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Abstract. The problem of finding the Frobenius distance in the R
n×n

matrix space from a given matrix to the set of matrices possessing mul-
tiple eigenvalues is considered. Two approaches are discussed: the one
is reducing the problem to a constrained optimization problem in R

n

with a quartic objective function, and the other one is connected with
the singular value analysis for an appropriate matrix in R

2n×2n. Several
examples are presented including classes of matrices where the distance
in question can be explicitly expressed via the matrix eigenvalues.

Keywords: Wilkinson’s problem · Real perturbations · Frobenius
norm · 2-norm

1 Introduction

Given a matrix A ∈ R
n×n with distinct eigenvalues, we intend to find the dis-

tance from A to the set D of real matrices with multiple eigenvalues as well as the
corresponding minimal perturbation, i.e., a matrix E∗ ∈ R

n×n of the minimal
norm such that B∗ = A + E∗ ∈ D.

The problem under consideration is known as Wilkinson’s problem [21] and
the desired distance, further denoted as d(A, D), is called the Wilkinson distance
of A [2,15]. Wilkinson’s problem is closely related to ill-conditioning of eigenvalue
problems. The ill-conditioning of a linear system is determined by the distance of
the coefficient matrix from the set of singular matrices. For eigenvalue problems,
the set of matrices with multiple eigenvalues plays the role of singularity [23].
The Wilkinson distance can be considered as a measure of sensitivity of the
worst-conditioned eigenvalue of A. By eigenvalue perturbation theory, a matrix
that is close to a defective matrix has an eigenvalue with large condition number.
Conversely, any matrix with an ill-conditioned eigenvalue is close to a defective
matrix [18,22].

For the spectral and the Frobenius norms, the problem has been studied
intensively by Wilkinson [22–24] as well as by other researchers [2,4,5,10,14,18].
In the works [1,3,13,15], generalizations of Wilkinson’s problem for the cases of
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prescribed eigenvalues or multiplicities and matrix pencils are studied. However,
several aspects of the problem still need further clarification.

The present paper is devoted to the stated problem for the case of Frobenius
norm. It is organized as follows.

In Sect. 2, we start with algebraic background for the stated problem. We first
detail the structure of the set D in the matrix space. The cornerstone notion
here is the discriminant of a characteristic polynomial of a matrix. Being a
polynomial function in the entries of the matrix, the discriminant permits one
to translate the problem of evaluation of d(A, D) to that of finding the distance
from a point to an algebraic manifold in the matrix space. This makes it possible
to attack the problem within the framework of the approach already exploited by
the present authors in the preceding studies [11,12] on the distance to instability
in the matrix space. The approach is aimed at the construction of the so-called
distance equation, i.e., the univariate equation whose zero set contains all
the critical values of the squared distance function. Its construction is theoreti-
cally feasible via application of symbolic methods for elimination of variables in
an appropriate multivariate algebraic system. Unfortunately, the practical real-
ization faces the variable flood difficulty, where the number of variables grows
rapidly with the order of the matrix.

To bypass this, we reformulate the problem in terms of the minimal pertur-
bation matrix. In Sect. 3, we prove that this matrix is a rank 1 matrix. Then we
reduce the problem of its finding to that of a constrained optimization n-variate
problem with an objective function of order 4. Some examples are presented
illuminating the applicability of the developed algorithm.

The discovered property of the perturbation matrix makes it possible to look
at the problem from the other side. Generically, the 2-norm of a matrix does not
equal its Frobenius norm. However, for the rank 1 matrix (and this is exactly the
case of the minimal perturbation matrix), these norms coincide. This allows one
to verify the results obtained in the framework of symbolic approach with the
counterpart obtained for the 2-norm case [14]. This issue is discussed in Sect. 4
while in Sect. 5, both approaches are illustrated for three classes of matrices
where the distance d(A, D) can be explicitly expressed via the eigenvalues of A.
These happen to be symmetric, skew-symmetric and orthogonal matrices. Quite
unexpected for the authors became the fact that, for some classes, each of their
representative had a continuum of nearest matrices in D.

Notation. For a matrix A ∈ R
n×n, fA(λ) denotes its characteristic polynomial,

adj(A) stands for its adjoint matrix, d(A, D) denotes the distance from A to the
set D of matrices possessing a multiple eigenvalue. E∗ and B∗ = A+E∗ stand for,
correspondingly, the (minimal) perturbation matrix and the nearest to A matrix
in D (i.e., d(A, D) = ‖A − B∗‖); we then term by λ∗ the multiple eigenvalue of
B∗. I (or In) denotes the identity matrix (of the corresponding order). D (or
Dλ) denotes the discriminant of a polynomial (with subscript indicating the
variable).

Remark. All the computations were performed in CAS Maple 15.0. (LinearAl-
gebra package and functions discrim, and resultant). Although all the approx-



208 E. Kalinina and A. Uteshev

imate computations have been performed within the accuracy 10−40, the final
results are rounded to 10−6.

2 Algebraic Preliminaries

It is well-known that in the (n + 1)-dimensional space of the polynomial f(λ) =
a0λ

n + a1λ
n−1 + · · · + an, n ≥ 2 coefficients, the manifold of polynomials with

multiple zeros is defined by the equation

D(a0, a1, . . . , an) = 0 where D := Dλ(f(λ)) (1)

denotes the discriminant of the polynomial. Discriminant can be represented in
different ways, for instance, as the Sylvester determinant

Dλ(a0λ
4 + a1λ

3 + a2λ
2 + a3λ + a4) =

1
42
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∣
∣
∣
∣

.

The discriminant D(a0, a1, . . . , an) is a homogeneous polynomial over Z of order
2n − 2 in its variables, and it is irreducible over Z.

The following result [16] is much less known.

Theorem 1 (Jacobi). If f(λ) possesses a unique multiple zero λ∗ and its
multiplicity equals 2, then the following ratio is valid

1 : λ : λ2 : · · · : λn =
∂D

∂an
:

∂D

∂an−1
:

∂D

∂an−2
: · · · :

∂D

∂a0
. (2)

To solve the problem stated in Introduction, one needs to transfer the discrim-
inant manifold (1) into the matrix space. The corresponding manifold is then
defined by a homogeneous polynomial of order n(n − 1) in the matrix entries:

D(B) := Dλ(fB(λ)) = 0 . (3)

We will further denote this manifold in R
n2

as D. The problem of distance
evaluation between a given matrix A and D can be viewed as a constrained
optimization problem:

d2(A, D) = min
B∈Rn×n

‖B − A‖2 subject to (3) . (4)

Consider the Lagrange function for this problem

F (B,μ) := ‖B − A‖2 − μD(B) .
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Evidently, ∂F/∂μ = 0 is equivalent to (3). Differentiation with respect to the
entries of B yields

2(bjk − ajk) − μ∂D(B)/∂bjk = 0 for {j, k} ⊂ {1, . . . , n}. (5)

Since the system (3)–(5) is an algebraic one, it admits application of symbolic
methods of elimination of variables. We attach to the considered system an
extra equation

z = ‖B − A‖2 (6)

and then aim at finding the so-called distance equation

F(z) = 0

resulting from the elimination of all the variables but z from this system. Positive
zeros of this equation are the critical values of the squared distance function for
the problem (4).

Example 1. For the matrix A = [ajk]2j,k=1 with the characteristic polynomial
fA(λ), the system (5) is linear with respect to {bjk}2j,k=1 and the distance equa-
tion is easily computed as

F(z) := 4096(a12 − a21)2
[

(a11 − a22)2 + (a12 + a21)2
]

×
{

[4z − Dλ(fA(λ))]2 − 16(a12 − a21)2z
}

= 0. (7)

It turns out that for any matrix A such that Dλ(fA(λ)) �= 0, the distance equa-
tion is the quadratic one (7) where d2(A, D) equals its minimal zero.

For the matrix

A =
[

s t
−t s

]

where t > 0,

polynomial F(z) vanishes identically. Equation (7) possesses a multiple zero,
namely z = t2, and d(A, D) = t. Surprisingly, this distance is provided by a
continuum of perturbation (and thus nearest in D) matrices, namely

E∗ =
t

2

[
sin ϕ −1 + cos ϕ

1 + cos ϕ − sin ϕ

]

, where ϕ ∈ [0, 2π).

This example causes an anxious expectation of difficulties to appear while solv-
ing the stated distance evaluation problem for the case of orthogonal or skew-
symmetric matrices A. ��

For a general case, computation of the distance equation via the solution
of the system (3)–(5)–(6) is a hardly executable task due to a drastic increase
in the number of variables (i.e., the entries of matrix B) to be eliminated. To
overcome this difficulty, let us reformulate the problem in terms of the entries of
the perturbation matrix.
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3 Distance Equation and Perturbation Matrix

Theorem 2. Matrices E∗ are B∗ are linked by the equality

E∗ = κ [f∗(B∗)]
�

, (8)

were

f∗(λ) :=
fB∗(λ)
λ − λ∗

,

and κ ∈ R is some scalar.

Proof. We start with system (5) resulting from application of the Lagrange
method to problem (4). Compute ∂D(B)/∂bjk as a composite function with
the coefficients of characteristic polynomial fB(λ) = λn + p1λ

n−1 + · · · + pn

treated as intermediate variables:

∂D(B)
∂bjk

=
∂D(B)

∂p0

∂p0
∂bjk

+
∂D(B)

∂p1

∂p1
∂bjk

+ · · · +
∂D(B)

∂pn

∂pn

∂bjk
.

(We set here p0 := 1 and thus the first term in the right-hand side is just 0).
Under the condition D(B) = 0 (i.e., the matrix B = B∗ possesses a multiple
eigenvalue λ∗), the Jacobi ratio (2) is fulfilled

1 : λ∗ : λ2
∗ : · · · : λn

∗ =
∂D

∂pn
:

∂D

∂pn−1
:

∂D

∂pn−2
: · · · :

∂D

∂p0
.

Therefore,
∂D

∂p�
= κλn−�

∗ for � ∈ {1, . . . , n}

and for some constant κ ∈ R. Consequently

∂D(B)
∂bjk

= κ

(

λn
∗

∂p0
∂bjk

+ λn−1
∗

∂p1
∂bjk

+ · · · +
∂pn

∂bjk

)

= κ
∂fB(λ∗)

∂bjk
.

The preceding considerations lead to a conclusion that the system of Eqs. (5) is
equivalent to the matrix equation

2(B∗ − A) = μκ ∂fB(λ∗)/∂B
∣
∣
B=B∗

.

Next utilize the formula of differentiation of characteristic polynomial with
respect to the matrix [19]:

∂fB(λ)/∂B = [adj(λI − B)]� .

Equality (8) then follows from the representation of the adjoint matrix for λ∗I −
B∗ as f∗(B∗) with f∗(λ) standing for the quotient on division of fB(λ) by λ−λ∗.

Corollary 1. Matrices E�
∗ and B∗ commute and

(λ∗I − B∗)E�
∗ = On×n.
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Corollary 2. If A does not have a multiple eigenvalue, then E∗ is the rank 1
matrix with only zero eigenvalues.

Proof. Matrix f∗(B∗) = adj(λ∗I − B∗) is the rank 1 matrix, since its columns
are the eigenvectors of the matrix B∗ corresponding to λ∗ (Cayley–Hamilton
theorem).

We next prove that tr(adj(λ∗I − B∗) = 0. For any matrix B with spectrum
{λj}n

j=1, matrix adj(λI − B) has the spectrum [17] (part VII, problem 48):

{
fB(λ)
λ − λj

}n

j=1

.

Thus,
tr(E∗) = tr(adj(λ∗I − B∗)) = f ′

B∗(λ∗) = 0.

Corollary 3. Matrix E∗ is normal to B∗, i.e., tr(B�
∗ E∗) = 0.

Corollary 4. tr(B∗) = tr(A).

Theorem 3. The value d2(A, D) is contained in the set of critical values of the
function

G(U) := U�AA�U − (

U�AU
)2

subject to U�U = 1, U ∈ R
n (9)

If U∗ is the vector providing d2(A, D), then the perturbation matrix can be com-
puted by the formula

E∗ = U∗U�
∗ (κI − A) where κ := U�

∗ AU∗. (10)

Proof. Due to Corollary 2, the singular value decomposition for the perturbation
matrix E is represented as

E = σU · V � (11)

under restrictions
U�U = 1, V �V = 1, U�V = 0. (12)

From the condition tr((A + E)E�) = 0 we deduce that σ = − tr(AV U�) =
−U�AV. Formulate the constrained optimization problem

min(−U�AV ) subject to (12). (13)

The derivatives of the corresponding Lagrange function

L(U, V, μ1, μ2, μ3) := −U�AV − μ1(U�U − 1) − μ2(V �V − 1) − μ3U
�V

result in the system of linear equations

∂L/∂U = −AV − 2μ1U − μ3V = On×1, (14)
∂L/∂V = −A�U − 2μ2V − μ3U = On×1 (15)
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with respect to U and V . Multiplication of (14) by U� and (15) by V � results
(in accordance with (12)) in

μ3 = −V �AV = −U�AU. (16)

Multiplication of (14) by U� while (15) by V � yields

− 2μ1 = −2μ2 = U�AV = −σ (17)

and, provided this value is not 0,

V = − 1
2μ2

(A� + μ3I)U. (18)

Substituting (18) in (11) and taking into account (16), we arrive at (10).
If μ1 = μ2 = 0 then system (14)–(15) is reduced to AV = −μ3V,A�U =

−μ3U . This implies that the matrix A should possess a real eigenvalue κ1 with
the corresponding right and left eigenvectors V1 and U1 satisfying the condition
U�
1 V1 = 0. We claim that, in this case, matrix A has a multiple eigenvalue. For

the sake of simplicity, we prove this statement under an extra assumption that
all the eigenvalues κ1, . . . , κn of A are real. Suppose, by contradiction, that they
are distinct. One has then

κ1U
�
1 Vj = U�

1 AVj = κjU
�
1 Vj ⇒ U�

1 Vj = 0 for j ∈ {2, . . . , n}
and for Vj standing for the right eigenvector corresponding to κj . Therefore,
U1 is normal to all the vectors V1, V2, . . . , Vn composing a basis of R

n. The
contradiction proves the assertion. The statement of the theorem remains valid
with the corresponding critical value of (9) equal to 0. ��

To find the critical values of the function (9), the Lagrange multipliers method
is to be applied with the objective function G(U) − μ(U�U − 1). This results
into the system

AA�U − (

U�AU
)

(A + A�)U − μU = On×1 (19)

where every equation is now just cubic with respect to the entries of U . This
is an essential progress compared to the system (3)–(5)–(6), and makes it fea-
sible to manage the procedure of elimination of variables from the system (19)
accomplished with z − G(U) = 0 and U�U = 1 (at least for the matrices of the
order n ≤ 8).

Unfortunately, the new system possesses some extraneous solutions, i.e., those
not corresponding to the critical values of the distance function.

Example 2. For the matrix

A =
[

0 1
13 −6

]

,

the system
u2
1 + u2

2 = 1, u2∂G/∂u1 − u1∂G/∂u2 = 0
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possesses solutions

u1 = ± 1
58

√

2900 + 82
√

22, u2 = ± 1
58

√

464 − 87
√

22

that yield the value z = 0. The true distance equation is given by (7), and
d2(A, D) = −12

√
58 + 94 is provided by another solution of the system, namely

u1 = ± 1
58

√

1682 + 203
√

58, u2 = ± 1
58

√

1682 − 203
√

58.

��
The appearance of such extraneous solutions is caused by the non-equivalence

of the passage from the original stated problem to that from Theorem 3.
For instance, representation (10) is deduced under an extra condition of non-
vanishing of value (17).

Example 3. For the Frobenius matrix

A =

⎡

⎣

0 1 0
0 0 1

−91 −55 −13

⎤

⎦ ,

the distance equation

F(z) := 33076090700402342058246544 z6−377039198861306289080145178864z5

+ 937864902703881321034450183916 z4 − 771868276098720970149792503999 z3

+ 211070978787821517684022650624 z2 − 510584100140452518540394496 z

+ 319295875259784560640000 = 0

possesses the following real zeros

z1 ≈ 0.739335, z2 ≈ 0.765571, z3 ≈ 0.980467, z4 ≈ 11396.658548.

One has d(A, D) =
√

z1 ≈ 0.859846 and

E∗ ≈
⎡

⎣

0.198499 −0.195124 −0.530440
0.204398 −0.200922 −0.546202

−0.000907 0.000891 0.002424

⎤

⎦ ,

B∗ = A + E∗ ≈
⎡

⎣

0.198499 0.804875 −0.530440
0.204398 −0.200923 0.453797

−91.000907 −54.999108 −12.997576

⎤

⎦ .

The latter matrix possesses the double eigenvalue λ∗ ≈ 0.824777. ��
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Example 4. For the matrix

A =

⎡

⎢
⎢
⎣

5 −36 −57 85
80 90 74 27
9 −91 81 65

−12 78 5 −63

⎤

⎥
⎥
⎦

,

the distance equation is represented by the order 12 irreducible over Z polyno-
mial F(z) with the absolute value of coefficients up to 10100. Its real zeros are

z1 ≈ 87.614714, z2 ≈ 2588.509661, z3 ≈ 17853.256334, z4 ≈ 32194.078324.

One has d(A, D) =
√

z1 ≈ 9.360273 and

E∗ ≈

⎡

⎢
⎢
⎣

3.350324 −0.177130 −3.704042 −0.328216
2.489713 −0.131630 −2.752569 −0.243906
2.565863 −0.135656 −2.836760 0.251366
3.898666 −0.206121 −4.310276 0.381935

⎤

⎥
⎥
⎦

,

with the matrix

B∗ = A + E∗ ≈

⎡

⎢
⎢
⎣

8.350324 −36.177130 −60.704042 84.671784
82.489713 89.868370 71.247430 26.756094
11.565863 −91.135656 78.163240 64.748634
−8.101333 77.793879 0.689724 −63.381935

⎤

⎥
⎥
⎦

possessing the double eigenvalue λ∗ ≈ 69.081077. ��
Some empirical conclusions resulting from about 30 generated matrices of

the orders up to n = 20. Generically,

(a) The extraneous factor equals zn, and on its exclusion one has
(b) the order of the distance equation F(z) = 0 equals n(n−1), and, if computed

symbolically w.r.t. the entries of A, F(0) has a factor [Dλ(fA(λ))]2;
(c) d2(A, D) equals the minimal positive zero of this equation.

Complete computational results for some examples are presented in [20]. For
the matrices A with integer entries within [−99,+99] (generated by Maple 15.0.
RandomMatrix package) we point out some complexity estimates for the dis-
tance equation computation (PC AMD FX-6300 6 core 3.5 GHz)

n deg F(z) coefficient size number of real zeros timing (s)

5 20 ∼10170 10 0.03

10 90 ∼10780 28 0.13

20 380 ∼103500 36 1940

The adequacy of the results has been extra checked via the nearest matrix B∗
computation. This matrix should
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(a) possess a double eigenvalue;
(b) have the value ‖B∗ − A‖ equal to the square root of the least positive zero

of F(z);
(c) satisfy the system of equations (3)–(5) (this property has been tested only

for the orders n ≤ 8);
(d) have the number of real eigenvalues which differs from that of the matrix A

at most by 2.

4 Singular Values

Let A ∈ R
n×n be a nonsingular matrix with the singular value decomposition

as follows
A = WDnV �, (20)

where Dn = diag {σ1, σ2, . . . , σn}, with singular values σ1 ≥ σ2 ≥ . . . ≥ σn > 0.
The following result [6,8] gives us the distance to the nearest matrix with

rank k < n.

Theorem 4. One has

min
rankB=k

||A − B|| = ||A − Ak|| =

⎧

⎪⎨

⎪⎩

σk+1, for the 2-norm,
[

n∑

i=k+1

σ2
i

]1/2

for the Frobenius norm.

Here
Ak = WDkV �, Dk = diag {σ1, σ2, . . . , σk, 0, . . . , 0}.

According to this theorem, the Frobenius distance from the nonsingular A to
the set of matrices with multiple eigenvalues satisfies the following inequality:

d(A, D) ≤
√

σ2
n−1 + σ2

n.

As for the distance d(A, D) in the 2-norm, the following result [14] is known:

Theorem 5. Let the singular values of the matrix

M =
[

A − λIn γIn

On×n A − λIn

]

(21)

be ordered like σ1(λ, γ) ≥ σ2(λ, γ) ≥ . . . ≥ σ2n(λ, γ) ≥ 0. Then one has

d(A, D) = min
λ∈C

max
γ≥0

σ2n−1(λ, γ).

It is well-known that for the matrix A ∈ R
n×n, n ≥ 2, Frobenius norm and

the 2-norm are related by the inequality [7]

||A||2 ≤ ||A||F ≤ √
n||A||2.
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It is also known, that ||A||2 = ||A||F iff rank(A) = 1. According to Corollary 2,
both norms coincide for the minimal perturbation E∗. This results in an algo-
rithm for d(A, D) computation that is an alternative to that treated in Sect. 3.

To find singular values of the matrix (21), i.e., zeros of the polynomial

det(MM� − μI2n) (22)

= det
[

(A − λIn)(A − λIn)� + γ2In − μIn γ(A − λIn)�

γ(A − λIn) (A − λIn)(A − λIn)� − μIn

]

treated with respect to μ, is a nontrivial task. We will restrict our consideration to
the classes of matrices A where application of Schur formula for the determinant
of the block matrix (22) is possible, i.e., transforming it into

det(μ2In − μ[2(A − λIn)(A − λIn)� + γ2In] + [(A − λIn)(A − λIn)�]2). (23)

These happen to be symmetric, skew-symmetric, and orthogonal matrices. Sin-
gular values of the matrix (21) can be expressed explicitly via the eigenvalues of
this matrix.

5 Distance via Matrix Eigenvalues

5.1 Symmetric Matrix

Theorem 6. Let A be a symmetric matrix with distinct eigenvalues λ1, λ2,
. . . , λn. Then

d(A, D) =
1
2

min
1≤k<�≤n

|λk − λ�|.

If this minimum is attained at the eigenvalues λ2 and λ1, λ2 > λ1, then the
perturbation can be found as

E∗ =
1
4
(λ2 − λ1)(P1 + P2)(P1 − P2)�, (24)

where P1 and P2 are the eigenvectors of A corresponding to λ1 and λ2 respectively
with ‖P1‖ = ‖P2‖ = 1.

Remark. Generically, matrices E∗ and B∗ = A+E∗ are not the symmetric ones.

Proof. For j ∈ {1, . . . , m}, denote Pj the eigenvector of A corresponding to λj

with ‖Pj‖ = 1. Then P = (P1, P2, . . . , Pn) is the orthogonal matrix such that

P�AP = Λ where Λ = diag {λ1, λ2, . . . , λn}.

Since the orthogonal transformation does not influence the Frobenius distance,
we reduce d(A, D) to d(Λ, D).
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In this case, Λ − λI = (Λ − λI)� and these matrices commute. Hence, the
expression (23) is valid. Therefore, the singular values of the matrix (21) are the
zeros of the polynomials

μ2 − μ(2(λj − λ)2 + γ2) + (λj − λ)4, j ∈ {1, 2, . . . , n},

namely

μ
(j)
1,2 =

2(λj − λ)2 + γ2 ± γ
√

γ2 + 4(λj − λ)2

2
.

Differentiating w.r.t. γ, we get the single stationary point γ = 0. According
to [14], to find the 2-norm distance from A−λI to the manifold of matrices with
multiple zero eigenvalue, one should find the singular values σn and σn−1 for
the matrix (A − λI). They are |λk − λ| and |λ� − λ| for some k, �. The minimal
w.r.t. λ value of σn−1 comes up to |λk − λ�|/2 where λk − λ = λ − λ�.

Assume that
min

1≤k<�≤n
|λk − λ�| = |λ1 − λ2|.

Denote

Q :=

⎡

⎢
⎢
⎢
⎢
⎣

1√
2

− 1√
2

0 . . . 0
1√
2

1√
2

0 . . . 0
0 0 1 . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . 1

⎤

⎥
⎥
⎥
⎥
⎦

, then Q�ΛQ =

⎡

⎢
⎢
⎢
⎢
⎣

λ1+λ2
2

λ2−λ1
2 0 . . . 0

λ2−λ1
2

λ1+λ2
2 0 . . . 0

0 0 1 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 1

⎤

⎥
⎥
⎥
⎥
⎦

.

For this matrix, Ẽ∗ =

⎡

⎢
⎢
⎣

0 λ1−λ2
2 0 . . . 0

0 0 0 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 0

⎤

⎥
⎥
⎦

. Obviously, we get

E∗ = QPẼ∗P�Q� =
λ1 − λ2

4
(P1 + P2)(P1 − P2)�.

��
Example 5. For the matrix

A =
1
9

⎡

⎣

−269 −98 76
−98 −296 22

76 22 −209

⎤

⎦ ,

one has

λ1 = −45, λ2 = −25, λ3 = −16 , P1 = [2/3, 2/3,−1]�, P2 = [−1/3, 2/3, 2/3]�.

d(A, D) =
| − 25 + 16|

2
=

9
2

and E∗ =

⎡

⎣

−3/4 3/4 0
−3/4 3/4 0

−3 3 0

⎤

⎦ .
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5.2 Skew-Symmetric Matrix

Theorem 7. Let the nonzero eigenvalues of a skew-symmetric matrix A be

±b1i,±b2i, . . . ,±bmi where 0 < b1 < b2 < . . . < bm.

Then
d(A, D) = b1

and the minimal perturbation can be found as

E∗ = −b1(P1)�(P1)�, (25)

where P1 is the eigenvector of A corresponding to the eigenvalue b1i with ‖(P1)‖
=‖�(P1)‖ = 1.

Proof. For j ∈ {1, . . . , m}, denote Pj the eigenvector of A corresponding to bji
with ‖(Pj)‖ = ‖�(Pj)‖ = 1. If A possesses the zero eigenvalue, denote by P0

the corresponding eigenvector with ‖P0‖ = 1. Then the orthogonal matrix

P = ((P1),�(P1),(P2),�(P2), . . . ,(Pm),�(Pm), {P0})

is such that

P�AP = Υ where Υ := diag {Υ1, Υ2, . . . , Υm, {0}},

Υk :=
[

0 bk

−bk 0

]

, k ∈ {1, 2, . . . ,m}

(we set in braces the entries of the matrices corresponding to the case of existence
of zero eigenvalue for A).

Since an orthogonal transformation does not influence the Frobenius distance,
we reduce d(A, D) to d(Υ, D). In this case,

(Υ − λI)(Υ − λI)� = diag {Υ̃1, Υ̃2, . . . , Υ̃m, {0}},

where

Υ̃k :=
[

bk + λ2 0
0 b2k + λ2

]

for k ∈ {1, . . . , m}.

It is evident that

(Υ − λI)(Υ − λI)�(Υ − λI) = (Υ − λI)2(Υ − λI)�.

Hence, the expression (23) is valid.
Therefore, the singular values of matrix (21) are the zeros of the polynomials

μ2 − μ(2(λ + bk)2 + γ2) + (λ2 + b2k)2, k ∈ {1, 2, . . . ,m},

namely

μ
(k)
1,2 =

1
2

[

2(λ + bk)2 + γ2 ± γ
√

γ2 + 4(λ2 + b2k)
]

.
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Differentiating w.r.t. γ, we get a single stationary point γ = 0. According to [14],
to find the 2-norm distance from Υ −λI to the manifold of matrices with multiple
zero eigenvalue, it is sufficient to compute the singular values σn and σn−1 of
this matrix. They are

either σn = σn−1 =
√

b2k + λ2 for some k, or σn−1 =
√

b2k + λ2, σn = |λ|.

The minimal w.r.t. λ value of σn−1 comes up to b1 when λ = 0.
The corresponding perturbation

E∗ = P

⎡

⎢
⎢
⎣

0 −b1 0 . . . 0
0 0 0 . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . 0

⎤

⎥
⎥
⎦

P� = −b1(P1)�(P1)�.

��
Corollary 5. In the notation of Theorem 7, the distance d(A, D) is provided by
a continuum of perturbations E∗ contained in the set

{−b1(η(P1) + θ�(P1))(−η�(P1) + θ(P1))� | {η, θ} ⊂ R, η2 + θ2 = 1
}

.

5.3 Orthogonal Matrix

Theorem 8. Let n ≥ 3, and the eigenvalues of an orthogonal matrix A, other
than ±1, be

cos α1 ± i sin α1, cos α2 ± i sin α2, . . . , cos αm ± i sin αm, (26)

where 0 < sin α1 ≤ sin α2 ≤ . . . ≤ sin αm. Then

d(A, D) = sinα1 , (27)

and the minimal perturbation can be found as

E∗ = −(sin α1)(P1)�(P1)�, (28)

where P1 is the eigenvector of A corresponding to the eigenvalue cos α1 + i sin α1

with ||(P1)|| = ||�(P1)|| = 1.

We present two independent proofs for this result: the first one following from
Theorem 3 while the second one exploiting the considerations of Sect. 4.

Proof. I. Since AA� = I, the objective function (9) can be transformed into

G(U) = 1 − (

U�AU
)2

,

and system (19) is then replaced by
(

U�AU
) (

A� + A
)

U − μU = O. (29)
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Multiply it by U�A�:
(

U�AU
) [

U�(A�)2U + 1 − μ
]

= 0,

and we get two alternatives:

either U�AU = 0 or μ = 1 + U�A2U.

If the second alternative takes place, substitute the expression for μ into (29):
(

U�AU
)

(A� + A)U − (1 + U�A2U)U = O.

Wherefrom it follows that

(A� + A)U =
1 + U�A2U

U�AU
U. (30)

If there exists a solution U = U∗ �= O for this equation, then U∗ is necessarily
an eigenvector of A� + A corresponding to the eigenvalue

ν∗ = (1 + U�
∗ A2U∗)/(U�

∗ AU∗).

Matrix A� + A is a symmetric one with the eigenvalues 2 cos α1, . . . , 2 cos αm

of the multiplicity 2 and, probably, ±2. Substitution U = U∗ into (30) and
multiplication by U�

∗ yields

ν∗ = 2U�
∗ AU∗ = 2 cos αj for some j.

Therefore, the critical values of the function G(U) are in the set {1−cos2 αj}m
j=1.

This results in (27).
The alternative U�

∗ AU∗ = 0 for U�
∗ U∗ = 1 corresponds to the case where A

possesses eigenvalues ±i. The result (27) remains valid. ��
Proof. II. For j ∈ {1, . . . , m}, denote by Pj the eigenvectors of A corresponding
to the eigenvalue cos αj ± i sin αj with ||(Pj)|| = ||�(Pj)|| = 1. Denote P[1] and
P[−1] the eigenvectors corresponding to the eigenvalues 1 and −1 correspondingly
(if any) with ‖P[1]‖ = ‖P[−1]‖ = 1. Then the orthogonal matrix

P = ((P1),�(P1),(P2),�(P2), . . . ,(Pm),�(Pm), {P[1], P[−1]})

is such that

P�AP = Ω where Ω = diag {Ω1, Ω2, . . . , Ωm, {1,−1}},

where

Ωk :=
[

cos αk sin αk

− sin αk cos αk

]

for k ∈ {1, 2, . . . ,m}

(we set in braces the entries of the matrices corresponding to the case of existence
of either of eigenvalues 1 or −1 or both for A).
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Since the orthogonal transformation does not influence the Frobenius dis-
tance, we reduce d(A, D) to d(Ω, D). In this case,

(Ω − λI)(Ω − λI)� = diag {Ω̃1Ω̃2, . . . , Ω̃m, {1, 1}},

where

Ω̃k :=
[

(cos αk − λ)2 0
0 (cos αk − λ)2

]

for k ∈ {1, 2, . . . ,m}.

It is evident that

(Ω − λI)(Ω − λI)�(Ω − λI) = (Ω − λI)2(Ω − λI)�.

Hence, expression (23) is valid. In this case, the singular values of the matrix (21)
are the zeros of the polynomials

μ2 − μ(2((cos αk − λ)2 + sin2 αk) + γ2) + (cos αk − λ)2 + sin2 αk),

namely:

μ
(k)
1,2 =

2((cos αk − λ)2 + sin2 αk) + γ2 ± γ
√

γ2 + 4((cos αk − λ)2 + sin2 αk)

2
.

Differentiating w.r.t. γ, we get a single stationary point γ = 0. According to [14],
to find the 2-norm distance from Ω−λI to the manifold of matrices with multiple
zero eigenvalue, one should find the singular values σn and σn−1 of this matrix.
They are either

σn = σn−1 =
√

(cos αk − λ)2 + sin2 αk

for some k or

σn−1 =
√

(cos αk − λ)2 + sin2 αk, σn = |1 − λ| .

The minimal value of σn−1 w.r.t. λ comes up to sin α1 in both cases.
The minimal perturbation

E∗ = P

⎡

⎢
⎢
⎢
⎣

0 − sin α1 0 . . . 0
0 0 0 . . . 0
...

...
0 0 0 . . . 0

⎤

⎥
⎥
⎥
⎦

P� = −(sin α1)(P1)�(P1)�.

��
Corollary 6. In the notation of Theorem 8, the distance d(A, D) is provided by
a continuum of perturbations E∗ contained in the set
{

(− sin α1)(η(P1) + θ�(P1))(−η�(P1) + θ(P1))� | {η, θ} ⊂ R, η2 + θ2 = 1
}

.
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Example 6. For the matrix

A =
1
3

⎡

⎣

−2 −2 1
1 −2 −2

−2 1 −2

⎤

⎦ ,

one has

λ1,2 = −1
2

± i

√
3

2
, λ3 = −1, P1 =

[

− 2√
6
,

1√
6
,

1√
6

]�
+ i

[

− 1√
2
,

1√
2
, 0

]�
.

Here d(A, D) =
√

3/2 ≈ 0.866025 and there are infinite number correspond-
ing perturbation matrices (10) generated by columns U∗ chosen from the span
of (P1) and �(P1). For instance:

U∗ := (P1)
⇓

E∗ =

⎡

⎣

0 1/2 −1/2
0 −1/4 1/4
0 −1/4 1/4

⎤

⎦ ;

U∗ := �(P1)
⇓

E∗ =

⎡

⎣

1/4 1/4 −1/2
−1/4 −1/4 1/2

0 0 0

⎤

⎦ .

In the both cases, spectrum of matrix B∗ is {−1,−1/2,−1/2}. ��

Remark. In all the cases, where the distance d(A, D) is achieved at γ = 0
and two minimal singular values of the matrix (21) coincide, i.e., σ2n−1(λ, 0) =
σ2n(λ, 0), we have found the rank 1 minimal perturbation whilst in the work [14]
it is described as a rank 2 matrix.

6 Conclusions

We have investigated Wilkinson’s problem for the distance evaluation from a
given matrix to the set of matrices possessing multiple eigenvalues. The structure
of the perturbation matrix is clarified that gives us an opportunity to compute
symbolically the distance equation with the zero set containing the critical values
of the squared distance function.

Computational complexity of the proposed solution is (traditionally to ana-
lytical approach) high. Although this payment should be agreed with regard
to the reliability of the computation results, we still hope to reduce it in fur-
ther investigations.

There exists a definite similarity of the considered problem to that of Routh–
Hurwitz distance to instability computation. For instance, the approach sug-
gested in Sect. 3 has its counterpart in the one developed by Ch. Van Loan
for the distance to instability problem [11,12]. This is also a subject of subse-
quent discussions.

Acknowledgments. The authors are grateful to Prof. Evgenii V. Vorozhtsov and to
the anonymous referees for valuable suggestions that helped to improve the quality of
the paper.
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