
Meeting Strangers Online: Feature
Models for Trustworthiness Assessment

Angela Borchert1(B) , Nicolás E. Dı́az Ferreyra2 , and Maritta Heisel1

1 University of Duisburg-Essen, Forsthausweg 2, 47057 Duisburg, Germany
{angela.borchert,maritta.heisel}@uni-due.de

2 Hamburg University of Technology, Am Schwarzenberg-Campus 1, 21073 Hamburg,
Germany

nicolas.diaz-ferreyra@tuhh.de

Abstract. Getting to know new people online to later meet them offline
for neighbourhood help, carpooling, or online dating has never been
as easy as nowadays by social media performing computer-mediated
introductions (CMIs). Unfortunately, interacting with strangers poses
high risks such as unfulfilled expectations, fraud, or assaults. People
most often tolerate risks if they believe others are trustworthy. However,
conducting an online trustworthiness assessment usually is a challenge.
Online cues differ from offline ones and people are either lacking aware-
ness for the assessment’s relevance or find it too complicated. On these
grounds, this work aims to aid software engineers to develop CMI that
supports users in their online trustworthiness assessment. We focus on
trust-related software features and nudges to i) increase user awareness,
ii) trigger the trustworthiness assessment and iii) enable the assessment
online. For that reason, we extend feature models to provide software
engineers the possibility to create and document software features or
nudges for trustworthiness assessment. The extended feature models for
trustworthiness assessments can serve as reusable catalogues for validat-
ing features in terms of their impact on the trustworthiness assessment
and for configuring CMI software product lines. Moreover, this work pro-
vides an example of how the extended feature models can be applied to
catfishing protection in online dating.

Keywords: Feature models · Trustworthiness · Nudging · Social
media · User-centred design

1 Introduction

The use of online services as a common practice is characteristic of today’s
digital age. Many activities that were carried out offline in the early 2000s have
partly shifted to the online sphere. These include activities such as offering or
seeking carpooling, neighbourhood help, a place to sleep, or even friendship or
romance. For individuals, it is often necessary to go beyond their own peer group
to succeed in these endeavours.

c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
R. Bernhaupt et al. (Eds.): HCSE 2022, LNCS 13482, pp. 3–22, 2022.
https://doi.org/10.1007/978-3-031-14785-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14785-2_1&domain=pdf
http://orcid.org/0000-0002-9319-5024
http://orcid.org/0000-0001-6304-771X
https://doi.org/10.1007/978-3-031-14785-2_1


4 A. Borchert et al.

Social media platforms that offer so-called computer-mediated introductions,
short CMI, provide users with the service of introducing them to strangers who
potentially match their needs [1]. Examples of CMI are the Sharing Economy and
online dating. While Sharing Economy connects unknown private individuals for
a (monetary) exchange of goods or services, online dating tries to bring together
people with compatible interests in terms of social relationships [1]. Apart from
realising one’s purposes, the benefits of CMI lie in the large number of options
being proposed to the user independent of time and space. CMI eases interaction
with strangers, which would not necessarily be possible offline because of missing
social contact points. At the same time, strangers pose a high risk. Due to a
lack of prior knowledge, it is difficult for individuals to assess the intentions
of strangers and predict their behaviour. Therefore, CMI usage involves risks
related to both online and offline interaction. Regarding Sharing Economy, risks
are for example poor service or products, being underpaid by other users, or
robbery [2,3]. In terms of online dating, risks involve among others damaged
self-esteem, romance scam, sexually transmitted diseases, or sexual assault [4].
Furthermore, risks not only originate from users but also from service providers
and the used software application. Companies may violate their users’ privacy
by misusing personal data [5]. Software applications pose security risks [6].

However, risks are tolerated if individuals perceive the party with whom they
interact as trustworthy [7]. They then believe that the other party is willing and
able to behave according to their positive expectations [8]. Perceived trustwor-
thiness further impacts the decision-making process whether to start or continue
an interaction [9]. Hence, not only private commerce and dating have shifted to
the online sphere but also related psychological behaviours like assessing the
trustworthiness of others.

Yet, it is a challenge for individuals to perform a trustworthiness assessment.
Most often, it is an unconscious process in which individuals follow their gut
feeling [10]. Furthermore, cues for evaluating properties of trustworthiness are
different online than offline. They are hard to grasp and susceptible to manip-
ulation [11]. Therefore, many CMI users perceive it as difficult to assess trust-
worthiness online. Instead, they wait for a real-world encounter to check on the
other person [4]. Despite the relevance of trustworthiness assessments for safe
CMI usage, CMI users perform them insufficiently, either because they are not
sufficiently aware of them or because they consider them as complex.

Against this background, we ask ourselves, firstly, how CMI users can be
prompted to perform a trustworthiness assessment and, secondly, how they can
assess the trustworthiness of other parties online in the best possible way. As
the CMI application is the main user interface, it mediates the trustworthiness
assessment of other users, the respective service provider and itself as a technol-
ogy [12]. Therefore, software engineers need to develop CMI applications that
support their users in the assessment process. This can be achieved by integrat-
ing properties of trustworthiness into software development and the design of
the graphical user interface [13].



Meeting Strangers Online: Feature Models for Trustworthiness Assessment 5

Therefore, our research objective is to provide a method for software engi-
neers to design, build and assess interactive applications that i) increase users’
awareness of the trustworthiness assessment, ii) trigger the trustworthiness
assessment and iii) enable the assessment online. We aim for a model-based
approach by using extended feature models in a no-code development paradigm.
Established feature models contribute to reusable, scenario-specific catalogues
on which basis software product lines can be configured.

2 Theoretical Background

In this work, we adapt extended feature models to the context of trustworthiness
and introduce software engineers how to use them to build user-centered, inter-
active CMI applications. This section provides a brief theoretical background of
relevant research in trustworthiness assessment and how it can be considered in
software development, software features and nudges, and feature models.

2.1 Trustworthiness Assessment

A trustworthiness assessment is a procedure on which basis an individual evalu-
ates whether another party is trustworthy, and, thus, can be trusted [12]. In the
past, various definitions for trust and trustworthiness arose.

Trust involves positive expectations regarding the actions of others [8]. Based
on positive expectations, trust is the willingness to be vulnerable to another party
and to depend on them [14]. Other researchers define trust as an individual’s
belief that another party possesses suitable properties necessary to perform as
expected in a specific scenario [15]. This is in accordance with the definition
of trustworthiness by Mayer et al. [16]. They identify ability, benevolence and
integrity as the factors that capture the concept of trustworthiness in the con-
text of interpersonal trust. Since then, these three properties have been applied
to various other trust contexts, as for example trust in organizations and tech-
nology [15,17]. A multitude of other properties have been additionally related
to the trustworthiness of individuals, organizations and technology by former
research, as for example honesty, predictability and reputation [18]. Borchert &
Heisel provide an overview of these properties that are unified under the term
trustworthiness facets. Trustworthiness facets cover desirable properties that can
be attributed to at least one of the three before-mentioned parties and positively
impact their trustworthiness [19]. If facets are perceived as available, perceived
trustworthiness increases. In the context of social media like CMI, trustworthi-
ness facets affect people’s trust in other CMI users (computer-mediated inter-
personal trust), the service provider (brand trust), and the technical platform
(system trust) [12]. CMI users evaluate trustworthiness facets in their trust-
worthiness assessment via the CMI platform. Assessing trustworthiness facets
impact their decision with what service provider, application and other users
they want to interact [19].



6 A. Borchert et al.

2.2 Identifying Trustworthiness Facets for Software Development

On these grounds, considering trustworthiness facets during software develop-
ment is necessary to support CMI users in their trustworthiness assessment as
good as possible [13]. Borchert & Heisel have conducted a literature review to
provide an overview of trustworthiness facets [19]. Furthermore, they introduced
a guideline for software engineers how to select appropriate facets for software
development. Trustworthiness facets are determined in dependence on a specific
problem. They can be derived by either analysing problematic characteristics
or desired characteristics of a problem. Problematic characteristics are inherent
to the problem context leading to trust issues. Desired characteristics resolve
the trust issues of the problem. After obtaining such knowledge of the problem
space, trustworthiness facets can be targeted by software features to address the
problem in the solution space later in the software development process. Due to
space constraints, we refer to Borchert & Heisel for the detailed procedure of the
guideline [19].

2.3 Software Features and Nudges

Software features can be defined as user-accessible, useful concepts within soft-
ware that realize both functional and non-functional requirements [20]. While
functional requirements “describe the behavioral aspects of a system” [21], non-
functional requirements are not directly related to system functionality [22].
They are rather a quality of a system functionality, such as performance or
usability [21,22]. Overviews of software features have been collected in cata-
logues, such as the User Interface Design Pattern Library [23] or Welie.com -
Patterns in Interaction Design [24].

Complying with the definition of software features, digital nudges can be cat-
egorized as features that are user-accessible and persuasive [25]. Digital nudges
are user-interface design elements, more specifically “information and interac-
tion elements to guide user behaviours in digital environments, without restrict-
ing the individual’s freedom of choice” [26]. They can be characterized as soft
paternalistic interventions and persuasive technologies [26]. Soft paternalistic
interventions use information and guidance to point out safer and better choices
for users’ decisions without constraining their actions [27]. They can be used to
increase user awareness concerning a specific issue [27]. Persuasive technologies
try to change attitudes, behaviour or both [28]. In doing so, these technologies do
not use any coercion or deception. In the context of persuasive technologies, the
Fogg Behavioural Model names three requirements, which need to be considered
simultaneously within the system for facilitating behaviour change of a target
audience [28]. These are i) to encourage users’ motivation, ii) to consider their
ability to perform the targeted behaviour, and iii) to provide an effective trig-
ger to show the targeted behaviour. Additionally, nudges may explain behaviour
patterns of users and provide solutions for unfavourable behaviour [29]. Nudges
can also be realized by presenting certain forms of content or information [26].
In order to create nudges, software engineers rely on nudge catalogues like the



Meeting Strangers Online: Feature Models for Trustworthiness Assessment 7

model for the design of nudges (DINU model) [26] or follow nudging design
principles as from Sunstein [30].

2.4 Feature Models

Feature Models can be traced back to the Feature-Oriented Domain Analysis
by Kang et al. [31] and to Czarnecki and Eisenecker [32]. They can be allo-
cated to Software Product Line Engineering, which encompasses methodological
approaches to develop software based on the reusability and variability of soft-
ware features [33]. By feature models, software requirements are expressed on the
abstract level of software features. Requirements are predefined by the software
engineer and not part of the model. Based on the represented software features,
feature models can be used for the development, configuration, and validation
of software systems [34]. An example of a feature model is presented in Fig. 4 on
page 14.

Feature models structure software features in a hierarchical tree. Software
features are represented by single terms as nodes. At the root is the so-called
concept feature, which represents a whole class of solutions. With increasing
tree layers, the abstraction level of software features becomes more and more
concrete. Features can be refined and become parent features by adding descrip-
tive, related, more detailed child features in the next layer. These are called
sub-features. Leaf elements of a tree are the ones that are most concrete and are
called properties.

Based on the relationship of parent and child features, software product lines
can be configured. This means that the software engineer can decide which fea-
tures to include in a product. Relationships are modelled by the links between the
features. They are depicted in Fig. 1. Links can mark single features as manda-
tory (simple line or line with filled bullet connected to feature) or optional (line
with empty bullet next to feature). OR- or XOR-links can express the optionality
of a set of sub-features. They are modelled by a semi-circle covering emanating
links from a parent feature. The OR-link is modelled by a filled semi-circle.
It means that at least one sub-feature must be included in an instance of the
software product line. The XOR-alternative-link is modelled by an empty semi-
circle. Only one sub-feature shall be selected for the software product while the
others are consequently excluded. In addition to relationships between parent
and child feature, there are cross-tree constraints. A dashed arrow is a requires-
link. It denotes that a software feature implies another feature to be included

Fig. 1. Relationship links for feature models.



8 A. Borchert et al.

in the system. A double-sided dashed arrow expresses an excluded-link. Two
features cannot be part in a software product line at the same time.

In the past, the basic feature model has been further extended. Extensions
like the one of Benavides et al. have added additional information in form of
so-called attributes to software features [35]. Attributes are any characteristic of
a feature that are measurable. They are modeled next to the related feature in
own boxes connected by a dotted link. Attributes may include a value that can
either be continuous or discrete or mathematical relations between one or more
attributes of a feature. These can be used for the validation of features [35].

3 Trust-Related Software Features

In this work, we aim to establish feature models whose features support the
online trustworthiness assessment performed by CMI users. In order to con-
tribute to the trustworthiness assessment, software features need to be trust-
related. This means that they relate to at least one trustworthiness facet. Trust-
worthiness facets can be regarded as non-functional requirements of software
features.

As we have mentioned in Sect. 1, trustworthiness assessments are a challenge
for users. They are either not aware of the assessment itself or its relevance, or
they perceive it as too difficult to execute online. On these grounds, we iden-
tify three categories of trust-related software features based on their purpose to
support the trustworthiness assessment. Awareness features increase the user
awareness of the trustworthiness assessment. They tend to make users realize
the relevance of the assessment. Trigger features nudge users to perform the
trustworthiness assessment. Empowerment features enable the user to per-
form the trustworthiness assessment. Most often, they provide information or
interaction elements necessary for performing the trustworthiness assessment.

All three categories can additionally meet the definition of digital nudges,
if they are designed to convince users to perform a trustworthiness assessment
or if they shall raise user awareness [27,29]. Only empowerment features do not
necessarily need to be realized in form of nudges. Instead, they may be “regular”
software features.

4 Feature Models for Online Trustworthiness Assessments

Feature models are a useful approach to design software that supports its users
in their online trustworthiness assessment. In the following, we introduce how
we adapted the notation of the models for that purpose. Moreover, we explain
how feature models for online trustworthiness assessments can be created.

4.1 Adaption of Feature Models

In order to support users in their trustworthiness assessment, we aim to cover all
three software features types introduced in Sect. 3 within a model. For that rea-
son, software features shall be labelled according to their type. Depending on the



Meeting Strangers Online: Feature Models for Trustworthiness Assessment 9

feature type, the labels are <<awareness>>, <<trigger>> or <<empower>>.
Labelling shall be performed on the first layer underneath the concept feature.

In addition, we follow the approach of extended feature models like Benavides
et al. [35] and include trustworthiness facets as attributes to software features.
Trustworthiness facets that are related to software features shall be considered
in their design to reflect the trustworthiness of at least on of the three parties
end-user, service provider or application. Thereby, software engineers can model
whether computer-mediated interpersonal trust, system trust, or brand trust
is impacted by a software feature. In order to distinguish the three different
kinds of trustworthiness facets in the notation, they shall be framed in different
colours. Facets for computer-mediated interpersonal trust that represent the
trustworthiness of other users shall be framed green. Facets for system trust
reflecting the trustworthiness of the software application shall be framed orange.
Facets for brand trust depicting the trustworthiness of the service provider shall
be framed purple.

4.2 Feature Model Creation

Feature models are created for a specific problem to provide solution approaches
in form of software features. As an application is usually confronted with multiple
problems, sets of feature models need to be created for the software development
of the application. Feature model creation consists of two phases: Building the
model on a feature level and the facet attribution process. Latter can be subdi-
vided into allocation phase and propagation phase.

Building the Model and Refining Features. As a first step, the problem to
be addressed needs to be determined. Based on the problem, the concept feature,
which represents an abstract solution approach to the problem, can be derived.
Building the feature model follows the same procedure described in Sect. 2.4.
Software features shall be refined in the following layers of the model in more
concrete information, interaction or design elements. The elements shall corre-
spond to the purpose of the three software feature types of Sect. 3. For modelling,
engineers may rely on their creativity and expertise. External catalogues for soft-
ware features and nudges may provide additional input. In doing so, engineers
may consider the brand image by design. Furthermore, feature models can be
created to match the business strategies of the service provider and to convey
the brand message.

Facet Attribution Process. After identifying possible software features as
solution approaches, trustworthiness facets are attributed to them in the facet
attribution process. It is subdivded in the allocation phase and propagation
phase. In the allocation phase, trustworthiness facets are related to each software
feature of a feature model and added as their attributes. For facet identification,
the guideline of Borchert & Heisel [19] can be used.



10 A. Borchert et al.

The facet allocation phase starts at the layer beneath the concept feature
and continues feature-wise layer by layer. Working down the tree structure of
the model, it might happen that differences emerge between the trustworthiness
facets of parent and child features. Such differences can be explained by the
principle that the whole is greater than the sum of its parts [36]. A parent
feature might evoke other trustworthiness facets by the combination of its sub-
features than a sub-feature alone. An example is presented in Sect. 6, Fig. 4. The
parent feature “identity verification” as a whole shows the legal compliance of
the service provider, whereas its parts in form of sub-features are not associated
with this facet.

Furthermore, a feature involves facets based on the configuration of its sub-
features. Depending on the configuration, different facets can be involved. For
example, a warning message formulated in natural language and displayed in
certain colours may reflect different facets depending on the actual wording of
the message and the colour chosen to convey the message. It may be perceived
as either caring or patronising. At that point, the software engineer points out a
design direction how software features shall be perceived by determining trust-
worthiness facets. This means that by further processing with the facet alloca-
tion for features at a lower layer, new facets may be derived impacting parent
features.

On these grounds, the propagation phase is important to realise the inheri-
tance principle so that parent features are associated with the trustworthiness
facets of their child features. Starting from the leaves of a model, the software
engineer needs to check whether there are facets of features that are not yet
allocated to their parent feature. If this is the case, respective facets shall be
added to the parent feature above. This process is repeated until the concept
feature of a model is reached. It is usual that the number of trustworthiness
facets associated with a concept feature is so large that it undermines the clar-
ity of a feature model. Therefore, all facets of a model shall be documented
in a list instead of linking them as attributes to the concept feature. The list
of trustworthiness facets shall be created in the end of the propagation phase.
When creating the list of trustworthiness facets, descriptive information about
the frequency of occurrence for each facet can be added. This information sup-
ports software engineers in evaluating the impact of a concept feature on the
trustworthiness assessment. It is a first step to feature model validation.

5 Method for Using Feature Models for Supporting
Online Trustworthiness Assessments

In the following, we introduce a method on how feature models for online trust-
worthiness assessment can be efficiently used for software development. We
explain necessary input for and useful output of the feature models. These are
valuable for the three steps of the method, which are feature model creation
(Step 1), feature validation (Step 2) and software product line engineering (Step
3). The method is depicted in Fig. 2.



Meeting Strangers Online: Feature Models for Trustworthiness Assessment 11

Fig. 2. Method for using feature models for online trustworthiness assessments.

5.1 Step 1: Feature Model Creation

Feature model creation can be divided into modelling software features (Step 1.1)
and the facet attribution process (Step 1.2). The facet attribution process can be
in turn divided into the allocation phase (Step 1.2.1) and the propagation phase
(1.2.2). For the facet attribution process, the overview of trustworthiness facets
and the guideline for facet selection by Borchert & Heisel serves as important
input (Box C). The exact procedure for feature model creation is explained in
Sect. 4.

In order to create feature models, preparatory work (Step 0) needs to be
done first. Knowledge about the problem space, like user needs or software
goals, as well as determining software requirements serve as input for creat-
ing feature models. Thereby, software features can be modelled that propose
solution approaches to the problem. External catalogues of software features or
nudges (Box A) like the User Interface Design Pattern Library [23] or the DINU
model [26] may support the software engineer in this process. By creating fea-
ture models for a multitude of problems that a CMI application faces, a set of
feature models tailored to the application is established, which can be regarded
as a feature model catalogue (Box D). To be of use late for the configuration
of software product lines, all software features of a feature model shall provide
consistent information. Thus, software features shall be characterized according
to the catalogue structure (Box B). The catalogue is introduced in Sect. 5.4.

5.2 Step 2: Feature Model Validation

The validation of feature models describes the process of testing the impact
software features have on the online trustworthiness assessment and trust build-



12 A. Borchert et al.

ing. Since features are related to the trustworthiness assessment due to their
facets, the validation involves testing to what extent users really associate the
allocated trustworthiness facets with the software features. The feature model
validation takes place after model creation (Step 2, Fig. 2). In order to realize
validation testing, we refer to Arnowitz et al. [37]. They propose prototyping
as an approach to let people experience single features in usability tests. After-
wards, participants can rate related trustworthiness facets on appropriate scales.
For some trustworthiness facets, scientific scales already exist, as for example for
ability, benevolence, integrity, and predictability [17]. Future work needs to sup-
port usability testing of those facets for which no scientific scales exist yet. Based
on the answers of user ratings, quantitative attribute values can be calculated
by which the impact of the features through the various facets is comparable
(Box G). The attribute values shall be added within the feature model.

For validation reasons, additional attributes are useful for measuring the
success rate of software features according to their feature type. For awareness
features, user awareness is a suitable attribute to measure the feature’s impact
on how aware users are about the relevance of the trustworthiness assessment.
Regarding trigger features, the conversion rate for trustworthiness assessments
is interesting to know. It represents whether users really performed a trustwor-
thiness assessment after interacting with the trigger feature. Thereby, it can be
tested to what extent a trigger feature is convincing. For empowerment features,
their usefulness to actually assess the trustworthiness of others is an indicator
how well the system supports the online trustworthiness assessment.

5.3 Step 3: Configuration of Software Product Lines

The last step of the method is the configuration of a software product line by
using the feature models for online trustworthiness assessment (Step 3). The
configuration can be performed by either using the catalogue structure (Box B)
for selecting software features (Step 3.a) or by considering the tree structure of
the feature models (Step 3.b). For the catalogue, the preparatory work (Step 0)
and the list of trustworthiness facets for the concept feature of a model (Box
E) serve as input to consider trustworthiness facets during configuration. Con-
cerning the tree structure, the notation of feature models provides the software
engineer a decision basis what software features are mandatory or optional. The
output of the configuration is a tailored software product line (Box H).

5.4 Feature Model Catalogue

As mentioned before, a feature model catalogue contains reusable, tailored solu-
tion approaches to specific trust problems of an application. As software features
may be additionally modelled in terms of conveying a brand image via the appli-
cation, a catalogue provides input for realising business strategies of the respec-
tive service provider. To have consistent information about the software feature
available, software engineers shall follow the catalogue structure in Fig. 3 during



Meeting Strangers Online: Feature Models for Trustworthiness Assessment 13

Fig. 3. Catalogue structure for feature models for trustworthiness assessments for the
example of catfishing.

modelling (Step 1.1). The structure is divided into basic information and infor-
mation for trust-related software feature. Based on this information, software
features can later be identified or searched within the catalogue. The catalogue
structure may be extended by further characteristics than proposed here. The
basic information in Fig. 3 is already applied to the example of catfishing from
Sect. 6.

The basic information of a catalogue aims at the concept feature of a model.
Basic information includes the name of the concept feature as well as a descrip-
tion of the problem that the concept feature addresses. Keywords provide an
overview about the issue. Furthermore, the software requirements that were
determined by preparatory work (Step 0) shall be added to document what
the concept feature realises. In addition, basic information includes problematic
and desired characteristics, which relate to the identification of trustworthiness
facets described in Sect. 2.2.

The second part of the catalog structure contains information for trust-
related software features, which are presented in the form of characteristics to
be checked. Several characteristics of an information category can be applica-
ble at the same time. The information category feature type refers to the three
software features types awareness, trigger or empowerment from Sect. 3. More-
over, software engineers can select the target group for the online trustworthiness
assessment for which a feature is intended. The target group can be users, the
application or the service provider. Another information category is user acces-
sibility. Features can be distinguished between being either user-accessible or
being prerequisites for another feature to be user-accessible, such as underlying
algorithms of an user interface element. Further information categories are sub-



14 A. Borchert et al.

feature and property category. Sub-features can be categorized as a technical asset
(e.g., algorithm), information (e.g., user data), or user interaction (e.g. confirma-
tion request). Properties can be related to information (e.g., telephone number),
interaction element (e.g., button), or design element (e.g., graphical symbol).
The information category nudging criteria refers to the definitions of nudges
and persuasive technologies from Sect. 2.3. Features may comply to the nudg-
ing criteria of an open choice architecture, guiding information, explanations
of user behaviour patterns or solution approaches to unfavourable behaviour.
In terms of persuasive technologies, features may consider users’ motivational
state, consider users’ ability for the targeted behaviour or present a trigger to
act in accordance to the target behaviour. The last three information categories
of the catalogue structure are the trustworthiness facets for individuals, tech-
nology and the service provider. For these, the list of trustworthiness facets of a
concept feature (Box E) serve as input. Software engineers may choose facets in
which they are interested.

6 Example: “Identity Verification” for Catfish Protection

For demonstrating feature models for online trustworthiness assessments, we
chose the scenario of catfishing in online dating. Catfishing is a phenomenon,
where online dating users, known as catfish, create user profiles with fake iden-
tities for fraudulent reasons [38]. It is a suitable example, because catfish are
reason for trust issues among users. Online trustworthiness assessments help
users to identify catfish and resolve their concerns. Based on this knowledge, we
filled out the basic information of the catalogue structure from Sect. 5.4, Fig. 3.
Catfishing is the problem that shall be tackled by catfish protection. Suitable
keywords are catfish, protection and prevention. Software requirements for cat-
fish protection can be to prevent catfish attacks, to protect users from catfish,
to warn users about them or to identify catfish.

In the following, we demonstrate how the feature models can be used for cat-
fish protection by the feature “identity verification”. Identity verification helps
to resolve the uncertainty whether another user has created a fake profile [39].
It is known to be an interactive tool for self-presentation, which increases users’
reputation and allows them to rate the trustworthiness of other users. Further-
more, it is combined with persistent labelling in a user profile on which basis
users can derive whether the identity is verified. Therefore, we classify identity
verification as an empowerment feature to perform a trustworthiness assessment.
Due to space limitations, the model can be extended by further features. We only
explain parts of it.

6.1 Example: Feature Model Creation

Identity verification is introduced as an empowerment feature after the concept
feature on the second layer (see labelling <<empower>>, Fig. 4). In the third
layer of the model, we refine identity verification in three mandatory features -



Meeting Strangers Online: Feature Models for Trustworthiness Assessment 15

a verification algorithm, user profile and the notification about the verification
status. Verification algorithms most often try to link a user profile to additional
identifying information. Therefore, we connect the verification algorithm with
the user profile by a require-link. The verification algorithm has three properties:
“photo of ID card”, “phone number”, and “Facebook account”. They represent
the additional information that may be used for the verification of the user
profile. By the OR-link, the model depicts that the algorithm needs to consider
at least one of the options.

If a system has the software requirement to inform its users about the verifi-
cation status of other users, a notification about the status is a suitable feature
to address this requirement. In order to realize notifications, knowledge about
the verification status is required. Therefore, we use the require-link to con-
nect the feature notification with the feature verification algorithm. As a next
step, we identify three different verification statuses, that are “verified”, “not
completed” and “fake” (see right sub-tree, layer four of model). For determining
features how to express the statuses, we follow the principle of familiarity. It says
that the frequency with which users have already encountered design elements
like symbols lead to an increased usability and understanding [40]. Therefore,
we choose features that are frequently used by other applications and are thus
already well-known to users in their appearance and meaning. For the verified
status, a graphical symbol in form of a green check mark next to the name of
a user profile can be used. Online dating applications such as Tinder1 already
use this symbol for verified profiles. In case of uncompleted identity verification
processes, we want to emphasize this by an orange question mark next to the
name of a profile. This symbol is inspired by the green check mark described
before. If a fake identity has been identified by the verification algorithm, the
catfish should no longer be available for matching. Furthermore, users should
no longer be able to interact with catfish when they already had a match. To
visualise the inactivity of a catfish profile, the profile and the corresponding chat
are presented greyed out for the other users.

6.2 Example: Catalogue Information

As part of feature modeling and refinement, the software engineer has to assign
trust-related software feature characteristics from the catalogue structure to each
feature. For this example, we demonstrate this for the green check mark feature.
Belonging to the identity verification feature, the green check mark is an empow-
erment feature. It is illustrated on the graphical user interface so that users can
assess the trustworthiness of other users. Therefore, it is user-accessible. Being
a property, the green check mark can be categorized as a design element and
information, because it conveys the message that another user has passed the
identity verification. Concerning the nudging criteria, the green check mark pro-
vides information that may guide user behaviour. For trustworthiness facets that
are associated with the green check mark, we refer to Sect. 6.3.

1 www.tinder.com.

www.tinder.com


16 A. Borchert et al.

Fig. 4. Feature model for the empowerment feature “identity verification” for catfish
protection after the allocation phase. (Color figure online)

6.3 Example: Trustworthiness Facet Attribution Process

After the model has been established, we proceed with the trustworthiness facet
attribution. For the allocation phase, we start with the empowerment feature
“identity verification”. Following the guideline for selecting appropriate trust-
worthiness facets [19], we first acquire an understanding of the actual problem
to which identity verification serves as a solution approach. As mentioned before,
identity verification shall resolve users’ concerns about fake profiles by proving
that an identity is true. Thinking of problematic characteristics of a catfish, cat-
fish are dishonest. We add this information to the catalogue structure for catfish
protection (see Fig. 3). Catfish are likely to not perform an identity verification
to hide the fraud. Therefore, they would not comply to the application’s norms
in absolving a verification. Based on this problematic characteristic, we check
the overview of trustworthiness facets [19] on semantically opposite trustworthi-
ness facets by definition (Box C, Fig. 2). As a result, we assume that users, who
perform an identity verification are associated with authenticity, agreeableness,
integrity with the norms of the application, honesty and good reputation (green
frames, second layer, Fig. 4).

As a next step, we consider how including identity verification in the system
might impact users’ perception of the online dating application. Former research
has pointed out that websites should be interested in taking the responsibility
for their users’ safety and security [41]. If the feature was not implemented, users
might feel insecure and not well supported. Having this in mind, we check the
overview of trustworthiness facets for technology [19] (Box C). Our findings are



Meeting Strangers Online: Feature Models for Trustworthiness Assessment 17

depicted as the attributes of identity verification in the orange boxes in Fig. 4. By
having identity verification implemented, the online dating application presents
its ability to address the problem. Furthermore, the application thereby helps
its users in countering their catfish concern. In addition, it shows that it is
accountable and takes care of the safety and security of its users.

Last but not least, we conclude the trustworthiness facets of the service
provider if identity verification was implemented in the online dating application.
They are depicted as the attributes of identity verification framed in purple in
Fig. 4. The facets are in accordance to the ones for the online dating application
as a technology (see Fig. 2 attributes of identity verification, orange frames).
We came to the conclusion that service providers express their care for users’
safety and security when using identity verification. Furthermore, catfishing has
been discussed in court concerning online impersonations [41]. Therefore, service
providers would demonstrate their responsibility and legal compliance.

For the rest of the feature model, we proceed in a similar way. Due to space
constraints, we do not further explain the following steps. Yet, we want to men-
tion that for the statuses on layer four of the feature model (see right sub-tree in
Fig. 4, we have not added trustworthiness facets as attributes. Here, we regard
them as specifications of their parent feature, which are expressed in detail by
their child features. Therefore, we limit the facet allocation on the child features
for this specific case. Figure 4 shows the feature model after allocation phase
(Step 1.1, Fig. 2).

After the allocation phase, the propagation phase can be performed. Trust-
worthiness facets that are not yet allocated to parent features are now propa-
gated. This is for example the case for “reputation” from the green check mark
feature, which is added as an attribute to the notification feature.

As an outlook for the configuration process of this feature model, the tree
structure of the model points out to the optional properties of the verification
algorithm. The software engineer needs to determine whether the ID card, phone
number, Facebook account or a combination of them shall be used for checking
a match with the user profile.

7 Related Work

As previously introduced, the model for the design of nudges (DINU model) [26]
provides a catalogue of existing nudges that can be used as input for the method
presented in this work. Additionally, the DINU model relates to our work insofar
that it guides practitioners in the analysis, design, and evaluation of nudges and
their context. In doing so, it focuses on the nudging criteria that we included
in the catalogue structure (see Fig. 3). Compared to our work, the DINU-model
misses the model-based approach of feature models. It not only allows software
engineers to support users in their online trustworthiness assessment but also to
validate trust-related software features in a structured way for software product
line engineering.

Another related work is from Martinez et al. [42], who invented a feature
model tool to select appropriate features based on their attributes. For that,



18 A. Borchert et al.

they introduce algorithms on the basis of petri nets. Similar digital tools for con-
figuring software product lines based on feature models are the FeAture Model
Analyser (FAMA) [43] or Requiline - a requirements engineering tool for software
product lines [44]. These tools are missing the interdisciplinary trust background,
but are valuable for complementing our method. By combining such tools with
our catalog structure, configurations of trust-related software product lines can
be automated.

8 Discussion

This work introduces a method for software engineers that is based on extended
feature models. Its intend is to create reusable catalogues for software features
that focus on online trustworthiness assessments. Online trustworthiness assess-
ments are especially relevant for social media users of computer-mediated intro-
ductions (CMIs). Based on the assessment, CMI users decide whether to tolerate
risks associated with the interaction of other parties such as unknown users, the
CMI platform and the CMI service provider. However, users are most often
not aware of the assessment’s importance or find it too difficult to perform.
Therefore, this work uses adapted feature models to derive awareness, trigger
and empowerment features for trustworthiness assessment. Feature models are
adapted by adding trustworthiness facets as attributes to software features for
considering them in the features’ specification and design.

Applying the adapted feature models for online trustworthiness assessment
has shown that they are suitable to derive and specify awareness, trigger and
empowerment features. For each of the features, a huge range of different inter-
action elements can be considered for realizing associated software requirements.
Another key element of the adapted feature models is the large collection of trust-
worthiness facets related to each software feature. The model further differenti-
ates between the trustworthiness facets of the CMI parties “user”, “platform”
and “service provider”. Thereby, software engineers can ensure to implement
cues that foster online trustworthiness assessments regarding all three parties.
Catalogues of such feature models lead to comprehensive solution approaches
for specific problems and reflect a variety of design options.

Overall, extending feature models by trustworthiness facets provides a solid
basis for validating the trustworthiness assessment and trust building. How-
ever, the trustworthiness facets may impact more constructs than trust build-
ing, which could be taken into consideration for the validation process as well.
An example could be the halo effect. The halo effect is a cognitive bias that
describes an error in reasoning based on one known trait leading to an overall
impression of further traits [45]. In terms of the facet allocation phase for exam-
ple, a software engineer could assign the facet benevolence to a feature and,
based on that alone, simultaneously associate the feature with the facet use-
fulness. Future work needs to consider the halo effect of trustworthiness facets
in the validation process from two perspectives. How does the halo effect may
have impacted the software engineer to identify irrelevant facets during the facet



Meeting Strangers Online: Feature Models for Trustworthiness Assessment 19

allocation phase? How might the halo effect impact CMI users to assess further
trustworthiness facets by being exposed to a software feature? Maybe some of the
trustworthiness facets impacted by the halo effect have not even been identified
by the software engineer in the facet attribution process.

Unidentified trustworthiness facets pose another challenge for validation.
Currently, the validation process checks on facets that have been identified by
the software engineer in the facet attribution process. Future work needs to con-
sider how feature models can be validated in terms of unidentified facets that
are nonetheless relevant for software features.

Unidentified trustworthiness facets and the halo effect point to a limitation
of the method introduced here. Feature model creation is subject to the subjec-
tivity of the software engineer applying the method. In order to reduce mistakes,
we propose to perform the method in an agile team. Agile methods increase the
flexibility and efficiency of software development [46]. Thereby, software features
and trustworthiness facets can be easily discussed within the team and changes
can be done throughout the whole method. In addition, future work needs to
validate how the method is accepted by practitioners. By empirical studies, prac-
titioners might give feedback on how the method can be further improved.

Another aspect that future research needs to tackle regarding the trustwor-
thiness facets is the difficulty to distinguish between facets of the CMI platform
and of the CMI service provider. During the facet allocation phase, we recog-
nized the similarity of resulting facets for both types. A reason for that might be
that users are oftentimes affected by brand image when it comes to their percep-
tion of the software application [47]. Future work could examine the relationship
between users’ perception of these two facet types. This in turn could provide
insights for the facet allocation phase and support engineers in performing it.

In terms of configuration, a main challenge of Software Product Line Engi-
neering is handling the variability of a model [48]. Although validated trust-
worthiness facets support software engineers in improving users’ online trust-
worthiness assessment, it increases the complexity of configuration. Software
feature tools like FAMA [43] or Requiline [44] (see Sect. 7) could aid software
engineers in this process of systematically selecting those software features that
address desired trustworthiness facets. However, future work might focus on the
questions whether including as much trustworthiness facets as possible within
software enhances online trustworthiness assessments or whether configuring a
certain set of facets provides a better support.

The selection of certain sets of features can further be related to the ques-
tion of diversity and commonality. Finding a balance between the diversity and
commonality of software product lines is tackled in variability management [33].
It is about weighing the reduction of complexity within the product for easy
usage and the differentiation of a provider’s products from competitors based on
underlying business strategies [33]. Future work needs to examine whether a bal-
ance of variability and commonality is crucial for trust-related software features
as well. Usability testing could be a useful approach for finding answers.



20 A. Borchert et al.

Overall, the great scope of trustworthiness facets as attributes of software fea-
tures allows engineers to model various options of how to support users in their
trustworthiness assessment. Yet, drawbacks can be observed in the overwhelm-
ing size of models based on the large amount of features and facets. Handling
large-scale variability models is a well-known challenge in Software Product Line
Engineering [48]. To counter the problem of cluttered feature models, we again
propose to use digital tools as FAMA [43] or Requiline [44] for model creation
and configuration. These tools support operators to keep an overview.

9 Conclusion

This work focuses on how software engineers can best support social media users
in assessing the trustworthiness of other users, the application, and the service
provider by means of software features. For that reason, three different types of
software features were identified: awareness, trigger and empowerment features.
In order to document such software features for specific problems of social media
use, feature models were extended by trustworthiness facets to address users’
trust building. Feature models for online trustworthiness assessments can serve
as reusable catalogues in order to consider and validate different design options
and interaction elements of trust-related software feature. Furthermore, they
can be used for the configuration of software product lines in social media. For
future work, additional validation techniques need to be developed to evaluate
the extent to which software features address trustworthiness facets and impact
users’ trustworthiness assessments.

References

1. Obada-Obieh, B., Somayaji, A.: Can I believe you? Establishing trust in computer
mediated introductions. In: Proceedings of the 2017 New Security Paradigms Work-
shop, pp. 94–106 (2017)

2. Jozsa, K., Kraus, A., Korpak, A.K., Birnholtz, J., Moskowitz, D.A., Macapagal, K.:
“Safe behind my screen”: adolescent sexual minority males’ perceptions of safety
and trustworthiness on geosocial and social networking apps. Arch. Sex. Behav.
50(7), 2965–2980 (2021). https://doi.org/10.1007/s10508-021-01962-5

3. Yi, J., Yuan, G., Yoo, C.: The effect of the perceived risk on the adoption of the
sharing economy in the tourism industry: the case of Airbnb. Inf. Process. Manage.
57(1), 102–108 (2020)

4. Couch, D., Liamputtong, P.: Online dating and mating: perceptions of risk and
health among online users. Health Risk Soc. 9(3), 275–294 (2007)

5. Son, J.Y., Kim, S.S.: Internet users’ information privacy-protective responses: a
taxonomy and a nomological model. MIS Q. 32, 503–529 (2008)

6. Hang, L., Kim, D.H.: SLA-based sharing economy service with smart contract for
resource integrity in the internet of things. Appl. Sci. 9(17), 3602 (2019)

7. Becerra, M., Lunnan, R., Huemer, L.: Trustworthiness, risk, and the transfer of
tacit and explicit knowledge between alliance partners. J. Manage. Stud. 45(4),
691–713 (2008)

https://doi.org/10.1007/s10508-021-01962-5


Meeting Strangers Online: Feature Models for Trustworthiness Assessment 21

8. Lewicki, R.J., Wiethoff, C.: Trust, Trust Development, and Trust Repair. The
Handbook of Conflict Resolution: Theory and Practice 1(1), 86–107 (2000)

9. Bialski, P., Batorski, D.: From online familiarity to offline trust: how a virtual
community creates familiarity and trust between strangers. Social Computing and
Virtual Communities, pp. 179–204 (2010)

10. Bonnefon, J.F., Hopfensitz, A., De Neys, W.: The modular nature of trustworthi-
ness detection. J. Exp. Psychol. Gen. 142(1), 143 (2013)

11. Ding, S., Yang, S.L., Fu, C.: A novel evidential reasoning based method for software
trustworthiness evaluation under the uncertain and unreliable environment. Expert
Syst. Appl. 39(3), 2700–2709 (2012)

12. Borchert, A., Dı́az Ferreyra, N.E., Heisel, M.: Building trustworthiness in
computer-mediated introduction: a facet-oriented framework. In: International
Conference on Social Media and Society, pp. 39–46 (2020)

13. Cassell, J., Bickmore, T.: External manifestations of trustworthiness in the inter-
face. Commun. ACM 43(12), 50–56 (2000)

14. Mishra, A.K.: Organizational responses to crisis. Trust in organizations. Front.
Theor. Res. 3(5), 261–287 (1996)

15. Mcknight, D.H., Carter, M., Thatcher, J.B., Clay, P.F.: Trust in a specific technol-
ogy: an investigation of its components and measures. ACM Trans. Manage. Inf.
Syst. 2(2), 1–25 (2011)

16. Mayer, R.C., Davis, J.H., Schoorman, F.D.: An integrative model of organizational
trust. Acad. Manag. Rev. 20(3), 709–734 (1995)

17. Büttner, O.B., Göritz, A.S.: Perceived trustworthiness of online shops. J. Consum.
Behav. 7(1), 35–50 (2008)

18. McKnight, D.H., Chervany, N.L.: What trust means in e-commerce customer rela-
tionships: an interdisciplinary conceptual typology. Int. J. Electron. Commer. 6(2),
35–59 (2001)

19. Borchert, A., Heisel, M.: The role of trustworthiness facets for developing social
media applications: a structured literature review. Information 13(1), 34 (2022)

20. Hsi, I., Potts, C.: Studying the evolution and enhancement of software features.
In: icsm, p. 143 (2000)

21. Anton, A.I.: Goal identification and refinement in the specification of software-
based information systems. Georgia Institute of Technology (1997)

22. Glinz, M.: On non-functional requirements. In: 15th IEEE International Require-
ments Engineering Conference, pp. 21–26. IEEE (2007)

23. User Interface Design Patterns. www.cs.helsinki.fi/u/salaakso/patterns/. Accessed
11 Apr 2022

24. Welie.com - Patterns in Interaction Design. www.welie.com/patterns/index.php.
Accessed 11 Apr 2022

25. Zetterholm, M., Elm, P., Salavati, S.: Designing for pandemics: a design concept
based on technology mediated nudging for health behavior change. In: 54th Hawaii
International Conference on System Sciences, pp. 3474–3483 (2021)

26. Meske, C., Potthoff, T.: The DINU-model-a process model for the design of nudges
(2017)

27. Acquisti, A., et al.: Nudges for privacy and security: understanding and assisting
users’ choices online. ACM Comput. Surv. 50(3), 1–41 (2017)

28. Fogg, B.J.: A behavior model for persuasive design. In: Proceedings of the 4th
International Conference on Persuasive Technology, pp. 1–7 (2009)

29. Thaler, R.H., Sunstein, C.R.: Nudge: Wie man kluge Entscheidungen anstößt. Ull-
stein eBooks (2009)

www.cs.helsinki.fi/u/salaakso/patterns/
www.welie.com/patterns/index.php


22 A. Borchert et al.

30. Sunstein, C.R.: Nudging: a very short guide. J. Consum. Policy 37(4), 583–588
(2014)

31. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (FODA) feasibility study. Carnegie-Mellon Univ Pittsburgh Pa
Software Engineering Inst. (1990)

32. Czarnecki, K., Eisenecker, U.W.: Generative programming (2000)
33. Pohl, K., Böckle, G., Van Der Linden, F.: Software product line engineering: foun-

dations, principles, and techniques, vol. 1. Springer, Heidelberg (2005)
34. Riebisch, M.: Towards a more precise definition of feature models. Model. Vari-

ability Object-Oriented Prod. Lines 64–76 (2003)
35. Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated reasoning on feature mod-

els. In: Pastor, O., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp.
491–503. Springer, Heidelberg (2005). https://doi.org/10.1007/11431855 34

36. Xiong, J.: New Software Engineering Paradigm Based on Complexity Science: An
Introduction to NSE. Springer, NY (2011). https://doi.org/10.1007/978-1-4419-
7326-9

37. Arnowitz, J., Arent, M., Berger, N.: Effective Prototyping for Software Makers.
Elsevier (2010)

38. Simmons, M., Lee, J.S.: Catfishing: a look into online dating and impersonation.
In: Meiselwitz, G. (ed.) HCII 2020. LNCS, vol. 12194, pp. 349–358. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-49570-1 24

39. Kaskazi, A.: Social network identity: Facebook, Twitter and identity negotiation
theory. In: iConference 2014 Proceedings (2014)

40. Mcdougall, S.J., Curry, M.B., De Bruijn, O.: Measuring symbol and icon char-
acteristics: norms for concreteness, complexity, meaningfulness, familiarity, and
semantic distance for 239 symbols. Behav. Res. Meth. Instrum. Comput. 31(3),
487–519 (1999). https://doi.org/10.3758/BF03200730

41. Koch, C.M.: To catch a catfish: a statutory solution for victims of online imper-
sonation. U. Colo. L. Rev. 88, 233 (2017)

42. Martinez, C., Dı́az, N., Gonnet, S., Leone, H.: A Petri net variability model for
software product lines. Electron. J. SADIO (EJS) 13, 35–53 (2014)

43. Benavides, D., Segura, S., Trinidad, P., Cortés, A.R.: FAMA: tooling a framework
for the automated analysis of feature models. VaMoS (2007)

44. von der Maßen, T., Lichter, H.: RequiLine: a requirements engineering tool for soft-
ware product lines. In: van der Linden, F.J. (ed.) PFE 2003. LNCS, vol. 3014, pp.
168–180. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24667-
1 13

45. Thorndike, E.L.: A constant error in psychological ratings. J. Appl. Psychol. 4(1),
25 (1920)

46. Campanelli, A.S., Parreiras, F.S.: Agile methods tailoring-a systematic literature
review. J. Syst. Softw. 110, 85–100 (2015)

47. Yang, T., Bolchini, D.: Branded interactions: predicting perceived product traits
and user image from interface consistency and visual guidance. Interact. Comput.
26(5), 465–487 (2014)

48. Metzger, A., Pohl, K.: Software product line engineering and variability manage-
ment: achievements and challenges. In: Future of Software Engineering Proceed-
ings, pp. 70–84 (2014)

https://doi.org/10.1007/11431855_34
https://doi.org/10.1007/978-1-4419-7326-9
https://doi.org/10.1007/978-1-4419-7326-9
https://doi.org/10.1007/978-3-030-49570-1_24
https://doi.org/10.3758/BF03200730
https://doi.org/10.1007/978-3-540-24667-1_13
https://doi.org/10.1007/978-3-540-24667-1_13

	Meeting Strangers Online: Feature Models for Trustworthiness Assessment
	1 Introduction
	2 Theoretical Background
	2.1 Trustworthiness Assessment
	2.2 Identifying Trustworthiness Facets for Software Development
	2.3 Software Features and Nudges
	2.4 Feature Models

	3 Trust-Related Software Features
	4 Feature Models for Online Trustworthiness Assessments
	4.1 Adaption of Feature Models
	4.2 Feature Model Creation

	5 Method for Using Feature Models for Supporting Online Trustworthiness Assessments
	5.1 Step 1: Feature Model Creation
	5.2 Step 2: Feature Model Validation
	5.3 Step 3: Configuration of Software Product Lines
	5.4 Feature Model Catalogue

	6 Example: ``Identity Verification'' for Catfish Protection
	6.1 Example: Feature Model Creation
	6.2 Example: Catalogue Information
	6.3 Example: Trustworthiness Facet Attribution Process

	7 Related Work
	8 Discussion
	9 Conclusion
	References




