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Abstract. In this paper, we discuss a new algorithm for computing the
integer hull PI of a rational polyhedral set P , together with its imple-
mentation in Maple and in the C programming language. Our implemen-
tation focuses on the two-dimensional and three-dimensional cases. We
show that our algorithm computes the integer hull efficiently and can
deal with polyhedral sets with large numbers of integer points.
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1 Introduction

The integer points of rational polyhedral sets are of great interest in various
areas of scientific computing. Two such areas are combinatorial optimization (in
particular integer linear programming) and compiler optimization (in particu-
lar, the analysis, transformation and scheduling of for-loop nests in computer
programs), where a variety of algorithms solve questions related to the points
with integer coordinates belonging to a given polyhedron. Another area is at the
crossroads of computer algebra and polyhedral geometry, with topics like toric
ideals and Hilbert bases, see for instance [24] by Thomas.

One can ask different questions about the integer points of a polyhedral set,
ranging from “whether or not a given rational polyhedron has integer points”
to “describing all such points”. Answers to that latter question can take various
forms, depending on the targeted application. For plotting purposes, one may
want to enumerate all the integer points of a 2D or 3D polytope. Meanwhile, in
the context of combinatorial optimization or compiler optimization, more concise
descriptions are sufficient and more effective.

For a rational convex polyhedron P ⊆ Qd, defined either by the set of its
facets or by that of its vertices, one such description is the integer hull PI of P ,
that is, the convex hull of P ∩ Zd. The set PI is itself polyhedral and can be
described either by its facets, or its vertices. One important family of algorithms
for computing the vertex set of PI relies on the so-called cutting plane method,
originally introduced by Gomory in [10] to solve integer linear programs (ILP)
and mixed-integer programming (MILP) problems. This method is based on find-
ing a sequence of linear inequalities (cuts) to reduce the feasible region to the
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original ILP problem. Chvátal [6] and Schrijver [22] gave a geometrical descrip-
tion of the cutting plane method and developed a procedure to compute PI

based on it. Schrijver gave a full proof and a complexity study of this method
in [20]. Another approach for computing PI uses the branch and bound method,
introduced by Land and Doig in the early 1960s in [15]. This method recursively
divides P into sub-polyhedra, then the vertices of the integer hull of each part
of the partition are computed.

There are also authors studying the relations between the vertices of PI

and the vertices of P . The authors of [11] provided an algorithm for finding the
vertices of a polytope associated to the Knapsack integer programming problem.
This algorithm computes boxes covering the input polyhedron and such that
each box contains at most one vertex of PI . Following that same approach, the
authors [4] could give an upper bound on the number of those boxes, as well as
a running estimate for enumerating the integer vertices of a polytope.

Since an integer hull is the convex hull of all the integer points within a polyhe-
dral set, a straightforward way of computing the integer hull is enumerating all its
integer points, followed by a convex hull computation. There is a family of studies
focusing on enumerating or counting the lattice points of a given polyhedral set. A
well-known theory on that latter subject was proposed by Pick [18]. In particular,
the celebrated Pick’s theorem provides a formula for the area of a simple polygon P
with integer vertex coordinates, in terms of the number of integer points within P
and on its boundary. In the 1990s, Barvinok [3] created an algorithm for counting
the integer points inside a polyhedron, which runs in polynomial time, for a fixed
dimension of the ambient space. Later studies such as [27] gave a simpler approach
for lattice point counting, which divides a polygon into right-angle triangles and
calculates the number of lattice points within each such triangle.

Verdoolaege et al. present in [25] a novel method for lattice point counting,
based on Barvinok’s decomposition for counting the number of integer points
in a non-parametric polytope. In [23], Seghir, Loechner and Meister deal with
the more general problem of counting the number of images by an affine integer
transformation of the lattice points contained in a parametric polytope. In 2004,
the software package LattE presented in [16] for lattice point enumeration offers
the first implementation of Barvinok’s algorithm. Other algorithms, such as [12]
by Jing and Moreno Maza, compute an irredundant representation of the integer
points of P in terms of “simpler” polyhedral sets, each of them given by a
triangular-by-block system of linear inequalities.

Normaliz [5] is a software library for the computation of Hilbert bases of
rational cones and the normalizations of affine monoids. The Hilbert basis of a
convex cone C is a minimal set of integer vectors such that every integer vector
in C is a conical combination of the vectors in the Hilbert basis with integer
coefficients. The computation of a Hilbert basis of a simplicial cone can be done
by enumerating all lattice points of paralleltopes. From there, Normaliz provides
a command for computing the integer hull of a given polyhedral set based on
enumeration and convex hull computation.

Polymake [1] is a software system that includes several algorithms for con-
vex hull computation and lattice points enumeration (including those of LattE
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and Normaliz). Polymake uses these algorithms to compute the integer hulls of
various kinds of input polyhedral sets.

Since the integer hull PI of P is completely determined by its vertices, it
is natural to ask for the number of vertices in an integer hull of a polyhedron.
The earliest study by Cook, Hartmann, Kannan and McDiarmid, in [8], shows
that the number of vertices of PI is related to the size (as defined in [20]) of
the coefficients of the inequalities that describe P . Let x = p/q be a rational
number, where p and q are coprime integers, the size of x is defined as

size(x) = 1 + �(log(|p| + 1))� + �(log(|q| + 1))�.

For a linear inequality anxn + · · · + a1x1 + a0 ≤ 0, its size is
∑

size(ai). For a
polyhedron P = {x | Ax ≤ �b} where A ∈ Qm×n and �b ∈ Qm. Cook, Hartmann,
Kannan and McDiarmid showed that the number of vertices of the integer hull
of P is bounded over by 2mn(6n2ϕ)n−1 where ϕ is the maximum size of any of the
m inequalities. More recent studies such as [26] and [4] use different approaches
to reach similar or slightly improved estimates. We also discussed this question
in our CASC 2021 paper [17].

In this paper, we present our algorithm for computing PI and we report on
the performance of its implementation as a new command of Maple’s library
PolyhedralSets [19] as well as in the C programming language. We present
benchmarks for both implementations in Sect. 6. Our results show that our
algorithm is very efficient comparing to the well known library Normaliz [5]
especially when the input polyhedral set is large in volume.

Our algorithm has three main steps:

Normalization: during this step, we construct a new polyhedral set Q from P
as follows. Consider in turn each facet F of P :
1. if the hyperplane H supporting F contains an integer point, then H is a

hyperplane supporting a facet of Q,
2. otherwise one slides H towards the center of P along the normal vector

of F , stopping as soon as one hits a hyperplane H ′ containing an integer
point, then making H ′ a hyperplane supporting a facet of Q.

The resulting polyhedral set Q clearly has the same integer hull as P ; com-
puting Q is a preparation phase for the following step.

Partitioning: during this step, we search for integer points inside Q so as to
partition P into smaller polyhedral sets, the integer hulls of which can easily
be computed. We observe that every vertex of Q which is an integer point
is also a vertex of QI . Now, for every vertex V of Q which is not an integer
point we look, on each facet F to which V belongs, for an integer point CV,F

that is “close” to V (ideally as close as possible to V ). All the points CV,F

together with the vertices of Q are used to build that partition of Q. Each
part of the partition is a polyhedron R which:
1. either has integer points as vertices (making the computation of the inte-

ger hull RI trivial),
2. or has a small volume so that any algorithm (including exhaustive search)

can be applied to compute RI .
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Merging: Once the integer hull of each part of the partition is computed and
given by the list of its vertices, an algorithm for computing the convex hull
of a set points, such as QuickHull [2], can be applied to deduce PI .

The paper is organized as follows. Section 2 is a brief review of polyhedral
geometry. Sections 4 and 5 present our algorithms in the 2D and 3D cases,
respectively. Section 3.2 gathers key arguments supporting our algorithm, essen-
tially based on the concept of the Hermite Normal Form of a matrix. Section 6
reports on our experimentation with the proposed algorithms.

2 Preliminaries

In this review of polyhedral geometry, we follow the concepts and notations of
Schrijver’s book [20], As usual, we denote by Z, Q and R the ring of integers, the
field of rational numbers and the field of real numbers. Unless specified otherwise,
all matrices and vectors have their coefficients in Z. A subset P ⊆ Qd is called a
convex polyhedron (or simply a polyhedron) if P = {x ∈ Qd | Ax ≤ �b} holds, for a
matrix A ∈ Qm×d and a vector �b ∈ Qm, where m and d are positive integers; we
call the linear system {Ax ≤ �b} an H-representation of P . Hence, a polyhedron
is the intersection of finitely many affine half-spaces. Here an affine half-space is
a set of the form {x ∈ Qd | �wtx ≤ δ} for some nonzero vector �w ∈ Zd and an
integer number δ.

A non-empty subset F ⊆ P is a face of P if F = {x ∈ P |A′x = �b′} for some
subsystem A′x ≤ �b′ of Ax ≤ �b. A face of P , distinct from P , and with maximum
dimension is a facet of P . The lineality space of P is {x ∈ Qd | Ax = �0} and
P is said pointed if its lineality space has dimension zero. Note that, in this
paper, we only consider pointed polyhedra. For a pointed polyhedron P , the
inclusion-minimal faces are the vertices of P .

We are interested in computing PI the integer hull of P , that is, the smallest
convex polyhedron containing the integer points of P . In other words, PI is the
intersection of all convex polyhedra containing P ∩Zd. Assume that P is pointed.
Then, P = PI if and only if every vertex of P is integral, see [21]. Thus, the
convex hull of all the vertices of PI is PI itself.

3 Two Core Constructions of our Algorithm

In this section, we emphasize two constructions supporting respectively the nor-
malization and partitioning steps of our algorithm. Both constructions deal with
“algebraic aspects”, that is, with the fact that we are solving for the integer
solutions of a system of linear inequalities. These two constructions are inspired
respectively by [17] and [12].
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3.1 Normalization

Considering the rational polyhedron P = {x ∈ Qd | Ax ≤ �b}, with the notations
of Sect. 2, we observe that one can compute a vector �e ∈ Zm so that the rational
polyhedron Q = {x ∈ Qd | Ax ≤ �e} satisfies:

1. PI = QI , and
2. the supporting hyperplane of every facet of Q has at least one integer point.

Notice that this does not necessarily means that the new facet has an inte-
ger point.

In the introduction, the construction of Q is referred as the normalization step.
We construct Q from P as follows:

1. consider each facet F of P in turn; if the hyperplane H supporting F does not
contain an integer point, then one “slides” H towards the center of P along
the normal vector of F , stopping as soon as a hyperplane H ′ containing an
integer point is reached, otherwise keep H unchanged;

2. the resulting polyhedron is Q, for which rational consistency must be checked,
which can be done efficiently using a method based on linear programming.

The “sliding process” described above informally is performed as follows. Let
the equation below define the hyperplane H supporting F :

a1x1 + · · · + adxd = b, (1)

where a1, . . . , ad, b can be assumed to be integers. The fact that Z is an Euclidean
domain (and thus a principal ideal domain) implies that H has integer points if
and only if we have:

gcd(a1, . . . , ad) | b. (2)

If the hyperplane H supporting F does not have integer points and P is included
in the half-space a1x1 + · · · + adxd ≤ b, then H ′ is given by:

a1x1 + · · · + adxd ≤ g � b

g
	, (3)

with g := gcd(a1, . . . , ad).
Summing things up, we denote by Normalization(P ) a function call return-

ing the polyhedron Q.

3.2 Partitioning

The other algebraic construction in our algorithm supports the partition step
briefly explained in the introduction. The underlying question is the following:
given a vertex V of P which is not an integer point and given a facet F of P to
which V belongs, find on F an integer point CV,F , if any, which is “close” to V
(ideally as close to V as possible).

If P is two-dimensional, thus, if F is one-dimensional, then the question is
easily answered by elementary arguments, see our previous paper [17]. If P has



Computing the Integer Hull of Convex Polyhedral Sets 251

dimension d ≥ 3, thus, if F has dimension d − 1, then we take advantage of
the Hermite normal form of a matrix. In the sequel of this section, we review
this concept. and use it to compute the integer hull of a facet of a polyhedron.
Finally, we solve the question of finding an integer point CV,F on F (if any) as
close as possible to V .

Hermite Normal Form. Consider a positive integer p ≤ d and a linear system
Cx = s where C ∈ Zp×d is a full row-rank matrix and s ∈ Zp is a vector. There
exists a uni-modular matrix U ∈ Zd×d so that CU = [0H] where 0 ∈ Zp×(d−p)

is the null matrix and H is the column-style Hermite normal form of C. We
write U = [ULUR] where UL ∈ Zd×(d−p) and UR ∈ Zd×p. Therefore, the matrix
H ∈ Zp×p is non-singular and the following properties hold:

1. Cx = s has integer solutions if and only if H−1s is an integer vector,
2. every integer solution of Cx = s has the form URH−1s+ULz, where z ∈ Zd−p

is arbitrary.

Determining the Integer Hull of a Facet. Let �ctx = s be the equation of the
hyper-plane supporting F , thus with �ct ∈ Zd and s ∈ Z. Let U ∈ Zd×d be a uni-
modular matrix so that�ctU = [0H] where 0 ∈ Z1×(d−1) is the null matrix and H is
the column-style Hermite normal form of�ct regarded as a matrix ofZ1×d. We write
U = [ULUR] where UL ∈ Zd×(d−1) and UR ∈ Zd×1. Let v := URH−1s. Then, from
the above paragraph on Hermite Normal Form, we know that the integer points
of the hyper-plane supporting F are of the form x = v + ULz where z ∈ Zd−1 is
arbitrary. The facet F is described by a system of linear inequalities in Qd with x
as unknown vector. Substituting v+ULz for x yields a system of linear inequalities
inQd−1 (with z as unknown vector) representing a rational polyhedron G ⊆ Qd−1.
With these notations and hypotheses, we have the following.

Theorem 1. The vertices of the integer hull GI of G are in one-to-one corre-
spondence with the vertices of the integer hull FI of F via the map

RF :
{
Qd−1 → Qd

z �−→ x = v + ULz.
(4)

In particular, we have RF (GI) = FI .

Proof � The proof follows from seven claims.

Claim 1. RF is injective. Indeed, the matrix U is uni-modular, thus the columns
of U are linearly independent, and the map z �−→ ULz is injective.

Claim 2. The image of RF is F . Since RF is an injective affine map from Qd−1

to Qd, it follows that the image of RF is an affine space of dimension d − 1.
Therefore, in order to prove the claim, it suffices to prove that for every z ∈ Zd−1

we have RF (z) ∈ F . Since F ∩ Zd = ∅ (as a consequence of the normalization

https://en.wikipedia.org/wiki/Hermite_normal_form
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step of our algorithm) there exists z0 ∈ Zd−1 so that x0 := v + ULz0 ∈ F ∩ Zd

holds. Let z ∈ Zd−1. Define x := RF (z). We have:

x = v + ULz0 + UL(z − z0) = x0 + UL(z − z0).

We deduce:
�ctx = �ctx0 + �ctUL(z − z0) = s + 0 = s,

which proves that RF (z) ∈ F holds.

Claim 3. R−1
F (H) is a half-space of Qd−1 for any half-space H of Qd. Indeed,

for any x ∈ Qd of the form v + ULz, with z ∈ Qd−1, we have

�atx ≥ b ⇐⇒ �atULz ≥ b − �atv,

where H : �atx ≥ b is an arbitrary half-space of Qd.

Claim 4. The integer points of F are in one-to-one correspondence with the
integer points of Zd−1. This claim follows directly from the properties of the
Hermite Normal Form.

Claim 5. R−1
F (S) is a polyhedron of Qd−1 for any polyhedron S of Qd. Indeed,

let S := ∩i Hi be a polyhedron of Qd−1 given as the intersection of finitely many
half-spaces of Qd−1. We have

R−1
F (S) = R−1

F (∩i Hi) = ∩i R
−1
F (Hi).

The conclusion follows with Claim 3.

Claim 6. RF (T ) is a polyhedron of Qd for any polyhedron T of Qd−1. The proof
is similar to that of Claim 5.

Claim 7. We have: RF (GI) = FI . Let S be the set of all polyhedra of Qd con-
taining F ∩ Zd. Let T be the set of all polyhedra of Qd−1 containing G ∩ Zd,
where G = R−1

F (F ). Then, by definition of FI and GI , we have:

FI =
⋂

S∈S
S and GI =

⋂

T∈T
T.

From Claim 5, we have:

R−1
F (FI) =

⋂

S∈S
R−1

F (S) ⊇
⋂

T∈T
T = GI .

From Claim 6, and since RF is injective,we have:

RF (GI) =
⋂

T∈T
RF (T ) ⊇

⋂

S∈S
S = FI .

Therefore, we have RF (GI) = FI . Now we can prove the theorem. Since RF is
a bijective affine map from Qd−1 to F , it maps affine subspaces of dimension
0 ≤ d′ < d of Qd−1 to affine subspaces of dimension d′ of F . Combined with
Claims 5 and 6, this latter observation implies that faces of dimension 0 ≤ d′ < d
of GI are mapped to faces of dimension d′ of FI . Therefore, the vertices of GI

are in one-to-one correspondence with the vertices of FI .



Computing the Integer Hull of Convex Polyhedral Sets 253

Theorem 1 shows that one can reduce the computation of the vertices of FI

to computing the vertices of GI .
Based on that observation, we denote by HNFProjection(F, d) a function call

returning the ordered pair (G,RF ).

Finding an Integer Point CV,F on F (If Any) Close to V . Let us return
now to the question of finding an integer point CV,F on F (if any) as close as
possible to V . A second consequence of Theorem 1 is that we can compute an
integer point CV,F simply by choosing a point RF (W ) at minimum Euclidean
distance to V , where W ranges in the set of the vertices of GI . As mentioned,
such a point may not be an integer point of F at minimum Euclidean distance
to V , but if F is large enough (that is, if its area is large enough) then CV,F is
a good approximate solution to this optimization problem.

4 Integer Hull of a 2D Polyhedral Set

In this section, we present our algorithm for computing the integer hull of a 2D
polyhedral set. We first give a high-level introduction of the algorithm, then we
present its sub-routines, a more precise presentation of the general algorithm
together with the implementation details.

As introduced in Sect. 1, our main idea is to partition the input 2D-polyhedral
set into several smaller areas, compute the integer hulls of each area and find a
convex hull of all these integer hulls.

In Sect. 2, we explained that an integer hull is a convex polyhedral set whose
vertices are all integer points. Therefore, given a polyhedral set that is not an
integer hull, if we can replace each fractional vertex with some integer ones, we
will obtain the integer hull of the input polyhedral set. Of course, during this
replacement process, we should not exclude any integer points, otherwise the
result would not be valid.

To replace the fractional vertices, we need to look at the areas around those
vertices that are the corners of the input polyhedral set. We do that by partition-
ing the input such that each fractional vertex is included in a “small” triangle,
for which the integer hull is computed by a straightforward method.

Other than these corners, there is the central part of the input, ideally this
should be the part that covers most of the area of the input. To make the
computation of the central part easier, we construct the partition by ensuring
the central area is already an integer hull. In the final step, we combine the
corner parts and the central part using a convex hull algorithm to compute the
final output.

To meet all the requirements above, we propose the following method to parti-
tion the input. First, we normalize the input using procedure Normalization(P).
For each fractional vertex, we find the closest integer point to it on each of its
adjacent facets. For a 2D polyhedral set, each vertex has exactly two adjacent
facets, therefore, two “closest integer points”. We partition the input by con-
necting each of these closest integer point pairs. Thus, in most cases a corner
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part would be a triangle with vertices of a fractional vertex and its two closest
integer points. In some special cases when some facets contain no integer point,
we combine the adjacent vertices and their closest integer points to form a poly-
hedral set has two and only two integer vertices. The central part is an integer
hull with vertices of all these closest integer points and all the integer vertices
of the input.

The details of the sub-routines as well as the general algorithm are given in
the following sections.

4.1 Algorithm

In this section, we consider an input polyhedral set P defined by a system of
linear inequalities ⎧

⎪⎪⎨

⎪⎪⎩

a11x1 + a21x2 ≤ b1,
a12x1 + a22x2 ≤ b2,

· · ·
a1nx1 + a2nx2 ≤ bn,

where gcd(a1i, a2i, bi) = 1 for i ∈ {1, . . . , n}. We assume that this represen-
tation of P is irredudant, that is, the defining linear inequalities of P are in
one-to-one correspondence with the facets of P . In this paper, we follow the
convention of Maple’s PolyhedralSets library and refer to these inequalities
as the relations of P .

Following the informal description of the algorithm above, for each fractional
vertex, we need to find the closest integer points on the facets adjacent to this
vertex. But we first notice that it is possible that the supporting hyperplane of
a facet, and therefore the facet itself, do not have any integer points. Therefore,
the first step of our algorithm is to normalize the relations of the input using
the “sliding process” described in Sect. 3.1.

In the next step, closestIntegerPoints (Algorithm 1), we find the closest
integer point to each fractional vertex on its adjacent facets. From the proof of
Lemma 1 in [17] we know that, on a line a1x + a2y = b, a point is an integer
point if and only if it has x value of x ≡ b

a1
mod a2. We can use this observation

to find the closest integer point on a line to a given point. We also deal with the
case where a facet does not contain any integer point.

Next, we need to construct the corner polyhedral sets and compute their
integer hulls. Then, we find the convex hull of all these integer hulls (see Algo-
rithm 2). Lemma 4 in [17] shows that the vertices of this final convex hull are
the vertices of PI .

For a fractional vertex V [i], if neither VC [i][1] nor VC [i][2] is NULL, then the
corner is a triangle with vertices [V [i], VC [i][1], VC [i][2]]. If one or both of VC [i][1]
and VC [i][2] are NULL, which means there is no integer point on one or both
adjacent facets of V [i], we construct the corner as follow.
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Algorithm 1: Compute the closest integer points to each fractional vertex
on its adjacent facets
1 Function closestIntegerPoints(V )

Input: V , a list of the vertices of P
Output: VC , a list of pairs where VC [i][1] and VC [i][2] store the closest

integer points of vertex V [i] on its two adjacent facets.
2 for i = 1, . . . , n do
3 Let V [i1] and V [i2] be the vertices adjacent to V [i]
4 for j = 1, 2 do
5 if there are integer points between [V [i], V [ij ]] then
6 VC [i][j] ← closest integer point to V [i] on [V [i], V [ij ]]

7 else
8 VC [i][j] ← NULL

9 return VC

1. Let VP be an empty set.
2. Let’s say facet f is adjacent to V [i] and does not contain integer point, we

add both vertices of f , V [i] and V [j], to VP .
3. Check the adjacent facets of all the vertices in VP , if some of them does not

contain integer point go to step 2, until no new fractional vertex can be added
to VP .

4. For every vertex in VP add any existing “closest integer point” to VP .
5. In the end, VP contains several fractional points and at most two integer

points and we construct a polyhedral set with VP as the vertex set.

To compute the integer hull of a corner, we use a brute-force method that
searches for all the integer points within the corner polyhedral set and then
compute the convex hull of all these points. [8] has showed that, the size and
shape of the corner polyhedral set only depends on the coefficients, aij , of the
relations of the input but not the constant terms bi. This implies that the size
of the area that we need to do exhaustive search on is not related to the size of
the input polyhedral set P so that the time complexity of our algorithm is not
related to the volume of the input polyhedral set.

With all the sub-routines introduced above, we present our integer hull algo-
rithm (Algorithm 3) for 2D polyhedral sets. We discuss some of the implemen-
tation details in Sect. 6.

4.2 An Example

In this section, we use the following example to show how our 2D algorithm
works. The input is a polyhedral set defined by

⎧
⎨

⎩

2x + 5y ≤ 64,
−7x − 5y ≤ −20,
3x − 6y ≤ −7.
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Algorithm 2: Construct and compute the integer hulls of the corner poly-
hedral sets
1 Function cornerIntegerHulls(V )

Input:
– V , the list of the vertices of the input polyhedral set
– VC , the output from Algorithm 1

Output: A list of the vertices of the integer hull of P
2 VI ← {}
3 for i = 1, . . . , n do
4 if V [i] is an integer point then
5 VI ← VI ∪ {V [i]}
6 else
7 T ← ConstructCorner(V [i], VC)

/* create a corner polyhedral set as we described above */

8 A ← AllIntegerPoints(T ) /* find all the integer points in

T */

9 Vtmp ← ConvexHull(A)
/* compute the vertices of the convex hull of A */

10 VI ← VI ∪ {Vtmp}
11 return ConvexHull(VI)

The first step we need to do is to normalize the facets. In this example, there is
only one facet which is given by the relation 3x − 6y ≤ −7. We replace it with
3x − 6y ≤ −9 (see Fig. 1).

Next we need to find the closest integer points to each fractional vertex on
its adjacent facets. In our case, all three vertices are fractional, so we need to
find two integer points for each (see Fig. 2a). And as we discussed in Sect. 4, the
center part of the input is already an integer hull, so no action needed for this
area. As we can see in Fig. 2b, the center part takes most of the volume of the
input, by doing so we cut down the size of the problem.

Then we just need to compute the integer hulls of the small corner triangles
and use the results to compute the final output (see Fig. 3).

5 Integer Hull of a 3D Polyhedral Set

With the 2D algorithm in place, we can move on to a higher dimension. In this
section, we present our integer hull algorithm for 3D polyhedral sets. The general
idea behind the algorithm is the same as that of the 2D algorithm. We want to
partition the input into smaller polyhedral sets and separate the parts into two
categories, the ones with fractional vertices for which we need to compute the
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Algorithm 3: Compute the integer hull of a given 2D polyhedral set
1 Function IntegerHull2D(P )

Input: P , a 2D PolyhedralSet object
Output: I, a list of the vertices of the integer hull of P

2 Process corner cases
3 Q ← Normalization(P )
4 V ← Vertices(Q)
5 VC ← closestIntegerPoints(V )
6 I ← cornerIntegerHulls(V, VC)
7 return I

x

y

(a) Input is a polyhedral set

x

y

3x
− 6y

= −7
3x

− 6y
= −9

(b) Normalize the input

Fig. 1. Input and replaceNonIntegerFacets

integer hulls as sub-problems and the other ones that are already integer hulls
themselves. After processing all the sub-problems, we combine the results of all
the parts together and compute the final result.

5.1 Algorithm

The first step of the 3D algorithm is the same as that in Sect. 4.1. We normalize
the facets as is in Sect. 3.1. Similarly, we want to find the closest integer points
to the fractional vertices on their adjacent facets. Every fractional vertex and its
closest integer points would form a small polyhedral set. For example, Fig. 4a is
an example input and the green areas in Fig. 4b are the polyhedral sets formed
by fractional vertices and their closest integer points.

Figure 5a shows the center part of the input, this is a polyhedral set with
vertices that are all the closest integer points. In the 2D problem, the corner
polyhedral sets and the center part formed a partition of the input. But in the
3D case, there are areas that are not covered by these parts, to be precise, these
are the areas near the edges (see Fig, 5b).

In order to form a complete partition, we need another set of sub-polyhedral
sets. As is shown in Fig. 6a, for an edge that has at least one fractional vertex, the
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x

y

(a) For a fractional vertex, find the in-
teger point on each adjacent facet that
is closest to it and construct a triangle
with the three points

x

y

(b) The center part is already an inte-
ger hull so we don’t need to do anything

Fig. 2. Partition the input

x

y

(a) Apply the previous two steps to
each fractional vertex

x

y

(b) Find the convex hull of all the re-
sult vertices from the previous steps

Fig. 3. Compute the integer hulls of the parts and the final result

two vertices of the edge and the closest integer points to the fractional vertices
(or vertex) form a polyhedral set. If we construct one such polyhedral set for
each edge, we can cover all the missing areas in Fig. 5b.

For the parts that are not integer hulls already, we use a brute-force method
to compute their integer hulls, that is, we use exhaustive search to find all the
integer points within the part and compute the convex hull of the points. To
cut down the area that needs exhaustive search, we further partition the edge
polyhedral sets if possible. If there are integer points on an edge, we find the
closest one to each fractional vertex and partition the polyhedral set into three
parts, see Fig. 6b for an example.

Finding, on a given segment S, the integer point closest to a given vertex
of S is relatively simple in the 2D problem, but in the 3D case, we need to
address the following, more complicated, question: finding, on a given bounded
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Fig. 4. Input and fractional vertices

3D polyhedron F , an integer point closest to a given vertex of F . A natural step
towards answering this question is to represent all the integer points of F , which,
itself, is an integer hull problem. Since the 3D polyhedron F is “flat”, we can
project it to a 2D ambient space and use our algorithm from Sect. 4.

Here we use the procedure HNFProjection(F, d) which is introduced in detail
in Sect. 3.2. Recall that this procedure will return an ordered pair (G,RF ) where
RF gives the map between a 3D point to a 2D point.

Having a 2D polyhedral set FP , we use our Algorithm 3 to compute the
vertices of the integer hull of FP . Although the HNF method keeps the integer
points in the projection, it can not keep the distance among the points in general,
so we must find the original image of the vertices of the integer hull of FP .

Now that we have the integer hull of a facet, we can search for the closest
integer points to each of its vertices. Here we decide to use the closest vertex
of the integer hull instead of the actual closest integer point. Using the closest
integer vertex might slow down the later steps but only by a very small amount.
Searching for the actual point would be another optimization problem and this
would be less efficient looking at the whole picture.

As mentioned above, in order to form a complete partition of the input
polyhedral set, we need to carefully consider every edge that has at least one
fractional vertex. To this end, we use Algorithm 1 to find the closest integer
points to a fractional vertex on its adjacent edges. Now that we have all the
“closest integer points” we need, we can construct the parts that are the “blue”,
“red” and “green” regions in Figs. 4, 5 and 6. Since all the vertices of the “red”
polyhedral set are integer points, work remains to be done only in the “green”
and “blue” polyhedral sets.

Before we present the complete algorithm, there are some corner cases that
need to be considered. Similar to our 2D problem, the input polyhedral set could
be not fully dimensional. Again we use Hermite Normal Form (HNF) to project
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Fig. 5. The center part and the corners

the input to 2D space, and deal with it as a 2D problem. Another corner case
would be after applying Normalization: no facets have integer points, in this
case we use the brute-force approach for the whole input.

With all the sub-routines in order, here is our algorithm, Algorithm 5, for
computing the integer hull of a bounded 3D polyhedral set.

6 Implementation and Experimentation

We have implemented both the 2D and 3D algorithms in both Maple and the
C/C++ programming language. The Maple version is available in 2022 release
of Maple as the IntegerHull command of the PolyhedralSets library. In this
section, we discuss implementation details and the experimentation with our
implementations. All the benchmarks are done on an Intel i5-8300H CPU at
2.30 GHz with 16 GB of memory. As we discussed in Sect. 1, there are studies
(such as [11] and [4]) developing approaches to enumerate the vertices of PI using
their relations with the vertices of P but to our knowledge no implementation of
such methods exist. So in the following sections we compare our implementation
with the existing implementation of the naive method (enumeration of all integer
points, followed by the computation of their convex hull) for verification and
proof of concept.

6.1 The Maple Implementation

For the Maple version, we use the functions provided by the PolyhedralSets
library for polyhedral set manipulation such as construction, getting the ver-
tices and faces. To obtain the adjacency information among the faces we need to
compute the face lattice of the input polyhedral set; the PolyhedralSets library
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Fig. 6. Polyhedral sets that cover the edge areas

provides the command Graph for that task. We compare our Maple implemen-
tation with another Maple package. In the 2019 Maple Conference, Jing and
Moreno-Maza introduced the ZPolyhedralSets package, presented in [13]. A
ZPolyhedralSet is the intersection of a polyhedral set and a lattice. The integer
hull of a polyhedral set is equal to a ZPolyhedralSet when the ZPolyhedralSet
is defined using the standard integer lattice (which represents all the points with
integer coordinates).

The ZPolyhedralSet package provides the EnumerateIntegerPoints com-
mand, which finds and outputs all the integer points within a ZPolyhedralSet
object. Given a polyhedral set, to obtain the same result that our algorithm com-
putes, which is the list of the vertices of the integer hull, we use the command
EnumerateIntegerPoints to find all the integer points within the input, then
we the command use ConvexHull from ComputationalGeometry to compute
the vertices.

Table 1 shows the time spent in our algorithm (IntegerHull) and the above
two-step method (EIP+CH) to obtain the same result. The inputs are triangles
with different volumes. As we discussed in Sect. 2, the cost for finding all the
integer points is related to the volume of the input and we can see the trend in
the “EIP+CH” columns. Time spent by our algorithm does not seem to depend
on the volume of the input.

From Algorithm 3, we can see that the complexity of our algorithm depends
on the number of facets and the number of fractional vertices in the input.
Table 2 shows the running time of both algorithms (IntegerHull and EIP+CH)
when the inputs are hexagons. The running time for IntegerHull is roughly
double the time for triangle inputs.
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Algorithm 4: Compute the closest integer points on a facet F to the
vertices on it in a 3D polyhedral set
1 Function closestIntegerPoints3D(F, V )

Input:
• F , a facet of P in the form of a PolyhedralSet object
• V , a list of the vertices of P

Output: VC , a list where VC [i] is the integer point on F which is the closest
to V [i], if V [i] is in F , and [] otherwise

2 FP , RF ← HNFProjection(F, 3)
/* Make a projection FP of the 3D bounded plane F onto 2D space

using Hermite Normal Form */

3 Vtmp ← IntegerHull2D(FP )
/* Find the vertices of the integer hull of FP */

4 VF ← IntegerPointIn3D(Vtmp, RF )
/* Find the orignal image of the points in Vtmp */ using the map

RF

5 n ← |V |
6 for i = 1, . . . , n do
7 if V [i] in F and VF �= [] then
8 VC [i] ← closest point to V [i] in VF

9 else
10 VC [i] ← []

11 return VC

Tables 3 and 4 show the running times of the same two algorithms when the
input is a tetrahedron and a bipyramid respectively. The result is similar to that
of the 2D algorithm where the running time increases if there are more facets
and vertices. One thing that we need to notice is that the running time of our
algorithm grows as the volume increases, this is due to the way we deal with
the parts that are around the edges. As we discussed in Sect. 5.1, if there is no
integer point on an edge, the sub-polyhedral set would include the whole edge
and its volume depends on the length of the edge. Recall that we use exhaustive
search for the sub-polyhedral sets thus the running time depends on the volume
of the input polyhedral set.

6.2 The C/C++ Implementation

For the C/C++ implementation, we follow the representations in the C library
cddlib by Komei Fukuda [9] for the polyhedral set computations. GMP rational
arithmetic is used until the integer coordinates are obtained to ensure correct-
ness. Our implementation can take polyhedral sets in either the V-representation
or the H-representation as input; cddlib is used for representation conversion
and some redundancy removal.
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Algorithm 5: Compute the integer hull of a given 3D polyhedral set
1 Function IntegerHull3D(P )

Input: P , a 3D PolyhedralSet object
Output: I, a list of the vertices of the integer hull of P

2 Process corner case: P is not fully dimensional
3 Q ← Normalization(P )
4 V ← Vertices(Q)
5 P ← Q
6 F ← Facets(P )
7 for each F [i] in F do
8 VC [i] ← closestIntegerPoints3D(F[i], V)

/* VC is a 2D list where VC [i][j] contains the closest integer

point to V [j] on F [i] */

9 E ← Edges(P )
10 for each E[i] in E do
11 VE ← closestIntegerPointsOnEdge(E[i], V )

12 Vlist ← PartitionP(V, VC , VE)
/* Vlist = [V1, . . . , Vn] where Vi contains the vertices of one part */

13 I ← {}
14 for each Vlist[i] in Vlist do
15 Plist ← PolyhedralSet(Vlist[i])
16 AI ← AllIntegerPoints(Plist)
17 I ← I

⋃
ConvexHull(AI)

18 return ConvexHull(I)

As we have discussed in Sect. 3.2 we use part of the algorithm in [12] to
partition the polyhedral sets and we follow that same article for the enumeration
of the integer points in the corners. We implemented Algorithm 2.4.10 in [7] and
Algorithm 3 in [12] for the procedure HNFProjection. We also implemented the
algorithm introduced by Kaibel and Pfetsch in [14] for the computations of the
face lattice.

To verify our implementation, we compare our results with that of the Nor-
maliz library [5]. We also implemented a naive procedure based on enumeration
and convex hull computation to obtain the integer hull. Note that Algorithm 3
in [12] only enumerate the integer points inside the given polyhedral set while for
Normaliz, if the input is not homogeneous Normaliz homogenizes it by raising
the input to a higher dimension, therefore, Normaliz enumerates more points
than we do for the same input.

Tables 5 and 6 show the time spent in these three different approaches for
computing the integer hulls of the same inputs. Since the I/O formats are differ-
ent for Normaliz and cddlib, we only measured the timings for the integer hull
computation part but not the I/O parts of the programs. Especially, for Normaliz
we only timed the function call “MyCone.compute(ConeProperty::IntegerHull)”.
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Table 1. Integer hulls of triangles

Volume 27.95 111.79 11179.32

Algorithm IntegerHull EIP+CH IntegerHull EIP+CH IntegerHull EIP+CH

Time(s) 0.172 0.410 0.244 0.890 0.159 58.083

Table 2. Integer hulls of hexagons

Volume 58.21 5820.95 23283.82

Algorithm IntegerHull EIP+CH IntegerHull EIP+CH IntegerHull EIP+CH

Time(s) 0.303 0.752 0.275 31.357 0.304 123.159

The examples are named as xdy z, where x is the dimension of the input (all
the examples are full dimensional). Each y represents a set of examples that are
of the same shape which means these polyhedral sets Ax <= b share the same
coefficient matrix A while the vector b varies. xdy 0 is the smallest (volume wise)
example in a set, for z = 1, 2, 3, vector b get multiplied by 2, 5, 10 respectively.
For the 2D examples, 2d1 has 6 vertices, 2d2 has 4 vertices and 2d3 has 3 vertices.
And for the 3D examples, 3d1 has 12 facets, 8 vertices and 18 edges, 3d2 has 4
facets, 4 vertices and 6 edges and 3d3 has 6 facets, 5 vertices and 9 edges.

The result is consistent with our observation in [17]. For the same family of
input, the time spent by our algorithm is relatively stable while for both our
naive implementation and Normaliz, the larger the volume of the input is, the
more time they need to do the computation since often time larger polyhedral
sets contain more integer points for enumeration.

Table 3. Integer hulls of tetrahedrons (4 facets, 4 vertices and 6 edges)

Volume 447.48 6991.89 55935.2

Algorithm IntegerHull EIP+CH IntegerHull EIP+CH IntegerHull EIP+CH

Time(s) 1.202 6.892 1.498 67.814 1.517 453.577

Table 4. Integer hulls of triangular bipyramids (6 facets, 5 vertices and 9 edges)

Volume 412.58 7050.81 60417.63

Algorithm IntegerHull EIP+CH IntegerHull EIP+CH IntegerHull EIP+CH

Time(s) 1.476 5.711 1.573 60.233 1.728 512.101
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Table 5. Timing (ms) for computing integer hull of 2D examples

example IntegerHull Naive Normaliz

2d1 0 0.451 0.565 2.837

2d1 1 0.478 0.657 1216.238

2d1 2 0.396 0.682 740.559

2d1 3 0.443 1.134 472.447

2d2 0 0.413 1.128 1258.422

2d2 1 0.411 2.714 1242.081

2d2 2 0.393 16.079 2622.995

2d2 3 0.449 47.145 10218.368

2d3 0 0.284 0.768 835.730

2d3 1 0.339 1.676 462.116

2d3 2 0.286 6.883 1559.401

2d3 3 0.324 25.637 5072.894

Table 6. Timing (ms) for computing integer hull of 3D examples

example IntegerHull Naive Normaliz

3d1 0 51.727 11.396 274.364

3d1 1 52.034 13.483 1018.449

3d1 2 60.821 21.106 2330.534

3d1 3 54.350 79.219 15346.996

3d2 0 4.488 0.826 851.495

3d2 1 4.615 0.923 956.666

3d2 2 4.624 1.527 793.192

3d2 3 5.522 4.394 1318.150

3d3 0 11.049 21.235 7862.109

3d3 1 16.001 145.068 N/A

3d3 2 23.822 2082.559 N/A

3d3 3 24.162 N/A N/A

7 Conclusion and Future Work

In this paper, we introduced a new algorithm for computing the integer hull
of a convex polyhedral set. Our algorithm takes into consideration geometric
properties of the input polyhedral set in order to make the computation more
efficient. We implemented the proposed algorithm for two-dimensional and three-
dimensional input in both Maple and C/C++. The efficiency of this algorithm
depends mainly on the shape of the input while the size of the input has little
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impact. We show in Sect. 6 that our algorithm can deal with inputs of very large
volumes that algorithms depending on enumeration can not process.

The main steps of our algorithm are normalization, partition and merging.
Our algorithm can be stated for polyhedral sets of arbitrary dimension and a
Maple implementation is work in progress. Another on-going development is
an algebraic complexity analysis of our algorithm.

We sketch below our algorithm for computing the integer hull of a d-dimen-
sional convex polyhedral set P :

1. normalize the input using the procedure introduced in Sect. 3.1,
2. for each vertex, find the closest integer points to it on each of its adjacent

faces,
3. for each face of dimension from 0 to d − 2, construct a “corner polyhedral

set” using the integer points we obtained from step 2,
4. compute the integer hull of each corner polyhedral set,
5. compute the convex hull of all the integer hulls from step 4,
6. this convex hull is the integer hull of P .
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