also obtained. The
equation G1 = 0 has only two real roots. The corresponding new schemes are
presented in Table 6 as the schemes FR27 and FR28.

So, above we considered only 18 permutations, or 3.57 % of 5040 permuta-
tions. Therefore, it is natural that considering all 5040 permutations will allow
one to obtain several further new solutions to the system (18).
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The Remaining Variables as Parameters. The cases when one of seven
variables c2, c3, c4, d1, d2, d3, d4 is declared as a parameter were handled similarly
to the above-considered case of the variable c1 as a parameter, see Table 7, 8, 10,
11, 12, 13, 14, 15, and 16. Table 17 shows the number of new schemes obtained
at the consideration of each of the variables ci, di, i = 1, . . . , 4 as a parameter.

Table 18 presents the orders of smallness of the residuals rmin and rmax

for several new symplectic schemes of the Forest–Ruth family, which were
obtained above. Naturally, in cases where the analytical expressions for ci and
di, i = 1, . . . , 4 are relatively simple, it is possible to check their correctness
by substituting them into the original polynomial system without switching to
machine floating-point numbers. If the solution found in the analytical form is
correct, then all the equations of the polynomial system are exactly satisfied.
Therefore, in these cases, the equalities rmin = 0 and rmax = 0 take place. For-
mally, the schemes FR3, FR4, FR7, FR8, FR9, and FR10 are the best in terms of
the smallness of the residuals rmin and rmax. However, they are far from optimal
in terms of the smallness of the functionals P

(l)
5,rms and X

(l)
5,rms, see Table 19.

In other cases, numerical values of ci and di, i = 1, . . . , 4 were substituted into
the initial system in the form of machine floating-point numbers and with a man-
tissa length of 18 decimal digits. As can be seen from Table 18, schemes FR27,
FR50, FR51, FR52, and FR73 have the smallest residuals rmin = O(10−50) and
rmax = O(10−49). The schemes FR42, FR47, FR50, FR51, FR52, FR55, and
FR59 have the least approximation errors, these are the best found schemes
(see Table 19). These conclusions partially correlate with the conclusions from
Table 18 concerning the schemes with the least residuals rmin and rmax. The
magnitude of the error functional P

(l)
5,rms of scheme FR10 obtained previously

in [6] is 121 times larger than in the cases of new schemes FR47, FR50, FR51,
and FR52.

5 Kepler’s Problem

The problem of the motion of a system consisting of two interacting particles
(the problem of two bodies, the Kepler’s problem) admits a complete analytical
solution in the general form [8]. This solution was presented in [14] for the case
of equal masses of the both bodies, and in [15], it was given for the bodies with
different masses.

This problem is described by a system of eight ordinary differential equa-
tions (ODEs), in which four equations describe the time evolution of the coor-
dinates (xk, yk) of each of the two bodies, and the quantities (pkx, pky), k = 1, 2
describe the evolution of the impulses of the bodies. The mentioned system of
ODEs is solved at the given initial positions of the bodies and their impulses.
With equal masses of bodies m1 = m2 = 1, the total initial energy E0 of both
bodies |E0| = |v2

0 − 1/(2a0)|, where 2a0 is the given initial distance between the
bodies (a0 > 0), v0 is the given absolute value of the initial velocity of each body.



A General Method of Finding New Symplectic Schemes 367

Table 6. The values of the parameters of the Forest–Ruth schemes FRl (l = 24, . . . , 28)
obtained in the cases when c3 = 1/2 or d3 = 3/4

FRl ci di

FR24 c3 = 1/2 0.391025572210943674 0.967398350433141497

0.678124844465627657 2.202427111618248827

1/2 −0.111003864212194508

FR25 c3 = 1/2 0.835311238373158736 −0.350920339289419778

−0.378958977995565850 1.171732061213387849

1/2 −1.814913008091942417

FR26 c3 = 1/2 0.094132364293527189 0.723711816433472820

−0.046380082078234786 −0.399429463535403217

1/2 0.497003465452825098

FR27 d3 = 3/4 0.200343862556644811 0.645182676558732474

−1.010914108245682741 −0.024497356766309670

1.772663714786654245 3/4

FR28 d3 = 3/4 −1.742065593683020234 −0.631721835302486836

−0.296628561098109581 0.410158533684560698

1.724192327420640529 3/4

Table 7. The values of the parameters of the Forest–Ruth schemes FRl (l = 29, . . . , 36)
obtained in the case when c2 is the parameter

FRl ci di

FR29 c2 = 2/3 0.364254344284583814 0.869516211247767583

2/3 2.792690380329816512

0.587980436123375884 0.054227787182224768

FR30 c2 = 2/3 1.878392245341283130 −0.148939912684807651

2/3 0.072050469147999406

−2.119991445360319150 0.835740764826119230

FR31 c2 = 2/3 0.197431266262198278 0.997479482407853902

2/3 −0.097322556987957231

−0.933855594163194543 −0.268583735242126327

FR32 c2 = 2/3 0.168148869366041101 0.464264589751261379

2/3 0.493986641393048766

0.2088349346809210962 −0.737725321402639611

FR33 c2 = 2/3 −0.170487789371228258 0.124713923957057081

2/3 0.644865752568700276

0.5457035136145351390 −0.695444714544033987

FR34 c2 = 2/3 0.374170872627683649 0.717310607339155385

2/3 −1.033722587512287717

−6.140624051165247365 0.001454385616574405

FR35 c2 = 1/3 0.305530612248020483 4.937738540440601523

1/3 −0.027239637450445254

−0.339218512202854752 −4.168275877672941372

FR36 c2 = 1/3 0.680077031402771998 0.881570343081302874

1/3 −0.790588680725968301

−1.186453739372546212 0.176773784101247734
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Table 8. The values of the parameters of the Forest–Ruth schemes FRl (l = 37, . . . , 46)
obtained in the case when c2 is the parameter

FRl ci di

FR37 c2 = (1+
√

5])/3 3.782386995165049639 −0.076051961619127312

1.078689325833263232 0.043960674924039808

−4.443316201850377574 0.786839835443811639

FR38 c2 = (1 +
√

5)/3 0.144891076593792282 0.784982662463530111

1.078689325833263232 −0.115777773963705551

−1.415006067291033615 −0.165458346668356931

FR39 c2 = (1 +
√

5)/3 0.213103271189846452 0.573068437077953834

1.078689325833263232 1.002219472013933223

0.021085719326262061 −1.091461204437575932

FR40 c2 = (1 +
√

5)/3 −0.611238566964510911 0.052429960499692211

1.078689325833263232 0.702434707725292420

0.580716563209192545 −0.860370750278669990

FR41 c2 = (1 − √
5)/3 0.219311236012542665 0.760452067359764565

−0.412022659166596565 −0.091641127721282675

1.178509694121097509 1.100220634320858561

FR42 c2 = (1 − √
5)/3 0.1394284522075851837 0.486323892019975997

−0.412022659166596565 −0.042011883595088195

0.967231066343295769 0.441924899417734389

FR43 c2 = (1 − √
5)/3 0.318257154554292683 0.826446621342308992

−0.412022659166596565 −1.905814461246662400

−0.009200018152718083 1.832414525155164045

FR44 c2 = (1 − √
5)/3 −2.671203027064244664 0.127955739058414071

−0.412022659166596565 −0.099395301108287731

3.473342068227190026 0.715057655495029390

FR45 c2 = (1 − √
5)/3 −1.873117657996741733 −0.649164960959432341

−0.412022659166596565 0.364748420484928815

1.780573723084865883 0.775557276840459310

FR46 c2 = (1 − √
5)/3 −1.873117657996741733 −0.649164960959432341

−0.412022659166596565 0.364748420484928815

1.780573723084865883 0.775557276840459310

When numerically solving the Kepler problem using symplectic difference
schemes, the energy en at t = tn > 0 is calculated with an error. Let δEn =
(En − E0)/E0, where En = (1/2)[(pn

1x)2 + (pn
1y)2 + (pn

2x)2 + (pn
2y)2] − 1/rn,

rn = [(xn
1 −xn

2 )2 +(yn
1 −yn

2 )2]1/2. It was shown in [16] that for ensuring the zero
eccentricity e of the particles orbits it is sufficient to set v0 = 0.5/

√
a0. Along



A General Method of Finding New Symplectic Schemes 369

Table 9. The values of the parameters of the Forest–Ruth schemes FRl (l = 47, . . . , 53)
obtained in the cases when c4 = 3/4 or d1 = 1/2

FRl ci di

FR47 c4 = 3/4 4.290878395464025169 3.434400270740872001

0.000963763146154897 −3.435707719128205871

−4.041842158610180066 0.656514850491044033

FR48 c4 = 3/4 0.277948154623496169 2.459832693693553053

0.343888647781502973 −0.056699486586081620

−0.371836802404999142 −1.672913435532665059

FR49 c4 = 3/4 0.520981254725582490 1.113980205862570658

−0.161927364012237208 −1.472633501812066773

−0.109053890713345282 1.213681750558400100

FR50 d1 = 1/2 0.136825942475053071 1/2

−0.295364245574992759 −0.062976137694193308

0.837926908632179149 0.440948891327570560

FR51 d1 = 1/2 −0.586438190415940380 1/2

−0.075359198960140901 −0.430061540610022957

1.038753638680670670 0.676446958625960263

FR52 d1 = 1/2 0.182572224329682333 1/2

0.744884110251947176 0.538588670363744296

0.141395996554118555 −0.758360900822698969

FR53 d1 = 1/2 −3.530966905753254684 1/2

6.547681802370795675 −0.068515429495817908

−7.087388112997812705 −0.375425403877225227

with the error in the energy δEn, the values of δr1,max and δy1,mean were also
calculated, where δr1,max = maxj((x2

1,j + y2
1,j)

1/2 − a)/a for the case of the zero
eccentricity. The quantity δy1,mean was computed as the arithmetic mean of the
quantities δy1j = y1j − y1,ex. Here y1,ex is the exact value of the y coordinate at
the point of the intersection of line x = x1j with the ellipse of the first particle.

As one can see in Table 20, the symmetric Forest–Ruth scheme FR9 produces
much larger errors |δE|mean than the schemes FR3 and FR50. This is consistent
with the behavior of the norm of the leading error term of these schemes.

Table 21 shows the results obtained at the nonzero eccentricity by the time
t = 500 (105 time steps). As in the case of the zero eccentricity, the schemes
FR3 and FR50 demonstrate a higher accuracy than the scheme FR9. The error
in energy δEmean amounts in the case of the scheme FR50 to only about 1/8 of
the error δEmean obtained in the case of the scheme FR3. This means that the
scheme FR50 produces a much smaller error in energy than the scheme FR3.
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Table 10. The values of the parameters of the Forest–Ruth schemes FRl (l =
54, . . . , 63) obtained in the case when c3 is the parameter

FRl ci di

FR54 c3 = 1 0.232552203620762051 0.864933853224711811

−0.240171870993110794 −0.173521835714879970

1 1.450514067565065171

FR55 c3 = 1 0.139963046708770169 0.484042373117847543

−0.442222496742616455 −0.038391737134385132

1 0.442340759342235601

FR56 c3 = 1 −0.549628408322132739 0.516200660144340638

−0.072468674149454992 −0.443663538175265205

1 0.674727683742161504

FR57 c3 = 1 2.302601066465332119 0.112742296458862205

−1.983691962779933225 0.511421634072704643

1 −0.936108794035271761

FR58 c3 = 2/3 0.351122270415848032 0.822180431133326332

0.663430432875993088 3.675251576576031878

2/3 −0.029344841230348257

FR59 c3 = 2/3 0.130496314992084781 0.545153172452857850

−0.152112316952245843 −0.129275520560538766

2/3 0.445295236274126733

FR60 c3 = 2/3 −0.214714867139629529 0.684249379826096300

−0.050505925257735998 −0.566790506272220428

2/3 0.644799229296194684

FR61 c3 = 2/3 12.985132914037646926 0.000735492767526182

−12.559557711764700905 0.717113943685514226

2/3 −1.050357583178864997

FR62 c3 = −1/3 0.323096342154017994 13.50376205182945044

0.332614327860069729 −0.009534841164435389

−1/3 −12.74671531967306675

FR63 c3 = −1/3 1.549722230386746638 −3.514818811551034895

1.429077640949028648 −1.457098486909627231

−1/3 2.622648492232692156

The absolute value of the error δy1,mean amounts in the case of the scheme FR50
to only about 1/5 of the error δy1,mean obtained in the case of the scheme FR3.
Similar errors δy2,mean obtained for the second particle have the same absolute
values as in the case of the first particle, but their signs are opposite to the
signs of δy1,mean.
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Table 11. The values of the parameters of the Forest–Ruth schemes FRl (l =
64, . . . , 71) obtained in the case when c4 is the parameter

FRl ci di

FR64 c4 = −1 0.923752664541586022 16.023236171683106527

1.028858031528064696 10.667066118735512987

0.047389303930349282 −9.439832216877909698

FR65 c4 = −1 0.230401316001649608 0.614993313027275731

1.767802001353397688 2.349801988037760294

0.001796682644952704 −2.372282095213200527

FR66 c4 = −1 2.693266252232378788 0.272765858595981272

−2.687864699530211844 0.258660862508406001

1.994598447297833056 −0.704601530894185303

FR67 c4 = 2/3 0.693911807455204925 1.389601984542431907

−0.180750033711638009 −1.751837222444102726

−0.179828440410233583 1.391280849389145194

FR68 c4 = (−1 +
√
5)/3 0.114099408934045299 0.649850775109876324

−0.066472584291344747 −0.282718024274440564

0.540350516190702883 0.469755418612118481

FR69 c4 = (−1 − √
5)/3 0.231348624383101124 0.617413961551446993

1.845849356904791962 2.505944087496861072

0.001491344545370146 −2.526048748369218988

FR70 c4 = (−1 − √
5)/3 2.763558393992365262 0.282057553866780170

−2.795071176619652551 0.244409846615326875

2.110202108460550521 −0.690943228859052633

FR71 c4 = (−1 − √
5)/3 0.332267944750488842 0.743399694345549828

0.667975398001819257 −21.981819840398356626

1.078445983080955133 0.001613923746367732

Table 12. The values of the parameters of the Forest–Ruth schemes FRl (l =
72, . . . , 75) obtained in the case when c4 = 1/6 or c4 = 16/27

FRl ci di

FR72 c4 = 1/6 1.075394753302521569 −0.638191122739963413

−0.562921915373837090 1.672633703407438461

0.320860495404648855 −2.181423749195410509

FR73 c4 = 16/27 0.818672678175588272 1.833608220246540205

−0.239249580730862964 −2.402016364561991597

−0.172015690037317901 1.987452002208430171

FR74 c4 = 16/27 −0.176216464958336337 0.705396326757519899

−0.048272736660086400 −0.577957534527034398

0.631896609025830144 0.637881726660246176

FR75 c4 = 16/27 0.494971671137937628 −0.948190157578799342

0.369511495225417267 0.079013950429035923

−0.457075758955947487 1.633761849965980780
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Table 13. The values of the parameters of the Forest–Ruth schemes FRl (l =
76, . . . , 85) obtained in the case when d1 is the parameter

FRl ci di

FR76 d1 = 2/3 0.204275083815869887 2/3

−0.821240613630061829 −0.034251150245736271

1.586167530241972297 0.808482764907095971

FR77 d1 = 2/3 0.110529614169578658 2/3

−0.060536883821488756 −0.308218556075319167

0.529316569535254555 0.475003634825955049

FR78 d1 = 2/3 −0.246981683746760770 2/3

−0.052395107294725361 −0.556352049684461481

0.696641970456244612 0.649688395520743066

FR79 d1 = 2/3 −0.029918619502392475 2/3

1.391696101106459054 −0.179948437412172961

−1.753316304811621968 −0.180888740802033290

FR80 d1 = 3/4 0.217797377255593747 3/4

−0.439474733154072297 −0.084286494754561427

1.206367201598754224 1.065889648917041605

FR81 d1 = 3/4 0.082220658475439553 3/4

−0.042043274315474989 −0.446288824714853250

0.490110712558433011 0.511001742424794030

FR82 d1 = 3/4 −0.093660943038827783 3/4

−0.043524035940067826 −0.593590536527777054

0.562491408233619701 0.617331657398234449

FR83 d1 = 3/4 0.282751320628652862 3/4

−0.875414602261540111 −2.866262183797889275

−0.001749298330001449 2.839324076485054340

FR84 d1 = 3/4 0.122962367199072599 3/4

1.154710480553913358 −2.866262183797889275

−1.483263553884396613 2.839324076485054340

FR85 d1 = 3/4 0.453772840879245976 3/4

0.592568295889989923 −0.763378994607420991

−2.069852675023231005 0.027157631288323441
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Table 14. The values of the parameters of the Forest–Ruth schemes FRl (l =
86, . . . , 90) obtained in the cases when d1 = 1/3 or d2 = 1/6

FRl ci di

FR86 d1 = 1/3 −1.061210383861491179 1/3

−0.124764893770052270 −0.283051205857396058

1.561210383861491179 0.690936406092486640

FR87 d1 = 1/3 0.105100678126442684 1/3

0.529988715863071753 0.502653125702352770

0.394899321873557316 −0.609454883379762706

FR88 d1 = 1/3 3.383237864740253990 1/3

−3.727448818616042444 1/6

3.082935363183809675 −0.615610764345786215

FR89 d2 = 1/6 −4.276220596064195618 −0.859926774390249674

−1.952856967612454919 1/6

3.168223353300535282 0.943721911449059608

FR90 d2 = 1/6 3.383237864740253990 1/3

−3.727448818616042444 1/6

3.082935363183809675 −0.615610764345786215

Table 15. The values of the parameters of the Forest–Ruth schemes FRl (l =
91, . . . , 94) obtained in the case when d2 is the parameter

FRl ci di

FR91 d2 = 1/2 −1.656461349913587036 −0.636061115269224549

−0.161698671975507331 1/2

1.728130415131394716 0.716119776115948032

FR92 d2 = 1/2 −0.927682804781144334 0.821495974995660855

0.567079873156935371 1/2

0.999351869998952014 −0.741437314148937372

FR93 d2 = 1/2 0.108591275285244788 0.339219840428187569

0.532722086799126630 1/2

0.388349357158891234 −0.616031036746662437

FR94 d2 = 1/2 2.293935572964878270 0.119753909827438190

−1.982466778384829536 1/2

1.023930342194913976 −0.926323914261688727

Table 16. The values of the parameters of the Forest–Ruth schemes FRl (l =
95, . . . , 98) obtained in the case when d3 is the parameter

FRl ci di

FR95 d3 = 2/3 0.193635546310194233 0.610720278963038252

−1.514131240893582026 −0.012201087465723859

2.266721524338190638 2/3

FR96 d3 = 2/3 −0.414351004195240352 0.579788510045530680

−0.062798023340654284 −0.494940129503867069

0.860535223163841919 2/3

FR97 d3 = 1/2 0.091689601485633373 0.729954875905782486

−0.045246631531655207 −0.410133860075899430

0.497436187438423795 1/2

FR98 d3 = 1/2 1.095187697120513955 1.250031937811706533

0.066378351994972941 −1.227061470621614945

−1.003038424429919768 1/2
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Table 17. The number of new schemes found in the Forest–Ruth family at the con-
sideration of each of the variables ci, di, i = 1, . . . , 4 as a parameter

Parameter c1 c2 c3 c4 d1 d2 d3 d4

Number of new schemes 28 25 10 12 15 4 4 0

Table 18. The residuals rmin and rmax for several schemes from the Forest–Ruth family

l rmin rmax l rmin rmax l rmin rmax

9 0 0 50 O(10−50) O(10−49) 73 O(10−50) O(10−49)

10 0 0 51 O(10−50) O(10−49)

27 O(10−50) O(10−49) 52 O(10−50) O(10−49)

Table 19. The values of the error functionals P
(l)
5,rms and X

(l)
5,rms for several schemes

from the Forest–Ruth family

l P
(l)
5,rms X

(l)
5,rms l P

(l)
5,rms X

(l)
5,rms l P

(l)
5,rms X

(l)
5,rms

9 6.3431 2.5624 47 0.0386 0.0708 52 0.0386 0.0708

10 4.6743 8.3036 50 0.0386 0.0708 55 0.0498 0.0915

42 0.0471 0.0876 51 0.0386 0.0708 59 0.0559 0.0550

Table 20. Errors δEmean, |δE|mean, and δr1,max at e = 0 and t = 7140h, h = 0.005
for the fourth-order Forest–Ruth methods from Tables 1, 2, and 9

Forest–Ruth scheme δEmean |δE|mean δr1,max

FR9 −1.878e − 14 1.878e − 14 4.636e − 13

FR3 −5.369e − 15 6.693e − 15 5.462e − 14

FR50 3.533e − 15 7.654e − 15 1.954e − 14

Table 21. Errors δEmean, |δE|mean, and δy1,mean at v0 = 0.15 for the fourth-order
Forest–Ruth methods from Tables 1, 2, and 9

Forest–Ruth scheme δEmean |δE|mean δy1,mean

FR9 3.292e − 9 3.292e − 9 − 3.542e − 6

FR3 9.684e − 10 9.684e − 10 − 8.455e − 7

FR50 1.226e − 10 1.284e − 10 1.714e − 7
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6 Conclusions

The problem of constructing higher-order symplectic integration techniques for
molecular dynamics problems with separable Hamiltonians is considered. A gen-
eral method for finding symplectic schemes of high order of accuracy using para-
metric Gröbner bases, resultants, and permutations of variables is proposed. The
implementation of the method is described by the example of four-stage parti-
tioned Runge–Kutta (PRK) schemes of the Forest–Ruth family. This method
has enabled us to find 96 new symplectic four-stage schemes in the Forest–Ruth
family. Among these schemes, several schemes have been found that are the best
in terms of the smallness of the leading term of the approximation error. It
turned out that the value of the error functional of the best of the two schemes
obtained earlier in [6] is 121 times greater than in the case of the new best PRK
schemes found in this paper.

All required symbolic calculations are performed using the computer algebra
system Mathematica. When searching for new schemes, it turned out to be effec-
tive to combine the technique of Gröbner bases with Sylvester’s resultants and
with permutations in the order of variables in the call of Mathematica function
that calculates the Gröbner basis.

We emphasize that the real solutions of polynomial systems found using the
technique described above do not exhaust the entire variety of solutions of these
systems, since in this paper we focused mainly on finding solutions to the original
polynomial system obtained using integer and rational roots of resultants, as well
as roots of quadratic multipliers of resultants. Further solutions can be found
with sufficient accuracy for applications by numerically solving the problems
of minimizing the functional, which takes into account the value of one of the
desired parameters, found using the resultants. This work is quite feasible and
can lead to even more accurate PRK schemes compared to those schemes that
were discovered in the framework of the study described above.

The presented study shows that before increasing the number of stages, it is
advisable to conduct a detailed search for optimal parameters of the scheme at
a fixed number of stages.

References

1. Adams, A.L., Loustaunau, P.: An Introduction to Gröbner Bases. Graduate Studies
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