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Abstract. Deciding positivity for recursively defined sequences based
on only the recursive description as input is usually a non-trivial task.
Even in the case of C-finite sequences, i.e., sequences satisfying a linear
recurrence with constant coefficients, this is only known to be decidable
for orders up to five. In this paper, we discuss several methods for proving
positivity of C-finite sequences and compare their effectiveness on input
from the Online Encyclopedia of Integer Sequences (OEIS).
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1 Introduction

A sequence is called D-finite (or P -recursive or holonomic), if it satisfies a lin-
ear recurrence with polynomial coefficients. These sequences appear in many
applications, e.g., in combinatorics or as coefficient sequences of special func-
tions [7,32]. They are interesting from the symbolic computation point of view,
as they can be represented by a finite amount of data – the recurrence coef-
ficients and sufficiently many initial values. Several closure properties hold for
holonomic sequences and there exist summation algorithms that work with this
representation for input and output. These methods are used to automatically
prove and derive identities for holonomic sequences. When it comes to automatic
proving of inequalities on holonomic sequences, there are not many algorithms
available. Gerhold and Kauers [10] introduced a method in 2005 that can be used
for sequences satisfying (a system of) recurrences including in particular holo-
nomic sequences. This method (together with variations of it) has been applied
successfully on several examples [17,29,31]. Still, a priori it is not known in
general whether the procedure terminates [22].
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In this paper, we restrict our study to C-finite sequences, i.e., holonomic
sequences with constant coefficients, and the problem of proving positivity. This
is known to be decidable for integer linear recurrences of order 2 [12], order 3 [23],
order at most 5 and is related to difficult number theoretic problems for higher
order [28]. We give an overview on some methods which can be used to prove
the positivity of C-finite sequences, including the Gerhold–Kauers method and
the most used variation (Algorithms 1 and 2 below). Other methods are based
on theoretical results that, as far as we know, have not yet been implemented
and tested on practical input on a larger scale. For testing the effectiveness of
these different algorithms, we use input from the Online Encyclopedia of Integer
Sequences (OEIS) [27] that are likely candidates for positive sequences. Our
implementations are done both in SageMath and Mathematica and the source
files as well as testing data are made available online (see links in Sect. 4).

2 Preliminaries

We introduce some notations and definitions that will be used throughout the
paper. We always assume that Q ⊆ K � R is some number field. We denote
the field of algebraic numbers by Q and the field of real algebraic numbers by
A := Q ∩ R. We denote the K-vector space of sequences by KN and let σ denote
the shift operator σ((c(n))n∈N) := (c(n + 1))n∈N.

2.1 Linear Recurrence Sequences

We denote the Ore algebra of shift operators by K[x]〈σ〉. Let A =
∑r

i=0 pi(x)σi ∈
K[x]〈σ〉. If pr �= 0, then r is called the order of A and maxi=0,...,r deg(pi) is called
the degree of A. The operator A acts on a sequence c ∈ KN in the natural way as

Ac = (p0(n)c(n) + · · · + pr(n)c(n + r))n∈N.

A sequence c ∈ KN is called D-finite (or P -recursive or holonomic) if there
is a non-zero operator A ∈ K[x]〈σ〉 with Ac = 0, i.e., the sequence satisfies a
linear recurrence with polynomial coefficients. We call A an annihilating operator
of c. It is well known that D-finite sequences form a computable difference ring
[21]. The minimal possible order r of an annihilating operator is also called the
order of the sequence c. The degree of c is then just defined as the degree of
this operator.

A D-finite sequence c is called C-finite if it satisfies a linear recurrence with
constant coefficients, i.e., if there are γ0, . . . , γr ∈ K with γr �= 0 such that

γ0c(n) + · · · + γrc(n + r) = 0, for all n ∈ N. (1)

Again, the order of c as a C-finite sequence is the minimal r (note that the order
of c considered as a C-finite sequence can be different from the order considered
as a D-finite sequence, cf. Lemma 3). The set of C-finite sequences is again a
computable difference ring. Every such sequence can be uniquely described by
the coefficients of the recurrence γ0, . . . , γr and sufficiently many initial values
c(0), . . . , c(r − 1).
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2.2 Characteristic Polynomial

For an operator A =
∑r

i=0 pi(x)σi ∈ K[x]〈σ〉 the characteristic polynomial is
defined as

χ(A) := lcx

(
r∑

i=0

pi(x)yi

)

∈ K[y].

The roots of χ(A) are called eigenvalues and usually govern the asymptotic
behavior of sequences which are annihilated by A [22].

We can extend the notion of the characteristic polynomial to the
left-Noetherian ring K(x)〈σ〉. For a univariate polynomial p ∈ K[x] we denote
by coeff (p, i) ∈ K the coefficient of xi in p. For a rational function p(x)

q(x) with
coprime p, q ∈ K[x] we define the degree as deg(p/q) = deg(p) − deg(q) and call

lc(p/q) := coeff (p/q,deg(p/q)) := lc(p)/ lc(q)

the leading coefficient of p/q. Now, for an operator A =
∑r

i=0
pi(x)
qi(x)

σi ∈ K(x)〈σ〉
with deg(A) := maxi=0,...,r deg(pi/qi) we define the characteristic polynomial as

χ(A) :=
r∑

i=0
deg(pi/qi)=deg(A)

lc(pi/qi)yi ∈ K[y].

Next, in Lemma 1 and Lemma 2, we state some basic properties of the
characteristic polynomial. Since we could not find references for those, we add
the proofs for sake of completeness.

Lemma 1. Let A,B ∈ K(x)〈σ〉. Then χ(AB) = χ(A)χ(B).

Proof. Let A :=
∑r

i=0 pi(x)σi ∈ K(x)〈σ〉 and B :=
∑s

j=0 qj(x)σj ∈ K(x)〈σ〉 and
dA := maxi=0,...,r deg pi, dB := maxj=0,...,s deg qj ∈ Z their respective degrees.
We show that AB has degree dA + dB. By the definition of multiplication in
K(x)〈σ〉 and the properties of the degree of a rational function, the degree of AB
is certainly bounded by dA+dB. Let i′, j′ be maximal such that deg pi′ = dA and
deg qj′ = dB. We show that the coefficient of σi′+j′

of AB has degree dA + dB.
This coefficient is given by

∑i′+j′

l=0 pl(x)qi′+j′−l(x + l). Because of the choice
of i′, j′ we have

deg(pl(x)qi′+j′−l(x)) = deg(pl(x)) + deg(qi′+j′−l(x + l)) < dA + dB

for all l �= i′. For l = i′, we have deg(pl(x)qi′+j′−l(x)) = dA + dB, so by the
properties of the degree we have

deg

⎛

⎝
i′+j′
∑

l=0

pl(x)qi′+j′−l(x + l)

⎞

⎠ = max
l=0,...,i′+j′

(deg (pl(x)) + deg (qi′+j′−l(x + l)))

= dA + dB.
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Next, we show that all coefficients of χ(A)χ(B) and χ(AB) agree.
Let i ∈ {0, . . . , r + s}. Then,

coeff (χ(A), i) = coeff (pi(x), dA) , coeff (χ(B), i) = coeff (qi(x), dB)

and therefore

coeff (χ(A)χ(B), i) =
i∑

j=0

coeff (pj(x), dA) coeff (qi−j(x), dB) .

In the first part of the proof, we have shown that AB has degree dA + dB.
Therefore,

coeff (χ(AB), i) = coeff

⎛

⎝
i∑

j=0

pj(x)qi−j(x + j), dA + dB

⎞

⎠

=
i∑

j=0

coeff (pj(x)qi−j(x + j), dA + dB)

=
i∑

j=0

coeff (pj(x), dA) coeff (qi−j(x + j), dB)

=
i∑

j=0

coeff (pj(x), dA) coeff (qi−j(x), dB) .

�	
Suppose A is an annihilator of a and B an annihilator of b. Then, the least

common left multiple lclm(A,B) is an annihilator of a + b [19].

Lemma 2. Let A,B ∈ K[x]〈σ〉. Then
χ(A) | χ(lclm(A,B)) and χ(B) | χ(lclm(A,B)).

In particular, we have

lcm(χ(A), χ(B)) | χ(lclm(A,B)).

Proof. Let C ∈ K(x)〈σ〉 be such that CA = lclm(A,B). Then, with Lemma 1
we have

χ(lclm(A,B)) = χ(CA) = χ(C)χ(A).

�	
Example 1. In Lemma 2, divisibility cannot be replaced with equality. Consider
A := 1 + σ and B := x + (x + 1)σ. Then,

χ(A) = χ(B) = 1 + y,

but
χ(lclm(A,B)) = χ(x + (2x + 2)σ + (x + 2)σ2) = 1 + 2y + y2.
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An operator A =
∑r

i=0 piσ
i ∈ K[x]〈σ〉 is called balanced if

deg p0 = deg pr = max
i=0,...,r

deg pi.

Equivalently, A is balanced if and only if the degree of χ(A) ∈ K[y] equals the
order of A and the trailing coefficient of χ(A) is non-zero, i.e., y � χ(A).

2.3 Positivity

Suppose we are given a C-finite sequence c in terms of a recurrence and suffi-
ciently many initial values. Our goal is to prove c(n) > 0 for all n ∈ N (i.e., show
that c is positive) or to find an index n0 ∈ N such that c(n0) ≤ 0. The very
same methods can always be applied to show non-negativity instead of strict
positivity of a sequence.

If b, c are C-finite sequences, then the inequality b > c (or b ≥ c) can easily
be reduced to the positivity problem. The sequence b−c is again C-finite. Hence,
proving the equivalent positivity problem b − c > 0 (or b − c ≥ 0) shows the
original inequality.

Suppose c is C-finite satisfying the recurrence (1). Let k ∈ N be minimal
such that γk �= 0. Now, define c̃ := σkc. Then, c̃ is again C-finite satisfying
the recurrence

γk c̃(n) + · · · + γr c̃(n + r − k) = 0, for all n ∈ N.

The sequence c is positive if and only if the sequence c̃ and the initial values
c(0), . . . , c(k − 1) are positive. Therefore, we can (and will) always assume that
a C-finite sequence c is given by a recurrence with coefficients γ0, . . . , γr with
γ0, γr �= 0. Such a sequence c can then always be written as a polynomial-linear
combination of exponential sequences. One can compute polynomials p1, . . . , pm

∈ Q[x] and pairwise distinct non-zero constants λ1, . . . , λm ∈ Q such that

c(n) =
m∑

i=1

pi(n)λn
i , for all n ∈ N. (2)

These λi are called the eigenvalues of c and they are the roots of the characteristic
polynomial

∑r
i=0 γiy

i ∈ K[y] of the minimal order recurrence of c. More precisely,
if λi is a root of multiplicity di, then deg(pi) = di − 1. Hence, r =

∑m
i=1 di [21].

Two sequences b, c which are non-zero from some term on are called asymptot-
ically equivalent if limn→∞

b(n)
c(n) = 1. In this case, we write b ∼ c. The asymptotic

behavior of c is governed by the k eigenvalues of maximal modulus, we call them
the dominant eigenvalues. We assume |λ1| = · · · = |λk| > |λk+1| ≥ · · · ≥ |λm|.
Let d := maxi=1,...,k deg pi. Then, c(n) ∼ nd

∑k
i=1 coeff (pi, d) λn

i [21].
In the special case that we have a unique dominant eigenvalue (i.e., k = 1)

we have c(n) ∼ γndλn
1 for some γ [21]. Hence, c can only be a positive sequence
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if γ, λ1 ∈ A and γ > 0, λ1 > 0. Then, c is positive if and only if c(n)/λn
1 is

positive. Therefore, it is sufficient to show positivity of a sequence

p(n) +
s∑

i=1

(
oi(n)ξn

i + oi(n)ξi
n
)

+
l∑

i=1

qi(n)ρn
i (3)

with p ∈ A[x], o1, . . . , os ∈ Q[x], q1, . . . , ql ∈ A[x] and constants ξ1, . . . , ξs ∈
Q, ρ1, . . . , ρl ∈ A where the leading coefficient of p is positive [28].

3 Algorithms

In this section we give an overview over some methods which can be used to
prove positivity of a C-finite sequence. Algorithms 1 and 2 introduced below in
Sects. 3.1, 3.2 can be applied to D-finite sequences. As such they can be used
to prove positivity of C-finite sequences. However, sometimes C-finite sequences
satisfy a D-finite recurrence of lower order, which is better suited as input for
these methods. In Sect. 3.3, we discuss when such a D-finite recurrence exists. A
method based on the combination of Algorithms 1 and 2 as well as on the closed
form of a C-finite sequence is introduced in Sect. 3.5. The methods described in
Sects. 3.4 and 3.6 also make use of the closed form of C-finite sequences. They
are based on known results, but we believe that they had not been implemented
so far.

3.1 Algorithm 1

In 2008 [10], a method based on cylindrical algebraic decomposition [1,3,5,6]
(CAD) was introduced which can be used to show positivity of sequences that can
be defined recursively along some discrete parameter. This procedure, however,
is not guaranteed to terminate. For D-finite sequences of small order conditions
which guarantee the termination of the algorithm were found [22,30].

We give a short description of Algorithm 1 from [22]. For a D-finite sequence c
of order r, the Q(x)-vector space which is generated by the shifts of c is finitely
generated [21]. In fact, it is generated by c, . . . , σr−1c, i.e.,

〈σic | i ∈ N〉Q(x) = 〈c, . . . , σr−1c〉Q(x).

Hence, for all ρ ∈ N there are rational functions qρ,0(x), . . . , qρ,r−1(x) ∈ K(x)
with c(n + ρ) =

∑r−1
i=0 qρ,i(n)c(n + i) for all n ∈ N. The idea now is to check

with CAD whether c(n), . . . , c(n+ r −1) > 0 implies c(n+ r) > 0 where c(n+ r)
can be written in terms of the c(n), . . . , c(n + r − 1). If this is true, then by
induction it would be sufficient to check finitely many initial values to deduce
positivity of the entire sequence. If, however, this cannot be shown, then we can
add c(n + r) > 0 to the hypothesis and show c(n + r + 1) > 0. This process is
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iterated. In the iteration step ρ ≥ r we try to show positivity of the formula

Φ(ρ, c) := ∀y0, . . . , yr−1, x ∈ R :

⎛

⎝x ≥ 0 ∧
ρ−1∧

j=0

r−1∑

i=0

qj,i(x)yi > 0

⎞

⎠

=⇒
r−1∑

i=0

qρ,i(x)yi > 0.

Formula Φ(ρ, c) is a generalized induction formula over the reals. It is certainly
sufficient to prove the initial induction step and has the advantage of being a
valid input for CAD. Here, we give a slightly adjusted version which searches for
an index n0 such that the sequence σn0c is positive, i.e., it checks whether the
sequence is eventually positive (hence, we denote the algorithm by Algorithm 1e).
If such an n0 can be found by the algorithm, then it is sufficient to check the
initial values c(0), . . . , c(n0 − 1) of the sequence to prove positivity of c.

Algorithm 1e. Adjusted version of Algorithm 1 from [22]
Input : D-finite sequence c of order r
output: n0 such that σn0c is positive
n, n0 ← 0
d ← c
while n < r or ¬Φ(n, d) do

if d(n) > 0 then
n ← n + 1

else
n0 ← n0 + n + 1
d ← σn+1d
n ← 0

return n0

Clearly, Algorithm 1e is not guaranteed to terminate. E.g., if the input
sequence c is negative, then the algorithm never terminates. Suppose the
sequence c is eventually positive, i.e., there exists an n0 ∈ N such that σn0c is
positive. Since χ(c) = χ(σn0c), the same termination conditions for Algorithm 1
in [22] now also apply to Algorithm 1e.

Example 2. The sequence A001903 is C-finite of order 3 satisfying

c(n) − c(n + 1) + c(n + 2) − c(n + 3) = 0

with initial values c(0) = 1, c(1) = 7, c(2) = 9. Algorithm 1e terminates for this
sequence for n = 4 showing that c is positive.

http://oeis.org/A001903
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3.2 Algorithm 2

Algorithm 2 in [22] again uses CAD to prove positivity of a D-finite sequence.
The idea is to check whether there is a μ > 0 such that c(n + 1) ≥ μc(n) for
all n ∈ N. By induction, if there is a μ > 0 such that c(n+1) ≥ μc(n), . . . , c(n+
r−1) ≥ μc(n+r−2) implies c(n+r) ≥ μc(n+r−1), then it is again sufficient to
check finitely many initial values to prove positivity of c. Hence, the important
step in the algorithm is to use CAD to check whether there exists a μ > 0 such
that the formula

Ψ(ξ, μ, c) := ∀y0, . . . , yr−1 ∈ R ∀x ∈ R≥ξ :

(

y0 > 0 ∧
r−2∧

i=0

yi+1 ≥ μyi

)

=⇒
r−1∑

i=0

qi(x)yi ≥ μyr−1

is valid where qi ∈ K(x) are such that c(n+r) =
∑r−1

i=0 qi(n)c(n+i) for all n ∈ N.
Again, we give a slightly adjusted version which searches for an index n0 such

that the sequence σn0c is positive. If the input sequence c is eventually positive,
then the same termination conditions as for Algorithm 2 in [22] apply in this
adjusted version.

Algorithm 2e. Adjusted version of Algorithm 2 from [22]
Input : D-finite sequence c of order r
output: n0 such that σn0c is positive
n, n0 ← 0
d ← c
Ψ(ξ, μ) ← quantifier free formula equivalent to Ψ(ξ, μ, d)
for n = 0, 1, . . . do

if d(n) ≤ 0 then
n0 ← n0 + n + 1
d ← σn+1d
Ψ(ξ, μ) ← quantifier free formula equivalent to Ψ(ξ, μ, d)
n ← 0

else if ∃μ > 0:
r−2∧

i=0

d(n + i + 1) ≥ μd(n + i) ∧ Ψ(n, μ) then

return n0

Example 3. The sequence A005682 is C-finite of order 6 satisfying

c(n) + c(n + 2) − 2c(n + 5) + c(n + 6) = 0

with initial values c = 〈1, 2, 4, 8, 15, 28, . . . 〉. Algorithm 2e terminates for this
sequence at n = 0 showing that c is positive. Algorithm 1e cannot show positivity
of c in 60 s.

http://oeis.org/A005682
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3.3 D-finite Reduction

Clearly, every C-finite sequence is also D-finite. Sometimes, C-finite sequences
satisfy shorter D-finite recurrences. In these cases, it can be helpful to use this
shorter D-finite recurrence as the next example shows.

Example 4. Let c be the sequence defined by c(n) = n2 + 1 for all n ∈ N

(A002522). If c is considered as a C-finite sequence of order 3, then neither
Algorithm 1e nor Algorithm 2e terminate in 60 s. If c is, however, considered as
a D-finite sequence of order 1 and degree 2, then both algorithms terminate and
show that c is indeed positive.

The next lemma shows that we can find a shorter D-finite recurrence of a
C-finite sequence c if and only if c has eigenvalues of higher multiplicities or
equivalently the characteristic polynomial of c is not squarefree.

Lemma 3. Let c be a C-finite sequence of order r with y � χ(c). Then, c is
D-finite of order m < r if and only if χ(c) is not squarefree.

Proof. Suppose c is given as in (2).
⇐=: The sequences pi(n)λn

i are D-finite of order 1 and degree di over Q.
Hence, by the bounds for closure properties of D-finite sequences, c(n) is D-
finite of order at most m over Q [21]. [9, Lemma 2] shows that the sequence is
then also D-finite over K with the same order and degree. In particular, if χ(c)
is not squarefree, then r =

∑m
i=1 di > m.

=⇒: Suppose c satisfies a D-finite recurrence of order m < r and degree d

m∑

i=0

pi(n)c(n + i) = 0 for all n ∈ N (4)

with pi(n) =
∑d

k=0 pi,knk where not all pi,k are zero. Furthermore, suppose
that c is C-finite of order r with pairwise distinct eigenvalues λ1, . . . , λr ∈ Q,
i.e., c(n) can be written as c(n) =

∑r
j=1 γjλ

n
j for some γj ∈ Q. Using this closed

form in (4) yields

d∑

k=0

⎛

⎝
m∑

i=0

r∑

j=1

pi,kγjλ
n+i
j

⎞

⎠ nk = 0. (5)

Let γk,j :=
∑m

i=0 pi,kγjλ
i
j , then (5) is equivalent to

∑d
k=0

(∑r
j=1 γk,jλ

n
j

)
nk = 0.

For n = 0, . . . , r(d+1)− 1 we get a homogeneous linear system for the γk,j . The
corresponding matrix is regular [24, Theorem 2.2.1],[13, Proposition 2.11], so
γk,j = 0 for all k, j. Let k be such that pi,k �= 0 for some i. Then,

0 =
r∑

j=1

λn
j

m∑

i=0

pi,kγjλ
i
j =

m∑

i=0

r∑

j=1

pi,kγjλ
n+i
j =

m∑

i=0

pi,kc(n + i).

Hence, c satisfies a C-finite recurrence of order m < r, a contradiction to c being
C-finite of order r. �	

http://oeis.org/A002522
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The proof of Lemma 3 shows that precisely the polynomial factors can be
reduced in the D-finite recurrence, i.e., the m in the statement of Lemma 3 is
the number of distinct eigenvalues of the sequence, which is also denoted by m
in Eq. (2). The degree of the D-finite recurrence can be bounded by

(m(m + 1) − m) max
i=1,...,m

di = m2 max
i=1,...,m

di ≤ r3

using [18, Theorem 2].
In practice, we can easily check whether χ(c) is squarefree by checking

whether χ(c) and its derivative are coprime. The shorter D-finite recurrence
can then be either found by guessing or by computing it explicitly from the
closed form of c.

3.4 Classical Algorithm for Sequences with Unique Dominant
Eigenvalue

If a C-finite sequence has a unique dominant eigenvalue, checking positivity
of the sequence is known to be decidable [28]. In this section, we give a full
description of such an algorithm based on that result.

As discussed in Sect. 2.3 we can assume that a C-finite sequence c is given in
its closed form representation, i.e., as

c(n) = p(n) + r(n), (6)

where p ∈ A[x] with lc(p) > 0 and r(n) =
∑m

i=1 pi(n)λn
i with pi ∈ Q[x], λi ∈ Q

and 1 > |λ1| ≥ |λ2| ≥ · · · ≥ |λm|. The idea is now to compute an ε ∈ (0, 1)
and n0, n1 ∈ N such that |r(n)| < (1 − ε)n for n ≥ n0 and p(n) ≥ (1 − ε)n for
n ≥ n1. Then, clearly c(n) is positive from max(n0, n1) on. The initial values
can be checked separately again.

Algorithm C. Positivity for sequences with dominant eigenvalues [28]
Input : C-finite sequence c of the form (6)
output: true if c(n) > 0 for all n ∈ N and false otherwise
ε ← 1−|λ1|

2

compute n0 such that |r(n)| < (1 − ε)n for all n ≥ n0

compute n1 such that p(n) ≥ (1 − ε)n for all n ≥ n1

if c(n) > 0 for n = 0, . . . ,max(n0, n1) then
return true

else
return false

For a polynomial pi(x) =
∑di

j=0 γi,jx
j ∈ A of degree di we can easily compute

a constant ci ∈ A such that |pi(n)| ≤ cin
di for all n ≥ 1. For example, we can

choose ci :=
∑di

i=0|γi,j |. Let c :=
∑m

i=1 ci and d := max(d1, . . . , dm), i.e., the
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maximal multiplicity of the eigenvalues λ1, . . . , λm. Furthermore, let ε := 1−|λ1|
2 .

Then, 1 − ε = |λ1| + ε.
First, we show how n0 can be found such that |r(n)| < (1 − ε)n for n ≥ n0.

Let μ := |λ1|+ε
|λ1| . If d = 0, then

|r(n)| ≤ c|λ1|n < (1 − ε)n ⇐⇒ log(c)
log(μ) < n.

Hence, we can choose n0 := � log(c)
log(μ)� in this case. If d > 0, then

|r(n)| ≤ c nd|λ1|n < (1 − ε)n ⇐⇒ log(c1/d) < n
d log(μ) − log(n).

The derivative of the right-hand side of this inequality is positive if n > d
log(μ) ,

i.e., from � d
log(μ)� on the sequence on the right-hand side is monotonously increas-

ing. Hence, if the inequality is true for some n0 ≥ � d
log(μ)�, then it is true for all

n ≥ n0. Checking these values one by one, we will find a suitable n0 eventually.
If the polynomial p(x) = p0 is just constant, then p(n) ≥ (1 − ε)n if and

only if n ≥ log(p0)
log(1−ε) . Otherwise, we can compute the largest real root x1 of the

derivative of p(x). If p(n1) ≥ (1 − ε)n1 for any n1 ≥ �x1�, then the inequality
holds for all n ≥ n1.

Example 5. The sequence A000126 is C-finite of order 4 satisfying

c(n) − c(n + 1) − 2c(n + 2) + 3c(n + 3) − c(n + 4) = 0

with initial values c = 〈1, 2, 4, 8, . . . 〉. The sequence has the unique dominant
root 1+

√
5

2 . Algorithm 1e and Algorithm 2e do not terminate in 60 s whereas
Algorithm C terminates after checking the first 14 terms.

3.5 Combination of Algorithm 1 and Algorithm 2

In the case that the C-finite sequence has a unique dominant eigenvalue, we
can combine the closed form representation of the sequence together with Algo-
rithm 1e and Algorithm 2e. As we know that the polynomial term p(n) in (3) cer-
tainly dominates the exponential terms, we can find indices ni using Algorithm 1e
and Algorithm 2e from which on the exponential sequences are dominated by
the polynomial term. These input sequences have very low order (maximum
order 3). Therefore, the termination criteria in [22] show that these algorithms
terminate in most instances.

As Algorithm 2e terminates for essentially all sequences of order 2, the real
algebraic part of Algorithm P certainly terminates.

Theorem 1. Algorithm P terminates if s = 0, i.e., if all eigenvalues of c are
real algebraic.

http://oeis.org/A000126
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Algorithm P. Positivity for sequences with dominant eigenvalues
Input : C-finite sequence c of the form (3)
output: true if c(n) > 0 for all n ∈ N and false otherwise
for i ← 1 to s do

ni,Q ← Algorithm 1e applied to p(n)
s+l

+ oi(n)ξ
n
i + oi(n)ξi

n

for i ← 1 to l do
ni,A ← Algorithm 2e applied to p(n)

s+l
+ qi(n)ρ

n
i

n0 ← max(n1,Q, . . . , ns,Q, n1,A, . . . , nl,A)

if c(n) > 0 for n = 0, . . . , n0 then
return true

else
return false

Proof. Each sequence h(n) := p(n)
s+l + qi(n)ρn

i is the sum of two balanced D-finite
sequences g, f over A satisfying the recurrences

−p(n + 1)g(n) + p(n)g(n + 1) = 0, −qi(n + 1)ρif(n) + qi(n)f(n + 1) = 0

with characteristic polynomials

χ(G) = lc(p)(y − 1), χ(F) = lc(qi)(y − ρi),

where G,F denote the annihilating operators of g, f , respectively. As these char-
acteristic polynomials are coprime, Lemma 2 yields

χ(H) = χ(G)χ(F) = γ(y − 1)(y − ρi)

for some constant γ where H denotes the annihilating operator of h. In particular,
H is balanced. Furthermore, h ∼ p(n) by construction. With [22, Theorem 3],
Algorithm 2e terminates with input h. �	

It is conjectured that Algorithm 1e terminates for sequences of order 3 if the
eigenvalues are complex. This is the case if we apply Algorithm 1e. Hence, if
the conjecture is true, Algorithm P terminates for all C-finite sequences with a
unique dominant eigenvalue.

Theorem 2. Assume Conjecture 1 from [22] is true. Then, Algorithm P termi-
nates.

Proof. The proof of Theorem 1 already shows that the algorithm terminates for
the real algebraic eigenvalues. Analogously, in the complex case, the sequences
h(n) := p(n)

s+l + oi(n)ξn
i + oi(n)ξi

n
are D-finite of order 3 with a balanced annihi-

lating operator H with characteristic polynomial

χ(H) = γ(y − 1)(y − ξi)(y − ξi)

for some constant γ. With Conjecture 1, Algorithm 1e terminates on this
input. �	
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Example 6. The sequence A002248 is C-finite of order 4 satisfying the recurrence

4c(n) − 8c(n + 1) + 7c(n + 2) − 4c(n + 3) + c(n + 4) = 0

with initial values c = 〈2, 8, 14, 16, . . . 〉. The sequence has the unique dominant
eigenvalue 2. Neither Algorithm 1e nor Algorithm 2e terminate in 60 s. However,
both Algorithm C and Algorithm P terminate in negligible time.

3.6 Decomposition into Non-degenerate Sequences

A C-finite sequence c is called degenerate if the ratio λi

λj
of two distinct eigen-

values λi, λj is a root of unity. Every C-finite sequence c can be written as the
interlacing of non-degenerate and zero-sequences c1, . . . , ck [8, Theorem 1.2]. For
proving inequalities for C-finite sequences this decomposition often turned out
useful [26,28,35]. For proving positivity of c we can compute this decomposition
and prove positivity for every subsequence c1, . . . , ck.

One can explicitly compute the eigenvalues of a C-finite sequence and check
whether the ratio of two eigenvalues is a root of unity [4]. Hence, a naive algo-
rithm can decompose a sequence c into k subsequences

c1(n) = c(kn), . . . , ck(n) = c(kn + k − 1)

and check whether all these subsequences are either zero or non-degenerate.
Eventually, for large enough k, this is the case. This already works well in practice
as we see in Sect. 4. A more efficient algorithm is given in [36].

If decomposition into subsequences is used together with Algorithm C or
Algorithm P, then it is more efficient to check whether every subsequence has a
unique dominant root (which can be done numerically with arbitrary-precision
arithmetic) instead for checking degeneracy. The main bottleneck (cf. Example 8)
is usually the computations of the subsequences. Hence, an efficient implementa-
tion should certainly aim to minimize the computations of these subsequences.

Example 7. The sequence A000115 is C-finite of order 8 and satisfies the recur-
rence

c(n) − c(n + 1) − c(n + 2)+c(n + 3)
−c(n + 5) + c(n + 6) + c(n + 7)−c(n + 8) = 0.

with initial values c = 〈1, 1, 2, 2, 3, 4, 5, 6, . . . 〉. It has 6 dominant eigenvalues
and is degenerate. It can be decomposed into 10 non-degenerate sequences with
unique dominant eigenvalues. For these subsequences, Algorithm C and Algo-
rithm P both have no problem showing positivity.

4 Comparison

As far as we are aware the only implementations of the algorithms presented in
Sect. 3 are implementations of the Gerhold–Kauers method for Mathematica in

http://oeis.org/A002248
http://oeis.org/A000115
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the package SumCracker [16] and for SageMath [34]. We have implemented the
presented algorithms in SageMath (using QEPCAD-B) and in Mathematica and
tested them on C-finite sequences which could be obtained from the OEIS by
guessing.

4.1 Test Set

We used guessing on the terms given in the OEIS to check for each sequence
whether it is C-finite. To have reasonable certainty that the guessed recurrence
is indeed correct we make sure that the corresponding linear systems are overde-
termined with at least 15 more equations than variables. We take the first 1000
of these sequences for which the first 500 terms are strictly positive and are
therefore highly likely to be positive altogether1.

The maximal order of these sequences is 42. The following table shows the
number of sequences of each given order:

order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 > 15

73 134 117 139 120 80 87 36 47 27 31 14 17 10 10 58

More than half of these sequences, 567, have a unique dominant eigenvalue.
There are 102, 40, 70, 32 sequences with 2, 3, 4, 5 distinct dominant eigenvalues,
respectively. Hence, there are 139 sequences with more than 6 distinct domi-
nant eigenvalues.

About half of the sequences, 513, have a characteristic polynomial which
is not squarefree. By Lemma 3 these are the sequences which have a shorter
D-finite recurrence.

4.2 SageMath Implementation

The methods for proving inequalities for C-finite sequences (and in a limited
way for D-finite sequences) are part of the rec_sequences package which is
itself based on the ore_algebra package [20]. SageMath provides an interface to
QEPCAD-B which allows CAD computations [2,33]. This is used in the imple-
mentations of Algorithm 1 and Algorithm 2. For Algorithm C, we rely on fast
arbitrary-precision arithmetic using the library Arb which is included in Sage-
Math [15]. To decompose a sequence into subsequences with a unique domi-
nant eigenvalue, we decompose the sequence into k subsequences and check,
using arbitrary-precision arithmetic, whether all of these have a unique domi-
nant eigenvalue. If they do not have a unique dominant eigenvalue, we increase k
by one. The main bottleneck when decomposing is by far the computation of
the subsequences. Checking whether a subsequence has a unique dominant eigen-
value or proving positivity of a sequence with a unique dominant eigenvalue using
Algorithm C only takes negligible time in our examples.
1 A table with these sequences and additional information is given on the web-

site https://www3.risc.jku.at/people/pnuspl/PositivityCFinite. It also contains the
detailed results of the SageMath and Mathematica tests.

https://www3.risc.jku.at/people/pnuspl/PositivityCFinite
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The package is publicly available2. We give a list of the methods that can
be used on C-finite sequences to show positivity. Every method has a parameter
strict which is True by default and indicates whether strict positivity or non-
negativity should be shown. The additional parameter time can be used to give
an upper bound (in seconds) after which the algorithms should be terminated,
the default value is −1, indicating that they should not stop prematurely.

– is_positive_algo1 implements Algorithm 1 from [22]. As an additional
parameter bound can be specified which gives an upper bound on the number
of iterations.

– is_positive_algo2 implements Algorithm 2 from [22]. Again, bound can be
specified. This method is also implemented for general D-finite sequences and
can be called using is_positive on D-finite sequences.

– is_positive_dominant_root implements Algorithm C for sequences with a
unique dominant eigenvalue.

– is_positive_dominant_root_decompose first tries to decompose the
sequence into sequences with a unique dominant eigenvalue and zero
sequences and calls Algorithm C on each of those.

– is_positive is a combination of all these algorithms which additionally uses
a reduction to D-finite sequences if possible. This method is also applied if
the comparison operators >, <, >=, <= are used.

The following example session shows how the methods can be used.

sage: from rec_sequences.CFiniteSequenceRing import *
sage: C = CFiniteSequenceRing (QQ)
sage: f = C([1,1,-1], [0,1]) # Fibonacci numbers
sage: f.is_positive(strict=False)
True
sage: var("n")
sage: c1 = C(n^2+1) # A002522
sage: c1 >= 0 # use is_positive implicitly
True
sage: c2 = C([1, -1, -1, 1, 0, -1, 1, 1, -1],
sage: [1, 1, 2, 2, 3, 4, 5, 6]) # A000115
sage: c2.is_positive_dominant_root_decompose ()
True
sage: c = C(1/100 * (-3)^n + 100 * 2^n)
sage: c > 0
False

Using the above mentioned methods, 987 out of the 1000 sequences from the
test set could be proven to be positive where each method was given 60 s. The
following table gives an overview on the number of sequences which could be

2 The package can be obtained from https://github.com/PhilippNuspl/rec_sequences.
Extensive documentation and instructions for the installation can be found under
the same link. The version used to run the experiments is available at https://github.
com/PhilippNuspl/rec_sequences/tree/v0.1-exp.

https://github.com/PhilippNuspl/rec_sequences
https://github.com/PhilippNuspl/rec_sequences/tree/v0.1-exp
https://github.com/PhilippNuspl/rec_sequences/tree/v0.1-exp
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proven to be positive by each method (“Comb.” stands for a combination of the
algorithms and a “D” indicates that decomposition of the sequence is used):

Algo. 1 Algo. 2 Algo. C D, Algo. C Comb.

384 327 566 984 986

It is clear that decomposing the sequences and using Algorithm C is the most
powerful method. The implementation of Algorithm C is very fast and takes at
most 0.3 s for every example we considered.

Example 8. The sequence A008628 is C-finite of order 13 satisfying

c(n) − c(n + 1) − 2c(n + 2) + c(n + 3) + 2c(n + 4) − c(n + 6)
+c(n + 7) − 2c(n + 9) − c(n + 10) + 2c(n + 11) + c(n + 12) − c(n + 13) = 0

with initial values = c = 〈1, 1, 2, 3, 5, 7, 10, 13, 18, 23, 31, 38, 49〉. If the sequence
is decomposed into 30 subsequences, then all of the subsequences have a unique
dominant root and positivity of these subsequences can be shown easily with
Algorithm C. It takes about 2min to show positivity of the sequence c and 98%
of the time is used to compute the subsequences in the decomposition.

Allowing more than 60 s for each sequence, all 1000 sequences can be shown
to be positive using decomposition into subsequences with a unique dominant
eigenvalue and Algorithm C for these subsequences.

4.3 Mathematica Implementation

The Mathematica package Positivity encompasses several of the algorithms
described in Sect. 3. It is part of RISCErgoSum which is a collection of Mathemat-
ica packages developed at RISC3. The package GeneratingFunctions is used
to compute closure properties of C-finite sequences [25]. Our package, there-
fore, uses the same syntax as Mallinger’s package for defining sequences. For the
quantifier elimination steps in Algorithm 1e and Algorithm 2e, we use the Math-
ematica method Resolve. It might be interesting to compare different quantifier
elimination procedures for our concrete examples. Following, we give a list of the
methods contained in the Positivity package. All methods can be used in a
strict version to show strict positivity of a sequence (this is the default) or a non-
strict version to show non-negativity of a sequence using the parameter Strict
set to False. If the parameter Verbose is set to True, then more information
about the different computation steps are printed.
3 It can be obtained from https://www3.risc.jku.at/research/combinat/software/

ergosum/RISC/PositiveSequence.html. A demo notebook can be found on the same
webpage. The source code is available on GitHub. The version used to run the experi-
ments is available at https://github.com/PhilippNuspl/PositiveSequence/tree/v0.1-
exp.

http://oeis.org/A008628
https://www3.risc.jku.at/research/combinat/software/ergosum/RISC/PositiveSequence.html
https://www3.risc.jku.at/research/combinat/software/ergosum/RISC/PositiveSequence.html
https://github.com/PhilippNuspl/PositiveSequence/tree/v0.1-exp
https://github.com/PhilippNuspl/PositiveSequence/tree/v0.1-exp
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– KPAlgorithm1 implements Algorithm 1e, i.e., for a C-finite or D-finite
sequence an index n0 is returned from which the sequence is guaranteed to be
positive. If the parameter Eventual is set to False, then the traditional Algo-
rithm 1 from [22] is executed which returns True if the sequence is positive
or False if the sequence is not positive.

– KPAlgorithm2 implements Algorithm 2e and Algorithm 2 from [22], analo-
gous to KPAlgorithm1.

– AlgorithmDominantRootClassic is an implementation of Algorithm C.
– AlgorithmDominantRootCAD provides an implementation of Algorithm P.
– AlgorithmClassic and AlgorithmCAD first decompose the sequence into non-

degenerate and zero sequences and check positivity of these subsequences with
AlgorithmDominantRootClassic and AlgorithmDominantRootCAD, respec-
tively.

– PositiveSequence combines some of the previous algorithms.

The methods can be used in the following way:

In[1]:= << RISC`Positivity`
In[2]:= f = RE[{{0, 1, 1,−1}, {0, 1}}, c[n]];
In[3]:= PositiveSequence[f, Strict → False] (∗Fibonacci∗)

Out[3]= True

In[4]:= c1 = SeqFromExpr[n2 + 1, c[n]];

In[5]:= PositiveSequence[c1] (∗A002522∗)

Out[5]= True

In[6]:= c2 = RE[{{0, 1,−1,−1, 1, 0,−1, 1, 1,−1}, {1, 1, 2, 2, 3, 4, 5, 6}}, c[n]];
In[7]:= AlgoClassic[c2] (∗A000115∗)

Out[7]= True

In[8]:= c3 = SeqFromExpr[1/100 ∗ (−3)n + 100 ∗ 2n , c[n]];

In[9]:= PositiveSequence[c3]

Out[9]= False

Comparing the different algorithms on the test set we see similar results as
in the SageMath implementation. Every method was again aborted after 60 s.
980 out of the 1000 sequences could be shown to be positive by at least one of
the methods. The following table shows the number of sequences which could be
proven positive by each method:
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Algo. 1 Algo. 2 Algo. C Algo. P D, Algo. C D, Algo. P Comb.

387 325 526 528 940 942 980

A more precise comparison of Algorithm C and Algorithm P shows that the
two methods are not only equally powerful on the test set, but their runtime for
the individual examples is also very similar. One can, however, expect that this
is due to the specific implementation as the next example indicates. Hence, if
provided by the computer algebra system, implementations based on numerical
arbitrary-precision computations should be prefered over implementations based
on algebraic number computations or quantifier elimination methods.

Example 9. The C-finite sequence A003520 is C-finite of order 5 satisfying

c(n) + c(n + 4) − c(n + 5) = 0

with initial values c(0) = · · · = c(4) = 1. The sequence has a unique dominant
root. The Mathematica implementations of Algorithm C and Algorithm P both
take several seconds. The SageMath implementation based on arbitrary-precision
ball arithmetic instead of computations with algebraic numbers takes less than
0.1 s.

Increasing the time shows that the combined algorithm can show the posi-
tivity of 996 sequences with a time limit of 12 hours per sequence.

5 Conclusions

Summarizing, we have investigated some well known and new methods for show-
ing positivity of C-finite sequences. To our knowledge, most of these algorithms
were never implemented and it was not clear how well they perform on practical
examples. It turned out that the methods are already powerful enough to prove
the positivity of most C-finite sequences from the OEIS in reasonable time.

The given algorithms already cover most of the sequences appearing in com-
binatorial examples. One can, however, construct examples of non-degenerate
sequences which have multiple dominant eigenvalues. For sequences with up to 5
dominant eigenvalues, positivity is still known to be decidable [28]. Other algo-
rithms for showing positivity are given for instance in [11] and [14]. It would
certainly be interesting to check whether and how these methods can be applied
and implemented in practice and how their runtime compares to the algorithms
presented here.

Acknowledgments. We like to thank Ralf Hemmecke for providing helpful feedback
on the Mathematica implementation. We thank the referees for their careful reading and
their valuable suggestions that helped improve the quality of the paper. In particular,
the suggestion of one of the reviewers to use arbitrary-precision arithmetic greatly
improved the implementation of the classical method for showing positivity.

http://oeis.org/A003520
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