
Chapter 8
Chaperonin: Co-chaperonin Interactions

Aileen Boshoff

Abstract Co-chaperonins function together with chaperonins to mediate
ATP-dependent protein folding in a variety of cellular compartments. Chaperonins
are evolutionarily conserved and form two distinct classes, namely, group I and
group II chaperonins. GroEL and its co-chaperonin GroES form part of group I and
are the archetypal members of this family of protein folding machines. The unique
mechanism used by GroEL and GroES to drive protein folding is embedded in the
complex architecture of double-ringed complexes, forming two central chambers
that undergo conformational rearrangements that enable protein folding to occur.
GroES forms a lid over the chamber and in doing so dislodges bound substrate into
the chamber, thereby allowing non-native proteins to fold in isolation. GroES also
modulates allosteric transitions of GroEL. Group II chaperonins are functionally
similar to group I chaperonins but differ in structure and do not require a
co-chaperonin. A significant number of bacteria and eukaryotes house multiple
chaperonin and co-chaperonin proteins, many of which have acquired additional
intracellular and extracellular biological functions. In some instances,
co-chaperonins display contrasting functions to those of chaperonins. Human
HSP60 (HSPD) continues to play a key role in the pathogenesis of many human
diseases, in particular autoimmune diseases and cancer. A greater understanding of
the fascinating roles of both intracellular and extracellular Hsp10 on cellular pro-
cesses will accelerate the development of techniques to treat diseases associated with
the chaperonin family.
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Introduction

Chaperonins are ubiquitous ATP-driven protein folding machines characterised by a
large multi-subunit ring structure. They prevent aggregation by binding non-native
proteins and facilitate folding and unfolding of proteins. They form part of the Hsp60
family of heat shock proteins and are related by homology to the GroEL proteins of
E. coli (Hartl and Hayer-Hartl 2002; Hemmingsen et al. 1988). The E. coli
chaperonin GroEL and its co-chaperonin GroES are the quintessential members of
this family of protein folding machines (Ellis and Hartl 1996; Hartl and Hayer-Hartl
2002; Horwich et al. 2007). The term ‘chaperonin’ (Cpn) was first coined in 1988 to
represent this family of molecular chaperones after finding sequence similarity
between Rubisco binding protein (now known as chloroplast Cpn60) and GroEL
(Hemmingsen et al. 1988). The Hsp60 family of chaperones is one of the most
abundant classes of molecular chaperone present in the plastids, mitochondria, and
cytoplasm of all eukaryotes and eubacteria.

The terms GroEL and GroES were initially applied strictly to the two proteins
found in E. coli and have been extended to include homologues from other bacterial
species. The GroEL protein functions as a typical molecular chaperone as it binds
and folds proteins, whilst GroES exhibits no autonomous role as a chaperone but
modulates the activity of GroEL and is referred to as a co-chaperone. The term
chaperonin is applied to bacterial proteins that are homologous to the E. coli GroEL
and are also referred to as Cpn60, whilst co-chaperonins refer to homologues of
E. coli GroES, also known as Cpn10. Although the mitochondrial homologues are
called Hsp60 and Hsp10, the archaeal chaperonins are referred to as thermosomes
(Trent et al. 1991). In the eukaryotic group, chaperonins found in the cytosol were
first called TCP-1 and are now also called CCT (chaperonin-containing TCP-1)
(Kubota et al. 1994), TRiC (TCP-containing ring complex) (Frydman et al. 1992),
and c-cpn (Gao et al. 1992). The human HSP60/HSP10 proteins have been renamed
HSPD/E (Kampinga et al. 2009). The chloroplast chaperonin is referred to as Cpn60
protein, and two types of co-chaperonins Cpn10 and Cpn20 are present (Koumoto
et al. 2001). Prior to its recognition as chloroplast Cpn60, it was known as Rubisco-
binding protein (Barraclough and Ellis 1980).

GroEL and GroES are essential molecular chaperones in E. coli, indispensable for
viability at all temperatures (Ang and Georgopoulos 1989; Fayet et al. 1989; Tilly
et al. 1981). Mitochondrial Hsp60 is similarly essential for the viability of Saccha-
romyces cerevisiae (Cheng et al. 1989; Rospert et al. 1993b), as are the group II CCT
subunits (Lin and Sherman 1997; Stoldt et al. 1996). Mitochondrial Hsp60 inacti-
vation results in embryonic lethality in mice (Christensen et al. 2010). Deletion of
HSP60 in mouse cardiomyocytes resulted in heart failure due to impaired mitochon-
drial function (Fan et al. 2020). GroEL is critical for the correct folding of many
proteins in the cell, under both normal and stress conditions. The folding of nascent
polypeptides often requires the cooperation of both the Hsp70 and Hsp60 families,
and these families are also responsible for most of the general folding events in the
cell (Fink 1999; Hartl et al. 1992). Whilst CCT is not upregulated during heat shock



(Horwich et al. 2007), GroEL and mitochondrial Hsp60 are heat inducible. In
addition to ensuring the correct folding of proteins, chaperonins play a role in the
assembly of protein complexes (Seo et al. 2010), trafficking of proteins (Xu et al.
2011) and peptide hormone signalling (Sigal and Williams 1997).
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Fig. 8.1 The asymmetric GroEL/GroES complex comprises of two heptameric rings of GroEL
stacked back-to-back with the GroES ‘lid’ bound to the cis ring to form a bullet-shaped complex,
showing the side view (a), and the symmetric GroEL/GroES complex with two heptameric rings of
GroEL stacked back-to-back with the GroES bound to both rings to form a football-shaped
complex, showing the side view (b). The α-helices are shown in red and β-sheets in yellow. The
images were generated using PyMol (DeLano Scientific) from coordinates in PDB: 1AON and 4PJ1

The chaperonins share a common subunit organisation and structure. They are a
family of ATPases consisting of twin heptameric rings stacked back-to-back to
create a characteristic cylindrical structure and function by assisting in the folding
of nascent and misfolded proteins (Hartl and Martin 1995; Houry et al. 1999). Each
ring creates a large cavity for unfolded proteins to bind and undergo productive
folding to the native state in a highly cooperative and ATP-dependent manner
(Bukau and Horwich 1998; Hartl and Hayer-Hartl 2002). Co-chaperonins form a
single heptameric ring of 10 kDa subunits and are present in all bacterial and
eukaryotic organisms (Hartl 1996). The E. coli asymmetric GroEL/GroES complex
consists of two stacked heptameric rings of GroEL capped by a single heptameric
ring of GroES that forms the lid over the folding cage (Fig. 8.1). The GroEL ring that
is bound to GroES and protein substrate is termed the cis ring, and opposite ring free
of GroES is termed the trans ring (Fig. 8.1a) (Xu et al. 1997). Two folding
mechanisms have been proposed for GroEL; these are termed the cis and trans
mechanisms (named after the GroEL rings that are bound by GroES), with most



GroEL substrates utilising the cis mechanism (Fig. 8.2) (Chaudhuri et al. 2001; Farr
2003). The functional cycle requires the binding of chaperonin 10 to one or both
chaperonin rings which forms a lid-like structure on top of the cylinder when ATP is
bound that causes the chamber to enlarge to allow for protein folding
(Chandrasekhar et al. 1986). A vital part of the structure of each subunit is a flexible
mobile loop that mediates binding to the chaperonin (Landry et al. 1996). The
flexibility and the structure of the complex are conserved amongst co-chaperonins,
and sequence variations impose differences in binding affinity (Richardson et al.
2001). Protein substrates first bind to the apical domain and are then dislodged and
driven into the cavity by the binding of the co-chaperonin to the same area (Hartl and
Hayer-Hartl 2002). The folding process is driven by the binding and hydrolysis of
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Fig. 8.2 GroEL-/GroES-mediated interaction cycle. The asymmetric (A) and symmetric (B)
GroEL/GroES interaction cycles in the presence of substrate. The binding of ATP to the cis cavity
causes conformational changes which allows the GroEL-bound substrate to follow either the cis or
trans folding pathway, depending on the properties of the substrate (a). In the cis mechanism, the
binding of substrate to one GroEL ring is followed by the binding of ATP and GroES to the cis ring.
The substrate is released into the cavity closed by GroES and allowed to fold. ATP is hydrolysed,
and the complex is ready to dissociate. The binding of ATP to the trans ring triggers release of
substrate and dissociation of GroES from the cis ring and allows GroES to bind, releasing substrate
into the cavity. Substrates that protrude outside the cavity and require only a portion of the protein to
be folded, thus preventing GroES binding, follow the trans folding pathway. The subsequent
binding of ATP and GroES to the cis ring releases the substrate. In the symmetric cycle, the two
GroEL rings function simultaneously in substrate folding, with ATP hydrolysis resulting in GroES
and substrate release (b). Encapsulation of substrate during the asymmetric folding allows a longer
time for folding of the substrate, whilst a short residence time in the symmetric model increases the
folding yields (Bigman and Horovitz 2019) [Adapted from Hayer-Hartl et al. (2016) and Kumar
et al. (2015)]



ATP which triggers a complex set of allosteric signals both within and between the
stacked rings (Gray and Fersht 1991; Todd et al. 1993). The trans mechanism has
been proposed predominantly for large substrates that cannot enter the cavity, and
partial substrate folding takes place through binding and release from the trans ring
(Fig. 8.2) (Chaudhuri et al. 2001; Farr 2003). ATP-independent unfoldase activity
has been reported for both GroEL and TRiC that allows the unfolded protein to fold
outside the cavity (Priya et al. 2013).

8 Chaperonin: Co-chaperonin Interactions 217

The Gp31 protein from bacteriophage T4, a functional co-chaperonin that pro-
motes the assembly of the T4 major capsid protein, can functionally substitute for
GroES resulting in an increase in size and hydrophilicity of the enclosed chamber
(Hunt et al. 1997; van der Vies et al. 1994). Another co-chaperonin from bacterio-
phage RB49, called CocO, is distantly related to GroES (Ang et al. 2001). Both of
these bacteriophage co-chaperonins utilise host-encoded GroEL to assemble capsid
proteins, and both proteins could functionally replace GroES in E. coli (Keppel et al.
2002). Interestingly, the first viral-encoded chaperonin was identified in the genome
of Pseudomonas aeruginosa bacteriophage EL (Hertveldt et al. 2005) and later
demonstrated to have functional properties similar to GroEL except that it does
not require a co-chaperonin for activity (Kurochkina et al. 2012). The crystal
structure of the GroEL homologue from the bacteriophage EL of Pseudomonas
aeruginosa revealed that the chaperonin prevented protein aggregation without
encapsulation and may represent an earlier version of the protein before the devel-
opment of encapsulation (Bracher et al. 2020). A wide range of newly identified
functions have been attributed to eukaryotic Hsp60, including roles in carcinogen-
esis, immunity, and cell signalling (Chandra et al. 2007). The roles played by both
intracellular and extracellular forms of human HSP10 (HSPE) in pregnancy, cancer,
and autoimmune diseases continue to receive attention (Corrao et al. 2010; Jia et al.
2011). The role of Hsp60 in promoting infection by hepatitis B virus (HBV), human
immunodeficiency virus (HIV), and influenza A virus was reviewed by Wyżewski
et al. (2018).

Whilst the E. coli chaperonins are encoded by only two genes, groEL and groES,
both Cpn60 and Cpn10 found in green algae and plants are encoded by numerous
genes (Boston et al. 1996; Hill and Hemmingsen 2001; Schroda 2004). Chloroplast
chaperonins exhibit greater complexity than those found in bacteria and mitochon-
dria with unique structures and functions (Vitlin Gruber et al. 2013a). It also appears
that approximately 30% of bacteria encode more than one groEL gene (Hill and
Hemmingsen 2001). The biological significance of several chaperonin genes has yet
to be revealed (Lund 2009); however, the literature has expanded in recent years in
this area of research. Cpn60 subunits with diverse expression profiles have evolved
in chloroplasts, with the dominant subunits appearing to play housekeeping roles
and minor subunits having more specialised functions, including the folding of
specific proteins (Peng et al. 2011).

The chaperonins are subdivided into two distantly related groups. Group I
chaperonins are found in eubacteria, mitochondria, and chloroplasts, of which
GroEL from E. coli is the best studied and understood (Leroux 2001). Group II
chaperonins are present in archaebacteria and in the eukaryotic cytosol (Frydman



2001; Horwich et al. 1993). Although both subgroups form ring-like structures with
cavities for sequestered protein folding, group II chaperonins form heterooligomeric
complexes (Archibald et al. 1999; Spiess et al. 2004). The group II chaperonins
consist of two eight- or nine-membered rings consisting of one to three subunit types
in the archaeal thermosome rings (Phipps et al. 1991), whilst TRiC/CCT rings
consist of eight subunit types (Frydman et al. 1992; Spiess et al. 2004). An important
difference between the two groups is the lack of a GroES homologue in the group II
chaperonins (Horwich and Saibil 1998). Group I chaperonins utilise an indepen-
dently expressed co-chaperonin that functions as a lid to aid the encapsulation of
unfolded protein, whilst group II chaperonins have a built-in lid in the form of a
particular α-helical protrusion and do not require additional protein subunits to
function (Meyer et al. 2003; Vabulas et al. 2010). However, the activity of CCT is
regulated by a number of co-chaperones, including prefoldin, phosducin-like pro-
teins, and BAG3 (Fontanella et al. 2010; Martin-Benito et al. 2002; Stirling et al.
2006; Vainberg et al. 1998). Prefoldin produces tentacle-like coils that capture
protein substrates and transfers them to group II chaperonins; further studies have
highlighted the importance of human prefoldin in proteostasis and the development
of various diseases (reviewed by Sahlan et al. 2018). In 2010, a third group was
proposed in bacteria and are conserved in the genomes of eleven bacteria
(Techtmann and Robb 2010). These novel chaperonins are capable of refolding
denatured proteins in a GroES-independent manner. Group III chaperonins are
highly divergent and distantly related to group I and group II, and they might
represent an ancient horizontal gene transfer event from archaea to bacteria, and
this revises the current paradigm for chaperonin classification (Techtmann and Robb
2010). The crystal structure of the thermophilic bacterial group III Cpn from
Carboxydothermus hydrogenoformans revealed that it is mechanistically distinct
from group I and II chaperonins, and further evidence suggests that groups I and II
may have arisen from a group III Cpn (An et al. 2017).
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To date, the structure and mechanism of chaperonin and co-chaperonin functions
have centred on the GroEL and GroES system of E. coli (Hartl 1996; Hartl and
Hayer-Hartl 2002; Horwich et al. 2007). This system has received the most attention
and serves as a model for chaperonin and co-chaperonin interactions. The GroEL
and GroES folding machine will be discussed in the following section with emphasis
on the role of GroES. Group I chaperonins will be the focus of this chapter as
the functional activity of group II chaperonins is not assisted by co-chaperonins. The
biological impact of chaperonins extends beyond protein folding as they are the
dominant immunogens present during human bacterial infections, and there is
considerable interest in their role in cancer and autoimmune diseases (Kaufmann
1992; Wiechmann et al. 2017). Data on the extensive roles of both extracellular and
intracellular Hsp10 has left no doubt that the functions of this protein extends
beyond its role as a co-chaperonin, and these roles have been reviewed by (Corrao
et al. 2010). Research on bacterial chaperonins has expanded in recent years as more
bacterial genomes have been sequenced. Our understanding of co-chaperonins in
other organisms and organelles is gaining momentum, and recent findings on
bacterial and eukaryotic co-chaperonins will be addressed.
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Activities of the E. coli GroEL/GroES Folding Machine

One of the most efficient chaperone systems is the well-characterised E. coli
chaperonin machine composed of GroEL and its co-chaperonin GroES. Three
different functions have been assigned to this folding machine, binding to
non-native proteins preventing aggregation (Buchner et al. 1991), facilitating protein
folding by encapsulating the protein in a sequestered environment (Weissman et al.
1995), and finally unfolding of kinetically trapped intermediates so that they can
refold (Shtilerman et al. 1999; Sparrer et al. 1997; Sparrer and Buchner 1997; Todd
et al. 1993). The groE genes of E. coli were the first chaperonin genes to be
discovered. These genes were first identified when temperature-sensitive mutant
strains of E. coli could not support the growth of bacteriophage λ (Georgopoulos
et al. 1972); afterwards, it was determined that the two genes are encoded on the
same operon groE. The importance of these GroEL and GroES proteins is
emphasised by the fact that they are the only chaperones that are essential for the
viability of E. coli at all temperatures (Fayet et al. 1989). Additionally, host GroEL
and GroES play a role in both phage infection and defence strategies of the host (Ang
et al. 2000), as well as protecting viral proteins at high temperatures (Chen et al.
2013). E. coli GroEL/ES was previously known to play a role in the regulation of
sigma-32 by enhancing proteolysis (Guisbert et al. 2004). An additional proteolytic
role was demonstrated whereby interaction with the cold shock RNA chaperone
(CspC) lead to proteolysis (Lenz and Ron 2014).

It is estimated that under normal cellular growth conditions, 10–15% of all
cytoplasmic proteins rely on GroEL in order to fold correctly, and this increases to
30% under conditions of stress (Ewalt et al. 1997). Many of the cytoplasmic proteins
that interact with GroEL have been identified (Houry et al. 1999), and GroEL acts
downstream of the E. coli molecular chaperones, DnaK (prokaryotic Hsp70), and
trigger factor, in the folding of 10% of cytosolic proteins (Ewalt et al. 1997; Houry
et al. 1999). The mechanism of action is different to that of Hsp70 as the protein is
sequestered from its environment. In a proteomic study of E. coli proteins, ~250
different proteins interact with GroEL, of these ~85 proteins are dependent on
GroEL for folding and 13 of these are essential proteins (Kerner et al. 2005).
These 85 proteins were scrutinised further, and ~60% were found to be absolutely
dependent on GroEL and GroES for folding, and an additional 8 proteins were
classified as obligate substrates (Fujiwara et al. 2010). Most of the substrates are
characterised by a size range of 20–50 kDa and complex α/β or α + β topologies and
tend to populate kinetically trapped folding intermediates (Kerner et al. 2005).

Over the past 30 years, many researchers have demonstrated the abilities of the
E. coli GroEL and GroES machine to bind and refold a wide range of aggregation-
prone proteins both in vivo and in vitro. Early in vitro experiments demonstrating the
abilities of E. coli GroEL and GroES to refold denatured proteins were carried out
using heat-denatured Rubisco enzyme (Goloubinoff et al. 1989), and following this
seminal paper, the GroEL-GroES cycle has been scrutinised in vitro. Chaperonins
continue to also play an important role in recombinant protein production, and this



has been well documented in the literature. E. coli is a frequently used host, and the
folding of proteins in the cytoplasm is assisted primarily by Hsp70 and Hsp60
(Vabulas et al. 2010). They aid in functional expression and retain solubility by
assisting the refolding of aggregated target proteins. The chaperonin GroEL and its
co-chaperonin GroES have been used extensively for this purpose and are often
co-expressed with the protein of interest. Some of these proteins include malate
dehydrogenase (Hartman et al. 1993; Ranson et al. 1997), citrate synthase (Buchner
et al. 1991), rhodanese (Martin et al. 1991), carbamoylase (Sareen et al. 2001), and
aconitase (Chaudhuri et al. 2001). The presence of E. coli GroEL and GroES
significantly improved the yields of soluble protein in most instances; however,
large amounts of the chaperonins are often required, exceeding endogenous concen-
trations. Extensive optimisation of the reaction conditions is also vital, and the
requirements of each chaperonin are variable. A greater understanding of the effects
of overexpressing chaperonins on cell growth, and conditions for optimum recom-
binant protein production, needs to be investigated (Gupta et al. 2006). Despite these
drawbacks, the E. coli chaperonins have been used successfully in biotechnology for
the production of a wide range of recombinant proteins. The co-expression of
GroEL/ES appreciably enhanced the expression of human tumour necrosis factor,
CD 137 ligand (Wang et al. 2012). The solubility of Plasmodium falciparum
1-deoxy-D-xylulose-5-phosphate reductoisomerase was significantly increased by
the co-production of GroEL/ES (Goble et al. 2013). GroEL immobilised on a sensor
has been developed to detect and quantify unfolded therapeutic proteins in solution
(O’Neil et al. 2018).
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Structure of GroEL and GroES

GroEL and GroES form both GroEL-GroES asymmetric bullet-shaped and GroEL-
GroES2 symmetric football-shaped complexes as one GroEL ring can bind to one
GroES heptamer (Fig. 8.1). There has been much debate concerning which of these
complexes is essential for protein folding and its mechanism of action (Bigman and
Horovitz 2019; Taguchi 2015). The crystal structure of GroEL bound to GroES and
ADP was resolved in 1997, which corresponded to the bullet-shaped complex
(Xu et al. 1997). Nearly two decades later, the structure of the football-shaped
complex was resolved (Fei et al. 2014; Koike-Takeshita et al. 2014). Several crystal
structures of GroEL are available (Braig et al. 1994), including GroEL complexed
with ATP (Boisvert et al. 1996), and a GroEL-peptide complex (Chen and Sigler
1999), as well as NMR (nuclear magnetic resonance) spectroscopy (Fiaux et al.
2002; Nishida et al. 2006) and cryo-electron microscopy structures (Chen et al.
2006; Ranson et al. 2006). Co-chaperonin structures alone have been reported for
GroES (Boudker et al. 1997; Hunt et al. 1996; Seale et al. 1996).

The ability of GroEL and GroES to enhance protein folding is embedded in the
unique quaternary structures of these proteins. The arrangement of the GroEL sub-
units results in an oligomeric structure consisting of 14 subunits arranged in two



inverted rings, whilst the GroES subunits are arranged into a single ring of 7 subunits,
and both structures display sevenfold rotationally symmetric ring-shaped oligomers
(Fig. 8.1). The GroEL subunits are composed mainly of α-helices, and the arrange-
ment of the subunits into two stacked GroEL rings creates a central channel that is
split into two functionally separate cavities at the ring interface (Braig et al. 1993,
1994). Each subunit is divided into three distinct domains: an ATP-binding equato-
rial domain that mediates interactions between subunits of each ring, a substrate-
binding apical domain including co-chaperone binding sites, and an intermediate
domain that connects both domains and transmits conformational changes generated
by nucleotide binding between the equatorial and apical domains (Fig. 8.3) (Braig
et al. 1994; Fenton et al. 1994). The apical domains are positioned on the outside of
each ring, the intermediate domains are in the middle, and the equatorial domains are
positioned at the interface of both rings. Coalescence of the disordered and flexible
C-terminal segments of the subunits in each ring was determined to block the central
channel at the equatorial domain causing discontinuity between the cavities turning
them into two separate chambers for folding (Chen et al. 1994). An alternative
model, based on molecular simulations, suggests that the non-native protein is
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Fig. 8.3 Binding of GroES induces a large conformational change in GroEL. Each subunit of
GroEL is divided into three distinct domains: an apical domain, an equatorial domain, and an
intermediate domain that connects both domains. Unbound GroEL (a) undergoes large rigid body
movements of the apical domain upon binding of GroES (b). Apical domain is twisted 90� relative
to the open ring not bound to GroES. Alpha helices are shown in red and β-sheets in yellow. The
images were generated using PyMol (DeLano Scientific) from coordinates in PDB: 1AON



translocated from one barrel of GroEL to the next until it is fully folded, and this may
account for the double-ring structure (Coluzza et al. 2006).
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Fig. 8.4 Structure of GroES. Side view of GroES heptameric structure, as it occurs bound to
GroEL and ATP, showing the flexible loops that interact with GroEL pointing downwards (a). The
backbone structure of the GroES monomer interacting with the top of the apical domain of GroEL
(b). A top view of the GroEL/GroES complex (c). Alpha helices are shown in red and β-sheets in
yellow. The images were generated using PyMol (DeLano Scientific) from coordinates
in PDB: 1AON

GroES is composed of a seven identical 10 kDa subunits that form a lid-like
structure (Hunt et al. 1996; Mande et al. 1996). These subunits form an irregular
β-barrel structure formed by five β-strands with anti-parallel pairing of the last
β-strand of one subunit with the first β-strand of the following subunit (Landry
et al. 1996). Each subunit includes two loop regions, one facing upwards that forms
the roof of the lid and one extending downwards from the bottom of the lid that
constitutes a highly flexible mobile loop 16 amino acids in length (Fig. 8.4)
(Landry et al. 1993). Binding of GroES to GroEL is mediated by the seven flexible
loops which are induced to form a β-hairpin structure upon formation of the GroEL/
GroES/ATP complex (Fig. 8.4) (Richardson et al. 2001). Mutations in the mobile
loop disrupted GroES binding to GroEL (Zeilstra-Ryalls et al. 1994). The contribu-
tion of the mobile loop was studied using a synthetic peptide resembling the loop,
which lacked structure until induced to form the β-hairpin structure when bound to
GroEL (Landry et al. 1996). The functional contribution of the flexibility of the
mobile loop to chaperonin function was investigated by restricting the flexibility by
the formation of disulphide bonds within the loop, and the results revealed that they
play an important role in inducing substrate release into the cavity (Nojima et al.
2012).
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The GroEL rings are subject to intra- and inter-ring allostery (Yifrach and
Horovitz 1995). The two GroEL rings are staggered such that each subunit contacts
two subunits on the other ring that facilitates negative cooperativity between rings
(Braig et al. 1994; Roseman et al. 2001). A review of the unfolding and refolding of
GroEL in the presence of ligands and different solvents has highlighted differences
in behaviour between these two proteins (Ryabova et al. 2013). The crystal structure
of the bullet-shaped GroEL-GroES-ADP complex revealed that the apical domains
are twisted 90� relative to the open ring not bound to GroES (Fig. 8.3) (Roseman
et al. 1996; Xu et al. 1997). The transmission of conformational changes between the
apical and equatorial domains of GroEL via the intermediate domain is essentia, l as
mutations in this domain compromised the folding capacities of GroEL/GroES
(Kawata et al. 1999). Movement of the apical domains upon ATP binding shifts
the hydrophobic GroES and substrate binding site from a position facing the cavity
to an elevated and rotated position to facilitate the binding of the mobile loop of
GroES to cap the folding chamber (Fig. 8.3). Mutational mapping revealed that there
is an overlap between substrate and GroES binding to the hydrophobic binding site
(Fenton et al. 1994). Another study suggested that rotation of the hydrophobic
binding site weakens substrate binding (Ranson et al. 2001). However, mapping
the trajectories of domain movements of the GroEL-ATP complex showed that the
apical domains are linked by salt bridges that allow the binding sites to separate from
each other in an extended conformation, at the same time maintaining the binding
surface facing the cavity, providing a potential binding site for GroES which triggers
a final rotation that provides the ‘power stroke’ to eject substrate in the chamber
(Clare et al. 2012). The effects of interactions between the cavity wall of GroEL and
rhodanese were investigated with the result that these interactions slowed down the
folding rate of rhodanese (Sirur and Best 2013).

The Role of GroES in the Reaction Cycle

GroES functions as a co-chaperonin of GroEL to mediate the folding of unfolded or
partially unfolded proteins. GroEL captures substrates at a site in the apical domain
that exposes hydrophobic amino acid residues to facilitate substrate binding towards
the ring centre (Fenton et al. 1994). GroES binds at the apical domain of ATP-bound
GroEL, at a site that overlaps largely with the substrate binding site, and in doing so
displaces the substrate into the binding cavity (Fenton et al. 1994). The distortion of
the GroEL ring caused by the binding of GroES causes the hydrophobic residues that
bind non-native protein to become inaccessible creating a hydrophilic lined cavity
(Xu et al. 1997). The result is the eviction of the protein into the cage for folding, also
referred to as the Anfinsen cage (Ellis and Hartl 1996). GroES then forms a lid over
the central cavity entrapping the protein. GroES binding is faster than ATP-induced
release of the substrate, and this provides a mechanism for the entrapment of proteins
in the cis cavity (Burston et al. 1995).
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Once the substrate is encapsulated in the chamber, the slow rate of ATP hydro-
lysis dictates the length of time for folding to take place (Fenton and Horwich 2003;
Frydman 2001; Hartl and Hayer-Hartl 2002, 2009). GroEL exhibits weak ATPase
activity that is lowered in the presence of GroES (Chandrasekhar et al. 1986;
Goloubinoff et al. 1989). GroEL assists in the folding of non-native proteins with
the consumption of ATP (Xu et al. 1997). Transformational changes in the trans ring
caused by binding of substrate, ATP, and GroES to the cis ring result in the trans
ring not being able to bind substrate (Tyagi et al. 2009). This phenomenon may be
substrate specific, since in some cases GroEL was shown to bind two substrates
simultaneously, one in each folding chamber (Llorca et al. 1997; van Duijn et al.
2007). ATP hydrolysis of the GroES-bound ring is required for the binding of ATP
to the trans ring; negative cooperativity is displayed between the two GroEL rings
which favours dissociation of GroES, ADP, and substrate from the cis ring (Rye
et al. 1997). If the substrate is not folded correctly, it can rebind to another or the
same GroEL for successive cycles of folding (Rye et al. 1997). GroES can now bind
to the trans ring, and this ring then becomes the new cis ring in the subsequent round
of substrate folding events. Thus both rings alternate to become the cis ring during
folding cycles, and this has led to the term ‘two-stroke engine’ for the GroEL/GroES
folding machine (Lorimer 1996; Xu and Sigler 1998).

The transition between the open conformation, that is receptive to protein bind-
ing, and the closed state, in which the protein is isolated, is induced by ATP binding
and hydrolysis (Horovitz and Willison 2005). ATP binds with positive cooperativity
within rings but with negative cooperativity between rings (Yifrach and Horovitz
1995). Allosteric transitions support the ATP-dependent control of the affinity of
GroEL for its substrate and the subsequent folding (Roseman et al. 1996; Saibil et al.
1993; Yifrach and Horovitz 1995). ATP binding initiates bending and twisting of
subunit domains that distort the ring structure and exposes the GroES binding sites.
ATP binds to a ring with positive cooperativity, and movements of the interlinked
subunit domains are concerted. In contrast, there is negative cooperativity between
the rings, so that they act in alternation (Horovitz et al. 2001; Rye et al. 1997).
GroEL/GroES-assisted protein folding is further complicated by the existence of
both bullet-shaped (asymmetric) and football-shaped (symmetric) complexes. Com-
putational analysis of GroEL substrates revealed that both complexes functionally
co-exist with a shorter folding rate observed for certain substrates in the football
complex, whilst low ATP concentrations favoured the bullet-shaped species
(Fig. 8.2) (Bigman and Horovitz 2019). Asymmetric GroEL-GroES complexes
appear to persist under physiological conditions as a result of negative cooperativity
between GroEL rings, as nucleotide binding in one ring causes suppression of
binding in the other ring (Gruber and Horovitz 2016; Inobe et al. 2008). However,
the presence of a high concentration of substrate allows the symmetric cycle to
dominate, suggesting that GroEL can switch between two types of reaction cycle
(asymmetric or symmetric), possibly depending upon the substrate proteins
[reviewed by Iizuka and Funatsu (2016)]. Using FRET assays, symmetric GroEL-
GroES2 were determined to be the folding functional form, and these reverted to
asymmetric forms as protein substrate levels decreased (Yang et al. 2013). The



advantage of the symmetric complex is that protein folding can occur in both cavities
of the football-shaped complex; in fact, the folding of GFP was determined to occur
independently in both rings of the symmetric complex (Takei et al. 2012). In an
effort to reconcile the two different types of complexes, transient ring separation
caused by ATP binding to the trans ring allows the GroEL rings to function
sequentially (Yan et al. 2018). Understanding the pathways of allosteric communi-
cation in GroEL has been the subject of intense research, and this was reviewed by
Saibil et al. (2013) and more recently by Lorimer et al. (2018). A comprehensive
review of the modes of action of the GroEL/ES folding machine revealed that the
environment of the cage can accelerate the folding of some proteins (Hayer-Hartl
et al. 2016). The results of numerous studies on the folding kinetics of the encapsu-
lated protein substrate are available, and these vary due to differences in the
properties of the protein substrate (Korobko et al. 2020). GroEL encapsulation
repaired a folding defect of a maltose-binding protein with a destabilising mutation
by restoring or re-establishing fast folding, suggesting an active role of GroEL in a
compression effect in the cavity (Ye et al. 2018). Recently, it was determined that the
protein stability of thermally unstable dihydrofolate reductase from Moritella
profunda was greatly reduced after stable encapsulation by GroEL, resulting in
unfolded protein that then had the option to fold again (Korobko et al. 2020).
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In addition to its role as a lid for the folding chamber in the chaperonin complex,
GroES controls the cooperativity by directing conformational changes in GroEL that
are orchestrated by the seven mobile loops binding to each of the seven GroEL
subunits, followed by release of substrate into the cage (Gray and Fersht 1991; Todd
et al. 1994; Yifrach and Horovitz 1995). Interestingly, an alpha haemolysin
nanopore was fused with the seven flexible loops of GroES allowing it to function
as efficiently as the native GroES (Ho et al. 2015). GroES also plays a key role in
controlling the competence and specificity of protein folding by GroEL (Richardson
et al. 2001). Based on the GroEL-GroES-ADP complex, the binding of GroES
causes large rigid body movements of the apical domains of GroES that result in
doubling of the volume of the cis ring cavity compared to the trans ring (Fig. 8.3)
(Xu et al. 1997). This increased volume is capable of binding a native protein of
70 kDa (Houry et al. 1999). Most of the E. coli proteins that require GroEL-GroES
for folding are ~60 kDa, and larger proteins that cannot be accommodated within the
folding cavity can be folded by binding to the uncapped trans ring of GroEL (Sigler
et al. 1998). Binding of GroES causes a dramatic change in the walls of the cavity as
the hydrophobic binding sites are rotated towards the interfaces of adjacent subunits
and GroES resulting in a hydrophilic wall, and the intermediate domain twists
downwards capping the nucleotide binding site (Xu et al. 1997).
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Roles of Bacterial Chaperonins

Due to their importance in protein homeostasis, chaperonins are essential and
universally distributed in all bacteria. Bacterial chaperonins are required for the
correct assembly of the cell division apparatus (Ogino et al. 2004). In contrast to
E. coli which possesses a single operon-encoded groEL gene with a groES gene,
nearly 30% of all bacterial genomes contain multiple chaperonin genes (Lund 2009).
The mycobacteria were the first bacteria revealed to have multiple chaperonins
(Kong et al. 1993; Lund 2001). M. tuberculosis encodes two chaperonin genes,
cpn60.1 in an operon with the co-chaperonin gene cpn10 and cpn60.2 in a different
position on the chromosome (Kong et al. 1993), whilst M. smegmatis has three
copies of cpn60 (Fan et al. 2012). In bacteria with multiple groEL genes, such as
mycobacteria, the essential copy is unexpectedly often not the operon-encoded gene,
and this has resulted in much interest and speculation about the functions of these
additional chaperonins (Hu et al. 2008; Ojha et al. 2005). It is possible that one copy
preserves the essential chaperone function, whilst the others diverge to take on
altered roles (Lund 2001). Biophysical studies of the chaperonins from
M. tuberculosis and M. smegmatis provide support of novel functions for Cpn60.1
as Cpn60.2 proteins assemble into oligomers and are able to replace GroEL in E. coli
when co-expressed with GroES or the cognate Cpn10, whilst neither Cpn60.1 nor
Cpn60.3 found inM. smegmatis could functionally replace GroEL (Fan et al. 2012).
Based on the fact that Cpn60.1 appears to chaperone a discrete set of key enzymes
involved in the synthesis of the complex cell wall and differences in protein
sequence, this novel mycobacterial chaperonin may provide a unique target for
drug development reviewed by (Colaco and MacDougall 2014). As part of the
development of GroEL/ES inhibitors as potential antibiotics, clinically significant
ESKAPE pathogen (Enterococcus faecium, Staphylococcus aureus, Klebsiella
pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and
Enterobacter species) GroEL/ES formed mixed complexes in the presence of
E. coli GroEL/ES leading to a loss of viability in some cases, using chaperonin-
deficient E. coli (Sivinski et al. 2021).

One of the five GroEL paralogs in Sinorhizobium meliloti is required for NodD
protein folding (Ogawa and Long 1995), whilst Bradyrhizobium japonicum possess
at least five groESL operons that can partially compensate for the lack of one or other
genes (Fischer et al. 1993). These duplicated proteins have evolved specific roles in
different bacteria, but the mechanism involved in functional divergence has not been
elucidated (Wang et al. 2013). Myxococcus xanthus DK1622 displayed functional
divergence with respect to substrate specificity, and this was as a result of differences
in the apical and C-terminal regions of the two GroEL proteins (Wang et al. 2013).
Interestingly, monomeric Cpn60 from Thermus thermophilus was able to support
protein folding independently of both ATP and a co-chaperonin (Taguchi et al.
1994). The crystal structures of the T. thermophilus Cpn60/Cpn10 complex alone
(Shimamura et al. 2003) and with bound proteins have been reported (Shimamura
et al. 2004). Despite a destabilised structure, Cpn60 proteins from M. tuberculosis



also displayed activity in the absence of ATP or co-chaperonin (Qamra and Mande
2004). Chlamydia harbours three putative chaperonins, and ChGroEL has been
associated with increased pathology and is the primary chaperonin, whereas the
other two paralogues perform novel Chlamydia-specific functions during infection
(Illingworth et al. 2017). Further functions of the multiple chaperonins in bacteria
were reviewed by (Kumar et al. 2015).
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Cpn60s are dominant immunogens present during bacterial infections. Moreover,
Cpn60s of M. tuberculosis are potent inducers of host inflammatory responses and
behave as antigens and cytokines (Qamra et al. 2005). The host immune response to
exogenous chaperonins may be both protective and damaging (Ranford and Hen-
derson 2002). It has been hypothesised that due to sequence conservation, the host
immune response mounted against bacterial co-chaperonins may result in cross-
reactivity to human Cpn60 causing an autoimmune reaction (van Eden et al. 1998).
There is convincing evidence for the case in the development of atherosclerosis
(Wick 2006). The roles of chaperonins in disease, including models and potential
treatments, are addressed in a review by (Ranford and Henderson 2002).

Immunisation of mice with GroEL conferred full protection against Bacillus
anthracis infection, whilst DnaK was ineffective (Sinha and Bhatnagar 2010).
More recently GroEL was evaluated as an ideal vaccine candidate against Strepto-
coccus agalactiae, responsible for significant economic losses in the fishing industry
(Li et al. 2019). Extracellular leptospiral GroEL may play a role in the adhesion of
leptospires to host tissues and induce cytokine secretion during infection (Ho et al.
2021).

Specific Functions of Bacterial Co-chaperonins

In addition to co-chaperonin activity, a number of diverse roles played by bacterial
co-chaperonins are emerging, in particular during host-pathogen interactions. The
possible reasons for numerous chaperonins in bacteria were reviewed by Lund in
2009, and the evolution of so many different functions is highlighted by Henderson
and Martin (2011) (Henderson and Martin 2011; Lund 2009). Despite the conser-
vation of the GroEL-ES system in prokaryotes, it is absent in several members of the
class of mollicutes, which are bacteria lacking a cell wall (Schwarz et al. 2018). Most
bacterial Cpn10 proteins are stimulators of the immune system, and the response
varies between different species, with human and E. coli Cpn10 proteins being poor
immunogens and M. tuberculosis and M. leprae Cpn10 proteins being strong
immunogens (Cavanagh and Morton 1994). These proteins also play a role in
apoptosis, cytokine secretion, and cellular growth and development (Cavanagh
1996). Cpn10 of M. tuberculosis, a secreted protein with cell signalling functions,
is an important virulence factor during infection, and it plays a key role in the
pathology of spinal tuberculosis by inhibiting the growth of osteoblasts (Meghji
et al. 1997; Roberts et al. 2003). Structures have been reported for M. leprae, and
M. tuberculosis Cpn10 proteins and immunodominant epitopes have been mapped



to the mobile loop (Mande et al. 1996; Roberts et al. 2003). Further structural
analysis of M. tuberculosis Cpn10, in the presence of divalent cations, showed the
existence of a heptamer (Taneja and Mande 2001, 2002). The crystal structure of
T. thermophilusHB8 Cpn10 showed disordered loops in five subunits (Numoto et al.
2005). Comparison ofM. tuberculosis Cpn10 to that of T. thermophilus HB8 Cpn10
revealed a similar overall structure; however, the dome loops and mobile loops are
different (Fig. 8.5). The Cpn10 from Aquifex aeolicus has a 25-residue C-terminal
extension present in each monomer, that is absent from any other known Cpn10
protein, that is not essential for function but plays a role in preventing aggregation at
high temperatures (Chen et al. 2008; Luke et al. 2005).
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Fig. 8.5 The overall structures of M. tuberculosis Cpn10 (a) and T. thermophilus Cpn10 (b)
conform to the GroES-fold. Differences are evident in the mobile loops, and a partially helical
structure is present in the T. thermophilus Cpn10 monomer. Breaks are evident in the structures due
to a lack of electron density in the highly flexible mobile loops. Alpha helices are shown in red and
β-sheets in yellow. The images were generated using PyMol (DeLano Scientific) from coordinates
in PDB: 1HX5 and WNR

Roles of Eukaryotic Group I Chaperonins

In eukaryotes, group I Hsp60 is found in the mitochondria and also in chloroplasts of
plants. It interacts with its co-chaperonin Hsp10 or Cpn10 to promote protein folding
in the cell. Most mitochondria and chloroplasts in higher plants appear to possess
multiple chaperonin subunit types (Hill and Hemmingsen 2001). A number of novel
functions and interacting molecules have been assigned to Hsp60 (Czarnecka et al.
2006). Some of these are associated with carcinogenesis as its role in the survival and
proliferation of tumour cells has increased (Cappello et al. 2008; Czarnecka et al.
2006). Human HSPD has received considerable interest as an anticancer drug target.
It is highly expressed in ovarian tumours and knockdown of HSPD disrupted



mitochondrial functioning resulting in impeded cell proliferation (Guo et al. 2019).
A review of small molecule modulators of Hsp60 function was conducted to identify
potential anticancer drugs (Meng et al. 2018). The mitochondrial Hsp60 protein is
essential for the folding of proteins imported into the mitochondria and prevention of
denaturation during stress (Cheng et al. 1989; Levy-Rimler et al. 2001). They are
also characterised by a host of additional functions, including extracellular functions.
Hsp60 found in the cytosol and the extracellular space possesses various moonlight-
ing functions (Henderson et al. 2013). Mutations of HSPD are linked to severe
genetic diseases (Bross et al. 2007; Hansen et al. 2007; Magen et al. 2008). It also
plays a role in the production of pro-inflammatory cytokines (Chun et al. 2010). In
addition, it plays both pro-apoptotic and anti-apoptotic roles, depending on
localisation (Knowlton and Gupta 2003; Xanthoudakis et al. 1999). The first assess-
ment of proteins that interact with the human HSPD/E complex was conducted using
HEK293 cells and revealed that half of the mitochondrial proteins associate with this
complex (Bie et al. 2020). Not surprisingly, a number of these proteins are associated
with human disease, whilst 19 highly abundant proteins occupied approximately
60% of the chaperonin capacity (Bie et al. 2020). A number of reviews have been
written on Hsp60 chaperonopathies, diseases that arise from abnormal chaperonins
(Cappello et al. 2008, 2011, 2013, 2014; Macario and Conway de Macario 2005,
2007). A review of Hsp60 in the pathogenesis of diabetes mellitus suggests that the
chaperonin may provide the connection between mitochondrial stress and inflam-
mation (Juwono and Martinus 2016). Future research is needed to understand the
role of post-translational modifications of Hsp60 in chaperonopathies, and this is
highlighted in a recent review by Caruso Bavisotto et al. (2020).
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A structural study of HSPD/E revealed that both full football-shaped (double
ring) and half-football-shaped complexes (single ring) are functional and co-exist,
potentially forming two separate folding cycles that may be optimised for different
substrate sets (Gomez-Llorente et al. 2020). The recent cryo-EM structure of apo
HSPD1 reveals predominantly single ring assemblies and increased flexibility of the
apical domain in comparison to GroEL (Klebl et al. 2021). The mitochondrial Hsp60
in mammalian cells is transformed to a double-ring structure in the presence of ATP
and/or HSP10 (Levy-Rimler et al. 2001). X-ray crystallography confirmed that it is
capable of forming a football-shaped complex in the presence of both HSP10 and
ATP (Nisemblat et al. 2015). The mitochondrial chaperonin complex that is com-
posed of a single ring of seven subunits and a ring of Hsp10 subunits cannot exploit
binding of ATP to the trans ring as a mechanism for releasing cis GroES (Nielsen
and Cowan 1998). This complex may have evolved an intrinsically lower affinity for
the co-chaperonin, but the presence of a higher affinity mobile loop on Hsp10 may
offset the low affinity (Nielsen and Cowan 1998). Despite the fact that mitochondrial
Hsp60 can functionally replace GroEL, it is incapable of interacting with GroES
(Nielsen et al. 1999). The elements that dictate the specificity of mitochondrial
Hsp60 for Hsp10 appear to lie in the apical domain (Parnas et al. 2012). Analysis
of in vivo substrates of yeast mitochondrial chaperonins revealed divergent
chaperonin requirements, indicating that Hsp60 and Hsp10 do not always operate
as a functional unit (Dubaquie et al. 1998). Yeast mitochondrial Hsp60 can bind to



single-stranded DNA in vitro and play a role in the structure and transmission of
nucleoids (Kaufman et al. 2003). A number of parasites affecting human health have
demonstrated an upregulation of Hsp60, which is possibly linked to diverse envi-
ronmental conditions encountered during its transition from a mammalian to an
insect vector (Maresca and Carratu 1992). Induction of Hsp60 was found to occur
during the entire course of infection of Trypanosoma brucei, a protozoan parasite
responsible for causing sleeping sickness in humans (Radwanska et al. 2000). The
crystal structure of P. falciparum mitochondrial Cpn60 bound to ATP revealed that
large conformational changes can occur in the apical domain regulating substrate
binding, whilst a unique insertion in the equatorial domain increased interactions
between the rings (Nguyen et al. 2021).
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The chloroplast type I chaperonin complex (Cpn60) is structurally similar to
GroEL and also forms two stacked heptameric rings (Tsuprun et al. 1991); however,
these are composed of two different subunit types, Cpn60α and Cpn60β (Martel
et al. 1990) which are ~50% identical to each other (Hill and Hemmingsen 2001).
Arabidopsis thaliana encodes several Cpn60α and Cpn60β families and both are
required for plastid division (Suzuki et al. 2009). A unique chaperonin subunit in
A. thaliana confers substrate specificity, whilst the dominant subunits retain house-
keeping functions (Peng et al. 2011). The unicellular green algae Chlamydomonas
reinhardtii encodes three CPN60 subunits, CPN60α1, CPN60ß2, and CPN60ß2
(Schroda 2004). Hetero-oligomeric chloroplast chaperonins are unstable in the
presence of ATP, and C. reinhardtii CPN60 subunits revealed ATP-induced disas-
sembly (Bai et al. 2015). The crystal structure of apo C. reinhardtii CPN60ß1
appears similar to GroEL but with a larger binding cavity and a wider ATP binding
pocket, which may justify the structural instability upon ATP hydrolysis (Zhang
et al. 2016; Zhao and Liu 2018).

Specific Functions of Eukaryotic Group I Co-chaperonins

A single copy of the Cpn10 co-chaperonin is present in the mitochondria of yeast
and mammals (Hansen et al. 2003; Rospert et al. 1993a). The chloroplast
co-chaperonins are varied with cpn10 encoding the conventional 10 kDa protein
that is similar in structure and function to GroES, as well as cpn20 encoding tandem
fusions of Cpn10 domains that form tetrameric ring structures that function with
GroEL and Cpn60 (Bertsch et al. 1992; Koumoto et al. 2001; Sharkia et al. 2003). Of
the five co-chaperonin homologues present in A. thaliana, three reside in the
chloroplast; Cpn10-2 and Cpn20 form functional homo-oligomers, whilst Cpn10-1
requires the integration of Cpn20 to form a functional hetero-oligomeric complex
(Vitlin Gruber et al. 2014). Interestingly, C. reinhardtii has three co-chaperonins,
Cpn10, Cpn20, and Cpn23, that are individually non-functional (Tsai et al. 2012).
They are also structurally different, and the sequence encoding the roof-like
ß-hairpin in the co-chaperonin complex is absent, though Cpn10 and Cpn23 main-
tain this sequence (Zhao et al. 2019). In studies using recombinant co-chaperonins of



A. thaliana and C. reinhardtii, hetero-oligomeric ring complexes formed by com-
binations of Cpn10, Cpn20, and Cpn23 were able to serve as co-chaperonins, in
order to perhaps modify the chaperonin folding cage for specific client proteins (Tsai
et al. 2012). The symmetrical match of Cpn60, with sevenfold symmetry, to the
chloroplast co-chaperonin, may be solved by forming hetero-oligomers of Cpn20
and Cpn10 or by splitting the Cpn20 (Tsai et al. 2012). In fact, a symmetrical match
is not an absolute requirement for chaperonin function, and the flexibility and
plasticity of this interaction were demonstrated by forming concatamers of six to
eight covalently linked 10 kDa domains and three to four covalently linked Cpn20
subunits, which could help the chaperonin to refold a denatured protein in vitro (Guo
et al. 2015). A previous study determined that a minimum of four active GroES
subunits are necessary to contact GroEL for the formation of a stable GroEL/ES
complex, whilst five subunits allow for an active complex that can fold proteins
(Nojima et al. 2008). Despite the fact that human mitochondrial Cpn60 can bind
A. thaliana Cpn20, it does not lead to productive protein folding, demonstrating
different modes of binding of co-chaperonins to chaperonins, some of which are not
functional (Bonshtien et al. 2009). The high-resolution structure of C. reinhardtii
hetero-oligomeric Cpn60, in complex with hetero-oligomeric chloroplast Cpn10,
revealed that the overall structure was similar to that of GroEL/ES but with an
uneven spread of roof-forming domains in the co-chaperonin and possible varied
surface properties of the chaperonin that may enable the system to fold specific
substrates (Zhao et al. 2019).
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Just as Hsp10 may have many other roles in mammalian cells, it seems that
Cpn20 may have many additional roles in plants. Analysis of the stromal proteome
of A. thaliana chloroplasts indicates that the steady-state levels of Cpn20 exceed
those required to function with Cpn60, implying that there may be further roles for
Cpn20 (Peltier et al. 2006). Additional roles have been revealed in A. thaliana,
including the identity of Cpn20 as a negative regulator of abscisic signalling (Zhang
et al. 2013) and as a mediator of iron superoxide dismutase activity in chloroplasts
(Kuo et al. 2013).

Whilst our understanding of the roles of HSPE in disease continues to receive
research attention, little is known about the roles of its homologues in virulence and
pathogenicity of protozoan parasites affecting human health, and they may interact
with the human chaperone system. The first protozoan CPN10 protein characterised
was from Leishmania donovani and was shown to interact with CPN60.2 with
increased concentrations detected during the amastigote stage of the life cycle
(Zamora-Veyl et al. 2005). Cpn20 proteins were known to exist only in chloroplasts;
however, sequencing of the malarial genome revealed a single Cpn20 protein which
correlates with the algal origin of the apicoplast (Janouskovec et al. 2010; Sato and
Wilson 2005). Since the P. falciparum genome encodes only one cpn20 gene, it
functions as a homo-oligomeric co-chaperonin that can functionally replace GroES
(Vitlin Gruber et al. 2013b). Characterisation of HSP10 from Strongyloides ratti, an
intestinal nematode infecting humans, revealed a strong immunogenic response, and
the inability to bind to S. ratti HSP60 provided evidence of a role in host-parasite
interactions (Tazir et al. 2009).
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The structure of HSPE has been solved, and mutations in the first and last
β-strands altered both the oligomeric and folded states (Guidry et al. 2003). In
contrast to HSPD, HSPE stimulates the production of anti-inflammatory cytokines
and exerts immunosuppressive activity (Johnson et al. 2005). One of the first
extracellular heat shock proteins to be isolated was a circulating immunosuppressive
protein, termed early pregnancy factor (EPF), which was later identified as HSPE
after the isolation and demonstration of its role as a co-chaperonin for Hsp60
(Cavanagh and Morton 1994; Morton et al. 1977). The isolation of EPF was also
the first evidence that heat shock proteins could function as cell signalling agonists
(Morton et al. 1977). EFP appeared in the maternal serum within 24 hours after
fertilisation in some mammalians and has been found to exhibit growth factor
qualities and anti-inflammatory properties essential for protecting the embryo from
the mother’s own immune system (Athanasas-Platsis et al. 2004; Morton et al. 1977;
Quinn et al. 1990). The relationship between HSPE and EPF is discussed in a review
by (Corrao et al. 2010). Recombinant HSPE has been used for the treatment of
rheumatoid arthritis (Vanags et al. 2006) and multiple sclerosis (Broadley et al.
2009). HSP10 is essential for the regulation of histone transcription and cell prolif-
eration (Ling Zheng et al. 2015). Selective overexpression of HSP10 in metastatic
lymph modes suggest that it acts autonomously from HSP60 (Cappello et al. 2005).
Elevated levels of Hsp10 correlate with poor prognosis in oral squamous cell
carcinoma (Feng et al. 2017). Extracellular Hsp10 influences endothelial cell differ-
entiation (Dobocan et al. 2009). There is growing evidence to suggest that extracel-
lular Hsp10 plays an active role in cell signalling (David et al. 2013).

Conclusion

Despite the fact that HSPD/E can replace GroEL/ES, continued research has shown
them to be mechanistically different. Divergence from the E. coli archetype is also
apparent in chloroplasts and other bacteria. Defective chaperonins cause
chaperonopathies. However, both wild-type and mutant Hsp60 are associated with
a number of disease affecting human health, and the search will continue for small
molecules that can modulate the activity of Hsp60 as therapeutic strategies. Research
on the influence of the cellular environment on the GroEL/ES folding machine and
factors affecting the rate of protein folding will continue to enhance our understand-
ing of this system. The moonlighting functions of bacterial chaperonins and
co-chaperonins will continue to evolve. The structural states of Hsp10, including
mixed oligomeric or fragmented, appear to influence the function as well as location.
Hsp10 often functions as an antagonist to Hsp60 and possibly other molecular
chaperones. Further knowledge of the extracellular functions of Hsp10, including
secretion pathways and cell signalling, will definitely be of benefit in the develop-
ment of treatments for cancer and autoimmune diseases related to this protein.
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