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Abstract. In this paper, we propose an implementation of the parallel
number-theoretic transform (NTT) using Intel Advanced Vector Exten-
sions 512 (AVX-512) instructions. The butterfly operation of the NTT
can be performed using modular addition, subtraction, and multiplica-
tion. We show that a method known as the six-step fast Fourier trans-
form algorithm can be applied to the NTT. We vectorized NTT kernels
using the Intel AVX-512 instructions and parallelized the six-step NTT
using OpenMP. We successfully achieved a performance of over 83 giga-
operations per second on an Intel Xeon Platinum 8368 (2.4GHz, 38 cores)
for a 220-point NTT with a modulus of 51 bits.

Keywords: Number-theoretic transform · Modular multiplication ·
Intel AVX-512 instructions

1 Introduction

The fast Fourier transform (FFT) [5] is an algorithm that is widely used today in
scientific and engineering computing. FFTs are often computed using complex
or real numbers, but it is known that these transforms can also be computed
in a ring and a finite field [14]. Such a transform is called the number-theoretic
transform (NTT). The NTT is used for homomorphic encryption, polynomial
multiplication, and multiple-precision multiplication.

Efficient arithmetic for NTTs has been proposed [7]. The number theory
library (NTL) [15] is a C++ library for performing number-theoretic computa-
tions and implements NTT. Although the NTL is thread-safe, the parallel NTT
is not supported. Spiral-generated modular FFTs have been proposed [11,12] and
experiments were performed using 32-bit integers and 16-bit primes with Intel
SSE4 instructions. An implementation of NTT using the Intel AVX-512IFMA
(Integer Fused Multiply-Add) instructions has been proposed [2]. This imple-
mentation is available as the Intel Homomorphic Encryption (HE) Acceleration
Library [3], an open-source C++ library that provides efficient implementations
of integer arithmetic on finite fields. Intel HEXL targets the typical data size
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n = [210, 217] of NTTs used in homomorphic encryption [2] and is not parallelized
by OpenMP.

In contrast, we consider accelerating NTT for larger data sizes by paralleliza-
tion, targeting polynomial multiplication and multiple-precision multiplication.
In this paper, we vectorize NTT kernels using the Intel AVX-512 instructions
and parallelize NTT using OpenMP.

The remainder of this paper is organized as follows. Section 2 describes the
number-theoretic transform (NTT). Section 3 presents the vectorization of the
NTT kernels. Section 4 presents the proposed implementation of the parallel
NTT. Section 5 presents the performance results. Finally, Sect. 6 presents con-
cluding remarks.

2 Number-Theoretic Transform (NTT)

The discrete Fourier transform (DFT) is given by

y(k) =
n−1∑

j=0

x(j)ωjk
n , 0 ≤ k ≤ n − 1, (1)

where ωn = e−2πi/n and i =
√−1.

The DFT can be defined over rings and fields other than the complex
field [14]. Equation (1) can be expressed in a field Fp = Z/pZ, where p is a
prime number:

y(k) =
n−1∑

j=0

x(j)ωjk
n mod p, 0 ≤ k ≤ n − 1, (2)

in which ωn is the primitive n-th root of unity. For example, if ωn = 157 for
n = 16 and p = 1297 (= 81 × 16 + 1), then ω16

n ≡ 1 mod 1297 and ω
16/2
n = ω8

n ≡
1296 �≡ 1 mod 1297.

The n-point NTT in Eq. (2) is directly computed by O(n2) arithmetic opera-
tions, but by applying an algorithm similar to the FFT, the number of arithmetic
operations can be reduced to O(n log n). Applications of the Stockham algo-
rithm [4,16], known as an out-of-place FFT algorithm, to radix-2, 4, and 8 NTTs
are shown in Algorithms 1, 2, and 3, respectively. The multiplication by ω

n/4
n

in line 13 of Algorithm 2 can be performed by a trivial multiplication by −i in
the radix-4 FFT. As a result, the total number of real arithmetic operations for
the n-point FFT is reduced from 5n log2 n in the radix-2 FFT to 4.25n log2 n
in the radix-4 FFT. However, the number of arithmetic operations cannot be
reduced by increasing the radix because there is no such trivial multiplication
in the NTT. Intel HEXL includes radix-2 and 4 NTT implementations.

When computing the NTT, modular multiplication takes up most of the
computation time. Modular multiplication includes modulo operations, which
are slow due to the integer division process. However, Montgomery multiplica-
tion [13] and Shoup’s modular multiplication [7] are known to avoid this problem.
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Algorithm 1. Stockham radix-2 NTT algorithm
Input: n = 2q, X0(j) = x(j), 0 ≤ j ≤ n − 1, and ωn is the primitive n-th root of

unity.
Output: y(k) = Xq(k) =

∑n−1
j=0 x(j)ωjk

n mod p, 0 ≤ k ≤ n − 1
1: l ← n/2
2: m ← 1
3: for t from 1 to q do
4: for j from 0 to l − 1 do
5: for k from 0 to m − 1 do
6: c0 ← Xt−1(k + jm)
7: c1 ← Xt−1(k + jm + lm)
8: Xt(k + 2jm) ← (c0 + c1) mod p
9: Xt(k + 2jm + m) ← ωjm

n (c0 − c1) mod p
10: end for
11: end for
12: l ← l/2
13: m ← 2m
14: end for

Shoup’s modular multiplication [7] is shown in Algorithm 4. In Algorithm 4, if β
is a power-of-two integer, the truncated quotient of dividing AB′ by β in line 1
can be calculated by right shifting, and the remainder of dividing (AB − qN)
by β in line 2 can be calculated by bit masking.

The decimation-in-frequency butterfly operation of the NTT is shown in the
following expression:

{
X = (x + y) mod p,
Y = ω(x − y) mod p.

The value of Y in the butterfly operation can be calculated in Algorithm 4
using A = x − y, B = ω, and N = p. Here, the value of B′ = �ωβ/p� can be
calculated in advance.

When convolution is performed for polynomials using NTT, the modulus also
needs to increase as the degree increases. If the modulus does not fit into the size
of the machine word (e.g., 32 or 64 bits), it is known that the convolution can
be performed by computing NTTs on multiple moduli and then reconstructing
the moduli using the Chinese remainder theorem.

3 Vectorization of NTT Kernels

Intel Advanced Vector Extensions 512 (AVX-512) [8] is a 512-bit vector instruc-
tion set that consists of multiple extensions that can be implemented indepen-
dently. All Intel AVX-512 implementations require only the core extension Intel
AVX-512F (Foundation). The most direct way to use Intel AVX-512 instructions
is to insert assembly-language instructions inline into the source code. How-
ever, this can be time-consuming and tedious. Intel thus provides API extension
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Algorithm 2. Stockham radix-4 NTT algorithm
Input: n = 4q, X0(j) = x(j), 0 ≤ j ≤ n − 1, and ωn is the primitive n-th root of

unity.
Output: y(k) = Xq(k) =

∑n−1
j=0 x(j)ωjk

n mod p, 0 ≤ k ≤ n − 1
1: l ← n/4
2: m ← 1
3: for t from 1 to q do
4: for j from 0 to l − 1 do
5: for k from 0 to m − 1 do
6: c0 ← Xt−1(k + jm)
7: c1 ← Xt−1(k + jm + lm)
8: c2 ← Xt−1(k + jm + 2lm)
9: c3 ← Xt−1(k + jm + 3lm)
10: d0 ← (c0 + c2) mod p
11: d1 ← (c0 − c2) mod p
12: d2 ← (c1 + c3) mod p

13: d3 ← ω
n/4
n (c1 − c3) mod p

14: Xt(k + 4jm) ← (d0 + d2) mod p
15: Xt(k + 4jm + m) ← ωjm

n (d1 + d3) mod p
16: Xt(k + 4jm + 2m) ← ω2jm

n (d0 − d2) mod p
17: Xt(k + 4jm + 3m) ← ω3jm

n (d1 − d3) mod p
18: end for
19: end for
20: l ← l/4
21: m ← 4m
22: end for

sets, referred to as intrinsics [9], to facilitate implementation. The GCC [6],
Clang [19], and Intel C compilers [9] support automatic vectorization using Intel
AVX-512 instructions.

The NTT kernels include modular addition, subtraction, and multiplication.
The modular addition c = (a + b) mod N for 0 ≤ a, b < N can be replaced
by the addition c = a + b and the conditional subtraction c − N when c ≥ N .
Such conditional subtraction involves a branch. However, the branch can be
avoided by replacing it with the minimum operation min(c, c − N) for unsigned
integer values c and N with wrap-around two’s complement arithmetic [18].
The Intel AVX-512F instruction set supports the vpminuq instruction for the
64-bit unsigned integer minimum operation. Here, it is sufficient that each of a
and b be less than 263 in order for the calculation of c = a + b not to overflow
with the 64-bit unsigned integer addition. Similarly, the modular subtraction
c = (a− b) mod N for 0 ≤ a, b < N can be replaced by the subtraction c = a− b
and the minimum operation c = min(c, c+N) for unsigned integer values a, b, c,
and N with wrap-around two’s complement arithmetic.

Figures 1 and 2 show the modular additions and subtractions of packed 63-
bit integers using Intel AVX-512 intrinsics. The intrinsics support the m512i
data type in Figs. 1 and 2. The m512i data type can hold 64 8-bit integer
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Algorithm 3. Stockham radix-8 NTT algorithm
Input: n = 8q, X0(j) = x(j), 0 ≤ j ≤ n − 1, and ωn is the primitive n-th root of

unity.
Output: y(k) = Xq(k) =

∑n−1
j=0 x(j)ωjk

n mod p, 0 ≤ k ≤ n − 1
1: l ← n/8
2: m ← 1
3: for t from 1 to q do
4: for j from 0 to l − 1 do
5: for k from 0 to m − 1 do
6: c0 ← Xt−1(k + jm)
7: c1 ← Xt−1(k + jm + lm)
8: c2 ← Xt−1(k + jm + 2lm)
9: c3 ← Xt−1(k + jm + 3lm)
10: c4 ← Xt−1(k + jm + 4lm)
11: c5 ← Xt−1(k + jm + 5lm)
12: c6 ← Xt−1(k + jm + 6lm)
13: c7 ← Xt−1(k + jm + 7lm)
14: d0 ← (c0 + c4) mod p
15: d1 ← (c0 − c4) mod p
16: d2 ← (c2 + c6) mod p

17: d3 ← ω
n/4
n (c2 − c6) mod p

18: d4 ← (c1 + c5) mod p
19: d5 ← (c1 − c5) mod p
20: d6 ← (c3 + c7) mod p

21: d7 ← ω
n/4
n (c3 − c7) mod p

22: e0 ← (d0 + d2) mod p
23: e1 ← (d0 − d2) mod p
24: e2 ← (d4 + d6) mod p

25: e3 ← ω
n/4
n (d4 − d6) mod p

26: e4 ← (d1 + d3) mod p
27: e5 ← (d1 − d3) mod p

28: e6 ← ω
n/8
n (d5 + d7) mod p

29: e7 ← ω
3n/8
n (d5 − d7) mod p

30: Xt(k + 8jm) ← (e0 + e2) mod p
31: Xt(k + 8jm + m) ← ωjm

n (e4 + e6) mod p
32: Xt(k + 8jm + 2m) ← ω2jm

n (e1 + e3) mod p
33: Xt(k + 8jm + 3m) ← ω3jm

n (e5 + e7) mod p
34: Xt(k + 8jm + 4m) ← ω4jm

n (e0 − e2) mod p
35: Xt(k + 8jm + 5m) ← ω5jm

n (e4 − e6) mod p
36: Xt(k + 8jm + 6m) ← ω6jm

n (e1 − e3) mod p
37: Xt(k + 8jm + 7m) ← ω7jm

n (e5 − e7) mod p
38: end for
39: end for
40: l ← l/8
41: m ← 8m
42: end for
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Algorithm 4. Shoup’s modular multiplication algorithm [7]
Input: A, B, N such that 0 ≤ A, B < N, N < β/2

precomputed B′ = �Bβ/N�
Output: C = AB mod N
1: q ← �AB′/β�
2: C ← (AB − qN) mod β
3: if C ≥ N then
4: C ← C − N
5: return C.

Fig. 1. Modular additions of packed 63-bit integers using Intel AVX-512 intrinsics

values, 32 16-bit integer values, 16 32-bit integer values, or 8 64-bit integer
values. In addition, the intrinsics mm512 add epi64() and mm512 sub epi64()
correspond to the vpaddq and vpsubq instructions, respectively.

We consider performing modular multiplication c = ab mod N using Shoup’s
modular multiplication. If we set β = 264 in Algorithm 4, then the upper 64-bit
half of the 64-bit × 64-bit → 128-bit unsigned integer multiplication is required.
The Intel AVX-512DQ (Doubleword and Quadword) instruction set [8] supports
the vpmullq instruction for the lower 64-bit half of the 64-bit × 64-bit → 128-
bit integer multiplication, but does not support the upper 64-bit half of the
64-bit × 64-bit → 128-bit unsigned integer multiplication.

The Intel AVX-512F instruction set supports the vpmuludq instruction,
which performs 32-bit × 32-bit → 64-bit unsigned integer multiplication. The
upper 64-bit half of the 64-bit × 64-bit → 128-bit unsigned integer multi-
plication can be implemented by dividing the multiplicand and multiplier of
a 64-bit unsigned integer into the upper and lower 32-bit unsigned integers,
respectively, and using the vpmuludq instruction for 32-bit × 32-bit → 64-

Fig. 2. Modular subtractions of packed 63-bit integers using Intel AVX-512 intrinsics
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Fig. 3. The upper 64-bit half of the 64-bit × 64-bit → 128-bit unsigned integer multi-
plications of packed 64-bit integers using Intel AVX-512 intrinsics

bit unsigned integer multiplication. Figure 3 shows the upper 64-bit half of
the 64-bit × 64-bit → 128-bit unsigned integer multiplications of packed 64-
bit integers using Intel AVX-512 intrinsics. The intrinsics mm512 and epi64(),
mm512 set1 epi64(), mm512 srli epi64(), and mm512 mul epu32() corre-
spond to the vpandq, vpbroadcastq, vpsrlq, and vpmuludq instructions,
respectively.

Figure 4 shows Shoup’s modular multiplications of packed 63-bit integers
using Intel AVX-512 intrinsics, which correspond to β = 264 in Algorithm 4.
In this program, the function mm512 mulhi epu64() shown in Fig. 3 is used.
The intrinsic mm512 mullo epi64() corresponds to the vpmullq instruction.
The conditional subtraction on lines 3 and 4 of Algorithm4 is also performed

Fig. 4. Shoup’s modular multiplications of packed 63-bit integers using Intel AVX-512
intrinsics
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__m512i _mm512_mulmod_epu64(__m512i a, __m512i b, __m512i bb, __m512i N) 
/*  Compute (a * b) mod N. Precomputed bb = floor((b * 2^52) / N). 

Requires 0 <= a, b < N < 2^51. */ 
{ 

__m512i c, q; 

q = _mm512_madd52hi_epu64(_mm512_set1_epi64(0), a, bb); 
c = _mm512_sub_epi64( 

        _mm512_madd52lo_epu64(_mm512_set1_epi64(0), a, b), 
        _mm512_madd52lo_epu64(_mm512_set1_epi64(0), q, N)); 

c = _mm512_and_epi64(c, _mm512_set1_epi64(0x000FFFFFFFFFFFFF)); 
c = _mm512_min_epu64(c, _mm512_sub_epi64(c, N)); 

return c; 
} 

Fig. 5. Shoup’s modular multiplications of packed 51-bit integers using Intel AVX-512
intrinsics

Table 1. Inner-loop operations for radix-2, 4, and 8 NTT kernels

Radix-2 Radix-4 Radix-8

Loads 2 4 8

Stores 2 4 8

Modular multiplications 1 4 12

Modular additions/subtractions 2 8 24

Total arithmetic operations 3 12 36

Byte/Operation ratio 10.667 5.333 3.556

using the vpsubq and vpminuq instructions in the same way as in the modular
addition.

Intel AVX-512IFMA instructions [8] are supported by the Cannon Lake, Ice
Lake, and Tiger Lake microarchitectures. The Intel AVX-512IFMA instruction
set supports the vpmadd52luq and vpmadd52huq instructions, which multiply
52-bit unsigned integers and produce the low and high halves, respectively, of
a 104-bit intermediate result. These halves are added to 64-bit accumulators.
Since such operations are not supported in the C language, it is necessary to use
Intel AVX-512 intrinsics or insert assembly-language instructions inline into the
source code in order to use the Intel AVX-512IFMA instructions.

Figure 5 shows Shoup’s modular multiplications of packed 51-bit integers
using Intel AVX-512 intrinsics, which correspond to β = 252 in Algorithm 4. The
intrinsics mm512 madd52lo epu64() and mm512 madd52hi epu64() correspond
to the vpmadd52luq and vpmadd52huq instructions, respectively.

The Stockham radix-2, 4, and 8 NTTs are vectorized using the functions in
Figs. 1, 2, 3, 4, and 5. Table 1 shows the inner-loop operations for radix-2, 4, and 8
NTT kernels. As mentioned in Sect. 2, the radix-4 or 8 NTT does not reduce the
number of arithmetic operations compared to the radix-2 NTT. However, in view
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of the Byte/Operation ratio, the radix-8 NTT is preferable to the radix-2 and 4
NTTs. Although higher radix NTTs require more registers to hold intermediate
results, processors that support the Intel AVX-512 instructions have 32 ZMM
512-bit registers.

A power-of-two point NTT (except for the 2-point NTT) can be performed
by a combination of radix-8 and radix-4 steps containing at most two radix-4
steps. In other words, the power-of-two NTTs can be performed as a length
n = 2p = 4q8r (p ≥ 2, 0 ≤ q ≤ 2, r ≥ 0).

4 Parallel Implementation of Number-Theoretic
Transform

In Eq. (2), if n has factors n1 and n2 (n = n1 × n2), then the indices j and k
can be expressed as:

j = j1 + j2n1, k = k2 + k1n2. (3)

We can define x and y in Eq. (2) as two-dimensional arrays (in column-major
order):

x(j) = x(j1, j2), 0 ≤ j1 ≤ n1 − 1, 0 ≤ j2 ≤ n2 − 1, (4)
y(k) = y(k2, k1), 0 ≤ k1 ≤ n1 − 1, 0 ≤ k2 ≤ n2 − 1. (5)

Substituting the indices j and k in Eq. (2) with the indices in Eq. (3), and
using the relation of n = n1 × n2, we can derive the following equation:

y(k2, k1) =
n1−1∑

j1=0

n2−1∑

j2=0

x(j1, j2)ωj2k2n1
n ωj1k2

n ωj1k1n2
n mod p. (6)

In the same way as the six-step FFT algorithm [1,20], the following six-step
NTT algorithm is derived from Eq. (6):

Step 1: Transposition
x1(j2, j1) = x(j1, j2).

Step 2: n1 individualn2-point multicolumn NTTs

x2(k2, j1) =
n2−1∑

j2=0

x1(j2, j1)ωj2k2n1
n mod p.

Step 3: Twiddle factor multiplication
x3(k2, j1) = x2(k2, j1)ωj1k2

n mod p.

Step 4: Transposition
x4(j1, k2) = x3(k2, j1).

Step 5: n2 individualn1-point multicolumn NTTs

x5(k1, k2) =
n1−1∑

j1=0

x4(j1, k2)ωj1k1n2
n mod p.

Step 6: Transposition
y(k2, k1) = x5(k1, k2).
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In the six-step NTT algorithm, two multicolumn NTTs are performed in
steps 2 and 5. The locality of the memory reference in the multicolumn NTT is
high. On the other hand, the three transpose steps (steps 1, 4, and 6) are typically
the chief bottlenecks in cache-based processors. We can use cache blocking to
reduce the number of cache misses in matrix transposition. An example of matrix
transposition with cache blocking is shown in Fig. 6. Parameter NBLK is the
blocking parameter. In Fig. 6, the outermost loop length may not have sufficient
parallelism for manycore processors. A loop collapsing makes the length of a loop
long by collapsing nested loops into a single-nested loop. By using the OpenMP
collapse clause, the parallelism of the outermost loop can be expanded [17].

We parallelized the six-step NTT using OpenMP. Figure 7 shows a parallel
implementation of the six-step NTT. In this program, transpose() is a function
to transpose a matrix, mulmod() is a function to perform a modular multiplica-
tion, ntt2() is the Stockham NTT, and a variable omega is the primitive n-th
root of unity.

5 Performance Results

For performance evaluation, we compared the performance of the following six
implementations:

– Proposed implementation of the Stockham NTT (AVX-512DQ) with a mod-
ulus of 63 bits

– Proposed implementation of the six-step NTT (AVX-512DQ) with a modulus
of 63 bits

– Proposed implementation of the Stockham NTT (AVX-512IFMA) with a
modulus of 51 bits

– Proposed implementation of the six-step NTT (AVX-512IFMA) with a mod-
ulus of 51 bits

Table 2. Specifications of the platform

Platform Intel Xeon Platinum processor

Number of cores 38

Number of threads 76

CPU type Intel Xeon Platinum 8368

Ice Lake 2.4GHz

L1 cache (per core) I-cache: 32 KB

D-cache: 48 KB

L2 cache (per core) 1.25 MB

L3 cache 57 MB

Main memory DDR4-3200 256 GB

Theoretical peak performance 2.918 TFlops

OS Linux 4.18.0-305.25.1.el8 4.x86 64
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Fig. 6. Example of matrix transposition with cache blocking

Fig. 7. Parallel implementation of the six-step NTT

– Intel HEXL 1.2.4 (AVX-512DQ) with a modulus of 62 bits
– Intel HEXL 1.2.4 (AVX-512IFMA) with a modulus of 50 bits

Intel HEXL uses a modified Shoup butterfly [7] that requires p < β/4 to
reduce the number of conditional subtractions [2]. Therefore, the modulus sizes
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of Intel HEXL (AVX-512DQ) with β = 264 and Intel HEXL (AVX-512IFMA)
with β = 252 are 62 bits and 50 bits, respectively.

The specifications of the platform are shown in Table 2. Note that Hyper-
Threading [10] was enabled on the platform. The Intel C compiler (version
19.1.3.304) was used for the proposed implementations. The compiler options
were icc -O3 -xICELAKE-SERVER -fno-alias -qopenmp. The compiler option
-O3 enables optimizations for speed and more aggressive loop transformations.
The compiler option -xICELAKE-SERVER specifies the generation of instructions
for the Ice Lake microarchitecture. The compiler option -fno-alias specifies
that aliasing is not assumed in a program. The compiler option -qopenmp spec-
ifies the enabling of the compiler to generate multi-threaded code based on the
OpenMP directives. Intel HEXL could not be built successfully with the Intel
C/C++ compiler, so the GNU C/C++ compiler (version 8.3.1) was used for
Intel HEXL. The compiler option was gcc -O3.

Since the proposed implementation of the Stockham NTT is not parallelized,
it was executed in a single thread. The proposed implementation of the six-
step NTT was run with 1 to 76 threads. In the proposed implementations of
the Stockham NTT and six-step NTT, the number of repetitions was doubled
until the elapsed time of the forward NTT was greater than 1 second, and the
average elapsed time was measured. The table for twiddle factors was prepared in
advance. Since Intel HEXL does not support parallel execution, it was executed
in a single thread. The performance of Intel HEXL was measured using the
benchmark program included in the Intel HEXL source code.

On the Intel Xeon Platinum 8368, the environment variable KMP AFFINITY=
granularity=fine,compact was specified. The giga-operations per second
(Gops) values are each based on (3/2)n log2 n for a transform of size n = 2m.
This Gops value is calculated with modular addition, subtraction, and multipli-
cation as one operation each, but several instructions are required to actually
perform modular addition, subtraction, and multiplication.

Figure 8 shows the performance of NTTs using Intel AVX-512DQ instruction.
As shown in Fig. 8, the proposed implementations of the Stockham NTT and
six-step NTT (AVX-512DQ) are slower than Intel HEXL (AVX-512DQ) in a
single-thread execution. One possible reason for this is that the modulus size of
the proposed implementations of the Stockham NTT and six-step NTT (AVX-
512DQ) is 63 bits, while the modulus size of Intel HEXL (AVX-512DQ) is 62
bits, reducing the number of instructions. While the six-step NTT is suitable for
parallelization, it requires three matrix transpositions, and the overhead of these
matrix transpositions is the reason why the proposed implementation of the six-
step NTT is slower than the proposed implementation of the Stockham NTT in
a single-thread execution. The Intel Xeon Platinum 8368 processor used in this
performance evaluation has 57 MB of L3 cache, so up to 220-point NTT fits into
the L3 cache. Although the six-step NTT and matrix transposition with cache
blocking are effective when the data do not fit into the cache, Intel HEXL was
only able to execute up to 222-point NTT, which may not have demonstrated the
superiority of the proposed implementation of the six-step NTT. The proposed



330 D. Takahashi

Fig. 8. Performance of NTTs using Intel AVX-512DQ instruction (Intel Xeon Platinum
8368, 38 cores)

Fig. 9. Performance of NTTs using Intel AVX-512IFMA instruction (Intel Xeon Plat-
inum 8368, 38 cores)

implementation of the six-step NTT (AVX-512DQ) is faster than Intel HEXL
(AVX-512DQ) for n ≥ 213 on 76 threads.

Figure 9 shows the performance of NTTs using Intel AVX-512IFMA instruc-
tions. The proposed implementations of the Stockham NTT and six-step NTT
(AVX-512IFMA) are slower than Intel HEXL (AVX-512IFMA) in a single-thread
execution, as shown in Fig. 9. One possible reason for this is that the modulus size
of the proposed implementations of the Stockham NTT and six-step NTT (AVX-
512IFMA) is 51 bits, while the modulus size of Intel HEXL (AVX-512IFMA) is
50 bits, reducing the number of instructions. The proposed implementation of
the six-step NTT (AVX-512IFMA) is faster than Intel HEXL (AVX-512IFMA)
for n ≥ 214 on 76 threads.
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Fig. 10. Speedup for 222-point NTTs (Intel Xeon Platinum 8368, 38 cores)

Comparing Figs. 8 and 9, the proposed implementations of the Stockham
NTT and six-step NTT (AVX-512IFMA) are faster than the proposed imple-
mentations of the Stockham NTT and six-step NTT (AVX-512DQ). The rea-
son for this is that the proposed implementations of the Stockham NTT and
six-step NTT (AVX-512IFMA) require fewer instructions to perform Shoup’s
modular multiplication using the Intel AVX-512DQ instruction. However, the
modulus size is 63 bits for the proposed implementations of the Stockham NTT
and six-step NTT (AVX-512DQ), while the modulus size is reduced to 51 bits
for the proposed implementations of the Stockham NTT and six-step NTT
(AVX-512IFMA).

Figure 10 shows the speedup for 222-point NTTs on the Intel Xeon Platinum
8368 when 1 to 76 threads are used. The results indicate that Hyper-Threading
is effective for the proposed implementations of the six-step NTT (AVX-512DQ
and AVX-512IFMA).

6 Conclusion

In this paper, we proposed the implementation of the parallel NTT using Intel
AVX-512 instructions. The butterfly operation of the NTT can be performed
using modular addition, subtraction, and multiplication. We showed that a
method known as the six-step FFT algorithm could be applied to the NTT. We
vectorized NTT kernels using the Intel AVX-512 instructions and parallelized
the six-step NTT using OpenMP. We succeeded in obtaining a performance of
over 83 Gops on an Intel Xeon Platinum 8368 (2.4 GHz, 38 cores) for a 220-point
NTT with a modulus of 51 bits. These performance results demonstrate that the
implemented parallel NTT uses cache memory effectively and exploits the Intel
AVX-512 instructions.
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