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Abstract. Nowadays, Machine Learning (ML) techniques play an increasingly
important role in educational settings such as behavioral academic pattern recog-
nition, educational resources suggestion, competences and skills prediction, or
clustering students with similar learning characteristics, among others. Knowl-
edge Tracing (KT) allows modelling the learner’s mastery of skills and to predict
student’s performance by tracking within the Learner Model (LM) the students’
knowledge. Based on the PRISMA method, we survey and describe commonly
used ML techniques employed for KT shown in 51 articles on the topic, among
628 publications from 5 renowned academic sources. We identify and review rel-
evant aspects of ML for KT in LM that contribute to a more accurate panorama of
the topic and hence, help to choose an appropriate ML technique for KT in LM.
This work is dedicated to MOOC designers/providers, pedagogical engineers and
researchers who need an overview of existing ML techniques for KT in LM.

Keywords: Machine Learning · Knowledge Tracing · Learner Model ·
Technology enhanced learning · Literature review · PRISMA

1 Introduction

Evidence from several studies has long linked having a Learner Model (LM) can make
a system more effective in helping students learn, and adaptive to learner’s differences
[1].

LMs represent the system’s beliefs about the learner’s specific characteristics, rel-
evant to the educational practice [2], encoded using a specific set of dimensions [3].
Ultimately, a perfect, ideal LM would include all features of the user’s behavior and
knowledge that effect their learning and performance [4]. Modelling the learner has the
ultimate goal of allowing the adaptation and personalization of environments and learn-
ing activities [5] while considering the unique and heterogeneous needs of learners. We
acknowledge the difference between Learner Profile (LP) and LM in that the former can
be considered an instantiation of the latter in a given moment of time [6].

KnowledgeTracing (KT)models students’ knowledge as they correctly or incorrectly
answer exercises [7], or more generally, based on observed outcomes on their previous
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practices [8]. KT is one out of three approaches for student performance prediction [9].
In an Adaptive Educational System (AES), predicting students’ performance warrants
for KT. This allows for learning programs recommendation and/or level-appropriate,
educational resources personalization, and immediate feedback. KT facilitates person-
alized guidance for students, focusing on strengthening their skills on unknown or less
familiar concepts, hence assisting teachers in the teaching process [10].

Machine Learning (ML) is a branch (or subset) of Artificial Intelligence (AI) focused
on building applications that learn from data and improve their accuracy over time
without being programmed to do so [11]. To achieve this, ML algorithms build a model
based on sample data (a.k.a. input data) known as ‘training data’. Once trained, this
model can then be reused with other data to make predictions or decisions.

ML techniques are currently applied to KT in vast and different forms. The goal of
this literature review is to survey all available works in the field of “Machine Learning for
Knowledge Tracing used in a Learner Model setup” in the last five years to identify the
most employedML techniques and their relevant aspects. This is, in general terms, what
commonML techniques and aspects, designed to trace a learner’s mastery of knowledge,
also account for the creation, storage, and update of a LM. Moreover, we aim to identify
relevant ML aspects to consider insuring KT in a LM. The motivation behind this work
is to present a comprehensive panorama on the topic of ML for KT in LM to our target
public. To our knowledge, currently there is no researchwork that addresses the literature
review of ML techniques for KT accounting for the LM.

Thus, we decided to focus our literature review on the terms “machine learning”,
“knowledge tracing” and “learner model”, a.k.a. “student model” (SM). Using the
PRISMAmethod [12], we performed this research in the IEEE, Science Direct, Scopus,
Springer, and Web of Science databases comprising the 2015–2020 period. The thought
behind these choices is to obtain the most recent and high-quality corpus on the topic.

This work differs from other literature reviews [13–15] on two accounts. First, we
focus exclusively on ML techniques for KT accounting for the LM. That is, we do not
cover pure Data Mining (DM) techniques, nor AI intended for purposes other than KT,
such as Natural Language Processing (NLP), gamification, computer vision, learning
styles prediction, nor any processes that make pure use of LP data (instead of LM
data), nor other User Model data, such as sociodemographic, biometrical, behavioral,
or geographical data1. Second, we do not compare the mathematical inner workings of
ML techniques: we feel that our target public might be unable to exploit appropriately
such complex form results. Instead, we shift the focus to a pragmatic report on ML for
KT in a LM application and purpose(s).

The remainder of this article is structured as follows. Section 1 of this paper oversees
the theoretical framework concerning this paper, namely the definition of ML and its
categorization. Section 3.3 details the methodology steps taken. Section 5 presents the
findings of this research, Sect. 5 discusses the results and, finally Sect. 5 concludes this
paper and presents its perspectives.

1 Please note that we did include such works, if they also employed ML for KT (the core of this
paper).
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2 Theoretical Background

In this section we present the theoretical background put in motion behind this research,
namely the definition of ML and how it is categorized.

2.1 Machine Learning

ML is a branch (or subset) of AI focused on building applications that learn from data and
improve their accuracy over time without being programmed to do so [11]. Additional
research [16, 17] to this definition allows us to present Fig. 1 to illustrate and discern
the situation of ML against other common terms used in the field.

Fig. 1. Situational context of ML [18].

2.1.1 ML Methods/Styles/Scenarios

Although some authors [13, 19] admit several moreMLmethods (or styles or paradigms
or scenarios), we retain the following categorization: Supervised ML, Semi Supervised
ML, Unsupervised ML, Reinforcement Learning, and Deep Learning [11]. The first
three differentiate each other on the labelling of the input training data while creating
the model. The two latter constitute special cases altogether [11, 19, 20].

First, in Supervised Learning (SL) labels are provided (metadata containing infor-
mation that themodel can use to determine how to classify it). However, properly labelled
data is expensive2 to prepare, and there is a risk of creating a model so tied to its training
data that it cannot handle variations in new input data accurately (“overfitting”) [20].

Second, Unsupervised Learning (UL) must use algorithms to extract meaningful
features to label, sort and classify its training data (which is unlabeled) without human

2 Mostly in terms of computational resource allocation.
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intervention. As such, it is usually used to identify patterns and relationships (that a
human canmiss) than to automate decisions and predictions. Because of this,UL requires
huge amounts of training data to create a useful model [20].

Third, Semi Supervised Learning (SSL) is at the middle point of the two previous
methods: it uses a smaller labelled dataset to extract features and guide the classification
of a larger, unlabeled dataset. It is usually used when not enough labelled data is made
available (or it is too expensive) to train a preferred, Supervised Model [21].

Fourth,Reinforcement Learning (RL) is a behavioral machine learningmodel akin
to SL, but the algorithm is not trained using sample data but by using trial and error. A
sequence of successful outcomes will be reinforced to develop the best recommendation
or policy for a given problem. RL models can also be deep learning models [11].

Lastly, Deep Learning (DL) is a subset of ML (all DL is ML, but not all ML is
DL). DL algorithms define an artificial neural network3 that is designed to learn the
way the human brain learns. DL models require a large amount of data to pass through
multiple layers of calculations, applying weights and biases in each successive layer to
continually adjust and improve the outcomes. DL models are typically unsupervised or
semi-supervised [11]. For clarity reasons, the figure illustrating this ML categorization
is available in the Appendix.

In this subsection we covered the ML definition and a categorization of ML tech-
niques. In the following subsection we deepen into the relevant aspects in ML for KT in
LM.

2.1.2 ML for KT in LM

An overwhelming number of ML techniques have been designed and introduced over
the years [13]. They usually rely on more common ML techniques, within optimized
pipelines. As such, we identify theML techniques (or algorithms) upon which any new
research is based.

Additionally to performing KT in LM, researchers have acknowledged that ML
techniques can reliably determine the initial parameters when instantiating a LM [23,
24]. This led us to consider this purpose when reviewing ML techniques. Different ML
techniques are applied at different stages of the ML pipeline, and not all stages are
responsible for KT (other applications can be NLP, computer vision, automatic grading,
demographic student clustering, mood detection, etc.) We differentiate purposes related
to KT and/or learner modelling, specifically if the ML technique is used for (1) either
grade, skills, or knowledge prediction (and hence later, clustering, personalizing, or
suggesting resources), (2) either for LM creation (or instantiation), or (3) both.

Studies highlight the importance of justifying the rationale when choosing a ML
technique [25–27]. We note such rationale, when made explicit, and contrast it to other
authors’ rationale for commonalities, on the same technique. This allows us to weigh and
present known, favorable, and unfavorable features specific to ML techniques applied
to KT accounting for the LM.

Research studies stress the ultimate importance of the input data (dataset) and the
effects of the chosen programming language software employed forML [25, 28]. Indeed,

3 A quite complete and updated chart of many neural networks was made available by [22].
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ML techniques require input data for creating a model. The feature engineering of this
input data (dataset) might be determinant for aML project to succeed or fail [25]. We list
and verify the availability of all public datasets presented in the reviewed articles. Fur-
thermore, the choice of the programming language for ML plays a role in collaboration,
licensing, and decision-making processes: it helps to determine the most appropriate
choices for ML implementation (purchasing licenses, upgrading hardware, hiring a spe-
cialist, or considering self-training). Hence, we highlight the family ofML programming
languages used by researchers on their proposals.

Thus, based on this state-of-the-art, we identify relevant aspects to consider inML for
KT in LM: theML technique employed, its purpose, the contextual, known rationale
for choosing it, the programming language software used for ML, and the dataset(s)
employed for KT. We consider that these aspects are relevant for our target public when
choosing a ML technique for KT in LM.

3 Review Methodology

This review of literature follows the PRISMA [12] methodology, comprising: Rationale,
Objectives & Research questions, Eligibility criteria, Information sources & Search
strategy, Screening process & Study selection, and Data collection & Features.

3.1 Rationale, Objectives and Research Questions

The goal of this literature review is to present a comprehensive panorama on the topic
of ML for KT in LM. This is, in general terms, what ML techniques designed to trace a
learner’s mastery of skill also account for the creation, storage, and update of the LM.

This article aims thus to answer the following two research questions (RQ):

• RQ1: What are the most employed ML techniques for KT in LM?
• RQ2: How do themost employedML techniques fulfil the considered relevant aspects
to insure KT in LM?

3.2 Eligibility Criteria, Information Sources and Search Strategy

In this section we describe the inclusion and exclusion criteria used to constitute the
corpus of publications for our analysis. We also detail and justify our choice of in-scope
publications, the search terms, and the identified databases.

In this research, we focus on recentML techniques (and/or algorithms) that explicitly
“learn” (withminimal or no human intervention) from its data input to performKT,while
accounting for the LM. Thus, we do not cover all predictive statistical methods (as they
are not all ML), nor pure DM techniques, nor AI intended for purposes other than KT
(such as NLP, gamification, computer vision, learning styles prediction, etc.), nor any
processes that make pure use of LP data (instead of LM data), nor other User Model
data, such as sociodemographic, biometrical, behavioral, or geographical data.

On one hand, our Inclusion criterion are: Works that present a ML technique for
KT while accounting for the LM, in the terms presented in the previous paragraph. On
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the other hand, our chosen Exclusion criterion consist of: Works written not in English,
under embargo, not published or in the works. We choose to keep subsequent works on
the same subject from the same research team because they represent a consolidation of
the techniques employed.

We performed this research at the end of October 2020 in the following scientific
databases: IEEE, Science Direct, Scopus, Springer, and Web of Science, comprising
2015–2020. The thought behind these two choices is to have the most recent and quality-
proven scientific works on the subject. Our general search terms were:

(("learner model" OR "student model" OR "knowledge trac-
ing") AND "machine learning")

They were declined for the specificities of each scientific database (search engines
parse and return verbal, noun, plural, and continuous forms of search terms). We used
their ‘Advanced search’ function, or we queried them directly, if they allowed it. Some
direct queries did not allow for year filtering, so we applied it manually on the results
page. For accessibility reasons, we explicitly selected “Subscribed content” results for
the scientific databases supporting it.

3.3 Screening Process and Study Selection

The paper selection process happened as follows: First, we gathered all the results in
two known Citation Manager programs to benefit from the automatic metadata extrac-
tion, the report creation, and duplicate merging. We also used a spreadsheet to record,
based on Sect. 2.1.2, the following information: doi, title, year, purpose, ml_method,
method_rationale, software, data_source, and observations. Second, we screened the
abstracts of all 708 results: three categories appeared: obviousOut-of-scope results, clear
Eligible results, and Pending (verification needed) results. Third, using the institutional
authentication, we downloaded all the papers in the Eligible and Pending categories.
Fourth, we read the full papers in the Eligible and Pending categories and re-classified
them as Eligible or Out-of-scope, as needed (Fig. 2).

3.4 Data Collection and Features

In this section we review the relevant features of interest described in Subsect. 2.1.2
found in the reviewed literature.

During the full text read, we extracted the following information from the selected
papers: (1) ML technique employed; (2) purpose of the ML technique; (3) rationale for
employing that specific ML technique; (4) software employed for ML; and (5) dataset
employed for KT, if any.

We note here that rarely a single, known technique ML is employed, but it is rather
implemented in a pipeline, connected with another secondary ML (probabilistical, or
DM) techniques. In such cases, we focused on the technique(s) employed for KT and on
the reasons given for choosing it over other techniques acknowledged by the authors.
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Fig. 2. PRISMA Flow diagram of the publication screening process [18].

We surveyed the software used to perform the calculation of ML and we grouped
them by programming language, which is a rather meaningful description, compared to
combinations of libraries and platforms. We think this result shows a clear tendency on
the necessary requirements to implement and perform ML for KT in LM.

We surveyed all datasets presented in the 51 reviewed papers and checked for their
existence. We understand that our target public may not have data made available to
perform ML for KT accounting for the LM and we feel that this resource may be
invaluable when evaluating their results.
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In this section we presented our literature review methodology, the considered fea-
tures, and the train of thought behind them. The following section details our literature
review results.

4 Results

We aggregated the data collected (described in the previous section) to make it easier to
digest.

First, we present the sevenmost employed4 ML techniques forKT inLM found in the
reviewed publications. These comprise based-upon techniques for the paper proposal,
techniques used as starting bases within a pipeline, and techniques employed when
comparing ML techniques.

Bayesian Knowledge Tracing (BKT) [8] is the most classical method used to trace
students’ knowledge states. It is a special case of a Hidden Markov Model (HMM) [29].
In BKT, skill is modeled as a binary variable (known/unknown) and learning is modeled
by a discrete transition from an unknown to a known state. The basic structure of the
model, aswell as its update and prediction equations are depicted in Fig. 3, the probability
of being in the known state is updated using a Bayes rule based on an observed answer.
The basic BKT model uses the following data [9, 29, 30]:

• Global learner data: Pi is the probability that the skill is initially learned (also known
as p-init, orP(L0)), Pg is the probability of a correct answer when the skill is unlearned
(a guess, a.k.a. p-guess or P(G)), Ps is the probability of an incorrect answer when
the skill is learned (a slip, a.k.a. p-slip or P(s)), and Pl is the probability of learning a
skill in one step (a.k.a p-transit, P(T)), assumed constant over time.

• Local learner data: probability θ that a learner is in the known state.
• Global domain data: a definition of Knowledge Components (KCs) (sets of items).
There are no relations among KCs, i.e., the parameters for individual KCs are
independent.

Fig. 3. Basic structure and equations for the BKT model [29] (c is the correctness of an observed
answer).

4 With more than five applications in the last five years.
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Parameter fitting for the global learner parameters (the tuple Pi, Pl, Ps, Pg) is typi-
cally done using the standard expectation-maximization algorithm, alternatively using
a stochastic gradient descent or discretized brute-force search. The specification of KC
is typically done manually, potentially using an analysis of learning curves [9, 29].

Deep Knowledge Tracing (DKT) was proposed by [31] to trace students’ knowl-
edge using Recurrent Neural Networks (RNNs), achieving great improvement on the
prediction accuracy of students’ performance. It uses a Long Short-term Memory (see
next item) to represent the latent knowledge space of students dynamically. DKT uses
large numbers of artificial neurons for representing latent knowledge state along with a
temporal dynamic structure and allows a model to learn the latent knowledge state from
data [32]. It is defined by the following equations [31, 32]:

ht = tanh(Whxxt + Whhht−1 + bh) (1)

yt = σ
(
Wyhht + by

)
(2)

In DKT, both tanh and the sigmoid function (σ ) are applied element wise and param-
eterized by an input weight matrix Whx , recurrent weight matrix Whh, initial state h0,
and readout weight matrix Wyh. Biases for latent and readout units are represented by
bh and by [31, 32].

Long Short-Term (LSTM) is a variant of RNN, effective in capturing underlying
temporal structures in time series data and long-term dependencies more effectively
than conventional RNN [33]. LSTM builds up memory by feeding the previous hidden
state as an additional input into the subsequent step. While typical RNN consist of
a chain of repeating modules of NN, in LSTM, instead of having a single NN layer,
there are three major interacting components: forget, input, and output (it , f t , and ot ,
respectively) [33]. In LSTM, latent units retain their values until explicitly cleared by
the action of the ‘Forget gate’. Thus, they retain more naturally information for many
time steps, which is believed to make them easier to train. Additionally, hidden units are
updated using multiplicative interactions, and they can thus perform more complicated
transformations for the same number of latent units. This makes the model particularly
suitable for modeling dynamic information in student modeling, where there are strong
statistical dependencies between student learning events over long-time intervals. The
equations for an LSTM are significantly more complicated than for an RNN [31]:

it = σ
(
Wi

[
xt, ht−1

] + bi
)

(3)

ft = σ
(
Wf

[
xt, ht−1

] + bf
)

(4)

ot = σ
(
Wo

[
xt, ht−1

] + bo
)

(5)

c_int = tanh
(
Wc_in

[
xt, ht−1

] + bc_in
)

(6)

ct = ft � ct−1 + it � c_int (7)
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ht = ot � tanh(ct) (8)

kt = σ(Wkhht + bk) (9)

Although LSTM has a certain capability of learning relatively long-range depen-
dency, it still has trouble remembering long-term information [34].

Bayesian Networks (BNs) are graphical models designed to explicitly represent
conditional independence among random variables of interest and exploit this infor-
mation to reduce the complexity of probabilistic inference [35]. They are a formalism
for reasoning under uncertainty that has been widely adopted in AI [36]. Formally, a
Bayesian network is a directed acyclic graph where nodes represent random variables
and links represent direct dependencies among these variables.

If we associate to each node Xi in the network a Conditional Probability Table
(CPT) that specifies the probability distribution of the associated random variable given
its immediate parent nodes parents (Xi), then the BN provides a compact representation
of the Joint Probability Distribution (JPD) over all the variables in the network:

P(X1, . . . ,Xn) =
∏n

i=1
P(Xi|Parents(Xi)) (10)

A few examples of simple BN and their associated equations are shown in Fig. 4.

Fig. 4. Examples of BN and their associated equations.

Static BNs track the belief over the state of variables that don’t change over time
as new evidence is collected, i.e., the posterior probability distribution of the variables



Existing Machine Learning Techniques for Knowledge Tracing 83

given the evidence. Dynamic BNs on the other hand, track the posterior probability of
variables whose value change overtime given sequences of relevant observations [36].

Support Vector Machines (SVM) are one of the most robust prediction methods,
based on statistical learning frameworks [37]. The primary aimof this technique is tomap
nonlinear separable samples onto another higher dimensional space by using different
types of kernel functions. The underlying idea is that when the data is mapped to a higher
dimension, the classes become linearly separable [38]. SVM try to reduce the probability
of misclassification by maximizing the distance between two class boundaries (positive
vs. negative) in data [39]. Assume that a dataset used for training is represented by a
set j = {(xi, yi)}li=1, where (xi, yi) ∈ Rn+1, l is the number of samples, n is the number
of features and a class label yi = {−1, 1}. The separating hyperplane, defined by the
parameters w and b, can be obtained by solving the following convex optimization
problem [40, 41]:

min
1

2
‖w‖2 (11)

s.t. yi
(
wTϕ(xi) + b

)
≥ 1 i = 1, 2, . . . . . . , l (12)

For actualizing SVM for more than two classes two possible strategies can be used:
One-Against-All (OAA) and One-Against-One (OAO). In OAA, to unravel an issue of n
classes, n binary problems are solved rather than fathoming a single issue. Each classifier
is basically used to classify one single class; that is why values on that specific class will
grant positive response and [data] points on other classes will give negative values on
that classifier. In the case of OAO, for n course issues, n(n−1)

2 SVM classifiers are built
and each of them is prepared to partition one class from another. When classifying an
unknown point, each SVM votes for a class and the class with most extreme votes is
considered as the ultimate result [41].

They key advantage of SVM is that they always find the global minimum because
there are no local optima in maximizing the margin. Another benefit is that the accuracy
does not depend on the dimensionality of data [38]. This is a clear advantage when the
class boundary is non-linear, as other classification techniques will produce too complex
models for non-linear boundaries [38]. They distinctively afford balanced predictive
performance, even in studies where sample sizes may be limited.

Dynamic Key Value Memory Network (DKVMN) is a Memory Augment Neural
Network-based model (MANN), which uses the relationship between the underlying
knowledge points to directly output the student’s mastery of each knowledge point [42].
DKVMN uses key-value pairs rather than a single matrix for the memory structure.
Instead of attending, reading, and writing to the same memory matrix in MANN, the
DKVMNmodel attends input to the key component, which is immutable, and reads and
writes to the corresponding value component [42]:

At each timestamp, DKVMN takes a discrete exercise tag qt , outputs the probability
of response p(rt |qt), and then updates the memory with an exercise-and-response tuple
(qt , rt). Here, qt also comes from a set with Q distinct exercise tags and rt is a binary
value. [42] affirms that there are N latent concepts {c1, c2, …, cN} underlying the
exercises, which are stored in the key matrix Mk (size N × dk) whereas the students’
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mastery levels of each concept
{
s1t , s

2
t , . . . , s

N
t

}
(concept states) are stored in the value

matrix Mv
t (size N × dv), which changes over time [42]. Thus, DKVMN traces the

knowledge of a student by reading and writing to the value matrix using the correlation
weight computed from the input exercise and the key matrix. Equations for the read and
write process can be found in detail in [42].

Performance Factor Analysis (PFA) [43] is one specific model from a larger class
of models based on a logistic function [29]. In PFA, the data about learner performance
are used to compute a skill estimate. Then, this estimate is transformed using a logistic
function into the estimate of the probability of a correct answer. Theupdate andprediction
equations are depicted in Fig. 5. The PFA model uses the following data [29]:

• Global learner data: parameters γk , δk specifying the change of skill associated with
correct and wrong answers for a given KCk .

• Local learner data: a skill estimate θk for each KCk .
• Global domain data: a KC difficulty parameter βk , a Q-matrix Q specifying item-KC

mapping; Qik ∈ {0, 1} denotes whether an item i belongs to KCk .

(13)

(14)

Fig. 5. Update (θk) and prediction (Pcorrect) equations for the PFA model, according to [29] (c is
the correctness of an answer, i is the index of an item).

Parameter fitting for parameters β, γ, δ is usually done using standard logistic regres-
sion. The Q-matrix is also usually manually specified, but can be also fitted using
automated techniques like matrix factorization [29].

This list answers then RQ1. “What are the most employed ML techniques for KT
in LM?”. Figure 6 shows a yearly heatmap of the most used techniques: the number
indicates the total number of applications5 in all 51 combined-and-reviewed papers,
per year. DKT was applied eight times in 2019 (emerging from two consecutive zero
years) while BKT was mostly applied in 2016 and 2017, five and six times respectively,
decreasing since.LSTMpeaked in 2017,with 7 applications, andhas decreased since.BN
remains with a steady application since 2017. For clarity reasons, the 29 ML techniques
found in the 51 papers issued from this study are available in the Appendix.

Second, we noted the rationale (if any) given by authors when choosing a ML tech-
nique. We do not account for the rationale of the paper’s unique ML proposal if its
improvements are related to parameter fine-tuning, or if the justification is à posteriori.
Instead, we account rationale for the general application of the original, unmodified tech-
nique. Also, very few publications detail the shortcomings of their choice. We grouped
these rationales (Fig. 7) in the following categories:

5 Programming and teaching the ML model with input data.



Existing Machine Learning Techniques for Knowledge Tracing 85

Fig. 6. Yearly heatmap of the most employed ML techniques [18].

R1-Uses Less Data and/or Metadata. These techniques handle sparse data situations
better compared to others, according to the authors, e.g. DKT [44].

R2-Extended Tracing. These techniques provide additional attributes and/or dimen-
sional tracing with ease when compared to other techniques, according to authors, e.g.
LSTM [45].

R3-Popularity. These techniqueswere chosen because of their popularity, e.g. BN [24].

R4-Persistent Data Storage. These techniques explicitly save their intermediate states
to long-term memory, e.g. DKVMN [46].

R5-Input Data Limitations. These techniques have been acknowledged to lack when
the number of peers is “too high”, e.g. BN [47].

R6-Modelling Shortcomings. Techniques in this category face difficulties when mod-
elling either forgetting, guessing, multiple-skill questions, time-related issues, or have
other modelling shortcomings, e.g. BKT [48].

Fig. 7. Heatmap of most employed ML techniques, categorized by Method (SL, UL, SSL, RL,
DL) and number of publications sharing a Rationale (R1–R6) [18].

A heatmap illustrating the number of publications mentioning each of these ratio-
nales, for each of the most common ML techniques, is shown in Fig. 4. This heatmap
includes the ML categorization presented in Sect. 2.1.1 (SL, UL, SSL, RL, DL).



86 S. I. Ramírez Luelmo et al.

BKT faced mostly R6 rationales (four occurrences) and it alone conformed all of
the RL techniques found in this study. DKT and BKT were mostly commented on R1
and R2, with five and four occurrences respectively. This leads to the DL categorization
(DKT + LSTM + DKVMN) to be extensively justified in the literature, while UL
(PFA) is sparsely commented, and SVM not at all, despite its non-negligeable number
of applications (seven). BN had the highest R3 count of all (three occurrences) and
because of the absence of SVM comments, it carries all the justifications related to SL.

Third, we looked over the intended purpose of the ML implementation, besides the
intendedKT. In one hand, out of the 51 publications reviewed, seven (~15%) employML
for initializing the LM (e.g., for another course, academic year, or for determining the
ML parameters in a pipeline) by accounting previous system interactions, grades, pre-
tests, or other data. In the other hand, most publications (44–85%) perform some form
of prediction. Finally, only one proposal (~2%) incorporates both a prediction and/or
recommendationmechanism as well. A pie chart ofML techniques’ purpose distribution
is presented in Fig. 8.

Fig. 8. Pie chart distribution of ML purpose [18].

Fourth, we surveyed the software used to perform the ML calculations. Note that
many publications (~50%) do not mention their software of choice. Python (comprising
Keras, TensorFlow, PyTorch and scikit-learn) is the largest group,with 13 papers.Ad-hoc
solutions follow with five papers, and finally C, Java (-based), Matlab and R solutions,
with 2 publications each. Outliers were SPSS and Stan, with one (1) paper each. A pie
chart illustrating the distribution of programming languages is shown in Fig. 9.

Fifth, we highlighted (and checked for existence) the public datasets employed,
shown in Table 1. All the datasets we found in the literature were online and accessible
when reviewed.Wemade the version distinction (yearly or by topic) of datasets from the
same source (such as DeepKnowledgeTracing and ASSISTments, respectively) because
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Fig. 9. Pie chart distribution of ML programming language [18].

they differ on either the number of features, or the dimensioning, or dataset creation
method.

We make the distinction from our previous paper [18] in that the datasets “MOOC
[Big Data and Education on the EdX platform]” and “Hour of Code” are not available
anymore6 online and thus, do not appear anymore in Table 1. Moreover, the “DataShop”
dataset (https://pslcdatashop.web.cmu.edu/) was removed as well because it points to a
repository of learning interaction data with no specific dataset.

Moreover, for each available singular dataset we catalogued the number of files it
encompasses, the file format in which it is saved, its total size (in multiples of bytes),
and lastly, the list of available features (the mixed uppercase and lowercase features’
labels are ‘as found’ within the datasets):

• ASSISTments2009. 1 CSV file (61.4 MB) with the following features:
order_id, assignment_id, user_id, assistment_id, problem_id, original, cor-

rect, attempt_count, ms_first_response, tutor_mode, answer_type, sequence_id, stu-
dent_class_id, position, type, base_sequence_id, skill_id, skill_name, teacher_id,
school_id, hint_count, hint_total, overlap_time, template_id, answer_id, answer_text,
first_action, bottom_hint, opportunity, opportunity_original

• ASSISTments2013. 1 CSV file (2.8 GB) with the following features:
problem_log_id, skill, problem_id, user_id,

assignment_id, assistment_id, start_time, end_time, problem_type, original, cor-
rect, bottom_hint, hint_count, actions, attempt_count,ms_first_response, tutor_mode,
sequence_id, student_class_id, position, type, base_sequence_id, skill_id, teacher_id,
school_id, overlap_time, template_id, answer_id, answer_text, first_action, problem-
logid, Average_confidence(FRUSTRATED), Average_confidence(CONFUSED),
Average_confidence(CONCENTRATING), Average_confidence(BORED)

• ASSISTments2015. 1 CSV file (17.4 MB) with the following features:
user_id, log_id, sequence, correct

6 As of end of October 2021.

https://pslcdatashop.web.cmu.edu/
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Table 1. Public datasets found.

Name URL

ASSISTments2009 https://sites.google.com/site/assistmentsdata/
home/assistment-2009-2010-data/skill-builder-
data-2009-2010

ASSISTments2013 https://sites.google.com/site/assistmentsdata/
home/2012-13-school-data-with-affect

ASSISTments2015 https://sites.google.com/site/assistmentsdata/
home/2015-assistments-skill-builder-data

KDD Cup https://pslcdatashop.web.cmu.edu/KDDCup/
downloads.jsp

DataShop: OLI Engineering Statics - 1.14
(Statics2011)

https://pslcdatashop.web.cmu.edu/DatasetInfo?
datasetId=507

The Stanford MOOCPosts Data Set https://datastage.stanford.edu/StanfordMooc
Posts/

DeepKnowledgeTracing dataset https://github.com/chrispiech/DeepKnowledg
eTracing

DeepKnowledgeTracing dataset -
Synthetic-5

https://github.com/chrispiech/DeepKnowledg
eTracing/tree/master/data/synthetic

• KDD Cup. 6 TXT files (8.4 GB) with the following features:
Row, Anon Student Id, Problem Hierarchy, Problem Name, Problem View, Step

Name, Step Start Time, First Transaction Time, Correct Transaction Time, Step End
Time, Step Duration (sec), Correct Step Duration (sec), Error Step Duration (sec),
Correct First Attempt, Incorrects, Hints, Corrects, KC(Default), Opportunity(Default)

• DataShop: OLI Engineering Statics – (Fall 2011). 1 TXT file (171 MB) with the
following features:

Row, Sample Name, Transaction Id, Anon Student Id, Session Id, Time, Time
Zone, Duration (sec), Student Response Type, Student Response Subtype, Tutor
Response Type, Tutor Response Subtype, Level (Sequence), Level (Unit), Level
(Module), Level (Section1), Problem Name, Problem View, Problem Start Time, Step
Name, Attempt At Step, Is Last Attempt, Outcome, Selection, Action, Input, Input,
Feedback Text, Feedback Classification, Help Level, Total Num Hints, KC (Single-
KC), KC Category (Single-KC), KC (Unique-step), KC Category (Unique-step), KC
(F2011), KC Category (F2011), KC (F2011), KC Category (F2011), KC (F2011),
KC Category (F2011), School, Class, CF (oli:activityGuid), CF (oli:highStakes), CF
(oli:purpose), CF (oli:resourceType)

• The Stanford MOOCPosts Data Set. 11 CSV files (3.28 MB) without headers within
the files.

• DeepKnowledgeTracing dataset. 2 CSV files (2.58 MB) without headers within the
files.

• DeepKnowledgeTracing dataset - Synthetic-5. Over 40 CSV files (15.64MB) without
headers within the files.

https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data/skill-builder-data-2009-2010
https://sites.google.com/site/assistmentsdata/home/2012-13-school-data-with-affect://sites.google.com/site/assistmentsdata/home/2012-13-school-data-with-affect
https://sites.google.com/site/assistmentsdata/home/2015-assistments-skill-builder-data://sites.google.com/site/assistmentsdata/home/2015-assistments-skill-builder-data
https://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp
https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=507://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=507
https://datastage.stanford.edu/StanfordMoocPosts/
https://github.com/chrispiech/DeepKnowledgeTracing://github.com/chrispiech/DeepKnowledgeTracing
https://github.com/chrispiech/DeepKnowledgeTracing/tree/master/data/synthetic://github.com/chrispiech/DeepKnowledgeTracing/tree/master/data/synthetic
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Thus, the elements presented here-in, namely the ML techniques, their chosen ratio-
nale, their KT in LMpurpose, themost usual programming language software employed,
and the subsequent required datasets, found in the 51 reviewed publications constitute
the answer to “RQ2: How do the most employed ML techniques fulfil the considered
relevant aspects (identified in Sect. 2.1.2) to insure KT in LM?”.

5 Discussion

In this section we present our observations on the ML techniques addressed in the
precedent section, issued from the 51 reviewed publications. This discussion covers the
five elements mentioned in Subsect. 2.1.2.

ML Technique: We begin by noting that, in the reviewed papers, rarely a clear, well-
defined, singleML technique is employed: very often additions or variants are employed
(whichmake the point of the paper). Research teams seem to focus their attention on fine-
tuning parameters (to improve prediction) rather than on expanding the application ofML
for KT to other educational data sources or contexts. Authors recognize that additional
features (or dimensions) would encumber the learning phase for limited gains, compared
to parameter fine-tuning. As such, many papers propose pipelines (‘chains’) of ML
techniques to optimize the process without increasing the calculation load. Performance
improvements aside, this brings up two inconveniences: the difficulty of identifying
the ML technique suitable for KT, and the difficulty to evaluate and compare any two
papers employing different pipelines, as the intermediary inputs and outputs of the chain
elements are quite different between papers.

ML Purpose: We distinguish two families of stated purposes in the reviewed ML tech-
niques for KT: prediction and LM creation. Prediction is often portrayed as a probability,
which can be interpreted as a mastery (or degree) of a skill (0–100), a grade (0–10), or
a likelihood (0–1) of getting the answer right (in binary answers). In LM creation, ML
predicts parameters for initializing the LM. We noticed that clustering, personalization,
and/or resource suggestion (or other ML techniques, such as NLP) were performed once
the predicting phase had taken place.

ML Choice Rationales: We condense the rationales exposed by the authors when
choosing a ML technique. We omit rationales based on novelty, status-quo, or vague
generalities, e.g., “nobody had done it before”, “the existing system already uses this
mechanism”, “because it helps predict students’ performance”, respectively. The choice
of BKT’s was mostly driven by popularity, although it had issues on learners’ indi-
viduality, multi-dimensional skill support and modelling forgetting. BN also seemed
to be a common, popular choice. Its main advantage was its ability to model uncer-
tainty, although it seems to reach its limits if the number of students is kept “relatively
low”. On the contrary, DKT may benefit from large datasets and has proven being able
to model multi-dimensional skills, although lacking in consistent predicted knowledge
state across time-steps. DKVMN (based on LSTM) can model long-term memory and
mastery of knowledge at the same time, as well as finding correlations between exercises
and concepts, although it does not account for forgetting mechanisms. LSTM appears
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to additionally handle tasks other than KT satisfactory. It also models forgetting mech-
anisms over long-term dependencies within temporal sequences. It is then well suited
for time series data with unknown time lag between long-range events. PFA does not
consider answers’ order (which is pedagogically relevant), nor models guessing, nor
multiple-skills questions. Finally, RNNs are well suited for sequential data with tempo-
ral relationships, although long-range dependencies are difficult to learn by the model,
hence the resurgence of LSTM.

Software for ML: Python (all frameworks and libraries merged) is the most common
programming language employed for ML, more than doubling the number of papers
employing ad-hoc languages. In this subject, we think that employing platform-specific
programming languages for ML assures a lack of code portability (implying licensing
issues, steep learning curve, little replicability, code isolation, and other situations) and
thus, little to no adoption of research proposals adopting this approach. However, spe-
cialized ML software, designed by worldwide experts on the field, with a large user
base maintaining it, backed up by large and specialized ML corporations, tends to be
performance-optimized for diverse hardware and software and quasi bug-free. An ad-
hoc solution developed in-house by a comparatively small team of developers cannot
compete with such an opponent. We were taken aback by two facts: the sparse use of
specialized mathematical software (Matlab, R, SPSS) in ML, and to learn that about
50% of all reviewed publication do not specify what software was employed for their
ML calculations, leaving little room for independent replication, results verification, and
additional development.

Datasets: We noticed that frameworks proposal papers aim to prove the performance of
their approach using publicly available datasets.An overviewof the found public datasets
can be found in Table 1, in the previous section. The datasets found in the publications
(chosen by papers’ authors) are static (i.e., they are not part of a “live” system), mostly
contain grades or other similar evaluation measurements (but no behavioral or external
sensor data) andprovide the nonnegligeable advantages of being explained in detail (their
data structure) and having their data already labelled, often by experts. This contrasts
with the “organic” data employed in publications whereML is addressed for an existing,
live system, even if it is for testing purposes. Both variants could benefit from each other’s
approaches, but this would require diverse, detailed, copious high-quality data that many
institutions simply cannot afford to generate nor stock, let alone analyze.

One of most recurring datasets is the ASSISTment [49] (employed in 11 publica-
tions), of which there are different versions. A noteworthy fact is that this dataset has
been acknowledged to have two main kind of data errors: (1) duplicate rows (which
are removed if acknowledged by the authors) and (2) “misrepresented” skill sequences.
Drawbacks of the latter issue (2) have been discussed: while this does not affect the
final prediction, it nevertheless might conduce the learner to being presented with less
questions on one of the merged skills (the less mastered) because the global (merged)
mastery of skill is achieved mainly through the mastery of the most known skill [50, 51].
This raises the importance of the data cleaning process [25], which processing time is
not negligeable and should be accounted at early data mining stages.
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6 Conclusion and Perspectives

The aim of this research work is to present existing ML techniques for KT in LM
employed during the last five years. It also helps to prepare our target public to the
complex task of choosing a ML for KT technique by outlying the current trends in the
research field. To reach this objective, we used the PRISMA guidelines for systematic
reviews methodology, which led us to conclude that the following five ML for KT tech-
niques were the most employed in the State-of-the-Art during the last five years: BKT
(18 applications), DKT (13 applications), LSTM (12 applications), BN (11 applica-
tions), and SVM (7 applications). However, the reasons behind choosing any given ML
technique were not really detailed in reviewed publications. We also noticed that combi-
nations ofML techniques arranged in pipelines are a common practice, and that the most
recent research (2019–2020) favored pipeline and/or parameter optimization over new
techniques implementation. The use of public datasets is recurrent: they contain usually
grades or other similar evaluating metrics, but no other pedagogical relevant data. On
this subject, we insist that extensive data cleaning and other pre-treatments are highly
recommended before using these public datasets. Finally, our results show that the ML
programming language of choice is Python (all libraries & frameworks combined).

This review of literature is inscribed in the context of the “Optimal experience mod-
elling” research project, conducted by the University of Lille. This research project [52]
aims to model and trace the Flow psychological state, alongside KT, via behavioral data,
using the generic Bayesian Student Model (gBSM), within an Open Learner Model.

The current challenge is to incorporate the ML relevant aspects highlighted in this
study, and the behavioral and psychological aspects (log traces and Flow state determi-
nation) specifically linked to the project. Namely, aML technique supporting the gBSM,
capable to initialize the LM and perform KT, supported by the most common program-
ming language for ML, based on a sound rationale. The originality of such research
lies in the use of live, behavioral, Flow-labelled data issued from the French-spoken
international MOOC “Project Management”7.

Acknowledgements. This project was supported by the French government through the Pro-
gramme Investissement d’Avenir (I-SITE ULNE/ANR-16-IDEX-0004 ULNE) managed by the
Agence Nationale de la Recherche.

Appendix

The Appendix is composed of: (a) the ML categorization figure, (b) the summary table
of ML for KT in LM (for clarity reasons, the extensive column ‘rationale’ has been
removed), and (c) the full table of the 29 ML techniques.

It can be found at the following address:
https://nextcloud.univ-lille.fr/index.php/s/DpJwFtRHg399pXm.

7 https://moocgdp.gestiondeprojet.pm/.

https://nextcloud.univ-lille.fr/index.php/s/DpJwFtRHg399pXm
https://moocgdp.gestiondeprojet.pm/
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