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Abstract. The swinging Atwood machine is a conservative Hamiltonian
system with two degrees of freedom that is essentially nonlinear. A gen-
eral solution of its equations of motion cannot be written in symbolic
form, only in some special case it is integrable. A very interesting pecu-
liarity of the system is an existence of a state of dynamical equilibrium
when the oscillating body of smaller mass balances a body of larger mass.
This state is described by periodic solution of the equations of motion
that is constructed in the form of power series in a small parameter.
In this paper, we investigate the system dynamics in the neighbour-
hood of the periodic solution. Its perturbed motion is described in linear
approximation by the fourth order system of differential equations with
periodic coefficients. We computed a fundamental matrix for this system
and found its characteristic exponents in the form of power series in a
small parameter. We have shown that owing to oscillations the state of
dynamical equilibrium of the swinging Atwood machine is stable in lin-
ear approximation. All the relevant symbolic calculations are performed
with the aid of the computer algebra system Wolfram Mathematica.

Keywords: Swinging Atwood’s machine · Periodic solution ·
Characteristic exponents · Stability · Computer algebra · Mathematica

1 Introduction

The swinging Atwood machine (SAM) is a well-known device that is obtained
from a simple Atwood machine [1] when one body of mass m1 is allowed to
oscillate in a plane while the other body of mass m2 > m1 moves along a vertical
(see [2] and Fig. 1). Owing to oscillations the system acquires two degrees of
freedom and becomes essentially nonlinear; a general solution of its equations of
motion cannot be written in symbolic form. As the system demonstrates very
interesting dynamics, it has been a subject of many studies (see, for example, [3–
10]). Detailed investigations have shown that only for the mass ratio m2/m1

being equal to three the system is integrable (see [5,7,9–11]). Numerical analysis
of the equations of motion has shown that, depending on the mass ratio and
initial conditions, the SAM can demonstrate different types of motion, namely,
periodic, quasi-periodic, and chaotic (see [3,6,8,10]).
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In [12] we studied numerically the equations of motion of the SAM and
showed that a physical reason for such behaviour of the system is an increase
of an averaged tension of the thread during oscillation. As this tension depends
on the amplitude of oscillation one can choose initial conditions such that quasi-
periodic motion of the system can take place. Although a simple Atwood’s
machine with two bodies of different mass cannot be in a state of equilib-
rium (see [1]), owing to oscillations the system has a dynamic equilibrium state
described by a periodic solution of the equations of motion (see [13]). If both
bodies are allowed to oscillate in a plane the system acquires additional degree
of freedom and demonstrates a quasi-periodic motion even in the case of equal
masses m2 = m1 (see [14,15]). Note that such unusual behaviour of the swinging
Atwood machine is possible only due to oscillations of the bodies resulting in
nonlinearity of the equations of motion.

In the present paper, we consider the SAM in case of small difference of
masses of the bodies and planar oscillation of the mass m1. Our main purpose
is to study the stability of periodic motion of the SAM. It should be noted
that the constructing and investigation of periodic solutions of the equations
of motion often imply rather cumbersome symbolic computations, which are
convenient to carry out using computer algebra systems (see, for example, [16–
18]). In this work, all symbolic calculations are performed with the aid of the
computer algebra system Wolfram Mathematica (see [19]).

The paper is organized as follows. In Sect. 2 we describe the model and derive
the equations of motion in the form that is convenient for applying the perturba-
tion theory. Then in Sect. 3 we demonstrate shortly an algorithm for constructing
the periodic solution in the form of power series in a small parameter. Section 4 is
devoted to the investigation of stability of periodic solution in linear approxima-
tion. Integrating the linearized system of four differential equations with periodic
coefficients which describes the perturbed motion, we compute the fundamental
matrix in the form of power series in a small parameter and find the charac-
teristic exponents for the system. At last, we summarize the obtained results in
Sect. 5.

2 Model Description

The swinging Atwood machine under consideration consists of two small mass-
less pulleys and two bodies of masses m1 ≤ m2 attached to opposite ends of a
massless inextensible thread (see Fig. 1). The body m1 is allowed to swing in ver-
tical plane and it behaves like a pendulum of variable length while the body m2

is constrained to move only along a vertical. Note that in case of a pulley of finite
radius used in the simple Atwood machine a length of the pendulum changes
not only due to rotation of the pulley but due to the thread winding on the pul-
ley during oscillation, as well. The last effect was investigated theoretically and
experimentally in [10] and it does not modify qualitatively the system motion.
Replacing one pulley of finite radius by the two pulleys of negligible radius, we
obtain the swinging Atwood machine, where the pendulum length varies only
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due to rotation of the pulleys. Placing the pulleys at some distance between each
other enables to avoid collisions of the bodies during oscillations but does not
change the physical properties of the system.

Fig. 1. The SAM with two small pulleys

The Lagrangian function of the system is (see [14])

L =
m1 + m2

2
ṙ2 +

m1

2
r2ϕ̇2 − m2gr + m1gr cos ϕ, (1)

where the dot over a symbol denotes the total derivative of the corresponding
function with respect to time, g is a gravity acceleration, r is the distance between
the pulley and the mass m1, and the angle ϕ determines the deviation of the
mass m1 from the vertical.

To simplify analysis of the system it is expedient to introduce dimensionless
variables. As we expect the body m1 in the state of dynamic equilibrium behaves
like a pendulum of a length R0, the distance r can be made dimensionless by
using R0 as a characteristic distance, whereas the time t can be made dimen-
sionless by using the inverse of the pendulum’s natural frequency

√
g/R0. Thus,

making the substitutions r → rR0, t → t
√

R0/g, where r and t denote now
the dimensionless variables, and dividing the Lagrangian by constant m1gR0,
we rewrite (1) in the form

L =
2 + ε

2
ṙ2 +

1
2
r2ϕ̇2 − (1 + ε)r + r cos ϕ, (2)

where the parameter ε = (m2 − m1)/m1 represents the ratio of the masses
difference to the mass m1. Note that the Lagrangian (2) depends on a single
dimensionless parameter ε which we shall assume to be small (0 ≤ ε � 1).

Using (2), we obtain the equations of motion in the Lagrangian form
(see [20])

(2 + ε)r̈ = −ε − (1 − cos ϕ) + rϕ̇2,

rϕ̈ = − sin ϕ − 2ṙϕ̇. (3)
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One can easily check that system (3) has an equilibrium solution r = const,
ϕ = 0 only in the case of equal masses (ε = 0). This equilibrium state is unstable,
and the system leaves it as soon as the mass m1 gets even very small initial
velocity (see [12]). On the other hand, in the case of different masses, the constant
term ε > 0 in the right-hand side of the first Eq. (3) causes the uniformly
accelerated motion of the Atwood machine in the absence of oscillations as it
is in the classical Atwood’s machine (see [1]). However, if the masses difference
is sufficiently small one can expect that an averaged value of the oscillating
functions in the right-hand side of the first Eq. (3) compensates the constant ε,
and the smaller oscillating mass m1 can balance the larger mass m2. Our aim is
to demonstrate that such a state of dynamical equilibrium of the system exists
and it is described by the periodic solution of system (3).

3 Periodic Solution

To simplify the calculations we assume that the oscillations are small (|ϕ| � 1)
and replace the sine and cosine functions by their expansions in power series
accurate to the sixth order inclusive. As we will see later, such expansions are
necessary to construct periodic solution accurate to the third order in ε. Then
the system (3) takes the form

(2 + ε)r̈ = −ε − 1
2
ϕ2 + rϕ̇2 +

1
24

ϕ4 − 1
720

ϕ6,

rϕ̈ = −ϕ − 2ṙϕ̇ +
1
6
ϕ3 − 1

120
ϕ5. (4)

It is obvious that constant term ε in the right-hand side of the first Eq. (4)
can vanish only if the amplitude of ϕ is proportional to

√
ε. In this case, the

oscillating part of the distance r will be proportional to ε. Doing the substitution

r(t) → 1 + εr(t), ϕ(t) → √
εϕ(t), (5)

we reduce system (4) to the form

2r̈ = −1 − 1
2
ϕ2 + ϕ̇2 + ε(−r̈ + rϕ̇2 +

1
24

ϕ4) − 1
720

ε2ϕ6, (6)

ϕ̈ + ϕ = −ε(rϕ̈ + 2ṙϕ̇ − 1
6
ϕ3) − 1

120
ε2ϕ5. (7)

One can readily check that a general solution to nonlinear system (6)–(7)
cannot be found in symbolic form. As parameter ε is assumed to be small the
Poincaré–Lindstedt perturbation technique for obtaining periodic solutions may
be applied (see [21,22]). Note that in the case of ε = 0, Eq. (7) becomes inde-
pendent of (6) and determines harmonic oscillations of the angle ϕ. Obviously,
the amplitude of the corresponding function ϕ(t) may be chosen in such a way
that the constant part of the function in the right-hand side of (6) vanishes.
Therefore, the corresponding solution r(t) to (6) will be a bounded oscillating
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function. Taking into account the higher order terms in the right-hand sides
of (6)–(7) for ε > 0 results in the appearance of corrections to zero-order solu-
tions. Thus, we can look for an approximate solution to system (6)–(7) in the
form of power series in ε:

r(t) = r0(t) + εr1(t) + ε2r2(t) + ε3r3(t) + . . . , (8)
ϕ(t) = ϕ0(t) + εϕ1(t) + ε2ϕ2(t) + ε3ϕ3(t) + . . . . (9)

Computation of unknown functions rj(t), ϕj(t) in (8)–(9) is done in rather
standard way but requires quite tedious symbolic computations (see [22]), which
in this paper are performed using Wolfram Mathematica. Substituting (8)–(9)
into (6)–(7) and collecting coefficients of equal powers of ε, we obtain the fol-
lowing system of linear differential equations:

ϕ̈0 + ϕ0 = 0, (10)

2r̈0 = −1 − 1
2
ϕ2
0 + ϕ̇2

0, (11)

ϕ̈1 + ϕ1 = r0ϕ0 − 2ṙ0ϕ̇0 +
1
6
ϕ3
0, (12)

2r̈1 = −r̈0 + 2ϕ̇0ϕ̇1 + r0ϕ̇
2
0 − ϕ0ϕ1 +

1
24

ϕ4
0, (13)

ϕ̈2 + ϕ2 = r0ϕ1 + r1ϕ0 − 2ṙ0ϕ̇1 − 2ṙ1ϕ̇0 + 2r0ṙ0ϕ̇0

− r20ϕ0 +
1
2
ϕ2
0ϕ1 − 1

6
r0ϕ

3
0 − 1

120
ϕ5
0, (14)

2r̈2 = −r̈1 + 2ϕ̇0ϕ̇2 + ϕ̇2
1 + 2r0ϕ̇0ϕ̇1 + r1ϕ̇

2
0

− 1
2
ϕ2
1 − ϕ0ϕ2 +

1
6
ϕ3
0ϕ1 − 1

720
ϕ6
0, . . . (15)

Obviously, Eqs. (10)–(15) may be solved in succession. Without loss of gen-
erality, we may assume that at the initial instant of time, the body m1 is on
the vertical (ϕ(0) = 0) and has some initial velocity w0 > 0. The corresponding
solution of Eq. (10) is

ϕ0(t) = w0 sin t. (16)

On substituting (16) into (11) we obtain

2r̈1 = −1 +
w2

0

4
+

3
4
w2

0 cos 2t. (17)

As we are looking for an oscillating function r1(t) the amplitude w0 is chosen
from the condition that the constant term in the right-hand side of (17) vanishes.
Due to this condition we set w0 = 2 and solve Eq. (17) with initial condition
ṙ1(0) = 0. Then we obtain

r1(t) = r10 − 3
8

cos 2t, (18)

where r10 is an arbitrary constant.
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On substituting (16) and (18) with w0 = 2 into (12) and reducing the trigono-
metric functions, we obtain

ϕ̈1 + ϕ1 =
(

2r10 − 1
8

)
sin t − 53

24
sin 3t. (19)

Equation (19) describes the forced oscillations of a pendulum, and to avoid an
increase of the amplitude we need to eliminate a resonance term in the right-
hand side. So putting r10 = 1/16 and solving differential equation (19) with
initial condition ϕ1(0) = 0, we find

ϕ1(t) =
(

w1 +
53
96

)
sin t +

53
192

sin 3t, (20)

where w1 is an arbitrary constant.
On substituting (16), (18), and (20) into (13) and reducing the trigonometric

functions, we derive the following differential equation

2r̈2 =
53
96

+ w1 +
(

3w1 +
37
64

)
cos 2t +

105
64

cos 4t. (21)

Again the unknown w1 is chosen from the condition of vanishing constant terms
in the right-hand side of (21), therefore, w1 = −53/96. Then integrating (21)
with the initial condition ṙ2(0) = 0, we find

r2(t) = r20 +
69
512

cos 2t − 105
2048

cos 4t, (22)

where r20 is another arbitrary constant.
In order to find the solution more accurately we have to repeat such calcu-

lations step by step, solving successively linear differential equations (14), (15),
and so on for the functions ϕk(t) and rk(t) under the initial conditions ϕk(0) = 0,
ṙk(0) = 0, k = 1, 2, . . . . Each of the solutions ϕk(t), rk(t) will contain an arbi-
trary constant which appears during integration and should be found from the
condition that constant terms in the equation for rk+1(t) and resonance terms in
the equation for ϕk+1(t) vanish. We have done the calculations up to the third
order in ε, and the corresponding periodic solutions are given by

rp(t) = 1 +
ε

16
(1 − 6 cos 2t) − ε2

2048
(261 − 276 cos 2t + 105 cos 4t)

+
ε3

131072
(4275 − 8166 cos 2t + 5067 cos 4t − 1510 cos 6t), (23)

ϕp(t) =
√

ε

(
2 sin t +

53ε

192
sin 3t +

ε2

16384
(2959 sin t

− 1699 sin 3t +
5813

5
sin 5t

))
. (24)
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It follows from (23)–(24) that the initial length of the thread

rp(0) = 1 − 5ε

16
− 45

1024
ε2 − 167

65536
ε3, (25)

and the initial angular velocity

ϕ̇p(0) =
√

ε

(
2 +

53ε

64
+

3675ε2

16384

)
, (26)

corresponding to the periodic solution depend on parameter ε; for larger ε or
larger masses difference, the initial velocity must increase to provide a larger
amplitude of oscillations. Dependence of the initial length rp(0) on ε means that
the frequency of oscillation depends on the amplitude; such dependence is typical
of nonlinear oscillations (see [20,22]).

4 Stability Analysis

The existence of periodic solution to equations of motion (4) means that for given
value of parameter ε, one can choose initial conditions (25), (26), ṙp(0) = 0, and
ϕp(0) = 0 such that the system is in the state of dynamical equilibrium when
the bodies oscillate near some equilibrium positions. Note that for ε > 0, the
system under consideration has no static equilibrium state when the coordi-
nates r(t), ϕ(t) are some constants. So it is natural to investigate whether the
system will remain in the neighborhood of the equilibrium if the initial conditions
are perturbed or whether the periodic solution (23)–(24) is stable.

It should be noted that studying the stability of periodic solution is much
more complicated in comparison to the case of equilibrium state stability and
the relevant symbolic computations become much more cumbersome. First of all,
we need to derive the equations of perturbed motion in the form of four first-
order differential equations. Using (2) and doing the Legendre transformation
(see [20]), we define the Hamiltonian in case of |ϕ| � 1

H =
p2r

2(2 + ε)
+

p2ϕ
2r2

+ εr +
r

2

(
ϕ2 − 1

12
ϕ4 +

1
360

ϕ6

)
. (27)

The equations of motion written in the Hamiltonian form are

ṙ =
∂H
∂pr

=
pr

2 + ε
, ṗr = −∂H

∂r
= −ε − 1

2
ϕ2

(
1 − 1

12
ϕ2 +

1
360

ϕ4

)
+

p2ϕ
r3

,

ϕ̇ =
∂H
∂pϕ

=
pϕ

r2
, ṗϕ = −∂H

∂ϕ
= −rϕ

(
1 − 1

6
ϕ2 +

1
120

ϕ4

)
, (28)

where pr, pϕ are the conjugate momenta to r, ϕ, respectively.
One can readily check that periodic solution (23)–(24) satisfy Eqs. (28). To

investigate its stability we define new canonical variables q1, q2, p1, p2 according
to the rule

r → rp + q1, ϕ → ϕp + q2, pr → pr0 + p1, pϕ → pϕ0 + p2, (29)
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where the momenta pr0 = (2 + ε)ṙp, pϕ0 = r2pϕ̇p are obtained by substitut-
ing (23)–(24) into (28). Doing the canonical transformation (29) and expanding
the Hamiltonian (27) into power series in terms of q1, q2, p1, p2 up to second
order inclusive, we represent it in the form

H̃ = H0 + H1 + H2 + . . . , (30)

where Hk is the kth order homogeneous polynomial with respect to canonical
variables q1, q2, p1, p2 which are considered as small perturbations of periodic
solution (23)–(24). Note that zero-order term H0 in (30) can be omitted as a
function of time which does not influence the equations of motion. The first-
order term H1 is equal to zero because periodic solution (23)–(24) satisfy the
unperturbed equations of motion (28). Therefore, the first non-zero term in the
expansion (30) is a quadratic one that is

H2 =
p21

2(2 + ε)
+

3p2ϕ0

2r4p
q21 +

p22
2r2p

+
rp

2
q22

(
1 − 1

2
ϕ2

p +
1
24

ϕ4
p

)

− 2pϕ0

r3p
q1p2 + q1q2

(
ϕp − 1

6
ϕ3

p +
1

120
ϕ5

p

)
. (31)

The quadratic part H2 of the Hamiltonian determines the linearized equa-
tions of the perturbed motion which is convenient to write in the matrix form

ẋ = J · H(t, ε)x, (32)

where xT = (q1, q2, p1, p2) is a 4-dimensional vector, J =
(

0 E2

−E2 0

)
, E2 is the

second-order identity matrix, and the fourth-order matrix-function H(t, ε) is

H(t, ε) =

⎛

⎜⎜⎜⎜
⎝

3p2
ϕ0

r4
p

ϕp 0 − 2pϕ0
r3

p

ϕp rp 0 0
0 0 1

2+ε 0
− 2pϕ0

r3
p

0 0 1
r2

p

⎞

⎟⎟⎟⎟
⎠

. (33)

Note that the elements of matrix (33) are obtained by differentiation of H2:

Hi,j =
∂2H2

∂xi∂xj
, i, j = 1, 2, 3, 4.

It is clear that matrix H(t, ε) is periodic function of time, and so the per-
turbed motion of the system is described by the linear system of four differential
equations with periodic coefficients (32).

4.1 Computing the Monodromy Matrix

The systems of linear differential equations with periodic coefficients and their
general properties have been studied quite well (see [23]). The behavior of solu-
tions to system (32) is determined by its characteristic multipliers which are the
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eigenvalues of the monodromy matrix X(2π, ε), where X(t, ε) is a fundamental
matrix for system (32) satisfying the initial condition X(0) = E4. As periodic
solution (23)–(24) is represented by power series in parameter ε, the matrix
H(t, ε) can also be represented in the form of power series

H(t, ε) = H0(t) +
√

εH1(t) + εH2(t) + ε3/2H3(t) + . . . , (34)

where Hk(t), k = 0, 1, 2, . . . , are continuous periodic fourth-order square matrices
which are obtained by substitution of solution (23)–(24) into (33) and expanding
each element of the matrix H(t, ε) into power series in ε.

The fundamental matrix X(t, ε) can be sought in the form of power series

X(t, ε) = X0(t) +
√

εX1(t) + εX2(t) + ε3/2X3(t) + . . . , (35)

where Xk(t), k = 0, 1, 2, . . . , are continuous matrix functions. On substitut-
ing (34) and (35) into (32) and collecting coefficients of equal powers of ε, we
obtain the following sequence of differential equations:

Ẋ0 = JH0X0(t), (36)

Ẋk − JH0Xk =
k∑

j=1

JHj(t)Xk−j(t), (k ≥ 1). (37)

The functions Xk(t) must satisfy the following initial conditions:

X0(0) = E4, Xk(0) = 0 (k ≥ 1). (38)

As H0 is a constant matrix, Eq. (36) has a solution

X0(t) = exp(JH0t). (39)

Making a substitution
Xk(t) = exp(JH0t)Yk(t), (40)

we transform Eq. (37) to the form

Ẏk =
k∑

j=1

exp(−JH0t)JHj(t) exp(JH0t)Yk−j(t), (k ≥ 1), (41)

where initial conditions for the functions Yk(t) are

Y0(0) = E4, Yk(0) = 0 (k ≥ 1). (42)

Now we can easily integrate Eq. (41) and its solution satisfying the initial con-
ditions (42) is given by

Yk(t) =
k∑

j=1

∫ t

0

exp(−JH0τ)JHj(τ) exp(JH0τ)Yk−j(τ)dτ, (k ≥ 1). (43)
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As the right-hand side of Eq. (43) determining Yk(t) depends only on
Y0, Y1, . . . , Yk−1 the functions Yk(t) may be computed in succession. Such com-
putations are performed with Wolfram Mathematica but the results are very
bulky and we do not show them here. Finally, the monodromy matrix X(2π, ε)
of system (32) can be found in the form

X(2π, ε) = exp(2πJH0)
∞∑

j=1

Yk(2π)εk/2. (44)

4.2 Characteristic Multipliers

Characteristic multipliers for system (32) are the eigenvalues of the monodromy
matrix (44) and to find them we need to compute the monodromy matrix first.
To find X0(t) it is not necessary to compute the exponential function of the
matrix JH0t according to (39). It is much easier to solve Eq. (36) with initial
conditions (38) and

H0 =

⎛

⎜⎜
⎝

0 0 0 0
0 1 0 0
0 0 1/2 0
0 0 0 1

⎞

⎟⎟
⎠,

the corresponding solution is

X0(t) =

⎛

⎜⎜
⎝

1 0 t/2 0
0 cos t 0 sin t
0 0 1 0
0 − sin t 0 cos t

⎞

⎟⎟
⎠.

But the next steps require to multiply and integrate matrices as it follows
from (43) and to do quite cumbersome symbolic calculations. So application
of the computer algebra system Wolfram Mathematica turned out to be very
helpful. We do not show here the intermediate results of calculations because
they are quite bulky. Using the monodromy matrix which was computed up to
the third order in parameter ε, we can write the characteristic equation deter-
mining the characteristic multipliers for system (32) in the form

det(X(2π, ε) − ρE4) = (ρ − 1)2(ρ2 + 2Bρ + 1) = 0, (45)

where

B = −2 + 3π2ε − 3π2

16
(17 + 4π2)ε2 +

3π2

5120
(4845 + 2720π2 + 128π4)ε3.

Solving (45), we obtain four characteristic multipliers

ρ1,2 = 1,

ρ3,4 = 1 ± iπ
√

3ε − 3π2

2
ε ∓ i

π
√

3
32

(17 + 16π2)ε3/2 +
3π2

32
(17 + 4π2)ε2.
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Note that two characteristic multipliers ρ1,2 = 1 determine two independent
periodic solutions to system (32). One can readily check that the absolute value
of the second couple of the characteristic multipliers ρ3,4 is equal to 1. They are
complex conjugate and determine two purely imaginary characteristic exponents

λ3,4 =
1
2π

log ρ = ±i

√
3ε

2

(
1 − 17

32
ε +

85
256

ε2
)

.

According to Floquet–Lyapunov theory (see [23]), four linearly independent solu-
tions to system (32) with 2π-periodic matrix may be represented in the form

x1(t) = f1(t), x2(t) = f2(t), x3(t) = exp(λ3t)f3(t), x4(t) = exp(λ4t)f4(t), (46)

where fk(t), (k = 1, 2, 3, 4) are 2π-periodic functions. Therefore, in the case of ε >
0 solutions (46) describe the perturbed motion of the system in the bounded
domain in the neighborhood of the periodic solution (23)–(24). It means this
solution is stable in linear approximation, and so the SAM is an example of
mechanical system in which the equilibrium state is stabilized by oscillations.

5 Conclusion

In the present paper, we have considered a swinging Atwood machine in the case
when one body of smaller mass is permitted to oscillate in a vertical plane. Such
a system has a state of equilibrium only in the case of equal masses but this state
is unstable. Doing necessary symbolic computations, we have demonstrated that
owing to oscillations the system has a dynamic equilibrium state described by a
periodic solution of the equations of motion. It is a very interesting peculiarity
of the system which takes place only due to the nonlinearity of the equations
of motion.

We have found the initial conditions under which the equations of motion
have periodic solution and proved its linear stability. Simulation of the system
shows that this periodic motion is stable but its stability in Lyapunov sense
still should be proved; so the problem requires further investigation. Note that
the stability analysis of periodic solutions is a very complicated problem which
involves quite tedious symbolic computations; so the application of computer
algebra systems for doing such calculations is very helpful. In this work, we
realized all the symbolic computations with the aid of the computer algebra
systems Wolfram Mathematica.
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